Files
gogo2/ANNOTATE/IMPLEMENTATION_SUMMARY.md
2025-12-09 11:59:15 +02:00

148 lines
5.1 KiB
Markdown

# Event-Driven Inference Training System - Implementation Summary
## Architecture Decisions
### Where Components Fit
1. **InferenceTrainingCoordinator****TradingOrchestrator**
- **Rationale**: Orchestrator already manages models, training, and predictions
- **Benefits**:
- Reduces duplication (orchestrator has model access)
- Centralizes coordination logic
- Reuses existing prediction storage
- **Location**: `core/orchestrator.py` - initialized in `__init__`
2. **DataProvider Subscription Methods****DataProvider**
- **Rationale**: Data layer responsibility - emits events when data changes
- **Methods Added**:
- `subscribe_candle_completion()` - Subscribe to candle completion events
- `subscribe_pivot_events()` - Subscribe to pivot events
- `_emit_candle_completion()` - Emit event when candle closes
- `_emit_pivot_event()` - Emit event when pivot detected
- **Location**: `core/data_provider.py`
3. **TrainingEventSubscriber Interface****RealTrainingAdapter**
- **Rationale**: Training layer implements subscriber interface
- **Methods Implemented**:
- `on_candle_completion()` - Train on candle completion
- `on_pivot_event()` - Train on pivot detection
- **Location**: `ANNOTATE/core/real_training_adapter.py`
## Code Duplication Reduction
### Before (Duplicated Logic)
1. **Data Retrieval**:
- `_get_realtime_market_data()` in RealTrainingAdapter
- Similar logic in orchestrator
- Similar logic in data_provider
2. **Prediction Storage**:
- `store_transformer_prediction()` in orchestrator
- `inference_input_cache` in RealTrainingAdapter session
- `prediction_cache` in app.py
3. **Training Coordination**:
- Training logic in RealTrainingAdapter
- Training logic in orchestrator
- Training logic in enhanced_realtime_training
### After (Centralized)
1. **Data Retrieval**:
- Single source: `data_provider.get_historical_data()` queries DuckDB
- Coordinator retrieves data on-demand using references
- No copying - just timestamp ranges
2. **Prediction Storage**:
- Orchestrator's `inference_training_coordinator` manages references
- References stored in coordinator (not copied)
- Data retrieved from DuckDB when needed
3. **Training Coordination**:
- Orchestrator's coordinator handles event distribution
- RealTrainingAdapter implements subscriber interface
- Single training lock in RealTrainingAdapter
## Implementation Status
### ✅ Completed
1. **InferenceTrainingCoordinator** (`inference_training_system.py`)
- Reference-based storage
- Event subscription system
- Data retrieval from DuckDB
2. **DataProvider Extensions** (`data_provider.py`)
- `subscribe_candle_completion()` method
- `subscribe_pivot_events()` method
- `_emit_candle_completion()` method
- `_emit_pivot_event()` method
- Event emission in `_update_candle()`
3. **Orchestrator Integration** (`orchestrator.py`)
- Coordinator initialized in `__init__`
- Accessible via `orchestrator.inference_training_coordinator`
4. **RealTrainingAdapter Integration** (`real_training_adapter.py`)
- Uses orchestrator's coordinator
- Implements `TrainingEventSubscriber` interface
- `on_candle_completion()` method
- `on_pivot_event()` method
- `_register_inference_frame()` method
- Helper methods for batch creation
### ⚠️ Needs Completion
1. **Pivot Event Emission**
- DataProvider needs to detect pivots and emit events
- Currently pivots are calculated but not emitted as events
- Need to integrate with WilliamsMarketStructure pivot detection
2. **Norm Params Storage**
- Currently norm_params are calculated on retrieval
- Could be stored in reference during registration for efficiency
- Need to pass norm_params from `_get_realtime_market_data()` to `_register_inference_frame()`
3. **Device Handling**
- Ensure tensors are on correct device when retrieved from DuckDB
- May need to store device info in reference
4. **Testing**
- Test candle completion events
- Test pivot events
- Test data retrieval from DuckDB
- Test training on inference frames
## Key Benefits
1. **Memory Efficient**: No copying 600 candles every second
2. **Event-Driven**: Clean separation of concerns
3. **Flexible**: Supports time-based (candles) and event-based (pivots)
4. **Centralized**: Coordinator in orchestrator reduces duplication
5. **Extensible**: Easy to add new training methods or event types
## Next Steps
1. **Complete Pivot Event Emission**
- Add pivot detection in DataProvider
- Emit events when L2L, L2H, etc. detected
2. **Store Norm Params During Registration**
- Pass norm_params from prediction to registration
- Store in reference for faster retrieval
3. **Add Device Info to References**
- Store device in InferenceFrameReference
- Use when creating tensors
4. **Remove Old Caching Code**
- Remove `inference_input_cache` from session
- Remove `_make_realtime_prediction_with_cache()` (deprecated)
- Clean up duplicate code
5. **Extend DuckDB Schema**
- Add MA indicators to ohlcv_data
- Create pivot_points table
- Store technical indicators