Files
gogo2/ANNOTATE/IMPLEMENTATION_SUMMARY.md
2025-12-09 11:59:15 +02:00

5.1 KiB

Event-Driven Inference Training System - Implementation Summary

Architecture Decisions

Where Components Fit

  1. InferenceTrainingCoordinatorTradingOrchestrator

    • Rationale: Orchestrator already manages models, training, and predictions
    • Benefits:
      • Reduces duplication (orchestrator has model access)
      • Centralizes coordination logic
      • Reuses existing prediction storage
    • Location: core/orchestrator.py - initialized in __init__
  2. DataProvider Subscription MethodsDataProvider

    • Rationale: Data layer responsibility - emits events when data changes
    • Methods Added:
      • subscribe_candle_completion() - Subscribe to candle completion events
      • subscribe_pivot_events() - Subscribe to pivot events
      • _emit_candle_completion() - Emit event when candle closes
      • _emit_pivot_event() - Emit event when pivot detected
    • Location: core/data_provider.py
  3. TrainingEventSubscriber InterfaceRealTrainingAdapter

    • Rationale: Training layer implements subscriber interface
    • Methods Implemented:
      • on_candle_completion() - Train on candle completion
      • on_pivot_event() - Train on pivot detection
    • Location: ANNOTATE/core/real_training_adapter.py

Code Duplication Reduction

Before (Duplicated Logic)

  1. Data Retrieval:

    • _get_realtime_market_data() in RealTrainingAdapter
    • Similar logic in orchestrator
    • Similar logic in data_provider
  2. Prediction Storage:

    • store_transformer_prediction() in orchestrator
    • inference_input_cache in RealTrainingAdapter session
    • prediction_cache in app.py
  3. Training Coordination:

    • Training logic in RealTrainingAdapter
    • Training logic in orchestrator
    • Training logic in enhanced_realtime_training

After (Centralized)

  1. Data Retrieval:

    • Single source: data_provider.get_historical_data() queries DuckDB
    • Coordinator retrieves data on-demand using references
    • No copying - just timestamp ranges
  2. Prediction Storage:

    • Orchestrator's inference_training_coordinator manages references
    • References stored in coordinator (not copied)
    • Data retrieved from DuckDB when needed
  3. Training Coordination:

    • Orchestrator's coordinator handles event distribution
    • RealTrainingAdapter implements subscriber interface
    • Single training lock in RealTrainingAdapter

Implementation Status

Completed

  1. InferenceTrainingCoordinator (inference_training_system.py)

    • Reference-based storage
    • Event subscription system
    • Data retrieval from DuckDB
  2. DataProvider Extensions (data_provider.py)

    • subscribe_candle_completion() method
    • subscribe_pivot_events() method
    • _emit_candle_completion() method
    • _emit_pivot_event() method
    • Event emission in _update_candle()
  3. Orchestrator Integration (orchestrator.py)

    • Coordinator initialized in __init__
    • Accessible via orchestrator.inference_training_coordinator
  4. RealTrainingAdapter Integration (real_training_adapter.py)

    • Uses orchestrator's coordinator
    • Implements TrainingEventSubscriber interface
    • on_candle_completion() method
    • on_pivot_event() method
    • _register_inference_frame() method
    • Helper methods for batch creation

⚠️ Needs Completion

  1. Pivot Event Emission

    • DataProvider needs to detect pivots and emit events
    • Currently pivots are calculated but not emitted as events
    • Need to integrate with WilliamsMarketStructure pivot detection
  2. Norm Params Storage

    • Currently norm_params are calculated on retrieval
    • Could be stored in reference during registration for efficiency
    • Need to pass norm_params from _get_realtime_market_data() to _register_inference_frame()
  3. Device Handling

    • Ensure tensors are on correct device when retrieved from DuckDB
    • May need to store device info in reference
  4. Testing

    • Test candle completion events
    • Test pivot events
    • Test data retrieval from DuckDB
    • Test training on inference frames

Key Benefits

  1. Memory Efficient: No copying 600 candles every second
  2. Event-Driven: Clean separation of concerns
  3. Flexible: Supports time-based (candles) and event-based (pivots)
  4. Centralized: Coordinator in orchestrator reduces duplication
  5. Extensible: Easy to add new training methods or event types

Next Steps

  1. Complete Pivot Event Emission

    • Add pivot detection in DataProvider
    • Emit events when L2L, L2H, etc. detected
  2. Store Norm Params During Registration

    • Pass norm_params from prediction to registration
    • Store in reference for faster retrieval
  3. Add Device Info to References

    • Store device in InferenceFrameReference
    • Use when creating tensors
  4. Remove Old Caching Code

    • Remove inference_input_cache from session
    • Remove _make_realtime_prediction_with_cache() (deprecated)
    • Clean up duplicate code
  5. Extend DuckDB Schema

    • Add MA indicators to ohlcv_data
    • Create pivot_points table
    • Store technical indicators