This commit is contained in:
Dobromir Popov
2025-09-05 08:49:25 +03:00
parent 614c390692
commit e0c0d886f6
3 changed files with 75 additions and 195 deletions

View File

@@ -5,8 +5,9 @@
using namespace std;
// Let's use a pinned memory vector!
#include <thrust/host_vector.h>
#include <thrust/system/cuda/experimental/pinned_allocator.h>
// Removed Thrust pinned allocator dependency for portability
// #include <thrust/host_vector.h>
// #include <thrust/system/cuda/experimental/pinned_allocator.h>
using u32 = uint32_t;
using u64 = uint64_t;
@@ -228,10 +229,8 @@ void Chunk::compress_chunk(u32 out_flags) {
}
}
using thrust_vector = thrust::host_vector<
Chunk,
thrust::system::cuda::experimental::pinned_allocator<Chunk>
>;
// Fallback alias: use std::vector instead of thrust pinned host vector
using thrust_vector = std::vector<Chunk>;
// The GPU hasher
void light_hash(Chunk*, int, Chunk*, Chunk*);

View File

@@ -52,19 +52,12 @@ echo.
echo Building RinHash CUDA miner...
echo.
REM Compile with NVCC
nvcc -O3 -arch=sm_50 ^
REM Compile with NVCC (enable device linking for dynamic parallelism)
nvcc -O3 -rdc=true -arch=sm_50 ^
-gencode arch=compute_50,code=sm_50 ^
-gencode arch=compute_52,code=sm_52 ^
-gencode arch=compute_60,code=sm_60 ^
-gencode arch=compute_61,code=sm_61 ^
-gencode arch=compute_70,code=sm_70 ^
-gencode arch=compute_75,code=sm_75 ^
-gencode arch=compute_80,code=sm_80 ^
-gencode arch=compute_86,code=sm_86 ^
-I. rinhash.cu sha3-256.cu ^
-o rinhash-cuda-miner.exe ^
-lcuda -lcudart
-lcuda -lcudart -lcudadevrt
if errorlevel 1 (
echo.

View File

@@ -12,51 +12,36 @@
#include "sha3-256.cu"
#include "blake3_device.cuh"
// External references to our CUDA implementations
extern "C" void blake3_hash(const uint8_t* input, size_t input_len, uint8_t* output);
extern "C" void argon2d_hash_rinhash(uint8_t* output, const uint8_t* input, size_t input_len);
extern "C" void sha3_256_hash(const uint8_t* input, size_t input_len, uint8_t* output);
// Modified kernel to use device functions
extern "C" __global__ void rinhash_cuda_kernel(
const uint8_t* input,
size_t input_len,
uint8_t* output
const uint8_t* input,
size_t input_len,
uint8_t* output,
block* argon2_memory
) {
// Intermediate results in shared memory
__shared__ uint8_t blake3_out[32];
__shared__ uint8_t argon2_out[32];
// Only one thread should do this work
if (threadIdx.x == 0) {
// Step 1: BLAKE3 hash - now using light_hash_device
light_hash_device(input, input_len, blake3_out);
// Step 2: Argon2d hash
uint32_t m_cost = 64; // Example
size_t memory_size = m_cost * sizeof(block);
block* d_memory = (block*)malloc(memory_size);
uint8_t salt[11] = { 'R','i','n','C','o','i','n','S','a','l','t' };
device_argon2d_hash(argon2_out, blake3_out, 32, 2, 64, 1, d_memory, salt, 11);
// Step 3: SHA3-256 hash
device_argon2d_hash(argon2_out, blake3_out, 32, 2, 64, 1, argon2_memory, salt, 11);
uint8_t sha3_out[32];
sha3_256_device(argon2_out, 32, sha3_out);
for (int i = 0; i < 32; i++) output[i] = sha3_out[i];
}
// Use syncthreads to ensure all threads wait for the computation to complete
__syncthreads();
}
// RinHash CUDA implementation
extern "C" void rinhash_cuda(const uint8_t* input, size_t input_len, uint8_t* output) {
// Allocate device memory
const uint32_t m_cost = 64; // Argon2 blocks (64 KiB)
uint8_t *d_input = nullptr;
uint8_t *d_output = nullptr;
block *d_memory = nullptr;
cudaError_t err;
// Allocate memory on device
err = cudaMalloc(&d_input, input_len);
if (err != cudaSuccess) {
fprintf(stderr, "CUDA error: Failed to allocate input memory: %s\n", cudaGetErrorString(err));
@@ -70,39 +55,44 @@ extern "C" void rinhash_cuda(const uint8_t* input, size_t input_len, uint8_t* ou
return;
}
// Copy input data to device
err = cudaMalloc(&d_memory, m_cost * sizeof(block));
if (err != cudaSuccess) {
fprintf(stderr, "CUDA error: Failed to allocate argon2 memory: %s\n", cudaGetErrorString(err));
cudaFree(d_input);
cudaFree(d_output);
return;
}
err = cudaMemcpy(d_input, input, input_len, cudaMemcpyHostToDevice);
if (err != cudaSuccess) {
fprintf(stderr, "CUDA error: Failed to copy input to device: %s\n", cudaGetErrorString(err));
cudaFree(d_memory);
cudaFree(d_input);
cudaFree(d_output);
return;
}
// Launch the kernel
rinhash_cuda_kernel<<<1, 1>>>(d_input, input_len, d_output);
rinhash_cuda_kernel<<<1, 1>>>(d_input, input_len, d_output, d_memory);
// Wait for kernel to finish
err = cudaDeviceSynchronize();
if (err != cudaSuccess) {
fprintf(stderr, "CUDA error during kernel execution: %s\n", cudaGetErrorString(err));
cudaFree(d_memory);
cudaFree(d_input);
cudaFree(d_output);
return;
}
// Copy result back to host
err = cudaMemcpy(output, d_output, 32, cudaMemcpyDeviceToHost);
if (err != cudaSuccess) {
fprintf(stderr, "CUDA error: Failed to copy output from device: %s\n", cudaGetErrorString(err));
}
// Free device memory
cudaFree(d_memory);
cudaFree(d_input);
cudaFree(d_output);
}
// Helper function to convert a block header to bytes
extern "C" void blockheader_to_bytes(
const uint32_t* version,
@@ -115,137 +105,55 @@ extern "C" void blockheader_to_bytes(
size_t* output_len
) {
size_t offset = 0;
// Version (4 bytes)
memcpy(output + offset, version, 4);
offset += 4;
// Previous block hash (32 bytes)
memcpy(output + offset, prev_block, 32);
offset += 32;
// Merkle root (32 bytes)
memcpy(output + offset, merkle_root, 32);
offset += 32;
// Timestamp (4 bytes)
memcpy(output + offset, timestamp, 4);
offset += 4;
// Bits (4 bytes)
memcpy(output + offset, bits, 4);
offset += 4;
// Nonce (4 bytes)
memcpy(output + offset, nonce, 4);
offset += 4;
memcpy(output + offset, version, 4); offset += 4;
memcpy(output + offset, prev_block, 32); offset += 32;
memcpy(output + offset, merkle_root, 32); offset += 32;
memcpy(output + offset, timestamp, 4); offset += 4;
memcpy(output + offset, bits, 4); offset += 4;
memcpy(output + offset, nonce, 4); offset += 4;
*output_len = offset;
}
// Batch processing version for mining
// Batch processing version for mining (sequential per header for now)
extern "C" void rinhash_cuda_batch(
const uint8_t* block_headers,
size_t block_header_len,
uint8_t* outputs,
uint32_t num_blocks
) {
// Reset device to clear any previous errors
cudaError_t err = cudaDeviceReset();
if (err != cudaSuccess) {
fprintf(stderr, "CUDA error: Failed to reset device: %s\n",
cudaGetErrorString(err));
return;
}
// Check available memory
size_t free_mem, total_mem;
err = cudaMemGetInfo(&free_mem, &total_mem);
if (err != cudaSuccess) {
//fprintf(stderr, "CUDA error: Failed to get memory info: %s\n",
// cudaGetErrorString(err));
return;
}
size_t headers_size = num_blocks * block_header_len;
size_t outputs_size = num_blocks * 32;
size_t required_mem = headers_size + outputs_size;
if (required_mem > free_mem) {
fprintf(stderr, "CUDA error: Not enough memory (required: %zu, free: %zu)\n",
required_mem, free_mem);
return;
}
// Allocate device memory
uint8_t *d_headers = NULL;
uint8_t *d_outputs = NULL;
// Allocate memory for input block headers with error check
err = cudaMalloc((void**)&d_headers, headers_size);
if (err != cudaSuccess) {
fprintf(stderr, "CUDA error: Failed to allocate device memory for headers (%zu bytes): %s\n",
headers_size, cudaGetErrorString(err));
return;
}
// Allocate memory for output hashes with error check
err = cudaMalloc((void**)&d_outputs, outputs_size);
if (err != cudaSuccess) {
fprintf(stderr, "CUDA error: Failed to allocate device memory for outputs (%zu bytes): %s\n",
outputs_size, cudaGetErrorString(err));
cudaFree(d_headers);
return;
}
// Copy block headers from host to device
err = cudaMemcpy(d_headers, block_headers, headers_size, cudaMemcpyHostToDevice);
if (err != cudaSuccess) {
fprintf(stderr, "CUDA error: Failed to copy headers to device: %s\n",
cudaGetErrorString(err));
cudaFree(d_headers);
cudaFree(d_outputs);
return;
}
// Process one header at a time to isolate any issues
const uint32_t m_cost = 64;
uint8_t *d_input = NULL;
uint8_t *d_output = NULL;
block *d_memory = NULL;
cudaError_t err;
err = cudaMalloc((void**)&d_input, block_header_len);
if (err != cudaSuccess) { fprintf(stderr, "CUDA error: alloc header: %s\n", cudaGetErrorString(err)); return; }
err = cudaMalloc((void**)&d_output, 32);
if (err != cudaSuccess) { fprintf(stderr, "CUDA error: alloc output: %s\n", cudaGetErrorString(err)); cudaFree(d_input); return; }
err = cudaMalloc((void**)&d_memory, m_cost * sizeof(block));
if (err != cudaSuccess) { fprintf(stderr, "CUDA error: alloc argon2 mem: %s\n", cudaGetErrorString(err)); cudaFree(d_input); cudaFree(d_output); return; }
for (uint32_t i = 0; i < num_blocks; i++) {
const uint8_t* input = d_headers + i * block_header_len;
uint8_t* output = d_outputs + i * 32;
// Call rinhash_cuda_kernel with device pointers and proper launch configuration
rinhash_cuda_kernel<<<1, 32>>>(input, block_header_len, output);
// Check for errors after each processing
err = cudaGetLastError();
if (err != cudaSuccess) {
fprintf(stderr, "CUDA error in block %u: %s\n", i, cudaGetErrorString(err));
cudaFree(d_headers);
cudaFree(d_outputs);
return;
}
const uint8_t* input = block_headers + i * block_header_len;
uint8_t* output = outputs + i * 32;
err = cudaMemcpy(d_input, input, block_header_len, cudaMemcpyHostToDevice);
if (err != cudaSuccess) { fprintf(stderr, "CUDA error: copy header %u: %s\n", i, cudaGetErrorString(err)); break; }
rinhash_cuda_kernel<<<1, 1>>>(d_input, block_header_len, d_output, d_memory);
err = cudaDeviceSynchronize();
if (err != cudaSuccess) { fprintf(stderr, "CUDA error in kernel %u: %s\n", i, cudaGetErrorString(err)); break; }
err = cudaMemcpy(output, d_output, 32, cudaMemcpyDeviceToHost);
if (err != cudaSuccess) { fprintf(stderr, "CUDA error: copy out %u: %s\n", i, cudaGetErrorString(err)); break; }
}
// Synchronize device to ensure all operations are complete
err = cudaDeviceSynchronize();
if (err != cudaSuccess) {
fprintf(stderr, "CUDA error during synchronization: %s\n", cudaGetErrorString(err));
cudaFree(d_headers);
cudaFree(d_outputs);
return;
}
// Copy results back from device to host
err = cudaMemcpy(outputs, d_outputs, outputs_size, cudaMemcpyDeviceToHost);
if (err != cudaSuccess) {
fprintf(stderr, "CUDA error: Failed to copy results from device: %s\n",
cudaGetErrorString(err));
}
// Free device memory
cudaFree(d_headers);
cudaFree(d_outputs);
cudaFree(d_memory);
cudaFree(d_output);
cudaFree(d_input);
}
// Main RinHash function that would be called from outside
@@ -260,8 +168,7 @@ extern "C" void RinHash(
) {
uint8_t block_header[80]; // Standard block header size
size_t block_header_len;
// Convert block header to bytes
blockheader_to_bytes(
version,
prev_block,
@@ -272,8 +179,7 @@ extern "C" void RinHash(
block_header,
&block_header_len
);
// Calculate RinHash
rinhash_cuda(block_header, block_header_len, output);
}
@@ -293,15 +199,11 @@ extern "C" void RinHash_mine(
const size_t block_header_len = 80;
std::vector<uint8_t> block_headers(block_header_len * num_nonces);
std::vector<uint8_t> hashes(32 * num_nonces);
// Prepare block headers with different nonces
for (uint32_t i = 0; i < num_nonces; i++) {
uint32_t current_nonce = start_nonce + i;
// Fill in the common parts of the header
uint8_t* header = block_headers.data() + i * block_header_len;
size_t header_len;
blockheader_to_bytes(
version,
prev_block,
@@ -313,32 +215,18 @@ extern "C" void RinHash_mine(
&header_len
);
}
// Calculate hashes for all nonces
rinhash_cuda_batch(block_headers.data(), block_header_len, hashes.data(), num_nonces);
// Find the best hash (lowest value)
memcpy(best_hash, hashes.data(), 32);
*found_nonce = start_nonce;
for (uint32_t i = 1; i < num_nonces; i++) {
uint8_t* current_hash = hashes.data() + i * 32;
// Compare current hash with best hash (byte by byte, from most significant to least)
bool is_better = false;
for (int j = 0; j < 32; j++) {
if (current_hash[j] < best_hash[j]) {
is_better = true;
break;
}
else if (current_hash[j] > best_hash[j]) {
break;
}
}
if (is_better) {
memcpy(best_hash, current_hash, 32);
*found_nonce = start_nonce + i;
if (current_hash[j] < best_hash[j]) { is_better = true; break; }
else if (current_hash[j] > best_hash[j]) { break; }
}
if (is_better) { memcpy(best_hash, current_hash, 32); *found_nonce = start_nonce + i; }
}
}