rockm specific implementation

This commit is contained in:
Dobromir Popov
2025-09-05 03:38:45 +03:00
parent f5b05ce531
commit 614c390692
3 changed files with 117 additions and 176 deletions

Submodule rin/miner/cpuminer/cpuminer-opt-rin added at dfbd6b03a6

View File

@@ -1,5 +1,4 @@
#include <cuda_runtime.h>
#include <device_launch_parameters.h>
#include "hip_runtime_shim.h"
#include <stdint.h>
#include <stdio.h>
#include <string.h>
@@ -9,100 +8,109 @@
// Include shared device functions
#include "rinhash_device.cuh"
#include "argon2d_device.cuh"
#include "sha3-256.cu"
#include "sha3-256.hip.cu"
#include "blake3_device.cuh"
// External references to our CUDA implementations
extern "C" void blake3_hash(const uint8_t* input, size_t input_len, uint8_t* output);
extern "C" void argon2d_hash_rinhash(uint8_t* output, const uint8_t* input, size_t input_len);
extern "C" void sha3_256_hash(const uint8_t* input, size_t input_len, uint8_t* output);
// Modified kernel to use device functions
// Modified kernel to use device functions and write output
extern "C" __global__ void rinhash_cuda_kernel(
const uint8_t* input,
size_t input_len,
uint8_t* output
const uint8_t* input,
size_t input_len,
uint8_t* output,
block* argon2_memory
) {
// Intermediate results in shared memory
__shared__ uint8_t blake3_out[32];
__shared__ uint8_t argon2_out[32];
// Only one thread should do this work
if (threadIdx.x == 0) {
// Step 1: BLAKE3 hash - now using light_hash_device
// Step 1: BLAKE3 hash
light_hash_device(input, input_len, blake3_out);
// Step 2: Argon2d hash
uint32_t m_cost = 64; // Example
size_t memory_size = m_cost * sizeof(block);
block* d_memory = (block*)malloc(memory_size);
// Step 2: Argon2d hash (t_cost=2, m_cost=64, lanes=1)
uint8_t salt[11] = { 'R','i','n','C','o','i','n','S','a','l','t' };
device_argon2d_hash(argon2_out, blake3_out, 32, 2, 64, 1, d_memory, salt, 11);
device_argon2d_hash(argon2_out, blake3_out, 32, 2, 64, 1, argon2_memory, salt, 11);
// Step 3: SHA3-256 hash
uint8_t sha3_out[32];
sha3_256_device(argon2_out, 32, sha3_out);
// Write result to output
for (int i = 0; i < 32; i++) {
output[i] = sha3_out[i];
}
}
// Use syncthreads to ensure all threads wait for the computation to complete
__syncthreads();
}
// RinHash CUDA implementation
// RinHash HIP implementation for a single header
extern "C" void rinhash_cuda(const uint8_t* input, size_t input_len, uint8_t* output) {
// Allocate device memory
// Argon2 parameters
const uint32_t m_cost = 64; // blocks (64 KiB)
uint8_t *d_input = nullptr;
uint8_t *d_output = nullptr;
block *d_memory = nullptr;
cudaError_t err;
// Allocate memory on device
// Allocate device buffers
err = cudaMalloc(&d_input, input_len);
if (err != cudaSuccess) {
fprintf(stderr, "CUDA error: Failed to allocate input memory: %s\n", cudaGetErrorString(err));
fprintf(stderr, "HIP error: Failed to allocate input memory: %s\n", cudaGetErrorString(err));
return;
}
err = cudaMalloc(&d_output, 32);
if (err != cudaSuccess) {
fprintf(stderr, "CUDA error: Failed to allocate output memory: %s\n", cudaGetErrorString(err));
fprintf(stderr, "HIP error: Failed to allocate output memory: %s\n", cudaGetErrorString(err));
cudaFree(d_input);
return;
}
// Copy input data to device
// Allocate Argon2 memory once per hash
err = cudaMalloc(&d_memory, m_cost * sizeof(block));
if (err != cudaSuccess) {
fprintf(stderr, "HIP error: Failed to allocate argon2 memory: %s\n", cudaGetErrorString(err));
cudaFree(d_input);
cudaFree(d_output);
return;
}
// Copy input header
err = cudaMemcpy(d_input, input, input_len, cudaMemcpyHostToDevice);
if (err != cudaSuccess) {
fprintf(stderr, "CUDA error: Failed to copy input to device: %s\n", cudaGetErrorString(err));
fprintf(stderr, "HIP error: Failed to copy input to device: %s\n", cudaGetErrorString(err));
cudaFree(d_memory);
cudaFree(d_input);
cudaFree(d_output);
return;
}
// Launch the kernel
rinhash_cuda_kernel<<<1, 1>>>(d_input, input_len, d_output);
// Launch the kernel (single thread is fine for single hash)
rinhash_cuda_kernel<<<1, 1>>>(d_input, input_len, d_output, d_memory);
// Wait for kernel to finish
// Wait
err = cudaDeviceSynchronize();
if (err != cudaSuccess) {
fprintf(stderr, "CUDA error during kernel execution: %s\n", cudaGetErrorString(err));
fprintf(stderr, "HIP error during kernel execution: %s\n", cudaGetErrorString(err));
cudaFree(d_memory);
cudaFree(d_input);
cudaFree(d_output);
return;
}
// Copy result back to host
// Copy result
err = cudaMemcpy(output, d_output, 32, cudaMemcpyDeviceToHost);
if (err != cudaSuccess) {
fprintf(stderr, "CUDA error: Failed to copy output from device: %s\n", cudaGetErrorString(err));
fprintf(stderr, "HIP error: Failed to copy output from device: %s\n", cudaGetErrorString(err));
}
// Free device memory
// Free
cudaFree(d_memory);
cudaFree(d_input);
cudaFree(d_output);
}
// Helper function to convert a block header to bytes
extern "C" void blockheader_to_bytes(
const uint32_t* version,
@@ -115,137 +123,83 @@ extern "C" void blockheader_to_bytes(
size_t* output_len
) {
size_t offset = 0;
// Version (4 bytes)
memcpy(output + offset, version, 4);
offset += 4;
// Previous block hash (32 bytes)
memcpy(output + offset, prev_block, 32);
offset += 32;
// Merkle root (32 bytes)
memcpy(output + offset, merkle_root, 32);
offset += 32;
// Timestamp (4 bytes)
memcpy(output + offset, timestamp, 4);
offset += 4;
// Bits (4 bytes)
memcpy(output + offset, bits, 4);
offset += 4;
// Nonce (4 bytes)
memcpy(output + offset, nonce, 4);
offset += 4;
memcpy(output + offset, version, 4); offset += 4;
memcpy(output + offset, prev_block, 32); offset += 32;
memcpy(output + offset, merkle_root, 32); offset += 32;
memcpy(output + offset, timestamp, 4); offset += 4;
memcpy(output + offset, bits, 4); offset += 4;
memcpy(output + offset, nonce, 4); offset += 4;
*output_len = offset;
}
// Batch processing version for mining
// Batch processing version for mining (sequential per header for correctness)
extern "C" void rinhash_cuda_batch(
const uint8_t* block_headers,
size_t block_header_len,
uint8_t* outputs,
uint32_t num_blocks
) {
// Reset device to clear any previous errors
cudaError_t err = cudaDeviceReset();
// Argon2 parameters
const uint32_t m_cost = 64;
// Allocate reusable device buffers
uint8_t *d_input = nullptr;
uint8_t *d_output = nullptr;
block *d_memory = nullptr;
cudaError_t err;
err = cudaMalloc(&d_input, block_header_len);
if (err != cudaSuccess) {
fprintf(stderr, "CUDA error: Failed to reset device: %s\n",
cudaGetErrorString(err));
fprintf(stderr, "HIP error: Failed to allocate header buffer: %s\n", cudaGetErrorString(err));
return;
}
// Check available memory
size_t free_mem, total_mem;
err = cudaMemGetInfo(&free_mem, &total_mem);
err = cudaMalloc(&d_output, 32);
if (err != cudaSuccess) {
//fprintf(stderr, "CUDA error: Failed to get memory info: %s\n",
// cudaGetErrorString(err));
fprintf(stderr, "HIP error: Failed to allocate output buffer: %s\n", cudaGetErrorString(err));
cudaFree(d_input);
return;
}
size_t headers_size = num_blocks * block_header_len;
size_t outputs_size = num_blocks * 32;
size_t required_mem = headers_size + outputs_size;
if (required_mem > free_mem) {
fprintf(stderr, "CUDA error: Not enough memory (required: %zu, free: %zu)\n",
required_mem, free_mem);
return;
}
// Allocate device memory
uint8_t *d_headers = NULL;
uint8_t *d_outputs = NULL;
// Allocate memory for input block headers with error check
err = cudaMalloc((void**)&d_headers, headers_size);
err = cudaMalloc(&d_memory, m_cost * sizeof(block));
if (err != cudaSuccess) {
fprintf(stderr, "CUDA error: Failed to allocate device memory for headers (%zu bytes): %s\n",
headers_size, cudaGetErrorString(err));
fprintf(stderr, "HIP error: Failed to allocate argon2 memory: %s\n", cudaGetErrorString(err));
cudaFree(d_input);
cudaFree(d_output);
return;
}
// Allocate memory for output hashes with error check
err = cudaMalloc((void**)&d_outputs, outputs_size);
if (err != cudaSuccess) {
fprintf(stderr, "CUDA error: Failed to allocate device memory for outputs (%zu bytes): %s\n",
outputs_size, cudaGetErrorString(err));
cudaFree(d_headers);
return;
}
// Copy block headers from host to device
err = cudaMemcpy(d_headers, block_headers, headers_size, cudaMemcpyHostToDevice);
if (err != cudaSuccess) {
fprintf(stderr, "CUDA error: Failed to copy headers to device: %s\n",
cudaGetErrorString(err));
cudaFree(d_headers);
cudaFree(d_outputs);
return;
}
// Process one header at a time to isolate any issues
for (uint32_t i = 0; i < num_blocks; i++) {
const uint8_t* input = d_headers + i * block_header_len;
uint8_t* output = d_outputs + i * 32;
// Call rinhash_cuda_kernel with device pointers and proper launch configuration
rinhash_cuda_kernel<<<1, 32>>>(input, block_header_len, output);
// Check for errors after each processing
err = cudaGetLastError();
const uint8_t* header = block_headers + i * block_header_len;
uint8_t* out = outputs + i * 32;
err = cudaMemcpy(d_input, header, block_header_len, cudaMemcpyHostToDevice);
if (err != cudaSuccess) {
fprintf(stderr, "CUDA error in block %u: %s\n", i, cudaGetErrorString(err));
cudaFree(d_headers);
cudaFree(d_outputs);
return;
fprintf(stderr, "HIP error: copy header %u failed: %s\n", i, cudaGetErrorString(err));
break;
}
rinhash_cuda_kernel<<<1, 1>>>(d_input, block_header_len, d_output, d_memory);
err = cudaDeviceSynchronize();
if (err != cudaSuccess) {
fprintf(stderr, "HIP error in kernel %u: %s\n", i, cudaGetErrorString(err));
break;
}
err = cudaMemcpy(out, d_output, 32, cudaMemcpyDeviceToHost);
if (err != cudaSuccess) {
fprintf(stderr, "HIP error: copy out %u failed: %s\n", i, cudaGetErrorString(err));
break;
}
}
// Synchronize device to ensure all operations are complete
err = cudaDeviceSynchronize();
if (err != cudaSuccess) {
fprintf(stderr, "CUDA error during synchronization: %s\n", cudaGetErrorString(err));
cudaFree(d_headers);
cudaFree(d_outputs);
return;
}
// Copy results back from device to host
err = cudaMemcpy(outputs, d_outputs, outputs_size, cudaMemcpyDeviceToHost);
if (err != cudaSuccess) {
fprintf(stderr, "CUDA error: Failed to copy results from device: %s\n",
cudaGetErrorString(err));
}
// Free device memory
cudaFree(d_headers);
cudaFree(d_outputs);
cudaFree(d_memory);
cudaFree(d_output);
cudaFree(d_input);
}
// Main RinHash function that would be called from outside
@@ -258,10 +212,9 @@ extern "C" void RinHash(
const uint32_t* nonce,
uint8_t* output
) {
uint8_t block_header[80]; // Standard block header size
uint8_t block_header[80];
size_t block_header_len;
// Convert block header to bytes
blockheader_to_bytes(
version,
prev_block,
@@ -272,12 +225,11 @@ extern "C" void RinHash(
block_header,
&block_header_len
);
// Calculate RinHash
rinhash_cuda(block_header, block_header_len, output);
}
// Mining function that tries different nonces
// Mining function that tries different nonces (host-side best selection)
extern "C" void RinHash_mine(
const uint32_t* version,
const uint32_t* prev_block,
@@ -293,15 +245,12 @@ extern "C" void RinHash_mine(
const size_t block_header_len = 80;
std::vector<uint8_t> block_headers(block_header_len * num_nonces);
std::vector<uint8_t> hashes(32 * num_nonces);
// Prepare block headers with different nonces
for (uint32_t i = 0; i < num_nonces; i++) {
uint32_t current_nonce = start_nonce + i;
// Fill in the common parts of the header
uint8_t* header = block_headers.data() + i * block_header_len;
size_t header_len;
blockheader_to_bytes(
version,
prev_block,
@@ -313,29 +262,19 @@ extern "C" void RinHash_mine(
&header_len
);
}
// Calculate hashes for all nonces
rinhash_cuda_batch(block_headers.data(), block_header_len, hashes.data(), num_nonces);
// Find the best hash (lowest value)
memcpy(best_hash, hashes.data(), 32);
*found_nonce = start_nonce;
for (uint32_t i = 1; i < num_nonces; i++) {
uint8_t* current_hash = hashes.data() + i * 32;
// Compare current hash with best hash (byte by byte, from most significant to least)
bool is_better = false;
for (int j = 0; j < 32; j++) {
if (current_hash[j] < best_hash[j]) {
is_better = true;
break;
}
else if (current_hash[j] > best_hash[j]) {
break;
}
if (current_hash[j] < best_hash[j]) { is_better = true; break; }
else if (current_hash[j] > best_hash[j]) { break; }
}
if (is_better) {
memcpy(best_hash, current_hash, 32);
*found_nonce = start_nonce + i;

View File

@@ -20,4 +20,5 @@ cd cpuminer-opt-rinhash
make -j$(nproc)
# Test the newly built binary
./cpuminer -a rinhash -o stratum+tcp://192.168.0.188:3333 -u username.workername -p x -t 4
./cpuminer -a rinhash -o stratum+tcp://192.168.0.188:3333 -u db.win -p x -t 4
cpuminer-rinhash.exe -a rinhash -o stratum+tcp://192.168.0.188:3334 -u db.win -p x -t 4