# Scalping Dashboard Dynamic Throttling Implementation ## Issues Fixed ### 1. Critical Dash Callback Error **Problem**: `TypeError: unhashable type: 'list'` in Dash callback definition **Solution**: Fixed callback structure by removing list brackets around outputs and inputs **Before**: ```python @self.app.callback( [Output(...), Output(...)], # ❌ Lists cause unhashable type error [Input(...)] ) ``` **After**: ```python @self.app.callback( Output(...), # ✅ Individual outputs Output(...), Input(...) # ✅ Individual input ) ``` ### 2. Unicode Encoding Issues **Problem**: Windows console (cp1252) couldn't encode Unicode characters like `✓`, `✅`, `❌` **Solution**: Replaced all Unicode characters with ASCII-safe alternatives **Changes**: - `✓` → "OK" - `✅` → "ACTIVE" / "OK" - `❌` → "INACTIVE" - Removed all emoji characters from logging ### 3. Missing Argument Parsing **Problem**: `run_scalping_dashboard.py` didn't support command line arguments from launch.json **Solution**: Added comprehensive argument parsing **Added Arguments**: - `--episodes` (default: 1000) - `--max-position` (default: 0.1) - `--leverage` (default: 500) - `--port` (default: 8051) - `--host` (default: '127.0.0.1') - `--debug` (flag) ## Dynamic Throttling Implementation ### Core Features #### 1. Adaptive Update Frequency - **Range**: 500ms (fast) to 2000ms (slow) - **Default**: 1000ms (1 second) - **Automatic adjustment** based on performance #### 2. Performance-Based Throttling Levels - **Level 0**: No throttling (optimal performance) - **Level 1-5**: Increasing throttle levels - **Skip Factor**: Higher levels skip more updates #### 3. Performance Monitoring - **Tracks**: Callback execution duration - **History**: Last 20 measurements for averaging - **Thresholds**: - Fast: < 0.5 seconds - Slow: > 2.0 seconds - Critical: > 5.0 seconds ### Dynamic Adjustment Logic #### Performance Degradation Response ```python if duration > 5.0 or error: # Critical performance issue throttle_level = min(5, throttle_level + 2) update_frequency = min(2000, frequency * 1.5) elif duration > 2.0: # Slow performance throttle_level = min(5, throttle_level + 1) update_frequency = min(2000, frequency * 1.2) ``` #### Performance Improvement Response ```python if duration < 0.5 and avg_duration < 0.5: consecutive_fast_updates += 1 if consecutive_fast_updates >= 5: throttle_level = max(0, throttle_level - 1) if throttle_level <= 1: update_frequency = max(500, frequency * 0.9) ``` ### Throttling Mechanisms #### 1. Time-Based Throttling - Prevents updates if called too frequently - Minimum 80% of expected interval between updates #### 2. Skip-Based Throttling - Skips updates based on throttle level - Skip factor = throttle_level + 1 - Example: Level 3 = skip every 4th update #### 3. State Caching - Stores last known good state - Returns cached state when throttled - Prevents empty/error responses ### Client-Side Optimization #### 1. Fallback State Management ```python def _get_last_known_state(self): if self.last_known_state is not None: return self.last_known_state return safe_default_state ``` #### 2. Performance Tracking ```python def _track_callback_performance(self, duration, success=True): # Track performance history # Adjust throttling dynamically # Log performance summaries ``` #### 3. Smart Update Logic ```python def _should_update_now(self, n_intervals): # Check time constraints # Apply throttle level logic # Return decision with reason ``` ## Benefits ### 1. Automatic Load Balancing - **Adapts** to system performance in real-time - **Prevents** dashboard freezing under load - **Optimizes** for best possible responsiveness ### 2. Graceful Degradation - **Maintains** functionality during high load - **Provides** cached data when fresh data unavailable - **Recovers** automatically when performance improves ### 3. Performance Monitoring - **Logs** detailed performance metrics - **Tracks** trends over time - **Alerts** on performance issues ### 4. User Experience - **Consistent** dashboard responsiveness - **No** blank screens or timeouts - **Smooth** operation under varying loads ## Configuration ### Throttling Parameters ```python update_frequency = 1000 # Start frequency (ms) min_frequency = 2000 # Maximum throttling (ms) max_frequency = 500 # Minimum throttling (ms) throttle_level = 0 # Current throttle level (0-5) ``` ### Performance Thresholds ```python fast_threshold = 0.5 # Fast performance (seconds) slow_threshold = 2.0 # Slow performance (seconds) critical_threshold = 5.0 # Critical performance (seconds) ``` ## Testing Results ### ✅ Fixed Issues 1. **Dashboard starts successfully** on port 8051 2. **No Unicode encoding errors** in Windows console 3. **Proper argument parsing** from launch.json 4. **Dash callback structure** works correctly 5. **Dynamic throttling** responds to load ### ✅ Performance Features 1. **Adaptive frequency** adjusts automatically 2. **Throttling levels** prevent overload 3. **State caching** provides fallback data 4. **Performance monitoring** tracks metrics 5. **Graceful recovery** when load decreases ## Usage ### Launch from VS Code Use the launch configuration: "💹 Live Scalping Dashboard (500x Leverage)" ### Command Line ```bash python run_scalping_dashboard.py --port 8051 --leverage 500 ``` ### Monitor Performance Check logs for performance summaries: ``` PERFORMANCE SUMMARY: Avg: 1.2s, Throttle: 2, Frequency: 1200ms ``` ## Conclusion The scalping dashboard now has robust dynamic throttling that: - **Automatically balances** performance vs responsiveness - **Prevents system overload** through intelligent throttling - **Maintains user experience** even under high load - **Recovers gracefully** when conditions improve - **Provides detailed monitoring** of system performance The dashboard is now production-ready with enterprise-grade performance management.