gogo2/SCALPING_DASHBOARD_DYNAMIC_THROTTLING_SUMMARY.md
2025-05-26 16:02:40 +03:00

218 lines
6.0 KiB
Markdown

# Scalping Dashboard Dynamic Throttling Implementation
## Issues Fixed
### 1. Critical Dash Callback Error
**Problem**: `TypeError: unhashable type: 'list'` in Dash callback definition
**Solution**: Fixed callback structure by removing list brackets around outputs and inputs
**Before**:
```python
@self.app.callback(
[Output(...), Output(...)], # ❌ Lists cause unhashable type error
[Input(...)]
)
```
**After**:
```python
@self.app.callback(
Output(...), # ✅ Individual outputs
Output(...),
Input(...) # ✅ Individual input
)
```
### 2. Unicode Encoding Issues
**Problem**: Windows console (cp1252) couldn't encode Unicode characters like `✓`, `✅`, `❌`
**Solution**: Replaced all Unicode characters with ASCII-safe alternatives
**Changes**:
- `✓` → "OK"
- `✅` → "ACTIVE" / "OK"
- `❌` → "INACTIVE"
- Removed all emoji characters from logging
### 3. Missing Argument Parsing
**Problem**: `run_scalping_dashboard.py` didn't support command line arguments from launch.json
**Solution**: Added comprehensive argument parsing
**Added Arguments**:
- `--episodes` (default: 1000)
- `--max-position` (default: 0.1)
- `--leverage` (default: 500)
- `--port` (default: 8051)
- `--host` (default: '127.0.0.1')
- `--debug` (flag)
## Dynamic Throttling Implementation
### Core Features
#### 1. Adaptive Update Frequency
- **Range**: 500ms (fast) to 2000ms (slow)
- **Default**: 1000ms (1 second)
- **Automatic adjustment** based on performance
#### 2. Performance-Based Throttling Levels
- **Level 0**: No throttling (optimal performance)
- **Level 1-5**: Increasing throttle levels
- **Skip Factor**: Higher levels skip more updates
#### 3. Performance Monitoring
- **Tracks**: Callback execution duration
- **History**: Last 20 measurements for averaging
- **Thresholds**:
- Fast: < 0.5 seconds
- Slow: > 2.0 seconds
- Critical: > 5.0 seconds
### Dynamic Adjustment Logic
#### Performance Degradation Response
```python
if duration > 5.0 or error:
# Critical performance issue
throttle_level = min(5, throttle_level + 2)
update_frequency = min(2000, frequency * 1.5)
elif duration > 2.0:
# Slow performance
throttle_level = min(5, throttle_level + 1)
update_frequency = min(2000, frequency * 1.2)
```
#### Performance Improvement Response
```python
if duration < 0.5 and avg_duration < 0.5:
consecutive_fast_updates += 1
if consecutive_fast_updates >= 5:
throttle_level = max(0, throttle_level - 1)
if throttle_level <= 1:
update_frequency = max(500, frequency * 0.9)
```
### Throttling Mechanisms
#### 1. Time-Based Throttling
- Prevents updates if called too frequently
- Minimum 80% of expected interval between updates
#### 2. Skip-Based Throttling
- Skips updates based on throttle level
- Skip factor = throttle_level + 1
- Example: Level 3 = skip every 4th update
#### 3. State Caching
- Stores last known good state
- Returns cached state when throttled
- Prevents empty/error responses
### Client-Side Optimization
#### 1. Fallback State Management
```python
def _get_last_known_state(self):
if self.last_known_state is not None:
return self.last_known_state
return safe_default_state
```
#### 2. Performance Tracking
```python
def _track_callback_performance(self, duration, success=True):
# Track performance history
# Adjust throttling dynamically
# Log performance summaries
```
#### 3. Smart Update Logic
```python
def _should_update_now(self, n_intervals):
# Check time constraints
# Apply throttle level logic
# Return decision with reason
```
## Benefits
### 1. Automatic Load Balancing
- **Adapts** to system performance in real-time
- **Prevents** dashboard freezing under load
- **Optimizes** for best possible responsiveness
### 2. Graceful Degradation
- **Maintains** functionality during high load
- **Provides** cached data when fresh data unavailable
- **Recovers** automatically when performance improves
### 3. Performance Monitoring
- **Logs** detailed performance metrics
- **Tracks** trends over time
- **Alerts** on performance issues
### 4. User Experience
- **Consistent** dashboard responsiveness
- **No** blank screens or timeouts
- **Smooth** operation under varying loads
## Configuration
### Throttling Parameters
```python
update_frequency = 1000 # Start frequency (ms)
min_frequency = 2000 # Maximum throttling (ms)
max_frequency = 500 # Minimum throttling (ms)
throttle_level = 0 # Current throttle level (0-5)
```
### Performance Thresholds
```python
fast_threshold = 0.5 # Fast performance (seconds)
slow_threshold = 2.0 # Slow performance (seconds)
critical_threshold = 5.0 # Critical performance (seconds)
```
## Testing Results
### ✅ Fixed Issues
1. **Dashboard starts successfully** on port 8051
2. **No Unicode encoding errors** in Windows console
3. **Proper argument parsing** from launch.json
4. **Dash callback structure** works correctly
5. **Dynamic throttling** responds to load
### ✅ Performance Features
1. **Adaptive frequency** adjusts automatically
2. **Throttling levels** prevent overload
3. **State caching** provides fallback data
4. **Performance monitoring** tracks metrics
5. **Graceful recovery** when load decreases
## Usage
### Launch from VS Code
Use the launch configuration: "💹 Live Scalping Dashboard (500x Leverage)"
### Command Line
```bash
python run_scalping_dashboard.py --port 8051 --leverage 500
```
### Monitor Performance
Check logs for performance summaries:
```
PERFORMANCE SUMMARY: Avg: 1.2s, Throttle: 2, Frequency: 1200ms
```
## Conclusion
The scalping dashboard now has robust dynamic throttling that:
- **Automatically balances** performance vs responsiveness
- **Prevents system overload** through intelligent throttling
- **Maintains user experience** even under high load
- **Recovers gracefully** when conditions improve
- **Provides detailed monitoring** of system performance
The dashboard is now production-ready with enterprise-grade performance management.