Files
gogo2/LIVE_TRAINING_IMPLEMENTATION_STATUS.md
2025-10-31 03:52:41 +02:00

384 lines
10 KiB
Markdown

# Live Training Implementation Status
## ✅ Phase 1: Backend Integration (COMPLETED)
### 1. Orchestrator Integration
**File**: `core/orchestrator.py`
#### Initialization
```python
# Initialize EnhancedRealtimeTrainingSystem
if ENHANCED_TRAINING_AVAILABLE:
self.enhanced_training_system = EnhancedRealtimeTrainingSystem(
orchestrator=self,
data_provider=self.data_provider,
dashboard=None
)
logger.info("EnhancedRealtimeTrainingSystem initialized successfully")
```
#### Methods Added
1. **`start_live_training()`** - Start live inference and training
2. **`stop_live_training()`** - Stop live training
3. **`is_live_training_active()`** - Check if active
4. **`get_live_training_stats()`** - Get performance statistics
---
### 2. API Endpoints
**File**: `ANNOTATE/web/app.py`
#### Endpoints Added
| Endpoint | Method | Description |
|----------|--------|-------------|
| `/api/live-training/start` | POST | Start live training mode |
| `/api/live-training/stop` | POST | Stop live training mode |
| `/api/live-training/status` | GET | Get status and statistics |
#### Example Usage
**Start Live Training:**
```bash
curl -X POST http://localhost:8051/api/live-training/start
```
Response:
```json
{
"success": true,
"status": "started",
"message": "Live training mode started"
}
```
**Get Status:**
```bash
curl http://localhost:8051/api/live-training/status
```
Response:
```json
{
"success": true,
"active": true,
"stats": {
"predictions_per_sec": 1.0,
"training_batches_per_min": 6,
"accuracy": 0.75,
"models": {
"dqn": {"loss": 0.234, "accuracy": 0.78},
"cnn": {"loss": 0.156, "accuracy": 0.82}
}
}
}
```
---
## ⏳ Phase 2: Core Functionality (NEEDS IMPLEMENTATION)
### What's Missing
The `EnhancedRealtimeTrainingSystem` exists but needs these methods implemented:
#### 1. Live Inference Loop
```python
def _live_inference_loop(self):
"""Main loop - predict next candle every second"""
# TODO: Implement
pass
```
#### 2. Prediction Method
```python
def _make_next_candle_prediction(self, timeframe: str) -> Dict:
"""Predict next candle OHLCV values"""
# TODO: Implement using transformer's next_candles output
pass
```
#### 3. Training Method
```python
def _train_on_timeframe(self, timeframe: str):
"""Train on resolved predictions"""
# TODO: Implement batch training
pass
```
#### 4. Prediction Resolution
```python
def _resolve_timeframe_predictions(self, timeframe: str):
"""Compare predicted vs actual candles"""
# TODO: Implement
pass
```
---
## ⏳ Phase 3: UI Integration (NEEDS IMPLEMENTATION)
### Dashboard Panel
Create `ANNOTATE/web/templates/components/live_training_panel.html`:
```html
<div class="card mb-4">
<div class="card-header">
<h5>Live Inference & Training</h5>
</div>
<div class="card-body">
<div class="row mb-3">
<div class="col-md-6">
<div class="status-indicator">
<span id="live-status-badge" class="badge bg-secondary">Inactive</span>
<span id="live-status-text">Not Running</span>
</div>
</div>
<div class="col-md-6 text-end">
<button id="start-live-btn" class="btn btn-success">
<i class="fas fa-play"></i> Start Live Mode
</button>
<button id="stop-live-btn" class="btn btn-danger" disabled>
<i class="fas fa-stop"></i> Stop
</button>
</div>
</div>
<div class="row" id="live-metrics" style="display: none;">
<div class="col-md-3">
<div class="metric-card">
<div class="metric-label">Predictions/sec</div>
<div class="metric-value" id="predictions-per-sec">0</div>
</div>
</div>
<div class="col-md-3">
<div class="metric-card">
<div class="metric-label">Training/min</div>
<div class="metric-value" id="training-per-min">0</div>
</div>
</div>
<div class="col-md-3">
<div class="metric-card">
<div class="metric-label">Accuracy (1m)</div>
<div class="metric-value" id="accuracy-1m">0%</div>
</div>
</div>
<div class="col-md-3">
<div class="metric-card">
<div class="metric-label">GPU Load</div>
<div class="metric-value" id="gpu-load">0%</div>
</div>
</div>
</div>
</div>
</div>
```
### JavaScript Integration
Add to `ANNOTATE/web/static/js/main.js`:
```javascript
// Live Training Controls
let liveTrainingInterval = null;
function startLiveTraining() {
fetch('/api/live-training/start', {
method: 'POST',
headers: {'Content-Type': 'application/json'}
})
.then(response => response.json())
.then(data => {
if (data.success) {
updateLiveStatus(true);
startLiveStatusPolling();
showNotification('Live training started', 'success');
} else {
showNotification('Failed to start: ' + data.error, 'error');
}
});
}
function stopLiveTraining() {
fetch('/api/live-training/stop', {
method: 'POST',
headers: {'Content-Type': 'application/json'}
})
.then(response => response.json())
.then(data => {
if (data.success) {
updateLiveStatus(false);
stopLiveStatusPolling();
showNotification('Live training stopped', 'info');
}
});
}
function startLiveStatusPolling() {
liveTrainingInterval = setInterval(() => {
fetch('/api/live-training/status')
.then(response => response.json())
.then(data => {
if (data.success && data.active) {
updateLiveMetrics(data.stats);
}
});
}, 2000); // Poll every 2 seconds
}
function stopLiveStatusPolling() {
if (liveTrainingInterval) {
clearInterval(liveTrainingInterval);
liveTrainingInterval = null;
}
}
function updateLiveStatus(active) {
const badge = document.getElementById('live-status-badge');
const text = document.getElementById('live-status-text');
const startBtn = document.getElementById('start-live-btn');
const stopBtn = document.getElementById('stop-live-btn');
const metrics = document.getElementById('live-metrics');
if (active) {
badge.className = 'badge bg-success';
badge.textContent = 'Active';
text.textContent = 'Running';
startBtn.disabled = true;
stopBtn.disabled = false;
metrics.style.display = 'block';
} else {
badge.className = 'badge bg-secondary';
badge.textContent = 'Inactive';
text.textContent = 'Not Running';
startBtn.disabled = false;
stopBtn.disabled = true;
metrics.style.display = 'none';
}
}
function updateLiveMetrics(stats) {
document.getElementById('predictions-per-sec').textContent =
(stats.predictions_per_sec || 0).toFixed(1);
document.getElementById('training-per-min').textContent =
(stats.training_batches_per_min || 0).toFixed(0);
document.getElementById('accuracy-1m').textContent =
((stats.accuracy || 0) * 100).toFixed(1) + '%';
document.getElementById('gpu-load').textContent =
((stats.gpu_load || 0) * 100).toFixed(0) + '%';
}
// Initialize on page load
document.addEventListener('DOMContentLoaded', function() {
document.getElementById('start-live-btn').addEventListener('click', startLiveTraining);
document.getElementById('stop-live-btn').addEventListener('click', stopLiveTraining);
// Check initial status
fetch('/api/live-training/status')
.then(response => response.json())
.then(data => {
if (data.success && data.active) {
updateLiveStatus(true);
startLiveStatusPolling();
}
});
});
```
---
## Testing
### 1. Test Backend Integration
```python
# In Python console or test script
from core.orchestrator import TradingOrchestrator
from core.data_provider import DataProvider
# Initialize
data_provider = DataProvider()
orchestrator = TradingOrchestrator(data_provider=data_provider)
# Check if available
print(f"Enhanced training available: {orchestrator.enhanced_training_system is not None}")
# Start live training
success = orchestrator.start_live_training()
print(f"Started: {success}")
# Check status
active = orchestrator.is_live_training_active()
print(f"Active: {active}")
# Get stats
stats = orchestrator.get_live_training_stats()
print(f"Stats: {stats}")
# Stop
orchestrator.stop_live_training()
```
### 2. Test API Endpoints
```bash
# Start
curl -X POST http://localhost:8051/api/live-training/start
# Status
curl http://localhost:8051/api/live-training/status
# Stop
curl -X POST http://localhost:8051/api/live-training/stop
```
---
## Next Steps
### Priority 1: Core Functionality
1. Implement `_live_inference_loop()` in `EnhancedRealtimeTrainingSystem`
2. Implement `_make_next_candle_prediction()` using transformer
3. Implement `_train_on_timeframe()` for batch training
4. Implement `_resolve_timeframe_predictions()` for accuracy tracking
### Priority 2: UI Integration
1. Create live training panel HTML
2. Add JavaScript controls
3. Add CSS styling
4. Integrate into main dashboard
### Priority 3: Testing & Optimization
1. Test with 1s timeframe first
2. Monitor GPU/CPU usage
3. Optimize batch sizes
4. Add error handling
5. Add logging
---
## Summary
### ✅ Completed
- Orchestrator integration
- Start/stop methods
- API endpoints
- Basic infrastructure
### ⏳ In Progress
- Core prediction loop
- Training logic
- UI components
### 📋 TODO
- Implement prediction methods
- Implement training methods
- Create UI panel
- Add JavaScript controls
- Testing and optimization
The foundation is in place - now we need to implement the core prediction and training logic!