10 KiB
10 KiB
Live Training Implementation Status
✅ Phase 1: Backend Integration (COMPLETED)
1. Orchestrator Integration
File: core/orchestrator.py
Initialization
# Initialize EnhancedRealtimeTrainingSystem
if ENHANCED_TRAINING_AVAILABLE:
self.enhanced_training_system = EnhancedRealtimeTrainingSystem(
orchestrator=self,
data_provider=self.data_provider,
dashboard=None
)
logger.info("EnhancedRealtimeTrainingSystem initialized successfully")
Methods Added
start_live_training()- Start live inference and trainingstop_live_training()- Stop live trainingis_live_training_active()- Check if activeget_live_training_stats()- Get performance statistics
2. API Endpoints
File: ANNOTATE/web/app.py
Endpoints Added
| Endpoint | Method | Description |
|---|---|---|
/api/live-training/start |
POST | Start live training mode |
/api/live-training/stop |
POST | Stop live training mode |
/api/live-training/status |
GET | Get status and statistics |
Example Usage
Start Live Training:
curl -X POST http://localhost:8051/api/live-training/start
Response:
{
"success": true,
"status": "started",
"message": "Live training mode started"
}
Get Status:
curl http://localhost:8051/api/live-training/status
Response:
{
"success": true,
"active": true,
"stats": {
"predictions_per_sec": 1.0,
"training_batches_per_min": 6,
"accuracy": 0.75,
"models": {
"dqn": {"loss": 0.234, "accuracy": 0.78},
"cnn": {"loss": 0.156, "accuracy": 0.82}
}
}
}
⏳ Phase 2: Core Functionality (NEEDS IMPLEMENTATION)
What's Missing
The EnhancedRealtimeTrainingSystem exists but needs these methods implemented:
1. Live Inference Loop
def _live_inference_loop(self):
"""Main loop - predict next candle every second"""
# TODO: Implement
pass
2. Prediction Method
def _make_next_candle_prediction(self, timeframe: str) -> Dict:
"""Predict next candle OHLCV values"""
# TODO: Implement using transformer's next_candles output
pass
3. Training Method
def _train_on_timeframe(self, timeframe: str):
"""Train on resolved predictions"""
# TODO: Implement batch training
pass
4. Prediction Resolution
def _resolve_timeframe_predictions(self, timeframe: str):
"""Compare predicted vs actual candles"""
# TODO: Implement
pass
⏳ Phase 3: UI Integration (NEEDS IMPLEMENTATION)
Dashboard Panel
Create ANNOTATE/web/templates/components/live_training_panel.html:
<div class="card mb-4">
<div class="card-header">
<h5>Live Inference & Training</h5>
</div>
<div class="card-body">
<div class="row mb-3">
<div class="col-md-6">
<div class="status-indicator">
<span id="live-status-badge" class="badge bg-secondary">Inactive</span>
<span id="live-status-text">Not Running</span>
</div>
</div>
<div class="col-md-6 text-end">
<button id="start-live-btn" class="btn btn-success">
<i class="fas fa-play"></i> Start Live Mode
</button>
<button id="stop-live-btn" class="btn btn-danger" disabled>
<i class="fas fa-stop"></i> Stop
</button>
</div>
</div>
<div class="row" id="live-metrics" style="display: none;">
<div class="col-md-3">
<div class="metric-card">
<div class="metric-label">Predictions/sec</div>
<div class="metric-value" id="predictions-per-sec">0</div>
</div>
</div>
<div class="col-md-3">
<div class="metric-card">
<div class="metric-label">Training/min</div>
<div class="metric-value" id="training-per-min">0</div>
</div>
</div>
<div class="col-md-3">
<div class="metric-card">
<div class="metric-label">Accuracy (1m)</div>
<div class="metric-value" id="accuracy-1m">0%</div>
</div>
</div>
<div class="col-md-3">
<div class="metric-card">
<div class="metric-label">GPU Load</div>
<div class="metric-value" id="gpu-load">0%</div>
</div>
</div>
</div>
</div>
</div>
JavaScript Integration
Add to ANNOTATE/web/static/js/main.js:
// Live Training Controls
let liveTrainingInterval = null;
function startLiveTraining() {
fetch('/api/live-training/start', {
method: 'POST',
headers: {'Content-Type': 'application/json'}
})
.then(response => response.json())
.then(data => {
if (data.success) {
updateLiveStatus(true);
startLiveStatusPolling();
showNotification('Live training started', 'success');
} else {
showNotification('Failed to start: ' + data.error, 'error');
}
});
}
function stopLiveTraining() {
fetch('/api/live-training/stop', {
method: 'POST',
headers: {'Content-Type': 'application/json'}
})
.then(response => response.json())
.then(data => {
if (data.success) {
updateLiveStatus(false);
stopLiveStatusPolling();
showNotification('Live training stopped', 'info');
}
});
}
function startLiveStatusPolling() {
liveTrainingInterval = setInterval(() => {
fetch('/api/live-training/status')
.then(response => response.json())
.then(data => {
if (data.success && data.active) {
updateLiveMetrics(data.stats);
}
});
}, 2000); // Poll every 2 seconds
}
function stopLiveStatusPolling() {
if (liveTrainingInterval) {
clearInterval(liveTrainingInterval);
liveTrainingInterval = null;
}
}
function updateLiveStatus(active) {
const badge = document.getElementById('live-status-badge');
const text = document.getElementById('live-status-text');
const startBtn = document.getElementById('start-live-btn');
const stopBtn = document.getElementById('stop-live-btn');
const metrics = document.getElementById('live-metrics');
if (active) {
badge.className = 'badge bg-success';
badge.textContent = 'Active';
text.textContent = 'Running';
startBtn.disabled = true;
stopBtn.disabled = false;
metrics.style.display = 'block';
} else {
badge.className = 'badge bg-secondary';
badge.textContent = 'Inactive';
text.textContent = 'Not Running';
startBtn.disabled = false;
stopBtn.disabled = true;
metrics.style.display = 'none';
}
}
function updateLiveMetrics(stats) {
document.getElementById('predictions-per-sec').textContent =
(stats.predictions_per_sec || 0).toFixed(1);
document.getElementById('training-per-min').textContent =
(stats.training_batches_per_min || 0).toFixed(0);
document.getElementById('accuracy-1m').textContent =
((stats.accuracy || 0) * 100).toFixed(1) + '%';
document.getElementById('gpu-load').textContent =
((stats.gpu_load || 0) * 100).toFixed(0) + '%';
}
// Initialize on page load
document.addEventListener('DOMContentLoaded', function() {
document.getElementById('start-live-btn').addEventListener('click', startLiveTraining);
document.getElementById('stop-live-btn').addEventListener('click', stopLiveTraining);
// Check initial status
fetch('/api/live-training/status')
.then(response => response.json())
.then(data => {
if (data.success && data.active) {
updateLiveStatus(true);
startLiveStatusPolling();
}
});
});
Testing
1. Test Backend Integration
# In Python console or test script
from core.orchestrator import TradingOrchestrator
from core.data_provider import DataProvider
# Initialize
data_provider = DataProvider()
orchestrator = TradingOrchestrator(data_provider=data_provider)
# Check if available
print(f"Enhanced training available: {orchestrator.enhanced_training_system is not None}")
# Start live training
success = orchestrator.start_live_training()
print(f"Started: {success}")
# Check status
active = orchestrator.is_live_training_active()
print(f"Active: {active}")
# Get stats
stats = orchestrator.get_live_training_stats()
print(f"Stats: {stats}")
# Stop
orchestrator.stop_live_training()
2. Test API Endpoints
# Start
curl -X POST http://localhost:8051/api/live-training/start
# Status
curl http://localhost:8051/api/live-training/status
# Stop
curl -X POST http://localhost:8051/api/live-training/stop
Next Steps
Priority 1: Core Functionality
- Implement
_live_inference_loop()inEnhancedRealtimeTrainingSystem - Implement
_make_next_candle_prediction()using transformer - Implement
_train_on_timeframe()for batch training - Implement
_resolve_timeframe_predictions()for accuracy tracking
Priority 2: UI Integration
- Create live training panel HTML
- Add JavaScript controls
- Add CSS styling
- Integrate into main dashboard
Priority 3: Testing & Optimization
- Test with 1s timeframe first
- Monitor GPU/CPU usage
- Optimize batch sizes
- Add error handling
- Add logging
Summary
✅ Completed
- Orchestrator integration
- Start/stop methods
- API endpoints
- Basic infrastructure
⏳ In Progress
- Core prediction loop
- Training logic
- UI components
📋 TODO
- Implement prediction methods
- Implement training methods
- Create UI panel
- Add JavaScript controls
- Testing and optimization
The foundation is in place - now we need to implement the core prediction and training logic!