# Event-Driven Inference Training System - Implementation Summary ## Architecture Decisions ### Where Components Fit 1. **InferenceTrainingCoordinator** → **TradingOrchestrator** - **Rationale**: Orchestrator already manages models, training, and predictions - **Benefits**: - Reduces duplication (orchestrator has model access) - Centralizes coordination logic - Reuses existing prediction storage - **Location**: `core/orchestrator.py` - initialized in `__init__` 2. **DataProvider Subscription Methods** → **DataProvider** - **Rationale**: Data layer responsibility - emits events when data changes - **Methods Added**: - `subscribe_candle_completion()` - Subscribe to candle completion events - `subscribe_pivot_events()` - Subscribe to pivot events - `_emit_candle_completion()` - Emit event when candle closes - `_emit_pivot_event()` - Emit event when pivot detected - **Location**: `core/data_provider.py` 3. **TrainingEventSubscriber Interface** → **RealTrainingAdapter** - **Rationale**: Training layer implements subscriber interface - **Methods Implemented**: - `on_candle_completion()` - Train on candle completion - `on_pivot_event()` - Train on pivot detection - **Location**: `ANNOTATE/core/real_training_adapter.py` ## Code Duplication Reduction ### Before (Duplicated Logic) 1. **Data Retrieval**: - `_get_realtime_market_data()` in RealTrainingAdapter - Similar logic in orchestrator - Similar logic in data_provider 2. **Prediction Storage**: - `store_transformer_prediction()` in orchestrator - `inference_input_cache` in RealTrainingAdapter session - `prediction_cache` in app.py 3. **Training Coordination**: - Training logic in RealTrainingAdapter - Training logic in orchestrator - Training logic in enhanced_realtime_training ### After (Centralized) 1. **Data Retrieval**: - Single source: `data_provider.get_historical_data()` queries DuckDB - Coordinator retrieves data on-demand using references - No copying - just timestamp ranges 2. **Prediction Storage**: - Orchestrator's `inference_training_coordinator` manages references - References stored in coordinator (not copied) - Data retrieved from DuckDB when needed 3. **Training Coordination**: - Orchestrator's coordinator handles event distribution - RealTrainingAdapter implements subscriber interface - Single training lock in RealTrainingAdapter ## Implementation Status ### ✅ Completed 1. **InferenceTrainingCoordinator** (`inference_training_system.py`) - Reference-based storage - Event subscription system - Data retrieval from DuckDB 2. **DataProvider Extensions** (`data_provider.py`) - `subscribe_candle_completion()` method - `subscribe_pivot_events()` method - `_emit_candle_completion()` method - `_emit_pivot_event()` method - Event emission in `_update_candle()` 3. **Orchestrator Integration** (`orchestrator.py`) - Coordinator initialized in `__init__` - Accessible via `orchestrator.inference_training_coordinator` 4. **RealTrainingAdapter Integration** (`real_training_adapter.py`) - Uses orchestrator's coordinator - Implements `TrainingEventSubscriber` interface - `on_candle_completion()` method - `on_pivot_event()` method - `_register_inference_frame()` method - Helper methods for batch creation ### ⚠️ Needs Completion 1. **Pivot Event Emission** - DataProvider needs to detect pivots and emit events - Currently pivots are calculated but not emitted as events - Need to integrate with WilliamsMarketStructure pivot detection 2. **Norm Params Storage** - Currently norm_params are calculated on retrieval - Could be stored in reference during registration for efficiency - Need to pass norm_params from `_get_realtime_market_data()` to `_register_inference_frame()` 3. **Device Handling** - Ensure tensors are on correct device when retrieved from DuckDB - May need to store device info in reference 4. **Testing** - Test candle completion events - Test pivot events - Test data retrieval from DuckDB - Test training on inference frames ## Key Benefits 1. **Memory Efficient**: No copying 600 candles every second 2. **Event-Driven**: Clean separation of concerns 3. **Flexible**: Supports time-based (candles) and event-based (pivots) 4. **Centralized**: Coordinator in orchestrator reduces duplication 5. **Extensible**: Easy to add new training methods or event types ## Next Steps 1. **Complete Pivot Event Emission** - Add pivot detection in DataProvider - Emit events when L2L, L2H, etc. detected 2. **Store Norm Params During Registration** - Pass norm_params from prediction to registration - Store in reference for faster retrieval 3. **Add Device Info to References** - Store device in InferenceFrameReference - Use when creating tensors 4. **Remove Old Caching Code** - Remove `inference_input_cache` from session - Remove `_make_realtime_prediction_with_cache()` (deprecated) - Clean up duplicate code 5. **Extend DuckDB Schema** - Add MA indicators to ohlcv_data - Create pivot_points table - Store technical indicators