Compare commits

...

42 Commits

Author SHA1 Message Date
Jay D Dee
a053690170 v3.16.4 2021-06-23 21:52:42 -04:00
Jay D Dee
3c5e8921b7 v3.16.3 2021-05-06 14:55:03 -04:00
Jay D Dee
f3333b0070 v3.16.2 2021-04-08 18:09:31 -04:00
Jay D Dee
902ec046dd v3.16.1 2021-03-24 18:24:20 -04:00
Jay D Dee
d0b4941321 v3.16.0 2021-03-19 15:45:32 -04:00
Jay D Dee
40089428c5 v3.15.7 2021-03-08 22:44:44 -05:00
Jay D Dee
dc6b007a18 v3.15.6 2021-02-12 15:16:53 -05:00
Jay D Dee
06bfaa1249 v3.15.5 2020-12-21 13:25:33 -05:00
Jay D Dee
6566e99a13 v3.15.4 2020-12-15 13:15:02 -05:00
Jay D Dee
ccfccbadd5 v3.15.3 2020-12-10 18:23:49 -05:00
Jay D Dee
45ecd0de14 v3.15.2 2020-11-15 17:57:06 -05:00
Jay D Dee
4fa8fcea8b v3.15.1 2020-11-09 13:19:05 -05:00
Jay D Dee
c85fb3842b v3.15.0 2020-10-02 10:48:37 -04:00
Jay D Dee
cdd587537e v3.14.3 2020-06-18 17:30:26 -04:00
Jay D Dee
51a1d91abd v3.14.2 2020-05-30 21:20:44 -04:00
Jay D Dee
13563e2598 v3.14.1 2020-05-21 13:00:29 -04:00
Jay D Dee
9571f85d53 v3.14.0 2020-05-20 13:56:35 -04:00
Jay D Dee
0e69756634 v3.13.2-segwit-test 2020-05-18 18:17:27 -04:00
Jay D Dee
9653bca1e2 v3.13.1.1 2020-05-17 19:21:37 -04:00
Jay D Dee
1c0719e8a4 v3.13.1 2020-05-10 21:34:55 -04:00
Jay D Dee
8b4b4dc613 v3.13.0.1 2020-05-07 17:57:04 -04:00
Jay D Dee
e76feaced8 v3.13.0 2020-05-06 00:53:43 -04:00
Jay D Dee
5e088d00d0 v3.12.8.2 2020-04-24 21:18:56 -04:00
Jay D Dee
972d4d70db v3.12.8.1 2020-04-17 16:12:45 -04:00
Jay D Dee
e96a6bd699 v3.12.8 2020-04-09 12:56:18 -04:00
Jay D Dee
fb9163185a v3.12.7 2020-03-20 16:30:12 -04:00
Jay D Dee
6e8b8ed34f v3.12.6.1 2020-03-07 14:11:06 -05:00
Jay D Dee
c0aadbcc99 v3.12.6 2020-03-05 18:43:20 -05:00
Jay D Dee
3da149418a v3.12.5 2020-03-01 13:18:17 -05:00
Jay D Dee
720610cce5 v3.12.4.6 2020-02-28 18:20:32 -05:00
Jay D Dee
cedcf4d070 v3.12.4.5 2020-02-28 02:42:22 -05:00
Jay D Dee
81b50c3c71 v3.12.4.4 2020-02-25 14:07:32 -05:00
Jay D Dee
0e1e88f53e v3.12.4.3 2020-02-24 21:35:19 -05:00
Jay D Dee
45c77a5c81 v3.12.4.2 2020-02-23 15:31:06 -05:00
Jay D Dee
dbce7e0721 v3.12.4.1 2020-02-22 18:06:39 -05:00
Jay D Dee
6d66051de6 v3.12.4 2020-02-21 16:34:53 -05:00
Jay D Dee
b93be8816a v3.12.3.1 2020-02-18 12:05:47 -05:00
Jay D Dee
19b0ac6d5c v3.12.3 2020-02-13 04:25:33 -05:00
Jay D Dee
3da2b958cf v3.12.2 2020-02-09 13:30:40 -05:00
Jay D Dee
dc2f8d81d3 v3.12.1 2020-02-07 20:18:20 -05:00
Jay D Dee
fc97ef174a v3.12.0.1 2020-02-06 22:50:20 -05:00
Jay D Dee
13523a12f9 v3.12.0 2020-02-05 22:50:58 -05:00
236 changed files with 16242 additions and 18564 deletions

View File

@@ -1,5 +1,9 @@
Instructions for compiling cpuminer-opt for Windows.
Thwaw intructions nay be out of date. Please consult the wiki for
the latest:
https://github.com/JayDDee/cpuminer-opt/wiki/Compiling-from-source
Windows compilation using Visual Studio is not supported. Mingw64 is
used on a Linux system (bare metal or virtual machine) to cross-compile
@@ -24,79 +28,76 @@ Refer to Linux compile instructions and install required packages.
Additionally, install mingw-w64.
sudo apt-get install mingw-w64
sudo apt-get install mingw-w64 libz-mingw-w64-dev
2. Create a local library directory for packages to be compiled in the next
step. Suggested location is $HOME/usr/lib/
$ mkdir $HOME/usr/lib
3. Download and build other packages for mingw that don't have a mingw64
version available in the repositories.
Download the following source code packages from their respective and
respected download locations, copy them to ~/usr/lib/ and uncompress them.
openssl
curl
gmp
openssl: https://github.com/openssl/openssl/releases
In most cases the latest vesrion is ok but it's safest to download
the same major and minor version as included in your distribution.
curl: https://github.com/curl/curl/releases
Run the following commands or follow the supplied instructions.
Do not run "make install" unless you are using ~/usr/lib, which isn't
recommended.
gmp: https://gmplib.org/download/gmp/
Some instructions insist on running "make check". If make check fails
it may still work, YMMV.
In most cases the latest version is ok but it's safest to download the same major and minor version as included in your distribution. The following uses versions from Ubuntu 20.04. Change version numbers as required.
You can speed up "make" by using all CPU cores available with "-j n" where
n is the number of CPU threads you want to use.
Run the following commands or follow the supplied instructions. Do not run "make install" unless you are using /usr/lib, which isn't recommended.
Some instructions insist on running "make check". If make check fails it may still work, YMMV.
You can speed up "make" by using all CPU cores available with "-j n" where n is the number of CPU threads you want to use.
openssl:
./Configure mingw64 shared --cross-compile-prefix=x86_64-w64-mingw32
make
$ ./Configure mingw64 shared --cross-compile-prefix=x86_64-w64-mingw32-
$ make
Make may fail with an ld error, just ensure libcrypto-1_1-x64.dll is created.
curl:
./configure --with-winssl --with-winidn --host=x86_64-w64-mingw32
make
$ ./configure --with-winssl --with-winidn --host=x86_64-w64-mingw32
$ make
gmp:
./configure --host=x86_64-w64-mingw32
make
$ ./configure --host=x86_64-w64-mingw32
$ make
4. Tweak the environment.
This step is required everytime you login or the commands can be added to
.bashrc.
This step is required everytime you login or the commands can be added to .bashrc.
Define some local variables to point to local library.
Define some local variables to point to local library.
export LOCAL_LIB="$HOME/usr/lib"
$ export LOCAL_LIB="$HOME/usr/lib"
export LDFLAGS="-L$LOCAL_LIB/curl/lib/.libs -L$LOCAL_LIB/gmp/.libs -L$LOCAL_LIB/openssl"
$ export LDFLAGS="-L$LOCAL_LIB/curl/lib/.libs -L$LOCAL_LIB/gmp/.libs -L$LOCAL_LIB/openssl"
export CONFIGURE_ARGS="--with-curl=$LOCAL_LIB/curl --with-crypto=$LOCAL_LIB/openssl --host=x86_64-w64-mingw32"
$ export CONFIGURE_ARGS="--with-curl=$LOCAL_LIB/curl --with-crypto=$LOCAL_LIB/openssl --host=x86_64-w64-mingw32"
Create a release directory and copy some dll files previously built.
This can be done outside of cpuminer-opt and only needs to be done once.
If the release directory is in cpuminer-opt directory it needs to be
recreated every a source package is decompressed.
Adjust for gcc version:
mkdir release
cp /usr/x86_64-w64-mingw32/lib/zlib1.dll release/
cp /usr/x86_64-w64-mingw32/lib/libwinpthread-1.dll release/
cp /usr/lib/gcc/x86_64-w64-mingw32/7.3-win32/libstdc++-6.dll release/
cp /usr/lib/gcc/x86_64-w64-mingw32/7.3-win32/libgcc_s_seh-1.dll release/
cp $LOCAL_LIB/openssl/libcrypto-1_1-x64.dll release/
cp $LOCAL_LIB/curl/lib/.libs/libcurl-4.dll release/
$ export GCC_MINGW_LIB="/usr/lib/gcc/x86_64-w64-mingw32/9.3-win32"
Create a release directory and copy some dll files previously built. This can be done outside of cpuminer-opt and only needs to be done once. If the release directory is in cpuminer-opt directory it needs to be recreated every time a source package is decompressed.
$ mkdir release
$ cp /usr/x86_64-w64-mingw32/lib/zlib1.dll release/
$ cp /usr/x86_64-w64-mingw32/lib/libwinpthread-1.dll release/
$ cp $GCC_MINGW_LIB/libstdc++-6.dll release/
$ cp $GCC_MINGW_LIB/libgcc_s_seh-1.dll release/
$ cp $LOCAL_LIB/openssl/libcrypto-1_1-x64.dll release/
$ cp $LOCAL_LIB/curl/lib/.libs/libcurl-4.dll release/
The following steps need to be done every time a new source package is
opened.
@@ -110,13 +111,73 @@ https://github.com/JayDDee/cpuminer-opt/releases
Decompress and change to the cpuminer-opt directory.
6. Prepare to compile
6. compile
Create a link to the locally compiled version of gmp.h
ln -s $LOCAL_LIB/gmp-version/gmp.h ./gmp.h
$ ln -s $LOCAL_LIB/gmp-version/gmp.h ./gmp.h
$ ./autogen.sh
Configure the compiler for the CPU architecture of the host machine:
CFLAGS="-O3 -march=native -Wall" ./configure $CONFIGURE_ARGS
or cross compile for a specific CPU architecture:
CFLAGS="-O3 -march=znver1 -Wall" ./configure $CONFIGURE_ARGS
This will compile for AMD Ryzen.
You can compile more generically for a set of specific CPU features if you know what features you want:
CFLAGS="-O3 -maes -msse4.2 -Wall" ./configure $CONFIGURE_ARGS
This will compile for an older CPU that does not have AVX.
You can find several examples in README.txt
If you have a CPU with more than 64 threads and Windows 7 or higher you can enable the CPU Groups feature by adding the following to CFLAGS:
"-D_WIN32_WINNT=0x0601"
Once you have run configure successfully run the compiler with n CPU threads:
$ make -j n
Copy cpuminer.exe to the release directory, compress and copy the release directory to a Windows system and run cpuminer.exe from the command line.
Run cpuminer
In a command windows change directories to the unzipped release folder. to get a list of all options:
cpuminer.exe --help
Command options are specific to where you mine. Refer to the pool's instructions on how to set them.
Create a link to the locally compiled version of gmp.h
$ ln -s $LOCAL_LIB/gmp-version/gmp.h ./gmp.h
Edit configure.ac to fix lipthread package name.

View File

@@ -21,15 +21,6 @@ cpuminer_SOURCES = \
api.c \
sysinfos.c \
algo-gate-api.c\
crypto/oaes_lib.c \
crypto/c_keccak.c \
crypto/c_groestl.c \
crypto/c_blake256.c \
crypto/c_jh.c \
crypto/c_skein.c \
crypto/hash.c \
crypto/aesb.c \
crypto/magimath.cpp \
algo/argon2/argon2a/argon2a.c \
algo/argon2/argon2a/ar2/argon2.c \
algo/argon2/argon2a/ar2/opt.c \
@@ -76,10 +67,6 @@ cpuminer_SOURCES = \
algo/bmw/bmw512-gate.c \
algo/bmw/bmw512.c \
algo/bmw/bmw512-4way.c \
algo/cryptonight/cryptolight.c \
algo/cryptonight/cryptonight-common.c\
algo/cryptonight/cryptonight-aesni.c\
algo/cryptonight/cryptonight.c\
algo/cubehash/cubehash_sse2.c\
algo/cubehash/cube-hash-2way.c \
algo/echo/sph_echo.c \
@@ -98,6 +85,7 @@ cpuminer_SOURCES = \
algo/groestl/aes_ni/hash-groestl.c \
algo/groestl/aes_ni/hash-groestl256.c \
algo/fugue/sph_fugue.c \
algo/fugue/fugue-aesni.c \
algo/hamsi/sph_hamsi.c \
algo/hamsi/hamsi-hash-4way.c \
algo/haval/haval.c \
@@ -141,7 +129,8 @@ cpuminer_SOURCES = \
algo/lyra2/allium.c \
algo/lyra2/phi2-4way.c \
algo/lyra2/phi2.c \
algo/m7m.c \
algo/m7m/m7m.c \
algo/m7m/magimath.cpp \
algo/nist5/nist5-gate.c \
algo/nist5/nist5-4way.c \
algo/nist5/nist5.c \
@@ -175,6 +164,7 @@ cpuminer_SOURCES = \
algo/sha/sha256-hash-4way.c \
algo/sha/sha512-hash-4way.c \
algo/sha/hmac-sha256-hash.c \
algo/sha/hmac-sha256-hash-4way.c \
algo/sha/sha2.c \
algo/sha/sha256t-gate.c \
algo/sha/sha256t-4way.c \
@@ -202,6 +192,11 @@ cpuminer_SOURCES = \
algo/sm3/sm3-hash-4way.c \
algo/swifftx/swifftx.c \
algo/tiger/sph_tiger.c \
algo/verthash/verthash-gate.c \
algo/verthash/Verthash.c \
algo/verthash/fopen_utf8.c \
algo/verthash/tiny_sha3/sha3.c \
algo/verthash/tiny_sha3/sha3-4way.c \
algo/whirlpool/sph_whirlpool.c \
algo/whirlpool/whirlpool-hash-4way.c \
algo/whirlpool/whirlpool-gate.c \
@@ -268,6 +263,7 @@ cpuminer_SOURCES = \
algo/x16/hex.c \
algo/x16/x21s-4way.c \
algo/x16/x21s.c \
algo/x16/minotaur.c \
algo/x17/x17-gate.c \
algo/x17/x17.c \
algo/x17/x17-4way.c \

View File

@@ -12,10 +12,24 @@ a false positive, they are flagged simply because they are cryptocurrency
miners. The source code is open for anyone to inspect. If you don't trust
the software, don't use it.
New thread:
https://bitcointalk.org/index.php?topic=5226770.msg53865575#msg53865575
Old thread:
https://bitcointalk.org/index.php?topic=1326803.0
mailto://jayddee246@gmail.com
This note is to confirm that bitcointalk users JayDDee and joblo are the
same person.
I created a new BCT user JayDDee to match my github user id.
The old thread has been locked but still contains useful information for
reading.
See file RELEASE_NOTES for change log and INSTALL_LINUX or INSTALL_WINDOWS
for compile instructions.
@@ -23,25 +37,25 @@ Requirements
------------
1. A x86_64 architecture CPU with a minimum of SSE2 support. This includes
Intel Core2 and newer and AMD equivalents. In order to take advantage of AES_NI
optimizations a CPU with AES_NI is required. This includes Intel Westmere
and newer and AMD equivalents. Further optimizations are available on some
algoritms for CPUs with AVX and AVX2, Sandybridge and Haswell respectively.
Intel Core2 and newer and AMD equivalents. Further optimizations are available
on some algoritms for CPUs with AES, AVX, AVX2, SHA, AVX512 and VAES.
Older CPUs are supported by cpuminer-multi by TPruvot but at reduced
performance.
ARM CPUs are not supported.
ARM and Aarch64 CPUs are not supported.
2. 64 bit Linux OS. Ubuntu and Fedora based distributions, including Mint and
Centos, are known to work and have all dependencies in their repositories.
Others may work but may require more effort. Older versions such as Centos 6
don't work due to missing features.
2. 64 bit Linux or Windows OS. Ubuntu and Fedora based distributions,
including Mint and Centos, are known to work and have all dependencies
in their repositories. Others may work but may require more effort. Older
versions such as Centos 6 don't work due to missing features.
64 bit Windows OS is supported with mingw_w64 and msys or pre-built binaries.
MacOS, OSx and Android are not supported.
3. Stratum pool. Some algos may work wallet mining using getwork or GBT. YMMV.
3. Stratum pool supporting stratum+tcp:// or stratum+ssl:// protocols or
RPC getwork using http:// or https://.
GBT is YMMV.
Supported Algorithms
--------------------
@@ -75,10 +89,11 @@ Supported Algorithms
lyra2h Hppcoin
lyra2re lyra2
lyra2rev2 lyra2v2
lyra2rev3 lyrav2v3, Vertcoin
lyra2rev3 lyrav2v3
lyra2z
lyra2z330 Lyra2 330 rows, Zoin (ZOI)
m7m Magi (XMG)
minotaur Ringcoin (RNG)
myr-gr Myriad-Groestl
neoscrypt NeoScrypt(128, 2, 1)
nist5 Nist5
@@ -107,6 +122,7 @@ Supported Algorithms
tribus Denarius (DNR)
vanilla blake256r8vnl (VCash)
veltor (VLT)
verthash Vertcoin
whirlpool
whirlpoolx
x11 Dash
@@ -119,7 +135,7 @@ Supported Algorithms
x14 X14
x15 X15
x16r
x16rv2 Ravencoin (RVN)
x16rv2
x16rt Gincoin (GIN)
x16rt-veil Veil (VEIL)
x16s Pigeoncoin (PGN)
@@ -138,6 +154,27 @@ Supported Algorithms
yespower-b2b generic yespower + blake2b
zr5 Ziftr
Many variations of scrypt based algos can be mine by specifying their
parameters:
scryptn2: --algo scrypt --param-n 1048576
cpupower: --algo yespower --param-key "CPUpower: The number of CPU working or available for proof-of-work mining"
power2b: --algo yespower-b2b --param-n 2048 --param-r 32 --param-key "Now I am become Death, the destroyer of worlds"
sugarchain: --algo yespower --param-n 2048 -param-r 32 --param-key "Satoshi Nakamoto 31/Oct/2008 Proof-of-work is essentially one-CPU-one-vote"
yespoweriots: --algo yespower --param-n 2048 --param-key "Iots is committed to the development of IOT"
yespowerlitb: --algo yespower --param-n 2048 --param-r 32 --param-key "LITBpower: The number of LITB working or available for proof-of-work mini"
yespoweric: --algo yespower --param-n 2048 --param-r 32 --param-key "IsotopeC"
yespowerurx: --algo yespower --param-n 2048 --param-r 32 --param-key "UraniumX"
yespowerltncg: --algo yespower --param-n 2048 --param-r 32 --param-key "LTNCGYES"
Errata
------

View File

@@ -1,8 +1,12 @@
This file is included in the Windows binary package. Compile instructions
for Linux and Windows can be found in RELEASE_NOTES.
cpuminer is a console program that is executed from a DOS command prompt.
There is no GUI and no mouse support.
This package is officially avalable only from:
https://github.com/JayDDee/cpuminer-opt
No other sources should be trusted.
cpuminer is a console program that is executed from a DOS or Powershell
prompt. There is no GUI and no mouse support.
Miner programs are often flagged as malware by antivirus programs. This is
a false positive, they are flagged simply because they are cryptocurrency
@@ -10,13 +14,13 @@ miners. The source code is open for anyone to inspect. If you don't trust
the software, don't use it.
Choose the exe that best matches you CPU's features or use trial and
error to find the fastest one that doesn't crash. Pay attention to
error to find the fastest one that works. Pay attention to
the features listed at cpuminer startup to ensure you are mining at
optimum speed using the best available features.
Architecture names and compile options used are only provided for Intel
Core series. Budget CPUs like Pentium and Celeron are often missing the
latest features.
Core series. Budget CPUs like Pentium and Celeron are often missing some
features.
AMD CPUs older than Piledriver, including Athlon x2 and Phenom II x4, are not
supported by cpuminer-opt due to an incompatible implementation of SSE2 on
@@ -31,14 +35,34 @@ https://en.wikipedia.org/wiki/List_of_Intel_CPU_microarchitectures
https://en.wikipedia.org/wiki/List_of_AMD_CPU_microarchitectures
Exe name Compile flags Arch name
Exe file name Compile flags Arch name
cpuminer-sse2.exe "-msse2" Core2, Nehalem
cpuminer-aes-sse42.exe "-march=westmere" Westmere
cpuminer-avx.exe "-march=corei7-avx" Sandybridge
cpuminer-avx2.exe "-march=core-avx2 -maes" Haswell, Skylake, Coffeelake
cpuminer-avx512.exe "-march=skylake-avx512" Skylake-X, Cascadelake-X
cpuminer-zen "-march=znver1" AMD Ryzen, Threadripper
cpuminer-sse2.exe "-msse2" Core2, Nehalem
cpuminer-aes-sse42.exe "-march=westmere" Westmere
cpuminer-avx.exe "-march=corei7-avx" Sandybridge, Ivybridge
cpuminer-avx2.exe "-march=core-avx2 -maes" Haswell(1)
cpuminer-avx512.exe "-march=skylake-avx512" Skylake-X, Cascadelake
cpuminer-avx512-sha.exe "-march=cascadelake -msha" Rocketlake(2)
cpuminer-avx512-sha-vaes.exe "-march=icelake-client" Icelake, Tigerlake(3)
cpuminer-zen.exe "-march=znver1" AMD Zen1, Zen2
cpuminer-zen3.exe "-march=znver2 -mvaes" Zen3(4)
(1) Haswell includes Broadwell, Skylake, Kabylake, Coffeelake & Cometlake.
(2) Rocketlake build uses cascadelake+sha as a workaround until Rocketlake
compiler support is avalable.
(3) Icelake & Tigerlake are only available on some laptops. Mining with a
laptop is not recommended.
(4) Zen3 build uses zen2+vaes as a workaround until Zen3 compiler support is
available. Zen2 CPUs should use Zen1 build.
Notes about included DLL files:
Downloading DLL files from alternative sources presents an inherent
security risk if their source is unknown. All DLL files included have
been copied from the Ubuntu-20.04 installation or compiled by me from
source code obtained from the author's official repository. The exact
procedure is documented in the build instructions for Windows:
https://github.com/JayDDee/cpuminer-opt/wiki/Compiling-from-source
If you like this software feel free to donate:

View File

@@ -44,7 +44,7 @@ Please include the following information:
1. CPU model, operating system, cpuminer-opt version (must be latest),
binary file for Windows, changes to default build procedure for Linux.
2. Exact comand line (except user and pw) and intial output showing
2. Exact command line (except user and pw) and intial output showing
the above requested info.
3. Additional program output showing any error messages or other
@@ -65,10 +65,343 @@ If not what makes it happen or not happen?
Change Log
----------
v3.16.4
Faster sha512 and sha256 when not using SHA CPU extension.
#329: Fixed GBT incorrect target diff in stats.
v3.16.3
#313 Fix compile error with GCC 11.
Incremental improvements to verthash.
v3.16.2
Verthash: midstate prehash optimization for all architectures.
Verthash: AVX2 optimization.
GBT: added support for Bech32 addresses.
Linux: added CPU frequency to benchmark log.
Fixed integer overflow in time calculations.
v3.16.1
New options for verthash:
--data-file to specify the name, and optionally the path, of the verthash
data file, default is "verthash.dat" in the current directory.
--verify to perform the data file integrity check at startup, default is
not to verify data file integrity.
Support for creation of default verthash data file if:
1) --data-file option is not used,
2) no default data file is found in the current directory, and,
3) --verify option is used.
More detailed logs related to verthash data file.
Small verthash performance improvement.
Fixed detection of corrupt stats caused by networking issues.
v3.16.0
Added verthash algo.
v3.15.7
Added accepted/stale/rejected percentage to summary log report.
Added warning if share counters mismatch which could corrupt stats.
Linux: CPU temperature reporting is more responsive to rising temperature.
A few AVX2 & AVX512 tweaks.
Removed some dead code and other cleanup.
v3.15.6
Implement keccak pre-hash optimization for x16* algos.
Move conditional mining test to before get_new_work in miner thread.
Add test for share reject reason when solo mining.
Add support for floating point, as well as integer, "networkhasps" in
RPC getmininginfo method.
v3.15.5
Fix stratum jobs lost if 2 jobs received in less than one second.
v3.15.4
Fixed yescryptr16 broken in v3.15.3.
v3.15.3
Yescrypt algos now use yespower v0.5, a little faster.
New implementation of sha256 using SHA CPU extension.
Replace Openssl with SPH for sha256 & sha512.
AVX512 optimization for sha256t & sha256q.
Faster sha256t, sha256q, x21s, x22i & x25x on CPUs with SHA without AVX512.
AVX512+SHA build for Intel Rocketlake added to Windows binary package.
v3.15.2
Zen3 AVX2+VAES optimization for x16*, x17, sonoa, xevan, x21s, x22i, x25x,
allium.
Zen3 (AVX2+SHA+VAES) build added to Windows binary package.
v3.15.1
Fix compile on AMD Zen3 CPUs with VAES.
Force new work immediately after solving a block solo.
v3.15.0
Fugue optimized with AES, improves many sha3 algos.
Minotaur algo optimized for all architectures.
Fixed neoscrypt BUG log.
v3.14.3
#265: more mutex changes to reduce blocking with high thread count.
#267: fixed hodl algo potential memory alignment issue,
add warning when thread count is not valid for mining hodl algo.
v3.14.2
The second line of the Share Accepted log is no longer displayed,
new Xnonce log is added and other small log tweaks.
#265: Cleanup use of mutex.
v3.14.1
GBT and getwork log changes:
fixed missing TTF in New Block log,
ntime no longer byte-swapped for display in New Work log,
fixed zero effective hash rate in Periodic Report log,
deleted "Current block is..." log.
Renamed stratum "New Job" log to "New Work" to be consistent with the solo
version of the log. Added more data to both versions.
v3.14.0
Changes to solo mining:
- segwit is supported by getblocktemplate,
- longpolling is not working and is disabled,
- Periodic Report log is output,
- New Block log includes TTF estimates,
- Stratum thread no longer created when using getwork or GBT.
Fixed BUG log mining sha256d.
v3.13.1.1
Fixed Windows crash mining minotaur algo.
Fixed GCC 10 compile again.
Added -fno-common to testing to be consistent with GCC 10 default.
v3.13.1
Added minotaur algo for Ringcoin.
v3.13.0.1
Issue #262: Fixed xevan AVX2 invalid shares.
v3.13.0
Updated Windows binaries compiled with GCC 9. Included DLLs also updated.
Icelake build (cpuminer-avx512-sha-vaes.exe) now included in Windows
binaries package.
No source code changes.
v3.12.8.2
Fixed x12 AVX2 rejects.
Fixed phi AVX2 crash.
v3.12.8.1
Issue #261: Fixed yescryptr8g invalid shares.
v3.12.8
Yespower sha256 prehash made thread safe.
Rewrote diff conversion functions from scratch to be simpler and use
long double (float80) and int128 arithmetic for improved accuracy and
precision.
Some code cleanup and assorted small changes.
v3.12.7
Issue #257: fixed a file descriptor leak which caused the CPU temperature
and frequency query to report zeros after mining for a couple of hours.
Issue #253: stale share reduction for yescrypt, sonoa.
v3.12.6.1
Issue #252: Fixed SSL mining (stratum+tcps://)
Issue #254 Fixed benchmark.
Issue #253: Implemented stale share reduction for yespower, x25x, x22i, x21s,
x16*, scryptn2, more to come.
v3.12.6
Issue #246: improved stale share detection for getwork.
Improved precision of target_to_diff conversion from 4 digits to 20+.
Display hash and target debug data for all rejected shares.
A graphical representation of CPU affinity is displayed when using --threads.
Added highest and lowest accepted share to summary log.
Other small changes to logs to improve consistency and clarity.
v3.12.5
Issues #246 & #251: fixed incorrect share diff for stratum and getwork,
fixed incorrect target diff for getwork. Stats should now be correct for
getwork as well as stratum.
Issue #252: Fixed stratum+tcps not using curl ssl.
Getwork: reduce stale blocks, faster response to new work.
Added ntime to new job/work logs.
README.md now lists the parameters for yespower variations that don't have
a specific algo name.
v3.12.4.6
Issue #246: fixed getwork repeated new block logs with same height. New work
for the same block is now reported as "New work" instead of "New block".
Also added a check that work is new before generating "New work" log.
Added target diff to getwork new block log.
Changed share ratio in share result log to simple fraction, no longer %.
Added debug log to display mininginfo, use -D.
v3.12.4.5
Issue #246: better stale share detection for getwork, and enhanced logging
of stale shares for stratum & getwork.
Issue #251: fixed incorrect share difficulty and share ratio in share
result log.
Changed submit log to include share diff and block height.
Small cosmetic changes to logs.
v3.12.4.4
Issue #246: Fixed net hashrate in getwork block log,
removed duplicate getwork block log,
other small tweaks to stats logs for getwork.
Issue #248: Fixed chronic stale shares with scrypt:1048576 (scryptn2).
v3.12.4.3
Fixed segfault in new block log for getwork.
Disabled silent discarding of stale work after the submit is logged.
v3.12.4.2
Issue #245: fixed getwork stale shares, solo mining with getwork now works.
Issue #246: implemented block and summary logs for getwork.
v3.12.4.1
Issue #245: fix scantime when mining solo with getwork.
Added debug logs for creation of stratum and longpoll threads, use -D to
enable.
v3.12.4
Issue #244: Change longpoll to ignore job id.
Lyra2rev2 AVX2 +3%, AVX512 +6%.
v3.12.3.1
Issue #241: Fixed regression that broke coinbase address in v3.11.7.
v3.12.3
Issue #238: Fixed skunk AVX2.
Issue #239: Faster AVX2 & AVX512 for skein +44%, skein2 +30%, plus marginal
increases for skunk, x16r, x16rv2, x16rt, x16rt-veil, x16s, x21s.
Faster anime VAES +57%, AVX512 +21%, AVX2 +3%.
Redesigned code reponsible for #236.
v3.12.2
Fixed xevan, skein, skein2 AVX2, #238.
Reversed polarity of AVX2 vector bit test utilities, and all users, to be
logically and semantically correct. Follow up to issue #236.
v3.12.1
Fixed anime AVX2 low difficulty shares, git issue #236.
Periodic summary now reports lost hash rate due to rejected and stale shares,
displayed only when non-zero.
v3.12.0.1
Fixed hodl rejects, git issue #237.
Fixed debug code added in v3.12.0 to work with AVX2 to be enabled only
after low difficulty share have been seen to avoid unnecessarily excessive
log outout.
Added more digits of precision to diff in log output to help diagnose
low difficulty shares.
v3.12.0
Faster phi2 AVX2 +62%, AVX512 +150% on Intel CPUs. AMD Ryzen AVX2 is
YMMV due to its inferiour AVX2 implementation.
Fixed Hodl stats, rejects are still an issue since v3.9.5, git issue #237.
API can now be enabled with "-b port" or "--api-bind port".
It will use the default address 127.0.0.1.
Editorial: Short form options should only be used on the command line to save
typing. Configuration files and scripts should always use the long form
"--api-bind addr:port" without relying on any defaults. This is a general
recommendation that applies to all options for any application.
Removed obsolete cryptonight, all variants, and supporting code for more
size reduction and faster compiling.
Tweaked the timing of the CPU temperature and frequency log (Linux only).
Added some debug code to collect more info aboout low difficulty rejects,
git issue #236.
v3.11.9
Fixed x16r invalid shares when Luffa was first in hash order.
API is disabled by default.
New startup message for status of stratum connection, API & extranonce.
New log report for CPU temperature, frequency of fastest and slowest cores.

193
aclocal.m4 vendored
View File

@@ -1,6 +1,6 @@
# generated automatically by aclocal 1.15.1 -*- Autoconf -*-
# generated automatically by aclocal 1.16.1 -*- Autoconf -*-
# Copyright (C) 1996-2017 Free Software Foundation, Inc.
# Copyright (C) 1996-2018 Free Software Foundation, Inc.
# This file is free software; the Free Software Foundation
# gives unlimited permission to copy and/or distribute it,
@@ -20,7 +20,7 @@ You have another version of autoconf. It may work, but is not guaranteed to.
If you have problems, you may need to regenerate the build system entirely.
To do so, use the procedure documented by the package, typically 'autoreconf'.])])
# Copyright (C) 2002-2017 Free Software Foundation, Inc.
# Copyright (C) 2002-2018 Free Software Foundation, Inc.
#
# This file is free software; the Free Software Foundation
# gives unlimited permission to copy and/or distribute it,
@@ -32,10 +32,10 @@ To do so, use the procedure documented by the package, typically 'autoreconf'.])
# generated from the m4 files accompanying Automake X.Y.
# (This private macro should not be called outside this file.)
AC_DEFUN([AM_AUTOMAKE_VERSION],
[am__api_version='1.15'
[am__api_version='1.16'
dnl Some users find AM_AUTOMAKE_VERSION and mistake it for a way to
dnl require some minimum version. Point them to the right macro.
m4_if([$1], [1.15.1], [],
m4_if([$1], [1.16.1], [],
[AC_FATAL([Do not call $0, use AM_INIT_AUTOMAKE([$1]).])])dnl
])
@@ -51,14 +51,14 @@ m4_define([_AM_AUTOCONF_VERSION], [])
# Call AM_AUTOMAKE_VERSION and AM_AUTOMAKE_VERSION so they can be traced.
# This function is AC_REQUIREd by AM_INIT_AUTOMAKE.
AC_DEFUN([AM_SET_CURRENT_AUTOMAKE_VERSION],
[AM_AUTOMAKE_VERSION([1.15.1])dnl
[AM_AUTOMAKE_VERSION([1.16.1])dnl
m4_ifndef([AC_AUTOCONF_VERSION],
[m4_copy([m4_PACKAGE_VERSION], [AC_AUTOCONF_VERSION])])dnl
_AM_AUTOCONF_VERSION(m4_defn([AC_AUTOCONF_VERSION]))])
# Figure out how to run the assembler. -*- Autoconf -*-
# Copyright (C) 2001-2017 Free Software Foundation, Inc.
# Copyright (C) 2001-2018 Free Software Foundation, Inc.
#
# This file is free software; the Free Software Foundation
# gives unlimited permission to copy and/or distribute it,
@@ -78,7 +78,7 @@ _AM_IF_OPTION([no-dependencies],, [_AM_DEPENDENCIES([CCAS])])dnl
# AM_AUX_DIR_EXPAND -*- Autoconf -*-
# Copyright (C) 2001-2017 Free Software Foundation, Inc.
# Copyright (C) 2001-2018 Free Software Foundation, Inc.
#
# This file is free software; the Free Software Foundation
# gives unlimited permission to copy and/or distribute it,
@@ -130,7 +130,7 @@ am_aux_dir=`cd "$ac_aux_dir" && pwd`
# AM_CONDITIONAL -*- Autoconf -*-
# Copyright (C) 1997-2017 Free Software Foundation, Inc.
# Copyright (C) 1997-2018 Free Software Foundation, Inc.
#
# This file is free software; the Free Software Foundation
# gives unlimited permission to copy and/or distribute it,
@@ -161,7 +161,7 @@ AC_CONFIG_COMMANDS_PRE(
Usually this means the macro was only invoked conditionally.]])
fi])])
# Copyright (C) 1999-2017 Free Software Foundation, Inc.
# Copyright (C) 1999-2018 Free Software Foundation, Inc.
#
# This file is free software; the Free Software Foundation
# gives unlimited permission to copy and/or distribute it,
@@ -352,13 +352,12 @@ _AM_SUBST_NOTMAKE([am__nodep])dnl
# Generate code to set up dependency tracking. -*- Autoconf -*-
# Copyright (C) 1999-2017 Free Software Foundation, Inc.
# Copyright (C) 1999-2018 Free Software Foundation, Inc.
#
# This file is free software; the Free Software Foundation
# gives unlimited permission to copy and/or distribute it,
# with or without modifications, as long as this notice is preserved.
# _AM_OUTPUT_DEPENDENCY_COMMANDS
# ------------------------------
AC_DEFUN([_AM_OUTPUT_DEPENDENCY_COMMANDS],
@@ -366,49 +365,41 @@ AC_DEFUN([_AM_OUTPUT_DEPENDENCY_COMMANDS],
# Older Autoconf quotes --file arguments for eval, but not when files
# are listed without --file. Let's play safe and only enable the eval
# if we detect the quoting.
case $CONFIG_FILES in
*\'*) eval set x "$CONFIG_FILES" ;;
*) set x $CONFIG_FILES ;;
esac
# TODO: see whether this extra hack can be removed once we start
# requiring Autoconf 2.70 or later.
AS_CASE([$CONFIG_FILES],
[*\'*], [eval set x "$CONFIG_FILES"],
[*], [set x $CONFIG_FILES])
shift
for mf
# Used to flag and report bootstrapping failures.
am_rc=0
for am_mf
do
# Strip MF so we end up with the name of the file.
mf=`echo "$mf" | sed -e 's/:.*$//'`
# Check whether this is an Automake generated Makefile or not.
# We used to match only the files named 'Makefile.in', but
# some people rename them; so instead we look at the file content.
# Grep'ing the first line is not enough: some people post-process
# each Makefile.in and add a new line on top of each file to say so.
# Grep'ing the whole file is not good either: AIX grep has a line
am_mf=`AS_ECHO(["$am_mf"]) | sed -e 's/:.*$//'`
# Check whether this is an Automake generated Makefile which includes
# dependency-tracking related rules and includes.
# Grep'ing the whole file directly is not great: AIX grep has a line
# limit of 2048, but all sed's we know have understand at least 4000.
if sed -n 's,^#.*generated by automake.*,X,p' "$mf" | grep X >/dev/null 2>&1; then
dirpart=`AS_DIRNAME("$mf")`
else
continue
fi
# Extract the definition of DEPDIR, am__include, and am__quote
# from the Makefile without running 'make'.
DEPDIR=`sed -n 's/^DEPDIR = //p' < "$mf"`
test -z "$DEPDIR" && continue
am__include=`sed -n 's/^am__include = //p' < "$mf"`
test -z "$am__include" && continue
am__quote=`sed -n 's/^am__quote = //p' < "$mf"`
# Find all dependency output files, they are included files with
# $(DEPDIR) in their names. We invoke sed twice because it is the
# simplest approach to changing $(DEPDIR) to its actual value in the
# expansion.
for file in `sed -n "
s/^$am__include $am__quote\(.*(DEPDIR).*\)$am__quote"'$/\1/p' <"$mf" | \
sed -e 's/\$(DEPDIR)/'"$DEPDIR"'/g'`; do
# Make sure the directory exists.
test -f "$dirpart/$file" && continue
fdir=`AS_DIRNAME(["$file"])`
AS_MKDIR_P([$dirpart/$fdir])
# echo "creating $dirpart/$file"
echo '# dummy' > "$dirpart/$file"
done
sed -n 's,^am--depfiles:.*,X,p' "$am_mf" | grep X >/dev/null 2>&1 \
|| continue
am_dirpart=`AS_DIRNAME(["$am_mf"])`
am_filepart=`AS_BASENAME(["$am_mf"])`
AM_RUN_LOG([cd "$am_dirpart" \
&& sed -e '/# am--include-marker/d' "$am_filepart" \
| $MAKE -f - am--depfiles]) || am_rc=$?
done
if test $am_rc -ne 0; then
AC_MSG_FAILURE([Something went wrong bootstrapping makefile fragments
for automatic dependency tracking. Try re-running configure with the
'--disable-dependency-tracking' option to at least be able to build
the package (albeit without support for automatic dependency tracking).])
fi
AS_UNSET([am_dirpart])
AS_UNSET([am_filepart])
AS_UNSET([am_mf])
AS_UNSET([am_rc])
rm -f conftest-deps.mk
}
])# _AM_OUTPUT_DEPENDENCY_COMMANDS
@@ -417,18 +408,17 @@ AC_DEFUN([_AM_OUTPUT_DEPENDENCY_COMMANDS],
# -----------------------------
# This macro should only be invoked once -- use via AC_REQUIRE.
#
# This code is only required when automatic dependency tracking
# is enabled. FIXME. This creates each '.P' file that we will
# need in order to bootstrap the dependency handling code.
# This code is only required when automatic dependency tracking is enabled.
# This creates each '.Po' and '.Plo' makefile fragment that we'll need in
# order to bootstrap the dependency handling code.
AC_DEFUN([AM_OUTPUT_DEPENDENCY_COMMANDS],
[AC_CONFIG_COMMANDS([depfiles],
[test x"$AMDEP_TRUE" != x"" || _AM_OUTPUT_DEPENDENCY_COMMANDS],
[AMDEP_TRUE="$AMDEP_TRUE" ac_aux_dir="$ac_aux_dir"])
])
[AMDEP_TRUE="$AMDEP_TRUE" MAKE="${MAKE-make}"])])
# Do all the work for Automake. -*- Autoconf -*-
# Copyright (C) 1996-2017 Free Software Foundation, Inc.
# Copyright (C) 1996-2018 Free Software Foundation, Inc.
#
# This file is free software; the Free Software Foundation
# gives unlimited permission to copy and/or distribute it,
@@ -515,8 +505,8 @@ AC_REQUIRE([AM_PROG_INSTALL_STRIP])dnl
AC_REQUIRE([AC_PROG_MKDIR_P])dnl
# For better backward compatibility. To be removed once Automake 1.9.x
# dies out for good. For more background, see:
# <http://lists.gnu.org/archive/html/automake/2012-07/msg00001.html>
# <http://lists.gnu.org/archive/html/automake/2012-07/msg00014.html>
# <https://lists.gnu.org/archive/html/automake/2012-07/msg00001.html>
# <https://lists.gnu.org/archive/html/automake/2012-07/msg00014.html>
AC_SUBST([mkdir_p], ['$(MKDIR_P)'])
# We need awk for the "check" target (and possibly the TAP driver). The
# system "awk" is bad on some platforms.
@@ -583,7 +573,7 @@ END
Aborting the configuration process, to ensure you take notice of the issue.
You can download and install GNU coreutils to get an 'rm' implementation
that behaves properly: <http://www.gnu.org/software/coreutils/>.
that behaves properly: <https://www.gnu.org/software/coreutils/>.
If you want to complete the configuration process using your problematic
'rm' anyway, export the environment variable ACCEPT_INFERIOR_RM_PROGRAM
@@ -625,7 +615,7 @@ for _am_header in $config_headers :; do
done
echo "timestamp for $_am_arg" >`AS_DIRNAME(["$_am_arg"])`/stamp-h[]$_am_stamp_count])
# Copyright (C) 2001-2017 Free Software Foundation, Inc.
# Copyright (C) 2001-2018 Free Software Foundation, Inc.
#
# This file is free software; the Free Software Foundation
# gives unlimited permission to copy and/or distribute it,
@@ -646,7 +636,7 @@ if test x"${install_sh+set}" != xset; then
fi
AC_SUBST([install_sh])])
# Copyright (C) 2003-2017 Free Software Foundation, Inc.
# Copyright (C) 2003-2018 Free Software Foundation, Inc.
#
# This file is free software; the Free Software Foundation
# gives unlimited permission to copy and/or distribute it,
@@ -668,7 +658,7 @@ AC_SUBST([am__leading_dot])])
# Add --enable-maintainer-mode option to configure. -*- Autoconf -*-
# From Jim Meyering
# Copyright (C) 1996-2017 Free Software Foundation, Inc.
# Copyright (C) 1996-2018 Free Software Foundation, Inc.
#
# This file is free software; the Free Software Foundation
# gives unlimited permission to copy and/or distribute it,
@@ -703,7 +693,7 @@ AC_MSG_CHECKING([whether to enable maintainer-specific portions of Makefiles])
# Check to see how 'make' treats includes. -*- Autoconf -*-
# Copyright (C) 2001-2017 Free Software Foundation, Inc.
# Copyright (C) 2001-2018 Free Software Foundation, Inc.
#
# This file is free software; the Free Software Foundation
# gives unlimited permission to copy and/or distribute it,
@@ -711,49 +701,42 @@ AC_MSG_CHECKING([whether to enable maintainer-specific portions of Makefiles])
# AM_MAKE_INCLUDE()
# -----------------
# Check to see how make treats includes.
# Check whether make has an 'include' directive that can support all
# the idioms we need for our automatic dependency tracking code.
AC_DEFUN([AM_MAKE_INCLUDE],
[am_make=${MAKE-make}
cat > confinc << 'END'
[AC_MSG_CHECKING([whether ${MAKE-make} supports the include directive])
cat > confinc.mk << 'END'
am__doit:
@echo this is the am__doit target
@echo this is the am__doit target >confinc.out
.PHONY: am__doit
END
# If we don't find an include directive, just comment out the code.
AC_MSG_CHECKING([for style of include used by $am_make])
am__include="#"
am__quote=
_am_result=none
# First try GNU make style include.
echo "include confinc" > confmf
# Ignore all kinds of additional output from 'make'.
case `$am_make -s -f confmf 2> /dev/null` in #(
*the\ am__doit\ target*)
am__include=include
am__quote=
_am_result=GNU
;;
esac
# Now try BSD make style include.
if test "$am__include" = "#"; then
echo '.include "confinc"' > confmf
case `$am_make -s -f confmf 2> /dev/null` in #(
*the\ am__doit\ target*)
am__include=.include
am__quote="\""
_am_result=BSD
;;
esac
fi
AC_SUBST([am__include])
AC_SUBST([am__quote])
AC_MSG_RESULT([$_am_result])
rm -f confinc confmf
])
# BSD make does it like this.
echo '.include "confinc.mk" # ignored' > confmf.BSD
# Other make implementations (GNU, Solaris 10, AIX) do it like this.
echo 'include confinc.mk # ignored' > confmf.GNU
_am_result=no
for s in GNU BSD; do
AM_RUN_LOG([${MAKE-make} -f confmf.$s && cat confinc.out])
AS_CASE([$?:`cat confinc.out 2>/dev/null`],
['0:this is the am__doit target'],
[AS_CASE([$s],
[BSD], [am__include='.include' am__quote='"'],
[am__include='include' am__quote=''])])
if test "$am__include" != "#"; then
_am_result="yes ($s style)"
break
fi
done
rm -f confinc.* confmf.*
AC_MSG_RESULT([${_am_result}])
AC_SUBST([am__include])])
AC_SUBST([am__quote])])
# Fake the existence of programs that GNU maintainers use. -*- Autoconf -*-
# Copyright (C) 1997-2017 Free Software Foundation, Inc.
# Copyright (C) 1997-2018 Free Software Foundation, Inc.
#
# This file is free software; the Free Software Foundation
# gives unlimited permission to copy and/or distribute it,
@@ -792,7 +775,7 @@ fi
# Helper functions for option handling. -*- Autoconf -*-
# Copyright (C) 2001-2017 Free Software Foundation, Inc.
# Copyright (C) 2001-2018 Free Software Foundation, Inc.
#
# This file is free software; the Free Software Foundation
# gives unlimited permission to copy and/or distribute it,
@@ -821,7 +804,7 @@ AC_DEFUN([_AM_SET_OPTIONS],
AC_DEFUN([_AM_IF_OPTION],
[m4_ifset(_AM_MANGLE_OPTION([$1]), [$2], [$3])])
# Copyright (C) 1999-2017 Free Software Foundation, Inc.
# Copyright (C) 1999-2018 Free Software Foundation, Inc.
#
# This file is free software; the Free Software Foundation
# gives unlimited permission to copy and/or distribute it,
@@ -868,7 +851,7 @@ AC_LANG_POP([C])])
# For backward compatibility.
AC_DEFUN_ONCE([AM_PROG_CC_C_O], [AC_REQUIRE([AC_PROG_CC])])
# Copyright (C) 2001-2017 Free Software Foundation, Inc.
# Copyright (C) 2001-2018 Free Software Foundation, Inc.
#
# This file is free software; the Free Software Foundation
# gives unlimited permission to copy and/or distribute it,
@@ -887,7 +870,7 @@ AC_DEFUN([AM_RUN_LOG],
# Check to make sure that the build environment is sane. -*- Autoconf -*-
# Copyright (C) 1996-2017 Free Software Foundation, Inc.
# Copyright (C) 1996-2018 Free Software Foundation, Inc.
#
# This file is free software; the Free Software Foundation
# gives unlimited permission to copy and/or distribute it,
@@ -968,7 +951,7 @@ AC_CONFIG_COMMANDS_PRE(
rm -f conftest.file
])
# Copyright (C) 2009-2017 Free Software Foundation, Inc.
# Copyright (C) 2009-2018 Free Software Foundation, Inc.
#
# This file is free software; the Free Software Foundation
# gives unlimited permission to copy and/or distribute it,
@@ -1028,7 +1011,7 @@ AC_SUBST([AM_BACKSLASH])dnl
_AM_SUBST_NOTMAKE([AM_BACKSLASH])dnl
])
# Copyright (C) 2001-2017 Free Software Foundation, Inc.
# Copyright (C) 2001-2018 Free Software Foundation, Inc.
#
# This file is free software; the Free Software Foundation
# gives unlimited permission to copy and/or distribute it,
@@ -1056,7 +1039,7 @@ fi
INSTALL_STRIP_PROGRAM="\$(install_sh) -c -s"
AC_SUBST([INSTALL_STRIP_PROGRAM])])
# Copyright (C) 2006-2017 Free Software Foundation, Inc.
# Copyright (C) 2006-2018 Free Software Foundation, Inc.
#
# This file is free software; the Free Software Foundation
# gives unlimited permission to copy and/or distribute it,
@@ -1075,7 +1058,7 @@ AC_DEFUN([AM_SUBST_NOTMAKE], [_AM_SUBST_NOTMAKE($@)])
# Check how to create a tarball. -*- Autoconf -*-
# Copyright (C) 2004-2017 Free Software Foundation, Inc.
# Copyright (C) 2004-2018 Free Software Foundation, Inc.
#
# This file is free software; the Free Software Foundation
# gives unlimited permission to copy and/or distribute it,

View File

@@ -15,8 +15,6 @@
#include <stdbool.h>
#include <memory.h>
#include <unistd.h>
#include <openssl/sha.h>
//#include "miner.h"
#include "algo-gate-api.h"
// Define null and standard functions.
@@ -90,34 +88,172 @@ void algo_not_implemented()
}
// default null functions
// deprecated, use generic as default
int null_scanhash()
{
applog(LOG_WARNING,"SWERR: undefined scanhash function in algo_gate");
return 0;
}
void null_hash()
// Default generic scanhash can be used in many cases.
int scanhash_generic( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t edata[20] __attribute__((aligned(64)));
uint32_t hash[8] __attribute__((aligned(64)));
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
const uint32_t first_nonce = pdata[19];
const uint32_t last_nonce = max_nonce - 1;
uint32_t n = first_nonce;
const int thr_id = mythr->id;
const bool bench = opt_benchmark;
mm128_bswap32_80( edata, pdata );
do
{
edata[19] = n;
if ( likely( algo_gate.hash( hash, edata, thr_id ) ) )
if ( unlikely( valid_hash( hash, ptarget ) && !bench ) )
{
pdata[19] = bswap_32( n );
submit_solution( work, hash, mythr );
}
n++;
} while ( n < last_nonce && !work_restart[thr_id].restart );
*hashes_done = n - first_nonce;
pdata[19] = n;
return 0;
}
#if defined(__AVX2__)
//int scanhash_4way_64_64( struct work *work, uint32_t max_nonce,
// uint64_t *hashes_done, struct thr_info *mythr )
//int scanhash_4way_64_640( struct work *work, uint32_t max_nonce,
// uint64_t *hashes_done, struct thr_info *mythr )
int scanhash_4way_64in_32out( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t hash32[8*4] __attribute__ ((aligned (64)));
uint32_t vdata[20*4] __attribute__ ((aligned (64)));
uint32_t lane_hash[8] __attribute__ ((aligned (64)));
uint32_t *hash32_d7 = &(hash32[ 7*4 ]);
uint32_t *pdata = work->data;
const uint32_t *ptarget = work->target;
const uint32_t first_nonce = pdata[19];
const uint32_t last_nonce = max_nonce - 4;
__m256i *noncev = (__m256i*)vdata + 9;
uint32_t n = first_nonce;
const int thr_id = mythr->id;
const uint32_t targ32_d7 = ptarget[7];
const bool bench = opt_benchmark;
mm256_bswap32_intrlv80_4x64( vdata, pdata );
*noncev = mm256_intrlv_blend_32(
_mm256_set_epi32( n+3, 0, n+2, 0, n+1, 0, n, 0 ), *noncev );
do
{
if ( likely( algo_gate.hash( hash32, vdata, thr_id ) ) )
for ( int lane = 0; lane < 4; lane++ )
if ( unlikely( hash32_d7[ lane ] <= targ32_d7 && !bench ) )
{
extr_lane_4x32( lane_hash, hash32, lane, 256 );
if ( valid_hash( lane_hash, ptarget ) )
{
pdata[19] = bswap_32( n + lane );
submit_solution( work, lane_hash, mythr );
}
}
*noncev = _mm256_add_epi32( *noncev,
m256_const1_64( 0x0000000400000000 ) );
n += 4;
} while ( likely( ( n <= last_nonce ) && !work_restart[thr_id].restart ) );
pdata[19] = n;
*hashes_done = n - first_nonce;
return 0;
}
//int scanhash_8way_32_32( struct work *work, uint32_t max_nonce,
// uint64_t *hashes_done, struct thr_info *mythr )
#endif
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
//int scanhash_8way_64_64( struct work *work, uint32_t max_nonce,
// uint64_t *hashes_done, struct thr_info *mythr )
//int scanhash_8way_64_640( struct work *work, uint32_t max_nonce,
// uint64_t *hashes_done, struct thr_info *mythr )
int scanhash_8way_64in_32out( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t hash32[8*8] __attribute__ ((aligned (128)));
uint32_t vdata[20*8] __attribute__ ((aligned (64)));
uint32_t lane_hash[8] __attribute__ ((aligned (64)));
uint32_t *hash32_d7 = &(hash32[7*8]);
uint32_t *pdata = work->data;
const uint32_t *ptarget = work->target;
const uint32_t first_nonce = pdata[19];
const uint32_t last_nonce = max_nonce - 8;
__m512i *noncev = (__m512i*)vdata + 9;
uint32_t n = first_nonce;
const int thr_id = mythr->id;
const uint32_t targ32_d7 = ptarget[7];
const bool bench = opt_benchmark;
mm512_bswap32_intrlv80_8x64( vdata, pdata );
*noncev = mm512_intrlv_blend_32(
_mm512_set_epi32( n+7, 0, n+6, 0, n+5, 0, n+4, 0,
n+3, 0, n+2, 0, n+1, 0, n, 0 ), *noncev );
do
{
if ( likely( algo_gate.hash( hash32, vdata, thr_id ) ) )
for ( int lane = 0; lane < 8; lane++ )
if ( unlikely( ( hash32_d7[ lane ] <= targ32_d7 ) && !bench ) )
{
extr_lane_8x32( lane_hash, hash32, lane, 256 );
if ( likely( valid_hash( lane_hash, ptarget ) ) )
{
pdata[19] = bswap_32( n + lane );
submit_solution( work, lane_hash, mythr );
}
}
*noncev = _mm512_add_epi32( *noncev,
m512_const1_64( 0x0000000800000000 ) );
n += 8;
} while ( likely( ( n < last_nonce ) && !work_restart[thr_id].restart ) );
pdata[19] = n;
*hashes_done = n - first_nonce;
return 0;
}
//int scanhash_16way_32_32( struct work *work, uint32_t max_nonce,
// uint64_t *hashes_done, struct thr_info *mythr )
#endif
int null_hash()
{
applog(LOG_WARNING,"SWERR: null_hash unsafe null function");
};
void null_hash_suw()
{
applog(LOG_WARNING,"SWERR: null_hash_suw unsafe null function");
return 0;
};
void init_algo_gate( algo_gate_t* gate )
{
gate->miner_thread_init = (void*)&return_true;
gate->scanhash = (void*)&null_scanhash;
gate->scanhash = (void*)&scanhash_generic;
gate->hash = (void*)&null_hash;
gate->hash_suw = (void*)&null_hash_suw;
gate->get_new_work = (void*)&std_get_new_work;
gate->get_nonceptr = (void*)&std_get_nonceptr;
gate->work_decode = (void*)&std_le_work_decode;
gate->decode_extra_data = (void*)&do_nothing;
gate->gen_merkle_root = (void*)&sha256d_gen_merkle_root;
gate->stratum_gen_work = (void*)&std_stratum_gen_work;
gate->build_stratum_request = (void*)&std_le_build_stratum_request;
gate->malloc_txs_request = (void*)&std_malloc_txs_request;
gate->submit_getwork_result = (void*)&std_le_submit_getwork_result;
@@ -129,7 +265,6 @@ void init_algo_gate( algo_gate_t* gate )
gate->resync_threads = (void*)&do_nothing;
gate->do_this_thread = (void*)&return_true;
gate->longpoll_rpc_call = (void*)&std_longpoll_rpc_call;
gate->stratum_handle_response = (void*)&std_stratum_handle_response;
gate->get_work_data_size = (void*)&std_get_work_data_size;
gate->optimizations = EMPTY_SET;
gate->ntime_index = STD_NTIME_INDEX;
@@ -142,9 +277,11 @@ void init_algo_gate( algo_gate_t* gate )
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wimplicit-function-declaration"
// called by each thread that uses the gate
// Called once by main
bool register_algo_gate( int algo, algo_gate_t *gate )
{
bool rc = false;
if ( NULL == gate )
{
applog(LOG_ERR,"FAIL: algo_gate registration failed, NULL gate\n");
@@ -153,111 +290,108 @@ bool register_algo_gate( int algo, algo_gate_t *gate )
init_algo_gate( gate );
switch (algo)
switch ( algo )
{
case ALGO_ALLIUM: register_allium_algo ( gate ); break;
case ALGO_ANIME: register_anime_algo ( gate ); break;
case ALGO_ARGON2: register_argon2_algo ( gate ); break;
case ALGO_ARGON2D250: register_argon2d_crds_algo ( gate ); break;
case ALGO_ARGON2D500: register_argon2d_dyn_algo ( gate ); break;
case ALGO_ARGON2D4096: register_argon2d4096_algo ( gate ); break;
case ALGO_AXIOM: register_axiom_algo ( gate ); break;
case ALGO_BLAKE: register_blake_algo ( gate ); break;
case ALGO_BLAKE2B: register_blake2b_algo ( gate ); break;
case ALGO_BLAKE2S: register_blake2s_algo ( gate ); break;
case ALGO_BLAKECOIN: register_blakecoin_algo ( gate ); break;
case ALGO_BMW512: register_bmw512_algo ( gate ); break;
case ALGO_C11: register_c11_algo ( gate ); break;
case ALGO_CRYPTOLIGHT: register_cryptolight_algo ( gate ); break;
case ALGO_CRYPTONIGHT: register_cryptonight_algo ( gate ); break;
case ALGO_CRYPTONIGHTV7: register_cryptonightv7_algo ( gate ); break;
case ALGO_DECRED: register_decred_algo ( gate ); break;
case ALGO_DEEP: register_deep_algo ( gate ); break;
case ALGO_DMD_GR: register_dmd_gr_algo ( gate ); break;
case ALGO_GROESTL: register_groestl_algo ( gate ); break;
case ALGO_HEX: register_hex_algo ( gate ); break;
case ALGO_HMQ1725: register_hmq1725_algo ( gate ); break;
case ALGO_HODL: register_hodl_algo ( gate ); break;
case ALGO_JHA: register_jha_algo ( gate ); break;
case ALGO_KECCAK: register_keccak_algo ( gate ); break;
case ALGO_KECCAKC: register_keccakc_algo ( gate ); break;
case ALGO_LBRY: register_lbry_algo ( gate ); break;
case ALGO_LYRA2H: register_lyra2h_algo ( gate ); break;
case ALGO_LYRA2RE: register_lyra2re_algo ( gate ); break;
case ALGO_LYRA2REV2: register_lyra2rev2_algo ( gate ); break;
case ALGO_LYRA2REV3: register_lyra2rev3_algo ( gate ); break;
case ALGO_LYRA2Z: register_lyra2z_algo ( gate ); break;
case ALGO_LYRA2Z330: register_lyra2z330_algo ( gate ); break;
case ALGO_M7M: register_m7m_algo ( gate ); break;
case ALGO_MYR_GR: register_myriad_algo ( gate ); break;
case ALGO_NEOSCRYPT: register_neoscrypt_algo ( gate ); break;
case ALGO_NIST5: register_nist5_algo ( gate ); break;
case ALGO_PENTABLAKE: register_pentablake_algo ( gate ); break;
case ALGO_PHI1612: register_phi1612_algo ( gate ); break;
case ALGO_PHI2: register_phi2_algo ( gate ); break;
case ALGO_POLYTIMOS: register_polytimos_algo ( gate ); break;
case ALGO_POWER2B: register_power2b_algo ( gate ); break;
case ALGO_QUARK: register_quark_algo ( gate ); break;
case ALGO_QUBIT: register_qubit_algo ( gate ); break;
case ALGO_SCRYPT: register_scrypt_algo ( gate ); break;
case ALGO_SHA256D: register_sha256d_algo ( gate ); break;
case ALGO_SHA256Q: register_sha256q_algo ( gate ); break;
case ALGO_SHA256T: register_sha256t_algo ( gate ); break;
case ALGO_SHA3D: register_sha3d_algo ( gate ); break;
case ALGO_SHAVITE3: register_shavite_algo ( gate ); break;
case ALGO_SKEIN: register_skein_algo ( gate ); break;
case ALGO_SKEIN2: register_skein2_algo ( gate ); break;
case ALGO_SKUNK: register_skunk_algo ( gate ); break;
case ALGO_SONOA: register_sonoa_algo ( gate ); break;
case ALGO_TIMETRAVEL: register_timetravel_algo ( gate ); break;
case ALGO_TIMETRAVEL10: register_timetravel10_algo ( gate ); break;
case ALGO_TRIBUS: register_tribus_algo ( gate ); break;
case ALGO_VANILLA: register_vanilla_algo ( gate ); break;
case ALGO_VELTOR: register_veltor_algo ( gate ); break;
case ALGO_WHIRLPOOL: register_whirlpool_algo ( gate ); break;
case ALGO_WHIRLPOOLX: register_whirlpoolx_algo ( gate ); break;
case ALGO_X11: register_x11_algo ( gate ); break;
case ALGO_X11EVO: register_x11evo_algo ( gate ); break;
case ALGO_X11GOST: register_x11gost_algo ( gate ); break;
case ALGO_X12: register_x12_algo ( gate ); break;
case ALGO_X13: register_x13_algo ( gate ); break;
case ALGO_X13BCD: register_x13bcd_algo ( gate ); break;
case ALGO_X13SM3: register_x13sm3_algo ( gate ); break;
case ALGO_X14: register_x14_algo ( gate ); break;
case ALGO_X15: register_x15_algo ( gate ); break;
case ALGO_X16R: register_x16r_algo ( gate ); break;
case ALGO_X16RV2: register_x16rv2_algo ( gate ); break;
case ALGO_X16RT: register_x16rt_algo ( gate ); break;
case ALGO_X16RT_VEIL: register_x16rt_veil_algo ( gate ); break;
case ALGO_X16S: register_x16s_algo ( gate ); break;
case ALGO_X17: register_x17_algo ( gate ); break;
case ALGO_X21S: register_x21s_algo ( gate ); break;
case ALGO_X22I: register_x22i_algo ( gate ); break;
case ALGO_X25X: register_x25x_algo ( gate ); break;
case ALGO_XEVAN: register_xevan_algo ( gate ); break;
/* case ALGO_YESCRYPT: register_yescrypt_05_algo ( gate ); break;
case ALGO_YESCRYPTR8: register_yescryptr8_05_algo ( gate ); break;
case ALGO_YESCRYPTR16: register_yescryptr16_05_algo ( gate ); break;
case ALGO_YESCRYPTR32: register_yescryptr32_05_algo ( gate ); break;
*/
case ALGO_YESCRYPT: register_yescrypt_algo ( gate ); break;
case ALGO_YESCRYPTR8: register_yescryptr8_algo ( gate ); break;
case ALGO_YESCRYPTR8G: register_yescryptr8g_algo ( gate ); break;
case ALGO_YESCRYPTR16: register_yescryptr16_algo ( gate ); break;
case ALGO_YESCRYPTR32: register_yescryptr32_algo ( gate ); break;
case ALGO_YESPOWER: register_yespower_algo ( gate ); break;
case ALGO_YESPOWERR16: register_yespowerr16_algo ( gate ); break;
case ALGO_YESPOWER_B2B: register_yespower_b2b_algo ( gate ); break;
case ALGO_ZR5: register_zr5_algo ( gate ); break;
case ALGO_ALLIUM: rc = register_allium_algo ( gate ); break;
case ALGO_ANIME: rc = register_anime_algo ( gate ); break;
case ALGO_ARGON2: rc = register_argon2_algo ( gate ); break;
case ALGO_ARGON2D250: rc = register_argon2d_crds_algo ( gate ); break;
case ALGO_ARGON2D500: rc = register_argon2d_dyn_algo ( gate ); break;
case ALGO_ARGON2D4096: rc = register_argon2d4096_algo ( gate ); break;
case ALGO_AXIOM: rc = register_axiom_algo ( gate ); break;
case ALGO_BLAKE: rc = register_blake_algo ( gate ); break;
case ALGO_BLAKE2B: rc = register_blake2b_algo ( gate ); break;
case ALGO_BLAKE2S: rc = register_blake2s_algo ( gate ); break;
case ALGO_BLAKECOIN: rc = register_blakecoin_algo ( gate ); break;
case ALGO_BMW512: rc = register_bmw512_algo ( gate ); break;
case ALGO_C11: rc = register_c11_algo ( gate ); break;
case ALGO_DECRED: rc = register_decred_algo ( gate ); break;
case ALGO_DEEP: rc = register_deep_algo ( gate ); break;
case ALGO_DMD_GR: rc = register_dmd_gr_algo ( gate ); break;
case ALGO_GROESTL: rc = register_groestl_algo ( gate ); break;
case ALGO_HEX: rc = register_hex_algo ( gate ); break;
case ALGO_HMQ1725: rc = register_hmq1725_algo ( gate ); break;
case ALGO_HODL: rc = register_hodl_algo ( gate ); break;
case ALGO_JHA: rc = register_jha_algo ( gate ); break;
case ALGO_KECCAK: rc = register_keccak_algo ( gate ); break;
case ALGO_KECCAKC: rc = register_keccakc_algo ( gate ); break;
case ALGO_LBRY: rc = register_lbry_algo ( gate ); break;
case ALGO_LYRA2H: rc = register_lyra2h_algo ( gate ); break;
case ALGO_LYRA2RE: rc = register_lyra2re_algo ( gate ); break;
case ALGO_LYRA2REV2: rc = register_lyra2rev2_algo ( gate ); break;
case ALGO_LYRA2REV3: rc = register_lyra2rev3_algo ( gate ); break;
case ALGO_LYRA2Z: rc = register_lyra2z_algo ( gate ); break;
case ALGO_LYRA2Z330: rc = register_lyra2z330_algo ( gate ); break;
case ALGO_M7M: rc = register_m7m_algo ( gate ); break;
case ALGO_MINOTAUR: rc = register_minotaur_algo ( gate ); break;
case ALGO_MYR_GR: rc = register_myriad_algo ( gate ); break;
case ALGO_NEOSCRYPT: rc = register_neoscrypt_algo ( gate ); break;
case ALGO_NIST5: rc = register_nist5_algo ( gate ); break;
case ALGO_PENTABLAKE: rc = register_pentablake_algo ( gate ); break;
case ALGO_PHI1612: rc = register_phi1612_algo ( gate ); break;
case ALGO_PHI2: rc = register_phi2_algo ( gate ); break;
case ALGO_POLYTIMOS: rc = register_polytimos_algo ( gate ); break;
case ALGO_POWER2B: rc = register_power2b_algo ( gate ); break;
case ALGO_QUARK: rc = register_quark_algo ( gate ); break;
case ALGO_QUBIT: rc = register_qubit_algo ( gate ); break;
case ALGO_SCRYPT: rc = register_scrypt_algo ( gate ); break;
case ALGO_SHA256D: rc = register_sha256d_algo ( gate ); break;
case ALGO_SHA256Q: rc = register_sha256q_algo ( gate ); break;
case ALGO_SHA256T: rc = register_sha256t_algo ( gate ); break;
case ALGO_SHA3D: rc = register_sha3d_algo ( gate ); break;
case ALGO_SHAVITE3: rc = register_shavite_algo ( gate ); break;
case ALGO_SKEIN: rc = register_skein_algo ( gate ); break;
case ALGO_SKEIN2: rc = register_skein2_algo ( gate ); break;
case ALGO_SKUNK: rc = register_skunk_algo ( gate ); break;
case ALGO_SONOA: rc = register_sonoa_algo ( gate ); break;
case ALGO_TIMETRAVEL: rc = register_timetravel_algo ( gate ); break;
case ALGO_TIMETRAVEL10: rc = register_timetravel10_algo ( gate ); break;
case ALGO_TRIBUS: rc = register_tribus_algo ( gate ); break;
case ALGO_VANILLA: rc = register_vanilla_algo ( gate ); break;
case ALGO_VELTOR: rc = register_veltor_algo ( gate ); break;
case ALGO_VERTHASH: rc = register_verthash_algo ( gate ); break;
case ALGO_WHIRLPOOL: rc = register_whirlpool_algo ( gate ); break;
case ALGO_WHIRLPOOLX: rc = register_whirlpoolx_algo ( gate ); break;
case ALGO_X11: rc = register_x11_algo ( gate ); break;
case ALGO_X11EVO: rc = register_x11evo_algo ( gate ); break;
case ALGO_X11GOST: rc = register_x11gost_algo ( gate ); break;
case ALGO_X12: rc = register_x12_algo ( gate ); break;
case ALGO_X13: rc = register_x13_algo ( gate ); break;
case ALGO_X13BCD: rc = register_x13bcd_algo ( gate ); break;
case ALGO_X13SM3: rc = register_x13sm3_algo ( gate ); break;
case ALGO_X14: rc = register_x14_algo ( gate ); break;
case ALGO_X15: rc = register_x15_algo ( gate ); break;
case ALGO_X16R: rc = register_x16r_algo ( gate ); break;
case ALGO_X16RV2: rc = register_x16rv2_algo ( gate ); break;
case ALGO_X16RT: rc = register_x16rt_algo ( gate ); break;
case ALGO_X16RT_VEIL: rc = register_x16rt_veil_algo ( gate ); break;
case ALGO_X16S: rc = register_x16s_algo ( gate ); break;
case ALGO_X17: rc = register_x17_algo ( gate ); break;
case ALGO_X21S: rc = register_x21s_algo ( gate ); break;
case ALGO_X22I: rc = register_x22i_algo ( gate ); break;
case ALGO_X25X: rc = register_x25x_algo ( gate ); break;
case ALGO_XEVAN: rc = register_xevan_algo ( gate ); break;
case ALGO_YESCRYPT: rc = register_yescrypt_05_algo ( gate ); break;
// case ALGO_YESCRYPT: register_yescrypt_algo ( gate ); break;
case ALGO_YESCRYPTR8: rc = register_yescryptr8_05_algo ( gate ); break;
// case ALGO_YESCRYPTR8: register_yescryptr8_algo ( gate ); break;
case ALGO_YESCRYPTR8G: rc = register_yescryptr8g_algo ( gate ); break;
case ALGO_YESCRYPTR16: rc = register_yescryptr16_05_algo( gate ); break;
// case ALGO_YESCRYPTR16: register_yescryptr16_algo ( gate ); break;
case ALGO_YESCRYPTR32: rc = register_yescryptr32_05_algo( gate ); break;
// case ALGO_YESCRYPTR32: register_yescryptr32_algo ( gate ); break;
case ALGO_YESPOWER: rc = register_yespower_algo ( gate ); break;
case ALGO_YESPOWERR16: rc = register_yespowerr16_algo ( gate ); break;
case ALGO_YESPOWER_B2B: rc = register_yespower_b2b_algo ( gate ); break;
case ALGO_ZR5: rc = register_zr5_algo ( gate ); break;
default:
applog(LOG_ERR,"FAIL: algo_gate registration failed, unknown algo %s.\n", algo_names[opt_algo] );
applog(LOG_ERR,"BUG: unregistered algorithm %s.\n", algo_names[opt_algo] );
return false;
} // switch
// ensure required functions were defined.
if ( gate->scanhash == (void*)&null_scanhash )
if ( !rc )
{
applog(LOG_ERR, "FAIL: Required algo_gate functions undefined\n");
applog(LOG_ERR, "FAIL: %s algorithm failed to initialize\n", algo_names[opt_algo] );
return false;
}
return true;
@@ -266,26 +400,6 @@ bool register_algo_gate( int algo, algo_gate_t *gate )
// restore warnings
#pragma GCC diagnostic pop
// override std defaults with jr2 defaults
bool register_json_rpc2( algo_gate_t *gate )
{
// gate->wait_for_diff = (void*)&do_nothing;
gate->get_new_work = (void*)&jr2_get_new_work;
gate->get_nonceptr = (void*)&jr2_get_nonceptr;
gate->stratum_gen_work = (void*)&jr2_stratum_gen_work;
gate->build_stratum_request = (void*)&jr2_build_stratum_request;
gate->submit_getwork_result = (void*)&jr2_submit_getwork_result;
gate->longpoll_rpc_call = (void*)&jr2_longpoll_rpc_call;
gate->work_decode = (void*)&jr2_work_decode;
gate->stratum_handle_response = (void*)&jr2_stratum_handle_response;
gate->nonce_index = JR2_NONCE_INDEX;
jsonrpc_2 = true; // still needed
opt_extranonce = false;
// have_gbt = false;
return true;
}
// run the alternate hash function for a specific algo
void exec_hash_function( int algo, void *output, const void *pdata )
{
algo_gate_t gate;
@@ -305,39 +419,35 @@ void exec_hash_function( int algo, void *output, const void *pdata )
const char* const algo_alias_map[][2] =
{
// alias proper
{ "argon2d-crds", "argon2d250" },
{ "argon2d-dyn", "argon2d500" },
{ "argon2d-uis", "argon2d4096" },
{ "bcd", "x13bcd" },
{ "bitcore", "timetravel10" },
{ "bitzeny", "yescryptr8" },
{ "blake256r8", "blakecoin" },
{ "blake256r8vnl", "vanilla" },
{ "blake256r14", "blake" },
{ "blake256r14dcr", "decred" },
{ "cryptonote", "cryptonight" },
{ "cryptonight-light", "cryptolight" },
{ "diamond", "dmd-gr" },
{ "droplp", "drop" },
{ "espers", "hmq1725" },
{ "flax", "c11" },
{ "hsr", "x13sm3" },
{ "jackpot", "jha" },
{ "jane", "scryptjane" },
{ "lyra2", "lyra2re" },
{ "lyra2v2", "lyra2rev2" },
{ "lyra2v3", "lyra2rev3" },
{ "myrgr", "myr-gr" },
{ "myriad", "myr-gr" },
{ "neo", "neoscrypt" },
{ "phi", "phi1612" },
{ "sib", "x11gost" },
{ "timetravel8", "timetravel" },
{ "veil", "x16rt-veil" },
{ "x16r-hex", "hex" },
{ "yenten", "yescryptr16" },
{ "ziftr", "zr5" },
{ NULL, NULL }
{ "argon2d-dyn", "argon2d500" },
{ "argon2d-uis", "argon2d4096" },
{ "bcd", "x13bcd" },
{ "bitcore", "timetravel10" },
{ "bitzeny", "yescryptr8" },
{ "blake256r8", "blakecoin" },
{ "blake256r8vnl", "vanilla" },
{ "blake256r14", "blake" },
{ "blake256r14dcr", "decred" },
{ "diamond", "dmd-gr" },
{ "espers", "hmq1725" },
{ "flax", "c11" },
{ "hsr", "x13sm3" },
{ "jackpot", "jha" },
{ "lyra2", "lyra2re" },
{ "lyra2v2", "lyra2rev2" },
{ "lyra2v3", "lyra2rev3" },
{ "myrgr", "myr-gr" },
{ "myriad", "myr-gr" },
{ "neo", "neoscrypt" },
{ "phi", "phi1612" },
{ "scryptn2", "scrypt:1048576" },
{ "sib", "x11gost" },
{ "timetravel8", "timetravel" },
{ "veil", "x16rt-veil" },
{ "x16r-hex", "hex" },
{ "yenten", "yescryptr16" },
{ "ziftr", "zr5" },
{ NULL, NULL }
};
// if arg is a valid alias for a known algo it is updated with the proper
@@ -350,7 +460,7 @@ void get_algo_alias( char** algo_or_alias )
if ( !strcasecmp( *algo_or_alias, algo_alias_map[i][ ALIAS ] ) )
{
// found valid alias, return proper name
*algo_or_alias = (const char*)( algo_alias_map[i][ PROPER ] );
*algo_or_alias = (char*)( algo_alias_map[i][ PROPER ] );
return;
}
}

View File

@@ -75,7 +75,7 @@
// my hack at creating a set data type using bit masks. Set inclusion,
// exclusion union and intersection operations are provided for convenience. In // some cases it may be desireable to use boolean algebra directly on the
// data to perfomr set operations. Sets can be represented as single
// data to perform set operations. Sets can be represented as single
// elements, a bitwise OR of multiple elements, a bitwise OR of multiple
// set variables or constants, or combinations of the above.
// Examples:
@@ -90,10 +90,11 @@ typedef uint32_t set_t;
#define AES_OPT 2
#define SSE42_OPT 4
#define AVX_OPT 8 // Sandybridge
#define AVX2_OPT 0x10 // Haswell
#define SHA_OPT 0x20 // sha256 (Ryzen, Ice Lake)
#define AVX512_OPT 0x40 // AVX512- F, VL, DQ, BW (Skylake-X)
#define VAES_OPT 0x80 // VAES (Ice Lake)
#define AVX2_OPT 0x10 // Haswell, Zen1
#define SHA_OPT 0x20 // Zen1, Icelake (sha256)
#define AVX512_OPT 0x40 // Skylake-X (AVX512[F,VL,DQ,BW])
#define VAES_OPT 0x80 // Icelake (VAES & AVX512)
#define VAES256_OPT 0x100 // Zen3 (VAES without AVX512)
// return set containing all elements from sets a & b
@@ -110,30 +111,25 @@ inline bool set_excl ( set_t a, set_t b ) { return (a & b) == 0; }
typedef struct
{
// mandatory functions, must be overwritten
// Mandatory functions, one of these is mandatory. If a generic scanhash
// is used a custom target hash function must be registered, with a custom
// scanhash the target hash function can be called directly and doesn't need
// to be registered with the gate.
int ( *scanhash ) ( struct work*, uint32_t, uint64_t*, struct thr_info* );
// optional unsafe, must be overwritten if algo uses function
void ( *hash ) ( void*, const void*, uint32_t ) ;
void ( *hash_suw ) ( void*, const void* );
int ( *hash ) ( void*, const void*, int );
//optional, safe to use default in most cases
// Allocate thread local buffers and other initialization specific to miner
// threads.
// Called once by each miner thread to allocate thread local buffers and
// other initialization specific to miner threads.
bool ( *miner_thread_init ) ( int );
// Generate global blockheader from stratum data.
void ( *stratum_gen_work ) ( struct stratum_ctx*, struct work* );
// Get thread local copy of blockheader with unique nonce.
void ( *get_new_work ) ( struct work*, struct work*, int, uint32_t* );
// Return pointer to nonce in blockheader.
uint32_t *( *get_nonceptr ) ( uint32_t* );
// Decode getwork blockheader
bool ( *work_decode ) ( const json_t*, struct work* );
bool ( *work_decode ) ( struct work* );
// Extra getwork data
void ( *decode_extra_data ) ( struct work*, uint64_t* );
@@ -154,7 +150,7 @@ void ( *build_stratum_request ) ( char*, struct work*, struct stratum_ctx* );
char* ( *malloc_txs_request ) ( struct work* );
// Big or little
// Big endian or little endian
void ( *set_work_data_endian ) ( struct work* );
double ( *calc_network_diff ) ( struct work* );
@@ -166,10 +162,11 @@ bool ( *ready_to_mine ) ( struct work*, struct stratum_ctx*, int );
bool ( *do_this_thread ) ( int );
// After do_this_thread
void ( *resync_threads ) ( struct work* );
void ( *resync_threads ) ( int, struct work* );
// No longer needed
json_t* (*longpoll_rpc_call) ( CURL*, int*, char* );
bool ( *stratum_handle_response ) ( json_t* );
set_t optimizations;
int ( *get_work_data_size ) ();
int ntime_index;
@@ -207,50 +204,84 @@ void four_way_not_tested();
#define STD_WORK_DATA_SIZE 128
#define STD_WORK_CMP_SIZE 76
#define JR2_NONCE_INDEX 39 // 8 bit offset
//#define JR2_NONCE_INDEX 39 // 8 bit offset
// These indexes are only used with JSON RPC2 and are not gated.
#define JR2_WORK_CMP_INDEX_2 43
#define JR2_WORK_CMP_SIZE_2 33
//#define JR2_WORK_CMP_INDEX_2 43
//#define JR2_WORK_CMP_SIZE_2 33
// allways returns failure
// deprecated, use generic instead
int null_scanhash();
// Default generic, may be used in many cases.
// N-way is more complicated, requires many different implementations
// depending on architecture, input format, and output format.
// Naming convention is scanhash_[N]way_[input format]in_[output format]out
// N = number of lanes
// input/output format:
// 32: 32 bit interleaved parallel lanes
// 64: 64 bit interleaved parallel lanes
// 640: input only, not interleaved, contiguous serial 640 bit lanes.
// 256: output only, not interleaved, contiguous serial 256 bit lanes.
int scanhash_generic( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
#if defined(__AVX2__)
//int scanhash_4way_64in_64out( struct work *work, uint32_t max_nonce,
// uint64_t *hashes_done, struct thr_info *mythr );
//int scanhash_4way_64in_256out( struct work *work, uint32_t max_nonce,
// uint64_t *hashes_done, struct thr_info *mythr );
int scanhash_4way_64in_32out( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
//int scanhash_8way_32in_32out( struct work *work, uint32_t max_nonce,
// uint64_t *hashes_done, struct thr_info *mythr );
#endif
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
//int scanhash_8way_64in_64out( struct work *work, uint32_t max_nonce,
// uint64_t *hashes_done, struct thr_info *mythr );
//int scanhash_8way_64in_256out( struct work *work, uint32_t max_nonce,
// uint64_t *hashes_done, struct thr_info *mythr );
int scanhash_8way_64in_32out( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
//int scanhash_16way_32in_32out( struct work *work, uint32_t max_nonce,
// uint64_t *hashes_done, struct thr_info *mythr );
#endif
// displays warning
void null_hash ();
void null_hash_suw();
int null_hash();
// optional safe targets, default listed first unless noted.
uint32_t *std_get_nonceptr( uint32_t *work_data );
uint32_t *jr2_get_nonceptr( uint32_t *work_data );
void std_get_new_work( struct work *work, struct work *g_work, int thr_id,
uint32_t* end_nonce_ptr );
void jr2_get_new_work( struct work *work, struct work *g_work, int thr_id,
uint32_t* end_nonce_ptr );
void std_stratum_gen_work( struct stratum_ctx *sctx, struct work *work );
void jr2_stratum_gen_work( struct stratum_ctx *sctx, struct work *work );
void sha256d_gen_merkle_root( char *merkle_root, struct stratum_ctx *sctx );
void SHA256_gen_merkle_root ( char *merkle_root, struct stratum_ctx *sctx );
bool std_le_work_decode( const json_t *val, struct work *work );
bool std_be_work_decode( const json_t *val, struct work *work );
bool jr2_work_decode( const json_t *val, struct work *work );
bool std_le_work_decode( struct work *work );
bool std_be_work_decode( struct work *work );
bool std_le_submit_getwork_result( CURL *curl, struct work *work );
bool std_be_submit_getwork_result( CURL *curl, struct work *work );
bool jr2_submit_getwork_result( CURL *curl, struct work *work );
void std_le_build_stratum_request( char *req, struct work *work );
void std_be_build_stratum_request( char *req, struct work *work );
void jr2_build_stratum_request ( char *req, struct work *work );
char* std_malloc_txs_request( struct work *work );
// Default is do_nothing (assumed LE)
// Default is do_nothing, little endian is assumed
void set_work_data_big_endian( struct work *work );
double std_calc_network_diff( struct work *work );
@@ -263,10 +294,6 @@ void std_build_block_header( struct work* g_work, uint32_t version,
void std_build_extraheader( struct work *work, struct stratum_ctx *sctx );
json_t* std_longpoll_rpc_call( CURL *curl, int *err, char *lp_url );
json_t* jr2_longpoll_rpc_call( CURL *curl, int *err );
bool std_stratum_handle_response( json_t *val );
bool jr2_stratum_handle_response( json_t *val );
bool std_ready_to_mine( struct work* work, struct stratum_ctx* stratum,
int thr_id );
@@ -279,17 +306,12 @@ int std_get_work_data_size();
// by calling the algo's register function.
bool register_algo_gate( int algo, algo_gate_t *gate );
// Called by algos toverride any default gate functions that are applicable
// Called by algos to verride any default gate functions that are applicable
// and do any other algo-specific initialization.
// The register functions for all the algos can be declared here to reduce
// compiler warnings but that's just more work for devs adding new algos.
bool register_algo( algo_gate_t *gate );
// Overrides a common set of functions used by RPC2 and other RPC2-specific
// init. Called by algo's register function before initializing algo-specific
// functions and data.
bool register_json_rpc2( algo_gate_t *gate );
// use this to call the hash function of an algo directly, ie util.c test.
void exec_hash_function( int algo, void *output, const void *pdata );

View File

@@ -48,7 +48,7 @@ int scanhash_blake_4way( struct work *work, uint32_t max_nonce,
if ( fulltest( hash+(i<<3), ptarget ) && !opt_benchmark )
{
pdata[19] = n+i;
submit_lane_solution( work, hash+(i<<3), mythr, i );
submit_solution( work, hash+(i<<3), mythr );
}
n += 4;
@@ -107,7 +107,7 @@ int scanhash_blake_8way( struct work *work, uint32_t max_nonce,
if ( (hash+i)[7] <= HTarget && fulltest( hash+i, ptarget ) )
{
pdata[19] = n+i;
submit_lane_solution( work, hash+(i<<3), mythr, i );
submit_solution( work, hash+(i<<3), mythr );
}
n += 8;

View File

@@ -45,7 +45,7 @@ int scanhash_blake2b_8way( struct work *work, uint32_t max_nonce,
if ( fulltest( lane_hash, ptarget ) && !opt_benchmark )
{
pdata[19] = n + lane;
submit_lane_solution( work, lane_hash, mythr, lane );
submit_solution( work, lane_hash, mythr );
}
}
n += 8;
@@ -100,7 +100,7 @@ int scanhash_blake2b_4way( struct work *work, uint32_t max_nonce,
if ( fulltest( lane_hash, ptarget ) && !opt_benchmark )
{
pdata[19] = n + lane;
submit_lane_solution( work, lane_hash, mythr, lane );
submit_solution( work, lane_hash, mythr );
}
}
n += 4;

View File

@@ -17,7 +17,7 @@
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
ALIGN(128) typedef struct {
typedef struct ALIGN( 64 ) {
__m512i b[16]; // input buffer
__m512i h[8]; // chained state
uint64_t t[2]; // total number of bytes
@@ -35,7 +35,7 @@ void blake2b_8way_final( blake2b_8way_ctx *ctx, void *out );
#if defined(__AVX2__)
// state context
ALIGN(128) typedef struct {
typedef struct ALIGN( 64 ) {
__m256i b[16]; // input buffer
__m256i h[8]; // chained state
uint64_t t[2]; // total number of bytes

View File

@@ -49,7 +49,7 @@ int scanhash_blake2s_16way( struct work *work, uint32_t max_nonce,
if ( likely( fulltest( lane_hash, ptarget ) && !opt_benchmark ) )
{
pdata[19] = n + lane;
submit_lane_solution( work, lane_hash, mythr, lane );
submit_solution( work, lane_hash, mythr );
}
}
n += 16;
@@ -104,7 +104,7 @@ int scanhash_blake2s_8way( struct work *work, uint32_t max_nonce,
if ( likely( fulltest( lane_hash, ptarget ) && !opt_benchmark ) )
{
pdata[19] = n + lane;
submit_lane_solution( work, lane_hash, mythr, lane );
submit_solution( work, lane_hash, mythr );
}
}
n += 8;
@@ -157,7 +157,7 @@ int scanhash_blake2s_4way( struct work *work, uint32_t max_nonce,
if ( fulltest( lane_hash, ptarget ) && !opt_benchmark )
{
pdata[19] = n + lane;
submit_lane_solution( work, lane_hash, mythr, lane );
submit_solution( work, lane_hash, mythr );
}
}
n += 4;

View File

@@ -60,7 +60,7 @@ typedef struct __blake2s_nway_param
} blake2s_nway_param;
#pragma pack(pop)
ALIGN( 64 ) typedef struct __blake2s_4way_state
typedef struct ALIGN( 64 ) __blake2s_4way_state
{
__m128i h[8];
uint8_t buf[ BLAKE2S_BLOCKBYTES * 4 ];
@@ -80,7 +80,7 @@ int blake2s_4way_full_blocks( blake2s_4way_state *S, void *out,
#if defined(__AVX2__)
ALIGN( 64 ) typedef struct __blake2s_8way_state
typedef struct ALIGN( 64 ) __blake2s_8way_state
{
__m256i h[8];
uint8_t buf[ BLAKE2S_BLOCKBYTES * 8 ];
@@ -101,7 +101,7 @@ int blake2s_8way_full_blocks( blake2s_8way_state *S, void *out,
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
ALIGN( 128 ) typedef struct __blake2s_16way_state
typedef struct ALIGN( 64 ) __blake2s_16way_state
{
__m512i h[8];
uint8_t buf[ BLAKE2S_BLOCKBYTES * 16 ];

View File

@@ -49,7 +49,7 @@ int scanhash_blakecoin_4way( struct work *work, uint32_t max_nonce,
&& !opt_benchmark )
{
pdata[19] = n+i;
submit_lane_solution( work, hash+(i<<3), mythr, i );
submit_solution( work, hash+(i<<3), mythr );
}
n += 4;
@@ -108,7 +108,7 @@ int scanhash_blakecoin_8way( struct work *work, uint32_t max_nonce,
&& !opt_benchmark )
{
pdata[19] = n+i;
submit_lane_solution( work, hash+(i<<3), mythr, i );
submit_solution( work, hash+(i<<3), mythr );
}
n += 8;
} while ( (n < max_nonce) && !work_restart[thr_id].restart );

View File

@@ -62,7 +62,7 @@ int scanhash_decred_4way( struct work *work, uint32_t max_nonce,
if ( fulltest( hash+(i<<3), ptarget ) && !opt_benchmark )
{
pdata[DECRED_NONCE_INDEX] = n+i;
submit_lane_solution( work, hash+(i<<3), mythr, i );
submit_solution( work, hash+(i<<3), mythr );
}
n += 4;
} while ( (n < max_nonce) && !work_restart[thr_id].restart );

View File

@@ -78,7 +78,6 @@ void decred_build_extraheader( struct work* g_work, struct stratum_ctx* sctx )
uint32_t extraheader[32] = { 0 };
int headersize = 0;
uint32_t* extradata = (uint32_t*) sctx->xnonce1;
size_t t;
int i;
// getwork over stratum, getwork merkle + header passed in coinb1
@@ -87,9 +86,6 @@ void decred_build_extraheader( struct work* g_work, struct stratum_ctx* sctx )
sizeof(extraheader) );
memcpy( extraheader, &sctx->job.coinbase[32], headersize );
// Increment extranonce2
for ( t = 0; t < sctx->xnonce2_size && !( ++sctx->job.xnonce2[t] ); t++ );
// Assemble block header
memset( g_work->data, 0, sizeof(g_work->data) );
g_work->data[0] = le32dec( sctx->job.version );
@@ -153,7 +149,7 @@ bool register_decred_algo( algo_gate_t* gate )
gate->hash = (void*)&decred_hash;
#endif
gate->optimizations = AVX2_OPT;
gate->get_nonceptr = (void*)&decred_get_nonceptr;
// gate->get_nonceptr = (void*)&decred_get_nonceptr;
gate->decode_extra_data = (void*)&decred_decode_extradata;
gate->build_stratum_request = (void*)&decred_be_build_stratum_request;
gate->work_decode = (void*)&std_be_work_decode;

View File

@@ -105,7 +105,7 @@ int scanhash_pentablake_4way( struct work *work,
&& fulltest( hash+(i<<3), ptarget ) && !opt_benchmark )
{
pdata[19] = n + i;
submit_lane_solution( work, hash+(i<<3), mythr, i );
submit_solution( work, hash+(i<<3), mythr );
}
n += 4;

View File

@@ -323,7 +323,7 @@ int blake2s_final( blake2s_state *S, uint8_t *out, uint8_t outlen )
int blake2s( uint8_t *out, const void *in, const void *key, const uint8_t outlen, const uint64_t inlen, uint8_t keylen )
{
blake2s_state S[1];
blake2s_state S;
/* Verify parameters */
if ( NULL == in ) return -1;
@@ -334,15 +334,15 @@ int blake2s( uint8_t *out, const void *in, const void *key, const uint8_t outlen
if( keylen > 0 )
{
if( blake2s_init_key( S, outlen, key, keylen ) < 0 ) return -1;
if( blake2s_init_key( &S, outlen, key, keylen ) < 0 ) return -1;
}
else
{
if( blake2s_init( S, outlen ) < 0 ) return -1;
if( blake2s_init( &S, outlen ) < 0 ) return -1;
}
blake2s_update( S, ( uint8_t * )in, inlen );
blake2s_final( S, out, outlen );
blake2s_update( &S, ( uint8_t * )in, inlen );
blake2s_final( &S, out, outlen );
return 0;
}

View File

@@ -116,7 +116,7 @@ extern "C" {
uint8_t personal[BLAKE2S_PERSONALBYTES]; // 32
} blake2s_param;
ALIGN( 64 ) typedef struct __blake2s_state
typedef struct ALIGN( 64 ) __blake2s_state
{
uint32_t h[8];
uint32_t t[2];

View File

@@ -18,7 +18,7 @@
#endif
// state context
ALIGN(64) typedef struct {
typedef ALIGN(64) struct {
uint8_t b[128]; // input buffer
uint64_t h[8]; // chained state
uint64_t t[2]; // total number of bytes

View File

@@ -138,7 +138,7 @@ void bmw512_2way_close( bmw512_2way_context *ctx, void *dst );
#if defined(__AVX2__)
// BMW-512 4 way 64
// BMW-512 64 bit 4 way
typedef struct {
__m256i buf[16];
@@ -149,7 +149,6 @@ typedef struct {
typedef bmw_4way_big_context bmw512_4way_context;
void bmw512_4way_init(void *cc);
void bmw512_4way_update(void *cc, const void *data, size_t len);
@@ -164,6 +163,7 @@ void bmw512_4way_addbits_and_close(
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
// BMW-512 64 bit 8 way
typedef struct {
__m512i buf[16];
__m512i H[16];
@@ -171,6 +171,8 @@ typedef struct {
uint64_t bit_count;
} bmw512_8way_context __attribute__((aligned(128)));
void bmw512_8way_full( bmw512_8way_context *ctx, void *out, const void *data,
size_t len );
void bmw512_8way_init( bmw512_8way_context *ctx );
void bmw512_8way_update( bmw512_8way_context *ctx, const void *data,
size_t len );

View File

@@ -46,7 +46,7 @@ int scanhash_bmw512_8way( struct work *work, uint32_t max_nonce,
if ( fulltest( lane_hash, ptarget ) )
{
pdata[19] = n + lane;
submit_lane_solution( work, lane_hash, mythr, lane );
submit_solution( work, lane_hash, mythr );
}
}
n += 8;
@@ -99,7 +99,7 @@ int scanhash_bmw512_4way( struct work *work, uint32_t max_nonce,
if ( fulltest( lane_hash, ptarget ) )
{
pdata[19] = n + lane;
submit_lane_solution( work, lane_hash, mythr, lane );
submit_solution( work, lane_hash, mythr );
}
}
n += 4;

View File

@@ -1507,6 +1507,93 @@ void bmw512_8way_close( bmw512_8way_context *ctx, void *dst )
casti_m512i( dst, u ) = h1[ v ];
}
void bmw512_8way_full( bmw512_8way_context *ctx, void *out, const void *data,
size_t len )
{
__m512i *vdata = (__m512i*)data;
__m512i *buf = ctx->buf;
__m512i htmp[16];
__m512i *H = ctx->H;
__m512i *h2 = htmp;
uint64_t bit_count = len * 8;
size_t ptr = 0;
const int buf_size = 128; // bytes of one lane, compatible with len
// Init
H[ 0] = m512_const1_64( 0x8081828384858687 );
H[ 1] = m512_const1_64( 0x88898A8B8C8D8E8F );
H[ 2] = m512_const1_64( 0x9091929394959697 );
H[ 3] = m512_const1_64( 0x98999A9B9C9D9E9F );
H[ 4] = m512_const1_64( 0xA0A1A2A3A4A5A6A7 );
H[ 5] = m512_const1_64( 0xA8A9AAABACADAEAF );
H[ 6] = m512_const1_64( 0xB0B1B2B3B4B5B6B7 );
H[ 7] = m512_const1_64( 0xB8B9BABBBCBDBEBF );
H[ 8] = m512_const1_64( 0xC0C1C2C3C4C5C6C7 );
H[ 9] = m512_const1_64( 0xC8C9CACBCCCDCECF );
H[10] = m512_const1_64( 0xD0D1D2D3D4D5D6D7 );
H[11] = m512_const1_64( 0xD8D9DADBDCDDDEDF );
H[12] = m512_const1_64( 0xE0E1E2E3E4E5E6E7 );
H[13] = m512_const1_64( 0xE8E9EAEBECEDEEEF );
H[14] = m512_const1_64( 0xF0F1F2F3F4F5F6F7 );
H[15] = m512_const1_64( 0xF8F9FAFBFCFDFEFF );
// Update
while ( len > 0 )
{
size_t clen;
clen = buf_size - ptr;
if ( clen > len )
clen = len;
memcpy_512( buf + (ptr>>3), vdata, clen >> 3 );
vdata = vdata + (clen>>3);
len -= clen;
ptr += clen;
if ( ptr == buf_size )
{
__m512i *ht;
compress_big_8way( buf, H, h2 );
ht = H;
H = h2;
h2 = ht;
ptr = 0;
}
}
if ( H != ctx->H )
memcpy_512( ctx->H, H, 16 );
// Close
{
__m512i h1[16], h2[16];
size_t u, v;
buf[ ptr>>3 ] = m512_const1_64( 0x80 );
ptr += 8;
if ( ptr > (buf_size - 8) )
{
memset_zero_512( buf + (ptr>>3), (buf_size - ptr) >> 3 );
compress_big_8way( buf, H, h1 );
ptr = 0;
H = h1;
}
memset_zero_512( buf + (ptr>>3), (buf_size - 8 - ptr) >> 3 );
buf[ (buf_size - 8) >> 3 ] = _mm512_set1_epi64( bit_count );
compress_big_8way( buf, H, h2 );
for ( u = 0; u < 16; u ++ )
buf[ u ] = h2[ u ];
compress_big_8way( buf, final_b8, h1 );
for (u = 0, v = 8; u < 8; u ++, v ++)
casti_m512i( out, u ) = h1[ v ];
}
}
#endif // AVX512
#ifdef __cplusplus

View File

@@ -1,371 +0,0 @@
// Copyright (c) 2012-2013 The Cryptonote developers
// Distributed under the MIT/X11 software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include "algo-gate-api.h"
#if defined(__arm__) || defined(_MSC_VER)
#ifndef NOASM
#define NOASM
#endif
#endif
#include "crypto/oaes_lib.h"
#include "crypto/c_keccak.h"
#include "crypto/c_groestl.h"
#include "crypto/c_blake256.h"
#include "crypto/c_jh.h"
#include "crypto/c_skein.h"
#include "crypto/int-util.h"
#include "crypto/hash-ops.h"
#if USE_INT128
#if __GNUC__ == 4 && __GNUC_MINOR__ >= 4 && __GNUC_MINOR__ < 6
typedef unsigned int uint128_t __attribute__ ((__mode__ (TI)));
#elif defined (_MSC_VER)
/* only for mingw64 on windows */
#undef USE_INT128
#define USE_INT128 (0)
#else
typedef __uint128_t uint128_t;
#endif
#endif
#define LITE 1
#if LITE /* cryptonight-light */
#define MEMORY (1 << 20)
#define ITER (1 << 19)
#else
#define MEMORY (1 << 21) /* 2 MiB */
#define ITER (1 << 20)
#endif
#define AES_BLOCK_SIZE 16
#define AES_KEY_SIZE 32 /*16*/
#define INIT_SIZE_BLK 8
#define INIT_SIZE_BYTE (INIT_SIZE_BLK * AES_BLOCK_SIZE)
#pragma pack(push, 1)
union cn_slow_hash_state {
union hash_state hs;
struct {
uint8_t k[64];
uint8_t init[INIT_SIZE_BYTE];
};
};
#pragma pack(pop)
static void do_blake_hash(const void* input, size_t len, char* output) {
blake256_hash((uint8_t*)output, input, len);
}
static void do_groestl_hash(const void* input, size_t len, char* output) {
groestl(input, len * 8, (uint8_t*)output);
}
static void do_jh_hash(const void* input, size_t len, char* output) {
int r = jh_hash(HASH_SIZE * 8, input, 8 * len, (uint8_t*)output);
assert(likely(SUCCESS == r));
}
static void do_skein_hash(const void* input, size_t len, char* output) {
int r = skein_hash(8 * HASH_SIZE, input, 8 * len, (uint8_t*)output);
assert(likely(SKEIN_SUCCESS == r));
}
extern int aesb_single_round(const uint8_t *in, uint8_t*out, const uint8_t *expandedKey);
extern int aesb_pseudo_round_mut(uint8_t *val, uint8_t *expandedKey);
#if !defined(_MSC_VER) && !defined(NOASM)
extern int fast_aesb_single_round(const uint8_t *in, uint8_t*out, const uint8_t *expandedKey);
extern int fast_aesb_pseudo_round_mut(uint8_t *val, uint8_t *expandedKey);
#else
#define fast_aesb_single_round aesb_single_round
#define fast_aesb_pseudo_round_mut aesb_pseudo_round_mut
#endif
#if defined(NOASM) || !defined(__x86_64__)
static uint64_t mul128(uint64_t multiplier, uint64_t multiplicand, uint64_t* product_hi) {
// multiplier = ab = a * 2^32 + b
// multiplicand = cd = c * 2^32 + d
// ab * cd = a * c * 2^64 + (a * d + b * c) * 2^32 + b * d
uint64_t a = hi_dword(multiplier);
uint64_t b = lo_dword(multiplier);
uint64_t c = hi_dword(multiplicand);
uint64_t d = lo_dword(multiplicand);
uint64_t ac = a * c;
uint64_t ad = a * d;
uint64_t bc = b * c;
uint64_t bd = b * d;
uint64_t adbc = ad + bc;
uint64_t adbc_carry = adbc < ad ? 1 : 0;
// multiplier * multiplicand = product_hi * 2^64 + product_lo
uint64_t product_lo = bd + (adbc << 32);
uint64_t product_lo_carry = product_lo < bd ? 1 : 0;
*product_hi = ac + (adbc >> 32) + (adbc_carry << 32) + product_lo_carry;
assert(ac <= *product_hi);
return product_lo;
}
#else
extern uint64_t mul128(uint64_t multiplier, uint64_t multiplicand, uint64_t* product_hi);
#endif
static void (* const extra_hashes[4])(const void *, size_t, char *) = {
do_blake_hash, do_groestl_hash, do_jh_hash, do_skein_hash
};
static inline size_t e2i(const uint8_t* a) {
#if !LITE
return ((uint32_t *)a)[0] & 0x1FFFF0;
#else
return ((uint32_t *)a)[0] & 0xFFFF0;
#endif
}
static inline void mul_sum_xor_dst(const uint8_t* a, uint8_t* c, uint8_t* dst) {
uint64_t hi, lo = mul128(((uint64_t*) a)[0], ((uint64_t*) dst)[0], &hi) + ((uint64_t*) c)[1];
hi += ((uint64_t*) c)[0];
((uint64_t*) c)[0] = ((uint64_t*) dst)[0] ^ hi;
((uint64_t*) c)[1] = ((uint64_t*) dst)[1] ^ lo;
((uint64_t*) dst)[0] = hi;
((uint64_t*) dst)[1] = lo;
}
static inline void xor_blocks(uint8_t* a, const uint8_t* b) {
#if USE_INT128
*((uint128_t*) a) ^= *((uint128_t*) b);
#else
((uint64_t*) a)[0] ^= ((uint64_t*) b)[0];
((uint64_t*) a)[1] ^= ((uint64_t*) b)[1];
#endif
}
static inline void xor_blocks_dst(const uint8_t* a, const uint8_t* b, uint8_t* dst) {
#if USE_INT128
*((uint128_t*) dst) = *((uint128_t*) a) ^ *((uint128_t*) b);
#else
((uint64_t*) dst)[0] = ((uint64_t*) a)[0] ^ ((uint64_t*) b)[0];
((uint64_t*) dst)[1] = ((uint64_t*) a)[1] ^ ((uint64_t*) b)[1];
#endif
}
struct cryptonight_ctx {
uint8_t _ALIGN(16) long_state[MEMORY];
union cn_slow_hash_state state;
uint8_t _ALIGN(16) text[INIT_SIZE_BYTE];
uint8_t _ALIGN(16) a[AES_BLOCK_SIZE];
uint8_t _ALIGN(16) b[AES_BLOCK_SIZE];
uint8_t _ALIGN(16) c[AES_BLOCK_SIZE];
oaes_ctx* aes_ctx;
};
static void cryptolight_hash_ctx(void* output, const void* input, int len, struct cryptonight_ctx* ctx)
{
len = 76;
hash_process(&ctx->state.hs, (const uint8_t*) input, len);
ctx->aes_ctx = (oaes_ctx*) oaes_alloc();
size_t i, j;
memcpy(ctx->text, ctx->state.init, INIT_SIZE_BYTE);
oaes_key_import_data(ctx->aes_ctx, ctx->state.hs.b, AES_KEY_SIZE);
for (i = 0; likely(i < MEMORY); i += INIT_SIZE_BYTE) {
aesb_pseudo_round_mut(&ctx->text[AES_BLOCK_SIZE * 0], ctx->aes_ctx->key->exp_data);
aesb_pseudo_round_mut(&ctx->text[AES_BLOCK_SIZE * 1], ctx->aes_ctx->key->exp_data);
aesb_pseudo_round_mut(&ctx->text[AES_BLOCK_SIZE * 2], ctx->aes_ctx->key->exp_data);
aesb_pseudo_round_mut(&ctx->text[AES_BLOCK_SIZE * 3], ctx->aes_ctx->key->exp_data);
aesb_pseudo_round_mut(&ctx->text[AES_BLOCK_SIZE * 4], ctx->aes_ctx->key->exp_data);
aesb_pseudo_round_mut(&ctx->text[AES_BLOCK_SIZE * 5], ctx->aes_ctx->key->exp_data);
aesb_pseudo_round_mut(&ctx->text[AES_BLOCK_SIZE * 6], ctx->aes_ctx->key->exp_data);
aesb_pseudo_round_mut(&ctx->text[AES_BLOCK_SIZE * 7], ctx->aes_ctx->key->exp_data);
memcpy(&ctx->long_state[i], ctx->text, INIT_SIZE_BYTE);
}
xor_blocks_dst(&ctx->state.k[0], &ctx->state.k[32], ctx->a);
xor_blocks_dst(&ctx->state.k[16], &ctx->state.k[48], ctx->b);
for (i = 0; likely(i < ITER / 4); ++i) {
/* Dependency chain: address -> read value ------+
* written value <-+ hard function (AES or MUL) <+
* next address <-+
*/
/* Iteration 1 */
j = e2i(ctx->a);
aesb_single_round(&ctx->long_state[j], ctx->c, ctx->a);
xor_blocks_dst(ctx->c, ctx->b, &ctx->long_state[j]);
/* Iteration 2 */
mul_sum_xor_dst(ctx->c, ctx->a, &ctx->long_state[e2i(ctx->c)]);
/* Iteration 3 */
j = e2i(ctx->a);
aesb_single_round(&ctx->long_state[j], ctx->b, ctx->a);
xor_blocks_dst(ctx->b, ctx->c, &ctx->long_state[j]);
/* Iteration 4 */
mul_sum_xor_dst(ctx->b, ctx->a, &ctx->long_state[e2i(ctx->b)]);
}
memcpy(ctx->text, ctx->state.init, INIT_SIZE_BYTE);
oaes_key_import_data(ctx->aes_ctx, &ctx->state.hs.b[32], AES_KEY_SIZE);
for (i = 0; likely(i < MEMORY); i += INIT_SIZE_BYTE) {
xor_blocks(&ctx->text[0 * AES_BLOCK_SIZE], &ctx->long_state[i + 0 * AES_BLOCK_SIZE]);
aesb_pseudo_round_mut(&ctx->text[0 * AES_BLOCK_SIZE], ctx->aes_ctx->key->exp_data);
xor_blocks(&ctx->text[1 * AES_BLOCK_SIZE], &ctx->long_state[i + 1 * AES_BLOCK_SIZE]);
aesb_pseudo_round_mut(&ctx->text[1 * AES_BLOCK_SIZE], ctx->aes_ctx->key->exp_data);
xor_blocks(&ctx->text[2 * AES_BLOCK_SIZE], &ctx->long_state[i + 2 * AES_BLOCK_SIZE]);
aesb_pseudo_round_mut(&ctx->text[2 * AES_BLOCK_SIZE], ctx->aes_ctx->key->exp_data);
xor_blocks(&ctx->text[3 * AES_BLOCK_SIZE], &ctx->long_state[i + 3 * AES_BLOCK_SIZE]);
aesb_pseudo_round_mut(&ctx->text[3 * AES_BLOCK_SIZE], ctx->aes_ctx->key->exp_data);
xor_blocks(&ctx->text[4 * AES_BLOCK_SIZE], &ctx->long_state[i + 4 * AES_BLOCK_SIZE]);
aesb_pseudo_round_mut(&ctx->text[4 * AES_BLOCK_SIZE], ctx->aes_ctx->key->exp_data);
xor_blocks(&ctx->text[5 * AES_BLOCK_SIZE], &ctx->long_state[i + 5 * AES_BLOCK_SIZE]);
aesb_pseudo_round_mut(&ctx->text[5 * AES_BLOCK_SIZE], ctx->aes_ctx->key->exp_data);
xor_blocks(&ctx->text[6 * AES_BLOCK_SIZE], &ctx->long_state[i + 6 * AES_BLOCK_SIZE]);
aesb_pseudo_round_mut(&ctx->text[6 * AES_BLOCK_SIZE], ctx->aes_ctx->key->exp_data);
xor_blocks(&ctx->text[7 * AES_BLOCK_SIZE], &ctx->long_state[i + 7 * AES_BLOCK_SIZE]);
aesb_pseudo_round_mut(&ctx->text[7 * AES_BLOCK_SIZE], ctx->aes_ctx->key->exp_data);
}
memcpy(ctx->state.init, ctx->text, INIT_SIZE_BYTE);
hash_permutation(&ctx->state.hs);
/*memcpy(hash, &state, 32);*/
extra_hashes[ctx->state.hs.b[0] & 3](&ctx->state, 200, output);
oaes_free((OAES_CTX **) &ctx->aes_ctx);
}
void cryptolight_hash(void* output, const void* input, int len) {
struct cryptonight_ctx *ctx = (struct cryptonight_ctx*)malloc(sizeof(struct cryptonight_ctx));
cryptolight_hash_ctx(output, input, len, ctx);
free(ctx);
}
#if defined(__AES__)
static void cryptolight_hash_ctx_aes_ni(void* output, const void* input,
int len, struct cryptonight_ctx* ctx)
{
hash_process(&ctx->state.hs, (const uint8_t*)input, len);
ctx->aes_ctx = (oaes_ctx*) oaes_alloc();
size_t i, j;
memcpy(ctx->text, ctx->state.init, INIT_SIZE_BYTE);
oaes_key_import_data(ctx->aes_ctx, ctx->state.hs.b, AES_KEY_SIZE);
for (i = 0; likely(i < MEMORY); i += INIT_SIZE_BYTE) {
fast_aesb_pseudo_round_mut(&ctx->text[AES_BLOCK_SIZE * 0], ctx->aes_ctx->key->exp_data);
fast_aesb_pseudo_round_mut(&ctx->text[AES_BLOCK_SIZE * 1], ctx->aes_ctx->key->exp_data);
fast_aesb_pseudo_round_mut(&ctx->text[AES_BLOCK_SIZE * 2], ctx->aes_ctx->key->exp_data);
fast_aesb_pseudo_round_mut(&ctx->text[AES_BLOCK_SIZE * 3], ctx->aes_ctx->key->exp_data);
fast_aesb_pseudo_round_mut(&ctx->text[AES_BLOCK_SIZE * 4], ctx->aes_ctx->key->exp_data);
fast_aesb_pseudo_round_mut(&ctx->text[AES_BLOCK_SIZE * 5], ctx->aes_ctx->key->exp_data);
fast_aesb_pseudo_round_mut(&ctx->text[AES_BLOCK_SIZE * 6], ctx->aes_ctx->key->exp_data);
fast_aesb_pseudo_round_mut(&ctx->text[AES_BLOCK_SIZE * 7], ctx->aes_ctx->key->exp_data);
memcpy(&ctx->long_state[i], ctx->text, INIT_SIZE_BYTE);
}
xor_blocks_dst(&ctx->state.k[0], &ctx->state.k[32], ctx->a);
xor_blocks_dst(&ctx->state.k[16], &ctx->state.k[48], ctx->b);
for (i = 0; likely(i < ITER / 4); ++i) {
/* Dependency chain: address -> read value ------+
* written value <-+ hard function (AES or MUL) <+
* next address <-+
*/
/* Iteration 1 */
j = e2i(ctx->a);
fast_aesb_single_round(&ctx->long_state[j], ctx->c, ctx->a);
xor_blocks_dst(ctx->c, ctx->b, &ctx->long_state[j]);
/* Iteration 2 */
mul_sum_xor_dst(ctx->c, ctx->a, &ctx->long_state[e2i(ctx->c)]);
/* Iteration 3 */
j = e2i(ctx->a);
fast_aesb_single_round(&ctx->long_state[j], ctx->b, ctx->a);
xor_blocks_dst(ctx->b, ctx->c, &ctx->long_state[j]);
/* Iteration 4 */
mul_sum_xor_dst(ctx->b, ctx->a, &ctx->long_state[e2i(ctx->b)]);
}
memcpy(ctx->text, ctx->state.init, INIT_SIZE_BYTE);
oaes_key_import_data(ctx->aes_ctx, &ctx->state.hs.b[32], AES_KEY_SIZE);
for (i = 0; likely(i < MEMORY); i += INIT_SIZE_BYTE) {
xor_blocks(&ctx->text[0 * AES_BLOCK_SIZE], &ctx->long_state[i + 0 * AES_BLOCK_SIZE]);
fast_aesb_pseudo_round_mut(&ctx->text[0 * AES_BLOCK_SIZE], ctx->aes_ctx->key->exp_data);
xor_blocks(&ctx->text[1 * AES_BLOCK_SIZE], &ctx->long_state[i + 1 * AES_BLOCK_SIZE]);
fast_aesb_pseudo_round_mut(&ctx->text[1 * AES_BLOCK_SIZE], ctx->aes_ctx->key->exp_data);
xor_blocks(&ctx->text[2 * AES_BLOCK_SIZE], &ctx->long_state[i + 2 * AES_BLOCK_SIZE]);
fast_aesb_pseudo_round_mut(&ctx->text[2 * AES_BLOCK_SIZE], ctx->aes_ctx->key->exp_data);
xor_blocks(&ctx->text[3 * AES_BLOCK_SIZE], &ctx->long_state[i + 3 * AES_BLOCK_SIZE]);
fast_aesb_pseudo_round_mut(&ctx->text[3 * AES_BLOCK_SIZE], ctx->aes_ctx->key->exp_data);
xor_blocks(&ctx->text[4 * AES_BLOCK_SIZE], &ctx->long_state[i + 4 * AES_BLOCK_SIZE]);
fast_aesb_pseudo_round_mut(&ctx->text[4 * AES_BLOCK_SIZE], ctx->aes_ctx->key->exp_data);
xor_blocks(&ctx->text[5 * AES_BLOCK_SIZE], &ctx->long_state[i + 5 * AES_BLOCK_SIZE]);
fast_aesb_pseudo_round_mut(&ctx->text[5 * AES_BLOCK_SIZE], ctx->aes_ctx->key->exp_data);
xor_blocks(&ctx->text[6 * AES_BLOCK_SIZE], &ctx->long_state[i + 6 * AES_BLOCK_SIZE]);
fast_aesb_pseudo_round_mut(&ctx->text[6 * AES_BLOCK_SIZE], ctx->aes_ctx->key->exp_data);
xor_blocks(&ctx->text[7 * AES_BLOCK_SIZE], &ctx->long_state[i + 7 * AES_BLOCK_SIZE]);
fast_aesb_pseudo_round_mut(&ctx->text[7 * AES_BLOCK_SIZE], ctx->aes_ctx->key->exp_data);
}
memcpy(ctx->state.init, ctx->text, INIT_SIZE_BYTE);
hash_permutation(&ctx->state.hs);
/*memcpy(hash, &state, 32);*/
extra_hashes[ctx->state.hs.b[0] & 3](&ctx->state, 200, output);
oaes_free((OAES_CTX **) &ctx->aes_ctx);
}
#endif
int scanhash_cryptolight( struct work *work,
uint32_t max_nonce, uint64_t *hashes_done, struct thr_info *mythr)
{
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
uint32_t *nonceptr = (uint32_t*) (((char*)pdata) + 39);
uint32_t n = *nonceptr - 1;
const uint32_t first_nonce = n + 1;
//const uint32_t Htarg = ptarget[7];
uint32_t _ALIGN(32) hash[HASH_SIZE / 4];
int thr_id = mythr->id;
struct cryptonight_ctx *ctx = (struct cryptonight_ctx*)malloc(sizeof(struct cryptonight_ctx));
#if defined(__AES__)
do {
*nonceptr = ++n;
cryptolight_hash_ctx_aes_ni(hash, pdata, 76, ctx);
if (unlikely(hash[7] < ptarget[7])) {
*hashes_done = n - first_nonce + 1;
free(ctx);
return true;
}
} while (likely((n <= max_nonce && !work_restart[thr_id].restart)));
#else
do {
*nonceptr = ++n;
cryptolight_hash_ctx(hash, pdata, 76, ctx);
if (unlikely(hash[7] < ptarget[7])) {
*hashes_done = n - first_nonce + 1;
free(ctx);
return true;
}
} while (likely((n <= max_nonce && !work_restart[thr_id].restart)));
#endif
free(ctx);
*hashes_done = n - first_nonce + 1;
return 0;
}
bool register_cryptolight_algo( algo_gate_t* gate )
{
applog(LOG_WARNING,"Cryptonight algorithm and variants are no longer");
applog(LOG_WARNING,"supported by cpuminer-opt. Shares submitted will");
applog(LOG_WARNING,"likely be rejected. Proceed at your own risk.\n");
register_json_rpc2( gate );
gate->optimizations = SSE2_OPT | AES_OPT;
gate->scanhash = (void*)&scanhash_cryptolight;
gate->hash = (void*)&cryptolight_hash;
gate->hash_suw = (void*)&cryptolight_hash;
return true;
};

View File

@@ -1,357 +0,0 @@
#if defined(__AES__)
#include <x86intrin.h>
#include <memory.h>
#include "cryptonight.h"
#include "miner.h"
#include "crypto/c_keccak.h"
#include <immintrin.h>
static inline void ExpandAESKey256_sub1(__m128i *tmp1, __m128i *tmp2)
{
__m128i tmp4;
*tmp2 = _mm_shuffle_epi32(*tmp2, 0xFF);
tmp4 = _mm_slli_si128(*tmp1, 0x04);
*tmp1 = _mm_xor_si128(*tmp1, tmp4);
tmp4 = _mm_slli_si128(tmp4, 0x04);
*tmp1 = _mm_xor_si128(*tmp1, tmp4);
tmp4 = _mm_slli_si128(tmp4, 0x04);
*tmp1 = _mm_xor_si128(*tmp1, tmp4);
*tmp1 = _mm_xor_si128(*tmp1, *tmp2);
}
static inline void ExpandAESKey256_sub2(__m128i *tmp1, __m128i *tmp3)
{
__m128i tmp2, tmp4;
tmp4 = _mm_aeskeygenassist_si128(*tmp1, 0x00);
tmp2 = _mm_shuffle_epi32(tmp4, 0xAA);
tmp4 = _mm_slli_si128(*tmp3, 0x04);
*tmp3 = _mm_xor_si128(*tmp3, tmp4);
tmp4 = _mm_slli_si128(tmp4, 0x04);
*tmp3 = _mm_xor_si128(*tmp3, tmp4);
tmp4 = _mm_slli_si128(tmp4, 0x04);
*tmp3 = _mm_xor_si128(*tmp3, tmp4);
*tmp3 = _mm_xor_si128(*tmp3, tmp2);
}
// Special thanks to Intel for helping me
// with ExpandAESKey256() and its subroutines
static inline void ExpandAESKey256(char *keybuf)
{
__m128i tmp1, tmp2, tmp3, *keys;
keys = (__m128i *)keybuf;
tmp1 = _mm_load_si128((__m128i *)keybuf);
tmp3 = _mm_load_si128((__m128i *)(keybuf+0x10));
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x01);
ExpandAESKey256_sub1(&tmp1, &tmp2);
keys[2] = tmp1;
ExpandAESKey256_sub2(&tmp1, &tmp3);
keys[3] = tmp3;
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x02);
ExpandAESKey256_sub1(&tmp1, &tmp2);
keys[4] = tmp1;
ExpandAESKey256_sub2(&tmp1, &tmp3);
keys[5] = tmp3;
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x04);
ExpandAESKey256_sub1(&tmp1, &tmp2);
keys[6] = tmp1;
ExpandAESKey256_sub2(&tmp1, &tmp3);
keys[7] = tmp3;
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x08);
ExpandAESKey256_sub1(&tmp1, &tmp2);
keys[8] = tmp1;
ExpandAESKey256_sub2(&tmp1, &tmp3);
keys[9] = tmp3;
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x10);
ExpandAESKey256_sub1(&tmp1, &tmp2);
keys[10] = tmp1;
ExpandAESKey256_sub2(&tmp1, &tmp3);
keys[11] = tmp3;
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x20);
ExpandAESKey256_sub1(&tmp1, &tmp2);
keys[12] = tmp1;
ExpandAESKey256_sub2(&tmp1, &tmp3);
keys[13] = tmp3;
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x40);
ExpandAESKey256_sub1(&tmp1, &tmp2);
keys[14] = tmp1;
}
// align to 64 byte cache line
typedef struct
{
uint8_t long_state[MEMORY] __attribute((aligned(64)));
union cn_slow_hash_state state;
uint8_t text[INIT_SIZE_BYTE] __attribute((aligned(64)));
uint64_t a[AES_BLOCK_SIZE >> 3] __attribute__((aligned(64)));
uint64_t b[AES_BLOCK_SIZE >> 3] __attribute__((aligned(64)));
uint8_t c[AES_BLOCK_SIZE] __attribute__((aligned(64)));
} cryptonight_ctx;
static __thread cryptonight_ctx ctx;
void cryptonight_hash_aes( void *restrict output, const void *input, int len )
{
uint8_t ExpandedKey[256] __attribute__((aligned(64)));
__m128i *longoutput, *expkey, *xmminput;
size_t i, j;
keccak( (const uint8_t*)input, 76, (char*)&ctx.state.hs.b, 200 );
if ( cryptonightV7 && len < 43 )
return;
const uint64_t tweak = cryptonightV7
? *((const uint64_t*) (((const uint8_t*)input) + 35))
^ ctx.state.hs.w[24] : 0;
memcpy( ExpandedKey, ctx.state.hs.b, AES_KEY_SIZE );
ExpandAESKey256( ExpandedKey );
memcpy( ctx.text, ctx.state.init, INIT_SIZE_BYTE );
longoutput = (__m128i*)ctx.long_state;
xmminput = (__m128i*)ctx.text;
expkey = (__m128i*)ExpandedKey;
// prefetch expkey, xmminput and enough longoutput for 4 iterations
_mm_prefetch( xmminput, _MM_HINT_T0 );
_mm_prefetch( xmminput + 4, _MM_HINT_T0 );
_mm_prefetch( expkey, _MM_HINT_T0 );
_mm_prefetch( expkey + 4, _MM_HINT_T0 );
_mm_prefetch( expkey + 8, _MM_HINT_T0 );
for ( i = 0; i < 64; i += 16 )
{
__builtin_prefetch( longoutput + i, 1, 0 );
__builtin_prefetch( longoutput + i + 4, 1, 0 );
__builtin_prefetch( longoutput + i + 8, 1, 0 );
__builtin_prefetch( longoutput + i + 12, 1, 0 );
}
// n-4 iterations
for ( i = 0; likely( i < MEMORY_M128I - 4*INIT_SIZE_M128I );
i += INIT_SIZE_M128I )
{
// prefetch 4 iterations ahead.
__builtin_prefetch( longoutput + i + 64, 1, 0 );
__builtin_prefetch( longoutput + i + 68, 1, 0 );
for ( j = 0; j < 10; j++ )
{
xmminput[0] = _mm_aesenc_si128( xmminput[0], expkey[j] );
xmminput[1] = _mm_aesenc_si128( xmminput[1], expkey[j] );
xmminput[2] = _mm_aesenc_si128( xmminput[2], expkey[j] );
xmminput[3] = _mm_aesenc_si128( xmminput[3], expkey[j] );
xmminput[4] = _mm_aesenc_si128( xmminput[4], expkey[j] );
xmminput[5] = _mm_aesenc_si128( xmminput[5], expkey[j] );
xmminput[6] = _mm_aesenc_si128( xmminput[6], expkey[j] );
xmminput[7] = _mm_aesenc_si128( xmminput[7], expkey[j] );
}
_mm_store_si128( &( longoutput[i ] ), xmminput[0] );
_mm_store_si128( &( longoutput[i+1] ), xmminput[1] );
_mm_store_si128( &( longoutput[i+2] ), xmminput[2] );
_mm_store_si128( &( longoutput[i+3] ), xmminput[3] );
_mm_store_si128( &( longoutput[i+4] ), xmminput[4] );
_mm_store_si128( &( longoutput[i+5] ), xmminput[5] );
_mm_store_si128( &( longoutput[i+6] ), xmminput[6] );
_mm_store_si128( &( longoutput[i+7] ), xmminput[7] );
}
// last 4 iterations
for ( ; likely( i < MEMORY_M128I ); i += INIT_SIZE_M128I )
{
for ( j = 0; j < 10; j++ )
{
xmminput[0] = _mm_aesenc_si128( xmminput[0], expkey[j] );
xmminput[1] = _mm_aesenc_si128( xmminput[1], expkey[j] );
xmminput[2] = _mm_aesenc_si128( xmminput[2], expkey[j] );
xmminput[3] = _mm_aesenc_si128( xmminput[3], expkey[j] );
xmminput[4] = _mm_aesenc_si128( xmminput[4], expkey[j] );
xmminput[5] = _mm_aesenc_si128( xmminput[5], expkey[j] );
xmminput[6] = _mm_aesenc_si128( xmminput[6], expkey[j] );
xmminput[7] = _mm_aesenc_si128( xmminput[7], expkey[j] );
}
_mm_store_si128( &( longoutput[i ] ), xmminput[0] );
_mm_store_si128( &( longoutput[i+1] ), xmminput[1] );
_mm_store_si128( &( longoutput[i+2] ), xmminput[2] );
_mm_store_si128( &( longoutput[i+3] ), xmminput[3] );
_mm_store_si128( &( longoutput[i+4] ), xmminput[4] );
_mm_store_si128( &( longoutput[i+5] ), xmminput[5] );
_mm_store_si128( &( longoutput[i+6] ), xmminput[6] );
_mm_store_si128( &( longoutput[i+7] ), xmminput[7] );
}
ctx.a[0] = ((uint64_t *)ctx.state.k)[0] ^ ((uint64_t *)ctx.state.k)[4];
ctx.b[0] = ((uint64_t *)ctx.state.k)[2] ^ ((uint64_t *)ctx.state.k)[6];
ctx.a[1] = ((uint64_t *)ctx.state.k)[1] ^ ((uint64_t *)ctx.state.k)[5];
ctx.b[1] = ((uint64_t *)ctx.state.k)[3] ^ ((uint64_t *)ctx.state.k)[7];
uint64_t a[2] __attribute((aligned(16))),
b[2] __attribute((aligned(16))),
c[2] __attribute((aligned(16)));
a[0] = ctx.a[0];
a[1] = ctx.a[1];
__m128i b_x = _mm_load_si128( (__m128i*)ctx.b );
__m128i a_x = _mm_load_si128( (__m128i*)a );
__m128i* lsa = (__m128i*)&ctx.long_state[ a[0] & 0x1FFFF0 ];
__m128i c_x = _mm_load_si128( lsa );
uint64_t *nextblock;
uint64_t hi, lo;
// n-1 iterations
for( i = 0; __builtin_expect( i < 0x7ffff, 1 ); i++ )
{
c_x = _mm_aesenc_si128( c_x, a_x );
_mm_store_si128( (__m128i*)c, c_x );
b_x = _mm_xor_si128( b_x, c_x );
nextblock = (uint64_t *)&ctx.long_state[c[0] & 0x1FFFF0];
_mm_store_si128( lsa, b_x );
if ( cryptonightV7 )
{
const uint8_t tmp = ( (const uint8_t*)(lsa) )[11];
const uint8_t index = ( ( (tmp >> 3) & 6 ) | (tmp & 1) ) << 1;
((uint8_t*)(lsa))[11] = tmp ^ ( ( 0x75310 >> index) & 0x30 );
}
b[0] = nextblock[0];
b[1] = nextblock[1];
// hi,lo = 64bit x 64bit multiply of c[0] and b[0]
__asm__( "mulq %3\n\t"
: "=d" ( hi ),
"=a" ( lo )
: "%a" ( c[0] ),
"rm" ( b[0] )
: "cc" );
b_x = c_x;
a[0] += hi;
a[1] += lo;
nextblock[0] = a[0];
nextblock[1] = cryptonightV7 ? a[1] ^ tweak : a[1];
a[0] ^= b[0];
a[1] ^= b[1];
lsa = (__m128i*)&ctx.long_state[ a[0] & 0x1FFFF0 ];
a_x = _mm_load_si128( (__m128i*)a );
c_x = _mm_load_si128( lsa );
}
// abreviated nth iteration
c_x = _mm_aesenc_si128( c_x, a_x );
_mm_store_si128( (__m128i*)c, c_x );
b_x = _mm_xor_si128( b_x, c_x );
nextblock = (uint64_t *)&ctx.long_state[c[0] & 0x1FFFF0];
_mm_store_si128( lsa, b_x );
if ( cryptonightV7 )
{
const uint8_t tmp = ( (const uint8_t*)(lsa) )[11];
const uint8_t index = ( ( (tmp >> 3) & 6 ) | (tmp & 1) ) << 1;
((uint8_t*)(lsa))[11] = tmp ^ ( ( 0x75310 >> index) & 0x30 );
}
b[0] = nextblock[0];
b[1] = nextblock[1];
__asm__( "mulq %3\n\t"
: "=d" ( hi ),
"=a" ( lo )
: "%a" ( c[0] ),
"rm" ( b[0] )
: "cc" );
a[0] += hi;
a[1] += lo;
nextblock[0] = a[0];
nextblock[1] = cryptonightV7 ? a[1] ^ tweak : a[1];
a[0] ^= b[0];
a[1] ^= b[1];
memcpy( ExpandedKey, &ctx.state.hs.b[32], AES_KEY_SIZE );
ExpandAESKey256( ExpandedKey );
memcpy( ctx.text, ctx.state.init, INIT_SIZE_BYTE );
// prefetch expkey, all of xmminput and enough longoutput for 4 loops
_mm_prefetch( xmminput, _MM_HINT_T0 );
_mm_prefetch( xmminput + 4, _MM_HINT_T0 );
for ( i = 0; i < 64; i += 16 )
{
_mm_prefetch( longoutput + i, _MM_HINT_T0 );
_mm_prefetch( longoutput + i + 4, _MM_HINT_T0 );
_mm_prefetch( longoutput + i + 8, _MM_HINT_T0 );
_mm_prefetch( longoutput + i + 12, _MM_HINT_T0 );
}
_mm_prefetch( expkey, _MM_HINT_T0 );
_mm_prefetch( expkey + 4, _MM_HINT_T0 );
_mm_prefetch( expkey + 8, _MM_HINT_T0 );
// n-4 iterations
for ( i = 0; likely( i < MEMORY_M128I - 4*INIT_SIZE_M128I );
i += INIT_SIZE_M128I )
{
// stay 4 iterations ahead.
_mm_prefetch( longoutput + i + 64, _MM_HINT_T0 );
_mm_prefetch( longoutput + i + 68, _MM_HINT_T0 );
xmminput[0] = _mm_xor_si128( longoutput[i ], xmminput[0] );
xmminput[1] = _mm_xor_si128( longoutput[i+1], xmminput[1] );
xmminput[2] = _mm_xor_si128( longoutput[i+2], xmminput[2] );
xmminput[3] = _mm_xor_si128( longoutput[i+3], xmminput[3] );
xmminput[4] = _mm_xor_si128( longoutput[i+4], xmminput[4] );
xmminput[5] = _mm_xor_si128( longoutput[i+5], xmminput[5] );
xmminput[6] = _mm_xor_si128( longoutput[i+6], xmminput[6] );
xmminput[7] = _mm_xor_si128( longoutput[i+7], xmminput[7] );
for( j = 0; j < 10; j++ )
{
xmminput[0] = _mm_aesenc_si128( xmminput[0], expkey[j] );
xmminput[1] = _mm_aesenc_si128( xmminput[1], expkey[j] );
xmminput[2] = _mm_aesenc_si128( xmminput[2], expkey[j] );
xmminput[3] = _mm_aesenc_si128( xmminput[3], expkey[j] );
xmminput[4] = _mm_aesenc_si128( xmminput[4], expkey[j] );
xmminput[5] = _mm_aesenc_si128( xmminput[5], expkey[j] );
xmminput[6] = _mm_aesenc_si128( xmminput[6], expkey[j] );
xmminput[7] = _mm_aesenc_si128( xmminput[7], expkey[j] );
}
}
// last 4 iterations
for ( ; likely( i < MEMORY_M128I ); i += INIT_SIZE_M128I )
{
xmminput[0] = _mm_xor_si128( longoutput[i ], xmminput[0] );
xmminput[1] = _mm_xor_si128( longoutput[i+1], xmminput[1] );
xmminput[2] = _mm_xor_si128( longoutput[i+2], xmminput[2] );
xmminput[3] = _mm_xor_si128( longoutput[i+3], xmminput[3] );
xmminput[4] = _mm_xor_si128( longoutput[i+4], xmminput[4] );
xmminput[5] = _mm_xor_si128( longoutput[i+5], xmminput[5] );
xmminput[6] = _mm_xor_si128( longoutput[i+6], xmminput[6] );
xmminput[7] = _mm_xor_si128( longoutput[i+7], xmminput[7] );
for( j = 0; j < 10; j++ )
{
xmminput[0] = _mm_aesenc_si128( xmminput[0], expkey[j] );
xmminput[1] = _mm_aesenc_si128( xmminput[1], expkey[j] );
xmminput[2] = _mm_aesenc_si128( xmminput[2], expkey[j] );
xmminput[3] = _mm_aesenc_si128( xmminput[3], expkey[j] );
xmminput[4] = _mm_aesenc_si128( xmminput[4], expkey[j] );
xmminput[5] = _mm_aesenc_si128( xmminput[5], expkey[j] );
xmminput[6] = _mm_aesenc_si128( xmminput[6], expkey[j] );
xmminput[7] = _mm_aesenc_si128( xmminput[7], expkey[j] );
}
}
memcpy( ctx.state.init, ctx.text, INIT_SIZE_BYTE);
keccakf( (uint64_t*)&ctx.state.hs.w, 24 );
extra_hashes[ctx.state.hs.b[0] & 3](&ctx.state, 200, output);
}
#endif

View File

@@ -1,133 +0,0 @@
// Copyright (c) 2012-2013 The Cryptonote developers
// Distributed under the MIT/X11 software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
// Modified for CPUminer by Lucas Jones
#include "cpuminer-config.h"
#include "algo-gate-api.h"
#if defined(__AES__)
#include "algo/groestl/aes_ni/hash-groestl256.h"
#else
#include "crypto/c_groestl.h"
#endif
#include "crypto/c_blake256.h"
#include "crypto/c_jh.h"
#include "crypto/c_skein.h"
#include "cryptonight.h"
/*
#if defined __unix__ && (!defined __APPLE__)
#include <sys/mman.h>
#elif defined _WIN32
#include <windows.h>
#endif
*/
void do_blake_hash(const void* input, size_t len, char* output) {
blake256_hash((uint8_t*)output, input, len);
}
void do_groestl_hash(const void* input, size_t len, char* output) {
#if defined(__AES__)
hashState_groestl256 ctx;
init_groestl256( &ctx, 32 );
update_and_final_groestl256( &ctx, output, input, len * 8 );
#else
groestl(input, len * 8, (uint8_t*)output);
#endif
}
void do_jh_hash(const void* input, size_t len, char* output) {
jh_hash(32 * 8, input, 8 * len, (uint8_t*)output);
}
void do_skein_hash(const void* input, size_t len, char* output) {
skein_hash(8 * 32, input, 8 * len, (uint8_t*)output);
}
void (* const extra_hashes[4])( const void *, size_t, char *) =
{ do_blake_hash, do_groestl_hash, do_jh_hash, do_skein_hash };
void cryptonight_hash( void *restrict output, const void *input, int len )
{
#if defined(__AES__)
cryptonight_hash_aes( output, input, len );
#else
cryptonight_hash_ctx ( output, input, len );
#endif
}
void cryptonight_hash_suw( void *restrict output, const void *input )
{
#if defined(__AES__)
cryptonight_hash_aes( output, input, 76 );
#else
cryptonight_hash_ctx ( output, input, 76 );
#endif
}
bool cryptonightV7 = false;
int scanhash_cryptonight( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
int thr_id = mythr->id;
uint32_t *nonceptr = (uint32_t*) (((char*)pdata) + 39);
uint32_t n = *nonceptr - 1;
const uint32_t first_nonce = n + 1;
const uint32_t Htarg = ptarget[7];
uint32_t hash[32 / 4] __attribute__((aligned(32)));
// if ( ( cryptonightV7 && ( *(uint8_t*)pdata < 7 ) )
// || ( !cryptonightV7 && ( *(uint8_t*)pdata == 7 ) ) )
// applog(LOG_WARNING,"Cryptonight variant mismatch, shares may be rejected.");
do
{
*nonceptr = ++n;
cryptonight_hash( hash, pdata, 76 );
if (unlikely( hash[7] < Htarg ))
{
*hashes_done = n - first_nonce + 1;
// work_set_target_ratio( work, hash );
return true;
}
} while (likely((n <= max_nonce && !work_restart[thr_id].restart)));
*hashes_done = n - first_nonce + 1;
return 0;
}
bool register_cryptonight_algo( algo_gate_t* gate )
{
applog(LOG_WARNING,"Cryptonight algorithm and variants are no longer");
applog(LOG_WARNING,"supported by cpuminer-opt. Shares submitted will");
applog(LOG_WARNING,"likely be rejected. Proceed at your own risk.\n");
cryptonightV7 = false;
register_json_rpc2( gate );
gate->optimizations = SSE2_OPT | AES_OPT;
gate->scanhash = (void*)&scanhash_cryptonight;
gate->hash = (void*)&cryptonight_hash;
gate->hash_suw = (void*)&cryptonight_hash_suw;
return true;
};
bool register_cryptonightv7_algo( algo_gate_t* gate )
{
applog(LOG_WARNING,"Cryptonight algorithm and variants are no longer");
applog(LOG_WARNING,"supported by cpuminer-opt. Shares submitted will");
applog(LOG_WARNING,"likely be rejected. Proceed at your own risk.\n");
cryptonightV7 = true;
register_json_rpc2( gate );
gate->optimizations = SSE2_OPT | AES_OPT;
gate->scanhash = (void*)&scanhash_cryptonight;
gate->hash = (void*)&cryptonight_hash;
gate->hash_suw = (void*)&cryptonight_hash_suw;
return true;
};

View File

@@ -1,310 +0,0 @@
// Copyright (c) 2012-2013 The Cryptonote developers
// Distributed under the MIT/X11 software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
// Modified for CPUminer by Lucas Jones
#include "miner.h"
#include <memory.h>
#if defined(__arm__) || defined(_MSC_VER)
#ifndef NOASM
#define NOASM
#endif
#endif
#include "crypto/oaes_lib.h"
#include "crypto/c_keccak.h"
#include "crypto/c_groestl.h"
#include "crypto/c_blake256.h"
#include "crypto/c_jh.h"
#include "crypto/c_skein.h"
#include "crypto/int-util.h"
//#include "crypto/hash-ops.h"
#include "cryptonight.h"
#if USE_INT128
#if __GNUC__ == 4 && __GNUC_MINOR__ >= 4 && __GNUC_MINOR__ < 6
typedef unsigned int uint128_t __attribute__ ((__mode__ (TI)));
#elif defined (_MSC_VER)
/* only for mingw64 on windows */
#undef USE_INT128
#define USE_INT128 (0)
#else
typedef __uint128_t uint128_t;
#endif
#endif
#define LITE 0
#if LITE /* cryptonight-light */
#define MEMORY (1 << 20)
#define ITER (1 << 19)
#else
#define MEMORY (1 << 21) /* 2 MiB */
#define ITER (1 << 20)
#endif
#define AES_BLOCK_SIZE 16
#define AES_KEY_SIZE 32 /*16*/
#define INIT_SIZE_BLK 8
#define INIT_SIZE_BYTE (INIT_SIZE_BLK * AES_BLOCK_SIZE)
/*
#pragma pack(push, 1)
union cn_slow_hash_state {
union hash_state hs;
struct {
uint8_t k[64];
uint8_t init[INIT_SIZE_BYTE];
};
};
#pragma pack(pop)
static void do_blake_hash(const void* input, size_t len, char* output) {
blake256_hash((uint8_t*)output, input, len);
}
static void do_groestl_hash(const void* input, size_t len, char* output) {
groestl(input, len * 8, (uint8_t*)output);
}
static void do_jh_hash(const void* input, size_t len, char* output) {
int r = jh_hash(HASH_SIZE * 8, input, 8 * len, (uint8_t*)output);
assert(likely(SUCCESS == r));
}
static void do_skein_hash(const void* input, size_t len, char* output) {
int r = skein_hash(8 * HASH_SIZE, input, 8 * len, (uint8_t*)output);
assert(likely(SKEIN_SUCCESS == r));
}
*/
extern int aesb_single_round(const uint8_t *in, uint8_t*out, const uint8_t *expandedKey);
extern int aesb_pseudo_round_mut(uint8_t *val, uint8_t *expandedKey);
#if !defined(_MSC_VER) && !defined(NOASM)
extern int fast_aesb_single_round(const uint8_t *in, uint8_t*out, const uint8_t *expandedKey);
extern int fast_aesb_pseudo_round_mut(uint8_t *val, uint8_t *expandedKey);
#else
#define fast_aesb_single_round aesb_single_round
#define fast_aesb_pseudo_round_mut aesb_pseudo_round_mut
#endif
#if defined(NOASM) || !defined(__x86_64__)
static uint64_t mul128(uint64_t multiplier, uint64_t multiplicand, uint64_t* product_hi) {
// multiplier = ab = a * 2^32 + b
// multiplicand = cd = c * 2^32 + d
// ab * cd = a * c * 2^64 + (a * d + b * c) * 2^32 + b * d
uint64_t a = hi_dword(multiplier);
uint64_t b = lo_dword(multiplier);
uint64_t c = hi_dword(multiplicand);
uint64_t d = lo_dword(multiplicand);
uint64_t ac = a * c;
uint64_t ad = a * d;
uint64_t bc = b * c;
uint64_t bd = b * d;
uint64_t adbc = ad + bc;
uint64_t adbc_carry = adbc < ad ? 1 : 0;
// multiplier * multiplicand = product_hi * 2^64 + product_lo
uint64_t product_lo = bd + (adbc << 32);
uint64_t product_lo_carry = product_lo < bd ? 1 : 0;
*product_hi = ac + (adbc >> 32) + (adbc_carry << 32) + product_lo_carry;
assert(ac <= *product_hi);
return product_lo;
}
#else
extern uint64_t mul128(uint64_t multiplier, uint64_t multiplicand, uint64_t* product_hi);
#endif
/*
static void (* const extra_hashes[4])(const void *, size_t, char *) = {
do_blake_hash, do_groestl_hash, do_jh_hash, do_skein_hash
};
*/
static inline size_t e2i(const uint8_t* a) {
#if !LITE
return ((uint32_t *)a)[0] & 0x1FFFF0;
#else
return ((uint32_t *)a)[0] & 0xFFFF0;
#endif
}
static inline void mul_sum_xor_dst( const uint8_t* a, uint8_t* c, uint8_t* dst,
const uint64_t tweak )
{
uint64_t hi, lo = mul128(((uint64_t*) a)[0], ((uint64_t*) dst)[0], &hi) + ((uint64_t*) c)[1];
hi += ((uint64_t*) c)[0];
((uint64_t*) c)[0] = ((uint64_t*) dst)[0] ^ hi;
((uint64_t*) c)[1] = ((uint64_t*) dst)[1] ^ lo;
((uint64_t*) dst)[0] = hi;
((uint64_t*) dst)[1] = cryptonightV7 ? lo ^ tweak : lo;
}
static inline void xor_blocks(uint8_t* a, const uint8_t* b) {
#if USE_INT128
*((uint128_t*) a) ^= *((uint128_t*) b);
#else
((uint64_t*) a)[0] ^= ((uint64_t*) b)[0];
((uint64_t*) a)[1] ^= ((uint64_t*) b)[1];
#endif
}
static inline void xor_blocks_dst(const uint8_t* a, const uint8_t* b, uint8_t* dst) {
#if USE_INT128
*((uint128_t*) dst) = *((uint128_t*) a) ^ *((uint128_t*) b);
#else
((uint64_t*) dst)[0] = ((uint64_t*) a)[0] ^ ((uint64_t*) b)[0];
((uint64_t*) dst)[1] = ((uint64_t*) a)[1] ^ ((uint64_t*) b)[1];
#endif
}
typedef struct {
uint8_t _ALIGN(16) long_state[MEMORY];
union cn_slow_hash_state state;
uint8_t _ALIGN(16) text[INIT_SIZE_BYTE];
uint8_t _ALIGN(16) a[AES_BLOCK_SIZE];
uint8_t _ALIGN(16) b[AES_BLOCK_SIZE];
uint8_t _ALIGN(16) c[AES_BLOCK_SIZE];
oaes_ctx* aes_ctx;
} cryptonight_ctx;
static __thread cryptonight_ctx ctx;
void cryptonight_hash_ctx(void* output, const void* input, int len)
{
// hash_process(&ctx.state.hs, (const uint8_t*) input, len);
keccak( (const uint8_t*)input, 76, (char*)&ctx.state.hs.b, 200 );
if ( cryptonightV7 && len < 43 )
return;
const uint64_t tweak = cryptonightV7
? *((const uint64_t*) (((const uint8_t*)input) + 35))
^ ctx.state.hs.w[24] : 0;
ctx.aes_ctx = (oaes_ctx*) oaes_alloc();
__builtin_prefetch( ctx.text, 0, 3 );
__builtin_prefetch( ctx.text + 64, 0, 3 );
__builtin_prefetch( ctx.long_state, 1, 0 );
__builtin_prefetch( ctx.long_state + 64, 1, 0 );
__builtin_prefetch( ctx.long_state + 128, 1, 0 );
__builtin_prefetch( ctx.long_state + 192, 1, 0 );
__builtin_prefetch( ctx.long_state + 256, 1, 0 );
__builtin_prefetch( ctx.long_state + 320, 1, 0 );
__builtin_prefetch( ctx.long_state + 384, 1, 0 );
__builtin_prefetch( ctx.long_state + 448, 1, 0 );
size_t i, j;
memcpy(ctx.text, ctx.state.init, INIT_SIZE_BYTE);
oaes_key_import_data(ctx.aes_ctx, ctx.state.hs.b, AES_KEY_SIZE);
for (i = 0; likely(i < MEMORY); i += INIT_SIZE_BYTE) {
__builtin_prefetch( ctx.long_state + i + 512, 1, 0 );
__builtin_prefetch( ctx.long_state + i + 576, 1, 0 );
aesb_pseudo_round_mut(&ctx.text[AES_BLOCK_SIZE * 0], ctx.aes_ctx->key->exp_data);
aesb_pseudo_round_mut(&ctx.text[AES_BLOCK_SIZE * 1], ctx.aes_ctx->key->exp_data);
aesb_pseudo_round_mut(&ctx.text[AES_BLOCK_SIZE * 2], ctx.aes_ctx->key->exp_data);
aesb_pseudo_round_mut(&ctx.text[AES_BLOCK_SIZE * 3], ctx.aes_ctx->key->exp_data);
aesb_pseudo_round_mut(&ctx.text[AES_BLOCK_SIZE * 4], ctx.aes_ctx->key->exp_data);
aesb_pseudo_round_mut(&ctx.text[AES_BLOCK_SIZE * 5], ctx.aes_ctx->key->exp_data);
aesb_pseudo_round_mut(&ctx.text[AES_BLOCK_SIZE * 6], ctx.aes_ctx->key->exp_data);
aesb_pseudo_round_mut(&ctx.text[AES_BLOCK_SIZE * 7], ctx.aes_ctx->key->exp_data);
memcpy(&ctx.long_state[i], ctx.text, INIT_SIZE_BYTE);
}
xor_blocks_dst(&ctx.state.k[0], &ctx.state.k[32], ctx.a);
xor_blocks_dst(&ctx.state.k[16], &ctx.state.k[48], ctx.b);
for (i = 0; likely(i < ITER / 4); ++i)
{
/* Dependency chain: address -> read value ------+
* written value <-+ hard function (AES or MUL) <+
* next address <-+
*/
/* Iteration 1 */
j = e2i(ctx.a);
aesb_single_round(&ctx.long_state[j], ctx.c, ctx.a);
xor_blocks_dst(ctx.c, ctx.b, &ctx.long_state[j]);
if ( cryptonightV7 )
{
uint8_t *lsa = (uint8_t*)&ctx.long_state[((uint64_t *)(ctx.a))[0] & 0x1FFFF0];
const uint8_t tmp = lsa[11];
const uint8_t index = ( ( (tmp >> 3) & 6 ) | (tmp & 1) ) << 1;
lsa[11] = tmp ^ ( ( 0x75310 >> index) & 0x30 );
}
/* Iteration 2 */
mul_sum_xor_dst(ctx.c, ctx.a, &ctx.long_state[e2i(ctx.c)], tweak );
/* Iteration 3 */
j = e2i(ctx.a);
aesb_single_round(&ctx.long_state[j], ctx.b, ctx.a);
xor_blocks_dst(ctx.b, ctx.c, &ctx.long_state[j]);
if ( cryptonightV7 )
{
uint8_t *lsa = (uint8_t*)&ctx.long_state[((uint64_t *)(ctx.a))[0] & 0x1FFFF0];
const uint8_t tmp = lsa[11];
const uint8_t index = ( ( (tmp >> 3) & 6 ) | (tmp & 1) ) << 1;
lsa[11] = tmp ^ ( ( 0x75310 >> index) & 0x30 );
}
/* Iteration 4 */
mul_sum_xor_dst(ctx.b, ctx.a, &ctx.long_state[e2i(ctx.b)], tweak );
}
__builtin_prefetch( ctx.text, 0, 3 );
__builtin_prefetch( ctx.text + 64, 0, 3 );
__builtin_prefetch( ctx.long_state, 1, 0 );
__builtin_prefetch( ctx.long_state + 64, 1, 0 );
__builtin_prefetch( ctx.long_state + 128, 1, 0 );
__builtin_prefetch( ctx.long_state + 192, 1, 0 );
__builtin_prefetch( ctx.long_state + 256, 1, 0 );
__builtin_prefetch( ctx.long_state + 320, 1, 0 );
__builtin_prefetch( ctx.long_state + 384, 1, 0 );
__builtin_prefetch( ctx.long_state + 448, 1, 0 );
memcpy(ctx.text, ctx.state.init, INIT_SIZE_BYTE);
oaes_key_import_data(ctx.aes_ctx, &ctx.state.hs.b[32], AES_KEY_SIZE);
for (i = 0; likely(i < MEMORY); i += INIT_SIZE_BYTE) {
__builtin_prefetch( ctx.long_state + i + 512, 1, 0 );
__builtin_prefetch( ctx.long_state + i + 576, 1, 0 );
xor_blocks(&ctx.text[0 * AES_BLOCK_SIZE], &ctx.long_state[i + 0 * AES_BLOCK_SIZE]);
aesb_pseudo_round_mut(&ctx.text[0 * AES_BLOCK_SIZE], ctx.aes_ctx->key->exp_data);
xor_blocks(&ctx.text[1 * AES_BLOCK_SIZE], &ctx.long_state[i + 1 * AES_BLOCK_SIZE]);
aesb_pseudo_round_mut(&ctx.text[1 * AES_BLOCK_SIZE], ctx.aes_ctx->key->exp_data);
xor_blocks(&ctx.text[2 * AES_BLOCK_SIZE], &ctx.long_state[i + 2 * AES_BLOCK_SIZE]);
aesb_pseudo_round_mut(&ctx.text[2 * AES_BLOCK_SIZE], ctx.aes_ctx->key->exp_data);
xor_blocks(&ctx.text[3 * AES_BLOCK_SIZE], &ctx.long_state[i + 3 * AES_BLOCK_SIZE]);
aesb_pseudo_round_mut(&ctx.text[3 * AES_BLOCK_SIZE], ctx.aes_ctx->key->exp_data);
xor_blocks(&ctx.text[4 * AES_BLOCK_SIZE], &ctx.long_state[i + 4 * AES_BLOCK_SIZE]);
aesb_pseudo_round_mut(&ctx.text[4 * AES_BLOCK_SIZE], ctx.aes_ctx->key->exp_data);
xor_blocks(&ctx.text[5 * AES_BLOCK_SIZE], &ctx.long_state[i + 5 * AES_BLOCK_SIZE]);
aesb_pseudo_round_mut(&ctx.text[5 * AES_BLOCK_SIZE], ctx.aes_ctx->key->exp_data);
xor_blocks(&ctx.text[6 * AES_BLOCK_SIZE], &ctx.long_state[i + 6 * AES_BLOCK_SIZE]);
aesb_pseudo_round_mut(&ctx.text[6 * AES_BLOCK_SIZE], ctx.aes_ctx->key->exp_data);
xor_blocks(&ctx.text[7 * AES_BLOCK_SIZE], &ctx.long_state[i + 7 * AES_BLOCK_SIZE]);
aesb_pseudo_round_mut(&ctx.text[7 * AES_BLOCK_SIZE], ctx.aes_ctx->key->exp_data);
}
memcpy(ctx.state.init, ctx.text, INIT_SIZE_BYTE);
// hash_permutation(&ctx.state.hs);
keccakf( (uint64_t*)&ctx.state.hs.w, 24 );
/*memcpy(hash, &state, 32);*/
extra_hashes[ctx.state.hs.b[0] & 3](&ctx.state, 200, output);
oaes_free((OAES_CTX **) &ctx.aes_ctx);
}

View File

@@ -1,51 +0,0 @@
#ifndef __CRYPTONIGHT_H_INCLUDED
#define __CRYPTONIGHT_H_INCLUDED
#include <stddef.h>
#include "crypto/oaes_lib.h"
#include "miner.h"
#define MEMORY (1 << 21) /* 2 MiB */
#define MEMORY_M128I (MEMORY >> 4) // 2 MiB / 16 = 128 ki * __m128i
#define ITER (1 << 20)
#define AES_BLOCK_SIZE 16
#define AES_KEY_SIZE 32 /*16*/
#define INIT_SIZE_BLK 8
#define INIT_SIZE_BYTE (INIT_SIZE_BLK * AES_BLOCK_SIZE) // 128
#define INIT_SIZE_M128I (INIT_SIZE_BYTE >> 4) // 8
#pragma pack(push, 1)
union hash_state {
uint8_t b[200];
uint64_t w[25];
};
#pragma pack(pop)
#pragma pack(push, 1)
union cn_slow_hash_state {
union hash_state hs;
struct {
uint8_t k[64];
uint8_t init[INIT_SIZE_BYTE];
};
};
#pragma pack(pop)
void do_blake_hash(const void* input, size_t len, char* output);
void do_groestl_hash(const void* input, size_t len, char* output);
void do_jh_hash(const void* input, size_t len, char* output);
void do_skein_hash(const void* input, size_t len, char* output);
void cryptonight_hash_ctx(void* output, const void* input, int len);
void keccakf(uint64_t st[25], int rounds);
extern void (* const extra_hashes[4])(const void *, size_t, char *);
int scanhash_cryptonight( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
void cryptonight_hash_aes( void *restrict output, const void *input, int len );
extern bool cryptonightV7;
#endif

View File

@@ -179,14 +179,6 @@ int cube_4way_full( cube_4way_context *sp, void *output, int hashbitlen,
sp->rounds = 16;
sp->pos = 0;
h[ 0] = m512_const1_128( iv[0] );
h[ 1] = m512_const1_128( iv[1] );
h[ 2] = m512_const1_128( iv[2] );
h[ 3] = m512_const1_128( iv[3] );
h[ 4] = m512_const1_128( iv[4] );
h[ 5] = m512_const1_128( iv[5] );
h[ 6] = m512_const1_128( iv[6] );
h[ 7] = m512_const1_128( iv[7] );
h[ 0] = m512_const1_128( iv[0] );
h[ 1] = m512_const1_128( iv[1] );
h[ 2] = m512_const1_128( iv[2] );
@@ -447,14 +439,6 @@ int cube_2way_full( cube_2way_context *sp, void *output, int hashbitlen,
sp->rounds = 16;
sp->pos = 0;
h[ 0] = m256_const1_128( iv[0] );
h[ 1] = m256_const1_128( iv[1] );
h[ 2] = m256_const1_128( iv[2] );
h[ 3] = m256_const1_128( iv[3] );
h[ 4] = m256_const1_128( iv[4] );
h[ 5] = m256_const1_128( iv[5] );
h[ 6] = m256_const1_128( iv[6] );
h[ 7] = m256_const1_128( iv[7] );
h[ 0] = m256_const1_128( iv[0] );
h[ 1] = m256_const1_128( iv[1] );
h[ 2] = m256_const1_128( iv[2] );

View File

@@ -28,6 +28,27 @@ int cube_4way_update_close( cube_4way_context *sp, void *output,
int cube_4way_full( cube_4way_context *sp, void *output, int hashbitlen,
const void *data, size_t size );
int cube_4x256_full( cube_4way_context *sp, void *output, int hashbitlen,
const void *data, size_t size );
#define cube512_4way_init( sp ) cube_4way_update( sp, 512 )
#define cube512_4way_update cube_4way_update
#define cube512_4way_update_close cube_4way_update
#define cube512_4way_close cube_4way_update
#define cube512_4way_full( sp, output, data, size ) \
cube_4way_full( sp, output, 512, data, size )
#define cube512_4x256_full( sp, output, data, size ) \
cube_4x256_full( sp, output, 512, data, size )
#define cube256_4way_init( sp ) cube_4way_update( sp, 256 )
#define cube256_4way_update cube_4way_update
#define cube256_4way_update_close cube_4way_update
#define cube256_4way_close cube_4way_update
#define cube256_4way_full( sp, output, data, size ) \
cube_4way_full( sp, output, 256, data, size )
#define cube256_4x256_full( sp, output, data, size ) \
cube_4x256_full( sp, output, 256, data, size )
#endif
// 2x128, 2 way parallel SSE2

View File

@@ -55,8 +55,8 @@ MYALIGN const unsigned int mul2ipt[] = {0x728efc00, 0x6894e61a, 0x3fc3b14d, 0x2
#define ECHO_SUBBYTES(state, i, j) \
state[i][j] = _mm_aesenc_si128(state[i][j], k1);\
state[i][j] = _mm_aesenc_si128(state[i][j], M128(zero));\
k1 = _mm_add_epi32(k1, M128(const1))
k1 = _mm_add_epi32(k1, M128(const1));\
state[i][j] = _mm_aesenc_si128(state[i][j], M128(zero))
#define ECHO_MIXBYTES(state1, state2, j, t1, t2, s2) \
s2 = _mm_add_epi8(state1[0][j], state1[0][j]);\

View File

@@ -1,5 +1,4 @@
//#if 0
#if defined(__VAES__) && defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#if defined(__VAES__)
#include "simd-utils.h"
#include "echo-hash-4way.h"
@@ -11,18 +10,20 @@ static const unsigned int mul2ipt[] __attribute__ ((aligned (64))) =
0xfd5ba600, 0x2a8c71d7, 0x1eb845e3, 0xc96f9234
};
*/
// do these need to be reversed?
#define mul2mask \
_mm512_set4_epi32( 0, 0, 0, 0x00001b00 )
// _mm512_set4_epi32( 0x00001b00, 0, 0, 0 )
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#define lsbmask m512_const1_32( 0x01010101 )
//#define mul2mask m512_const2_64( 0, 0x00001b00 )
//_mm512_set4_epi32( 0, 0, 0, 0x00001b00 )
//_mm512_set4_epi32( 0x00001b00, 0, 0, 0 )
//#define lsbmask m512_const1_32( 0x01010101 )
#define ECHO_SUBBYTES( state, i, j ) \
state[i][j] = _mm512_aesenc_epi128( state[i][j], k1 ); \
state[i][j] = _mm512_aesenc_epi128( state[i][j], m512_zero ); \
k1 = _mm512_add_epi32( k1, m512_one_128 );
k1 = _mm512_add_epi32( k1, one ); \
state[i][j] = _mm512_aesenc_epi128( state[i][j], m512_zero );
#define ECHO_MIXBYTES( state1, state2, j, t1, t2, s2 ) do \
{ \
@@ -30,87 +31,87 @@ static const unsigned int mul2ipt[] __attribute__ ((aligned (64))) =
const int j2 = ( (j)+2 ) & 3; \
const int j3 = ( (j)+3 ) & 3; \
s2 = _mm512_add_epi8( state1[ 0 ] [j ], state1[ 0 ][ j ] ); \
t1 = _mm512_srli_epi16( state1[ 0 ][ j ], 7 ); \
t1 = _mm512_and_si512( t1, lsbmask );\
t2 = _mm512_shuffle_epi8( mul2mask, t1 ); \
s2 = _mm512_xor_si512( s2, t2 ); \
state2[ 0 ] [j ] = s2; \
state2[ 1 ] [j ] = state1[ 0 ][ j ]; \
state2[ 2 ] [j ] = state1[ 0 ][ j ]; \
state2[ 3 ] [j ] = _mm512_xor_si512( s2, state1[ 0 ][ j ] );\
s2 = _mm512_add_epi8( state1[ 1 ][ j1 ], state1[ 1 ][ j1 ] ); \
t1 = _mm512_srli_epi16( state1[ 1 ][ j1 ], 7 ); \
t1 = _mm512_and_si512( t1, lsbmask ); \
t2 = _mm512_shuffle_epi8( mul2mask, t1 ); \
s2 = _mm512_xor_si512( s2, t2 );\
state2[ 0 ][ j ] = _mm512_xor_si512( state2[ 0 ][ j ], \
_mm512_xor_si512( s2, state1[ 1 ][ j1 ] ) ); \
state2[ 1 ][ j ] = _mm512_xor_si512( state2[ 1 ][ j ], s2 ); \
state2[ 2 ][ j ] = _mm512_xor_si512( state2[ 2 ][ j ], state1[ 1 ][ j1 ] ); \
state2[ 3 ][ j ] = _mm512_xor_si512( state2[ 3 ][ j ], state1[ 1 ][ j1 ] ); \
s2 = _mm512_add_epi8( state1[ 2 ][ j2 ], state1[ 2 ][ j2 ] ); \
t1 = _mm512_srli_epi16( state1[ 2 ][ j2 ], 7 ); \
t1 = _mm512_and_si512( t1, lsbmask ); \
t2 = _mm512_shuffle_epi8( mul2mask, t1 ); \
s2 = _mm512_xor_si512( s2, t2 ); \
state2[ 0 ][ j ] = _mm512_xor_si512( state2[ 0 ][ j ], state1[ 2 ][ j2 ] ); \
state2[ 1 ][ j ] = _mm512_xor_si512( state2[ 1 ][ j ], \
t1 = _mm512_srli_epi16( state1[ 0 ][ j ], 7 ); \
t1 = _mm512_and_si512( t1, lsbmask );\
t2 = _mm512_shuffle_epi8( mul2mask, t1 ); \
s2 = _mm512_xor_si512( s2, t2 ); \
state2[ 0 ] [j ] = s2; \
state2[ 1 ] [j ] = state1[ 0 ][ j ]; \
state2[ 2 ] [j ] = state1[ 0 ][ j ]; \
state2[ 3 ] [j ] = _mm512_xor_si512( s2, state1[ 0 ][ j ] );\
s2 = _mm512_add_epi8( state1[ 1 ][ j1 ], state1[ 1 ][ j1 ] ); \
t1 = _mm512_srli_epi16( state1[ 1 ][ j1 ], 7 ); \
t1 = _mm512_and_si512( t1, lsbmask ); \
t2 = _mm512_shuffle_epi8( mul2mask, t1 ); \
s2 = _mm512_xor_si512( s2, t2 );\
state2[ 0 ][ j ] = _mm512_xor_si512( state2[ 0 ][ j ], \
_mm512_xor_si512( s2, state1[ 1 ][ j1 ] ) ); \
state2[ 1 ][ j ] = _mm512_xor_si512( state2[ 1 ][ j ], s2 ); \
state2[ 2 ][ j ] = _mm512_xor_si512( state2[ 2 ][ j ], state1[ 1 ][ j1 ] ); \
state2[ 3 ][ j ] = _mm512_xor_si512( state2[ 3 ][ j ], state1[ 1 ][ j1 ] ); \
s2 = _mm512_add_epi8( state1[ 2 ][ j2 ], state1[ 2 ][ j2 ] ); \
t1 = _mm512_srli_epi16( state1[ 2 ][ j2 ], 7 ); \
t1 = _mm512_and_si512( t1, lsbmask ); \
t2 = _mm512_shuffle_epi8( mul2mask, t1 ); \
s2 = _mm512_xor_si512( s2, t2 ); \
state2[ 0 ][ j ] = _mm512_xor_si512( state2[ 0 ][ j ], state1[ 2 ][ j2 ] ); \
state2[ 1 ][ j ] = _mm512_xor_si512( state2[ 1 ][ j ], \
_mm512_xor_si512( s2, state1[ 2 ][ j2 ] ) ); \
state2[ 2 ][ j ] = _mm512_xor_si512( state2[ 2 ][ j ], s2 ); \
state2[ 3 ][ j ] = _mm512_xor_si512( state2[ 3][ j ], state1[ 2 ][ j2 ] ); \
s2 = _mm512_add_epi8( state1[ 3 ][ j3 ], state1[ 3 ][ j3 ] ); \
t1 = _mm512_srli_epi16( state1[ 3 ][ j3 ], 7 ); \
t1 = _mm512_and_si512( t1, lsbmask ); \
t2 = _mm512_shuffle_epi8( mul2mask, t1 ); \
s2 = _mm512_xor_si512( s2, t2 ); \
state2[ 0 ][ j ] = _mm512_xor_si512( state2[ 0 ][ j ], state1[ 3 ][ j3 ] ); \
state2[ 1 ][ j ] = _mm512_xor_si512( state2[ 1 ][ j ], state1[ 3 ][ j3 ] ); \
state2[ 2 ][ j ] = _mm512_xor_si512( state2[ 2 ][ j ], \
state2[ 2 ][ j ] = _mm512_xor_si512( state2[ 2 ][ j ], s2 ); \
state2[ 3 ][ j ] = _mm512_xor_si512( state2[ 3][ j ], state1[ 2 ][ j2 ] ); \
s2 = _mm512_add_epi8( state1[ 3 ][ j3 ], state1[ 3 ][ j3 ] ); \
t1 = _mm512_srli_epi16( state1[ 3 ][ j3 ], 7 ); \
t1 = _mm512_and_si512( t1, lsbmask ); \
t2 = _mm512_shuffle_epi8( mul2mask, t1 ); \
s2 = _mm512_xor_si512( s2, t2 ); \
state2[ 0 ][ j ] = _mm512_xor_si512( state2[ 0 ][ j ], state1[ 3 ][ j3 ] ); \
state2[ 1 ][ j ] = _mm512_xor_si512( state2[ 1 ][ j ], state1[ 3 ][ j3 ] ); \
state2[ 2 ][ j ] = _mm512_xor_si512( state2[ 2 ][ j ], \
_mm512_xor_si512( s2, state1[ 3 ][ j3] ) ); \
state2[ 3 ][ j ] = _mm512_xor_si512( state2[ 3 ][ j ], s2 ); \
state2[ 3 ][ j ] = _mm512_xor_si512( state2[ 3 ][ j ], s2 ); \
} while(0)
#define ECHO_ROUND_UNROLL2 \
ECHO_SUBBYTES(_state, 0, 0);\
ECHO_SUBBYTES(_state, 0, 0);\
ECHO_SUBBYTES(_state, 1, 0);\
ECHO_SUBBYTES(_state, 2, 0);\
ECHO_SUBBYTES(_state, 3, 0);\
ECHO_SUBBYTES(_state, 0, 1);\
ECHO_SUBBYTES(_state, 1, 1);\
ECHO_SUBBYTES(_state, 2, 1);\
ECHO_SUBBYTES(_state, 3, 1);\
ECHO_SUBBYTES(_state, 0, 2);\
ECHO_SUBBYTES(_state, 1, 2);\
ECHO_SUBBYTES(_state, 2, 2);\
ECHO_SUBBYTES(_state, 3, 2);\
ECHO_SUBBYTES(_state, 0, 3);\
ECHO_SUBBYTES(_state, 1, 3);\
ECHO_SUBBYTES(_state, 2, 3);\
ECHO_SUBBYTES(_state, 3, 3);\
ECHO_MIXBYTES(_state, _state2, 0, t1, t2, s2);\
ECHO_MIXBYTES(_state, _state2, 1, t1, t2, s2);\
ECHO_MIXBYTES(_state, _state2, 2, t1, t2, s2);\
ECHO_MIXBYTES(_state, _state2, 3, t1, t2, s2);\
ECHO_SUBBYTES(_state2, 0, 0);\
ECHO_SUBBYTES(_state2, 1, 0);\
ECHO_SUBBYTES(_state2, 2, 0);\
ECHO_SUBBYTES(_state2, 3, 0);\
ECHO_SUBBYTES(_state2, 0, 1);\
ECHO_SUBBYTES(_state2, 1, 1);\
ECHO_SUBBYTES(_state2, 2, 1);\
ECHO_SUBBYTES(_state2, 3, 1);\
ECHO_SUBBYTES(_state2, 0, 2);\
ECHO_SUBBYTES(_state2, 1, 2);\
ECHO_SUBBYTES(_state2, 2, 2);\
ECHO_SUBBYTES(_state2, 3, 2);\
ECHO_SUBBYTES(_state2, 0, 3);\
ECHO_SUBBYTES(_state2, 1, 3);\
ECHO_SUBBYTES(_state2, 2, 3);\
ECHO_SUBBYTES(_state2, 3, 3);\
ECHO_MIXBYTES(_state2, _state, 0, t1, t2, s2);\
ECHO_MIXBYTES(_state2, _state, 1, t1, t2, s2);\
ECHO_MIXBYTES(_state2, _state, 2, t1, t2, s2);\
ECHO_MIXBYTES(_state2, _state, 3, t1, t2, s2)
ECHO_SUBBYTES(_state, 2, 0);\
ECHO_SUBBYTES(_state, 3, 0);\
ECHO_SUBBYTES(_state, 0, 1);\
ECHO_SUBBYTES(_state, 1, 1);\
ECHO_SUBBYTES(_state, 2, 1);\
ECHO_SUBBYTES(_state, 3, 1);\
ECHO_SUBBYTES(_state, 0, 2);\
ECHO_SUBBYTES(_state, 1, 2);\
ECHO_SUBBYTES(_state, 2, 2);\
ECHO_SUBBYTES(_state, 3, 2);\
ECHO_SUBBYTES(_state, 0, 3);\
ECHO_SUBBYTES(_state, 1, 3);\
ECHO_SUBBYTES(_state, 2, 3);\
ECHO_SUBBYTES(_state, 3, 3);\
ECHO_MIXBYTES(_state, _state2, 0, t1, t2, s2);\
ECHO_MIXBYTES(_state, _state2, 1, t1, t2, s2);\
ECHO_MIXBYTES(_state, _state2, 2, t1, t2, s2);\
ECHO_MIXBYTES(_state, _state2, 3, t1, t2, s2);\
ECHO_SUBBYTES(_state2, 0, 0);\
ECHO_SUBBYTES(_state2, 1, 0);\
ECHO_SUBBYTES(_state2, 2, 0);\
ECHO_SUBBYTES(_state2, 3, 0);\
ECHO_SUBBYTES(_state2, 0, 1);\
ECHO_SUBBYTES(_state2, 1, 1);\
ECHO_SUBBYTES(_state2, 2, 1);\
ECHO_SUBBYTES(_state2, 3, 1);\
ECHO_SUBBYTES(_state2, 0, 2);\
ECHO_SUBBYTES(_state2, 1, 2);\
ECHO_SUBBYTES(_state2, 2, 2);\
ECHO_SUBBYTES(_state2, 3, 2);\
ECHO_SUBBYTES(_state2, 0, 3);\
ECHO_SUBBYTES(_state2, 1, 3);\
ECHO_SUBBYTES(_state2, 2, 3);\
ECHO_SUBBYTES(_state2, 3, 3);\
ECHO_MIXBYTES(_state2, _state, 0, t1, t2, s2);\
ECHO_MIXBYTES(_state2, _state, 1, t1, t2, s2);\
ECHO_MIXBYTES(_state2, _state, 2, t1, t2, s2);\
ECHO_MIXBYTES(_state2, _state, 3, t1, t2, s2)
#define SAVESTATE(dst, src)\
dst[0][0] = src[0][0];\
@@ -137,6 +138,9 @@ void echo_4way_compress( echo_4way_context *ctx, const __m512i *pmsg,
unsigned int r, b, i, j;
__m512i t1, t2, s2, k1;
__m512i _state[4][4], _state2[4][4], _statebackup[4][4];
__m512i one = m512_one_128;
__m512i mul2mask = m512_const2_64( 0, 0x00001b00 );
__m512i lsbmask = m512_const1_32( 0x01010101 );
_state[ 0 ][ 0 ] = ctx->state[ 0 ][ 0 ];
_state[ 0 ][ 1 ] = ctx->state[ 0 ][ 1 ];
@@ -224,43 +228,43 @@ void echo_4way_compress( echo_4way_context *ctx, const __m512i *pmsg,
int echo_4way_init( echo_4way_context *ctx, int nHashSize )
{
int i, j;
int i, j;
ctx->k = m512_zero;
ctx->processed_bits = 0;
ctx->uBufferBytes = 0;
ctx->processed_bits = 0;
ctx->uBufferBytes = 0;
switch( nHashSize )
{
case 256:
ctx->uHashSize = 256;
ctx->uBlockLength = 192;
ctx->uRounds = 8;
ctx->hashsize = _mm512_set4_epi32( 0, 0, 0, 0x100 );
ctx->const1536 = _mm512_set4_epi32( 0, 0, 0, 0x600 );
break;
switch( nHashSize )
{
case 256:
ctx->uHashSize = 256;
ctx->uBlockLength = 192;
ctx->uRounds = 8;
ctx->hashsize = m512_const2_64( 0, 0x100 );
ctx->const1536 = m512_const2_64( 0, 0x600 );
break;
case 512:
ctx->uHashSize = 512;
ctx->uBlockLength = 128;
ctx->uRounds = 10;
ctx->hashsize = _mm512_set4_epi32( 0, 0, 0, 0x200 );
ctx->const1536 = _mm512_set4_epi32( 0, 0, 0, 0x400);
break;
case 512:
ctx->uHashSize = 512;
ctx->uBlockLength = 128;
ctx->uRounds = 10;
ctx->hashsize = m512_const2_64( 0, 0x200 );
ctx->const1536 = m512_const2_64( 0, 0x400);
break;
default:
return 1;
}
default:
return 1;
}
for( i = 0; i < 4; i++ )
for( j = 0; j < nHashSize / 256; j++ )
ctx->state[ i ][ j ] = ctx->hashsize;
for( i = 0; i < 4; i++ )
for( j = 0; j < nHashSize / 256; j++ )
ctx->state[ i ][ j ] = ctx->hashsize;
for( i = 0; i < 4; i++ )
for( j = nHashSize / 256; j < 4; j++ )
ctx->state[ i ][ j ] = m512_zero;
for( i = 0; i < 4; i++ )
for( j = nHashSize / 256; j < 4; j++ )
ctx->state[ i ][ j ] = m512_zero;
return 0;
return 0;
}
int echo_4way_update_close( echo_4way_context *state, void *hashval,
@@ -285,17 +289,13 @@ int echo_4way_update_close( echo_4way_context *state, void *hashval,
vlen = databitlen / 128; // * 4 lanes / 128 bits per lane
memcpy_512( state->buffer, data, vlen );
state->processed_bits += (unsigned int)( databitlen );
remainingbits = _mm512_set4_epi32( 0, 0, 0, databitlen );
remainingbits = m512_const2_64( 0, (uint64_t)databitlen );
}
state->buffer[ vlen ] = _mm512_set4_epi32( 0, 0, 0, 0x80 );
state->buffer[ vlen ] = m512_const2_64( 0, 0x80 );
memset_zero_512( state->buffer + vlen + 1, vblen - vlen - 2 );
state->buffer[ vblen-2 ] =
_mm512_set4_epi32( (uint32_t)state->uHashSize << 16, 0, 0, 0 );
state->buffer[ vblen-1 ] =
_mm512_set4_epi64( 0, state->processed_bits,
0, state->processed_bits );
state->buffer[ vblen-2 ] = m512_const2_64( (uint64_t)state->uHashSize << 48, 0 );
state->buffer[ vblen-1 ] = m512_const2_64( 0, state->processed_bits);
state->k = _mm512_add_epi64( state->k, remainingbits );
state->k = _mm512_sub_epi64( state->k, state->const1536 );
@@ -328,16 +328,16 @@ int echo_4way_full( echo_4way_context *ctx, void *hashval, int nHashSize,
ctx->uHashSize = 256;
ctx->uBlockLength = 192;
ctx->uRounds = 8;
ctx->hashsize = _mm512_set4_epi32( 0, 0, 0, 0x100 );
ctx->const1536 = _mm512_set4_epi32( 0, 0, 0, 0x600 );
ctx->hashsize = m512_const2_64( 0, 0x100 );
ctx->const1536 = m512_const2_64( 0, 0x600 );
break;
case 512:
ctx->uHashSize = 512;
ctx->uBlockLength = 128;
ctx->uRounds = 10;
ctx->hashsize = _mm512_set4_epi32( 0, 0, 0, 0x200 );
ctx->const1536 = _mm512_set4_epi32( 0, 0, 0, 0x400);
ctx->hashsize = m512_const2_64( 0, 0x200 );
ctx->const1536 = m512_const2_64( 0, 0x400 );
break;
default:
@@ -372,17 +372,14 @@ int echo_4way_full( echo_4way_context *ctx, void *hashval, int nHashSize,
vlen = databitlen / 128; // * 4 lanes / 128 bits per lane
memcpy_512( ctx->buffer, data, vlen );
ctx->processed_bits += (unsigned int)( databitlen );
remainingbits = _mm512_set4_epi32( 0, 0, 0, databitlen );
remainingbits = m512_const2_64( 0, databitlen );
}
ctx->buffer[ vlen ] = _mm512_set4_epi32( 0, 0, 0, 0x80 );
ctx->buffer[ vlen ] = m512_const2_64( 0, 0x80 );
memset_zero_512( ctx->buffer + vlen + 1, vblen - vlen - 2 );
ctx->buffer[ vblen-2 ] =
_mm512_set4_epi32( (uint32_t)ctx->uHashSize << 16, 0, 0, 0 );
ctx->buffer[ vblen-1 ] =
_mm512_set4_epi64( 0, ctx->processed_bits,
0, ctx->processed_bits );
m512_const2_64( (uint64_t)ctx->uHashSize << 48, 0 );
ctx->buffer[ vblen-1 ] = m512_const2_64( 0, ctx->processed_bits);
ctx->k = _mm512_add_epi64( ctx->k, remainingbits );
ctx->k = _mm512_sub_epi64( ctx->k, ctx->const1536 );
@@ -400,5 +397,380 @@ int echo_4way_full( echo_4way_context *ctx, void *hashval, int nHashSize,
return 0;
}
#endif // AVX512
#endif
// AVX2 + VAES
#define mul2mask_2way m256_const2_64( 0, 0x0000000000001b00 )
#define lsbmask_2way m256_const1_32( 0x01010101 )
#define ECHO_SUBBYTES_2WAY( state, i, j ) \
state[i][j] = _mm256_aesenc_epi128( state[i][j], k1 ); \
k1 = _mm256_add_epi32( k1, m256_one_128 ); \
state[i][j] = _mm256_aesenc_epi128( state[i][j], m256_zero ); \
#define ECHO_MIXBYTES_2WAY( state1, state2, j, t1, t2, s2 ) do \
{ \
const int j1 = ( (j)+1 ) & 3; \
const int j2 = ( (j)+2 ) & 3; \
const int j3 = ( (j)+3 ) & 3; \
s2 = _mm256_add_epi8( state1[ 0 ] [j ], state1[ 0 ][ j ] ); \
t1 = _mm256_srli_epi16( state1[ 0 ][ j ], 7 ); \
t1 = _mm256_and_si256( t1, lsbmask_2way );\
t2 = _mm256_shuffle_epi8( mul2mask_2way, t1 ); \
s2 = _mm256_xor_si256( s2, t2 ); \
state2[ 0 ] [j ] = s2; \
state2[ 1 ] [j ] = state1[ 0 ][ j ]; \
state2[ 2 ] [j ] = state1[ 0 ][ j ]; \
state2[ 3 ] [j ] = _mm256_xor_si256( s2, state1[ 0 ][ j ] );\
s2 = _mm256_add_epi8( state1[ 1 ][ j1 ], state1[ 1 ][ j1 ] ); \
t1 = _mm256_srli_epi16( state1[ 1 ][ j1 ], 7 ); \
t1 = _mm256_and_si256( t1, lsbmask_2way ); \
t2 = _mm256_shuffle_epi8( mul2mask_2way, t1 ); \
s2 = _mm256_xor_si256( s2, t2 );\
state2[ 0 ][ j ] = _mm256_xor_si256( state2[ 0 ][ j ], \
_mm256_xor_si256( s2, state1[ 1 ][ j1 ] ) ); \
state2[ 1 ][ j ] = _mm256_xor_si256( state2[ 1 ][ j ], s2 ); \
state2[ 2 ][ j ] = _mm256_xor_si256( state2[ 2 ][ j ], state1[ 1 ][ j1 ] ); \
state2[ 3 ][ j ] = _mm256_xor_si256( state2[ 3 ][ j ], state1[ 1 ][ j1 ] ); \
s2 = _mm256_add_epi8( state1[ 2 ][ j2 ], state1[ 2 ][ j2 ] ); \
t1 = _mm256_srli_epi16( state1[ 2 ][ j2 ], 7 ); \
t1 = _mm256_and_si256( t1, lsbmask_2way ); \
t2 = _mm256_shuffle_epi8( mul2mask_2way, t1 ); \
s2 = _mm256_xor_si256( s2, t2 ); \
state2[ 0 ][ j ] = _mm256_xor_si256( state2[ 0 ][ j ], state1[ 2 ][ j2 ] ); \
state2[ 1 ][ j ] = _mm256_xor_si256( state2[ 1 ][ j ], \
_mm256_xor_si256( s2, state1[ 2 ][ j2 ] ) ); \
state2[ 2 ][ j ] = _mm256_xor_si256( state2[ 2 ][ j ], s2 ); \
state2[ 3 ][ j ] = _mm256_xor_si256( state2[ 3][ j ], state1[ 2 ][ j2 ] ); \
s2 = _mm256_add_epi8( state1[ 3 ][ j3 ], state1[ 3 ][ j3 ] ); \
t1 = _mm256_srli_epi16( state1[ 3 ][ j3 ], 7 ); \
t1 = _mm256_and_si256( t1, lsbmask_2way ); \
t2 = _mm256_shuffle_epi8( mul2mask_2way, t1 ); \
s2 = _mm256_xor_si256( s2, t2 ); \
state2[ 0 ][ j ] = _mm256_xor_si256( state2[ 0 ][ j ], state1[ 3 ][ j3 ] ); \
state2[ 1 ][ j ] = _mm256_xor_si256( state2[ 1 ][ j ], state1[ 3 ][ j3 ] ); \
state2[ 2 ][ j ] = _mm256_xor_si256( state2[ 2 ][ j ], \
_mm256_xor_si256( s2, state1[ 3 ][ j3] ) ); \
state2[ 3 ][ j ] = _mm256_xor_si256( state2[ 3 ][ j ], s2 ); \
} while(0)
#define ECHO_ROUND_UNROLL2_2WAY \
ECHO_SUBBYTES_2WAY(_state, 0, 0);\
ECHO_SUBBYTES_2WAY(_state, 1, 0);\
ECHO_SUBBYTES_2WAY(_state, 2, 0);\
ECHO_SUBBYTES_2WAY(_state, 3, 0);\
ECHO_SUBBYTES_2WAY(_state, 0, 1);\
ECHO_SUBBYTES_2WAY(_state, 1, 1);\
ECHO_SUBBYTES_2WAY(_state, 2, 1);\
ECHO_SUBBYTES_2WAY(_state, 3, 1);\
ECHO_SUBBYTES_2WAY(_state, 0, 2);\
ECHO_SUBBYTES_2WAY(_state, 1, 2);\
ECHO_SUBBYTES_2WAY(_state, 2, 2);\
ECHO_SUBBYTES_2WAY(_state, 3, 2);\
ECHO_SUBBYTES_2WAY(_state, 0, 3);\
ECHO_SUBBYTES_2WAY(_state, 1, 3);\
ECHO_SUBBYTES_2WAY(_state, 2, 3);\
ECHO_SUBBYTES_2WAY(_state, 3, 3);\
ECHO_MIXBYTES_2WAY(_state, _state2, 0, t1, t2, s2);\
ECHO_MIXBYTES_2WAY(_state, _state2, 1, t1, t2, s2);\
ECHO_MIXBYTES_2WAY(_state, _state2, 2, t1, t2, s2);\
ECHO_MIXBYTES_2WAY(_state, _state2, 3, t1, t2, s2);\
ECHO_SUBBYTES_2WAY(_state2, 0, 0);\
ECHO_SUBBYTES_2WAY(_state2, 1, 0);\
ECHO_SUBBYTES_2WAY(_state2, 2, 0);\
ECHO_SUBBYTES_2WAY(_state2, 3, 0);\
ECHO_SUBBYTES_2WAY(_state2, 0, 1);\
ECHO_SUBBYTES_2WAY(_state2, 1, 1);\
ECHO_SUBBYTES_2WAY(_state2, 2, 1);\
ECHO_SUBBYTES_2WAY(_state2, 3, 1);\
ECHO_SUBBYTES_2WAY(_state2, 0, 2);\
ECHO_SUBBYTES_2WAY(_state2, 1, 2);\
ECHO_SUBBYTES_2WAY(_state2, 2, 2);\
ECHO_SUBBYTES_2WAY(_state2, 3, 2);\
ECHO_SUBBYTES_2WAY(_state2, 0, 3);\
ECHO_SUBBYTES_2WAY(_state2, 1, 3);\
ECHO_SUBBYTES_2WAY(_state2, 2, 3);\
ECHO_SUBBYTES_2WAY(_state2, 3, 3);\
ECHO_MIXBYTES_2WAY(_state2, _state, 0, t1, t2, s2);\
ECHO_MIXBYTES_2WAY(_state2, _state, 1, t1, t2, s2);\
ECHO_MIXBYTES_2WAY(_state2, _state, 2, t1, t2, s2);\
ECHO_MIXBYTES_2WAY(_state2, _state, 3, t1, t2, s2)
#define SAVESTATE_2WAY(dst, src)\
dst[0][0] = src[0][0];\
dst[0][1] = src[0][1];\
dst[0][2] = src[0][2];\
dst[0][3] = src[0][3];\
dst[1][0] = src[1][0];\
dst[1][1] = src[1][1];\
dst[1][2] = src[1][2];\
dst[1][3] = src[1][3];\
dst[2][0] = src[2][0];\
dst[2][1] = src[2][1];\
dst[2][2] = src[2][2];\
dst[2][3] = src[2][3];\
dst[3][0] = src[3][0];\
dst[3][1] = src[3][1];\
dst[3][2] = src[3][2];\
dst[3][3] = src[3][3]
// blockcount always 1
void echo_2way_compress( echo_2way_context *ctx, const __m256i *pmsg,
unsigned int uBlockCount )
{
unsigned int r, b, i, j;
__m256i t1, t2, s2, k1;
__m256i _state[4][4], _state2[4][4], _statebackup[4][4];
_state[ 0 ][ 0 ] = ctx->state[ 0 ][ 0 ];
_state[ 0 ][ 1 ] = ctx->state[ 0 ][ 1 ];
_state[ 0 ][ 2 ] = ctx->state[ 0 ][ 2 ];
_state[ 0 ][ 3 ] = ctx->state[ 0 ][ 3 ];
_state[ 1 ][ 0 ] = ctx->state[ 1 ][ 0 ];
_state[ 1 ][ 1 ] = ctx->state[ 1 ][ 1 ];
_state[ 1 ][ 2 ] = ctx->state[ 1 ][ 2 ];
_state[ 1 ][ 3 ] = ctx->state[ 1 ][ 3 ];
_state[ 2 ][ 0 ] = ctx->state[ 2 ][ 0 ];
_state[ 2 ][ 1 ] = ctx->state[ 2 ][ 1 ];
_state[ 2 ][ 2 ] = ctx->state[ 2 ][ 2 ];
_state[ 2 ][ 3 ] = ctx->state[ 2 ][ 3 ];
_state[ 3 ][ 0 ] = ctx->state[ 3 ][ 0 ];
_state[ 3 ][ 1 ] = ctx->state[ 3 ][ 1 ];
_state[ 3 ][ 2 ] = ctx->state[ 3 ][ 2 ];
_state[ 3 ][ 3 ] = ctx->state[ 3 ][ 3 ];
for ( b = 0; b < uBlockCount; b++ )
{
ctx->k = _mm256_add_epi64( ctx->k, ctx->const1536 );
for( j = ctx->uHashSize / 256; j < 4; j++ )
{
for ( i = 0; i < 4; i++ )
{
_state[ i ][ j ] = _mm256_load_si256(
pmsg + 4 * (j - (ctx->uHashSize / 256)) + i );
}
}
// save state
SAVESTATE_2WAY( _statebackup, _state );
k1 = ctx->k;
for ( r = 0; r < ctx->uRounds / 2; r++ )
{
ECHO_ROUND_UNROLL2_2WAY;
}
if ( ctx->uHashSize == 256 )
{
for ( i = 0; i < 4; i++ )
{
_state[ i ][ 0 ] = _mm256_xor_si256( _state[ i ][ 0 ],
_state[ i ][ 1 ] );
_state[ i ][ 0 ] = _mm256_xor_si256( _state[ i ][ 0 ],
_state[ i ][ 2 ] );
_state[ i ][ 0 ] = _mm256_xor_si256( _state[ i ][ 0 ],
_state[ i ][ 3 ] );
_state[ i ][ 0 ] = _mm256_xor_si256( _state[ i ][ 0 ],
_statebackup[ i ][ 0 ] );
_state[ i ][ 0 ] = _mm256_xor_si256( _state[ i ][ 0 ],
_statebackup[ i ][ 1 ] );
_state[ i ][ 0 ] = _mm256_xor_si256( _state[ i ][ 0 ],
_statebackup[ i ][ 2 ] ) ;
_state[ i ][ 0 ] = _mm256_xor_si256( _state[ i ][ 0 ],
_statebackup[ i ][ 3 ] );
}
}
else
{
for ( i = 0; i < 4; i++ )
{
_state[ i ][ 0 ] = _mm256_xor_si256( _state[ i ][ 0 ],
_state[ i ][ 2 ] );
_state[ i ][ 1 ] = _mm256_xor_si256( _state[ i ][ 1 ],
_state[ i ][ 3 ] );
_state[ i ][ 0 ] = _mm256_xor_si256( _state[ i ][ 0 ],
_statebackup[ i ][ 0 ] );
_state[ i ][ 0 ] = _mm256_xor_si256( _state[ i ] [0 ],
_statebackup[ i ][ 2 ] );
_state[ i ][ 1 ] = _mm256_xor_si256( _state[ i ][ 1 ],
_statebackup[ i ][ 1 ] );
_state[ i ][ 1 ] = _mm256_xor_si256( _state[ i ][ 1 ],
_statebackup[ i ][ 3 ] );
}
}
pmsg += ctx->uBlockLength;
}
SAVESTATE_2WAY(ctx->state, _state);
}
int echo_2way_init( echo_2way_context *ctx, int nHashSize )
{
int i, j;
ctx->k = m256_zero;
ctx->processed_bits = 0;
ctx->uBufferBytes = 0;
switch( nHashSize )
{
case 256:
ctx->uHashSize = 256;
ctx->uBlockLength = 192;
ctx->uRounds = 8;
ctx->hashsize = m256_const2_64( 0, 0x100 );
ctx->const1536 = m256_const2_64( 0, 0x600 );
break;
case 512:
ctx->uHashSize = 512;
ctx->uBlockLength = 128;
ctx->uRounds = 10;
ctx->hashsize = m256_const2_64( 0, 0x200 );
ctx->const1536 = m256_const2_64( 0, 0x400 );
break;
default:
return 1;
}
for( i = 0; i < 4; i++ )
for( j = 0; j < nHashSize / 256; j++ )
ctx->state[ i ][ j ] = ctx->hashsize;
for( i = 0; i < 4; i++ )
for( j = nHashSize / 256; j < 4; j++ )
ctx->state[ i ][ j ] = m256_zero;
return 0;
}
int echo_2way_update_close( echo_2way_context *state, void *hashval,
const void *data, int databitlen )
{
// bytelen is either 32 (maybe), 64 or 80 or 128!
// all are less than full block.
int vlen = databitlen / 128; // * 4 lanes / 128 bits per lane
const int vblen = state->uBlockLength / 16; // 16 bytes per lane
__m256i remainingbits;
if ( databitlen == 1024 )
{
echo_2way_compress( state, data, 1 );
state->processed_bits = 1024;
remainingbits = m256_const2_64( 0, -1024 );
vlen = 0;
}
else
{
memcpy_256( state->buffer, data, vlen );
state->processed_bits += (unsigned int)( databitlen );
remainingbits = m256_const2_64( 0, databitlen );
}
state->buffer[ vlen ] = m256_const2_64( 0, 0x80 );
memset_zero_256( state->buffer + vlen + 1, vblen - vlen - 2 );
state->buffer[ vblen-2 ] = m256_const2_64( (uint64_t)state->uHashSize << 48, 0 );
state->buffer[ vblen-1 ] = m256_const2_64( 0, state->processed_bits );
state->k = _mm256_add_epi64( state->k, remainingbits );
state->k = _mm256_sub_epi64( state->k, state->const1536 );
echo_2way_compress( state, state->buffer, 1 );
_mm256_store_si256( (__m256i*)hashval + 0, state->state[ 0 ][ 0] );
_mm256_store_si256( (__m256i*)hashval + 1, state->state[ 1 ][ 0] );
if ( state->uHashSize == 512 )
{
_mm256_store_si256( (__m256i*)hashval + 2, state->state[ 2 ][ 0 ] );
_mm256_store_si256( (__m256i*)hashval + 3, state->state[ 3 ][ 0 ] );
}
return 0;
}
int echo_2way_full( echo_2way_context *ctx, void *hashval, int nHashSize,
const void *data, int datalen )
{
int i, j;
int databitlen = datalen * 8;
ctx->k = m256_zero;
ctx->processed_bits = 0;
ctx->uBufferBytes = 0;
switch( nHashSize )
{
case 256:
ctx->uHashSize = 256;
ctx->uBlockLength = 192;
ctx->uRounds = 8;
ctx->hashsize = m256_const2_64( 0, 0x100 );
ctx->const1536 = m256_const2_64( 0, 0x600 );
break;
case 512:
ctx->uHashSize = 512;
ctx->uBlockLength = 128;
ctx->uRounds = 10;
ctx->hashsize = m256_const2_64( 0, 0x200 );
ctx->const1536 = m256_const2_64( 0, 0x400 );
break;
default:
return 1;
}
for( i = 0; i < 4; i++ )
for( j = 0; j < nHashSize / 256; j++ )
ctx->state[ i ][ j ] = ctx->hashsize;
for( i = 0; i < 4; i++ )
for( j = nHashSize / 256; j < 4; j++ )
ctx->state[ i ][ j ] = m256_zero;
int vlen = datalen / 32;
const int vblen = ctx->uBlockLength / 16; // 16 bytes per lane
__m256i remainingbits;
if ( databitlen == 1024 )
{
echo_2way_compress( ctx, data, 1 );
ctx->processed_bits = 1024;
remainingbits = m256_const2_64( 0, -1024 );
vlen = 0;
}
else
{
vlen = databitlen / 128; // * 4 lanes / 128 bits per lane
memcpy_256( ctx->buffer, data, vlen );
ctx->processed_bits += (unsigned int)( databitlen );
remainingbits = m256_const2_64( 0, databitlen );
}
ctx->buffer[ vlen ] = m256_const2_64( 0, 0x80 );
memset_zero_256( ctx->buffer + vlen + 1, vblen - vlen - 2 );
ctx->buffer[ vblen-2 ] = m256_const2_64( (uint64_t)ctx->uHashSize << 48, 0 );
ctx->buffer[ vblen-1 ] = m256_const2_64( 0, ctx->processed_bits );
ctx->k = _mm256_add_epi64( ctx->k, remainingbits );
ctx->k = _mm256_sub_epi64( ctx->k, ctx->const1536 );
echo_2way_compress( ctx, ctx->buffer, 1 );
_mm256_store_si256( (__m256i*)hashval + 0, ctx->state[ 0 ][ 0] );
_mm256_store_si256( (__m256i*)hashval + 1, ctx->state[ 1 ][ 0] );
if ( ctx->uHashSize == 512 )
{
_mm256_store_si256( (__m256i*)hashval + 2, ctx->state[ 2 ][ 0 ] );
_mm256_store_si256( (__m256i*)hashval + 3, ctx->state[ 3 ][ 0 ] );
}
return 0;
}
#endif // VAES

View File

@@ -1,10 +1,12 @@
#if !defined(ECHO_HASH_4WAY_H__)
#define ECHO_HASH_4WAY_H__ 1
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#if defined(__VAES__)
#include "simd-utils.h"
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
typedef struct
{
__m512i state[4][4];
@@ -20,20 +22,69 @@ typedef struct
unsigned int processed_bits;
} echo_4way_context __attribute__ ((aligned (64)));
#define echo512_4way_context echo_4way_context
int echo_4way_init( echo_4way_context *state, int hashbitlen );
#define echo512_4way_init( state ) echo_4way_init( state, 512 )
#define echo256_4way_init( state ) echo_4way_init( state, 256 )
int echo_4way_update( echo_4way_context *state, const void *data,
unsigned int databitlen);
#define echo512_4way_update echo_4way_update
int echo_close( echo_4way_context *state, void *hashval );
// int echo_4way_close( echo_4way_context *state, void *hashval );
// #define echo512_4way_close echo_4way_close
int echo_4way_update_close( echo_4way_context *state, void *hashval,
const void *data, int databitlen );
#define echo512_4way_update_close echo_4way_update_close
int echo_4way_full( echo_4way_context *ctx, void *hashval, int nHashSize,
const void *data, int datalen );
#define echo512_4way_full( state, hashval, data, datalen ) \
echo_4way_full( state, hashval, 512, data, datalen )
#define echo256_4way_full( state, hashval, data, datalen ) \
echo_4way_full( state, hashval, 256, data, datalen )
#endif
#endif
#endif // AVX512
typedef struct
{
__m256i state[4][4];
__m256i buffer[ 4 * 192 / 16 ]; // 4x128 interleaved 192 bytes
__m256i k;
__m256i hashsize;
__m256i const1536;
unsigned int uRounds;
unsigned int uHashSize;
unsigned int uBlockLength;
unsigned int uBufferBytes;
unsigned int processed_bits;
} echo_2way_context __attribute__ ((aligned (64)));
#define echo512_2way_context echo_2way_context
int echo_2way_init( echo_2way_context *state, int hashbitlen );
#define echo512_2way_init( state ) echo_2way_init( state, 512 )
#define echo256_2way_init( state ) echo_2way_init( state, 256 )
int echo_2way_update( echo_2way_context *state, const void *data,
unsigned int databitlen);
#define echo512_2way_update echo_2way_update
int echo_2way_update_close( echo_2way_context *state, void *hashval,
const void *data, int databitlen );
#define echo512_2way_update_close echo_2way_update_close
int echo_2way_full( echo_2way_context *ctx, void *hashval, int nHashSize,
const void *data, int datalen );
#define echo512_2way_full( state, hashval, data, datalen ) \
echo_2way_full( state, hashval, 512, data, datalen )
#define echo256_2way_full( state, hashval, data, datalen ) \
echo_2way_full( state, hashval, 256, data, datalen )
#endif // VAES
#endif // ECHO_HASH_4WAY_H__

565
algo/fugue/fugue-aesni.c Normal file
View File

@@ -0,0 +1,565 @@
/*
* file : fugue_vperm.c
* version : 1.0.208
* date : 14.12.2010
*
* - vperm and aes_ni implementations of hash function Fugue
* - implements NIST hash api
* - assumes that message lenght is multiple of 8-bits
* - _FUGUE_VPERM_ must be defined if compiling with ../main.c
* - default version is vperm, define AES_NI for aes_ni version
*
* Cagdas Calik
* ccalik@metu.edu.tr
* Institute of Applied Mathematics, Middle East Technical University, Turkey.
*
*/
#if defined(__AES__)
#include <x86intrin.h>
#include <memory.h>
#include "fugue-aesni.h"
MYALIGN const unsigned long long _supermix1a[] = {0x0202010807020100, 0x0a05000f06010c0b};
MYALIGN const unsigned long long _supermix1b[] = {0x0b0d080703060504, 0x0e0a090c050e0f0a};
MYALIGN const unsigned long long _supermix1c[] = {0x0402060c070d0003, 0x090a060580808080};
MYALIGN const unsigned long long _supermix1d[] = {0x808080800f0e0d0c, 0x0f0e0d0c80808080};
MYALIGN const unsigned long long _supermix2a[] = {0x07020d0880808080, 0x0b06010c050e0f0a};
MYALIGN const unsigned long long _supermix4a[] = {0x000f0a050c0b0601, 0x0302020404030e09};
MYALIGN const unsigned long long _supermix4b[] = {0x07020d08080e0d0d, 0x07070908050e0f0a};
MYALIGN const unsigned long long _supermix4c[] = {0x0706050403020000, 0x0302000007060504};
MYALIGN const unsigned long long _supermix7a[] = {0x010c0b060d080702, 0x0904030e03000104};
MYALIGN const unsigned long long _supermix7b[] = {0x8080808080808080, 0x0504070605040f06};
MYALIGN const unsigned long long _k_n[] = {0x4E4E4E4E4E4E4E4E, 0x1B1B1B1B0E0E0E0E};
MYALIGN const unsigned char _shift_one_mask[] = {7, 4, 5, 6, 11, 8, 9, 10, 15, 12, 13, 14, 3, 0, 1, 2};
MYALIGN const unsigned char _shift_four_mask[] = {13, 14, 15, 12, 1, 2, 3, 0, 5, 6, 7, 4, 9, 10, 11, 8};
MYALIGN const unsigned char _shift_seven_mask[] = {10, 11, 8, 9, 14, 15, 12, 13, 2, 3, 0, 1, 6, 7, 4, 5};
MYALIGN const unsigned char _aes_shift_rows[] = {0, 5, 10, 15, 4, 9, 14, 3, 8, 13, 2, 7, 12, 1, 6, 11};
MYALIGN const unsigned int _inv_shift_rows[] = {0x070a0d00, 0x0b0e0104, 0x0f020508, 0x0306090c};
MYALIGN const unsigned int _mul2mask[] = {0x1b1b0000, 0x00000000, 0x00000000, 0x00000000};
MYALIGN const unsigned int _mul4mask[] = {0x2d361b00, 0x00000000, 0x00000000, 0x00000000};
MYALIGN const unsigned int _lsbmask2[] = {0x03030303, 0x03030303, 0x03030303, 0x03030303};
MYALIGN const unsigned int _IV512[] = {
0x00000000, 0x00000000, 0x7ea50788, 0x00000000,
0x75af16e6, 0xdbe4d3c5, 0x27b09aac, 0x00000000,
0x17f115d9, 0x54cceeb6, 0x0b02e806, 0x00000000,
0xd1ef924a, 0xc9e2c6aa, 0x9813b2dd, 0x00000000,
0x3858e6ca, 0x3f207f43, 0xe778ea25, 0x00000000,
0xd6dd1f95, 0x1dd16eda, 0x67353ee1, 0x00000000};
#if defined(__SSE4_1__)
#define PACK_S0(s0, s1, t1)\
s0 = _mm_castps_si128(_mm_insert_ps(_mm_castsi128_ps(s0), _mm_castsi128_ps(s1), 0x30))
#define UNPACK_S0(s0, s1, t1)\
s1 = _mm_castps_si128(_mm_insert_ps(_mm_castsi128_ps(s1), _mm_castsi128_ps(s0), 0xc0));\
s0 = mm128_mask_32( s0, 8 )
#define CMIX(s1, s2, r1, r2, t1, t2)\
t1 = s1;\
t1 = _mm_castps_si128(_mm_shuffle_ps(_mm_castsi128_ps(t1), _mm_castsi128_ps(s2), _MM_SHUFFLE(3, 0, 2, 1)));\
r1 = _mm_xor_si128(r1, t1);\
r2 = _mm_xor_si128(r2, t1);
#else // SSE2
#define PACK_S0(s0, s1, t1)\
t1 = _mm_shuffle_epi32(s1, _MM_SHUFFLE(0, 3, 3, 3));\
s0 = _mm_xor_si128(s0, t1);
#define UNPACK_S0(s0, s1, t1)\
t1 = _mm_shuffle_epi32(s0, _MM_SHUFFLE(3, 3, 3, 3));\
s1 = _mm_castps_si128(_mm_move_ss(_mm_castsi128_ps(s1), _mm_castsi128_ps(t1)));\
s0 = mm128_mask_32( s0, 8 )
#define CMIX(s1, s2, r1, r2, t1, t2)\
t1 = _mm_shuffle_epi32(s1, 0xf9);\
t2 = _mm_shuffle_epi32(s2, 0xcf);\
t1 = _mm_xor_si128(t1, t2);\
r1 = _mm_xor_si128(r1, t1);\
r2 = _mm_xor_si128(r2, t1)
#endif
#define TIX256(msg, s10, s8, s24, s0, t1, t2, t3)\
t1 = _mm_shuffle_epi32(s0, _MM_SHUFFLE(3, 3, 0, 3));\
s10 = _mm_xor_si128(s10, t1);\
t1 = _mm_castps_si128(_mm_load_ss((float*)msg));\
s0 = _mm_castps_si128(_mm_move_ss(_mm_castsi128_ps(s0), _mm_castsi128_ps(t1)));\
t1 = _mm_slli_si128(t1, 8);\
s8 = _mm_xor_si128(s8, t1);\
t1 = _mm_shuffle_epi32(s24, _MM_SHUFFLE(3, 3, 0, 3));\
s0 = _mm_xor_si128(s0, t1)
#define TIX384(msg, s16, s8, s27, s30, s0, s4, t1, t2, t3)\
t1 = _mm_shuffle_epi32(s0, _MM_SHUFFLE(3, 3, 0, 3));\
s16 = _mm_xor_si128(s16, t1);\
t1 = _mm_castps_si128(_mm_load_ss((float*)msg));\
s0 = _mm_castps_si128(_mm_move_ss(_mm_castsi128_ps(s0), _mm_castsi128_ps(t1)));\
t1 = _mm_slli_si128(t1, 8);\
s8 = _mm_xor_si128(s8, t1);\
t1 = _mm_shuffle_epi32(s27, _MM_SHUFFLE(3, 3, 0, 3));\
s0 = _mm_xor_si128(s0, t1);\
t1 = _mm_shuffle_epi32(s30, _MM_SHUFFLE(3, 3, 0, 3));\
s4 = _mm_xor_si128(s4, t1)
#define TIX512(msg, s22, s8, s24, s27, s30, s0, s4, s7, t1, t2, t3)\
t1 = _mm_shuffle_epi32(s0, _MM_SHUFFLE(3, 3, 0, 3));\
s22 = _mm_xor_si128(s22, t1);\
t1 = _mm_castps_si128(_mm_load_ss((float*)msg));\
s0 = _mm_castps_si128(_mm_move_ss(_mm_castsi128_ps(s0), _mm_castsi128_ps(t1)));\
t1 = _mm_slli_si128(t1, 8);\
s8 = _mm_xor_si128(s8, t1);\
t1 = _mm_shuffle_epi32(s24, _MM_SHUFFLE(3, 3, 0, 3));\
s0 = _mm_xor_si128(s0, t1);\
t1 = _mm_shuffle_epi32(s27, _MM_SHUFFLE(3, 3, 0, 3));\
s4 = _mm_xor_si128(s4, t1);\
t1 = _mm_shuffle_epi32(s30, _MM_SHUFFLE(3, 3, 0, 3));\
s7 = _mm_xor_si128(s7, t1)
#define PRESUPERMIX(x, t1, s1, s2, t2)\
s1 = x;\
s2 = _mm_add_epi8(x, x);\
t2 = _mm_add_epi8(s2, s2);\
t1 = _mm_srli_epi16(x, 6);\
t1 = _mm_and_si128(t1, M128(_lsbmask2));\
s2 = _mm_xor_si128(s2, _mm_shuffle_epi8(M128(_mul2mask), t1));\
x = _mm_xor_si128(t2, _mm_shuffle_epi8(M128(_mul4mask), t1))
#define SUBSTITUTE(r0, _t1, _t2, _t3, _t0)\
_t2 = _mm_shuffle_epi8(r0, M128(_inv_shift_rows));\
_t2 = _mm_aesenclast_si128( _t2, m128_zero )
#define SUPERMIX(t0, t1, t2, t3, t4)\
PRESUPERMIX(t0, t1, t2, t3, t4);\
POSTSUPERMIX(t0, t1, t2, t3, t4)
#define POSTSUPERMIX(t0, t1, t2, t3, t4)\
t1 = t2;\
t1 = _mm_shuffle_epi8(t1, M128(_supermix1b));\
t4 = t1;\
t1 = _mm_shuffle_epi8(t1, M128(_supermix1c));\
t4 = _mm_xor_si128(t4, t1);\
t1 = t4;\
t1 = _mm_shuffle_epi8(t1, M128(_supermix1d));\
t4 = _mm_xor_si128(t4, t1);\
t1 = t2;\
t1 = _mm_shuffle_epi8(t1, M128(_supermix1a));\
t4 = _mm_xor_si128(t4, t1);\
t2 = _mm_xor_si128(t2, t3);\
t2 = _mm_xor_si128(t2, t0);\
t2 = _mm_shuffle_epi8(t2, M128(_supermix7a));\
t4 = _mm_xor_si128(t4, t2);\
t2 = _mm_shuffle_epi8(t2, M128(_supermix7b));\
t4 = _mm_xor_si128(t4, t2);\
t3 = _mm_shuffle_epi8(t3, M128(_supermix2a));\
t1 = t0;\
t1 = _mm_shuffle_epi8(t1, M128(_supermix4a));\
t4 = _mm_xor_si128(t4, t1);\
t0 = _mm_shuffle_epi8(t0, M128(_supermix4b));\
t0 = _mm_xor_si128(t0, t3);\
t4 = _mm_xor_si128(t4, t0);\
t0 = _mm_shuffle_epi8(t0, M128(_supermix4c));\
t4 = _mm_xor_si128(t4, t0)
#define SUBROUND512_3(r1a, r1b, r1c, r1d, r2a, r2b, r2c, r2d, r3a, r3b, r3c, r3d)\
CMIX(r1a, r1b, r1c, r1d, _t0, _t1);\
PACK_S0(r1c, r1a, _t0);\
SUBSTITUTE(r1c, _t1, _t2, _t3, _t0);\
SUPERMIX(_t2, _t3, _t0, _t1, r1c);\
_t0 = _mm_shuffle_epi32(r1c, 0x39);\
r2c = _mm_xor_si128(r2c, _t0);\
_t0 = mm128_mask_32( _t0, 8 ); \
r2d = _mm_xor_si128(r2d, _t0);\
UNPACK_S0(r1c, r1a, _t3);\
SUBSTITUTE(r2c, _t1, _t2, _t3, _t0);\
SUPERMIX(_t2, _t3, _t0, _t1, r2c);\
_t0 = _mm_shuffle_epi32(r2c, 0x39);\
r3c = _mm_xor_si128(r3c, _t0);\
_t0 = mm128_mask_32( _t0, 8 ); \
r3d = _mm_xor_si128(r3d, _t0);\
UNPACK_S0(r2c, r2a, _t3);\
SUBSTITUTE(r3c, _t1, _t2, _t3, _t0);\
SUPERMIX(_t2, _t3, _t0, _t1, r3c);\
UNPACK_S0(r3c, r3a, _t3)
#define SUBROUND512_4(r1a, r1b, r1c, r1d, r2a, r2b, r2c, r2d, r3a, r3b, r3c, r3d, r4a, r4b, r4c, r4d)\
CMIX(r1a, r1b, r1c, r1d, _t0, _t1);\
PACK_S0(r1c, r1a, _t0);\
SUBSTITUTE(r1c, _t1, _t2, _t3, _t0);\
SUPERMIX(_t2, _t3, _t0, _t1, r1c);\
_t0 = _mm_shuffle_epi32(r1c, 0x39);\
r2c = _mm_xor_si128(r2c, _t0);\
_t0 = mm128_mask_32( _t0, 8 ); \
r2d = _mm_xor_si128(r2d, _t0);\
UNPACK_S0(r1c, r1a, _t3);\
SUBSTITUTE(r2c, _t1, _t2, _t3, _t0);\
SUPERMIX(_t2, _t3, _t0, _t1, r2c);\
_t0 = _mm_shuffle_epi32(r2c, 0x39);\
r3c = _mm_xor_si128(r3c, _t0);\
_t0 = mm128_mask_32( _t0, 8 ); \
r3d = _mm_xor_si128(r3d, _t0);\
UNPACK_S0(r2c, r2a, _t3);\
SUBSTITUTE(r3c, _t1, _t2, _t3, _t0);\
SUPERMIX(_t2, _t3, _t0, _t1, r3c);\
_t0 = _mm_shuffle_epi32(r3c, 0x39);\
r4c = _mm_xor_si128(r4c, _t0);\
_t0 = mm128_mask_32( _t0, 8 ); \
r4d = _mm_xor_si128(r4d, _t0);\
UNPACK_S0(r3c, r3a, _t3);\
SUBSTITUTE(r4c, _t1, _t2, _t3, _t0);\
SUPERMIX(_t2, _t3, _t0, _t1, r4c);\
UNPACK_S0(r4c, r4a, _t3)
#define LOADCOLUMN(x, s, a)\
block[0] = col[(base + a + 0) % s];\
block[1] = col[(base + a + 1) % s];\
block[2] = col[(base + a + 2) % s];\
block[3] = col[(base + a + 3) % s];\
x = _mm_load_si128((__m128i*)block)
#define STORECOLUMN(x, s)\
_mm_store_si128((__m128i*)block, x);\
col[(base + 0) % s] = block[0];\
col[(base + 1) % s] = block[1];\
col[(base + 2) % s] = block[2];\
col[(base + 3) % s] = block[3]
void Compress512(hashState_fugue *ctx, const unsigned char *pmsg, unsigned int uBlockCount)
{
__m128i _t0, _t1, _t2, _t3;
switch(ctx->base)
{
case 1:
TIX512( pmsg, ctx->state[3], ctx->state[10], ctx->state[4],
ctx->state[5], ctx->state[ 6], ctx->state[8],
ctx->state[9], ctx->state[10], _t0, _t1, _t2 );
SUBROUND512_4( ctx->state[8], ctx->state[9], ctx->state[7],
ctx->state[1], ctx->state[7], ctx->state[8],
ctx->state[6], ctx->state[0], ctx->state[6],
ctx->state[7], ctx->state[5], ctx->state[11],
ctx->state[5], ctx->state[6], ctx->state[4],
ctx->state[10] );
ctx->base++;
pmsg += 4;
uBlockCount--;
if( uBlockCount == 0 ) break;
case 2:
TIX512( pmsg, ctx->state[11], ctx->state[6], ctx->state[0],
ctx->state[ 1], ctx->state[2], ctx->state[4],
ctx->state[ 5], ctx->state[6], _t0, _t1, _t2);
SUBROUND512_4( ctx->state[4], ctx->state[5], ctx->state[3],
ctx->state[9], ctx->state[3], ctx->state[4],
ctx->state[2], ctx->state[8], ctx->state[2],
ctx->state[3], ctx->state[1], ctx->state[7],
ctx->state[1], ctx->state[2], ctx->state[0],
ctx->state[6]);
ctx->base = 0;
pmsg += 4;
uBlockCount--;
break;
}
while( uBlockCount > 0 )
{
TIX512( pmsg, ctx->state[ 7], ctx->state[2], ctx->state[8], ctx->state[9],
ctx->state[10], ctx->state[0], ctx->state[1], ctx->state[2],
_t0, _t1, _t2 );
SUBROUND512_4( ctx->state[0], ctx->state[1], ctx->state[11],
ctx->state[5], ctx->state[11], ctx->state[0],
ctx->state[10], ctx->state[4], ctx->state[10],
ctx->state[11], ctx->state[9], ctx->state[3],
ctx->state[9], ctx->state[10], ctx->state[8],
ctx->state[2] );
ctx->base++;
pmsg += 4;
uBlockCount--;
if( uBlockCount == 0 ) break;
TIX512( pmsg, ctx->state[3], ctx->state[10], ctx->state[4], ctx->state[5],
ctx->state[6], ctx->state[8], ctx->state[9], ctx->state[10],
_t0, _t1, _t2 );
SUBROUND512_4( ctx->state[8], ctx->state[9], ctx->state[7], ctx->state[1], ctx->state[7], ctx->state[8], ctx->state[6], ctx->state[0],
ctx->state[6], ctx->state[7], ctx->state[5], ctx->state[11],
ctx->state[5], ctx->state[6, ctx->state[4], ctx->state[10]);
ctx->base++;
pmsg += 4;
uBlockCount--;
if( uBlockCount == 0 ) break;
TIX512( pmsg, ctx->state[11], ctx->state[6], ctx->state[0], ctx->state[1],
ctx->state[2], ctx->state[4], ctx->state[5], ctx->state[6],
_t0, _t1, _t2);
SUBROUND512_4( ctx->state[4], ctx->state[5], ctx->state[3], ctx->state[9],
ctx->state[3], ctx->state[4], ctx->state[2], ctx->state[8],
ctx->state[2], ctx->state[3], ctx->state[1], ctx->state[7],
ctx->state[1], ctx->state[2], ctx->state[0], ctx->state[6]);
ctx->base = 0;
pmsg += 4;
uBlockCount--;
}
}
void Final512(hashState_fugue *ctx, BitSequence *hashval)
{
unsigned int block[4] __attribute__ ((aligned (32)));
unsigned int col[36] __attribute__ ((aligned (16)));
unsigned int i, base;
__m128i r0, _t0, _t1, _t2, _t3;
for(i = 0; i < 12; i++)
{
_mm_store_si128((__m128i*)block, ctx->state[i]);
col[3 * i + 0] = block[0];
col[3 * i + 1] = block[1];
col[3 * i + 2] = block[2];
}
base = (36 - (12 * ctx->base)) % 36;
for(i = 0; i < 32; i++)
{
// ROR3
base = (base + 33) % 36;
// CMIX
col[(base + 0) % 36] ^= col[(base + 4) % 36];
col[(base + 1) % 36] ^= col[(base + 5) % 36];
col[(base + 2) % 36] ^= col[(base + 6) % 36];
col[(base + 18) % 36] ^= col[(base + 4) % 36];
col[(base + 19) % 36] ^= col[(base + 5) % 36];
col[(base + 20) % 36] ^= col[(base + 6) % 36];
// SMIX
LOADCOLUMN(r0, 36, 0);
SUBSTITUTE(r0, _t1, _t2, _t3, _t0);
SUPERMIX(_t2, _t3, _t0, _t1, r0);
STORECOLUMN(r0, 36);
}
for(i = 0; i < 13; i++)
{
// S4 += S0; S9 += S0; S18 += S0; S27 += S0;
col[(base + 4) % 36] ^= col[(base + 0) % 36];
col[(base + 9) % 36] ^= col[(base + 0) % 36];
col[(base + 18) % 36] ^= col[(base + 0) % 36];
col[(base + 27) % 36] ^= col[(base + 0) % 36];
// ROR9
base = (base + 27) % 36;
// SMIX
LOADCOLUMN(r0, 36, 0);
SUBSTITUTE(r0, _t1, _t2, _t3, _t0);
SUPERMIX(_t2, _t3, _t0, _t1, r0);
STORECOLUMN(r0, 36);
// S4 += S0; S10 += S0; S18 += S0; S27 += S0;
col[(base + 4) % 36] ^= col[(base + 0) % 36];
col[(base + 10) % 36] ^= col[(base + 0) % 36];
col[(base + 18) % 36] ^= col[(base + 0) % 36];
col[(base + 27) % 36] ^= col[(base + 0) % 36];
// ROR9
base = (base + 27) % 36;
// SMIX
LOADCOLUMN(r0, 36, 0);
SUBSTITUTE(r0, _t1, _t2, _t3, _t0);
SUPERMIX(_t2, _t3, _t0, _t1, r0);
STORECOLUMN(r0, 36);
// S4 += S0; S10 += S0; S19 += S0; S27 += S0;
col[(base + 4) % 36] ^= col[(base + 0) % 36];
col[(base + 10) % 36] ^= col[(base + 0) % 36];
col[(base + 19) % 36] ^= col[(base + 0) % 36];
col[(base + 27) % 36] ^= col[(base + 0) % 36];
// ROR9
base = (base + 27) % 36;
// SMIX
LOADCOLUMN(r0, 36, 0);
SUBSTITUTE(r0, _t1, _t2, _t3, _t0);
SUPERMIX(_t2, _t3, _t0, _t1, r0);
STORECOLUMN(r0, 36);
// S4 += S0; S10 += S0; S19 += S0; S28 += S0;
col[(base + 4) % 36] ^= col[(base + 0) % 36];
col[(base + 10) % 36] ^= col[(base + 0) % 36];
col[(base + 19) % 36] ^= col[(base + 0) % 36];
col[(base + 28) % 36] ^= col[(base + 0) % 36];
// ROR8
base = (base + 28) % 36;
// SMIX
LOADCOLUMN(r0, 36, 0);
SUBSTITUTE(r0, _t1, _t2, _t3, _t0);
SUPERMIX(_t2, _t3, _t0, _t1, r0);
STORECOLUMN(r0, 36);
}
// S4 += S0; S9 += S0; S18 += S0; S27 += S0;
col[(base + 4) % 36] ^= col[(base + 0) % 36];
col[(base + 9) % 36] ^= col[(base + 0) % 36];
col[(base + 18) % 36] ^= col[(base + 0) % 36];
col[(base + 27) % 36] ^= col[(base + 0) % 36];
// Transform to the standard basis and store output; S1 || S2 || S3 || S4
LOADCOLUMN(r0, 36, 1);
_mm_store_si128((__m128i*)hashval, r0);
// Transform to the standard basis and store output; S9 || S10 || S11 || S12
LOADCOLUMN(r0, 36, 9);
_mm_store_si128((__m128i*)hashval + 1, r0);
// Transform to the standard basis and store output; S18 || S19 || S20 || S21
LOADCOLUMN(r0, 36, 18);
_mm_store_si128((__m128i*)hashval + 2, r0);
// Transform to the standard basis and store output; S27 || S28 || S29 || S30
LOADCOLUMN(r0, 36, 27);
_mm_store_si128((__m128i*)hashval + 3, r0);
}
HashReturn fugue512_Init(hashState_fugue *ctx, int nHashSize)
{
int i;
ctx->processed_bits = 0;
ctx->uBufferBytes = 0;
ctx->base = 0;
ctx->uHashSize = 512;
ctx->uBlockLength = 4;
for(i = 0; i < 6; i++)
ctx->state[i] = m128_zero;
ctx->state[6] = _mm_load_si128((__m128i*)_IV512 + 0);
ctx->state[7] = _mm_load_si128((__m128i*)_IV512 + 1);
ctx->state[8] = _mm_load_si128((__m128i*)_IV512 + 2);
ctx->state[9] = _mm_load_si128((__m128i*)_IV512 + 3);
ctx->state[10] = _mm_load_si128((__m128i*)_IV512 + 4);
ctx->state[11] = _mm_load_si128((__m128i*)_IV512 + 5);
return SUCCESS;
}
HashReturn fugue512_Update(hashState_fugue *state, const void *data, DataLength databitlen)
{
unsigned int uByteLength, uBlockCount, uRemainingBytes;
uByteLength = (unsigned int)(databitlen / 8);
if(state->uBufferBytes + uByteLength >= state->uBlockLength)
{
if(state->uBufferBytes != 0)
{
// Fill the buffer
memcpy(state->buffer + state->uBufferBytes, (void*)data, state->uBlockLength - state->uBufferBytes);
// Process the buffer
Compress512(state, state->buffer, 1);
state->processed_bits += state->uBlockLength * 8;
data += state->uBlockLength - state->uBufferBytes;
uByteLength -= state->uBlockLength - state->uBufferBytes;
}
// buffer now does not contain any unprocessed bytes
uBlockCount = uByteLength / state->uBlockLength;
uRemainingBytes = uByteLength % state->uBlockLength;
if(uBlockCount > 0)
{
Compress512(state, data, uBlockCount);
state->processed_bits += uBlockCount * state->uBlockLength * 8;
data += uBlockCount * state->uBlockLength;
}
if(uRemainingBytes > 0)
{
memcpy(state->buffer, (void*)data, uRemainingBytes);
}
state->uBufferBytes = uRemainingBytes;
}
else
{
memcpy(state->buffer + state->uBufferBytes, (void*)data, uByteLength);
state->uBufferBytes += uByteLength;
}
return SUCCESS;
}
HashReturn fugue512_Final(hashState_fugue *state, void *hashval)
{
unsigned int i;
BitSequence lengthbuf[8] __attribute__((aligned(64)));
// Update message bit count
state->processed_bits += state->uBufferBytes * 8;
// Pad the remaining buffer bytes with zero
if(state->uBufferBytes != 0)
{
if ( state->uBufferBytes != state->uBlockLength)
memset(state->buffer + state->uBufferBytes, 0, state->uBlockLength - state->uBufferBytes);
Compress512(state, state->buffer, 1);
}
// Last two blocks are message length in bits
for(i = 0; i < 8; i++)
lengthbuf[i] = ((state->processed_bits) >> (8 * (7 - i))) & 0xff;
// Process the last two blocks
Compress512(state, lengthbuf, 2);
// Finalization
Final512(state, hashval);
return SUCCESS;
}
HashReturn fugue512_full(hashState_fugue *hs, void *hashval, const void *data, DataLength databitlen)
{
fugue512_Init(hs, 512);
fugue512_Update(hs, data, databitlen*8);
fugue512_Final(hs, hashval);
return SUCCESS;
}
#endif // AES

50
algo/fugue/fugue-aesni.h Normal file
View File

@@ -0,0 +1,50 @@
/*
* file : hash_api.h
* version : 1.0.208
* date : 14.12.2010
*
* Fugue vperm implementation Hash API
*
* Cagdas Calik
* ccalik@metu.edu.tr
* Institute of Applied Mathematics, Middle East Technical University, Turkey.
*
*/
#ifndef FUGUE_HASH_API_H
#define FUGUE_HASH_API_H
#if defined(__AES__)
#if !defined(__SSE4_1__)
#error "Unsupported configuration, AES needs SSE4.1. Compile without AES."
#endif
#include "algo/sha/sha3_common.h"
#include "simd-utils.h"
typedef struct
{
__m128i state[12];
unsigned int base;
unsigned int uHashSize;
unsigned int uBlockLength;
unsigned int uBufferBytes;
DataLength processed_bits;
BitSequence buffer[4];
} hashState_fugue __attribute__ ((aligned (64)));
HashReturn fugue512_Init(hashState_fugue *state, int hashbitlen);
HashReturn fugue512_Update(hashState_fugue *state, const void *data, DataLength databitlen);
HashReturn fugue512_Final(hashState_fugue *state, void *hashval);
HashReturn fugue512_full(hashState_fugue *hs, void *hashval, const void *data, DataLength databitlen);
#endif // AES
#endif // HASH_API_H

View File

@@ -74,6 +74,14 @@ void sph_fugue512_close(void *cc, void *dst);
void sph_fugue512_addbits_and_close(
void *cc, unsigned ub, unsigned n, void *dst);
#define sph_fugue512_full( cc, dst, data, len ) \
do{ \
sph_fugue512_init( cc ); \
sph_fugue512( cc, data, len ); \
sph_fugue512_close( cc, dst ); \
}while(0)
#ifdef __cplusplus
}
#endif

View File

@@ -53,7 +53,7 @@ int scanhash_groestl_4way( struct work *work, uint32_t max_nonce,
if ( fulltest( hash+(lane<<3), ptarget) && !opt_benchmark )
{
pdata[19] = n + lane;
submit_lane_solution( work, hash+(lane<<3), mythr, lane );
submit_solution( work, hash+(lane<<3), mythr );
}
n += 4;
} while ( ( n < last_nonce ) && !work_restart[thr_id].restart );

View File

@@ -15,7 +15,9 @@
#include "miner.h"
#include "simd-utils.h"
#if defined(__VAES__) && defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#if defined(__AVX2__) && defined(__VAES__)
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
int groestl256_4way_init( groestl256_4way_context* ctx, uint64_t hashlen )
@@ -43,13 +45,13 @@ int groestl256_4way_init( groestl256_4way_context* ctx, uint64_t hashlen )
}
int groestl256_4way_full( groestl256_4way_context* ctx, void* output,
const void* input, uint64_t databitlen )
const void* input, uint64_t datalen )
{
const int len = (int)databitlen / 128;
const int hashlen_m128i = 32 / 16; // bytes to __m128i
const int len = (int)datalen >> 4;
const int hashlen_m128i = 32 >> 4; // bytes to __m128i
const int hash_offset = SIZE256 - hashlen_m128i;
int rem = ctx->rem_ptr;
int blocks = len / SIZE256;
uint64_t blocks = len / SIZE256;
__m512i* in = (__m512i*)input;
int i;
@@ -87,21 +89,21 @@ int groestl256_4way_full( groestl256_4way_context* ctx, void* output,
if ( i == SIZE256 - 1 )
{
// only 1 vector left in buffer, all padding at once
ctx->buffer[i] = m512_const2_64( (uint64_t)blocks << 56, 0x80 );
ctx->buffer[i] = m512_const2_64( blocks << 56, 0x80 );
}
else
{
// add first padding
ctx->buffer[i] = m512_const4_64( 0, 0x80, 0, 0x80 );
ctx->buffer[i] = m512_const2_64( 0, 0x80 );
// add zero padding
for ( i += 1; i < SIZE256 - 1; i++ )
ctx->buffer[i] = m512_zero;
// add length padding, second last byte is zero unless blocks > 255
ctx->buffer[i] = m512_const2_64( (uint64_t)blocks << 56, 0 );
ctx->buffer[i] = m512_const2_64( blocks << 56, 0 );
}
// digest final padding block and do output transform
// digest final padding block and do output transform
TF512_4way( ctx->chaining, ctx->buffer );
OF512_4way( ctx->chaining );
@@ -120,7 +122,7 @@ int groestl256_4way_update_close( groestl256_4way_context* ctx, void* output,
const int hashlen_m128i = ctx->hashlen / 16; // bytes to __m128i
const int hash_offset = SIZE256 - hashlen_m128i;
int rem = ctx->rem_ptr;
int blocks = len / SIZE256;
uint64_t blocks = len / SIZE256;
__m512i* in = (__m512i*)input;
int i;
@@ -144,20 +146,18 @@ int groestl256_4way_update_close( groestl256_4way_context* ctx, void* output,
if ( i == SIZE256 - 1 )
{
// only 1 vector left in buffer, all padding at once
ctx->buffer[i] = m512_const1_128( _mm_set_epi8(
blocks, blocks>>8,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0x80 ) );
ctx->buffer[i] = m512_const2_64( blocks << 56, 0x80 );
}
else
{
// add first padding
ctx->buffer[i] = m512_const4_64( 0, 0x80, 0, 0x80 );
ctx->buffer[i] = m512_const2_64( 0, 0x80 );
// add zero padding
for ( i += 1; i < SIZE256 - 1; i++ )
ctx->buffer[i] = m512_zero;
// add length padding, second last byte is zero unless blocks > 255
ctx->buffer[i] = m512_const1_128( _mm_set_epi8(
blocks, blocks>>8, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0 ) );
ctx->buffer[i] = m512_const2_64( blocks << 56, 0 );
}
// digest final padding block and do output transform
@@ -172,5 +172,159 @@ int groestl256_4way_update_close( groestl256_4way_context* ctx, void* output,
return 0;
}
#endif // VAES
#endif // AVX512
// AVX2 + VAES
int groestl256_2way_init( groestl256_2way_context* ctx, uint64_t hashlen )
{
int i;
ctx->hashlen = hashlen;
if (ctx->chaining == NULL || ctx->buffer == NULL)
return 1;
for ( i = 0; i < SIZE256; i++ )
{
ctx->chaining[i] = m256_zero;
ctx->buffer[i] = m256_zero;
}
// The only non-zero in the IV is len. It can be hard coded.
ctx->chaining[ 3 ] = m256_const2_64( 0, 0x0100000000000000 );
ctx->buf_ptr = 0;
ctx->rem_ptr = 0;
return 0;
}
int groestl256_2way_full( groestl256_2way_context* ctx, void* output,
const void* input, uint64_t datalen )
{
const int len = (int)datalen >> 4;
const int hashlen_m128i = 32 >> 4; // bytes to __m128i
const int hash_offset = SIZE256 - hashlen_m128i;
int rem = ctx->rem_ptr;
uint64_t blocks = len / SIZE256;
__m256i* in = (__m256i*)input;
int i;
if (ctx->chaining == NULL || ctx->buffer == NULL)
return 1;
for ( i = 0; i < SIZE256; i++ )
{
ctx->chaining[i] = m256_zero;
ctx->buffer[i] = m256_zero;
}
// The only non-zero in the IV is len. It can be hard coded.
ctx->chaining[ 3 ] = m256_const2_64( 0, 0x0100000000000000 );
ctx->buf_ptr = 0;
ctx->rem_ptr = 0;
// --- update ---
// digest any full blocks, process directly from input
for ( i = 0; i < blocks; i++ )
TF512_2way( ctx->chaining, &in[ i * SIZE256 ] );
ctx->buf_ptr = blocks * SIZE256;
// copy any remaining data to buffer, it may already contain data
// from a previous update for a midstate precalc
for ( i = 0; i < len % SIZE256; i++ )
ctx->buffer[ rem + i ] = in[ ctx->buf_ptr + i ];
i += rem; // use i as rem_ptr in final
//--- final ---
blocks++; // adjust for final block
if ( i == SIZE256 - 1 )
{
// only 1 vector left in buffer, all padding at once
ctx->buffer[i] = m256_const2_64( blocks << 56, 0x80 );
}
else
{
// add first padding
ctx->buffer[i] = m256_const2_64( 0, 0x80 );
// add zero padding
for ( i += 1; i < SIZE256 - 1; i++ )
ctx->buffer[i] = m256_zero;
// add length padding, second last byte is zero unless blocks > 255
ctx->buffer[i] = m256_const2_64( blocks << 56, 0 );
}
// digest final padding block and do output transform
TF512_2way( ctx->chaining, ctx->buffer );
OF512_2way( ctx->chaining );
// store hash result in output
for ( i = 0; i < hashlen_m128i; i++ )
casti_m256i( output, i ) = ctx->chaining[ hash_offset + i ];
return 0;
}
int groestl256_2way_update_close( groestl256_2way_context* ctx, void* output,
const void* input, uint64_t databitlen )
{
const int len = (int)databitlen / 128;
const int hashlen_m128i = ctx->hashlen / 16; // bytes to __m128i
const int hash_offset = SIZE256 - hashlen_m128i;
int rem = ctx->rem_ptr;
uint64_t blocks = len / SIZE256;
__m256i* in = (__m256i*)input;
int i;
// --- update ---
// digest any full blocks, process directly from input
for ( i = 0; i < blocks; i++ )
TF512_2way( ctx->chaining, &in[ i * SIZE256 ] );
ctx->buf_ptr = blocks * SIZE256;
// copy any remaining data to buffer, it may already contain data
// from a previous update for a midstate precalc
for ( i = 0; i < len % SIZE256; i++ )
ctx->buffer[ rem + i ] = in[ ctx->buf_ptr + i ];
i += rem; // use i as rem_ptr in final
//--- final ---
blocks++; // adjust for final block
if ( i == SIZE256 - 1 )
{
// only 1 vector left in buffer, all padding at once
ctx->buffer[i] = m256_const2_64( blocks << 56, 0x80 );
}
else
{
// add first padding
ctx->buffer[i] = m256_const2_64( 0, 0x80 );
// add zero padding
for ( i += 1; i < SIZE256 - 1; i++ )
ctx->buffer[i] = m256_zero;
// add length padding, second last byte is zero unless blocks > 255
ctx->buffer[i] = m256_const2_64( blocks << 56, 0 );
}
// digest final padding block and do output transform
TF512_2way( ctx->chaining, ctx->buffer );
OF512_2way( ctx->chaining );
// store hash result in output
for ( i = 0; i < hashlen_m128i; i++ )
casti_m256i( output, i ) = ctx->chaining[ hash_offset + i ];
return 0;
}
#endif // VAES

View File

@@ -18,8 +18,8 @@
#endif
#include <stdlib.h>
#if defined(__VAES__) && defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#if defined(__AVX2__) && defined(__VAES__)
#define LENGTH (256)
//#include "brg_endian.h"
@@ -48,6 +48,8 @@
#define SIZE256 (SIZE_512/16)
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
typedef struct {
__attribute__ ((aligned (128))) __m512i chaining[SIZE256];
__attribute__ ((aligned (64))) __m512i buffer[SIZE256];
@@ -55,7 +57,7 @@ typedef struct {
int blk_count; // SIZE_m128i
int buf_ptr; // __m128i offset
int rem_ptr;
int databitlen; // bits
// int databitlen; // bits
} groestl256_4way_context;
@@ -74,5 +76,25 @@ int groestl256_4way_update_close( groestl256_4way_context*, void*,
int groestl256_4way_full( groestl256_4way_context*, void*,
const void*, uint64_t );
#endif
#endif
#endif // AVX512
typedef struct {
__attribute__ ((aligned (128))) __m256i chaining[SIZE256];
__attribute__ ((aligned (64))) __m256i buffer[SIZE256];
int hashlen; // byte
int blk_count; // SIZE_m128i
int buf_ptr; // __m128i offset
int rem_ptr;
// int databitlen; // bits
} groestl256_2way_context;
int groestl256_2way_init( groestl256_2way_context*, uint64_t );
int groestl256_2way_update_close( groestl256_2way_context*, void*,
const void*, uint64_t );
int groestl256_2way_full( groestl256_2way_context*, void*,
const void*, uint64_t );
#endif // VAES
#endif // GROESTL256_HASH_4WAY_H__

View File

@@ -7,13 +7,13 @@
* This code is placed in the public domain
*/
#if !defined(GROESTL256_INTR_4WAY_H__)
#define GROESTL256_INTR_4WAY_H__ 1
#include "groestl256-hash-4way.h"
#if defined(__VAES__)
#if defined(__AVX2__) && defined(__VAES__)
static const __m128i round_const_l0[] __attribute__ ((aligned (64))) =
{
{ 0x7060504030201000, 0xffffffffffffffff },
@@ -42,6 +42,8 @@ static const __m128i round_const_l7[] __attribute__ ((aligned (64))) =
{ 0x0000000000000000, 0x8696a6b6c6d6e6f6 }
};
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
static const __m512i TRANSP_MASK = { 0x0d0509010c040800, 0x0f070b030e060a02,
0x1d1519111c141810, 0x1f171b131e161a12,
0x2d2529212c242820, 0x2f272b232e262a22,
@@ -499,5 +501,398 @@ void OF512_4way( __m512i* chaining )
chaining[3] = xmm11;
}
#endif // AVX512
static const __m256i TRANSP_MASK_2WAY =
{ 0x0d0509010c040800, 0x0f070b030e060a02,
0x1d1519111c141810, 0x1f171b131e161a12 };
static const __m256i SUBSH_MASK0_2WAY =
{ 0x0c0f0104070b0e00, 0x03060a0d08020509,
0x1c1f1114171b1e10, 0x13161a1d18121519 };
static const __m256i SUBSH_MASK1_2WAY =
{ 0x0e090205000d0801, 0x04070c0f0a03060b,
0x1e191215101d1801, 0x14171c1f1a13161b };
static const __m256i SUBSH_MASK2_2WAY =
{ 0x080b0306010f0a02, 0x05000e090c04070d,
0x181b1316111f1a12, 0x15101e191c14171d };
static const __m256i SUBSH_MASK3_2WAY =
{ 0x0a0d040702090c03, 0x0601080b0e05000f,
0x1a1d141712191c13, 0x1611181b1e15101f };
static const __m256i SUBSH_MASK4_2WAY =
{ 0x0b0e0500030a0d04, 0x0702090c0f060108,
0x1b1e1510131a1d14, 0x1712191c1f161118 };
static const __m256i SUBSH_MASK5_2WAY =
{ 0x0d080601040c0f05, 0x00030b0e0907020a,
0x1d181611141c1f15, 0x10131b1e1917121a };
static const __m256i SUBSH_MASK6_2WAY =
{ 0x0f0a0702050e0906, 0x01040d080b00030c,
0x1f1a1712151e1916, 0x11141d181b10131c };
static const __m256i SUBSH_MASK7_2WAY =
{ 0x090c000306080b07, 0x02050f0a0d01040e,
0x191c101316181b17, 0x12151f1a1d11141e, };
#define tos(a) #a
#define tostr(a) tos(a)
/* xmm[i] will be multiplied by 2
* xmm[j] will be lost
* xmm[k] has to be all 0x1b */
#define MUL2_2WAY(i, j, k){\
j = _mm256_xor_si256(j, j);\
j = _mm256_cmpgt_epi8(j, i );\
i = _mm256_add_epi8(i, i);\
j = _mm256_and_si256(j, k);\
i = _mm256_xor_si256(i, j);\
}
#define MixBytes_2way(a0, a1, a2, a3, a4, a5, a6, a7, b0, b1, b2, b3, b4, b5, b6, b7){\
/* t_i = a_i + a_{i+1} */\
b6 = a0;\
b7 = a1;\
a0 = _mm256_xor_si256(a0, a1);\
b0 = a2;\
a1 = _mm256_xor_si256(a1, a2);\
b1 = a3;\
a2 = _mm256_xor_si256(a2, a3);\
b2 = a4;\
a3 = _mm256_xor_si256(a3, a4);\
b3 = a5;\
a4 = _mm256_xor_si256(a4, a5);\
b4 = a6;\
a5 = _mm256_xor_si256(a5, a6);\
b5 = a7;\
a6 = _mm256_xor_si256(a6, a7);\
a7 = _mm256_xor_si256(a7, b6);\
\
/* build y4 y5 y6 ... in regs xmm8, xmm9, xmm10 by adding t_i*/\
b0 = _mm256_xor_si256(b0, a4);\
b6 = _mm256_xor_si256(b6, a4);\
b1 = _mm256_xor_si256(b1, a5);\
b7 = _mm256_xor_si256(b7, a5);\
b2 = _mm256_xor_si256(b2, a6);\
b0 = _mm256_xor_si256(b0, a6);\
/* spill values y_4, y_5 to memory */\
TEMP0 = b0;\
b3 = _mm256_xor_si256(b3, a7);\
b1 = _mm256_xor_si256(b1, a7);\
TEMP1 = b1;\
b4 = _mm256_xor_si256(b4, a0);\
b2 = _mm256_xor_si256(b2, a0);\
/* save values t0, t1, t2 to xmm8, xmm9 and memory */\
b0 = a0;\
b5 = _mm256_xor_si256(b5, a1);\
b3 = _mm256_xor_si256(b3, a1);\
b1 = a1;\
b6 = _mm256_xor_si256(b6, a2);\
b4 = _mm256_xor_si256(b4, a2);\
TEMP2 = a2;\
b7 = _mm256_xor_si256(b7, a3);\
b5 = _mm256_xor_si256(b5, a3);\
\
/* compute x_i = t_i + t_{i+3} */\
a0 = _mm256_xor_si256(a0, a3);\
a1 = _mm256_xor_si256(a1, a4);\
a2 = _mm256_xor_si256(a2, a5);\
a3 = _mm256_xor_si256(a3, a6);\
a4 = _mm256_xor_si256(a4, a7);\
a5 = _mm256_xor_si256(a5, b0);\
a6 = _mm256_xor_si256(a6, b1);\
a7 = _mm256_xor_si256(a7, TEMP2);\
\
/* compute z_i : double x_i using temp xmm8 and 1B xmm9 */\
/* compute w_i : add y_{i+4} */\
b1 = m256_const1_64( 0x1b1b1b1b1b1b1b1b );\
MUL2_2WAY(a0, b0, b1);\
a0 = _mm256_xor_si256(a0, TEMP0);\
MUL2_2WAY(a1, b0, b1);\
a1 = _mm256_xor_si256(a1, TEMP1);\
MUL2_2WAY(a2, b0, b1);\
a2 = _mm256_xor_si256(a2, b2);\
MUL2_2WAY(a3, b0, b1);\
a3 = _mm256_xor_si256(a3, b3);\
MUL2_2WAY(a4, b0, b1);\
a4 = _mm256_xor_si256(a4, b4);\
MUL2_2WAY(a5, b0, b1);\
a5 = _mm256_xor_si256(a5, b5);\
MUL2_2WAY(a6, b0, b1);\
a6 = _mm256_xor_si256(a6, b6);\
MUL2_2WAY(a7, b0, b1);\
a7 = _mm256_xor_si256(a7, b7);\
\
/* compute v_i : double w_i */\
/* add to y_4 y_5 .. v3, v4, ... */\
MUL2_2WAY(a0, b0, b1);\
b5 = _mm256_xor_si256(b5, a0);\
MUL2_2WAY(a1, b0, b1);\
b6 = _mm256_xor_si256(b6, a1);\
MUL2_2WAY(a2, b0, b1);\
b7 = _mm256_xor_si256(b7, a2);\
MUL2_2WAY(a5, b0, b1);\
b2 = _mm256_xor_si256(b2, a5);\
MUL2_2WAY(a6, b0, b1);\
b3 = _mm256_xor_si256(b3, a6);\
MUL2_2WAY(a7, b0, b1);\
b4 = _mm256_xor_si256(b4, a7);\
MUL2_2WAY(a3, b0, b1);\
MUL2_2WAY(a4, b0, b1);\
b0 = TEMP0;\
b1 = TEMP1;\
b0 = _mm256_xor_si256(b0, a3);\
b1 = _mm256_xor_si256(b1, a4);\
}/*MixBytes*/
#define ROUND_2WAY(i, a0, a1, a2, a3, a4, a5, a6, a7, b0, b1, b2, b3, b4, b5, b6, b7){\
/* AddRoundConstant */\
b1 = m256_const2_64( 0xffffffffffffffff, 0 ); \
a0 = _mm256_xor_si256( a0, m256_const1_128( round_const_l0[i] ) );\
a1 = _mm256_xor_si256( a1, b1 );\
a2 = _mm256_xor_si256( a2, b1 );\
a3 = _mm256_xor_si256( a3, b1 );\
a4 = _mm256_xor_si256( a4, b1 );\
a5 = _mm256_xor_si256( a5, b1 );\
a6 = _mm256_xor_si256( a6, b1 );\
a7 = _mm256_xor_si256( a7, m256_const1_128( round_const_l7[i] ) );\
\
/* ShiftBytes + SubBytes (interleaved) */\
b0 = _mm256_xor_si256( b0, b0 );\
a0 = _mm256_shuffle_epi8( a0, SUBSH_MASK0_2WAY );\
a0 = _mm256_aesenclast_epi128(a0, b0 );\
a1 = _mm256_shuffle_epi8( a1, SUBSH_MASK1_2WAY );\
a1 = _mm256_aesenclast_epi128(a1, b0 );\
a2 = _mm256_shuffle_epi8( a2, SUBSH_MASK2_2WAY );\
a2 = _mm256_aesenclast_epi128(a2, b0 );\
a3 = _mm256_shuffle_epi8( a3, SUBSH_MASK3_2WAY );\
a3 = _mm256_aesenclast_epi128(a3, b0 );\
a4 = _mm256_shuffle_epi8( a4, SUBSH_MASK4_2WAY );\
a4 = _mm256_aesenclast_epi128(a4, b0 );\
a5 = _mm256_shuffle_epi8( a5, SUBSH_MASK5_2WAY );\
a5 = _mm256_aesenclast_epi128(a5, b0 );\
a6 = _mm256_shuffle_epi8( a6, SUBSH_MASK6_2WAY );\
a6 = _mm256_aesenclast_epi128(a6, b0 );\
a7 = _mm256_shuffle_epi8( a7, SUBSH_MASK7_2WAY );\
a7 = _mm256_aesenclast_epi128( a7, b0 );\
\
/* MixBytes */\
MixBytes_2way(a0, a1, a2, a3, a4, a5, a6, a7, b0, b1, b2, b3, b4, b5, b6, b7);\
\
}
/* 10 rounds, P and Q in parallel */
#define ROUNDS_P_Q_2WAY(){\
ROUND_2WAY(0, xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15, xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7);\
ROUND_2WAY(1, xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15);\
ROUND_2WAY(2, xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15, xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7);\
ROUND_2WAY(3, xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15);\
ROUND_2WAY(4, xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15, xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7);\
ROUND_2WAY(5, xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15);\
ROUND_2WAY(6, xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15, xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7);\
ROUND_2WAY(7, xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15);\
ROUND_2WAY(8, xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15, xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7);\
ROUND_2WAY(9, xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15);\
}
#define Matrix_Transpose_A_2way(i0, i1, i2, i3, o1, o2, o3, t0){\
t0 = TRANSP_MASK_2WAY;\
\
i0 = _mm256_shuffle_epi8( i0, t0 );\
i1 = _mm256_shuffle_epi8( i1, t0 );\
i2 = _mm256_shuffle_epi8( i2, t0 );\
i3 = _mm256_shuffle_epi8( i3, t0 );\
\
o1 = i0;\
t0 = i2;\
\
i0 = _mm256_unpacklo_epi16( i0, i1 );\
o1 = _mm256_unpackhi_epi16( o1, i1 );\
i2 = _mm256_unpacklo_epi16( i2, i3 );\
t0 = _mm256_unpackhi_epi16( t0, i3 );\
\
i0 = _mm256_shuffle_epi32( i0, 216 );\
o1 = _mm256_shuffle_epi32( o1, 216 );\
i2 = _mm256_shuffle_epi32( i2, 216 );\
t0 = _mm256_shuffle_epi32( t0, 216 );\
\
o2 = i0;\
o3 = o1;\
\
i0 = _mm256_unpacklo_epi32( i0, i2 );\
o1 = _mm256_unpacklo_epi32( o1, t0 );\
o2 = _mm256_unpackhi_epi32( o2, i2 );\
o3 = _mm256_unpackhi_epi32( o3, t0 );\
}/**/
#define Matrix_Transpose_B_2way(i0, i1, i2, i3, i4, i5, i6, i7, o1, o2, o3, o4, o5, o6, o7){\
o1 = i0;\
o2 = i1;\
i0 = _mm256_unpacklo_epi64( i0, i4 );\
o1 = _mm256_unpackhi_epi64( o1, i4 );\
o3 = i1;\
o4 = i2;\
o2 = _mm256_unpacklo_epi64( o2, i5 );\
o3 = _mm256_unpackhi_epi64( o3, i5 );\
o5 = i2;\
o6 = i3;\
o4 = _mm256_unpacklo_epi64( o4, i6 );\
o5 = _mm256_unpackhi_epi64( o5, i6 );\
o7 = i3;\
o6 = _mm256_unpacklo_epi64( o6, i7 );\
o7 = _mm256_unpackhi_epi64( o7, i7 );\
}/**/
#define Matrix_Transpose_B_INV_2way(i0, i1, i2, i3, i4, i5, i6, i7, o0, o1, o2, o3){\
o0 = i0;\
i0 = _mm256_unpacklo_epi64( i0, i1 );\
o0 = _mm256_unpackhi_epi64( o0, i1 );\
o1 = i2;\
i2 = _mm256_unpacklo_epi64( i2, i3 );\
o1 = _mm256_unpackhi_epi64( o1, i3 );\
o2 = i4;\
i4 = _mm256_unpacklo_epi64( i4, i5 );\
o2 = _mm256_unpackhi_epi64( o2, i5 );\
o3 = i6;\
i6 = _mm256_unpacklo_epi64( i6, i7 );\
o3 = _mm256_unpackhi_epi64( o3, i7 );\
}/**/
#define Matrix_Transpose_O_B_2way(i0, i1, i2, i3, i4, i5, i6, i7, t0){\
t0 = _mm256_xor_si256( t0, t0 );\
i1 = i0;\
i3 = i2;\
i5 = i4;\
i7 = i6;\
i0 = _mm256_unpacklo_epi64( i0, t0 );\
i1 = _mm256_unpackhi_epi64( i1, t0 );\
i2 = _mm256_unpacklo_epi64( i2, t0 );\
i3 = _mm256_unpackhi_epi64( i3, t0 );\
i4 = _mm256_unpacklo_epi64( i4, t0 );\
i5 = _mm256_unpackhi_epi64( i5, t0 );\
i6 = _mm256_unpacklo_epi64( i6, t0 );\
i7 = _mm256_unpackhi_epi64( i7, t0 );\
}/**/
#define Matrix_Transpose_O_B_INV_2way(i0, i1, i2, i3, i4, i5, i6, i7){\
i0 = _mm256_unpacklo_epi64( i0, i1 );\
i2 = _mm256_unpacklo_epi64( i2, i3 );\
i4 = _mm256_unpacklo_epi64( i4, i5 );\
i6 = _mm256_unpacklo_epi64( i6, i7 );\
}/**/
void TF512_2way( __m256i* chaining, __m256i* message )
{
static __m256i xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7;
static __m256i xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15;
static __m256i TEMP0;
static __m256i TEMP1;
static __m256i TEMP2;
/* load message into registers xmm12 - xmm15 */
xmm12 = message[0];
xmm13 = message[1];
xmm14 = message[2];
xmm15 = message[3];
/* transform message M from column ordering into row ordering */
/* we first put two rows (64 bit) of the message into one 128-bit xmm register */
Matrix_Transpose_A_2way(xmm12, xmm13, xmm14, xmm15, xmm2, xmm6, xmm7, xmm0);
/* load previous chaining value */
/* we first put two rows (64 bit) of the CV into one 128-bit xmm register */
xmm8 = chaining[0];
xmm0 = chaining[1];
xmm4 = chaining[2];
xmm5 = chaining[3];
/* xor message to CV get input of P */
/* result: CV+M in xmm8, xmm0, xmm4, xmm5 */
xmm8 = _mm256_xor_si256( xmm8, xmm12 );
xmm0 = _mm256_xor_si256( xmm0, xmm2 );
xmm4 = _mm256_xor_si256( xmm4, xmm6 );
xmm5 = _mm256_xor_si256( xmm5, xmm7 );
/* there are now 2 rows of the Groestl state (P and Q) in each xmm register */
/* unpack to get 1 row of P (64 bit) and Q (64 bit) into one xmm register */
/* result: the 8 rows of P and Q in xmm8 - xmm12 */
Matrix_Transpose_B_2way(xmm8, xmm0, xmm4, xmm5, xmm12, xmm2, xmm6, xmm7, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15);
/* compute the two permutations P and Q in parallel */
ROUNDS_P_Q_2WAY();
/* unpack again to get two rows of P or two rows of Q in one xmm register */
Matrix_Transpose_B_INV_2way(xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15, xmm0, xmm1, xmm2, xmm3);
/* xor output of P and Q */
/* result: P(CV+M)+Q(M) in xmm0...xmm3 */
xmm0 = _mm256_xor_si256( xmm0, xmm8 );
xmm1 = _mm256_xor_si256( xmm1, xmm10 );
xmm2 = _mm256_xor_si256( xmm2, xmm12 );
xmm3 = _mm256_xor_si256( xmm3, xmm14 );
/* xor CV (feed-forward) */
/* result: P(CV+M)+Q(M)+CV in xmm0...xmm3 */
xmm0 = _mm256_xor_si256( xmm0, (chaining[0]) );
xmm1 = _mm256_xor_si256( xmm1, (chaining[1]) );
xmm2 = _mm256_xor_si256( xmm2, (chaining[2]) );
xmm3 = _mm256_xor_si256( xmm3, (chaining[3]) );
/* store CV */
chaining[0] = xmm0;
chaining[1] = xmm1;
chaining[2] = xmm2;
chaining[3] = xmm3;
return;
}
void OF512_2way( __m256i* chaining )
{
static __m256i xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7;
static __m256i xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15;
static __m256i TEMP0;
static __m256i TEMP1;
static __m256i TEMP2;
/* load CV into registers xmm8, xmm10, xmm12, xmm14 */
xmm8 = chaining[0];
xmm10 = chaining[1];
xmm12 = chaining[2];
xmm14 = chaining[3];
/* there are now 2 rows of the CV in one xmm register */
/* unpack to get 1 row of P (64 bit) into one half of an xmm register */
/* result: the 8 input rows of P in xmm8 - xmm15 */
Matrix_Transpose_O_B_2way(xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15, xmm0);
/* compute the permutation P */
/* result: the output of P(CV) in xmm8 - xmm15 */
ROUNDS_P_Q_2WAY();
/* unpack again to get two rows of P in one xmm register */
/* result: P(CV) in xmm8, xmm10, xmm12, xmm14 */
Matrix_Transpose_O_B_INV_2way(xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15);
/* xor CV to P output (feed-forward) */
/* result: P(CV)+CV in xmm8, xmm10, xmm12, xmm14 */
xmm8 = _mm256_xor_si256( xmm8, (chaining[0]) );
xmm10 = _mm256_xor_si256( xmm10, (chaining[1]) );
xmm12 = _mm256_xor_si256( xmm12, (chaining[2]) );
xmm14 = _mm256_xor_si256( xmm14, (chaining[3]) );
/* transform state back from row ordering into column ordering */
/* result: final hash value in xmm9, xmm11 */
Matrix_Transpose_A_2way(xmm8, xmm10, xmm12, xmm14, xmm4, xmm9, xmm11, xmm0);
/* we only need to return the truncated half of the state */
chaining[2] = xmm9;
chaining[3] = xmm11;
}
#endif // VAES
#endif // GROESTL512_INTR_4WAY_H__
#endif // GROESTL256_INTR_4WAY_H__

View File

@@ -15,7 +15,9 @@
#include "miner.h"
#include "simd-utils.h"
#if defined(__VAES__) && defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#if defined(__AVX2__) && defined(__VAES__)
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
int groestl512_4way_init( groestl512_4way_context* ctx, uint64_t hashlen )
{
@@ -41,7 +43,7 @@ int groestl512_4way_update_close( groestl512_4way_context* ctx, void* output,
const int hashlen_m128i = 64 / 16; // bytes to __m128i
const int hash_offset = SIZE512 - hashlen_m128i;
int rem = ctx->rem_ptr;
int blocks = len / SIZE512;
uint64_t blocks = len / SIZE512;
__m512i* in = (__m512i*)input;
int i;
@@ -62,16 +64,14 @@ int groestl512_4way_update_close( groestl512_4way_context* ctx, void* output,
if ( i == SIZE512 - 1 )
{
// only 1 vector left in buffer, all padding at once
ctx->buffer[i] = m512_const1_128( _mm_set_epi8(
blocks, blocks>>8,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0x80 ) );
ctx->buffer[i] = m512_const2_64( blocks << 56, 0x80 );
}
else
{
ctx->buffer[i] = m512_const4_64( 0, 0x80, 0, 0x80 );
ctx->buffer[i] = m512_const2_64( 0, 0x80 );
for ( i += 1; i < SIZE512 - 1; i++ )
ctx->buffer[i] = m512_zero;
ctx->buffer[i] = m512_const1_128( _mm_set_epi8(
blocks, blocks>>8, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0 ) );
ctx->buffer[i] = m512_const2_64( blocks << 56, 0 );
}
TF1024_4way( ctx->chaining, ctx->buffer );
@@ -122,7 +122,7 @@ int groestl512_4way_full( groestl512_4way_context* ctx, void* output,
}
else
{
ctx->buffer[i] = m512_const4_64( 0, 0x80, 0, 0x80 );
ctx->buffer[i] = m512_const2_64( 0, 0x80 );
for ( i += 1; i < SIZE512 - 1; i++ )
ctx->buffer[i] = m512_zero;
ctx->buffer[i] = m512_const2_64( blocks << 56, 0 );
@@ -137,5 +137,128 @@ int groestl512_4way_full( groestl512_4way_context* ctx, void* output,
return 0;
}
#endif // AVX512
// AVX2 + VAES
int groestl512_2way_init( groestl512_2way_context* ctx, uint64_t hashlen )
{
if (ctx->chaining == NULL || ctx->buffer == NULL)
return 1;
memset_zero_256( ctx->chaining, SIZE512 );
memset_zero_256( ctx->buffer, SIZE512 );
// The only non-zero in the IV is len. It can be hard coded.
ctx->chaining[ 6 ] = m256_const2_64( 0x0200000000000000, 0 );
ctx->buf_ptr = 0;
ctx->rem_ptr = 0;
return 0;
}
int groestl512_2way_update_close( groestl512_2way_context* ctx, void* output,
const void* input, uint64_t databitlen )
{
const int len = (int)databitlen / 128;
const int hashlen_m128i = 64 / 16; // bytes to __m128i
const int hash_offset = SIZE512 - hashlen_m128i;
int rem = ctx->rem_ptr;
uint64_t blocks = len / SIZE512;
__m256i* in = (__m256i*)input;
int i;
// --- update ---
for ( i = 0; i < blocks; i++ )
TF1024_2way( ctx->chaining, &in[ i * SIZE512 ] );
ctx->buf_ptr = blocks * SIZE512;
for ( i = 0; i < len % SIZE512; i++ )
ctx->buffer[ rem + i ] = in[ ctx->buf_ptr + i ];
i += rem;
//--- final ---
blocks++; // adjust for final block
if ( i == SIZE512 - 1 )
{
// only 1 vector left in buffer, all padding at once
ctx->buffer[i] = m256_const2_64( blocks << 56, 0x80 );
}
else
{
ctx->buffer[i] = m256_const2_64( 0, 0x80 );
for ( i += 1; i < SIZE512 - 1; i++ )
ctx->buffer[i] = m256_zero;
ctx->buffer[i] = m256_const2_64( blocks << 56, 0 );
}
TF1024_2way( ctx->chaining, ctx->buffer );
OF1024_2way( ctx->chaining );
for ( i = 0; i < hashlen_m128i; i++ )
casti_m256i( output, i ) = ctx->chaining[ hash_offset + i ];
return 0;
}
int groestl512_2way_full( groestl512_2way_context* ctx, void* output,
const void* input, uint64_t datalen )
{
const int len = (int)datalen >> 4;
const int hashlen_m128i = 64 >> 4; // bytes to __m128i
const int hash_offset = SIZE512 - hashlen_m128i;
uint64_t blocks = len / SIZE512;
__m256i* in = (__m256i*)input;
int i;
// --- init ---
memset_zero_256( ctx->chaining, SIZE512 );
memset_zero_256( ctx->buffer, SIZE512 );
ctx->chaining[ 6 ] = m256_const2_64( 0x0200000000000000, 0 );
ctx->buf_ptr = 0;
ctx->rem_ptr = 0;
// --- update ---
for ( i = 0; i < blocks; i++ )
TF1024_2way( ctx->chaining, &in[ i * SIZE512 ] );
ctx->buf_ptr = blocks * SIZE512;
for ( i = 0; i < len % SIZE512; i++ )
ctx->buffer[ ctx->rem_ptr + i ] = in[ ctx->buf_ptr + i ];
i += ctx->rem_ptr;
// --- close ---
blocks++;
if ( i == SIZE512 - 1 )
{
// only 1 vector left in buffer, all padding at once
ctx->buffer[i] = m256_const2_64( blocks << 56, 0x80 );
}
else
{
ctx->buffer[i] = m256_const2_64( 0, 0x80 );
for ( i += 1; i < SIZE512 - 1; i++ )
ctx->buffer[i] = m256_zero;
ctx->buffer[i] = m256_const2_64( blocks << 56, 0 );
}
TF1024_2way( ctx->chaining, ctx->buffer );
OF1024_2way( ctx->chaining );
for ( i = 0; i < hashlen_m128i; i++ )
casti_m256i( output, i ) = ctx->chaining[ hash_offset + i ];
return 0;
}
#endif // VAES

View File

@@ -10,7 +10,7 @@
#endif
#include <stdlib.h>
#if defined(__VAES__) && defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#if defined(__AVX2__) && defined(__VAES__)
#define LENGTH (512)
@@ -36,20 +36,19 @@
#define SIZE512 (SIZE_1024/16)
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
typedef struct {
__attribute__ ((aligned (128))) __m512i chaining[SIZE512];
__attribute__ ((aligned (64))) __m512i buffer[SIZE512];
int blk_count; // SIZE_m128i
int buf_ptr; // __m128i offset
int rem_ptr;
int databitlen; // bits
} groestl512_4way_context;
int groestl512_4way_init( groestl512_4way_context*, uint64_t );
//int reinit_groestl( hashState_groestl* );
int groestl512_4way_update( groestl512_4way_context*, const void*,
uint64_t );
int groestl512_4way_close( groestl512_4way_context*, void* );
@@ -58,5 +57,29 @@ int groestl512_4way_update_close( groestl512_4way_context*, void*,
int groestl512_4way_full( groestl512_4way_context*, void*,
const void*, uint64_t );
#endif // AVX512
// AVX2 + VAES
typedef struct {
__attribute__ ((aligned (128))) __m256i chaining[SIZE512];
__attribute__ ((aligned (64))) __m256i buffer[SIZE512];
int blk_count; // SIZE_m128i
int buf_ptr; // __m128i offset
int rem_ptr;
} groestl512_2way_context;
int groestl512_2way_init( groestl512_2way_context*, uint64_t );
int groestl512_2way_update( groestl512_2way_context*, const void*,
uint64_t );
int groestl512_2way_close( groestl512_2way_context*, void* );
int groestl512_2way_update_close( groestl512_2way_context*, void*,
const void*, uint64_t );
int groestl512_2way_full( groestl512_2way_context*, void*,
const void*, uint64_t );
#endif // VAES
#endif // GROESTL512_HASH_4WAY_H__

View File

@@ -7,13 +7,12 @@
* This code is placed in the public domain
*/
#if !defined(GROESTL512_INTR_4WAY_H__)
#define GROESTL512_INTR_4WAY_H__ 1
#include "groestl512-hash-4way.h"
#if defined(__VAES__)
#if defined(__AVX2__) && defined(__VAES__)
static const __m128i round_const_p[] __attribute__ ((aligned (64))) =
{
@@ -51,6 +50,8 @@ static const __m128i round_const_q[] __attribute__ ((aligned (64))) =
{ 0x8292a2b2c2d2e2f2, 0x0212223242526272 }
};
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
static const __m512i TRANSP_MASK = { 0x0d0509010c040800, 0x0f070b030e060a02,
0x1d1519111c141810, 0x1f171b131e161a12,
0x2d2529212c242820, 0x2f272b232e262a22,
@@ -661,5 +662,578 @@ void OF1024_4way( __m512i* chaining )
return;
}
#endif // AVX512
// AVX2 + VAES
static const __m256i TRANSP_MASK_2WAY =
{ 0x0d0509010c040800, 0x0f070b030e060a02,
0x1d1519111c141810, 0x1f171b131e161a12 };
static const __m256i SUBSH_MASK0_2WAY =
{ 0x0b0e0104070a0d00, 0x0306090c0f020508,
0x1b1e1114171a1d10, 0x1316191c1f121518 };
static const __m256i SUBSH_MASK1_2WAY =
{ 0x0c0f0205080b0e01, 0x04070a0d00030609,
0x1c1f1215181b1e11, 0x14171a1d10131619 };
static const __m256i SUBSH_MASK2_2WAY =
{ 0x0d000306090c0f02, 0x05080b0e0104070a,
0x1d101316191c1f12, 0x15181b1e1114171a };
static const __m256i SUBSH_MASK3_2WAY =
{ 0x0e0104070a0d0003, 0x06090c0f0205080b,
0x1e1114171a1d1013, 0x16191c1f1215181b };
static const __m256i SUBSH_MASK4_2WAY =
{ 0x0f0205080b0e0104, 0x070a0d000306090c,
0x1f1215181b1e1114, 0x171a1d101316191c };
static const __m256i SUBSH_MASK5_2WAY =
{ 0x000306090c0f0205, 0x080b0e0104070a0d,
0x101316191c1f1215, 0x181b1e1114171a1d };
static const __m256i SUBSH_MASK6_2WAY =
{ 0x0104070a0d000306, 0x090c0f0205080b0e,
0x1114171a1d101316, 0x191c1f1215181b1e };
static const __m256i SUBSH_MASK7_2WAY =
{ 0x06090c0f0205080b, 0x0e0104070a0d0003,
0x16191c1f1215181b, 0x1e1114171a1d1013 };
#define tos(a) #a
#define tostr(a) tos(a)
/* xmm[i] will be multiplied by 2
* xmm[j] will be lost
* xmm[k] has to be all 0x1b */
#define MUL2_2WAY(i, j, k){\
j = _mm256_xor_si256(j, j);\
j = _mm256_cmpgt_epi8(j, i );\
i = _mm256_add_epi8(i, i);\
j = _mm256_and_si256(j, k);\
i = _mm256_xor_si256(i, j);\
}
#define MixBytes_2way(a0, a1, a2, a3, a4, a5, a6, a7, b0, b1, b2, b3, b4, b5, b6, b7){\
/* t_i = a_i + a_{i+1} */\
b6 = a0;\
b7 = a1;\
a0 = _mm256_xor_si256(a0, a1);\
b0 = a2;\
a1 = _mm256_xor_si256(a1, a2);\
b1 = a3;\
a2 = _mm256_xor_si256(a2, a3);\
b2 = a4;\
a3 = _mm256_xor_si256(a3, a4);\
b3 = a5;\
a4 = _mm256_xor_si256(a4, a5);\
b4 = a6;\
a5 = _mm256_xor_si256(a5, a6);\
b5 = a7;\
a6 = _mm256_xor_si256(a6, a7);\
a7 = _mm256_xor_si256(a7, b6);\
\
/* build y4 y5 y6 ... in regs xmm8, xmm9, xmm10 by adding t_i*/\
b0 = _mm256_xor_si256(b0, a4);\
b6 = _mm256_xor_si256(b6, a4);\
b1 = _mm256_xor_si256(b1, a5);\
b7 = _mm256_xor_si256(b7, a5);\
b2 = _mm256_xor_si256(b2, a6);\
b0 = _mm256_xor_si256(b0, a6);\
/* spill values y_4, y_5 to memory */\
TEMP0 = b0;\
b3 = _mm256_xor_si256(b3, a7);\
b1 = _mm256_xor_si256(b1, a7);\
TEMP1 = b1;\
b4 = _mm256_xor_si256(b4, a0);\
b2 = _mm256_xor_si256(b2, a0);\
/* save values t0, t1, t2 to xmm8, xmm9 and memory */\
b0 = a0;\
b5 = _mm256_xor_si256(b5, a1);\
b3 = _mm256_xor_si256(b3, a1);\
b1 = a1;\
b6 = _mm256_xor_si256(b6, a2);\
b4 = _mm256_xor_si256(b4, a2);\
TEMP2 = a2;\
b7 = _mm256_xor_si256(b7, a3);\
b5 = _mm256_xor_si256(b5, a3);\
\
/* compute x_i = t_i + t_{i+3} */\
a0 = _mm256_xor_si256(a0, a3);\
a1 = _mm256_xor_si256(a1, a4);\
a2 = _mm256_xor_si256(a2, a5);\
a3 = _mm256_xor_si256(a3, a6);\
a4 = _mm256_xor_si256(a4, a7);\
a5 = _mm256_xor_si256(a5, b0);\
a6 = _mm256_xor_si256(a6, b1);\
a7 = _mm256_xor_si256(a7, TEMP2);\
\
/* compute z_i : double x_i using temp xmm8 and 1B xmm9 */\
/* compute w_i : add y_{i+4} */\
b1 = m256_const1_64( 0x1b1b1b1b1b1b1b1b );\
MUL2_2WAY(a0, b0, b1);\
a0 = _mm256_xor_si256(a0, TEMP0);\
MUL2_2WAY(a1, b0, b1);\
a1 = _mm256_xor_si256(a1, TEMP1);\
MUL2_2WAY(a2, b0, b1);\
a2 = _mm256_xor_si256(a2, b2);\
MUL2_2WAY(a3, b0, b1);\
a3 = _mm256_xor_si256(a3, b3);\
MUL2_2WAY(a4, b0, b1);\
a4 = _mm256_xor_si256(a4, b4);\
MUL2_2WAY(a5, b0, b1);\
a5 = _mm256_xor_si256(a5, b5);\
MUL2_2WAY(a6, b0, b1);\
a6 = _mm256_xor_si256(a6, b6);\
MUL2_2WAY(a7, b0, b1);\
a7 = _mm256_xor_si256(a7, b7);\
\
/* compute v_i : double w_i */\
/* add to y_4 y_5 .. v3, v4, ... */\
MUL2_2WAY(a0, b0, b1);\
b5 = _mm256_xor_si256(b5, a0);\
MUL2_2WAY(a1, b0, b1);\
b6 = _mm256_xor_si256(b6, a1);\
MUL2_2WAY(a2, b0, b1);\
b7 = _mm256_xor_si256(b7, a2);\
MUL2_2WAY(a5, b0, b1);\
b2 = _mm256_xor_si256(b2, a5);\
MUL2_2WAY(a6, b0, b1);\
b3 = _mm256_xor_si256(b3, a6);\
MUL2_2WAY(a7, b0, b1);\
b4 = _mm256_xor_si256(b4, a7);\
MUL2_2WAY(a3, b0, b1);\
MUL2_2WAY(a4, b0, b1);\
b0 = TEMP0;\
b1 = TEMP1;\
b0 = _mm256_xor_si256(b0, a3);\
b1 = _mm256_xor_si256(b1, a4);\
}/*MixBytes*/
/* one round
* a0-a7 = input rows
* b0-b7 = output rows
*/
#define SUBMIX_2WAY(a0, a1, a2, a3, a4, a5, a6, a7, b0, b1, b2, b3, b4, b5, b6, b7){\
/* SubBytes */\
b0 = _mm256_xor_si256( b0, b0 );\
a0 = _mm256_aesenclast_epi128( a0, b0 );\
a1 = _mm256_aesenclast_epi128( a1, b0 );\
a2 = _mm256_aesenclast_epi128( a2, b0 );\
a3 = _mm256_aesenclast_epi128( a3, b0 );\
a4 = _mm256_aesenclast_epi128( a4, b0 );\
a5 = _mm256_aesenclast_epi128( a5, b0 );\
a6 = _mm256_aesenclast_epi128( a6, b0 );\
a7 = _mm256_aesenclast_epi128( a7, b0 );\
/* MixBytes */\
MixBytes_2way(a0, a1, a2, a3, a4, a5, a6, a7, b0, b1, b2, b3, b4, b5, b6, b7);\
}
#define ROUNDS_P_2WAY(){\
uint8_t round_counter = 0;\
for ( round_counter = 0; round_counter < 14; round_counter += 2 ) \
{ \
/* AddRoundConstant P1024 */\
xmm8 = _mm256_xor_si256( xmm8, m256_const1_128( \
casti_m128i( round_const_p, round_counter ) ) ); \
/* ShiftBytes P1024 + pre-AESENCLAST */\
xmm8 = _mm256_shuffle_epi8( xmm8, SUBSH_MASK0_2WAY ); \
xmm9 = _mm256_shuffle_epi8( xmm9, SUBSH_MASK1_2WAY );\
xmm10 = _mm256_shuffle_epi8( xmm10, SUBSH_MASK2_2WAY );\
xmm11 = _mm256_shuffle_epi8( xmm11, SUBSH_MASK3_2WAY );\
xmm12 = _mm256_shuffle_epi8( xmm12, SUBSH_MASK4_2WAY );\
xmm13 = _mm256_shuffle_epi8( xmm13, SUBSH_MASK5_2WAY );\
xmm14 = _mm256_shuffle_epi8( xmm14, SUBSH_MASK6_2WAY );\
xmm15 = _mm256_shuffle_epi8( xmm15, SUBSH_MASK7_2WAY );\
/* SubBytes + MixBytes */\
SUBMIX_2WAY(xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15, xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7);\
\
/* AddRoundConstant P1024 */\
xmm0 = _mm256_xor_si256( xmm0, m256_const1_128( \
casti_m128i( round_const_p, round_counter+1 ) ) ); \
/* ShiftBytes P1024 + pre-AESENCLAST */\
xmm0 = _mm256_shuffle_epi8( xmm0, SUBSH_MASK0_2WAY );\
xmm1 = _mm256_shuffle_epi8( xmm1, SUBSH_MASK1_2WAY );\
xmm2 = _mm256_shuffle_epi8( xmm2, SUBSH_MASK2_2WAY );\
xmm3 = _mm256_shuffle_epi8( xmm3, SUBSH_MASK3_2WAY );\
xmm4 = _mm256_shuffle_epi8( xmm4, SUBSH_MASK4_2WAY );\
xmm5 = _mm256_shuffle_epi8( xmm5, SUBSH_MASK5_2WAY );\
xmm6 = _mm256_shuffle_epi8( xmm6, SUBSH_MASK6_2WAY );\
xmm7 = _mm256_shuffle_epi8( xmm7, SUBSH_MASK7_2WAY );\
/* SubBytes + MixBytes */\
SUBMIX_2WAY(xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15);\
}\
}
#define ROUNDS_Q_2WAY(){\
uint8_t round_counter = 0;\
for ( round_counter = 0; round_counter < 14; round_counter += 2) \
{ \
/* AddRoundConstant Q1024 */\
xmm1 = m256_neg1;\
xmm8 = _mm256_xor_si256( xmm8, xmm1 );\
xmm9 = _mm256_xor_si256( xmm9, xmm1 );\
xmm10 = _mm256_xor_si256( xmm10, xmm1 );\
xmm11 = _mm256_xor_si256( xmm11, xmm1 );\
xmm12 = _mm256_xor_si256( xmm12, xmm1 );\
xmm13 = _mm256_xor_si256( xmm13, xmm1 );\
xmm14 = _mm256_xor_si256( xmm14, xmm1 );\
xmm15 = _mm256_xor_si256( xmm15, m256_const1_128( \
casti_m128i( round_const_q, round_counter ) ) ); \
/* ShiftBytes Q1024 + pre-AESENCLAST */\
xmm8 = _mm256_shuffle_epi8( xmm8, SUBSH_MASK1_2WAY );\
xmm9 = _mm256_shuffle_epi8( xmm9, SUBSH_MASK3_2WAY );\
xmm10 = _mm256_shuffle_epi8( xmm10, SUBSH_MASK5_2WAY );\
xmm11 = _mm256_shuffle_epi8( xmm11, SUBSH_MASK7_2WAY );\
xmm12 = _mm256_shuffle_epi8( xmm12, SUBSH_MASK0_2WAY );\
xmm13 = _mm256_shuffle_epi8( xmm13, SUBSH_MASK2_2WAY );\
xmm14 = _mm256_shuffle_epi8( xmm14, SUBSH_MASK4_2WAY );\
xmm15 = _mm256_shuffle_epi8( xmm15, SUBSH_MASK6_2WAY );\
/* SubBytes + MixBytes */\
SUBMIX_2WAY(xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15, xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7);\
\
/* AddRoundConstant Q1024 */\
xmm9 = m256_neg1;\
xmm0 = _mm256_xor_si256( xmm0, xmm9 );\
xmm1 = _mm256_xor_si256( xmm1, xmm9 );\
xmm2 = _mm256_xor_si256( xmm2, xmm9 );\
xmm3 = _mm256_xor_si256( xmm3, xmm9 );\
xmm4 = _mm256_xor_si256( xmm4, xmm9 );\
xmm5 = _mm256_xor_si256( xmm5, xmm9 );\
xmm6 = _mm256_xor_si256( xmm6, xmm9 );\
xmm7 = _mm256_xor_si256( xmm7, m256_const1_128( \
casti_m128i( round_const_q, round_counter+1 ) ) ); \
/* ShiftBytes Q1024 + pre-AESENCLAST */\
xmm0 = _mm256_shuffle_epi8( xmm0, SUBSH_MASK1_2WAY );\
xmm1 = _mm256_shuffle_epi8( xmm1, SUBSH_MASK3_2WAY );\
xmm2 = _mm256_shuffle_epi8( xmm2, SUBSH_MASK5_2WAY );\
xmm3 = _mm256_shuffle_epi8( xmm3, SUBSH_MASK7_2WAY );\
xmm4 = _mm256_shuffle_epi8( xmm4, SUBSH_MASK0_2WAY );\
xmm5 = _mm256_shuffle_epi8( xmm5, SUBSH_MASK2_2WAY );\
xmm6 = _mm256_shuffle_epi8( xmm6, SUBSH_MASK4_2WAY );\
xmm7 = _mm256_shuffle_epi8( xmm7, SUBSH_MASK6_2WAY );\
/* SubBytes + MixBytes */\
SUBMIX_2WAY(xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15);\
}\
}
#define Matrix_Transpose_2way(i0, i1, i2, i3, i4, i5, i6, i7, t0, t1, t2, t3, t4, t5, t6, t7){\
t0 = TRANSP_MASK_2WAY;\
\
i6 = _mm256_shuffle_epi8(i6, t0);\
i0 = _mm256_shuffle_epi8(i0, t0);\
i1 = _mm256_shuffle_epi8(i1, t0);\
i2 = _mm256_shuffle_epi8(i2, t0);\
i3 = _mm256_shuffle_epi8(i3, t0);\
t1 = i2;\
i4 = _mm256_shuffle_epi8(i4, t0);\
i5 = _mm256_shuffle_epi8(i5, t0);\
t2 = i4;\
t3 = i6;\
i7 = _mm256_shuffle_epi8(i7, t0);\
\
/* continue with unpack using 4 temp registers */\
t0 = i0;\
t2 = _mm256_unpackhi_epi16(t2, i5);\
i4 = _mm256_unpacklo_epi16(i4, i5);\
t3 = _mm256_unpackhi_epi16(t3, i7);\
i6 = _mm256_unpacklo_epi16(i6, i7);\
t0 = _mm256_unpackhi_epi16(t0, i1);\
t1 = _mm256_unpackhi_epi16(t1, i3);\
i2 = _mm256_unpacklo_epi16(i2, i3);\
i0 = _mm256_unpacklo_epi16(i0, i1);\
\
/* shuffle with immediate */\
t0 = _mm256_shuffle_epi32(t0, 216);\
t1 = _mm256_shuffle_epi32(t1, 216);\
t2 = _mm256_shuffle_epi32(t2, 216);\
t3 = _mm256_shuffle_epi32(t3, 216);\
i0 = _mm256_shuffle_epi32(i0, 216);\
i2 = _mm256_shuffle_epi32(i2, 216);\
i4 = _mm256_shuffle_epi32(i4, 216);\
i6 = _mm256_shuffle_epi32(i6, 216);\
\
/* continue with unpack */\
t4 = i0;\
i0 = _mm256_unpacklo_epi32(i0, i2);\
t4 = _mm256_unpackhi_epi32(t4, i2);\
t5 = t0;\
t0 = _mm256_unpacklo_epi32(t0, t1);\
t5 = _mm256_unpackhi_epi32(t5, t1);\
t6 = i4;\
i4 = _mm256_unpacklo_epi32(i4, i6);\
t7 = t2;\
t6 = _mm256_unpackhi_epi32(t6, i6);\
i2 = t0;\
t2 = _mm256_unpacklo_epi32(t2, t3);\
i3 = t0;\
t7 = _mm256_unpackhi_epi32(t7, t3);\
\
/* there are now 2 rows in each xmm */\
/* unpack to get 1 row of CV in each xmm */\
i1 = i0;\
i1 = _mm256_unpackhi_epi64(i1, i4);\
i0 = _mm256_unpacklo_epi64(i0, i4);\
i4 = t4;\
i3 = _mm256_unpackhi_epi64(i3, t2);\
i5 = t4;\
i2 = _mm256_unpacklo_epi64(i2, t2);\
i6 = t5;\
i5 = _mm256_unpackhi_epi64(i5, t6);\
i7 = t5;\
i4 = _mm256_unpacklo_epi64(i4, t6);\
i7 = _mm256_unpackhi_epi64(i7, t7);\
i6 = _mm256_unpacklo_epi64(i6, t7);\
/* transpose done */\
}/**/
#define Matrix_Transpose_INV_2way(i0, i1, i2, i3, i4, i5, i6, i7, o0, o1, o2, t0, t1, t2, t3, t4){\
/* transpose matrix to get output format */\
o1 = i0;\
i0 = _mm256_unpacklo_epi64(i0, i1);\
o1 = _mm256_unpackhi_epi64(o1, i1);\
t0 = i2;\
i2 = _mm256_unpacklo_epi64(i2, i3);\
t0 = _mm256_unpackhi_epi64(t0, i3);\
t1 = i4;\
i4 = _mm256_unpacklo_epi64(i4, i5);\
t1 = _mm256_unpackhi_epi64(t1, i5);\
t2 = i6;\
o0 = TRANSP_MASK_2WAY;\
i6 = _mm256_unpacklo_epi64(i6, i7);\
t2 = _mm256_unpackhi_epi64(t2, i7);\
/* load transpose mask into a register, because it will be used 8 times */\
i0 = _mm256_shuffle_epi8(i0, o0);\
i2 = _mm256_shuffle_epi8(i2, o0);\
i4 = _mm256_shuffle_epi8(i4, o0);\
i6 = _mm256_shuffle_epi8(i6, o0);\
o1 = _mm256_shuffle_epi8(o1, o0);\
t0 = _mm256_shuffle_epi8(t0, o0);\
t1 = _mm256_shuffle_epi8(t1, o0);\
t2 = _mm256_shuffle_epi8(t2, o0);\
/* continue with unpack using 4 temp registers */\
t3 = i4;\
o2 = o1;\
o0 = i0;\
t4 = t1;\
\
t3 = _mm256_unpackhi_epi16(t3, i6);\
i4 = _mm256_unpacklo_epi16(i4, i6);\
o0 = _mm256_unpackhi_epi16(o0, i2);\
i0 = _mm256_unpacklo_epi16(i0, i2);\
o2 = _mm256_unpackhi_epi16(o2, t0);\
o1 = _mm256_unpacklo_epi16(o1, t0);\
t4 = _mm256_unpackhi_epi16(t4, t2);\
t1 = _mm256_unpacklo_epi16(t1, t2);\
/* shuffle with immediate */\
i4 = _mm256_shuffle_epi32(i4, 216);\
t3 = _mm256_shuffle_epi32(t3, 216);\
o1 = _mm256_shuffle_epi32(o1, 216);\
o2 = _mm256_shuffle_epi32(o2, 216);\
i0 = _mm256_shuffle_epi32(i0, 216);\
o0 = _mm256_shuffle_epi32(o0, 216);\
t1 = _mm256_shuffle_epi32(t1, 216);\
t4 = _mm256_shuffle_epi32(t4, 216);\
/* continue with unpack */\
i1 = i0;\
i3 = o0;\
i5 = o1;\
i7 = o2;\
i0 = _mm256_unpacklo_epi32(i0, i4);\
i1 = _mm256_unpackhi_epi32(i1, i4);\
o0 = _mm256_unpacklo_epi32(o0, t3);\
i3 = _mm256_unpackhi_epi32(i3, t3);\
o1 = _mm256_unpacklo_epi32(o1, t1);\
i5 = _mm256_unpackhi_epi32(i5, t1);\
o2 = _mm256_unpacklo_epi32(o2, t4);\
i7 = _mm256_unpackhi_epi32(i7, t4);\
/* transpose done */\
}/**/
void INIT_2way( __m256i *chaining )
{
static __m256i xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7;
static __m256i xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15;
/* load IV into registers xmm8 - xmm15 */
xmm8 = chaining[0];
xmm9 = chaining[1];
xmm10 = chaining[2];
xmm11 = chaining[3];
xmm12 = chaining[4];
xmm13 = chaining[5];
xmm14 = chaining[6];
xmm15 = chaining[7];
/* transform chaining value from column ordering into row ordering */
Matrix_Transpose_2way(xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15, xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7);
/* store transposed IV */
chaining[0] = xmm8;
chaining[1] = xmm9;
chaining[2] = xmm10;
chaining[3] = xmm11;
chaining[4] = xmm12;
chaining[5] = xmm13;
chaining[6] = xmm14;
chaining[7] = xmm15;
}
void TF1024_2way( __m256i *chaining, const __m256i *message )
{
static __m256i xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7;
static __m256i xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15;
static __m256i QTEMP[8];
static __m256i TEMP0;
static __m256i TEMP1;
static __m256i TEMP2;
/* load message into registers xmm8 - xmm15 (Q = message) */
xmm8 = message[0];
xmm9 = message[1];
xmm10 = message[2];
xmm11 = message[3];
xmm12 = message[4];
xmm13 = message[5];
xmm14 = message[6];
xmm15 = message[7];
/* transform message M from column ordering into row ordering */
Matrix_Transpose_2way(xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15, xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7);
/* store message M (Q input) for later */
QTEMP[0] = xmm8;
QTEMP[1] = xmm9;
QTEMP[2] = xmm10;
QTEMP[3] = xmm11;
QTEMP[4] = xmm12;
QTEMP[5] = xmm13;
QTEMP[6] = xmm14;
QTEMP[7] = xmm15;
/* xor CV to message to get P input */
/* result: CV+M in xmm8...xmm15 */
xmm8 = _mm256_xor_si256( xmm8, (chaining[0]) );
xmm9 = _mm256_xor_si256( xmm9, (chaining[1]) );
xmm10 = _mm256_xor_si256( xmm10, (chaining[2]) );
xmm11 = _mm256_xor_si256( xmm11, (chaining[3]) );
xmm12 = _mm256_xor_si256( xmm12, (chaining[4]) );
xmm13 = _mm256_xor_si256( xmm13, (chaining[5]) );
xmm14 = _mm256_xor_si256( xmm14, (chaining[6]) );
xmm15 = _mm256_xor_si256( xmm15, (chaining[7]) );
/* compute permutation P */
/* result: P(CV+M) in xmm8...xmm15 */
ROUNDS_P_2WAY();
/* xor CV to P output (feed-forward) */
/* result: P(CV+M)+CV in xmm8...xmm15 */
xmm8 = _mm256_xor_si256( xmm8, (chaining[0]) );
xmm9 = _mm256_xor_si256( xmm9, (chaining[1]) );
xmm10 = _mm256_xor_si256( xmm10, (chaining[2]) );
xmm11 = _mm256_xor_si256( xmm11, (chaining[3]) );
xmm12 = _mm256_xor_si256( xmm12, (chaining[4]) );
xmm13 = _mm256_xor_si256( xmm13, (chaining[5]) );
xmm14 = _mm256_xor_si256( xmm14, (chaining[6]) );
xmm15 = _mm256_xor_si256( xmm15, (chaining[7]) );
/* store P(CV+M)+CV */
chaining[0] = xmm8;
chaining[1] = xmm9;
chaining[2] = xmm10;
chaining[3] = xmm11;
chaining[4] = xmm12;
chaining[5] = xmm13;
chaining[6] = xmm14;
chaining[7] = xmm15;
/* load message M (Q input) into xmm8-15 */
xmm8 = QTEMP[0];
xmm9 = QTEMP[1];
xmm10 = QTEMP[2];
xmm11 = QTEMP[3];
xmm12 = QTEMP[4];
xmm13 = QTEMP[5];
xmm14 = QTEMP[6];
xmm15 = QTEMP[7];
/* compute permutation Q */
/* result: Q(M) in xmm8...xmm15 */
ROUNDS_Q_2WAY();
/* xor Q output */
/* result: P(CV+M)+CV+Q(M) in xmm8...xmm15 */
xmm8 = _mm256_xor_si256( xmm8, (chaining[0]) );
xmm9 = _mm256_xor_si256( xmm9, (chaining[1]) );
xmm10 = _mm256_xor_si256( xmm10, (chaining[2]) );
xmm11 = _mm256_xor_si256( xmm11, (chaining[3]) );
xmm12 = _mm256_xor_si256( xmm12, (chaining[4]) );
xmm13 = _mm256_xor_si256( xmm13, (chaining[5]) );
xmm14 = _mm256_xor_si256( xmm14, (chaining[6]) );
xmm15 = _mm256_xor_si256( xmm15, (chaining[7]) );
/* store CV */
chaining[0] = xmm8;
chaining[1] = xmm9;
chaining[2] = xmm10;
chaining[3] = xmm11;
chaining[4] = xmm12;
chaining[5] = xmm13;
chaining[6] = xmm14;
chaining[7] = xmm15;
return;
}
void OF1024_2way( __m256i* chaining )
{
static __m256i xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7;
static __m256i xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15;
static __m256i TEMP0;
static __m256i TEMP1;
static __m256i TEMP2;
/* load CV into registers xmm8 - xmm15 */
xmm8 = chaining[0];
xmm9 = chaining[1];
xmm10 = chaining[2];
xmm11 = chaining[3];
xmm12 = chaining[4];
xmm13 = chaining[5];
xmm14 = chaining[6];
xmm15 = chaining[7];
/* compute permutation P */
/* result: P(CV) in xmm8...xmm15 */
ROUNDS_P_2WAY();
/* xor CV to P output (feed-forward) */
/* result: P(CV)+CV in xmm8...xmm15 */
xmm8 = _mm256_xor_si256( xmm8, (chaining[0]) );
xmm9 = _mm256_xor_si256( xmm9, (chaining[1]) );
xmm10 = _mm256_xor_si256( xmm10, (chaining[2]) );
xmm11 = _mm256_xor_si256( xmm11, (chaining[3]) );
xmm12 = _mm256_xor_si256( xmm12, (chaining[4]) );
xmm13 = _mm256_xor_si256( xmm13, (chaining[5]) );
xmm14 = _mm256_xor_si256( xmm14, (chaining[6]) );
xmm15 = _mm256_xor_si256( xmm15, (chaining[7]) );
/* transpose CV back from row ordering to column ordering */
/* result: final hash value in xmm0, xmm6, xmm13, xmm15 */
Matrix_Transpose_INV_2way(xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15, xmm4, xmm0, xmm6, xmm1, xmm2, xmm3, xmm5, xmm7);
/* we only need to return the truncated half of the state */
chaining[4] = xmm0;
chaining[5] = xmm6;
chaining[6] = xmm13;
chaining[7] = xmm15;
return;
}
#endif // VAES
#endif // GROESTL512_INTR_4WAY_H__

View File

@@ -11,7 +11,7 @@
#else
#include "sph_groestl.h"
#endif
#include <openssl/sha.h>
#include "algo/sha/sph_sha2.h"
typedef struct {
#ifdef __AES__
@@ -19,7 +19,7 @@ typedef struct {
#else
sph_groestl512_context groestl;
#endif
SHA256_CTX sha;
sph_sha256_context sha;
} myrgr_ctx_holder;
myrgr_ctx_holder myrgr_ctx;
@@ -31,7 +31,7 @@ void init_myrgr_ctx()
#else
sph_groestl512_init( &myrgr_ctx.groestl );
#endif
SHA256_Init( &myrgr_ctx.sha );
sph_sha256_init( &myrgr_ctx.sha );
}
void myriad_hash(void *output, const void *input)
@@ -39,54 +39,55 @@ void myriad_hash(void *output, const void *input)
myrgr_ctx_holder ctx;
memcpy( &ctx, &myrgr_ctx, sizeof(myrgr_ctx) );
uint32_t _ALIGN(32) hash[16];
uint32_t _ALIGN(32) hash[16];
#ifdef __AES__
update_groestl( &ctx.groestl, (char*)input, 640 );
final_groestl( &ctx.groestl, (char*)hash);
#else
sph_groestl512(&ctx.groestl, input, 80);
sph_groestl512_close(&ctx.groestl, hash);
sph_groestl512(&ctx.groestl, input, 80);
sph_groestl512_close(&ctx.groestl, hash);
#endif
SHA256_Update( &ctx.sha, (unsigned char*)hash, 64 );
SHA256_Final( (unsigned char*)hash, &ctx.sha );
sph_sha256( &ctx.sha, hash, 64 );
sph_sha256_close( &ctx.sha, hash );
memcpy(output, hash, 32);
memcpy(output, hash, 32);
}
int scanhash_myriad( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t _ALIGN(64) endiandata[20];
uint32_t _ALIGN(64) endiandata[20];
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
const uint32_t first_nonce = pdata[19];
uint32_t nonce = first_nonce;
int thr_id = mythr->id; // thr_id arg is deprecated
const uint32_t first_nonce = pdata[19];
uint32_t nonce = first_nonce;
int thr_id = mythr->id;
if (opt_benchmark)
((uint32_t*)ptarget)[7] = 0x0000ff;
if (opt_benchmark)
((uint32_t*)ptarget)[7] = 0x0000ff;
swab32_array( endiandata, pdata, 20 );
swab32_array( endiandata, pdata, 20 );
do {
const uint32_t Htarg = ptarget[7];
uint32_t hash[8];
be32enc(&endiandata[19], nonce);
myriad_hash(hash, endiandata);
do {
const uint32_t Htarg = ptarget[7];
uint32_t hash[8];
be32enc(&endiandata[19], nonce);
myriad_hash(hash, endiandata);
if (hash[7] <= Htarg && fulltest(hash, ptarget)) {
pdata[19] = nonce;
*hashes_done = pdata[19] - first_nonce;
return 1;
}
nonce++;
if (hash[7] <= Htarg && fulltest(hash, ptarget))
{
pdata[19] = nonce;
*hashes_done = pdata[19] - first_nonce;
return 1;
}
nonce++;
} while (nonce < max_nonce && !work_restart[thr_id].restart);
} while (nonce < max_nonce && !work_restart[thr_id].restart);
pdata[19] = nonce;
*hashes_done = pdata[19] - first_nonce + 1;
return 0;
pdata[19] = nonce;
*hashes_done = pdata[19] - first_nonce + 1;
return 0;
}
#endif

View File

@@ -143,7 +143,7 @@ int scanhash_myriad_8way( struct work *work, uint32_t max_nonce,
if ( fulltest( lane_hash, ptarget ) && !opt_benchmark )
{
pdata[19] = n + lane;
submit_lane_solution( work, lane_hash, mythr, lane );
submit_solution( work, lane_hash, mythr );
}
}
n += 8;
@@ -226,7 +226,7 @@ int scanhash_myriad_4way( struct work *work, uint32_t max_nonce,
if ( fulltest( lane_hash, ptarget ) && !opt_benchmark )
{
pdata[19] = n + lane;
submit_lane_solution( work, lane_hash, mythr, lane );
submit_solution( work, lane_hash, mythr );
}
}
n += 4;

View File

@@ -548,7 +548,7 @@ static const sph_u32 T512[64][16] = {
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
// Hamsi 8 way
// Hamsi 8 way AVX512
#define INPUT_BIG8 \
do { \
@@ -849,13 +849,11 @@ void hamsi512_8way_update( hamsi_8way_big_context *sc, const void *data,
void hamsi512_8way_close( hamsi_8way_big_context *sc, void *dst )
{
__m512i pad[1];
int ch, cl;
uint32_t ch, cl;
sph_enc32be( &ch, sc->count_high );
sph_enc32be( &cl, sc->count_low + ( sc->partial_len << 3 ) );
pad[0] = _mm512_set_epi32( cl, ch, cl, ch, cl, ch, cl, ch,
cl, ch, cl, ch, cl, ch, cl, ch );
// pad[0] = m512_const2_32( cl, ch );
pad[0] = _mm512_set1_epi64( ((uint64_t)cl << 32 ) | (uint64_t)ch );
sc->buf[0] = m512_const1_64( 0x80 );
hamsi_8way_big( sc, sc->buf, 1 );
hamsi_8way_big_final( sc, pad );
@@ -863,11 +861,9 @@ void hamsi512_8way_close( hamsi_8way_big_context *sc, void *dst )
mm512_block_bswap_32( (__m512i*)dst, sc->h );
}
#endif // AVX512
// Hamsi 4 way
// Hamsi 4 way AVX2
#define INPUT_BIG \
do { \
@@ -1186,14 +1182,12 @@ void hamsi512_4way_update( hamsi_4way_big_context *sc, const void *data,
void hamsi512_4way_close( hamsi_4way_big_context *sc, void *dst )
{
__m256i pad[1];
int ch, cl;
uint32_t ch, cl;
sph_enc32be( &ch, sc->count_high );
sph_enc32be( &cl, sc->count_low + ( sc->partial_len << 3 ) );
pad[0] = _mm256_set_epi32( cl, ch, cl, ch, cl, ch, cl, ch );
pad[0] = _mm256_set1_epi64x( ((uint64_t)cl << 32 ) | (uint64_t)ch );
sc->buf[0] = m256_const1_64( 0x80 );
// sc->buf[0] = _mm256_set_epi32( 0UL, 0x80UL, 0UL, 0x80UL,
// 0UL, 0x80UL, 0UL, 0x80UL );
hamsi_big( sc, sc->buf, 1 );
hamsi_big_final( sc, pad );

View File

@@ -99,9 +99,13 @@ void hodl_build_block_header( struct work* g_work, uint32_t version,
// called only by thread 0, saves a backup of g_work
void hodl_get_new_work( struct work* work, struct work* g_work)
{
work_free( &hodl_work );
work_copy( &hodl_work, g_work );
hodl_work.data[ algo_gate.nonce_index ] = ( clock() + rand() ) % 9999;
// pthread_rwlock_rdlock( &g_work_lock );
work_free( &hodl_work );
work_copy( &hodl_work, g_work );
hodl_work.data[ algo_gate.nonce_index ] = ( clock() + rand() ) % 9999;
// pthread_rwlock_unlock( &g_work_lock );
}
json_t *hodl_longpoll_rpc_call( CURL *curl, int *err, char* lp_url )
@@ -121,7 +125,7 @@ json_t *hodl_longpoll_rpc_call( CURL *curl, int *err, char* lp_url )
}
// called by every thread, copies the backup to each thread's work.
void hodl_resync_threads( struct work* work )
void hodl_resync_threads( int thr_id, struct work* work )
{
int nonce_index = algo_gate.nonce_index;
pthread_barrier_wait( &hodl_barrier );
@@ -131,6 +135,7 @@ void hodl_resync_threads( struct work* work )
work_copy( work, &hodl_work );
}
work->data[ nonce_index ] = swab32( hodl_work.data[ nonce_index ] );
work_restart[thr_id].restart = 0;
}
bool hodl_do_this_thread( int thr_id )
@@ -144,7 +149,7 @@ int hodl_scanhash( struct work* work, uint32_t max_nonce,
#if defined(__AES__)
GenRandomGarbage( (CacheEntry*)hodl_scratchbuf, work->data, mythr->id );
pthread_barrier_wait( &hodl_barrier );
return scanhash_hodl_wolf( work, max_nonce, hashes_done, thr_info );
return scanhash_hodl_wolf( work, max_nonce, hashes_done, mythr );
#endif
return false;
}
@@ -155,11 +160,10 @@ bool register_hodl_algo( algo_gate_t* gate )
applog( LOG_ERR, "Only CPUs with AES are supported, use legacy version.");
return false;
#endif
// if ( TOTAL_CHUNKS % opt_n_threads )
// {
// applog(LOG_ERR,"Thread count must be power of 2.");
// return false;
// }
if ( GARBAGE_SIZE % opt_n_threads )
applog( LOG_WARNING,"WARNING: Thread count must be power of 2. Miner may crash or produce invalid hash!" );
pthread_barrier_init( &hodl_barrier, NULL, opt_n_threads );
gate->optimizations = SSE42_OPT | AES_OPT | AVX2_OPT;
gate->scanhash = (void*)&hodl_scanhash;
@@ -171,7 +175,7 @@ bool register_hodl_algo( algo_gate_t* gate )
gate->resync_threads = (void*)&hodl_resync_threads;
gate->do_this_thread = (void*)&hodl_do_this_thread;
gate->work_cmp_size = 76;
hodl_scratchbuf = (unsigned char*)malloc( 1 << 30 );
hodl_scratchbuf = (unsigned char*)_mm_malloc( 1 << 30, 64 );
allow_getwork = false;
opt_target_factor = 8388608.0;
return ( hodl_scratchbuf != NULL );

View File

@@ -70,7 +70,7 @@ int scanhash_hodl_wolf( struct work* work, uint32_t max_nonce,
uint32_t *ptarget = work->target;
int threadNumber = mythr->id;
CacheEntry *Garbage = (CacheEntry*)hodl_scratchbuf;
CacheEntry Cache[AES_PARALLEL_N];
CacheEntry Cache[AES_PARALLEL_N] __attribute__ ((aligned (64)));
__m128i* data[AES_PARALLEL_N];
const __m128i* next[AES_PARALLEL_N];
uint32_t CollisionCount = 0;
@@ -129,9 +129,10 @@ int scanhash_hodl_wolf( struct work* work, uint32_t max_nonce,
if( FinalPoW[7] <= ptarget[7] )
{
pdata[20] = swab32( BlockHdr[20] );
pdata[21] = swab32( BlockHdr[21] );
*hashes_done = CollisionCount;
return(1);
pdata[21] = swab32( BlockHdr[21] );
*hashes_done = CollisionCount;
submit_solution( work, FinalPoW, mythr );
return(0);
}
}
}
@@ -198,7 +199,8 @@ int scanhash_hodl_wolf( struct work* work, uint32_t max_nonce,
pdata[20] = swab32( BlockHdr[20] );
pdata[21] = swab32( BlockHdr[21] );
*hashes_done = CollisionCount;
return(1);
submit_solution( work, FinalPoW, mythr );
return(0);
}
}
}

View File

@@ -129,7 +129,7 @@ int scanhash_jha_4way( struct work *work, uint32_t max_nonce,
if ( fulltest( hash+(i<<3), ptarget ) && !opt_benchmark )
{
pdata[19] = n+i;
submit_lane_solution( work, lane_hash, mythr, i );
submit_solution( work, lane_hash, mythr );
}
}
n += 4;

View File

@@ -45,7 +45,7 @@ int scanhash_keccak_8way( struct work *work, uint32_t max_nonce,
if ( valid_hash( lane_hash, ptarget ) )
{
pdata[19] = bswap_32( n + lane );
submit_lane_solution( work, lane_hash, mythr, lane );
submit_solution( work, lane_hash, mythr );
}
}
*noncev = _mm512_add_epi32( *noncev,
@@ -97,7 +97,7 @@ int scanhash_keccak_4way( struct work *work, uint32_t max_nonce,
if ( valid_hash( lane_hash, ptarget ))
{
pdata[19] = bswap_32( n + lane );
submit_lane_solution( work, lane_hash, mythr, lane );
submit_solution( work, lane_hash, mythr );
}
}
*noncev = _mm256_add_epi32( *noncev,

View File

@@ -134,65 +134,47 @@
do { \
DECL64(c0); \
DECL64(c1); \
DECL64(c2); \
DECL64(c3); \
DECL64(c4); \
DECL64(bnn); \
NOT64(bnn, b20); \
KHI_XO(c0, b00, b10, b20); \
KHI_XO(c1, b10, bnn, b30); \
KHI_XA(c2, b20, b30, b40); \
KHI_XO(c3, b30, b40, b00); \
KHI_XA(c4, b40, b00, b10); \
KHI_XA(b20, b20, b30, b40); \
KHI_XO(b30, b30, b40, b00); \
KHI_XA(b40, b40, b00, b10); \
MOV64(b00, c0); \
MOV64(b10, c1); \
MOV64(b20, c2); \
MOV64(b30, c3); \
MOV64(b40, c4); \
NOT64(bnn, b41); \
KHI_XO(c0, b01, b11, b21); \
KHI_XA(c1, b11, b21, b31); \
KHI_XO(c2, b21, b31, bnn); \
KHI_XO(c3, b31, b41, b01); \
KHI_XA(c4, b41, b01, b11); \
KHI_XO(b21, b21, b31, bnn); \
KHI_XO(b31, b31, b41, b01); \
KHI_XA(b41, b41, b01, b11); \
MOV64(b01, c0); \
MOV64(b11, c1); \
MOV64(b21, c2); \
MOV64(b31, c3); \
MOV64(b41, c4); \
NOT64(bnn, b32); \
KHI_XO(c0, b02, b12, b22); \
KHI_XA(c1, b12, b22, b32); \
KHI_XA(c2, b22, bnn, b42); \
KHI_XO(c3, bnn, b42, b02); \
KHI_XA(c4, b42, b02, b12); \
KHI_XA(b22, b22, bnn, b42); \
KHI_XO(b32, bnn, b42, b02); \
KHI_XA(b42, b42, b02, b12); \
MOV64(b02, c0); \
MOV64(b12, c1); \
MOV64(b22, c2); \
MOV64(b32, c3); \
MOV64(b42, c4); \
NOT64(bnn, b33); \
KHI_XA(c0, b03, b13, b23); \
KHI_XO(c1, b13, b23, b33); \
KHI_XO(c2, b23, bnn, b43); \
KHI_XA(c3, bnn, b43, b03); \
KHI_XO(c4, b43, b03, b13); \
KHI_XO(b23, b23, bnn, b43); \
KHI_XA(b33, bnn, b43, b03); \
KHI_XO(b43, b43, b03, b13); \
MOV64(b03, c0); \
MOV64(b13, c1); \
MOV64(b23, c2); \
MOV64(b33, c3); \
MOV64(b43, c4); \
NOT64(bnn, b14); \
KHI_XA(c0, b04, bnn, b24); \
KHI_XO(c1, bnn, b24, b34); \
KHI_XA(c2, b24, b34, b44); \
KHI_XO(c3, b34, b44, b04); \
KHI_XA(c4, b44, b04, b14); \
KHI_XA(b24, b24, b34, b44); \
KHI_XO(b34, b34, b44, b04); \
KHI_XA(b44, b44, b04, b14); \
MOV64(b04, c0); \
MOV64(b14, c1); \
MOV64(b24, c2); \
MOV64(b34, c3); \
MOV64(b44, c4); \
} while (0)
#ifdef IOTA
@@ -201,6 +183,7 @@
#define IOTA(r) XOR64_IOTA(a00, a00, r)
#ifdef P0
#undef P0
#undef P1
#undef P2
#undef P3

View File

@@ -52,7 +52,7 @@ int scanhash_sha3d_8way( struct work *work, uint32_t max_nonce,
if ( valid_hash( lane_hash, ptarget ) )
{
pdata[19] = bswap_32( n + lane );
submit_lane_solution( work, lane_hash, mythr, lane );
submit_solution( work, lane_hash, mythr );
}
}
*noncev = _mm512_add_epi32( *noncev,
@@ -111,7 +111,7 @@ int scanhash_sha3d_4way( struct work *work, uint32_t max_nonce,
if ( valid_hash( lane_hash, ptarget ) )
{
pdata[19] = bswap_32( n + lane );
submit_lane_solution( work, lane_hash, mythr, lane );
submit_solution( work, lane_hash, mythr );
}
}
*noncev = _mm256_add_epi32( *noncev,

View File

@@ -66,6 +66,17 @@ static const uint32 CNS_INIT[128] __attribute((aligned(64))) = {
a = _mm512_xor_si512(a,c0);\
b = _mm512_xor_si512(b,c1);
#define MULT24W( a0, a1 ) \
do { \
__m512i b = _mm512_xor_si512( a0, \
_mm512_maskz_shuffle_epi32( 0xbbbb, a1, 16 ) ); \
a0 = _mm512_or_si512( _mm512_bsrli_epi128( b, 4 ), \
_mm512_bslli_epi128( a1,12 ) ); \
a1 = _mm512_or_si512( _mm512_bsrli_epi128( a1, 4 ), \
_mm512_bslli_epi128( b,12 ) ); \
} while(0)
/*
#define MULT24W( a0, a1, mask ) \
do { \
__m512i b = _mm512_xor_si512( a0, \
@@ -73,6 +84,7 @@ do { \
a0 = _mm512_or_si512( _mm512_bsrli_epi128(b,4), _mm512_bslli_epi128(a1,12) );\
a1 = _mm512_or_si512( _mm512_bsrli_epi128(a1,4), _mm512_bslli_epi128(b,12) );\
} while(0)
*/
// confirm pointer arithmetic
// ok but use array indexes
@@ -235,7 +247,6 @@ void rnd512_4way( luffa_4way_context *state, __m512i *msg )
__m512i msg0, msg1;
__m512i tmp[2];
__m512i x[8];
const __m512i MASK = m512_const2_64( 0, 0x00000000ffffffff );
t0 = chainv[0];
t1 = chainv[1];
@@ -249,7 +260,7 @@ void rnd512_4way( luffa_4way_context *state, __m512i *msg )
t0 = _mm512_xor_si512( t0, chainv[8] );
t1 = _mm512_xor_si512( t1, chainv[9] );
MULT24W( t0, t1, MASK );
MULT24W( t0, t1 );
msg0 = _mm512_shuffle_epi32( msg[0], 27 );
msg1 = _mm512_shuffle_epi32( msg[1], 27 );
@@ -268,68 +279,67 @@ void rnd512_4way( luffa_4way_context *state, __m512i *msg )
t0 = chainv[0];
t1 = chainv[1];
MULT24W( chainv[0], chainv[1], MASK );
MULT24W( chainv[0], chainv[1] );
chainv[0] = _mm512_xor_si512( chainv[0], chainv[2] );
chainv[1] = _mm512_xor_si512( chainv[1], chainv[3] );
MULT24W( chainv[2], chainv[3], MASK );
MULT24W( chainv[2], chainv[3] );
chainv[2] = _mm512_xor_si512(chainv[2], chainv[4]);
chainv[3] = _mm512_xor_si512(chainv[3], chainv[5]);
MULT24W( chainv[4], chainv[5], MASK );
MULT24W( chainv[4], chainv[5] );
chainv[4] = _mm512_xor_si512(chainv[4], chainv[6]);
chainv[5] = _mm512_xor_si512(chainv[5], chainv[7]);
MULT24W( chainv[6], chainv[7], MASK );
MULT24W( chainv[6], chainv[7] );
chainv[6] = _mm512_xor_si512(chainv[6], chainv[8]);
chainv[7] = _mm512_xor_si512(chainv[7], chainv[9]);
MULT24W( chainv[8], chainv[9], MASK );
MULT24W( chainv[8], chainv[9] );
chainv[8] = _mm512_xor_si512( chainv[8], t0 );
chainv[9] = _mm512_xor_si512( chainv[9], t1 );
t0 = chainv[8];
t1 = chainv[9];
MULT24W( chainv[8], chainv[9], MASK );
MULT24W( chainv[8], chainv[9] );
chainv[8] = _mm512_xor_si512( chainv[8], chainv[6] );
chainv[9] = _mm512_xor_si512( chainv[9], chainv[7] );
MULT24W( chainv[6], chainv[7], MASK );
MULT24W( chainv[6], chainv[7] );
chainv[6] = _mm512_xor_si512( chainv[6], chainv[4] );
chainv[7] = _mm512_xor_si512( chainv[7], chainv[5] );
MULT24W( chainv[4], chainv[5], MASK );
MULT24W( chainv[4], chainv[5] );
chainv[4] = _mm512_xor_si512( chainv[4], chainv[2] );
chainv[5] = _mm512_xor_si512( chainv[5], chainv[3] );
MULT24W( chainv[2], chainv[3], MASK );
MULT24W( chainv[2], chainv[3] );
chainv[2] = _mm512_xor_si512( chainv[2], chainv[0] );
chainv[3] = _mm512_xor_si512( chainv[3], chainv[1] );
MULT24W( chainv[0], chainv[1], MASK );
MULT24W( chainv[0], chainv[1] );
chainv[0] = _mm512_xor_si512( _mm512_xor_si512( chainv[0], t0 ), msg0 );
chainv[1] = _mm512_xor_si512( _mm512_xor_si512( chainv[1], t1 ), msg1 );
MULT24W( msg0, msg1, MASK );
MULT24W( msg0, msg1 );
chainv[2] = _mm512_xor_si512( chainv[2], msg0 );
chainv[3] = _mm512_xor_si512( chainv[3], msg1 );
MULT24W( msg0, msg1, MASK );
MULT24W( msg0, msg1 );
chainv[4] = _mm512_xor_si512( chainv[4], msg0 );
chainv[5] = _mm512_xor_si512( chainv[5], msg1 );
MULT24W( msg0, msg1, MASK );
MULT24W( msg0, msg1 );
chainv[6] = _mm512_xor_si512( chainv[6], msg0 );
chainv[7] = _mm512_xor_si512( chainv[7], msg1 );
MULT24W( msg0, msg1, MASK );
MULT24W( msg0, msg1);
chainv[8] = _mm512_xor_si512( chainv[8], msg0 );
chainv[9] = _mm512_xor_si512( chainv[9], msg1 );
MULT24W( msg0, msg1, MASK );
MULT24W( msg0, msg1 );
// replace with ror
chainv[3] = _mm512_rol_epi32( chainv[3], 1 );
chainv[5] = _mm512_rol_epi32( chainv[5], 2 );
chainv[7] = _mm512_rol_epi32( chainv[7], 3 );
@@ -496,7 +506,7 @@ int luffa_4way_update( luffa_4way_context *state, const void *data,
{
// remaining data bytes
buffer[0] = _mm512_shuffle_epi8( vdata[0], shuff_bswap32 );
buffer[1] = m512_const2_64( 0, 0x0000000080000000 );
buffer[1] = m512_const1_i128( 0x0000000080000000 );
}
return 0;
}
@@ -520,7 +530,7 @@ int luffa_4way_close( luffa_4way_context *state, void *hashval )
rnd512_4way( state, buffer );
else
{ // empty pad block, constant data
msg[0] = m512_const2_64( 0, 0x0000000080000000 );
msg[0] = m512_const1_i128( 0x0000000080000000 );
msg[1] = m512_zero;
rnd512_4way( state, msg );
}
@@ -583,13 +593,13 @@ int luffa512_4way_full( luffa_4way_context *state, void *output,
{
// padding of partial block
msg[0] = _mm512_shuffle_epi8( vdata[ 0 ], shuff_bswap32 );
msg[1] = m512_const2_64( 0, 0x0000000080000000 );
msg[1] = m512_const1_i128( 0x0000000080000000 );
rnd512_4way( state, msg );
}
else
{
// empty pad block
msg[0] = m512_const2_64( 0, 0x0000000080000000 );
msg[0] = m512_const1_i128( 0x0000000080000000 );
msg[1] = m512_zero;
rnd512_4way( state, msg );
}
@@ -631,13 +641,13 @@ int luffa_4way_update_close( luffa_4way_context *state,
{
// padding of partial block
msg[0] = _mm512_shuffle_epi8( vdata[ 0 ], shuff_bswap32 );
msg[1] = m512_const2_64( 0, 0x0000000080000000 );
msg[1] = m512_const1_i128( 0x0000000080000000 );
rnd512_4way( state, msg );
}
else
{
// empty pad block
msg[0] = m512_const2_64( 0, 0x0000000080000000 );
msg[0] = m512_const1_i128( 0x0000000080000000 );
msg[1] = m512_zero;
rnd512_4way( state, msg );
}
@@ -832,7 +842,7 @@ void rnd512_2way( luffa_2way_context *state, __m256i *msg )
__m256i msg0, msg1;
__m256i tmp[2];
__m256i x[8];
const __m256i MASK = m256_const2_64( 0, 0x00000000ffffffff );
const __m256i MASK = m256_const1_i128( 0x00000000ffffffff );
t0 = chainv[0];
t1 = chainv[1];
@@ -1088,7 +1098,7 @@ int luffa_2way_update( luffa_2way_context *state, const void *data,
{
// remaining data bytes
buffer[0] = _mm256_shuffle_epi8( vdata[0], shuff_bswap32 );
buffer[1] = m256_const2_64( 0, 0x0000000080000000 );
buffer[1] = m256_const1_i128( 0x0000000080000000 );
}
return 0;
}
@@ -1104,7 +1114,7 @@ int luffa_2way_close( luffa_2way_context *state, void *hashval )
rnd512_2way( state, buffer );
else
{ // empty pad block, constant data
msg[0] = m256_const2_64( 0, 0x0000000080000000 );
msg[0] = m256_const1_i128( 0x0000000080000000 );
msg[1] = m256_zero;
rnd512_2way( state, msg );
}
@@ -1159,13 +1169,13 @@ int luffa512_2way_full( luffa_2way_context *state, void *output,
{
// padding of partial block
msg[0] = _mm256_shuffle_epi8( vdata[ 0 ], shuff_bswap32 );
msg[1] = m256_const2_64( 0, 0x0000000080000000 );
msg[1] = m256_const1_i128( 0x0000000080000000 );
rnd512_2way( state, msg );
}
else
{
// empty pad block
msg[0] = m256_const2_64( 0, 0x0000000080000000 );
msg[0] = m256_const1_i128( 0x0000000080000000 );
msg[1] = m256_zero;
rnd512_2way( state, msg );
}
@@ -1206,13 +1216,13 @@ int luffa_2way_update_close( luffa_2way_context *state,
{
// padding of partial block
msg[0] = _mm256_shuffle_epi8( vdata[ 0 ], shuff_bswap32 );
msg[1] = m256_const2_64( 0, 0x0000000080000000 );
msg[1] = m256_const1_i128( 0x0000000080000000 );
rnd512_2way( state, msg );
}
else
{
// empty pad block
msg[0] = m256_const2_64( 0, 0x0000000080000000 );
msg[0] = m256_const1_i128( 0x0000000080000000 );
msg[1] = m256_zero;
rnd512_2way( state, msg );
}

View File

@@ -23,7 +23,7 @@
#include "simd-utils.h"
#include "luffa_for_sse2.h"
#define MULT2(a0,a1) do \
#define MULT2( a0, a1 ) do \
{ \
__m128i b = _mm_xor_si128( a0, _mm_shuffle_epi32( _mm_and_si128(a1,MASK), 16 ) ); \
a0 = _mm_or_si128( _mm_srli_si128(b,4), _mm_slli_si128(a1,12) ); \
@@ -345,11 +345,11 @@ HashReturn update_and_final_luffa( hashState_luffa *state, BitSequence* output,
// 16 byte partial block exists for 80 byte len
if ( state->rembytes )
// padding of partial block
rnd512( state, m128_const_64( 0, 0x80000000 ),
rnd512( state, m128_const_i128( 0x80000000 ),
mm128_bswap_32( cast_m128i( data ) ) );
else
// empty pad block
rnd512( state, m128_zero, m128_const_64( 0, 0x80000000 ) );
rnd512( state, m128_zero, m128_const_i128( 0x80000000 ) );
finalization512( state, (uint32*) output );
if ( state->hashbitlen > 512 )
@@ -394,11 +394,11 @@ int luffa_full( hashState_luffa *state, BitSequence* output, int hashbitlen,
// 16 byte partial block exists for 80 byte len
if ( state->rembytes )
// padding of partial block
rnd512( state, m128_const_64( 0, 0x80000000 ),
rnd512( state, m128_const_i128( 0x80000000 ),
mm128_bswap_32( cast_m128i( data ) ) );
else
// empty pad block
rnd512( state, m128_zero, m128_const_64( 0, 0x80000000 ) );
rnd512( state, m128_zero, m128_const_i128( 0x80000000 ) );
finalization512( state, (uint32*) output );
if ( state->hashbitlen > 512 )
@@ -606,7 +606,6 @@ static void finalization512( hashState_luffa *state, uint32 *b )
casti_m256i( b, 0 ) = _mm256_shuffle_epi8(
casti_m256i( hash, 0 ), shuff_bswap32 );
// casti_m256i( b, 0 ) = mm256_bswap_32( casti_m256i( hash, 0 ) );
rnd512( state, zero, zero );
@@ -621,7 +620,6 @@ static void finalization512( hashState_luffa *state, uint32 *b )
casti_m256i( b, 1 ) = _mm256_shuffle_epi8(
casti_m256i( hash, 0 ), shuff_bswap32 );
// casti_m256i( b, 1 ) = mm256_bswap_32( casti_m256i( hash, 0 ) );
}
#else

View File

@@ -174,24 +174,19 @@ void allium_16way_hash( void *state, const void *input )
#if defined(__VAES__)
intrlv_4x128( vhash, hash0, hash1, hash2, hash3, 256 );
groestl256_4way_full( &ctx.groestl, vhash, vhash, 256 );
groestl256_4way_full( &ctx.groestl, vhash, vhash, 32 );
dintrlv_4x128( state, state+32, state+64, state+96, vhash, 256 );
intrlv_4x128( vhash, hash4, hash5, hash6, hash7, 256 );
groestl256_4way_full( &ctx.groestl, vhash, vhash, 256 );
groestl256_4way_full( &ctx.groestl, vhash, vhash, 32 );
dintrlv_4x128( state+128, state+160, state+192, state+224, vhash, 256 );
intrlv_4x128( vhash, hash8, hash9, hash10, hash11, 256 );
groestl256_4way_full( &ctx.groestl, vhash, vhash, 256 );
groestl256_4way_full( &ctx.groestl, vhash, vhash, 32 );
dintrlv_4x128( state+256, state+288, state+320, state+352, vhash, 256 );
intrlv_4x128( vhash, hash12, hash13, hash14, hash15, 256 );
groestl256_4way_full( &ctx.groestl, vhash, vhash, 256 );
intrlv_4x128( vhash, hash12, hash13, hash14, hash15, 256 );
groestl256_4way_full( &ctx.groestl, vhash, vhash, 32 );
dintrlv_4x128( state+384, state+416, state+448, state+480, vhash, 256 );
#else
@@ -245,7 +240,7 @@ int scanhash_allium_16way( struct work *work, uint32_t max_nonce,
if ( unlikely( valid_hash( hash+(lane<<3), ptarget ) && !bench ) )
{
pdata[19] = bswap_32( n + lane );
submit_lane_solution( work, hash+(lane<<3), mythr, lane );
submit_solution( work, hash+(lane<<3), mythr );
}
*noncev = _mm512_add_epi32( *noncev, m512_const1_32( 16 ) );
n += 16;
@@ -262,8 +257,11 @@ typedef struct {
keccak256_4way_context keccak;
cubehashParam cube;
skein256_4way_context skein;
#if defined(__VAES__)
groestl256_2way_context groestl;
#else
hashState_groestl256 groestl;
#endif
} allium_8way_ctx_holder;
static __thread allium_8way_ctx_holder allium_8way_ctx;
@@ -273,7 +271,11 @@ bool init_allium_8way_ctx()
keccak256_4way_init( &allium_8way_ctx.keccak );
cubehashInit( &allium_8way_ctx.cube, 256, 16, 32 );
skein256_4way_init( &allium_8way_ctx.skein );
#if defined(__VAES__)
groestl256_2way_init( &allium_8way_ctx.groestl, 32 );
#else
init_groestl256( &allium_8way_ctx.groestl, 32 );
#endif
return true;
}
@@ -352,9 +354,28 @@ void allium_8way_hash( void *hash, const void *input )
skein256_4way_update( &ctx.skein, vhashB, 32 );
skein256_4way_close( &ctx.skein, vhashB );
#if defined(__VAES__)
uint64_t vhashC[4*2] __attribute__ ((aligned (64)));
uint64_t vhashD[4*2] __attribute__ ((aligned (64)));
rintrlv_4x64_2x128( vhashC, vhashD, vhashA, 256 );
groestl256_2way_full( &ctx.groestl, vhashC, vhashC, 32 );
groestl256_2way_full( &ctx.groestl, vhashD, vhashD, 32 );
dintrlv_2x128( hash0, hash1, vhashC, 256 );
dintrlv_2x128( hash2, hash3, vhashD, 256 );
rintrlv_4x64_2x128( vhashC, vhashD, vhashB, 256 );
groestl256_2way_full( &ctx.groestl, vhashC, vhashC, 32 );
groestl256_2way_full( &ctx.groestl, vhashD, vhashD, 32 );
dintrlv_2x128( hash4, hash5, vhashC, 256 );
dintrlv_2x128( hash6, hash7, vhashD, 256 );
#else
dintrlv_4x64( hash0, hash1, hash2, hash3, vhashA, 256 );
dintrlv_4x64( hash4, hash5, hash6, hash7, vhashB, 256 );
groestl256_full( &ctx.groestl, hash0, hash0, 256 );
groestl256_full( &ctx.groestl, hash1, hash1, 256 );
groestl256_full( &ctx.groestl, hash2, hash2, 256 );
@@ -363,6 +384,8 @@ void allium_8way_hash( void *hash, const void *input )
groestl256_full( &ctx.groestl, hash5, hash5, 256 );
groestl256_full( &ctx.groestl, hash6, hash6, 256 );
groestl256_full( &ctx.groestl, hash7, hash7, 256 );
#endif
}
int scanhash_allium_8way( struct work *work, uint32_t max_nonce,
@@ -394,7 +417,7 @@ int scanhash_allium_8way( struct work *work, uint32_t max_nonce,
if ( unlikely( valid_hash( lane_hash, ptarget ) && !bench ) )
{
pdata[19] = bswap_32( n + lane );
submit_lane_solution( work, lane_hash, mythr, lane );
submit_solution( work, lane_hash, mythr );
}
}
n += 8;

View File

@@ -76,37 +76,34 @@ int scanhash_allium( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t _ALIGN(128) hash[8];
uint32_t _ALIGN(128) endiandata[20];
uint32_t _ALIGN(128) edata[20];
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
const uint32_t Htarg = ptarget[7];
const uint32_t first_nonce = pdata[19];
uint32_t nonce = first_nonce;
int thr_id = mythr->id; // thr_id arg is deprecated
const int thr_id = mythr->id;
if ( opt_benchmark )
ptarget[7] = 0x3ffff;
for ( int i = 0; i < 19; i++ )
be32enc( &endiandata[i], pdata[i] );
edata[i] = bswap_32( pdata[i] );
sph_blake256_init( &allium_ctx.blake );
sph_blake256( &allium_ctx.blake, endiandata, 64 );
sph_blake256( &allium_ctx.blake, edata, 64 );
do {
be32enc( &endiandata[19], nonce );
allium_hash( hash, endiandata );
if ( hash[7] <= Htarg )
if ( fulltest( hash, ptarget ) && !opt_benchmark )
edata[19] = nonce;
allium_hash( hash, edata );
if ( valid_hash( hash, ptarget ) && !opt_benchmark )
{
pdata[19] = nonce;
pdata[19] = bswap_32( nonce );
submit_solution( work, hash, mythr );
}
nonce++;
} while ( nonce < max_nonce && !work_restart[thr_id].restart );
pdata[19] = nonce;
*hashes_done = pdata[19] - first_nonce + 1;
*hashes_done = pdata[19] - first_nonce;
return 0;
}

View File

@@ -94,12 +94,12 @@ bool lyra2rev2_thread_init()
const int64_t ROW_LEN_BYTES = ROW_LEN_INT64 * 8;
int size = (int64_t)ROW_LEN_BYTES * 4; // nRows;
#if defined (LYRA2REV2_8WAY)
#if defined (LYRA2REV2_16WAY)
l2v2_wholeMatrix = _mm_malloc( 2 * size, 64 ); // 2 way
init_lyra2rev2_8way_ctx();;
#elif defined (LYRA2REV2_4WAY)
init_lyra2rev2_16way_ctx();;
#elif defined (LYRA2REV2_8WAY)
l2v2_wholeMatrix = _mm_malloc( size, 64 );
init_lyra2rev2_4way_ctx();;
init_lyra2rev2_8way_ctx();;
#else
l2v2_wholeMatrix = _mm_malloc( size, 64 );
init_lyra2rev2_ctx();
@@ -109,17 +109,17 @@ bool lyra2rev2_thread_init()
bool register_lyra2rev2_algo( algo_gate_t* gate )
{
#if defined (LYRA2REV2_8WAY)
#if defined (LYRA2REV2_16WAY)
gate->scanhash = (void*)&scanhash_lyra2rev2_16way;
gate->hash = (void*)&lyra2rev2_16way_hash;
#elif defined (LYRA2REV2_8WAY)
gate->scanhash = (void*)&scanhash_lyra2rev2_8way;
gate->hash = (void*)&lyra2rev2_8way_hash;
#elif defined (LYRA2REV2_4WAY)
gate->scanhash = (void*)&scanhash_lyra2rev2_4way;
gate->hash = (void*)&lyra2rev2_4way_hash;
#else
gate->scanhash = (void*)&scanhash_lyra2rev2;
gate->hash = (void*)&lyra2rev2_hash;
#endif
gate->optimizations = SSE2_OPT | AES_OPT | AVX2_OPT | AVX512_OPT;
gate->optimizations = SSE2_OPT | AVX2_OPT | AVX512_OPT;
gate->miner_thread_init = (void*)&lyra2rev2_thread_init;
opt_target_factor = 256.0;
return true;
@@ -187,7 +187,8 @@ bool register_allium_algo( algo_gate_t* gate )
gate->scanhash = (void*)&scanhash_allium;
gate->hash = (void*)&allium_hash;
#endif
gate->optimizations = SSE2_OPT | AES_OPT | AVX2_OPT | AVX512_OPT | VAES_OPT;
gate->optimizations = SSE2_OPT | AES_OPT | AVX2_OPT | AVX512_OPT
| VAES_OPT | VAES256_OPT;
opt_target_factor = 256.0;
return true;
};
@@ -215,9 +216,6 @@ void phi2_build_extraheader( struct work* g_work, struct stratum_ctx* sctx )
size_t t;
algo_gate.gen_merkle_root( merkle_tree, sctx );
// Increment extranonce2
for ( t = 0; t < sctx->xnonce2_size && !( ++sctx->job.xnonce2[t] ); t++ );
// Assemble block header
algo_gate.build_block_header( g_work, le32dec( sctx->job.version ),
(uint32_t*) sctx->job.prevhash, (uint32_t*) merkle_tree,
le32dec( sctx->job.ntime ), le32dec(sctx->job.nbits), NULL );
@@ -225,16 +223,16 @@ void phi2_build_extraheader( struct work* g_work, struct stratum_ctx* sctx )
g_work->data[ 20+t ] = ((uint32_t*)sctx->job.extra)[t];
}
bool register_phi2_algo( algo_gate_t* gate )
{
// init_phi2_ctx();
gate->optimizations = SSE2_OPT | AES_OPT | AVX2_OPT | AVX512_OPT;
gate->optimizations = SSE2_OPT | AES_OPT | AVX2_OPT | AVX512_OPT | VAES_OPT;
gate->get_work_data_size = (void*)&phi2_get_work_data_size;
gate->decode_extra_data = (void*)&phi2_decode_extra_data;
gate->build_extraheader = (void*)&phi2_build_extraheader;
opt_target_factor = 256.0;
#if defined(PHI2_4WAY)
#if defined(PHI2_8WAY)
gate->scanhash = (void*)&scanhash_phi2_8way;
#elif defined(PHI2_4WAY)
gate->scanhash = (void*)&scanhash_phi2_4way;
#else
init_phi2_ctx();

View File

@@ -51,30 +51,32 @@ bool init_lyra2rev3_ctx();
//////////////////////////////////
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#define LYRA2REV2_8WAY 1
#define LYRA2REV2_16WAY 1
#elif defined(__AVX2__)
#define LYRA2REV2_4WAY 1
#define LYRA2REV2_8WAY 1
#endif
extern __thread uint64_t* l2v2_wholeMatrix;
bool register_lyra2rev2_algo( algo_gate_t* gate );
#if defined(LYRA2REV2_8WAY)
#if defined(LYRA2REV2_16WAY)
void lyra2rev2_16way_hash( void *state, const void *input );
int scanhash_lyra2rev2_16way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
bool init_lyra2rev2_16way_ctx();
#elif defined(LYRA2REV2_8WAY)
void lyra2rev2_8way_hash( void *state, const void *input );
int scanhash_lyra2rev2_8way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
bool init_lyra2rev2_8way_ctx();
#elif defined(LYRA2REV2_4WAY)
void lyra2rev2_4way_hash( void *state, const void *input );
int scanhash_lyra2rev2_4way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
bool init_lyra2rev2_4way_ctx();
#else
void lyra2rev2_hash( void *state, const void *input );
int scanhash_lyra2rev2( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
@@ -184,19 +186,26 @@ bool init_allium_ctx();
/////////////////////////////////////////
#if defined(__AVX2__) && defined(__AES__)
// #define PHI2_4WAY
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#define PHI2_8WAY 1
#elif defined(__AVX2__) && defined(__AES__)
#define PHI2_4WAY 1
#endif
extern bool phi2_has_roots;
bool register_phi2_algo( algo_gate_t* gate );
#if defined(PHI2_4WAY)
#if defined(PHI2_8WAY)
void phi2_8way_hash( void *state, const void *input );
int scanhash_phi2_8way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
#elif defined(PHI2_4WAY)
void phi2_hash_4way( void *state, const void *input );
int scanhash_phi2_4way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
//void init_phi2_ctx();
#else

View File

@@ -76,7 +76,7 @@ int scanhash_lyra2h_4way( struct work *work, uint32_t max_nonce,
&& !opt_benchmark )
{
pdata[19] = n+i;
submit_lane_solution( work, hash+(i<<3), mythr, i );
submit_solution( work, hash+(i<<3), mythr );
}
n += 4;
} while ( (n < max_nonce-4) && !work_restart[thr_id].restart);

View File

@@ -7,23 +7,227 @@
#include "algo/cubehash/cubehash_sse2.h"
#include "algo/cubehash/cube-hash-2way.h"
#if defined (LYRA2REV2_8WAY)
#if defined (LYRA2REV2_16WAY)
typedef struct {
blake256_16way_context blake;
keccak256_8way_context keccak;
cubehashParam cube;
skein256_8way_context skein;
bmw256_16way_context bmw;
} lyra2v2_16way_ctx_holder __attribute__ ((aligned (64)));
static lyra2v2_16way_ctx_holder l2v2_16way_ctx;
bool init_lyra2rev2_16way_ctx()
{
keccak256_8way_init( &l2v2_16way_ctx.keccak );
cubehashInit( &l2v2_16way_ctx.cube, 256, 16, 32 );
skein256_8way_init( &l2v2_16way_ctx.skein );
bmw256_16way_init( &l2v2_16way_ctx.bmw );
return true;
}
void lyra2rev2_16way_hash( void *state, const void *input )
{
uint32_t vhash[8*16] __attribute__ ((aligned (128)));
uint32_t hash0[8] __attribute__ ((aligned (64)));
uint32_t hash1[8] __attribute__ ((aligned (64)));
uint32_t hash2[8] __attribute__ ((aligned (64)));
uint32_t hash3[8] __attribute__ ((aligned (64)));
uint32_t hash4[8] __attribute__ ((aligned (64)));
uint32_t hash5[8] __attribute__ ((aligned (64)));
uint32_t hash6[8] __attribute__ ((aligned (64)));
uint32_t hash7[8] __attribute__ ((aligned (64)));
uint32_t hash8[8] __attribute__ ((aligned (64)));
uint32_t hash9[8] __attribute__ ((aligned (64)));
uint32_t hash10[8] __attribute__ ((aligned (64)));
uint32_t hash11[8] __attribute__ ((aligned (64)));
uint32_t hash12[8] __attribute__ ((aligned (64)));
uint32_t hash13[8] __attribute__ ((aligned (64)));
uint32_t hash14[8] __attribute__ ((aligned (64)));
uint32_t hash15[8] __attribute__ ((aligned (64)));
lyra2v2_16way_ctx_holder ctx __attribute__ ((aligned (64)));
memcpy( &ctx, &l2v2_16way_ctx, sizeof(l2v2_16way_ctx) );
blake256_16way_update( &ctx.blake, input + (64<<4), 16 );
blake256_16way_close( &ctx.blake, vhash );
dintrlv_16x32( hash0, hash1, hash2, hash3,
hash4, hash5, hash6, hash7,
hash8, hash9, hash10, hash11,
hash12, hash13, hash14, hash15, vhash, 256 );
intrlv_8x64( vhash, hash0, hash1, hash2, hash3,
hash4, hash5, hash6, hash7, 256 );
keccak256_8way_update( &ctx.keccak, vhash, 32 );
keccak256_8way_close( &ctx.keccak, vhash );
dintrlv_8x64( hash0, hash1, hash2, hash3,
hash4, hash5, hash6, hash7, vhash, 256 );
intrlv_8x64( vhash, hash8, hash9, hash10, hash11,
hash12, hash13, hash14, hash15, 256 );
keccak256_8way_init( &ctx.keccak );
keccak256_8way_update( &ctx.keccak, vhash, 32 );
keccak256_8way_close( &ctx.keccak, vhash );
dintrlv_8x64( hash8, hash9, hash10, hash11,
hash12, hash13, hash14, hash5, vhash, 256 );
cubehash_full( &ctx.cube, (byte*) hash0, 256, (const byte*) hash0, 32 );
cubehash_full( &ctx.cube, (byte*) hash1, 256, (const byte*) hash1, 32 );
cubehash_full( &ctx.cube, (byte*) hash2, 256, (const byte*) hash2, 32 );
cubehash_full( &ctx.cube, (byte*) hash3, 256, (const byte*) hash3, 32 );
cubehash_full( &ctx.cube, (byte*) hash4, 256, (const byte*) hash4, 32 );
cubehash_full( &ctx.cube, (byte*) hash5, 256, (const byte*) hash5, 32 );
cubehash_full( &ctx.cube, (byte*) hash6, 256, (const byte*) hash6, 32 );
cubehash_full( &ctx.cube, (byte*) hash7, 256, (const byte*) hash7, 32 );
cubehash_full( &ctx.cube, (byte*) hash8, 256, (const byte*) hash8, 32 );
cubehash_full( &ctx.cube, (byte*) hash9, 256, (const byte*) hash9, 32 );
cubehash_full( &ctx.cube, (byte*) hash10, 256, (const byte*) hash10, 32 );
cubehash_full( &ctx.cube, (byte*) hash11, 256, (const byte*) hash11, 32 );
cubehash_full( &ctx.cube, (byte*) hash12, 256, (const byte*) hash12, 32 );
cubehash_full( &ctx.cube, (byte*) hash13, 256, (const byte*) hash13, 32 );
cubehash_full( &ctx.cube, (byte*) hash14, 256, (const byte*) hash14, 32 );
cubehash_full( &ctx.cube, (byte*) hash15, 256, (const byte*) hash15, 32 );
intrlv_2x256( vhash, hash0, hash1, 256 );
LYRA2REV2_2WAY( l2v2_wholeMatrix, vhash, 32, vhash, 32, 1, 4, 4 );
dintrlv_2x256( hash0, hash1, vhash, 256 );
intrlv_2x256( vhash, hash2, hash3, 256 );
LYRA2REV2_2WAY( l2v2_wholeMatrix, vhash, 32, vhash, 32, 1, 4, 4 );
dintrlv_2x256( hash2, hash3, vhash, 256 );
intrlv_2x256( vhash, hash4, hash5, 256 );
LYRA2REV2_2WAY( l2v2_wholeMatrix, vhash, 32, vhash, 32, 1, 4, 4 );
dintrlv_2x256( hash4, hash5, vhash, 256 );
intrlv_2x256( vhash, hash6, hash7, 256 );
LYRA2REV2_2WAY( l2v2_wholeMatrix, vhash, 32, vhash, 32, 1, 4, 4 );
dintrlv_2x256( hash6, hash7, vhash, 256 );
intrlv_2x256( vhash, hash8, hash9, 256 );
LYRA2REV2_2WAY( l2v2_wholeMatrix, vhash, 32, vhash, 32, 1, 4, 4 );
dintrlv_2x256( hash8, hash9, vhash, 256 );
intrlv_2x256( vhash, hash10, hash11, 256 );
LYRA2REV2_2WAY( l2v2_wholeMatrix, vhash, 32, vhash, 32, 1, 4, 4 );
dintrlv_2x256( hash10, hash11, vhash, 256 );
intrlv_2x256( vhash, hash12, hash13, 256 );
LYRA2REV2_2WAY( l2v2_wholeMatrix, vhash, 32, vhash, 32, 1, 4, 4 );
dintrlv_2x256( hash12, hash13, vhash, 256 );
intrlv_2x256( vhash, hash14, hash15, 256 );
LYRA2REV2_2WAY( l2v2_wholeMatrix, vhash, 32, vhash, 32, 1, 4, 4 );
dintrlv_2x256( hash14, hash15, vhash, 256 );
intrlv_8x64( vhash, hash0, hash1, hash2, hash3,
hash4, hash5, hash6, hash7, 256 );
skein256_8way_update( &ctx.skein, vhash, 32 );
skein256_8way_close( &ctx.skein, vhash );
dintrlv_8x64( hash0, hash1, hash2, hash3,
hash4, hash5, hash6, hash7, vhash, 256 );
intrlv_8x64( vhash, hash8, hash9, hash10, hash11, hash12,
hash13, hash14, hash15, 256 );
skein256_8way_init( &ctx.skein );
skein256_8way_update( &ctx.skein, vhash, 32 );
skein256_8way_close( &ctx.skein, vhash );
dintrlv_8x64( hash8, hash9, hash10, hash11,
hash12, hash13, hash14, hash15, vhash, 256 );
cubehash_full( &ctx.cube, (byte*) hash0, 256, (const byte*) hash0, 32 );
cubehash_full( &ctx.cube, (byte*) hash1, 256, (const byte*) hash1, 32 );
cubehash_full( &ctx.cube, (byte*) hash2, 256, (const byte*) hash2, 32 );
cubehash_full( &ctx.cube, (byte*) hash3, 256, (const byte*) hash3, 32 );
cubehash_full( &ctx.cube, (byte*) hash4, 256, (const byte*) hash4, 32 );
cubehash_full( &ctx.cube, (byte*) hash5, 256, (const byte*) hash5, 32 );
cubehash_full( &ctx.cube, (byte*) hash6, 256, (const byte*) hash6, 32 );
cubehash_full( &ctx.cube, (byte*) hash7, 256, (const byte*) hash7, 32 );
cubehash_full( &ctx.cube, (byte*) hash8, 256, (const byte*) hash8, 32 );
cubehash_full( &ctx.cube, (byte*) hash9, 256, (const byte*) hash9, 32 );
cubehash_full( &ctx.cube, (byte*) hash10, 256, (const byte*) hash10, 32 );
cubehash_full( &ctx.cube, (byte*) hash11, 256, (const byte*) hash11, 32 );
cubehash_full( &ctx.cube, (byte*) hash12, 256, (const byte*) hash12, 32 );
cubehash_full( &ctx.cube, (byte*) hash13, 256, (const byte*) hash13, 32 );
cubehash_full( &ctx.cube, (byte*) hash14, 256, (const byte*) hash14, 32 );
cubehash_full( &ctx.cube, (byte*) hash15, 256, (const byte*) hash15, 32 );
intrlv_16x32( vhash, hash0, hash1, hash2, hash3,
hash4, hash5, hash6, hash7,
hash8, hash9, hash10, hash11,
hash12, hash13, hash14, hash15, 256 );
bmw256_16way_update( &ctx.bmw, vhash, 32 );
bmw256_16way_close( &ctx.bmw, state );
}
int scanhash_lyra2rev2_16way( struct work *work, const uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t hash[8*16] __attribute__ ((aligned (128)));
uint32_t vdata[20*16] __attribute__ ((aligned (64)));
uint32_t *hashd7 = &hash[7*16];
uint32_t lane_hash[8] __attribute__ ((aligned (32)));
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
const uint32_t first_nonce = pdata[19];
const uint32_t last_nonce = max_nonce - 16;
uint32_t n = first_nonce;
const uint32_t targ32 = ptarget[7];
__m512i *noncev = (__m512i*)vdata + 19;
const int thr_id = mythr->id;
const bool bench = opt_benchmark;
if ( bench ) ptarget[7] = 0x0000ff;
mm512_bswap32_intrlv80_16x32( vdata, pdata );
*noncev = _mm512_set_epi32( n+15, n+14, n+13, n+12, n+11, n+10, n+ 9, n+ 8,
n+ 7, n+ 6, n+ 5, n+ 4, n+ 3, n+ 2, n+ 1, n );
blake256_16way_init( &l2v2_16way_ctx.blake );
blake256_16way_update( &l2v2_16way_ctx.blake, vdata, 64 );
do
{
lyra2rev2_16way_hash( hash, vdata );
for ( int lane = 0; lane < 16; lane++ )
if ( unlikely( hashd7[lane] <= targ32 ) )
{
extr_lane_16x32( lane_hash, hash, lane, 256 );
if ( likely( valid_hash( lane_hash, ptarget ) && !bench ) )
{
pdata[19] = bswap_32( n + lane );
submit_solution( work, lane_hash, mythr );
}
}
*noncev = _mm512_add_epi32( *noncev, m512_const1_32( 16 ) );
n += 16;
} while ( likely( (n < last_nonce) && !work_restart[thr_id].restart ) );
pdata[19] = n;
*hashes_done = n - first_nonce;
return 0;
}
#elif defined (LYRA2REV2_8WAY)
typedef struct {
blake256_8way_context blake;
keccak256_8way_context keccak;
cube_4way_context cube;
skein256_8way_context skein;
bmw256_8way_context bmw;
keccak256_4way_context keccak;
cubehashParam cube;
skein256_4way_context skein;
bmw256_8way_context bmw;
} lyra2v2_8way_ctx_holder __attribute__ ((aligned (64)));
static lyra2v2_8way_ctx_holder l2v2_8way_ctx;
bool init_lyra2rev2_8way_ctx()
{
keccak256_8way_init( &l2v2_8way_ctx.keccak );
cube_4way_init( &l2v2_8way_ctx.cube, 256, 16, 32 );
skein256_8way_init( &l2v2_8way_ctx.skein );
keccak256_4way_init( &l2v2_8way_ctx.keccak );
cubehashInit( &l2v2_8way_ctx.cube, 256, 16, 32 );
skein256_4way_init( &l2v2_8way_ctx.skein );
bmw256_8way_init( &l2v2_8way_ctx.bmw );
return true;
}
@@ -31,8 +235,6 @@ bool init_lyra2rev2_8way_ctx()
void lyra2rev2_8way_hash( void *state, const void *input )
{
uint32_t vhash[8*8] __attribute__ ((aligned (128)));
uint32_t vhashA[8*8] __attribute__ ((aligned (64)));
uint32_t vhashB[8*8] __attribute__ ((aligned (64)));
uint32_t hash0[8] __attribute__ ((aligned (64)));
uint32_t hash1[8] __attribute__ ((aligned (64)));
uint32_t hash2[8] __attribute__ ((aligned (64)));
@@ -47,103 +249,113 @@ void lyra2rev2_8way_hash( void *state, const void *input )
blake256_8way_update( &ctx.blake, input + (64<<3), 16 );
blake256_8way_close( &ctx.blake, vhash );
rintrlv_8x32_8x64( vhashA, vhash, 256 );
dintrlv_8x32( hash0, hash1, hash2, hash3,
hash4, hash5, hash6, hash7, vhash, 256 );
keccak256_8way_update( &ctx.keccak, vhashA, 32 );
keccak256_8way_close( &ctx.keccak, vhash );
intrlv_4x64( vhash, hash0, hash1, hash2, hash3, 256 );
keccak256_4way_update( &ctx.keccak, vhash, 32 );
keccak256_4way_close( &ctx.keccak, vhash );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 256 );
intrlv_4x64( vhash, hash4, hash5, hash6, hash7, 256 );
keccak256_4way_init( &ctx.keccak );
keccak256_4way_update( &ctx.keccak, vhash, 32 );
keccak256_4way_close( &ctx.keccak, vhash );
dintrlv_4x64( hash4, hash5, hash6, hash7, vhash, 256 );
rintrlv_8x64_4x128( vhashA, vhashB, vhash, 256 );
cubehash_full( &ctx.cube, (byte*) hash0, 256, (const byte*) hash0, 32 );
cubehash_full( &ctx.cube, (byte*) hash1, 256, (const byte*) hash1, 32 );
cubehash_full( &ctx.cube, (byte*) hash2, 256, (const byte*) hash2, 32 );
cubehash_full( &ctx.cube, (byte*) hash3, 256, (const byte*) hash3, 32 );
cubehash_full( &ctx.cube, (byte*) hash4, 256, (const byte*) hash4, 32 );
cubehash_full( &ctx.cube, (byte*) hash5, 256, (const byte*) hash5, 32 );
cubehash_full( &ctx.cube, (byte*) hash6, 256, (const byte*) hash6, 32 );
cubehash_full( &ctx.cube, (byte*) hash7, 256, (const byte*) hash7, 32 );
cube_4way_update_close( &ctx.cube, vhashA, vhashA, 32 );
cube_4way_init( &ctx.cube, 256, 16, 32 );
cube_4way_update_close( &ctx.cube, vhashB, vhashB, 32 );
dintrlv_4x128( hash0, hash1, hash2, hash3, vhashA, 256 );
dintrlv_4x128( hash4, hash5, hash6, hash7, vhashB, 256 );
intrlv_2x256( vhash, hash0, hash1, 256 );
LYRA2REV2_2WAY( l2v2_wholeMatrix, vhash, 32, vhash, 32, 1, 4, 4 );
dintrlv_2x256( hash0, hash1, vhash, 256 );
intrlv_2x256( vhash, hash2, hash3, 256 );
LYRA2REV2_2WAY( l2v2_wholeMatrix, vhash, 32, vhash, 32, 1, 4, 4 );
dintrlv_2x256( hash2, hash3, vhash, 256 );
intrlv_2x256( vhash, hash4, hash5, 256 );
LYRA2REV2_2WAY( l2v2_wholeMatrix, vhash, 32, vhash, 32, 1, 4, 4 );
dintrlv_2x256( hash4, hash5, vhash, 256 );
intrlv_2x256( vhash, hash6, hash7, 256 );
LYRA2REV2_2WAY( l2v2_wholeMatrix, vhash, 32, vhash, 32, 1, 4, 4 );
dintrlv_2x256( hash6, hash7, vhash, 256 );
intrlv_8x64( vhash, hash0, hash1, hash2, hash3, hash4, hash5, hash6,
hash7, 256 );
skein256_8way_update( &ctx.skein, vhash, 32 );
skein256_8way_close( &ctx.skein, vhash );
rintrlv_8x64_4x128( vhashA, vhashB, vhash, 256 );
cube_4way_init( &ctx.cube, 256, 16, 32 );
cube_4way_update_close( &ctx.cube, vhashA, vhashA, 32 );
cube_4way_init( &ctx.cube, 256, 16, 32 );
cube_4way_update_close( &ctx.cube, vhashB, vhashB, 32 );
LYRA2REV2( l2v2_wholeMatrix, hash0, 32, hash0, 32, hash0, 32, 1, 4, 4 );
LYRA2REV2( l2v2_wholeMatrix, hash1, 32, hash1, 32, hash1, 32, 1, 4, 4 );
LYRA2REV2( l2v2_wholeMatrix, hash2, 32, hash2, 32, hash2, 32, 1, 4, 4 );
LYRA2REV2( l2v2_wholeMatrix, hash3, 32, hash3, 32, hash3, 32, 1, 4, 4 );
LYRA2REV2( l2v2_wholeMatrix, hash4, 32, hash4, 32, hash4, 32, 1, 4, 4 );
LYRA2REV2( l2v2_wholeMatrix, hash5, 32, hash5, 32, hash5, 32, 1, 4, 4 );
LYRA2REV2( l2v2_wholeMatrix, hash6, 32, hash6, 32, hash6, 32, 1, 4, 4 );
LYRA2REV2( l2v2_wholeMatrix, hash7, 32, hash7, 32, hash7, 32, 1, 4, 4 );
dintrlv_4x128( hash0, hash1, hash2, hash3, vhashA, 256 );
dintrlv_4x128( hash4, hash5, hash6, hash7, vhashB, 256 );
intrlv_4x64( vhash, hash0, hash1, hash2, hash3, 256 );
skein256_4way_update( &ctx.skein, vhash, 32 );
skein256_4way_close( &ctx.skein, vhash );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 256 );
intrlv_4x64( vhash, hash4, hash5, hash6, hash7, 256 );
skein256_4way_init( &ctx.skein );
skein256_4way_update( &ctx.skein, vhash, 32 );
skein256_4way_close( &ctx.skein, vhash );
dintrlv_4x64( hash4, hash5, hash6, hash7, vhash, 256 );
intrlv_8x32( vhash, hash0, hash1, hash2, hash3, hash4, hash5, hash6,
hash7, 256 );
cubehash_full( &ctx.cube, (byte*) hash0, 256, (const byte*) hash0, 32 );
cubehash_full( &ctx.cube, (byte*) hash1, 256, (const byte*) hash1, 32 );
cubehash_full( &ctx.cube, (byte*) hash2, 256, (const byte*) hash2, 32 );
cubehash_full( &ctx.cube, (byte*) hash3, 256, (const byte*) hash3, 32 );
cubehash_full( &ctx.cube, (byte*) hash4, 256, (const byte*) hash4, 32 );
cubehash_full( &ctx.cube, (byte*) hash5, 256, (const byte*) hash5, 32 );
cubehash_full( &ctx.cube, (byte*) hash6, 256, (const byte*) hash6, 32 );
cubehash_full( &ctx.cube, (byte*) hash7, 256, (const byte*) hash7, 32 );
intrlv_8x32( vhash, hash0, hash1, hash2, hash3,
hash4, hash5, hash6, hash7, 256 );
bmw256_8way_update( &ctx.bmw, vhash, 32 );
bmw256_8way_close( &ctx.bmw, state );
}
int scanhash_lyra2rev2_8way( struct work *work, uint32_t max_nonce,
int scanhash_lyra2rev2_8way( struct work *work, const uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t hash[8*8] __attribute__ ((aligned (128)));
uint32_t vdata[20*8] __attribute__ ((aligned (64)));
uint32_t *hash7 = &(hash[7<<3]);
uint32_t lane_hash[8] __attribute__ ((aligned (64)));
uint32_t *hashd7 = &hash[7*8];
uint32_t lane_hash[8] __attribute__ ((aligned (32)));
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
const uint32_t first_nonce = pdata[19];
const uint32_t last_nonce = max_nonce - 8;
uint32_t n = first_nonce;
const uint32_t Htarg = ptarget[7];
__m256i *noncev = (__m256i*)vdata + 19; // aligned
int thr_id = mythr->id;
const uint32_t targ32 = ptarget[7];
__m256i *noncev = (__m256i*)vdata + 19;
const int thr_id = mythr->id;
const bool bench = opt_benchmark;
if ( opt_benchmark )
( (uint32_t*)ptarget )[7] = 0x0000ff;
if ( bench ) ptarget[7] = 0x0000ff;
mm256_bswap32_intrlv80_8x32( vdata, pdata );
*noncev = _mm256_set_epi32( n+7, n+6, n+5, n+4, n+3, n+2, n+1, n );
blake256_8way_init( &l2v2_8way_ctx.blake );
blake256_8way_update( &l2v2_8way_ctx.blake, vdata, 64 );
do
{
*noncev = mm256_bswap_32( _mm256_set_epi32( n+7, n+6, n+5, n+4,
n+3, n+2, n+1, n ) );
lyra2rev2_8way_hash( hash, vdata );
pdata[19] = n;
for ( int lane = 0; lane < 8; lane++ ) if ( hash7[lane] <= Htarg )
for ( int lane = 0; lane < 8; lane++ )
if ( unlikely( hashd7[lane] <= targ32 ) )
{
extr_lane_8x32( lane_hash, hash, lane, 256 );
if ( fulltest( lane_hash, ptarget ) && !opt_benchmark )
if ( likely( valid_hash( lane_hash, ptarget ) && !bench ) )
{
pdata[19] = n + lane;
submit_lane_solution( work, lane_hash, mythr, lane );
pdata[19] = bswap_32( n + lane );
submit_solution( work, lane_hash, mythr );
}
}
*noncev = _mm256_add_epi32( *noncev, m256_const1_32( 8 ) );
n += 8;
} while ( (n < last_nonce) && !work_restart[thr_id].restart);
} while ( likely( (n < last_nonce) && !work_restart[thr_id].restart ) );
pdata[19] = n;
*hashes_done = n - first_nonce;
return 0;
}
#endif
/*
#elif defined (LYRA2REV2_4WAY)
typedef struct {
@@ -226,15 +438,16 @@ int scanhash_lyra2rev2_4way( struct work *work, uint32_t max_nonce,
{
uint32_t hash[8*4] __attribute__ ((aligned (64)));
uint32_t vdata[20*4] __attribute__ ((aligned (64)));
uint32_t *hash7 = &(hash[7<<2]);
uint32_t *hashd7 = &(hash[7<<2]);
uint32_t lane_hash[8] __attribute__ ((aligned (32)));
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
const uint32_t first_nonce = pdata[19];
const uint32_t last_nonce = max_nonce - 4;
uint32_t n = first_nonce;
const uint32_t Htarg = ptarget[7];
__m128i *noncev = (__m128i*)vdata + 19; // aligned
int thr_id = mythr->id; // thr_id arg is deprecated
const uint32_t targ32 = ptarget[7];
__m128i *noncev = (__m128i*)vdata + 19;
int thr_id = mythr->id;
if ( opt_benchmark )
( (uint32_t*)ptarget )[7] = 0x0000ff;
@@ -249,21 +462,22 @@ int scanhash_lyra2rev2_4way( struct work *work, uint32_t max_nonce,
*noncev = mm128_bswap_32( _mm_set_epi32( n+3, n+2, n+1, n ) );
lyra2rev2_4way_hash( hash, vdata );
pdata[19] = n;
for ( int lane = 0; lane < 4; lane++ ) if ( hash7[lane] <= Htarg )
for ( int lane = 0; lane < 4; lane++ ) if ( hashd7[lane] <= targ32 )
{
extr_lane_4x32( lane_hash, hash, lane, 256 );
if ( fulltest( lane_hash, ptarget ) && !opt_benchmark )
if ( valid_hash( lane_hash, ptarget ) && !opt_benchmark )
{
pdata[19] = n + lane;
submit_lane_solution( work, lane_hash, mythr, lane );
submit_solution( work, lane_hash, mythr );
}
}
n += 4;
} while ( (n < max_nonce-4) && !work_restart[thr_id].restart);
*hashes_done = n - first_nonce + 1;
} while ( (n < last_nonce) && !work_restart[thr_id].restart);
pdata[19] = n;
*hashes_done = n - first_nonce;
return 0;
}
#endif
*/

View File

@@ -99,7 +99,7 @@ int scanhash_lyra2rev2( struct work *work,
lyra2rev2_hash(hash, endiandata);
if (hash[7] <= Htarg )
if( fulltest( hash, ptarget ) && !opt_benchmark )
if( valid_hash( hash, ptarget ) && !opt_benchmark )
{
pdata[19] = nonce;
submit_solution( work, hash, mythr );

View File

@@ -130,15 +130,15 @@ int scanhash_lyra2rev3_16way( struct work *work, const uint32_t max_nonce,
{
uint32_t hash[8*16] __attribute__ ((aligned (128)));
uint32_t vdata[20*16] __attribute__ ((aligned (64)));
uint32_t *hash7 = &hash[7<<4];
uint32_t *hashd7 = &hash[7*16];
uint32_t lane_hash[8] __attribute__ ((aligned (64)));
uint32_t *pdata = work->data;
const uint32_t *ptarget = work->target;
const uint32_t first_nonce = pdata[19];
uint32_t n = first_nonce;
const uint32_t last_nonce = max_nonce - 16;
const uint32_t Htarg = ptarget[7];
__m512i *noncev = (__m512i*)vdata + 19; // aligned
const uint32_t targ32 = ptarget[7];
__m512i *noncev = (__m512i*)vdata + 19;
const int thr_id = mythr->id;
if ( opt_benchmark ) ( (uint32_t*)ptarget )[7] = 0x0000ff;
@@ -159,17 +159,18 @@ int scanhash_lyra2rev3_16way( struct work *work, const uint32_t max_nonce,
pdata[19] = n;
for ( int lane = 0; lane < 16; lane++ )
if ( unlikely( hash7[lane] <= Htarg ) )
if ( unlikely( hashd7[lane] <= targ32 ) )
{
extr_lane_16x32( lane_hash, hash, lane, 256 );
if ( likely( fulltest( lane_hash, ptarget ) && !opt_benchmark ) )
if ( likely( valid_hash( lane_hash, ptarget ) && !opt_benchmark ) )
{
pdata[19] = n + lane;
submit_lane_solution( work, lane_hash, mythr, lane );
submit_solution( work, lane_hash, mythr );
}
}
n += 16;
} while ( likely( (n < last_nonce) && !work_restart[thr_id].restart ) );
pdata[19] = n;
*hashes_done = n - first_nonce;
return 0;
}
@@ -194,7 +195,7 @@ bool init_lyra2rev3_8way_ctx()
void lyra2rev3_8way_hash( void *state, const void *input )
{
uint32_t vhash[8*8] __attribute__ ((aligned (64)));
uint32_t vhash[8*8] __attribute__ ((aligned (128)));
uint32_t hash0[8] __attribute__ ((aligned (64)));
uint32_t hash1[8] __attribute__ ((aligned (32)));
uint32_t hash2[8] __attribute__ ((aligned (32)));
@@ -250,17 +251,17 @@ void lyra2rev3_8way_hash( void *state, const void *input )
int scanhash_lyra2rev3_8way( struct work *work, const uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t hash[8*8] __attribute__ ((aligned (64)));
uint32_t hash[8*8] __attribute__ ((aligned (128)));
uint32_t vdata[20*8] __attribute__ ((aligned (64)));
uint32_t *hash7 = &hash[7<<3];
uint32_t *hashd7 = &hash[7*8];
uint32_t lane_hash[8] __attribute__ ((aligned (32)));
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
const uint32_t first_nonce = pdata[19];
const uint32_t last_nonce = max_nonce - 8;
uint32_t n = first_nonce;
const uint32_t Htarg = ptarget[7];
__m256i *noncev = (__m256i*)vdata + 19; // aligned
const uint32_t targ32 = ptarget[7];
__m256i *noncev = (__m256i*)vdata + 19;
const int thr_id = mythr->id;
const bool bench = opt_benchmark;
@@ -277,13 +278,13 @@ int scanhash_lyra2rev3_8way( struct work *work, const uint32_t max_nonce,
pdata[19] = n;
for ( int lane = 0; lane < 8; lane++ )
if ( unlikely( hash7[lane] <= Htarg ) )
if ( unlikely( hashd7[lane] <= targ32 ) )
{
extr_lane_8x32( lane_hash, hash, lane, 256 );
if ( likely( valid_hash( lane_hash, ptarget ) && !bench ) )
{
pdata[19] = bswap_32( n + lane );
submit_lane_solution( work, lane_hash, mythr, lane );
submit_solution( work, lane_hash, mythr );
}
}
*noncev = _mm256_add_epi32( *noncev, m256_const1_32( 8 ) );
@@ -357,42 +358,41 @@ int scanhash_lyra2rev3_4way( struct work *work, const uint32_t max_nonce,
{
uint32_t hash[8*4] __attribute__ ((aligned (64)));
uint32_t vdata[20*4] __attribute__ ((aligned (64)));
uint32_t *hash7 = &(hash[7<<2]);
uint32_t *hashd7 = &(hash[7*4]);
uint32_t lane_hash[8] __attribute__ ((aligned (32)));
uint32_t *pdata = work->data;
const uint32_t *ptarget = work->target;
const uint32_t first_nonce = pdata[19];
uint32_t n = first_nonce;
const uint32_t Htarg = ptarget[7];
__m128i *noncev = (__m128i*)vdata + 19; // aligned
const int thr_id = mythr->id; // thr_id arg is deprecated
const uint32_t targ32 = ptarget[7];
__m128i *noncev = (__m128i*)vdata + 19;
const int thr_id = mythr->id;
if ( opt_benchmark )
( (uint32_t*)ptarget )[7] = 0x0000ff;
mm128_bswap32_intrlv80_4x32( vdata, pdata );
*noncev = _mm_set_epi32( n+3, n+2, n+1, n );
blake256_4way_init( &l2v3_4way_ctx.blake );
blake256_4way_update( &l2v3_4way_ctx.blake, vdata, 64 );
do
{
*noncev = mm128_bswap_32( _mm_set_epi32( n+3, n+2, n+1, n ) );
lyra2rev3_4way_hash( hash, vdata );
pdata[19] = n;
for ( int lane = 0; lane < 4; lane++ ) if ( hash7[lane] <= Htarg )
for ( int lane = 0; lane < 4; lane++ ) if ( hashd7[lane] <= targ32 )
{
extr_lane_4x32( lane_hash, hash, lane, 256 );
if ( fulltest( lane_hash, ptarget ) && !opt_benchmark )
if ( valid_hash( lane_hash, ptarget ) && !opt_benchmark )
{
pdata[19] = n + lane;
submit_lane_solution( work, lane_hash, mythr, lane );
pdata[19] = bswap_32( n + lane );
submit_solution( work, lane_hash, mythr );
}
}
*noncev = _mm_add_epi32( *noncev, m128_const1_32( 4 ) );
n += 4;
} while ( (n < max_nonce-4) && !work_restart[thr_id].restart);
pdata[19] = n;
*hashes_done = n - first_nonce + 1;
return 0;
}

View File

@@ -88,7 +88,7 @@ int scanhash_lyra2rev3( struct work *work,
lyra2rev3_hash(hash, endiandata);
if (hash[7] <= Htarg )
if( fulltest( hash, ptarget ) && !opt_benchmark )
if( valid_hash( hash, ptarget ) && !opt_benchmark )
{
pdata[19] = nonce;
submit_solution( work, hash, mythr );

View File

@@ -124,7 +124,7 @@ int scanhash_lyra2z_16way( struct work *work, uint32_t max_nonce,
if ( unlikely( valid_hash( lane_hash, ptarget ) && !bench ) )
{
pdata[19] = bswap_32( n + lane );
submit_lane_solution( work, lane_hash, mythr, lane );
submit_solution( work, lane_hash, mythr );
}
}
*noncev = _mm512_add_epi32( *noncev, m512_const1_32( 16 ) );
@@ -222,7 +222,7 @@ int scanhash_lyra2z_8way( struct work *work, uint32_t max_nonce,
if ( unlikely( valid_hash( lane_hash, ptarget ) && !bench ) )
{
pdata[19] = bswap_32( n + lane );
submit_lane_solution( work, lane_hash, mythr, lane );
submit_solution( work, lane_hash, mythr );
}
}
*noncev = _mm256_add_epi32( *noncev, m256_const1_32( 8 ) );
@@ -301,7 +301,7 @@ int scanhash_lyra2z_4way( struct work *work, uint32_t max_nonce,
if ( unlikely( valid_hash( lane_hash, ptarget ) && !bench ) )
{
pdata[19] = bswap_32( n + lane );
submit_lane_solution( work, lane_hash, mythr, lane );
submit_solution( work, lane_hash, mythr );
}
}
*noncev = _mm_add_epi32( *noncev, m128_const1_32( 4 ) );

View File

@@ -56,7 +56,7 @@ int scanhash_lyra2z( struct work *work, uint32_t max_nonce,
const uint32_t Htarg = ptarget[7];
const uint32_t first_nonce = pdata[19];
uint32_t nonce = first_nonce;
int thr_id = mythr->id; // thr_id arg is deprecated
int thr_id = mythr->id;
if (opt_benchmark)
ptarget[7] = 0x0000ff;
@@ -65,14 +65,13 @@ int scanhash_lyra2z( struct work *work, uint32_t max_nonce,
be32enc(&endiandata[i], pdata[i]);
}
lyra2z_midstate( endiandata );
lyra2z_midstate( endiandata );
do {
be32enc(&endiandata[19], nonce);
lyra2z_hash( hash, endiandata );
if ( hash[7] <= Htarg )
if ( fulltest( hash, ptarget ) && !opt_benchmark )
if ( valid_hash( hash, ptarget ) && !opt_benchmark )
{
pdata[19] = nonce;
submit_solution( work, hash, mythr );

View File

@@ -9,7 +9,7 @@ void lyra2z330_hash(void *state, const void *input, uint32_t height)
{
uint32_t _ALIGN(256) hash[16];
LYRA2Z( lyra2z330_wholeMatrix, hash, 32, input, 80, input, 80,
LYRA2Z( lyra2z330_wholeMatrix, hash, 32, input, 80, input, 80,
2, 330, 256 );
memcpy(state, hash, 32);
@@ -18,38 +18,40 @@ void lyra2z330_hash(void *state, const void *input, uint32_t height)
int scanhash_lyra2z330( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t hash[8] __attribute__ ((aligned (64)));
uint32_t endiandata[20] __attribute__ ((aligned (64)));
uint32_t hash[8] __attribute__ ((aligned (128)));
uint32_t edata[20] __attribute__ ((aligned (64)));
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
const uint32_t Htarg = ptarget[7];
const uint32_t first_nonce = pdata[19];
uint32_t nonce = first_nonce;
int thr_id = mythr->id; // thr_id arg is deprecated
const int thr_id = mythr->id;
if (opt_benchmark)
ptarget[7] = 0x0000ff;
casti_m128i( endiandata, 0 ) = mm128_bswap_32( casti_m128i( pdata, 0 ) );
casti_m128i( endiandata, 1 ) = mm128_bswap_32( casti_m128i( pdata, 1 ) );
casti_m128i( endiandata, 2 ) = mm128_bswap_32( casti_m128i( pdata, 2 ) );
casti_m128i( endiandata, 3 ) = mm128_bswap_32( casti_m128i( pdata, 3 ) );
casti_m128i( endiandata, 4 ) = mm128_bswap_32( casti_m128i( pdata, 4 ) );
casti_m128i( edata, 0 ) = mm128_bswap_32( casti_m128i( pdata, 0 ) );
casti_m128i( edata, 1 ) = mm128_bswap_32( casti_m128i( pdata, 1 ) );
casti_m128i( edata, 2 ) = mm128_bswap_32( casti_m128i( pdata, 2 ) );
casti_m128i( edata, 3 ) = mm128_bswap_32( casti_m128i( pdata, 3 ) );
casti_m128i( edata, 4 ) = mm128_bswap_32( casti_m128i( pdata, 4 ) );
do
{
be32enc( &endiandata[19], nonce );
lyra2z330_hash( hash, endiandata, work->height );
if ( hash[7] <= Htarg )
if ( fulltest( hash, ptarget ) && !opt_benchmark )
edata[19] = nonce;
LYRA2Z( lyra2z330_wholeMatrix, hash, 32, edata, 80, edata, 80,
2, 330, 256 );
// lyra2z330_hash( hash, edata, work->height );
if ( valid_hash( hash, ptarget ) && !opt_benchmark )
{
pdata[19] = nonce;
be32enc( pdata + 19, nonce );
submit_solution( work, hash, mythr );
}
nonce++;
} while ( nonce < max_nonce && !work_restart[thr_id].restart );
pdata[19] = nonce;
*hashes_done = pdata[19] - first_nonce + 1;
*hashes_done = nonce - first_nonce;
return 0;
}
@@ -66,7 +68,7 @@ bool lyra2z330_thread_init()
bool register_lyra2z330_algo( algo_gate_t* gate )
{
gate->optimizations = SSE42_OPT | AVX2_OPT;
gate->optimizations = SSE2_OPT | AVX2_OPT;
gate->miner_thread_init = (void*)&lyra2z330_thread_init;
gate->scanhash = (void*)&scanhash_lyra2z330;
gate->hash = (void*)&lyra2z330_hash;

View File

@@ -1,233 +1,501 @@
/**
* Phi-2 algo Implementation
*/
#include "lyra2-gate.h"
#if defined(PHI2_4WAY)
#include "algo/skein/skein-hash-4way.h"
#include "algo/jh/jh-hash-4way.h"
#include "algo/gost/sph_gost.h"
#include "algo/cubehash/cubehash_sse2.h"
#include "algo/echo/aes_ni/hash_api.h"
#include "lyra2.h"
#if defined(__VAES__) && defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#include "algo/echo/echo-hash-4way.h"
#elif defined(__AES__)
#include "algo/echo/aes_ni/hash_api.h"
#endif
#if defined(PHI2_8WAY)
typedef struct {
cubehashParam cube;
jh512_8way_context jh;
#if defined(__VAES__)
echo_4way_context echo;
#else
hashState_echo echo;
#endif
sph_gost512_context gost;
skein512_8way_context skein;
} phi2_8way_ctx_holder;
void phi2_8way_hash( void *state, const void *input )
{
unsigned char _ALIGN(128) hash[64*8];
unsigned char _ALIGN(128) hashA[64*2];
unsigned char _ALIGN(64) hash0[64];
unsigned char _ALIGN(64) hash1[64];
unsigned char _ALIGN(64) hash2[64];
unsigned char _ALIGN(64) hash3[64];
unsigned char _ALIGN(64) hash4[64];
unsigned char _ALIGN(64) hash5[64];
unsigned char _ALIGN(64) hash6[64];
unsigned char _ALIGN(64) hash7[64];
const int size = phi2_has_roots ? 144 : 80 ;
phi2_8way_ctx_holder ctx __attribute__ ((aligned (64)));
cubehash_full( &ctx.cube, (byte*)hash0, 512,
(const byte*)input, size );
cubehash_full( &ctx.cube, (byte*)hash1, 512,
(const byte*)input + 144, size );
cubehash_full( &ctx.cube, (byte*)hash2, 512,
(const byte*)input + 2*144, size );
cubehash_full( &ctx.cube, (byte*)hash3, 512,
(const byte*)input + 3*144, size );
cubehash_full( &ctx.cube, (byte*)hash4, 512,
(const byte*)input + 4*144, size );
cubehash_full( &ctx.cube, (byte*)hash5, 512,
(const byte*)input + 5*144, size );
cubehash_full( &ctx.cube, (byte*)hash6, 512,
(const byte*)input + 6*144, size );
cubehash_full( &ctx.cube, (byte*)hash7, 512,
(const byte*)input + 7*144, size );
intrlv_2x256( hashA, hash0, hash1, 512 );
LYRA2RE_2WAY( hash, 32, hashA, 32, 1, 8, 8 );
LYRA2RE_2WAY( hash + 2*32, 32, hashA + 2*32, 32, 1, 8, 8 );
dintrlv_2x256( hash0, hash1, hash, 512 );
intrlv_2x256( hashA, hash2, hash3, 512 );
LYRA2RE_2WAY( hash, 32, hashA, 32, 1, 8, 8 );
LYRA2RE_2WAY( hash + 2*32, 32, hashA + 2*32, 32, 1, 8, 8 );
dintrlv_2x256( hash2, hash3, hash, 512 );
intrlv_2x256( hashA, hash4, hash5, 512 );
LYRA2RE_2WAY( hash, 32, hashA, 32, 1, 8, 8 );
LYRA2RE_2WAY( hash + 2*32, 32, hashA + 2*32, 32, 1, 8, 8 );
dintrlv_2x256( hash4, hash5, hash, 512 );
intrlv_2x256( hashA, hash6, hash7, 512 );
LYRA2RE_2WAY( hash, 32, hashA, 32, 1, 8, 8 );
LYRA2RE_2WAY( hash + 2*32, 32, hashA + 2*32, 32, 1, 8, 8 );
dintrlv_2x256( hash6, hash7, hash, 512 );
intrlv_8x64_512( hash, hash0, hash1, hash2, hash3,
hash4, hash5, hash6, hash7 );
jh512_8way_init( &ctx.jh );
jh512_8way_update( &ctx.jh, (const void*)hash, 64 );
jh512_8way_close( &ctx.jh, (void*)hash );
dintrlv_8x64_512( hash0, hash1, hash2, hash3,
hash4, hash5, hash6, hash7, hash );
#if defined (__VAES__)
unsigned char _ALIGN(64) hashA0[64];
unsigned char _ALIGN(64) hashA1[64];
unsigned char _ALIGN(64) hashA2[64];
unsigned char _ALIGN(64) hashA3[64];
unsigned char _ALIGN(64) hashA4[64];
unsigned char _ALIGN(64) hashA5[64];
unsigned char _ALIGN(64) hashA6[64];
unsigned char _ALIGN(64) hashA7[64];
intrlv_4x128_512( hash, hash0, hash1, hash2, hash3 );
echo_4way_full( &ctx.echo, hash, 512, hash, 64 );
echo_4way_full( &ctx.echo, hash, 512, hash, 64 );
dintrlv_4x128_512( hashA0, hashA1, hashA2, hashA3, hash );
intrlv_4x128_512( hash, hash4, hash5, hash6, hash7 );
echo_4way_full( &ctx.echo, hash, 512, hash, 64 );
echo_4way_full( &ctx.echo, hash, 512, hash, 64 );
dintrlv_4x128_512( hashA4, hashA5, hashA6, hashA7, hash );
#endif
if ( hash0[0] & 1 )
{
sph_gost512_init( &ctx.gost );
sph_gost512( &ctx.gost, (const void*)hash0, 64 );
sph_gost512_close( &ctx.gost, (void*)hash0 );
}
else
#if defined (__VAES__)
memcpy( hash0, hashA0, 64 );
#else
{
echo_full( &ctx.echo, (BitSequence *)hash0, 512,
(const BitSequence *)hash0, 64 );
echo_full( &ctx.echo, (BitSequence *)hash0, 512,
(const BitSequence *)hash0, 64 );
}
#endif
if ( hash1[0] & 1 )
{
sph_gost512_init( &ctx.gost );
sph_gost512( &ctx.gost, (const void*)hash1, 64 );
sph_gost512_close( &ctx.gost, (void*)hash1 );
}
else
#if defined (__VAES__)
memcpy( hash1, hashA1, 64 );
#else
{
echo_full( &ctx.echo, (BitSequence *)hash1, 512,
(const BitSequence *)hash1, 64 );
echo_full( &ctx.echo, (BitSequence *)hash1, 512,
(const BitSequence *)hash1, 64 );
}
#endif
if ( hash2[0] & 1 )
{
sph_gost512_init( &ctx.gost );
sph_gost512( &ctx.gost, (const void*)hash2, 64 );
sph_gost512_close( &ctx.gost, (void*)hash2 );
}
else
#if defined (__VAES__)
memcpy( hash2, hashA2, 64 );
#else
{
echo_full( &ctx.echo, (BitSequence *)hash2, 512,
(const BitSequence *)hash2, 64 );
echo_full( &ctx.echo, (BitSequence *)hash2, 512,
(const BitSequence *)hash2, 64 );
}
#endif
if ( hash3[0] & 1 )
{
sph_gost512_init( &ctx.gost );
sph_gost512( &ctx.gost, (const void*)hash3, 64 );
sph_gost512_close( &ctx.gost, (void*)hash3 );
}
else
#if defined (__VAES__)
memcpy( hash3, hashA3, 64 );
#else
{
echo_full( &ctx.echo, (BitSequence *)hash3, 512,
(const BitSequence *)hash3, 64 );
echo_full( &ctx.echo, (BitSequence *)hash3, 512,
(const BitSequence *)hash3, 64 );
}
#endif
if ( hash4[0] & 1 )
{
sph_gost512_init( &ctx.gost );
sph_gost512( &ctx.gost, (const void*)hash4, 64 );
sph_gost512_close( &ctx.gost, (void*)hash4 );
}
else
#if defined (__VAES__)
memcpy( hash4, hashA4, 64 );
#else
{
echo_full( &ctx.echo, (BitSequence *)hash4, 512,
(const BitSequence *)hash4, 64 );
echo_full( &ctx.echo, (BitSequence *)hash4, 512,
(const BitSequence *)hash4, 64 );
}
#endif
if ( hash5[0] & 1 )
{
sph_gost512_init( &ctx.gost );
sph_gost512( &ctx.gost, (const void*)hash5, 64 );
sph_gost512_close( &ctx.gost, (void*)hash5 );
}
else
#if defined (__VAES__)
memcpy( hash5, hashA5, 64 );
#else
{
echo_full( &ctx.echo, (BitSequence *)hash5, 512,
(const BitSequence *)hash5, 64 );
echo_full( &ctx.echo, (BitSequence *)hash5, 512,
(const BitSequence *)hash5, 64 );
}
#endif
if ( hash6[0] & 1 )
{
sph_gost512_init( &ctx.gost );
sph_gost512( &ctx.gost, (const void*)hash6, 64 );
sph_gost512_close( &ctx.gost, (void*)hash6 );
}
else
#if defined (__VAES__)
memcpy( hash6, hashA6, 64 );
#else
{
echo_full( &ctx.echo, (BitSequence *)hash6, 512,
(const BitSequence *)hash6, 64 );
echo_full( &ctx.echo, (BitSequence *)hash6, 512,
(const BitSequence *)hash6, 64 );
}
#endif
if ( hash7[0] & 1 )
{
sph_gost512_init( &ctx.gost );
sph_gost512( &ctx.gost, (const void*)hash7, 64 );
sph_gost512_close( &ctx.gost, (void*)hash7 );
}
else
#if defined (__VAES__)
memcpy( hash7, hashA7, 64 );
#else
{
echo_full( &ctx.echo, (BitSequence *)hash7, 512,
(const BitSequence *)hash7, 64 );
echo_full( &ctx.echo, (BitSequence *)hash7, 512,
(const BitSequence *)hash7, 64 );
}
#endif
intrlv_8x64_512( hash, hash0, hash1, hash2, hash3,
hash4, hash5, hash6, hash7 );
skein512_8way_init( &ctx.skein );
skein512_8way_update( &ctx.skein, (const void*)hash, 64 );
skein512_8way_close( &ctx.skein, (void*)hash );
for ( int i = 0; i < 4; i++ )
casti_m512i( state, i ) = _mm512_xor_si512( casti_m512i( hash, i ),
casti_m512i( hash, i+4 ) );
}
int scanhash_phi2_8way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t _ALIGN(128) hash[16*8];
uint32_t _ALIGN(128) edata[36*8];
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
uint32_t *hash7 = &(hash[49]);
const uint32_t Htarg = ptarget[7];
const uint32_t first_nonce = pdata[19];
const uint32_t last_nonce = max_nonce - 8;
uint32_t n = first_nonce;
const int thr_id = mythr->id;
const bool bench = opt_benchmark;
if ( bench ) ptarget[7] = 0x00ff;
phi2_has_roots = false;
for ( int i = 0; i < 36; i++ )
{
be32enc( &edata[i], pdata[i] );
edata[ i + 36 ] = edata[ i + 2*36 ] = edata[ i + 3*36 ] =
edata[ i + 4*36 ] = edata[ i + 5*36 ] = edata[ i + 6*36 ] =
edata[ i + 7*36 ] = edata[ i ];
if ( i >= 20 && pdata[i] ) phi2_has_roots = true;
}
edata[ 19 ] = n;
edata[ 36 + 19 ] = n+1;
edata[ 2*36 + 19 ] = n+2;
edata[ 3*36 + 19 ] = n+3;
edata[ 4*36 + 19 ] = n+4;
edata[ 5*36 + 19 ] = n+5;
edata[ 6*36 + 19 ] = n+6;
edata[ 7*36 + 19 ] = n+7;
do {
phi2_8way_hash( hash, edata );
for ( int lane = 0; lane < 8; lane++ )
if ( unlikely( hash7[ lane<<1 ] <= Htarg && !bench ) )
{
uint64_t _ALIGN(64) lane_hash[8];
extr_lane_8x64( lane_hash, hash, lane, 256 );
if ( valid_hash( lane_hash, ptarget ) )
{
be32enc( pdata + 19, n + lane );
submit_solution( work, lane_hash, mythr );
}
}
n += 8;
edata[ 19 ] += 8;
edata[ 36 + 19 ] += 8;
edata[ 2*36 + 19 ] += 8;
edata[ 3*36 + 19 ] += 8;
edata[ 4*36 + 19 ] += 8;
edata[ 5*36 + 19 ] += 8;
edata[ 6*36 + 19 ] += 8;
edata[ 7*36 + 19 ] += 8;
} while ( (n < last_nonce) && !work_restart[thr_id].restart);
pdata[19] = n;
*hashes_done = n - first_nonce;
return 0;
}
#elif defined(PHI2_4WAY)
typedef struct {
cubehashParam cube;
jh512_4way_context jh;
#if defined(__AES__)
hashState_echo echo;
// hashState_echo echo2;
#else
sph_echo512_context echo;
#endif
sph_gost512_context gost;
skein512_4way_context skein;
} phi2_ctx_holder;
/*
phi2_ctx_holder phi2_ctx;
} phi2_4way_ctx_holder;
void init_phi2_ctx()
phi2_4way_ctx_holder phi2_4way_ctx;
void phi2_4way_hash(void *state, const void *input)
{
cubehashInit( &phi2_ctx.cube, 512, 16, 32 );
sph_jh512_init(&phi2_ctx.jh);
init_echo( &phi2_ctx.echo1, 512 );
init_echo( &phi2_ctx.echo2, 512 );
sph_gost512_init(&phi2_ctx.gost);
sph_skein512_init(&phi2_ctx.skein);
};
*/
void phi2_hash_4way( void *state, const void *input )
{
uint32_t hash[4][16] __attribute__ ((aligned (64)));
uint32_t hashA[4][16] __attribute__ ((aligned (64)));
uint32_t hashB[4][16] __attribute__ ((aligned (64)));
uint32_t vhash[4*16] __attribute__ ((aligned (64)));
unsigned char _ALIGN(128) hash[64*4];
unsigned char _ALIGN(64) hash0[64];
unsigned char _ALIGN(64) hash1[64];
unsigned char _ALIGN(64) hash2[64];
unsigned char _ALIGN(64) hash3[64];
unsigned char _ALIGN(64) hash0A[64];
unsigned char _ALIGN(64) hash1A[64];
unsigned char _ALIGN(64) hash2A[64];
unsigned char _ALIGN(64) hash3A[64];
const int size = phi2_has_roots ? 144 : 80 ;
phi2_4way_ctx_holder ctx __attribute__ ((aligned (64)));
// unsigned char _ALIGN(128) hash[64];
// unsigned char _ALIGN(128) hashA[64];
// unsigned char _ALIGN(128) hashB[64];
cubehash_full( &ctx.cube, (byte*)hash0A, 512,
(const byte*)input, size );
cubehash_full( &ctx.cube, (byte*)hash1A, 512,
(const byte*)input + 144, size );
cubehash_full( &ctx.cube, (byte*)hash2A, 512,
(const byte*)input + 2*144, size );
cubehash_full( &ctx.cube, (byte*)hash3A, 512,
(const byte*)input + 3*144, size );
LYRA2RE( &hash0[ 0], 32, hash0A, 32, hash0A, 32, 1, 8, 8 );
LYRA2RE( &hash0[32], 32, hash0A+32, 32, hash0A+32, 32, 1, 8, 8 );
LYRA2RE( &hash1[ 0], 32, hash1A, 32, hash1A, 32, 1, 8, 8 );
LYRA2RE( &hash1[32], 32, hash1A+32, 32, hash1A+32, 32, 1, 8, 8 );
LYRA2RE( &hash2[ 0], 32, hash2A, 32, hash2A, 32, 1, 8, 8 );
LYRA2RE( &hash2[32], 32, hash2A+32, 32, hash2A+32, 32, 1, 8, 8 );
LYRA2RE( &hash3[ 0], 32, hash3A, 32, hash3A, 32, 1, 8, 8 );
LYRA2RE( &hash3[32], 32, hash3A+32, 32, hash3A+32, 32, 1, 8, 8 );
phi2_ctx_holder ctx __attribute__ ((aligned (64)));
// memcpy( &ctx, &phi2_ctx, sizeof(phi2_ctx) );
cubehashInit( &ctx.cube, 512, 16, 32 );
cubehashUpdateDigest( &ctx.cube, (byte*)hashB[0], (const byte*)input,
phi2_has_roots ? 144 : 80 );
cubehashInit( &ctx.cube, 512, 16, 32 );
cubehashUpdateDigest( &ctx.cube, (byte*)hashB[1], (const byte*)input+144,
phi2_has_roots ? 144 : 80 );
cubehashInit( &ctx.cube, 512, 16, 32 );
cubehashUpdateDigest( &ctx.cube, (byte*)hashB[2], (const byte*)input+288,
phi2_has_roots ? 144 : 80 );
cubehashInit( &ctx.cube, 512, 16, 32 );
cubehashUpdateDigest( &ctx.cube, (byte*)hashB[3], (const byte*)input+432,
phi2_has_roots ? 144 : 80 );
LYRA2RE( &hashA[0][0], 32, &hashB[0][0], 32, &hashB[0][0], 32, 1, 8, 8 );
LYRA2RE( &hashA[0][8], 32, &hashB[0][8], 32, &hashB[0][8], 32, 1, 8, 8 );
LYRA2RE( &hashA[1][0], 32, &hashB[1][0], 32, &hashB[1][0], 32, 1, 8, 8 );
LYRA2RE( &hashA[1][8], 32, &hashB[1][8], 32, &hashB[1][8], 32, 1, 8, 8 );
LYRA2RE( &hashA[2][0], 32, &hashB[2][0], 32, &hashB[2][0], 32, 1, 8, 8 );
LYRA2RE( &hashA[2][8], 32, &hashB[2][8], 32, &hashB[2][8], 32, 1, 8, 8 );
LYRA2RE( &hashA[3][0], 32, &hashB[3][0], 32, &hashB[3][0], 32, 1, 8, 8 );
LYRA2RE( &hashA[3][8], 32, &hashB[3][8], 32, &hashB[3][8], 32, 1, 8, 8 );
intrlv_4x64( vhash, hashA[0], hashA[1], hashA[2], hashA[3], 512 );
intrlv_4x64_512( hash, hash0, hash1, hash2, hash3 );
jh512_4way_init( &ctx.jh );
jh512_4way( &ctx.jh, vhash, 64 );
jh512_4way_close( &ctx.jh, vhash );
jh512_4way_update( &ctx.jh, (const void*)hash, 64 );
jh512_4way_close( &ctx.jh, (void*)hash );
dintrlv_4x64( hash[0], hash[1], hash[2], hash[3], vhash, 512 );
dintrlv_4x64_512( hash0, hash1, hash2, hash3, hash );
if ( hash[0][0] & 1 )
if ( hash0[0] & 1 )
{
sph_gost512_init( &ctx.gost );
sph_gost512( &ctx.gost, (const void*)hash[0], 64 );
sph_gost512_close( &ctx.gost, (void*)hash[0] );
sph_gost512( &ctx.gost, (const void*)hash0, 64 );
sph_gost512_close( &ctx.gost, (void*)hash0 );
}
else
{
init_echo( &ctx.echo, 512 );
update_final_echo ( &ctx.echo, (BitSequence *)hash[0],
(const BitSequence *)hash[0], 512 );
init_echo( &ctx.echo, 512 );
update_final_echo ( &ctx.echo, (BitSequence *)hash[0],
(const BitSequence *)hash[0], 512 );
echo_full( &ctx.echo, (BitSequence *)hash0, 512,
(const BitSequence *)hash0, 64 );
echo_full( &ctx.echo, (BitSequence *)hash0, 512,
(const BitSequence *)hash0, 64 );
}
if ( hash[1][0] & 1 )
if ( hash1[0] & 1 )
{
sph_gost512_init( &ctx.gost );
sph_gost512( &ctx.gost, (const void*)hash[1], 64 );
sph_gost512_close( &ctx.gost, (void*)hash[1] );
sph_gost512( &ctx.gost, (const void*)hash1, 64 );
sph_gost512_close( &ctx.gost, (void*)hash1 );
}
else
{
init_echo( &ctx.echo, 512 );
update_final_echo ( &ctx.echo, (BitSequence *)hash[1],
(const BitSequence *)hash[1], 512 );
init_echo( &ctx.echo, 512 );
update_final_echo ( &ctx.echo, (BitSequence *)hash[1],
(const BitSequence *)hash[1], 512 );
echo_full( &ctx.echo, (BitSequence *)hash1, 512,
(const BitSequence *)hash1, 64 );
echo_full( &ctx.echo, (BitSequence *)hash1, 512,
(const BitSequence *)hash1, 64 );
}
if ( hash[2][0] & 1 )
if ( hash2[0] & 1 )
{
sph_gost512_init( &ctx.gost );
sph_gost512( &ctx.gost, (const void*)hash[2], 64 );
sph_gost512_close( &ctx.gost, (void*)hash[2] );
sph_gost512( &ctx.gost, (const void*)hash2, 64 );
sph_gost512_close( &ctx.gost, (void*)hash2 );
}
else
{
init_echo( &ctx.echo, 512 );
update_final_echo ( &ctx.echo, (BitSequence *)hash[2],
(const BitSequence *)hash[2], 512 );
init_echo( &ctx.echo, 512 );
update_final_echo ( &ctx.echo, (BitSequence *)hash[2],
(const BitSequence *)hash[2], 512 );
echo_full( &ctx.echo, (BitSequence *)hash2, 512,
(const BitSequence *)hash2, 64 );
echo_full( &ctx.echo, (BitSequence *)hash2, 512,
(const BitSequence *)hash2, 64 );
}
if ( hash[3][0] & 1 )
if ( hash3[0] & 1 )
{
sph_gost512_init( &ctx.gost );
sph_gost512( &ctx.gost, (const void*)hash[3], 64 );
sph_gost512_close( &ctx.gost, (void*)hash[3] );
sph_gost512( &ctx.gost, (const void*)hash3, 64 );
sph_gost512_close( &ctx.gost, (void*)hash3 );
}
else
{
init_echo( &ctx.echo, 512 );
update_final_echo ( &ctx.echo, (BitSequence *)hash[3],
(const BitSequence *)hash[3], 512 );
init_echo( &ctx.echo, 512 );
update_final_echo ( &ctx.echo, (BitSequence *)hash[3],
(const BitSequence *)hash[3], 512 );
echo_full( &ctx.echo, (BitSequence *)hash3, 512,
(const BitSequence *)hash3, 64 );
echo_full( &ctx.echo, (BitSequence *)hash3, 512,
(const BitSequence *)hash3, 64 );
}
intrlv_4x64( vhash, hash[0], hash[1], hash[2], hash[3], 512 );
intrlv_4x64_512( hash, hash0, hash1, hash2, hash3 );
skein512_4way_init( &ctx.skein );
skein512_4way( &ctx.skein, vhash, 64 );
skein512_4way_close( &ctx.skein, vhash );
skein512_4way_update( &ctx.skein, (const void*)hash, 64 );
skein512_4way_close( &ctx.skein, (void*)hash );
for (int i=0; i<4; i++)
{
( (uint64_t*)vhash )[i] ^= ( (uint64_t*)vhash )[i+4];
( (uint64_t*)vhash+ 8 )[i] ^= ( (uint64_t*)vhash+ 8 )[i+4];
( (uint64_t*)vhash+16 )[i] ^= ( (uint64_t*)vhash+16 )[i+4];
( (uint64_t*)vhash+24 )[i] ^= ( (uint64_t*)vhash+24 )[i+4];
}
// for ( int i = 0; i < 4; i++ )
// casti_m256i( vhash, i ) = _mm256_xor_si256( casti_m256i( vhash, i ),
// casti_m256i( vhash, i+4 ) );
memcpy( state, vhash, 128 );
for ( int i = 0; i < 4; i++ )
casti_m256i( state, i ) = _mm256_xor_si256( casti_m256i( hash, i ),
casti_m256i( hash, i+4 ) );
}
int scanhash_phi2_4way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t _ALIGN(128) hash[8];
uint32_t _ALIGN(128) edata[36];
uint32_t vdata[4][36] __attribute__ ((aligned (64)));
uint32_t *hash7 = &(hash[25]);
uint32_t lane_hash[8] __attribute__ ((aligned (32)));
uint32_t _ALIGN(128) hash[16*4];
uint32_t _ALIGN(128) edata[36*4];
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
uint32_t *hash7 = &(hash[25]); // 3*8+1
const uint32_t Htarg = ptarget[7];
const uint32_t first_nonce = pdata[19];
const uint32_t last_nonce = max_nonce - 4;
uint32_t n = first_nonce;
int thr_id = mythr->id; // thr_id arg is deprecated
if(opt_benchmark){
ptarget[7] = 0x00ff;
}
// Data is not interleaved, but hash is.
// any non-zero data at index 20 or above sets roots true.
// Split up the operations, bswap first, then set roots.
phi2_has_roots = false;
for ( int i=0; i < 36; i++ )
{
be32enc(&edata[i], pdata[i]);
if (i >= 20 && pdata[i]) phi2_has_roots = true;
}
/*
casti_m256i( vdata[0], 0 ) = mm256_bswap_32( casti_m256i( pdata, 0 ) );
casti_m256i( vdata[0], 1 ) = mm256_bswap_32( casti_m256i( pdata, 1 ) );
casti_m256i( vdata[0], 2 ) = mm256_bswap_32( casti_m256i( pdata, 2 ) );
casti_m256i( vdata[0], 3 ) = mm256_bswap_32( casti_m256i( pdata, 3 ) );
casti_m128i( vdata[0], 8 ) = mm128_bswap_32( casti_m128i( pdata, 8 ) );
phi2_has_roots = mm128_anybits1( casti_m128i( vdata[0], 5 ) ) ||
mm128_anybits1( casti_m128i( vdata[0], 6 ) ) ||
mm128_anybits1( casti_m128i( vdata[0], 7 ) ) ||
mm128_anybits1( casti_m128i( vdata[0], 8 ) );
*/
memcpy( vdata[0], edata, 144 );
memcpy( vdata[1], edata, 144 );
memcpy( vdata[2], edata, 144 );
memcpy( vdata[3], edata, 144 );
do {
be32enc( &vdata[0][19], n );
be32enc( &vdata[1][19], n+1 );
be32enc( &vdata[2][19], n+2 );
be32enc( &vdata[3][19], n+3 );
phi2_hash_4way( hash, vdata );
for ( int lane = 0; lane < 4; lane++ ) if ( hash7[ lane<<1 ] < Htarg )
{
extr_lane_4x64( lane_hash, hash, lane, 256 );
if ( fulltest( lane_hash, ptarget ) && !opt_benchmark )
{
pdata[19] = n + lane;
submit_lane_solution( work, lane_hash, mythr, lane );
}
}
n += 4;
} while ( ( n < max_nonce - 4 ) && !work_restart[thr_id].restart );
*hashes_done = n - first_nonce + 1;
return 0;
}
const int thr_id = mythr->id;
const bool bench = opt_benchmark;
if ( bench ) ptarget[7] = 0x00ff;
#endif // PHI2_4WAY
phi2_has_roots = false;
for ( int i = 0; i < 36; i++ )
{
be32enc( &edata[i], pdata[i] );
edata[ i+36 ] = edata[ i+72 ] = edata[ i+108 ] = edata[i];
if ( i >= 20 && pdata[i] ) phi2_has_roots = true;
}
edata[ 19 ] = n;
edata[ 36 + 19 ] = n+1;
edata[ 2*36 + 19 ] = n+2;
edata[ 3*36 + 19 ] = n+3;
do {
phi2_4way_hash( hash, edata );
for ( int lane = 0; lane < 4; lane++ )
if ( unlikely( hash7[ lane<<1 ] <= Htarg && !bench ) )
{
uint64_t _ALIGN(64) lane_hash[8];
extr_lane_4x64( lane_hash, hash, lane, 256 );
if ( valid_hash( lane_hash, ptarget ) )
{
be32enc( pdata + 19, n + lane );
submit_solution( work, lane_hash, mythr );
}
}
edata[ 19 ] += 4;
edata[ 36 + 19 ] += 4;
edata[ 2*36 + 19 ] += 4;
edata[ 3*36 + 19 ] += 4;
n +=4;
} while ( (n < last_nonce) && !work_restart[thr_id].restart);
pdata[19] = n;
*hashes_done = n - first_nonce;
return 0;
}
#endif

View File

@@ -99,7 +99,6 @@ int scanhash_phi2( struct work *work, uint32_t max_nonce,
uint32_t _ALIGN(128) edata[36];
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
const uint32_t Htarg = ptarget[7];
const uint32_t first_nonce = pdata[19];
uint32_t n = first_nonce;
const int thr_id = mythr->id;

View File

@@ -12,8 +12,7 @@
#include "algo/tiger/sph_tiger.h"
#include "algo/whirlpool/sph_whirlpool.h"
#include "algo/ripemd/sph_ripemd.h"
#include <openssl/sha.h>
#include "algo/sha/sph_sha2.h"
#define EPSa DBL_EPSILON
#define EPS1 DBL_EPSILON
@@ -105,8 +104,8 @@ uint32_t sw2_( int nnounce )
}
typedef struct {
SHA256_CTX sha256;
SHA512_CTX sha512;
sph_sha256_context sha256;
sph_sha512_context sha512;
sph_keccak512_context keccak;
sph_whirlpool_context whirlpool;
sph_haval256_5_context haval;
@@ -118,8 +117,8 @@ m7m_ctx_holder m7m_ctx;
void init_m7m_ctx()
{
SHA256_Init( &m7m_ctx.sha256 );
SHA512_Init( &m7m_ctx.sha512 );
sph_sha256_init( &m7m_ctx );
sph_sha512_init( &m7m_ctx.sha512 );
sph_keccak512_init( &m7m_ctx.keccak );
sph_whirlpool_init( &m7m_ctx.whirlpool );
sph_haval256_5_init( &m7m_ctx.haval );
@@ -143,11 +142,10 @@ int scanhash_m7m_hash( struct work* work, uint64_t max_nonce,
uint32_t hash[8] __attribute__((aligned(64)));
uint8_t bhash[7][64] __attribute__((aligned(64)));
uint32_t n = pdata[19] - 1;
int thr_id = mythr->id; // thr_id arg is deprecated
int thr_id = mythr->id;
uint32_t usw_, mpzscale;
const uint32_t first_nonce = pdata[19];
char data_str[161], hash_str[65], target_str[65];
//uint8_t *bdata = 0;
uint8_t bdata[8192] __attribute__ ((aligned (64)));
int i, digits;
int bytes;
@@ -155,12 +153,12 @@ int scanhash_m7m_hash( struct work* work, uint64_t max_nonce,
m7m_ctx_holder ctx1, ctx2 __attribute__ ((aligned (64)));
memcpy( &ctx1, &m7m_ctx, sizeof(m7m_ctx) );
SHA256_CTX ctxf_sha256;
sph_sha256_context ctxf_sha256;
memcpy(data, pdata, 80);
SHA256_Update( &ctx1.sha256, data, M7_MIDSTATE_LEN );
SHA512_Update( &ctx1.sha512, data, M7_MIDSTATE_LEN );
sph_sha256( &ctx1.sha256, data, M7_MIDSTATE_LEN );
sph_sha512( &ctx1.sha512, data, M7_MIDSTATE_LEN );
sph_keccak512( &ctx1.keccak, data, M7_MIDSTATE_LEN );
sph_whirlpool( &ctx1.whirlpool, data, M7_MIDSTATE_LEN );
sph_haval256_5( &ctx1.haval, data, M7_MIDSTATE_LEN );
@@ -191,11 +189,11 @@ int scanhash_m7m_hash( struct work* work, uint64_t max_nonce,
memcpy( &ctx2, &ctx1, sizeof(m7m_ctx) );
SHA256_Update( &ctx2.sha256, data_p64, 80 - M7_MIDSTATE_LEN );
SHA256_Final( (unsigned char*) (bhash[0]), &ctx2.sha256 );
sph_sha256( &ctx2.sha256, data_p64, 80 - M7_MIDSTATE_LEN );
sph_sha256_close( &ctx2.sha256, bhash[0] );
SHA512_Update( &ctx2.sha512, data_p64, 80 - M7_MIDSTATE_LEN );
SHA512_Final( (unsigned char*) (bhash[1]), &ctx2.sha512 );
sph_sha512( &ctx2.sha512, data_p64, 80 - M7_MIDSTATE_LEN );
sph_sha512_close( &ctx2.sha512, bhash[1] );
sph_keccak512( &ctx2.keccak, data_p64, 80 - M7_MIDSTATE_LEN );
sph_keccak512_close( &ctx2.keccak, (void*)(bhash[2]) );
@@ -227,9 +225,9 @@ int scanhash_m7m_hash( struct work* work, uint64_t max_nonce,
bytes = mpz_sizeinbase(product, 256);
mpz_export((void *)bdata, NULL, -1, 1, 0, 0, product);
SHA256_Init( &ctxf_sha256 );
SHA256_Update( &ctxf_sha256, bdata, bytes );
SHA256_Final( (unsigned char*) hash, &ctxf_sha256 );
sph_sha256_init( &ctxf_sha256 );
sph_sha256( &ctxf_sha256, bdata, bytes );
sph_sha256_close( &ctxf_sha256, hash );
digits=(int)((sqrt((double)(n/2))*(1.+EPS))/9000+75);
mp_bitcnt_t prec = (long int)(digits*BITS_PER_DIGIT+16);
@@ -262,18 +260,13 @@ int scanhash_m7m_hash( struct work* work, uint64_t max_nonce,
mpzscale=bytes;
mpz_export(bdata, NULL, -1, 1, 0, 0, product);
SHA256_Init( &ctxf_sha256 );
SHA256_Update( &ctxf_sha256, bdata, bytes );
SHA256_Final( (unsigned char*) hash, &ctxf_sha256 );
}
sph_sha256_init( &ctxf_sha256 );
sph_sha256( &ctxf_sha256, bdata, bytes );
sph_sha256_close( &ctxf_sha256, hash );
}
if ( unlikely( valid_hash( (uint64_t*)hash, (uint64_t*)ptarget )
&& !opt_benchmark ) )
// if ( unlikely( hash[7] <= ptarget[7] ) )
// if ( likely( fulltest( hash, ptarget ) && !opt_benchmark ) )
{
if ( opt_debug )
{
@@ -311,7 +304,7 @@ bool register_m7m_algo( algo_gate_t *gate )
{
gate->optimizations = SHA_OPT;
init_m7m_ctx();
gate->scanhash = (void*)scanhash_m7m_hash;
gate->scanhash = (void*)&scanhash_m7m_hash;
gate->build_stratum_request = (void*)&std_be_build_stratum_request;
gate->work_decode = (void*)&std_be_work_decode;
gate->submit_getwork_result = (void*)&std_be_submit_getwork_result;

View File

@@ -108,7 +108,7 @@ int scanhash_nist5_8way( struct work *work, uint32_t max_nonce,
if ( fulltest( lane_hash, ptarget ) && !opt_benchmark )
{
pdata[19] = n + lane;
submit_lane_solution( work, lane_hash, mythr, lane );
submit_solution( work, lane_hash, mythr );
}
}
n += 8;
@@ -196,7 +196,7 @@ int scanhash_nist5_4way( struct work *work, uint32_t max_nonce,
if ( fulltest( lane_hash, ptarget ) && !opt_benchmark )
{
pdata[19] = n + lane;
submit_lane_solution( work, lane_hash, mythr, lane );
submit_solution( work, lane_hash, mythr );
}
}
n += 4;

View File

@@ -156,9 +156,11 @@ int scanhash_zr5( struct work *work, uint32_t max_nonce,
void zr5_get_new_work( struct work* work, struct work* g_work, int thr_id,
uint32_t* end_nonce_ptr )
{
// pthread_rwlock_rdlock( &g_work_lock );
// ignore POK in first word
const int wkcmp_sz = 72; // (19-1) * sizeof(uint32_t)
uint32_t *nonceptr = algo_gate.get_nonceptr( work->data );
uint32_t *nonceptr = work->data + algo_gate.nonce_index;
if ( memcmp( &work->data[1], &g_work->data[1], wkcmp_sz )
|| ( *nonceptr >= *end_nonce_ptr ) )
{
@@ -171,6 +173,8 @@ void zr5_get_new_work( struct work* work, struct work* g_work, int thr_id,
}
else
++(*nonceptr);
// pthread_rwlock_unlock( &g_work_lock );
}
void zr5_display_pok( struct work* work )

View File

@@ -1,18 +1,241 @@
#include "cpuminer-config.h"
#include "anime-gate.h"
#if defined (ANIME_4WAY)
#include <stdio.h>
#include <string.h>
#include <stdint.h>
#include "algo/blake/blake-hash-4way.h"
#include "algo/bmw/bmw-hash-4way.h"
#include "algo/skein/skein-hash-4way.h"
#include "algo/jh/jh-hash-4way.h"
#include "algo/keccak/keccak-hash-4way.h"
#include "algo/groestl/aes_ni/hash-groestl.h"
#if defined(__VAES__)
#include "algo/groestl/groestl512-hash-4way.h"
#endif
#if defined (ANIME_8WAY)
typedef struct {
blake512_8way_context blake;
bmw512_8way_context bmw;
#if defined(__VAES__)
groestl512_4way_context groestl;
#else
hashState_groestl groestl;
#endif
jh512_8way_context jh;
skein512_8way_context skein;
keccak512_8way_context keccak;
} anime_8way_ctx_holder;
anime_8way_ctx_holder anime_8way_ctx __attribute__ ((aligned (64)));
void init_anime_8way_ctx()
{
blake512_8way_init( &anime_8way_ctx.blake );
bmw512_8way_init( &anime_8way_ctx.bmw );
#if defined(__VAES__)
groestl512_4way_init( &anime_8way_ctx.groestl, 64 );
#else
init_groestl( &anime_8way_ctx.groestl, 64 );
#endif
skein512_8way_init( &anime_8way_ctx.skein );
jh512_8way_init( &anime_8way_ctx.jh );
keccak512_8way_init( &anime_8way_ctx.keccak );
}
void anime_8way_hash( void *state, const void *input )
{
uint64_t vhash[8*8] __attribute__ ((aligned (128)));
uint64_t vhashA[8*8] __attribute__ ((aligned (64)));
uint64_t vhashB[8*8] __attribute__ ((aligned (64)));
uint64_t vhashC[8*8] __attribute__ ((aligned (64)));
#if !defined(__VAES__)
uint64_t hash0[8] __attribute__ ((aligned (64)));
uint64_t hash1[8] __attribute__ ((aligned (64)));
uint64_t hash2[8] __attribute__ ((aligned (64)));
uint64_t hash3[8] __attribute__ ((aligned (64)));
uint64_t hash4[8] __attribute__ ((aligned (64)));
uint64_t hash5[8] __attribute__ ((aligned (64)));
uint64_t hash6[8] __attribute__ ((aligned (64)));
uint64_t hash7[8] __attribute__ ((aligned (64)));
#endif
__m512i* vh = (__m512i*)vhash;
__m512i* vhA = (__m512i*)vhashA;
__m512i* vhB = (__m512i*)vhashB;
__m512i* vhC = (__m512i*)vhashC;
const __m512i bit3_mask = m512_const1_64( 8 );
const __m512i zero = _mm512_setzero_si512();
__mmask8 vh_mask;
anime_8way_ctx_holder ctx;
memcpy( &ctx, &anime_8way_ctx, sizeof(anime_8way_ctx) );
bmw512_8way_full( &ctx.bmw, vhash, input, 80 );
blake512_8way_full( &ctx.blake, vhash, vhash, 64 );
vh_mask = _mm512_cmpeq_epi64_mask( _mm512_and_si512( vh[0], bit3_mask ),
zero );
#if defined(__VAES__)
rintrlv_8x64_4x128( vhashA, vhashB, vhash, 512 );
if ( ( vh_mask & 0x0f ) != 0x0f )
groestl512_4way_full( &ctx.groestl, vhashA, vhashA, 64 );
if ( ( vh_mask & 0xf0 ) != 0xf0 )
groestl512_4way_full( &ctx.groestl, vhashB, vhashB, 64 );
rintrlv_4x128_8x64( vhashC, vhashA, vhashB, 512 );
#else
dintrlv_8x64_512( hash0, hash1, hash2, hash3,
hash4, hash5, hash6, hash7, vhash );
if ( hash0[0] & 8 )
groestl512_full( &ctx.groestl, (char*)hash0, (char*)hash0, 512 );
if ( hash1[0] & 8 )
groestl512_full( &ctx.groestl, (char*)hash1, (char*)hash1, 512 );
if ( hash2[0] & 8)
groestl512_full( &ctx.groestl, (char*)hash2, (char*)hash2, 512 );
if ( hash3[0] & 8 )
groestl512_full( &ctx.groestl, (char*)hash3, (char*)hash3, 512 );
if ( hash4[0] & 8 )
groestl512_full( &ctx.groestl, (char*)hash4, (char*)hash4, 512 );
if ( hash5[0] & 8 )
groestl512_full( &ctx.groestl, (char*)hash5, (char*)hash5, 512 );
if ( hash6[0] & 8 )
groestl512_full( &ctx.groestl, (char*)hash6, (char*)hash6, 512 );
if ( hash7[0] & 8 )
groestl512_full( &ctx.groestl, (char*)hash7, (char*)hash7, 512 );
intrlv_8x64_512( vhashC, hash0, hash1, hash2, hash3,
hash4, hash5, hash6, hash7 );
#endif
if ( vh_mask & 0xff )
skein512_8way_full( &ctx.skein, vhashB, vhash, 64 );
mm512_blend_hash_8x64( vh, vhC, vhB, vh_mask );
#if defined(__VAES__)
rintrlv_8x64_4x128( vhashA, vhashB, vhash, 512 );
groestl512_4way_full( &ctx.groestl, vhashA, vhashA, 64 );
groestl512_4way_full( &ctx.groestl, vhashB, vhashB, 64 );
rintrlv_4x128_8x64( vhash, vhashA, vhashB, 512 );
#else
dintrlv_8x64_512( hash0, hash1, hash2, hash3,
hash4, hash5, hash6, hash7, vhash );
groestl512_full( &ctx.groestl, (char*)hash0, (char*)hash0, 512 );
groestl512_full( &ctx.groestl, (char*)hash1, (char*)hash1, 512 );
groestl512_full( &ctx.groestl, (char*)hash2, (char*)hash2, 512 );
groestl512_full( &ctx.groestl, (char*)hash3, (char*)hash3, 512 );
groestl512_full( &ctx.groestl, (char*)hash4, (char*)hash4, 512 );
groestl512_full( &ctx.groestl, (char*)hash5, (char*)hash5, 512 );
groestl512_full( &ctx.groestl, (char*)hash6, (char*)hash6, 512 );
groestl512_full( &ctx.groestl, (char*)hash7, (char*)hash7, 512 );
intrlv_8x64_512( vhash, hash0, hash1, hash2, hash3,
hash4, hash5, hash6, hash7 );
#endif
jh512_8way_init( &ctx.jh );
jh512_8way_update( &ctx.jh, vhash, 64 );
jh512_8way_close( &ctx.jh, vhash );
vh_mask = _mm512_cmpeq_epi64_mask( _mm512_and_si512( vh[0], bit3_mask ),
zero );
if ( ( vh_mask & 0xff ) != 0xff )
blake512_8way_full( &ctx.blake, vhashA, vhash, 64 );
if ( vh_mask & 0xff )
bmw512_8way_full( &ctx.bmw, vhashB, vhash, 64 );
mm512_blend_hash_8x64( vh, vhA, vhB, vh_mask );
keccak512_8way_init( &ctx.keccak );
keccak512_8way_update( &ctx.keccak, vhash, 64 );
keccak512_8way_close( &ctx.keccak, vhash );
skein512_8way_full( &ctx.skein, vhash, vhash, 64 );
vh_mask = _mm512_cmpeq_epi64_mask( _mm512_and_si512( vh[0], bit3_mask ),
zero );
if ( ( vh_mask & 0xff ) != 0xff )
{
keccak512_8way_init( &ctx.keccak );
keccak512_8way_update( &ctx.keccak, vhash, 64 );
keccak512_8way_close( &ctx.keccak, vhashA );
}
if ( vh_mask & 0xff )
{
jh512_8way_init( &ctx.jh );
jh512_8way_update( &ctx.jh, vhash, 64 );
jh512_8way_close( &ctx.jh, vhashB );
}
casti_m512i( state,0 ) = _mm512_mask_blend_epi64( vh_mask, vhA[0], vhB[0] );
casti_m512i( state,1 ) = _mm512_mask_blend_epi64( vh_mask, vhA[1], vhB[1] );
casti_m512i( state,2 ) = _mm512_mask_blend_epi64( vh_mask, vhA[2], vhB[2] );
casti_m512i( state,3 ) = _mm512_mask_blend_epi64( vh_mask, vhA[3], vhB[3] );
}
int scanhash_anime_8way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
uint64_t hash64[4*8] __attribute__ ((aligned (64)));
uint32_t vdata[20*8] __attribute__ ((aligned (64)));
uint32_t lane_hash[8] __attribute__ ((aligned (64)));
uint64_t *hash64_q3 = &(hash64[3*8]);
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
const uint64_t targ64_q3 = ((uint64_t*)ptarget)[3];
uint32_t n = pdata[19];
const uint32_t first_nonce = pdata[19];
const uint32_t last_nonce = max_nonce - 8;
__m512i *noncev = (__m512i*)vdata + 9;
const int thr_id = mythr->id;
const bool bench = opt_benchmark;
mm512_bswap32_intrlv80_8x64( vdata, pdata );
*noncev = mm512_intrlv_blend_32(
_mm512_set_epi32( n+7, 0, n+6, 0, n+5, 0, n+4, 0,
n+3, 0, n+2, 0, n+1, 0, n , 0 ), *noncev );
do
{
anime_8way_hash( hash64, vdata );
for ( int lane = 0; lane < 8; lane++ )
if ( unlikely( hash64_q3[ lane ] <= targ64_q3 && !bench ) )
{
extr_lane_8x64( lane_hash, hash64, lane, 256 );
if ( valid_hash( lane_hash, ptarget ) )
{
pdata[19] = bswap_32( n + lane );
submit_solution( work, lane_hash, mythr );
}
}
*noncev = _mm512_add_epi32( *noncev,
m512_const1_64( 0x0000000800000000 ) );
n += 8;
} while ( likely( ( n < last_nonce ) && !work_restart[thr_id].restart ) );
pdata[19] = n;
*hashes_done = n - first_nonce;
return 0;
}
#elif defined (ANIME_4WAY)
typedef struct {
blake512_4way_context blake;
@@ -23,18 +246,6 @@ typedef struct {
keccak512_4way_context keccak;
} anime_4way_ctx_holder;
anime_4way_ctx_holder anime_4way_ctx __attribute__ ((aligned (64)));
void init_anime_4way_ctx()
{
blake512_4way_init( &anime_4way_ctx.blake );
bmw512_4way_init( &anime_4way_ctx.bmw );
init_groestl( &anime_4way_ctx.groestl, 64 );
skein512_4way_init( &anime_4way_ctx.skein );
jh512_4way_init( &anime_4way_ctx.jh );
keccak512_4way_init( &anime_4way_ctx.keccak );
}
void anime_4way_hash( void *state, const void *input )
{
uint64_t hash0[8] __attribute__ ((aligned (64)));
@@ -48,81 +259,61 @@ void anime_4way_hash( void *state, const void *input )
__m256i* vhA = (__m256i*)vhashA;
__m256i* vhB = (__m256i*)vhashB;
__m256i vh_mask;
const uint32_t mask = 8;
int h_mask;
const __m256i bit3_mask = m256_const1_64( 8 );
const __m256i zero = _mm256_setzero_si256();
anime_4way_ctx_holder ctx;
memcpy( &ctx, &anime_4way_ctx, sizeof(anime_4way_ctx) );
bmw512_4way_init( &ctx.bmw );
bmw512_4way_update( &ctx.bmw, input, 80 );
bmw512_4way_close( &ctx.bmw, vhash );
blake512_4way_update( &ctx.blake, vhash, 64 );
blake512_4way_close( &ctx.blake, vhash );
blake512_4way_full( &ctx.blake, vhash, vhash, 64 );
vh_mask = _mm256_cmpeq_epi64( _mm256_and_si256( vh[0], bit3_mask ), zero );
h_mask = _mm256_movemask_epi8( vh_mask );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
if ( hash0[0] & mask )
{
update_and_final_groestl( &ctx.groestl, (char*)hash0,
(char*)hash0, 512 );
}
if ( hash1[0] & mask )
{
reinit_groestl( &ctx.groestl );
update_and_final_groestl( &ctx.groestl, (char*)hash1,
(char*)hash1, 512 );
}
if ( hash2[0] & mask )
{
reinit_groestl( &ctx.groestl );
update_and_final_groestl( &ctx.groestl, (char*)hash2,
(char*)hash2, 512 );
}
if ( hash3[0] & mask )
{
reinit_groestl( &ctx.groestl );
update_and_final_groestl( &ctx.groestl, (char*)hash3,
(char*)hash3, 512 );
}
// A
if ( hash0[0] & 8 )
groestl512_full( &ctx.groestl, (char*)hash0, (char*)hash0, 512 );
if ( hash1[0] & 8 )
groestl512_full( &ctx.groestl, (char*)hash1, (char*)hash1, 512 );
if ( hash2[0] & 8)
groestl512_full( &ctx.groestl, (char*)hash2, (char*)hash2, 512 );
if ( hash3[0] & 8 )
groestl512_full( &ctx.groestl, (char*)hash3, (char*)hash3, 512 );
intrlv_4x64( vhashA, hash0, hash1, hash2, hash3, 512 );
if ( mm256_anybits0( vh_mask ) )
{
skein512_4way_update( &ctx.skein, vhash, 64 );
skein512_4way_close( &ctx.skein, vhashB );
}
// B
if ( h_mask & 0xffffffff )
skein512_4way_full( &ctx.skein, vhashB, vhash, 64 );
mm256_blend_hash_4x64( vh, vhA, vhB, vh_mask );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
reinit_groestl( &ctx.groestl );
update_and_final_groestl( &ctx.groestl, (char*)hash0, (char*)hash0, 512 );
reinit_groestl( &ctx.groestl );
update_and_final_groestl( &ctx.groestl, (char*)hash1, (char*)hash1, 512 );
reinit_groestl( &ctx.groestl );
update_and_final_groestl( &ctx.groestl, (char*)hash2, (char*)hash2, 512 );
reinit_groestl( &ctx.groestl );
update_and_final_groestl( &ctx.groestl, (char*)hash3, (char*)hash3, 512 );
groestl512_full( &ctx.groestl, (char*)hash0, (char*)hash0, 512 );
groestl512_full( &ctx.groestl, (char*)hash1, (char*)hash1, 512 );
groestl512_full( &ctx.groestl, (char*)hash2, (char*)hash2, 512 );
groestl512_full( &ctx.groestl, (char*)hash3, (char*)hash3, 512 );
intrlv_4x64( vhash, hash0, hash1, hash2, hash3, 512 );
jh512_4way_init( &ctx.jh );
jh512_4way_update( &ctx.jh, vhash, 64 );
jh512_4way_close( &ctx.jh, vhash );
vh_mask = _mm256_cmpeq_epi64( _mm256_and_si256( vh[0], bit3_mask ), zero );
h_mask = _mm256_movemask_epi8( vh_mask );
if ( mm256_anybits1( vh_mask ) )
{
blake512_4way_init( &ctx.blake );
blake512_4way_update( &ctx.blake, vhash, 64 );
blake512_4way_close( &ctx.blake, vhashA );
}
if ( mm256_anybits0( vh_mask ) )
// A
if ( ( h_mask & 0xffffffff ) != 0xffffffff )
blake512_4way_full( &ctx.blake, vhashA, vhash, 64 );
// B
if ( h_mask & 0xffffffff )
{
bmw512_4way_init( &ctx.bmw );
bmw512_4way_update( &ctx.bmw, vhash, 64 );
@@ -131,90 +322,76 @@ void anime_4way_hash( void *state, const void *input )
mm256_blend_hash_4x64( vh, vhA, vhB, vh_mask );
keccak512_4way_init( &ctx.keccak );
keccak512_4way_update( &ctx.keccak, vhash, 64 );
keccak512_4way_close( &ctx.keccak, vhash );
skein512_4way_init( &ctx.skein );
skein512_4way_update( &ctx.skein, vhash, 64 );
skein512_4way_close( &ctx.skein, vhash );
skein512_4way_full( &ctx.skein, vhash, vhash, 64 );
vh_mask = _mm256_cmpeq_epi64( _mm256_and_si256( vh[0], bit3_mask ), zero );
h_mask = _mm256_movemask_epi8( vh_mask );
if ( mm256_anybits1( vh_mask ) )
// A
if ( ( h_mask & 0xffffffff ) != 0xffffffff )
{
keccak512_4way_init( &ctx.keccak );
keccak512_4way_update( &ctx.keccak, vhash, 64 );
keccak512_4way_close( &ctx.keccak, vhashA );
}
if ( mm256_anybits0( vh_mask ) )
// B
if ( h_mask & 0xffffffff )
{
jh512_4way_init( &ctx.jh );
jh512_4way_update( &ctx.jh, vhash, 64 );
jh512_4way_close( &ctx.jh, vhashB );
}
mm256_blend_hash_4x64( vh, vhA, vhB, vh_mask );
dintrlv_4x64( state, state+32, state+64, state+96, vhash, 256 );
casti_m256i( state, 0 ) = _mm256_blendv_epi8( vhA[0], vhB[0], vh_mask );
casti_m256i( state, 1 ) = _mm256_blendv_epi8( vhA[1], vhB[1], vh_mask );
casti_m256i( state, 2 ) = _mm256_blendv_epi8( vhA[2], vhB[2], vh_mask );
casti_m256i( state, 3 ) = _mm256_blendv_epi8( vhA[3], vhB[3], vh_mask );
}
int scanhash_anime_4way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t hash[4*8] __attribute__ ((aligned (64)));
uint32_t vdata[24*4] __attribute__ ((aligned (64)));
uint64_t hash64[4*4] __attribute__ ((aligned (64)));
uint32_t vdata[20*4] __attribute__ ((aligned (64)));
uint32_t lane_hash[8] __attribute__ ((aligned (64)));
uint64_t *hash64_q3 = &(hash64[3*4]);
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
const uint64_t targ64_q3 = ((uint64_t*)ptarget)[3];
uint32_t n = pdata[19];
const uint32_t first_nonce = pdata[19];
__m256i *noncev = (__m256i*)vdata + 9; // aligned
int thr_id = mythr->id; // thr_id arg is deprecated
const uint32_t Htarg = ptarget[7];
uint64_t htmax[] = {
0,
0xF,
0xFF,
0xFFF,
0xFFFF,
0x10000000
};
uint32_t masks[] = {
0xFFFFFFFF,
0xFFFFFFF0,
0xFFFFFF00,
0xFFFFF000,
0xFFFF0000,
0
};
const uint32_t last_nonce = max_nonce - 4;
__m256i *noncev = (__m256i*)vdata + 9;
const int thr_id = mythr->id;
const bool bench = opt_benchmark;
mm256_bswap32_intrlv80_4x64( vdata, pdata );
*noncev = mm256_intrlv_blend_32(
_mm256_set_epi32( n+3, 0, n+2, 0, n+1, 0, n, 0 ), *noncev );
do
{
anime_4way_hash( hash64, vdata );
for (int m=0; m < 6; m++)
if (Htarg <= htmax[m])
for ( int lane = 0; lane < 4; lane++ )
if ( unlikely( hash64_q3[ lane ] <= targ64_q3 && !bench ) )
{
uint32_t mask = masks[m];
do
extr_lane_4x64( lane_hash, hash64, lane, 256 );
if ( valid_hash( lane_hash, ptarget ) )
{
*noncev = mm256_intrlv_blend_32( mm256_bswap_32(
_mm256_set_epi32( n+3, 0, n+2, 0, n+1, 0, n, 0 ) ), *noncev );
anime_4way_hash( hash, vdata );
pdata[19] = n;
for ( int i = 0; i < 4; i++ )
if ( ( ( (hash+(i<<3))[7] & mask ) == 0 )
&& fulltest( hash+(i<<3), ptarget ) && !opt_benchmark )
{
pdata[19] = n+i;
submit_lane_solution( work, hash+(i<<3), mythr, i );
}
n += 4;
} while ( ( n < max_nonce ) && !work_restart[thr_id].restart );
break;
pdata[19] = bswap_32( n + lane );
submit_solution( work, lane_hash, mythr );
}
}
*hashes_done = n - first_nonce + 1;
*noncev = _mm256_add_epi32( *noncev,
m256_const1_64( 0x0000000400000000 ) );
n += 4;
} while ( likely( ( n < last_nonce ) && !work_restart[thr_id].restart ) );
pdata[19] = n;
*hashes_done = n - first_nonce;
return 0;
}

View File

@@ -2,8 +2,10 @@
bool register_anime_algo( algo_gate_t* gate )
{
#if defined (ANIME_4WAY)
init_anime_4way_ctx();
#if defined (ANIME_8WAY)
gate->scanhash = (void*)&scanhash_anime_8way;
gate->hash = (void*)&anime_8way_hash;
#elif defined (ANIME_4WAY)
gate->scanhash = (void*)&scanhash_anime_4way;
gate->hash = (void*)&anime_4way_hash;
#else
@@ -11,7 +13,7 @@ bool register_anime_algo( algo_gate_t* gate )
gate->scanhash = (void*)&scanhash_anime;
gate->hash = (void*)&anime_hash;
#endif
gate->optimizations = SSE2_OPT | AES_OPT | AVX2_OPT;
gate->optimizations = SSE2_OPT | AES_OPT | AVX2_OPT | AVX512_OPT | VAES_OPT;
return true;
};

View File

@@ -4,18 +4,25 @@
#include "algo-gate-api.h"
#include <stdint.h>
#if defined(__AVX2__) && defined(__AES__)
#define ANIME_4WAY
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#define ANIME_8WAY 1
#elif defined(__AVX2__) && defined(__AES__)
#define ANIME_4WAY 1
#endif
bool register_anime_algo( algo_gate_t* gate );
#if defined(ANIME_4WAY)
#if defined(ANIME_8WAY)
void anime_8way_hash( void *state, const void *input );
int scanhash_anime_8way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
#elif defined(ANIME_4WAY)
void anime_4way_hash( void *state, const void *input );
int scanhash_anime_4way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
void init_anime_4way_ctx();
#endif

View File

@@ -126,49 +126,28 @@ int scanhash_anime( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr)
{
uint32_t hash[8] __attribute__ ((aligned (64)));
uint32_t endiandata[20] __attribute__((aligned(64)));
uint32_t edata[20] __attribute__((aligned(64)));
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
uint32_t n = pdata[19];
const uint32_t first_nonce = pdata[19];
int thr_id = mythr->id; // thr_id arg is deprecated
const uint32_t Htarg = ptarget[7];
uint64_t htmax[] = {
0,
0xF,
0xFF,
0xFFF,
0xFFFF,
0x10000000
};
uint32_t masks[] = {
0xFFFFFFFF,
0xFFFFFFF0,
0xFFFFFF00,
0xFFFFF000,
0xFFFF0000,
0
};
const int thr_id = mythr->id;
const int bench = opt_benchmark;
swab32_array( edata, pdata, 20 );
swab32_array( endiandata, pdata, 20 );
for (int m=0; m < 6; m++)
if (Htarg <= htmax[m])
{
uint32_t mask = masks[m];
do
{
be32enc( &endiandata[19], n );
anime_hash( hash, endiandata );
pdata[19] = n;
if ( ( hash[7] & mask ) == 0 && fulltest( hash, ptarget ) )
submit_solution( work, hash, mythr );
n++;
} while ( ( n < max_nonce ) && !work_restart[thr_id].restart );
break;
}
*hashes_done = n - first_nonce + 1;
do
{
edata[19] = n;
anime_hash( hash, edata );
if ( valid_hash( hash, ptarget ) && !bench )
{
be32enc( &pdata[19], n );
submit_solution( work, hash, mythr );
}
n++;
} while ( ( n < max_nonce ) && !work_restart[thr_id].restart );
*hashes_done = n - first_nonce;
pdata[19] = n;
return 0;
}

File diff suppressed because it is too large Load Diff

View File

@@ -17,13 +17,15 @@
#include "algo/shabal/sph_shabal.h"
#include "algo/whirlpool/sph_whirlpool.h"
#include "algo/haval/sph-haval.h"
#include <openssl/sha.h>
#include "algo/sha/sph_sha2.h"
#if defined(__AES__)
#include "algo/groestl/aes_ni/hash-groestl.h"
#include "algo/echo/aes_ni/hash_api.h"
#include "algo/fugue/fugue-aesni.h"
#else
#include "algo/groestl/sph_groestl.h"
#include "algo/echo/sph_echo.h"
#include "algo/fugue/sph_fugue.h"
#endif
#include "algo/luffa/luffa_for_sse2.h"
#include "algo/cubehash/cubehash_sse2.h"
@@ -40,17 +42,18 @@ typedef struct {
sph_shavite512_context shavite1, shavite2;
hashState_sd simd1, simd2;
sph_hamsi512_context hamsi1;
sph_fugue512_context fugue1, fugue2;
sph_shabal512_context shabal1;
sph_whirlpool_context whirlpool1, whirlpool2, whirlpool3, whirlpool4;
SHA512_CTX sha1, sha2;
sph_sha512_context sha1, sha2;
sph_haval256_5_context haval1, haval2;
#if defined(__AES__)
hashState_echo echo1, echo2;
hashState_groestl groestl1, groestl2;
hashState_fugue fugue1, fugue2;
#else
sph_groestl512_context groestl1, groestl2;
sph_echo512_context echo1, echo2;
sph_fugue512_context fugue1, fugue2;
#endif
} hmq1725_ctx_holder;
@@ -88,8 +91,13 @@ void init_hmq1725_ctx()
sph_hamsi512_init(&hmq1725_ctx.hamsi1);
#if defined(__AES__)
fugue512_Init( &hmq1725_ctx.fugue1, 512 );
fugue512_Init( &hmq1725_ctx.fugue2, 512 );
#else
sph_fugue512_init(&hmq1725_ctx.fugue1);
sph_fugue512_init(&hmq1725_ctx.fugue2);
#endif
sph_shabal512_init(&hmq1725_ctx.shabal1);
@@ -98,8 +106,8 @@ void init_hmq1725_ctx()
sph_whirlpool_init(&hmq1725_ctx.whirlpool3);
sph_whirlpool_init(&hmq1725_ctx.whirlpool4);
SHA512_Init( &hmq1725_ctx.sha1 );
SHA512_Init( &hmq1725_ctx.sha2 );
sph_sha512_init( &hmq1725_ctx.sha1 );
sph_sha512_init( &hmq1725_ctx.sha2 );
sph_haval256_5_init(&hmq1725_ctx.haval1);
sph_haval256_5_init(&hmq1725_ctx.haval2);
@@ -235,8 +243,13 @@ extern void hmq1725hash(void *state, const void *input)
sph_hamsi512 (&h_ctx.hamsi1, hashA, 64); //3
sph_hamsi512_close(&h_ctx.hamsi1, hashB); //4
#if defined(__AES__)
fugue512_Update( &h_ctx.fugue1, hashB, 512 ); //2 ////
fugue512_Final( &h_ctx.fugue1, hashA ); //3
#else
sph_fugue512 (&h_ctx.fugue1, hashB, 64); //2 ////
sph_fugue512_close(&h_ctx.fugue1, hashA); //3
#endif
if ( hashA[0] & mask ) //4
{
@@ -262,13 +275,18 @@ extern void hmq1725hash(void *state, const void *input)
if ( hashB[0] & mask ) //7
{
#if defined(__AES__)
fugue512_Update( &h_ctx.fugue2, hashB, 512 ); //
fugue512_Final( &h_ctx.fugue2, hashA ); //8
#else
sph_fugue512 (&h_ctx.fugue2, hashB, 64); //
sph_fugue512_close(&h_ctx.fugue2, hashA); //8
#endif
}
else
{
SHA512_Update( &h_ctx.sha1, hashB, 64 );
SHA512_Final( (unsigned char*) hashA, &h_ctx.sha1 );
sph_sha512( &h_ctx.sha1, hashB, 64 );
sph_sha512_close( &h_ctx.sha1, hashA );
}
#if defined(__AES__)
@@ -279,8 +297,8 @@ extern void hmq1725hash(void *state, const void *input)
sph_groestl512_close(&h_ctx.groestl2, hashB); //4
#endif
SHA512_Update( &h_ctx.sha2, hashB, 64 );
SHA512_Final( (unsigned char*) hashA, &h_ctx.sha2 );
sph_sha512( &h_ctx.sha2, hashB, 64 );
sph_sha512_close( &h_ctx.sha2, hashA );
if ( hashA[0] & mask ) //4
{

View File

@@ -72,12 +72,10 @@ void quark_8way_hash( void *state, const void *input )
memcpy( &ctx, &quark_8way_ctx, sizeof(quark_8way_ctx) );
blake512_8way_update( &ctx.blake, input, 80 );
blake512_8way_close( &ctx.blake, vhash );
bmw512_8way_update( &ctx.bmw, vhash, 64 );
bmw512_8way_close( &ctx.bmw, vhash );
blake512_8way_full( &ctx.blake, vhash, input, 80 );
bmw512_8way_full( &ctx.bmw, vhash, vhash, 64 );
vh_mask = _mm512_cmpeq_epi64_mask( _mm512_and_si512( vh[0], bit3_mask ),
zero );
@@ -86,70 +84,34 @@ void quark_8way_hash( void *state, const void *input )
rintrlv_8x64_4x128( vhashA, vhashB, vhash, 512 );
if ( ( vh_mask & 0x0f ) != 0x0f )
{
groestl512_4way_init( &ctx.groestl, 64 );
groestl512_4way_update_close( &ctx.groestl, vhashA, vhashA, 512 );
}
if ( ( vh_mask & 0xf0 ) != 0xf0 )
{
groestl512_4way_init( &ctx.groestl, 64 );
groestl512_4way_update_close( &ctx.groestl, vhashB, vhashB, 512 );
}
rintrlv_4x128_8x64( vhashC, vhashA, vhashB, 512 );
if ( ( vh_mask & 0x0f ) != 0x0f )
groestl512_4way_full( &ctx.groestl, vhashA, vhashA, 64 );
if ( ( vh_mask & 0xf0 ) != 0xf0 )
groestl512_4way_full( &ctx.groestl, vhashB, vhashB, 64 );
rintrlv_4x128_8x64( vhashC, vhashA, vhashB, 512 );
#else
dintrlv_8x64( hash0, hash1, hash2, hash3, hash4, hash5, hash6, hash7,
vhash, 512 );
if ( hash0[0] & mask )
{
update_and_final_groestl( &ctx.groestl, (char*)hash0,
(char*)hash0, 512 );
}
if ( hash1[0] & mask )
{
reinit_groestl( &ctx.groestl );
update_and_final_groestl( &ctx.groestl, (char*)hash1,
(char*)hash1, 512 );
}
if ( hash2[0] & mask )
{
reinit_groestl( &ctx.groestl );
update_and_final_groestl( &ctx.groestl, (char*)hash2,
(char*)hash2, 512 );
}
if ( hash3[0] & mask )
{
reinit_groestl( &ctx.groestl );
update_and_final_groestl( &ctx.groestl, (char*)hash3,
(char*)hash3, 512 );
}
if ( hash4[0] & mask )
{
reinit_groestl( &ctx.groestl );
update_and_final_groestl( &ctx.groestl, (char*)hash4,
(char*)hash4, 512 );
}
if ( hash5[0] & mask )
{
reinit_groestl( &ctx.groestl );
update_and_final_groestl( &ctx.groestl, (char*)hash5,
(char*)hash5, 512 );
}
if ( hash6[0] & mask )
{
reinit_groestl( &ctx.groestl );
update_and_final_groestl( &ctx.groestl, (char*)hash6,
(char*)hash6, 512 );
}
if ( hash7[0] & mask )
{
reinit_groestl( &ctx.groestl );
update_and_final_groestl( &ctx.groestl, (char*)hash7,
(char*)hash7, 512 );
}
if ( hash0[0] & 8 )
groestl512_full( &ctx.groestl, (char*)hash0, (char*)hash0, 512 );
if ( hash1[0] & 8 )
groestl512_full( &ctx.groestl, (char*)hash1, (char*)hash1, 512 );
if ( hash2[0] & 8)
groestl512_full( &ctx.groestl, (char*)hash2, (char*)hash2, 512 );
if ( hash3[0] & 8 )
groestl512_full( &ctx.groestl, (char*)hash3, (char*)hash3, 512 );
if ( hash4[0] & 8 )
groestl512_full( &ctx.groestl, (char*)hash4, (char*)hash4, 512 );
if ( hash5[0] & 8 )
groestl512_full( &ctx.groestl, (char*)hash5, (char*)hash5, 512 );
if ( hash6[0] & 8 )
groestl512_full( &ctx.groestl, (char*)hash6, (char*)hash6, 512 );
if ( hash7[0] & 8 )
groestl512_full( &ctx.groestl, (char*)hash7, (char*)hash7, 512 );
intrlv_8x64( vhashC, hash0, hash1, hash2, hash3, hash4, hash5, hash6,
hash7, 512 );
@@ -157,10 +119,7 @@ void quark_8way_hash( void *state, const void *input )
#endif
if ( vh_mask & 0xff )
{
skein512_8way_update( &ctx.skein, vhash, 64 );
skein512_8way_close( &ctx.skein, vhashB );
}
skein512_8way_full( &ctx.skein, vhashB, vhash, 64 );
mm512_blend_hash_8x64( vh, vhC, vhB, vh_mask );
@@ -168,10 +127,8 @@ void quark_8way_hash( void *state, const void *input )
rintrlv_8x64_4x128( vhashA, vhashB, vhash, 512 );
groestl512_4way_init( &ctx.groestl, 64 );
groestl512_4way_update_close( &ctx.groestl, vhashA, vhashA, 512 );
groestl512_4way_init( &ctx.groestl, 64 );
groestl512_4way_update_close( &ctx.groestl, vhashB, vhashB, 512 );
groestl512_4way_full( &ctx.groestl, vhashA, vhashA, 64 );
groestl512_4way_full( &ctx.groestl, vhashB, vhashB, 64 );
rintrlv_4x128_8x64( vhash, vhashA, vhashB, 512 );
@@ -180,22 +137,14 @@ void quark_8way_hash( void *state, const void *input )
dintrlv_8x64( hash0, hash1, hash2, hash3, hash4, hash5, hash6, hash7,
vhash, 512 );
reinit_groestl( &ctx.groestl );
update_and_final_groestl( &ctx.groestl, (char*)hash0, (char*)hash0, 512 );
reinit_groestl( &ctx.groestl );
update_and_final_groestl( &ctx.groestl, (char*)hash1, (char*)hash1, 512 );
reinit_groestl( &ctx.groestl );
update_and_final_groestl( &ctx.groestl, (char*)hash2, (char*)hash2, 512 );
reinit_groestl( &ctx.groestl );
update_and_final_groestl( &ctx.groestl, (char*)hash3, (char*)hash3, 512 );
reinit_groestl( &ctx.groestl );
update_and_final_groestl( &ctx.groestl, (char*)hash4, (char*)hash4, 512 );
reinit_groestl( &ctx.groestl );
update_and_final_groestl( &ctx.groestl, (char*)hash5, (char*)hash5, 512 );
reinit_groestl( &ctx.groestl );
update_and_final_groestl( &ctx.groestl, (char*)hash6, (char*)hash6, 512 );
reinit_groestl( &ctx.groestl );
update_and_final_groestl( &ctx.groestl, (char*)hash7, (char*)hash7, 512 );
groestl512_full( &ctx.groestl, (char*)hash0, (char*)hash0, 512 );
groestl512_full( &ctx.groestl, (char*)hash1, (char*)hash1, 512 );
groestl512_full( &ctx.groestl, (char*)hash2, (char*)hash2, 512 );
groestl512_full( &ctx.groestl, (char*)hash3, (char*)hash3, 512 );
groestl512_full( &ctx.groestl, (char*)hash4, (char*)hash4, 512 );
groestl512_full( &ctx.groestl, (char*)hash5, (char*)hash5, 512 );
groestl512_full( &ctx.groestl, (char*)hash6, (char*)hash6, 512 );
groestl512_full( &ctx.groestl, (char*)hash7, (char*)hash7, 512 );
intrlv_8x64( vhash, hash0, hash1, hash2, hash3, hash4, hash5, hash6, hash7,
512 );
@@ -209,27 +158,16 @@ void quark_8way_hash( void *state, const void *input )
zero );
if ( ( vh_mask & 0xff ) != 0xff )
{
blake512_8way_init( &ctx.blake );
blake512_8way_update( &ctx.blake, vhash, 64 );
blake512_8way_close( &ctx.blake, vhashA );
}
blake512_8way_full( &ctx.blake, vhashA, vhash, 64 );
if ( vh_mask & 0xff )
{
bmw512_8way_init( &ctx.bmw );
bmw512_8way_update( &ctx.bmw, vhash, 64 );
bmw512_8way_close( &ctx.bmw, vhashB );
}
bmw512_8way_full( &ctx.bmw, vhashB, vhash, 64 );
mm512_blend_hash_8x64( vh, vhA, vhB, vh_mask );
keccak512_8way_update( &ctx.keccak, vhash, 64 );
keccak512_8way_close( &ctx.keccak, vhash );
skein512_8way_init( &ctx.skein );
skein512_8way_update( &ctx.skein, vhash, 64 );
skein512_8way_close( &ctx.skein, vhash );
skein512_8way_full( &ctx.skein, vhash, vhash, 64 );
vh_mask = _mm512_cmpeq_epi64_mask( _mm512_and_si512( vh[0], bit3_mask ),
zero );
@@ -258,41 +196,44 @@ void quark_8way_hash( void *state, const void *input )
int scanhash_quark_8way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t hash[8*8] __attribute__ ((aligned (128)));
uint32_t vdata[24*8] __attribute__ ((aligned (64)));
uint64_t hash64[4*8] __attribute__ ((aligned (128)));
uint32_t vdata[20*8] __attribute__ ((aligned (64)));
uint32_t lane_hash[8] __attribute__ ((aligned (64)));
uint32_t *hash7 = &(hash[49]);
uint32_t *pdata = work->data;
uint64_t *hash64_q3 = &(hash64[3*8]);
uint32_t *ptarget = work->target;
const uint64_t targ64_q3 = ((uint64_t*)ptarget)[3];
uint32_t *pdata = work->data;
uint32_t n = pdata[19];
const uint32_t first_nonce = pdata[19];
__m512i *noncev = (__m512i*)vdata + 9; // aligned
int thr_id = mythr->id;
const uint32_t Htarg = ptarget[7];
const uint32_t last_nonce = max_nonce - 8;
__m512i *noncev = (__m512i*)vdata + 9;
const int thr_id = mythr->id;
const bool bench = opt_benchmark;
mm512_bswap32_intrlv80_8x64( vdata, pdata );
*noncev = mm512_intrlv_blend_32(
_mm512_set_epi32( n+7, 0, n+6, 0, n+5, 0, n+4, 0,
n+3, 0, n+2, 0, n+1, 0, n , 0 ), *noncev );
do
{
*noncev = mm512_intrlv_blend_32( mm512_bswap_32(
_mm512_set_epi32( n+7, 0, n+6, 0, n+5, 0, n+4, 0,
n+3, 0, n+2, 0, n+1, 0, n , 0 ) ), *noncev );
quark_8way_hash( hash64, vdata );
quark_8way_hash( hash, vdata );
pdata[19] = n;
for ( int i = 0; i < 8; i++ )
if ( unlikely( hash7[ i<<1 ] <= Htarg ) )
for ( int lane = 0; lane < 8; lane++ )
if ( unlikely( hash64_q3[ lane ] <= targ64_q3 && !bench ) )
{
extr_lane_8x64( lane_hash, hash, i, 256 );
if ( likely( fulltest( lane_hash, ptarget ) && !opt_benchmark ) )
extr_lane_8x64( lane_hash, hash64, lane, 256 );
if ( valid_hash( lane_hash, ptarget ) )
{
pdata[19] = n+i;
submit_lane_solution( work, lane_hash, mythr, i );
pdata[19] = bswap_32( n + lane );
submit_solution( work, lane_hash, mythr );
}
}
*noncev = _mm512_add_epi32( *noncev,
m512_const1_64( 0x0000000800000000 ) );
n += 8;
} while ( ( n < max_nonce-8 ) && !work_restart[thr_id].restart );
} while ( likely( ( n < last_nonce ) && !work_restart[thr_id].restart ) );
pdata[19] = n;
*hashes_done = n - first_nonce;
return 0;
}
@@ -333,67 +274,47 @@ void quark_4way_hash( void *state, const void *input )
__m256i* vhA = (__m256i*)vhashA;
__m256i* vhB = (__m256i*)vhashB;
__m256i vh_mask;
int h_mask;
quark_4way_ctx_holder ctx;
const __m256i bit3_mask = m256_const1_64( 8 );
const uint32_t mask = 8;
const __m256i zero = _mm256_setzero_si256();
memcpy( &ctx, &quark_4way_ctx, sizeof(quark_4way_ctx) );
blake512_4way_update( &ctx.blake, input, 80 );
blake512_4way_close( &ctx.blake, vhash );
blake512_4way_full( &ctx.blake, vhash, input, 80 );
bmw512_4way_update( &ctx.bmw, vhash, 64 );
bmw512_4way_close( &ctx.bmw, vhash );
vh_mask = _mm256_cmpeq_epi64( _mm256_and_si256( vh[0], bit3_mask ), zero );
h_mask = _mm256_movemask_epi8( vh_mask );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
if ( hash0[0] & mask )
{
update_and_final_groestl( &ctx.groestl, (char*)hash0,
(char*)hash0, 512 );
}
if ( hash1[0] & mask )
{
reinit_groestl( &ctx.groestl );
update_and_final_groestl( &ctx.groestl, (char*)hash1,
(char*)hash1, 512 );
}
if ( hash2[0] & mask )
{
reinit_groestl( &ctx.groestl );
update_and_final_groestl( &ctx.groestl, (char*)hash2,
(char*)hash2, 512 );
}
if ( hash3[0] & mask )
{
reinit_groestl( &ctx.groestl );
update_and_final_groestl( &ctx.groestl, (char*)hash3,
(char*)hash3, 512 );
}
// A
if ( hash0[0] & 8 )
groestl512_full( &ctx.groestl, (char*)hash0, (char*)hash0, 512 );
if ( hash1[0] & 8 )
groestl512_full( &ctx.groestl, (char*)hash1, (char*)hash1, 512 );
if ( hash2[0] & 8)
groestl512_full( &ctx.groestl, (char*)hash2, (char*)hash2, 512 );
if ( hash3[0] & 8 )
groestl512_full( &ctx.groestl, (char*)hash3, (char*)hash3, 512 );
intrlv_4x64( vhashA, hash0, hash1, hash2, hash3, 512 );
if ( mm256_anybits1( vh_mask ) )
{
skein512_4way_update( &ctx.skein, vhash, 64 );
skein512_4way_close( &ctx.skein, vhashB );
}
// B
if ( likely( h_mask & 0xffffffff ) )
skein512_4way_full( &ctx.skein, vhashB, vhash, 64 );
mm256_blend_hash_4x64( vh, vhA, vhB, vh_mask );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
reinit_groestl( &ctx.groestl );
update_and_final_groestl( &ctx.groestl, (char*)hash0, (char*)hash0, 512 );
reinit_groestl( &ctx.groestl );
update_and_final_groestl( &ctx.groestl, (char*)hash1, (char*)hash1, 512 );
reinit_groestl( &ctx.groestl );
update_and_final_groestl( &ctx.groestl, (char*)hash2, (char*)hash2, 512 );
reinit_groestl( &ctx.groestl );
update_and_final_groestl( &ctx.groestl, (char*)hash3, (char*)hash3, 512 );
groestl512_full( &ctx.groestl, (char*)hash0, (char*)hash0, 512 );
groestl512_full( &ctx.groestl, (char*)hash1, (char*)hash1, 512 );
groestl512_full( &ctx.groestl, (char*)hash2, (char*)hash2, 512 );
groestl512_full( &ctx.groestl, (char*)hash3, (char*)hash3, 512 );
intrlv_4x64( vhash, hash0, hash1, hash2, hash3, 512 );
@@ -401,15 +322,13 @@ void quark_4way_hash( void *state, const void *input )
jh512_4way_close( &ctx.jh, vhash );
vh_mask = _mm256_cmpeq_epi64( _mm256_and_si256( vh[0], bit3_mask ), zero );
h_mask = _mm256_movemask_epi8( vh_mask );
if ( mm256_anybits0( vh_mask ) )
{
blake512_4way_init( &ctx.blake );
blake512_4way_update( &ctx.blake, vhash, 64 );
blake512_4way_close( &ctx.blake, vhashA );
}
if ( mm256_anybits1( vh_mask ) )
// A
if ( likely( ( h_mask & 0xffffffff ) != 0xffffffff ) )
blake512_4way_full( &ctx.blake, vhashA, vhash, 64 );
// B
if ( likely( h_mask & 0xffffffff ) )
{
bmw512_4way_init( &ctx.bmw );
bmw512_4way_update( &ctx.bmw, vhash, 64 );
@@ -421,20 +340,20 @@ void quark_4way_hash( void *state, const void *input )
keccak512_4way_update( &ctx.keccak, vhash, 64 );
keccak512_4way_close( &ctx.keccak, vhash );
skein512_4way_init( &ctx.skein );
skein512_4way_update( &ctx.skein, vhash, 64 );
skein512_4way_close( &ctx.skein, vhash );
skein512_4way_full( &ctx.skein, vhash, vhash, 64 );
vh_mask = _mm256_cmpeq_epi64( _mm256_and_si256( vh[0], bit3_mask ), zero );
h_mask = _mm256_movemask_epi8( vh_mask );
if ( mm256_anybits0( vh_mask ) )
// A
if ( likely( ( h_mask & 0xffffffff ) != 0xffffffff ) )
{
keccak512_4way_init( &ctx.keccak );
keccak512_4way_update( &ctx.keccak, vhash, 64 );
keccak512_4way_close( &ctx.keccak, vhashA );
}
if ( mm256_anybits1( vh_mask ) )
// B
if ( likely( h_mask & 0xffffffff ) )
{
jh512_4way_init( &ctx.jh );
jh512_4way_update( &ctx.jh, vhash, 64 );
@@ -451,41 +370,44 @@ void quark_4way_hash( void *state, const void *input )
int scanhash_quark_4way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t hash[4*8] __attribute__ ((aligned (64)));
uint32_t vdata[24*4] __attribute__ ((aligned (64)));
uint64_t hash64[4*4] __attribute__ ((aligned (64)));
uint32_t vdata[20*4] __attribute__ ((aligned (64)));
uint32_t lane_hash[8] __attribute__ ((aligned (64)));
uint32_t *hash7 = &(hash[25]);
uint64_t *hash64_q3 = &(hash64[3*4]);
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
const uint64_t targ64_q3 = ((uint64_t*)ptarget)[3];
uint32_t n = pdata[19];
const uint32_t first_nonce = pdata[19];
__m256i *noncev = (__m256i*)vdata + 9; // aligned
int thr_id = mythr->id;
const uint32_t Htarg = ptarget[7];
const uint32_t last_nonce = max_nonce - 4;
__m256i *noncev = (__m256i*)vdata + 9;
const int thr_id = mythr->id;
const bool bench = opt_benchmark;
mm256_bswap32_intrlv80_4x64( vdata, pdata );
*noncev = mm256_intrlv_blend_32(
_mm256_set_epi32( n+3, 0, n+2, 0, n+1, 0, n, 0 ), *noncev );
do
{
*noncev = mm256_intrlv_blend_32( mm256_bswap_32(
_mm256_set_epi32( n+3, 0, n+2, 0, n+1, 0, n, 0 ) ), *noncev );
quark_4way_hash( hash64, vdata );
quark_4way_hash( hash, vdata );
pdata[19] = n;
for ( int i = 0; i < 4; i++ )
if ( unlikely( hash7[ i<<1 ] <= Htarg ) )
for ( int lane = 0; lane < 4; lane++ )
if ( hash64_q3[ lane ] <= targ64_q3 && !bench )
{
extr_lane_4x64( lane_hash, hash, i, 256 );
if ( likely( fulltest( lane_hash, ptarget ) && !opt_benchmark ) )
extr_lane_4x64( lane_hash, hash64, lane, 256 );
if ( valid_hash( lane_hash, ptarget ) )
{
pdata[19] = n+i;
submit_lane_solution( work, lane_hash, mythr, i );
pdata[19] = bswap_32( n + lane );
submit_solution( work, lane_hash, mythr );
}
}
*noncev = _mm256_add_epi32( *noncev,
m256_const1_64( 0x0000000400000000 ) );
n += 4;
} while ( ( n < max_nonce ) && !work_restart[thr_id].restart );
} while ( likely( ( n < last_nonce ) && !work_restart[thr_id].restart ) );
*hashes_done = n - first_nonce + 1;
pdata[19] = n;
*hashes_done = n - first_nonce;
return 0;
}

View File

@@ -106,13 +106,13 @@ int scanhash_deep_2way( struct work *work,uint32_t max_nonce,
if ( fulltest( hash, ptarget) && !opt_benchmark )
{
pdata[19] = n;
submit_lane_solution( work, hash, mythr, 0 );
submit_solution( work, hash, mythr );
}
if ( !( (hash+8)[7] & mask ) )
if ( fulltest( hash+8, ptarget) && !opt_benchmark )
{
pdata[19] = n+1;
submit_lane_solution( work, hash+8, mythr, 1 );
submit_solution( work, hash+8, mythr );
}
n += 2;
} while ( ( n < max_nonce ) && !work_restart[thr_id].restart );

View File

@@ -153,7 +153,7 @@ int scanhash_qubit_4way( struct work *work,uint32_t max_nonce,
if ( likely( fulltest( hash+(lane<<3), ptarget) && !opt_benchmark ) )
{
pdata[19] = n + lane;
submit_lane_solution( work, hash+(lane<<3), mythr, lane );
submit_solution( work, hash+(lane<<3), mythr );
}
n += 4;
} while ( ( n < max_nonce-4 ) && !work_restart[thr_id].restart );
@@ -255,13 +255,13 @@ int scanhash_qubit_2way( struct work *work,uint32_t max_nonce,
if ( likely( fulltest( hash, ptarget) && !opt_benchmark ) )
{
pdata[19] = n;
submit_lane_solution( work, hash, mythr, 0 );
submit_solution( work, hash, mythr );
}
if ( unlikely( ( (hash+8))[7] <= Htarg ) )
if ( likely( fulltest( hash+8, ptarget) && !opt_benchmark ) )
{
pdata[19] = n+1;
submit_lane_solution( work, hash+8, mythr, 1 );
submit_solution( work, hash+8, mythr );
}
n += 2;
} while ( ( n < max_nonce ) && !work_restart[thr_id].restart );

View File

@@ -132,7 +132,7 @@ int scanhash_lbry_16way( struct work *work, uint32_t max_nonce,
if ( likely( fulltest( lane_hash, ptarget ) && !opt_benchmark ) )
{
pdata[27] = n + i;
submit_lane_solution( work, lane_hash, mythr, i );
submit_solution( work, lane_hash, mythr );
}
}
n += 16;
@@ -251,7 +251,7 @@ int scanhash_lbry_8way( struct work *work, uint32_t max_nonce,
if ( fulltest( lane_hash, ptarget ) && !opt_benchmark )
{
pdata[27] = n + i;
submit_lane_solution( work, lane_hash, mythr, i );
submit_solution( work, lane_hash, mythr );
}
}
n += 8;

View File

@@ -69,13 +69,9 @@ void lbry_build_block_header( struct work* g_work, uint32_t version,
void lbry_build_extraheader( struct work* g_work, struct stratum_ctx* sctx )
{
unsigned char merkle_root[64] = { 0 };
size_t t;
int i;
algo_gate.gen_merkle_root( merkle_root, sctx );
// Increment extranonce2
for ( t = 0; t < sctx->xnonce2_size && !( ++sctx->job.xnonce2[t] ); t++ );
// Assemble block header
memset( g_work->data, 0, sizeof(g_work->data) );
g_work->data[0] = le32dec( sctx->job.version );

View File

@@ -7,28 +7,28 @@
#include <string.h>
#include <stdio.h>
#include "sph_ripemd.h"
#include <openssl/sha.h>
#include "algo/sha/sph_sha2.h"
void lbry_hash(void* output, const void* input)
{
SHA256_CTX ctx_sha256 __attribute__ ((aligned (64)));
SHA512_CTX ctx_sha512 __attribute__ ((aligned (64)));
sph_ripemd160_context ctx_ripemd __attribute__ ((aligned (64)));
sph_sha256_context ctx_sha256 __attribute__ ((aligned (64)));
sph_sha512_context ctx_sha512 __attribute__ ((aligned (64)));
sph_ripemd160_context ctx_ripemd __attribute__ ((aligned (64)));
uint32_t _ALIGN(64) hashA[16];
uint32_t _ALIGN(64) hashB[16];
uint32_t _ALIGN(64) hashC[16];
SHA256_Init( &ctx_sha256 );
SHA256_Update( &ctx_sha256, input, 112 );
SHA256_Final( (unsigned char*) hashA, &ctx_sha256 );
sph_sha256_init( &ctx_sha256 );
sph_sha256( &ctx_sha256, input, 112 );
sph_sha256_close( &ctx_sha256, hashA );
SHA256_Init( &ctx_sha256 );
SHA256_Update( &ctx_sha256, hashA, 32 );
SHA256_Final( (unsigned char*) hashA, &ctx_sha256 );
sph_sha256_init( &ctx_sha256 );
sph_sha256( &ctx_sha256, hashA, 32 );
sph_sha256_close( &ctx_sha256, hashA );
SHA512_Init( &ctx_sha512 );
SHA512_Update( &ctx_sha512, hashA, 32 );
SHA512_Final( (unsigned char*) hashA, &ctx_sha512 );
sph_sha512_init( &ctx_sha512 );
sph_sha512( &ctx_sha512, hashA, 32 );
sph_sha512_close( &ctx_sha512, hashA );
sph_ripemd160_init( &ctx_ripemd );
sph_ripemd160 ( &ctx_ripemd, hashA, 32 );
@@ -38,14 +38,14 @@ void lbry_hash(void* output, const void* input)
sph_ripemd160 ( &ctx_ripemd, hashA+8, 32 );
sph_ripemd160_close( &ctx_ripemd, hashC );
SHA256_Init( &ctx_sha256 );
SHA256_Update( &ctx_sha256, hashB, 20 );
SHA256_Update( &ctx_sha256, hashC, 20 );
SHA256_Final( (unsigned char*) hashA, &ctx_sha256 );
sph_sha256_init( &ctx_sha256 );
sph_sha256( &ctx_sha256, hashB, 20 );
sph_sha256( &ctx_sha256, hashC, 20 );
sph_sha256_close( &ctx_sha256, hashA );
SHA256_Init( &ctx_sha256 );
SHA256_Update( &ctx_sha256, hashA, 32 );
SHA256_Final( (unsigned char*) hashA, &ctx_sha256 );
sph_sha256_init( &ctx_sha256 );
sph_sha256( &ctx_sha256, hashA, 32 );
sph_sha256_close( &ctx_sha256, hashA );
memcpy( output, hashA, 32 );
}

View File

@@ -1051,16 +1051,16 @@ int scanhash_neoscrypt( struct work *work,
uint32_t _ALIGN(64) hash[8];
const uint32_t Htarg = ptarget[7];
const uint32_t first_nonce = pdata[19];
int thr_id = mythr->id; // thr_id arg is deprecated
int thr_id = mythr->id;
while (pdata[19] < max_nonce && !work_restart[thr_id].restart)
{
neoscrypt((uint8_t *) hash, (uint8_t *) pdata );
/* Quick hash check */
if (hash[7] <= Htarg && fulltest_le(hash, ptarget)) {
*hashes_done = pdata[19] - first_nonce + 1;
return 1;
if (hash[7] <= Htarg && fulltest_le(hash, ptarget))
{
submit_solution( work, hash, mythr );
}
pdata[19]++;

View File

@@ -380,7 +380,7 @@ static inline void PBKDF2_SHA256_128_32_8way(uint32_t *tstate,
#endif /* HAVE_SHA256_8WAY */
#if defined(USE_ASM) && defined(__x86_64__)
//#if defined(USE_ASM) && defined(__x86_64__)
#define SCRYPT_MAX_WAYS 12
#define HAVE_SCRYPT_3WAY 1
@@ -394,113 +394,6 @@ void scrypt_core_3way(uint32_t *X, uint32_t *V, int N);
void scrypt_core_6way(uint32_t *X, uint32_t *V, int N);
#endif
#elif defined(USE_ASM) && defined(__i386__)
#define SCRYPT_MAX_WAYS 4
#define scrypt_best_throughput() 1
void scrypt_core(uint32_t *X, uint32_t *V, int N);
#elif defined(USE_ASM) && defined(__arm__) && defined(__APCS_32__)
void scrypt_core(uint32_t *X, uint32_t *V, int N);
#if defined(__ARM_NEON__)
#undef HAVE_SHA256_4WAY
#define SCRYPT_MAX_WAYS 3
#define HAVE_SCRYPT_3WAY 1
#define scrypt_best_throughput() 3
void scrypt_core_3way(uint32_t *X, uint32_t *V, int N);
#endif
#else
static inline void xor_salsa8(uint32_t B[16], const uint32_t Bx[16])
{
uint32_t x00,x01,x02,x03,x04,x05,x06,x07,x08,x09,x10,x11,x12,x13,x14,x15;
int i;
x00 = (B[ 0] ^= Bx[ 0]);
x01 = (B[ 1] ^= Bx[ 1]);
x02 = (B[ 2] ^= Bx[ 2]);
x03 = (B[ 3] ^= Bx[ 3]);
x04 = (B[ 4] ^= Bx[ 4]);
x05 = (B[ 5] ^= Bx[ 5]);
x06 = (B[ 6] ^= Bx[ 6]);
x07 = (B[ 7] ^= Bx[ 7]);
x08 = (B[ 8] ^= Bx[ 8]);
x09 = (B[ 9] ^= Bx[ 9]);
x10 = (B[10] ^= Bx[10]);
x11 = (B[11] ^= Bx[11]);
x12 = (B[12] ^= Bx[12]);
x13 = (B[13] ^= Bx[13]);
x14 = (B[14] ^= Bx[14]);
x15 = (B[15] ^= Bx[15]);
for (i = 0; i < 8; i += 2) {
#define R(a, b) (((a) << (b)) | ((a) >> (32 - (b))))
/* Operate on columns. */
x04 ^= R(x00+x12, 7); x09 ^= R(x05+x01, 7);
x14 ^= R(x10+x06, 7); x03 ^= R(x15+x11, 7);
x08 ^= R(x04+x00, 9); x13 ^= R(x09+x05, 9);
x02 ^= R(x14+x10, 9); x07 ^= R(x03+x15, 9);
x12 ^= R(x08+x04,13); x01 ^= R(x13+x09,13);
x06 ^= R(x02+x14,13); x11 ^= R(x07+x03,13);
x00 ^= R(x12+x08,18); x05 ^= R(x01+x13,18);
x10 ^= R(x06+x02,18); x15 ^= R(x11+x07,18);
/* Operate on rows. */
x01 ^= R(x00+x03, 7); x06 ^= R(x05+x04, 7);
x11 ^= R(x10+x09, 7); x12 ^= R(x15+x14, 7);
x02 ^= R(x01+x00, 9); x07 ^= R(x06+x05, 9);
x08 ^= R(x11+x10, 9); x13 ^= R(x12+x15, 9);
x03 ^= R(x02+x01,13); x04 ^= R(x07+x06,13);
x09 ^= R(x08+x11,13); x14 ^= R(x13+x12,13);
x00 ^= R(x03+x02,18); x05 ^= R(x04+x07,18);
x10 ^= R(x09+x08,18); x15 ^= R(x14+x13,18);
#undef R
}
B[ 0] += x00;
B[ 1] += x01;
B[ 2] += x02;
B[ 3] += x03;
B[ 4] += x04;
B[ 5] += x05;
B[ 6] += x06;
B[ 7] += x07;
B[ 8] += x08;
B[ 9] += x09;
B[10] += x10;
B[11] += x11;
B[12] += x12;
B[13] += x13;
B[14] += x14;
B[15] += x15;
}
static inline void scrypt_core(uint32_t *X, uint32_t *V, int N)
{
int i;
for (i = 0; i < N; i++) {
memcpy(&V[i * 32], X, 128);
xor_salsa8(&X[0], &X[16]);
xor_salsa8(&X[16], &X[0]);
}
for (i = 0; i < N; i++) {
uint32_t j = 32 * (X[16] & (N - 1));
for (uint8_t k = 0; k < 32; k++)
X[k] ^= V[j + k];
xor_salsa8(&X[0], &X[16]);
xor_salsa8(&X[16], &X[0]);
}
}
#endif
#ifndef SCRYPT_MAX_WAYS
#define SCRYPT_MAX_WAYS 1
#define scrypt_best_throughput() 1
@@ -511,8 +404,8 @@ unsigned char *scrypt_buffer_alloc(int N)
return (uchar*) malloc((size_t)N * SCRYPT_MAX_WAYS * 128 + 63);
}
static void scrypt_1024_1_1_256(const uint32_t *input, uint32_t *output,
uint32_t *midstate, unsigned char *scratchpad, int N)
static bool scrypt_1024_1_1_256(const uint32_t *input, uint32_t *output,
uint32_t *midstate, unsigned char *scratchpad, int N, int thr_id )
{
uint32_t tstate[8], ostate[8];
uint32_t X[32];
@@ -527,11 +420,13 @@ static void scrypt_1024_1_1_256(const uint32_t *input, uint32_t *output,
scrypt_core(X, V, N);
PBKDF2_SHA256_128_32(tstate, ostate, X, output);
return true;
}
#ifdef HAVE_SHA256_4WAY
static void scrypt_1024_1_1_256_4way(const uint32_t *input,
uint32_t *output, uint32_t *midstate, unsigned char *scratchpad, int N)
static int scrypt_1024_1_1_256_4way(const uint32_t *input,
uint32_t *output, uint32_t *midstate, unsigned char *scratchpad, int N,
int thrid )
{
uint32_t _ALIGN(128) tstate[4 * 8];
uint32_t _ALIGN(128) ostate[4 * 8];
@@ -545,32 +440,47 @@ static void scrypt_1024_1_1_256_4way(const uint32_t *input,
for (i = 0; i < 20; i++)
for (k = 0; k < 4; k++)
W[4 * i + k] = input[k * 20 + i];
for (i = 0; i < 8; i++)
for (i = 0; i < 8; i++)
for (k = 0; k < 4; k++)
tstate[4 * i + k] = midstate[i];
HMAC_SHA256_80_init_4way(W, tstate, ostate);
PBKDF2_SHA256_80_128_4way(tstate, ostate, W, W);
for (i = 0; i < 32; i++)
HMAC_SHA256_80_init_4way(W, tstate, ostate);
PBKDF2_SHA256_80_128_4way(tstate, ostate, W, W);
if ( work_restart[thrid].restart ) return 0;
for (i = 0; i < 32; i++)
for (k = 0; k < 4; k++)
X[k * 32 + i] = W[4 * i + k];
scrypt_core(X + 0 * 32, V, N);
scrypt_core(X + 0 * 32, V, N);
scrypt_core(X + 1 * 32, V, N);
scrypt_core(X + 2 * 32, V, N);
scrypt_core(X + 3 * 32, V, N);
for (i = 0; i < 32; i++)
if ( work_restart[thrid].restart ) return 0;
for (i = 0; i < 32; i++)
for (k = 0; k < 4; k++)
W[4 * i + k] = X[k * 32 + i];
PBKDF2_SHA256_128_32_4way(tstate, ostate, W, W);
for (i = 0; i < 8; i++)
PBKDF2_SHA256_128_32_4way(tstate, ostate, W, W);
for (i = 0; i < 8; i++)
for (k = 0; k < 4; k++)
output[k * 8 + i] = W[4 * i + k];
return 1;
}
#endif /* HAVE_SHA256_4WAY */
#ifdef HAVE_SCRYPT_3WAY
static void scrypt_1024_1_1_256_3way(const uint32_t *input,
uint32_t *output, uint32_t *midstate, unsigned char *scratchpad, int N)
static int scrypt_1024_1_1_256_3way(const uint32_t *input,
uint32_t *output, uint32_t *midstate, unsigned char *scratchpad, int N,
int thrid )
{
uint32_t _ALIGN(64) tstate[3 * 8], ostate[3 * 8];
uint32_t _ALIGN(64) X[3 * 32];
@@ -581,23 +491,34 @@ static void scrypt_1024_1_1_256_3way(const uint32_t *input,
memcpy(tstate + 0, midstate, 32);
memcpy(tstate + 8, midstate, 32);
memcpy(tstate + 16, midstate, 32);
HMAC_SHA256_80_init(input + 0, tstate + 0, ostate + 0);
HMAC_SHA256_80_init(input + 0, tstate + 0, ostate + 0);
HMAC_SHA256_80_init(input + 20, tstate + 8, ostate + 8);
HMAC_SHA256_80_init(input + 40, tstate + 16, ostate + 16);
PBKDF2_SHA256_80_128(tstate + 0, ostate + 0, input + 0, X + 0);
if ( work_restart[thrid].restart ) return 0;
PBKDF2_SHA256_80_128(tstate + 0, ostate + 0, input + 0, X + 0);
PBKDF2_SHA256_80_128(tstate + 8, ostate + 8, input + 20, X + 32);
PBKDF2_SHA256_80_128(tstate + 16, ostate + 16, input + 40, X + 64);
scrypt_core_3way(X, V, N);
if ( work_restart[thrid].restart ) return 0;
PBKDF2_SHA256_128_32(tstate + 0, ostate + 0, X + 0, output + 0);
scrypt_core_3way(X, V, N);
if ( work_restart[thrid].restart ) return 0;
PBKDF2_SHA256_128_32(tstate + 0, ostate + 0, X + 0, output + 0);
PBKDF2_SHA256_128_32(tstate + 8, ostate + 8, X + 32, output + 8);
PBKDF2_SHA256_128_32(tstate + 16, ostate + 16, X + 64, output + 16);
return 1;
}
#ifdef HAVE_SHA256_4WAY
static void scrypt_1024_1_1_256_12way(const uint32_t *input,
uint32_t *output, uint32_t *midstate, unsigned char *scratchpad, int N)
static bool scrypt_1024_1_1_256_12way(const uint32_t *input,
uint32_t *output, uint32_t *midstate, unsigned char *scratchpad, int N,
int thrid )
{
uint32_t _ALIGN(128) tstate[12 * 8];
uint32_t _ALIGN(128) ostate[12 * 8];
@@ -612,43 +533,60 @@ static void scrypt_1024_1_1_256_12way(const uint32_t *input,
for (i = 0; i < 20; i++)
for (k = 0; k < 4; k++)
W[128 * j + 4 * i + k] = input[80 * j + k * 20 + i];
for (j = 0; j < 3; j++)
for (j = 0; j < 3; j++)
for (i = 0; i < 8; i++)
for (k = 0; k < 4; k++)
tstate[32 * j + 4 * i + k] = midstate[i];
HMAC_SHA256_80_init_4way(W + 0, tstate + 0, ostate + 0);
HMAC_SHA256_80_init_4way(W + 0, tstate + 0, ostate + 0);
HMAC_SHA256_80_init_4way(W + 128, tstate + 32, ostate + 32);
HMAC_SHA256_80_init_4way(W + 256, tstate + 64, ostate + 64);
PBKDF2_SHA256_80_128_4way(tstate + 0, ostate + 0, W + 0, W + 0);
if ( work_restart[thrid].restart ) return 0;
PBKDF2_SHA256_80_128_4way(tstate + 0, ostate + 0, W + 0, W + 0);
PBKDF2_SHA256_80_128_4way(tstate + 32, ostate + 32, W + 128, W + 128);
PBKDF2_SHA256_80_128_4way(tstate + 64, ostate + 64, W + 256, W + 256);
for (j = 0; j < 3; j++)
if ( work_restart[thrid].restart ) return 0;
for (j = 0; j < 3; j++)
for (i = 0; i < 32; i++)
for (k = 0; k < 4; k++)
X[128 * j + k * 32 + i] = W[128 * j + 4 * i + k];
scrypt_core_3way(X + 0 * 96, V, N);
scrypt_core_3way(X + 0 * 96, V, N);
scrypt_core_3way(X + 1 * 96, V, N);
scrypt_core_3way(X + 2 * 96, V, N);
scrypt_core_3way(X + 3 * 96, V, N);
for (j = 0; j < 3; j++)
if ( work_restart[thrid].restart ) return 0;
for (j = 0; j < 3; j++)
for (i = 0; i < 32; i++)
for (k = 0; k < 4; k++)
W[128 * j + 4 * i + k] = X[128 * j + k * 32 + i];
PBKDF2_SHA256_128_32_4way(tstate + 0, ostate + 0, W + 0, W + 0);
PBKDF2_SHA256_128_32_4way(tstate + 0, ostate + 0, W + 0, W + 0);
PBKDF2_SHA256_128_32_4way(tstate + 32, ostate + 32, W + 128, W + 128);
PBKDF2_SHA256_128_32_4way(tstate + 64, ostate + 64, W + 256, W + 256);
for (j = 0; j < 3; j++)
for (j = 0; j < 3; j++)
for (i = 0; i < 8; i++)
for (k = 0; k < 4; k++)
output[32 * j + k * 8 + i] = W[128 * j + 4 * i + k];
return 1;
}
#endif /* HAVE_SHA256_4WAY */
#endif /* HAVE_SCRYPT_3WAY */
#ifdef HAVE_SCRYPT_6WAY
static void scrypt_1024_1_1_256_24way(const uint32_t *input,
uint32_t *output, uint32_t *midstate, unsigned char *scratchpad, int N)
static int scrypt_1024_1_1_256_24way( const uint32_t *input,
uint32_t *output, uint32_t *midstate,
unsigned char *scratchpad, int N, int thrid )
{
uint32_t _ALIGN(128) tstate[24 * 8];
uint32_t _ALIGN(128) ostate[24 * 8];
@@ -657,41 +595,60 @@ static void scrypt_1024_1_1_256_24way(const uint32_t *input,
uint32_t *V;
int i, j, k;
V = (uint32_t *)(((uintptr_t)(scratchpad) + 63) & ~ (uintptr_t)(63));
V = (uint32_t *)( ( (uintptr_t)(scratchpad) + 63 ) & ~ (uintptr_t)(63) );
for (j = 0; j < 3; j++)
for (i = 0; i < 20; i++)
for (k = 0; k < 8; k++)
for ( j = 0; j < 3; j++ )
for ( i = 0; i < 20; i++ )
for ( k = 0; k < 8; k++ )
W[8 * 32 * j + 8 * i + k] = input[8 * 20 * j + k * 20 + i];
for (j = 0; j < 3; j++)
for (i = 0; i < 8; i++)
for (k = 0; k < 8; k++)
for ( j = 0; j < 3; j++ )
for ( i = 0; i < 8; i++ )
for ( k = 0; k < 8; k++ )
tstate[8 * 8 * j + 8 * i + k] = midstate[i];
HMAC_SHA256_80_init_8way(W + 0, tstate + 0, ostate + 0);
HMAC_SHA256_80_init_8way(W + 256, tstate + 64, ostate + 64);
HMAC_SHA256_80_init_8way(W + 512, tstate + 128, ostate + 128);
PBKDF2_SHA256_80_128_8way(tstate + 0, ostate + 0, W + 0, W + 0);
PBKDF2_SHA256_80_128_8way(tstate + 64, ostate + 64, W + 256, W + 256);
PBKDF2_SHA256_80_128_8way(tstate + 128, ostate + 128, W + 512, W + 512);
for (j = 0; j < 3; j++)
for (i = 0; i < 32; i++)
for (k = 0; k < 8; k++)
HMAC_SHA256_80_init_8way( W + 0, tstate + 0, ostate + 0 );
HMAC_SHA256_80_init_8way( W + 256, tstate + 64, ostate + 64 );
HMAC_SHA256_80_init_8way( W + 512, tstate + 128, ostate + 128 );
if ( work_restart[thrid].restart ) return 0;
PBKDF2_SHA256_80_128_8way( tstate + 0, ostate + 0, W + 0, W + 0 );
PBKDF2_SHA256_80_128_8way( tstate + 64, ostate + 64, W + 256, W + 256 );
PBKDF2_SHA256_80_128_8way( tstate + 128, ostate + 128, W + 512, W + 512 );
if ( work_restart[thrid].restart ) return 0;
for ( j = 0; j < 3; j++ )
for ( i = 0; i < 32; i++ )
for ( k = 0; k < 8; k++ )
X[8 * 32 * j + k * 32 + i] = W[8 * 32 * j + 8 * i + k];
scrypt_core_6way(X + 0 * 32, V, N);
scrypt_core_6way(X + 6 * 32, V, N);
scrypt_core_6way(X + 12 * 32, V, N);
scrypt_core_6way(X + 18 * 32, V, N);
for (j = 0; j < 3; j++)
for (i = 0; i < 32; i++)
for (k = 0; k < 8; k++)
scrypt_core_6way( X + 0 * 32, V, N );
scrypt_core_6way( X + 6 * 32, V, N );
if ( work_restart[thrid].restart ) return 0;
scrypt_core_6way( X + 12 * 32, V, N );
scrypt_core_6way( X + 18 * 32, V, N );
if ( work_restart[thrid].restart ) return 0;
for ( j = 0; j < 3; j++ )
for ( i = 0; i < 32; i++ )
for ( k = 0; k < 8; k++ )
W[8 * 32 * j + 8 * i + k] = X[8 * 32 * j + k * 32 + i];
PBKDF2_SHA256_128_32_8way(tstate + 0, ostate + 0, W + 0, W + 0);
PBKDF2_SHA256_128_32_8way(tstate + 64, ostate + 64, W + 256, W + 256);
PBKDF2_SHA256_128_32_8way(tstate + 128, ostate + 128, W + 512, W + 512);
for (j = 0; j < 3; j++)
for (i = 0; i < 8; i++)
for (k = 0; k < 8; k++)
PBKDF2_SHA256_128_32_8way( tstate + 0, ostate + 0, W + 0, W + 0 );
PBKDF2_SHA256_128_32_8way( tstate + 64, ostate + 64, W + 256, W + 256 );
PBKDF2_SHA256_128_32_8way( tstate + 128, ostate + 128, W + 512, W + 512 );
for ( j = 0; j < 3; j++ )
for ( i = 0; i < 8; i++ )
for ( k = 0; k < 8; k++ )
output[8 * 8 * j + k * 8 + i] = W[8 * 32 * j + 8 * i + k];
return 1;
}
#endif /* HAVE_SCRYPT_6WAY */
@@ -703,16 +660,18 @@ extern int scanhash_scrypt( struct work *work, uint32_t max_nonce,
uint32_t data[SCRYPT_MAX_WAYS * 20], hash[SCRYPT_MAX_WAYS * 8];
uint32_t midstate[8];
uint32_t n = pdata[19] - 1;
const uint32_t Htarg = ptarget[7];
int thr_id = mythr->id; // thr_id arg is deprecated
int throughput = scrypt_best_throughput();
int i;
volatile uint8_t *restart = &(work_restart[thr_id].restart);
#ifdef HAVE_SHA256_4WAY
if (sha256_use_4way())
throughput *= 4;
#endif
// applog(LOG_INFO,"Scrypt thoughput %d",throughput);
for (i = 0; i < throughput; i++)
memcpy(data + i * 20, pdata, 80);
@@ -720,46 +679,50 @@ extern int scanhash_scrypt( struct work *work, uint32_t max_nonce,
sha256_transform(midstate, data, 0);
do {
bool rc = true;
for (i = 0; i < throughput; i++)
data[i * 20 + 19] = ++n;
#if defined(HAVE_SHA256_4WAY)
if (throughput == 4)
scrypt_1024_1_1_256_4way(data, hash, midstate,
scratchbuf, scratchbuf_size );
rc = scrypt_1024_1_1_256_4way(data, hash, midstate,
scratchbuf, scratchbuf_size, thr_id );
else
#endif
#if defined(HAVE_SCRYPT_3WAY) && defined(HAVE_SHA256_4WAY)
if (throughput == 12)
scrypt_1024_1_1_256_12way(data, hash, midstate,
scratchbuf, scratchbuf_size );
rc = scrypt_1024_1_1_256_12way(data, hash, midstate,
scratchbuf, scratchbuf_size, thr_id );
else
#endif
#if defined(HAVE_SCRYPT_6WAY)
if (throughput == 24)
scrypt_1024_1_1_256_24way(data, hash, midstate,
scratchbuf, scratchbuf_size );
rc = scrypt_1024_1_1_256_24way(data, hash, midstate,
scratchbuf, scratchbuf_size, thr_id );
else
#endif
#if defined(HAVE_SCRYPT_3WAY)
if (throughput == 3)
scrypt_1024_1_1_256_3way(data, hash, midstate,
scratchbuf, scratchbuf_size );
rc = scrypt_1024_1_1_256_3way(data, hash, midstate,
scratchbuf, scratchbuf_size, thr_id );
else
#endif
scrypt_1024_1_1_256(data, hash, midstate, scratchbuf,
scratchbuf_size );
rc = scrypt_1024_1_1_256(data, hash, midstate, scratchbuf,
scratchbuf_size, thr_id );
for (i = 0; i < throughput; i++) {
if (unlikely(hash[i * 8 + 7] <= Htarg && fulltest(hash + i * 8, ptarget))) {
if ( rc )
for ( i = 0; i < throughput; i++ )
{
if ( unlikely( valid_hash( hash + i * 8, ptarget ) ) )
{
pdata[19] = data[i * 20 + 19];
submit_solution( work, hash, mythr );
submit_solution( work, hash + i * 8, mythr );
}
}
} while (likely(n < max_nonce && !work_restart[thr_id].restart));
}
} while ( likely( ( n < ( max_nonce - throughput ) ) && !(*restart) ) );
*hashes_done = n - pdata[19] + 1;
*hashes_done = n - pdata[19];
pdata[19] = n;
return 0;
}
@@ -778,7 +741,6 @@ bool register_scrypt_algo( algo_gate_t* gate )
gate->optimizations = SSE2_OPT | AVX2_OPT;
gate->miner_thread_init =(void*)&scrypt_miner_thread_init;
gate->scanhash = (void*)&scanhash_scrypt;
// gate->hash = (void*)&scrypt_1024_1_1_256_24way;
opt_target_factor = 65536.0;
if ( !opt_param_n )

View File

@@ -0,0 +1,440 @@
/*-
* Copyright 2005,2007,2009 Colin Percival
* Copywright 2020 JayDDee246@gmail.com
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/types.h>
#include <stdint.h>
#include <string.h>
#include "hmac-sha256-hash-4way.h"
#include "compat.h"
// HMAC 4-way SSE2
/**
* HMAC_SHA256_Buf(K, Klen, in, len, digest):
* Compute the HMAC-SHA256 of ${len} bytes from ${in} using the key ${K} of
* length ${Klen}, and write the result to ${digest}.
*/
void
hmac_sha256_4way_full( void *digest, const void *K, size_t Klen,
const void *in, size_t len )
{
hmac_sha256_4way_context ctx;
hmac_sha256_4way_init( &ctx, K, Klen );
hmac_sha256_4way_update( &ctx, in, len );
hmac_sha256_4way_close( &ctx, digest );
}
/* Initialize an HMAC-SHA256 operation with the given key. */
void
hmac_sha256_4way_init( hmac_sha256_4way_context *ctx, const void *_K,
size_t Klen )
{
unsigned char pad[64*4] __attribute__ ((aligned (64)));
unsigned char khash[32*4] __attribute__ ((aligned (64)));
const unsigned char * K = _K;
size_t i;
/* If Klen > 64, the key is really SHA256(K). */
if ( Klen > 64 )
{
sha256_4way_init( &ctx->ictx );
sha256_4way_update( &ctx->ictx, K, Klen );
sha256_4way_close( &ctx->ictx, khash );
K = khash;
Klen = 32;
}
/* Inner SHA256 operation is SHA256(K xor [block of 0x36] || data). */
sha256_4way_init( &ctx->ictx );
memset( pad, 0x36, 64*4 );
for ( i = 0; i < Klen; i++ )
casti_m128i( pad, i ) = _mm_xor_si128( casti_m128i( pad, i ),
casti_m128i( K, i ) );
sha256_4way_update( &ctx->ictx, pad, 64 );
/* Outer SHA256 operation is SHA256(K xor [block of 0x5c] || hash). */
sha256_4way_init( &ctx->octx );
memset( pad, 0x5c, 64*4 );
for ( i = 0; i < Klen/4; i++ )
casti_m128i( pad, i ) = _mm_xor_si128( casti_m128i( pad, i ),
casti_m128i( K, i ) );
sha256_4way_update( &ctx->octx, pad, 64 );
}
/* Add bytes to the HMAC-SHA256 operation. */
void
hmac_sha256_4way_update( hmac_sha256_4way_context *ctx, const void *in,
size_t len )
{
/* Feed data to the inner SHA256 operation. */
sha256_4way_update( &ctx->ictx, in, len );
}
/* Finish an HMAC-SHA256 operation. */
void
hmac_sha256_4way_close( hmac_sha256_4way_context *ctx, void *digest )
{
unsigned char ihash[32*4] __attribute__ ((aligned (64)));
/* Finish the inner SHA256 operation. */
sha256_4way_close( &ctx->ictx, ihash );
/* Feed the inner hash to the outer SHA256 operation. */
sha256_4way_update( &ctx->octx, ihash, 32 );
/* Finish the outer SHA256 operation. */
sha256_4way_close( &ctx->octx, digest );
}
/**
* PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, c, buf, dkLen):
* Compute PBKDF2(passwd, salt, c, dkLen) using HMAC-SHA256 as the PRF, and
* write the output to buf. The value dkLen must be at most 32 * (2^32 - 1).
*/
void
pbkdf2_sha256_4way( uint8_t *buf, size_t dkLen,
const uint8_t *passwd, size_t passwdlen,
const uint8_t *salt, size_t saltlen, uint64_t c )
{
hmac_sha256_4way_context PShctx, hctx;
uint8_t _ALIGN(128) T[32*4];
uint8_t _ALIGN(128) U[32*4];
__m128i ivec;
size_t i, clen;
uint64_t j;
int k;
/* Compute HMAC state after processing P and S. */
hmac_sha256_4way_init( &PShctx, passwd, passwdlen );
hmac_sha256_4way_update( &PShctx, salt, saltlen );
/* Iterate through the blocks. */
for ( i = 0; i * 32 < dkLen; i++ )
{
/* Generate INT(i + 1). */
ivec = _mm_set1_epi32( bswap_32( i+1 ) );
/* Compute U_1 = PRF(P, S || INT(i)). */
memcpy( &hctx, &PShctx, sizeof(hmac_sha256_4way_context) );
hmac_sha256_4way_update( &hctx, &ivec, 4 );
hmac_sha256_4way_close( &hctx, U );
/* T_i = U_1 ... */
memcpy( T, U, 32*4 );
for ( j = 2; j <= c; j++ )
{
/* Compute U_j. */
hmac_sha256_4way_init( &hctx, passwd, passwdlen );
hmac_sha256_4way_update( &hctx, U, 32 );
hmac_sha256_4way_close( &hctx, U );
/* ... xor U_j ... */
for ( k = 0; k < 8; k++ )
casti_m128i( T, k ) = _mm_xor_si128( casti_m128i( T, k ),
casti_m128i( U, k ) );
}
/* Copy as many bytes as necessary into buf. */
clen = dkLen - i * 32;
if ( clen > 32 )
clen = 32;
memcpy( &buf[ i*32*4 ], T, clen*4 );
}
}
#if defined(__AVX2__)
// HMAC 8-way AVX2
void
hmac_sha256_8way_full( void *digest, const void *K, size_t Klen,
const void *in, size_t len )
{
hmac_sha256_8way_context ctx;
hmac_sha256_8way_init( &ctx, K, Klen );
hmac_sha256_8way_update( &ctx, in, len );
hmac_sha256_8way_close( &ctx, digest );
}
/* Initialize an HMAC-SHA256 operation with the given key. */
void
hmac_sha256_8way_init( hmac_sha256_8way_context *ctx, const void *_K,
size_t Klen )
{
unsigned char pad[64*8] __attribute__ ((aligned (128)));
unsigned char khash[32*8] __attribute__ ((aligned (128)));
const unsigned char * K = _K;
size_t i;
/* If Klen > 64, the key is really SHA256(K). */
if ( Klen > 64 )
{
sha256_8way_init( &ctx->ictx );
sha256_8way_update( &ctx->ictx, K, Klen );
sha256_8way_close( &ctx->ictx, khash );
K = khash;
Klen = 32;
}
/* Inner SHA256 operation is SHA256(K xor [block of 0x36] || data). */
sha256_8way_init( &ctx->ictx );
memset( pad, 0x36, 64*8);
for ( i = 0; i < Klen/4; i++ )
casti_m256i( pad, i ) = _mm256_xor_si256( casti_m256i( pad, i ),
casti_m256i( K, i ) );
sha256_8way_update( &ctx->ictx, pad, 64 );
/* Outer SHA256 operation is SHA256(K xor [block of 0x5c] || hash). */
sha256_8way_init( &ctx->octx );
memset( pad, 0x5c, 64*8 );
for ( i = 0; i < Klen/4; i++ )
casti_m256i( pad, i ) = _mm256_xor_si256( casti_m256i( pad, i ),
casti_m256i( K, i ) );
sha256_8way_update( &ctx->octx, pad, 64 );
}
void
hmac_sha256_8way_update( hmac_sha256_8way_context *ctx, const void *in,
size_t len )
{
/* Feed data to the inner SHA256 operation. */
sha256_8way_update( &ctx->ictx, in, len );
}
/* Finish an HMAC-SHA256 operation. */
void
hmac_sha256_8way_close( hmac_sha256_8way_context *ctx, void *digest )
{
unsigned char ihash[32*8] __attribute__ ((aligned (128)));
/* Finish the inner SHA256 operation. */
sha256_8way_close( &ctx->ictx, ihash );
/* Feed the inner hash to the outer SHA256 operation. */
sha256_8way_update( &ctx->octx, ihash, 32 );
/* Finish the outer SHA256 operation. */
sha256_8way_close( &ctx->octx, digest );
}
/**
* PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, c, buf, dkLen):
* Compute PBKDF2(passwd, salt, c, dkLen) using HMAC-SHA256 as the PRF, and
* write the output to buf. The value dkLen must be at most 32 * (2^32 - 1).
*/
void
pbkdf2_sha256_8way( uint8_t *buf, size_t dkLen, const uint8_t *passwd,
size_t passwdlen, const uint8_t *salt, size_t saltlen,
uint64_t c )
{
hmac_sha256_8way_context PShctx, hctx;
uint8_t _ALIGN(128) T[32*8];
uint8_t _ALIGN(128) U[32*8];
size_t i, clen;
uint64_t j;
int k;
/* Compute HMAC state after processing P and S. */
hmac_sha256_8way_init( &PShctx, passwd, passwdlen );
// saltlen can be odd number of bytes
hmac_sha256_8way_update( &PShctx, salt, saltlen );
/* Iterate through the blocks. */
for ( i = 0; i * 32 < dkLen; i++ )
{
__m256i ivec = _mm256_set1_epi32( bswap_32( i+1 ) );
/* Compute U_1 = PRF(P, S || INT(i)). */
memcpy( &hctx, &PShctx, sizeof(hmac_sha256_8way_context) );
hmac_sha256_8way_update( &hctx, &ivec, 4 );
hmac_sha256_8way_close( &hctx, U );
/* T_i = U_1 ... */
memcpy( T, U, 32*8 );
for ( j = 2; j <= c; j++ )
{
/* Compute U_j. */
hmac_sha256_8way_init( &hctx, passwd, passwdlen );
hmac_sha256_8way_update( &hctx, U, 32 );
hmac_sha256_8way_close( &hctx, U );
/* ... xor U_j ... */
for ( k = 0; k < 8; k++ )
casti_m256i( T, k ) = _mm256_xor_si256( casti_m256i( T, k ),
casti_m256i( U, k ) );
}
/* Copy as many bytes as necessary into buf. */
clen = dkLen - i * 32;
if ( clen > 32 )
clen = 32;
memcpy( &buf[ i*32*8 ], T, clen*8 );
}
}
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
// HMAC 16-way AVX512
void
hmac_sha256_16way_full( void *digest, const void *K, size_t Klen,
const void *in, size_t len )
{
hmac_sha256_16way_context ctx;
hmac_sha256_16way_init( &ctx, K, Klen );
hmac_sha256_16way_update( &ctx, in, len );
hmac_sha256_16way_close( &ctx, digest );
}
void
hmac_sha256_16way_init( hmac_sha256_16way_context *ctx, const void *_K,
size_t Klen )
{
unsigned char pad[64*16] __attribute__ ((aligned (128)));
unsigned char khash[32*16] __attribute__ ((aligned (128)));
const unsigned char * K = _K;
size_t i;
/* If Klen > 64, the key is really SHA256(K). */
if ( Klen > 64 )
{
sha256_16way_init( &ctx->ictx );
sha256_16way_update( &ctx->ictx, K, Klen );
sha256_16way_close( &ctx->ictx, khash );
K = khash;
Klen = 32;
}
/* Inner SHA256 operation is SHA256(K xor [block of 0x36] || data). */
sha256_16way_init( &ctx->ictx );
memset( pad, 0x36, 64*16 );
for ( i = 0; i < Klen; i++ )
casti_m512i( pad, i ) = _mm512_xor_si512( casti_m512i( pad, i ),
casti_m512i( K, i ) );
sha256_16way_update( &ctx->ictx, pad, 64 );
/* Outer SHA256 operation is SHA256(K xor [block of 0x5c] || hash). */
sha256_16way_init( &ctx->octx );
memset( pad, 0x5c, 64*16 );
for ( i = 0; i < Klen/4; i++ )
casti_m512i( pad, i ) = _mm512_xor_si512( casti_m512i( pad, i ),
casti_m512i( K, i ) );
sha256_16way_update( &ctx->octx, pad, 64 );
}
void
hmac_sha256_16way_update( hmac_sha256_16way_context *ctx, const void *in,
size_t len )
{
/* Feed data to the inner SHA256 operation. */
sha256_16way_update( &ctx->ictx, in, len );
}
/* Finish an HMAC-SHA256 operation. */
void
hmac_sha256_16way_close( hmac_sha256_16way_context *ctx, void *digest )
{
unsigned char ihash[32*16] __attribute__ ((aligned (128)));
/* Finish the inner SHA256 operation. */
sha256_16way_close( &ctx->ictx, ihash );
/* Feed the inner hash to the outer SHA256 operation. */
sha256_16way_update( &ctx->octx, ihash, 32 );
/* Finish the outer SHA256 operation. */
sha256_16way_close( &ctx->octx, digest );
}
/**
* PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, c, buf, dkLen):
* Compute PBKDF2(passwd, salt, c, dkLen) using HMAC-SHA256 as the PRF, and
* write the output to buf. The value dkLen must be at most 32 * (2^32 - 1).
*/
void
pbkdf2_sha256_16way( uint8_t *buf, size_t dkLen,
const uint8_t *passwd, size_t passwdlen,
const uint8_t *salt, size_t saltlen, uint64_t c )
{
hmac_sha256_16way_context PShctx, hctx;
uint8_t _ALIGN(128) T[32*16];
uint8_t _ALIGN(128) U[32*16];
__m512i ivec;
size_t i, clen;
uint64_t j;
int k;
/* Compute HMAC state after processing P and S. */
hmac_sha256_16way_init( &PShctx, passwd, passwdlen );
hmac_sha256_16way_update( &PShctx, salt, saltlen );
/* Iterate through the blocks. */
for ( i = 0; i * 32 < dkLen; i++ )
{
/* Generate INT(i + 1). */
ivec = _mm512_set1_epi32( bswap_32( i+1 ) );
/* Compute U_1 = PRF(P, S || INT(i)). */
memcpy( &hctx, &PShctx, sizeof(hmac_sha256_16way_context) );
hmac_sha256_16way_update( &hctx, &ivec, 4 );
hmac_sha256_16way_close( &hctx, U );
/* T_i = U_1 ... */
memcpy( T, U, 32*16 );
for ( j = 2; j <= c; j++ )
{
/* Compute U_j. */
hmac_sha256_16way_init( &hctx, passwd, passwdlen );
hmac_sha256_16way_update( &hctx, U, 32 );
hmac_sha256_16way_close( &hctx, U );
/* ... xor U_j ... */
for ( k = 0; k < 8; k++ )
casti_m512i( T, k ) = _mm512_xor_si512( casti_m512i( T, k ),
casti_m512i( U, k ) );
}
/* Copy as many bytes as necessary into buf. */
clen = dkLen - i * 32;
if ( clen > 32 )
clen = 32;
memcpy( &buf[ i*32*16 ], T, clen*16 );
}
}
#endif // AVX512
#endif // AVX2

View File

@@ -0,0 +1,107 @@
/*-
* Copyright 2005,2007,2009 Colin Percival
* Copyright 2020 JayDDee@gmailcom
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD: src/lib/libmd/sha256_Y.h,v 1.2 2006/01/17 15:35:56 phk Exp $
*/
#ifndef HMAC_SHA256_4WAY_H__
#define HMAC_SHA256_4WAY_H__
// Tested only 8-way with null pers
#include <sys/types.h>
#include <stdint.h>
#include "simd-utils.h"
#include "sha-hash-4way.h"
typedef struct _hmac_sha256_4way_context
{
sha256_4way_context ictx;
sha256_4way_context octx;
} hmac_sha256_4way_context;
//void SHA256_Buf( const void *, size_t len, uint8_t digest[32] );
void hmac_sha256_4way_init( hmac_sha256_4way_context *, const void *, size_t );
void hmac_sha256_4way_update( hmac_sha256_4way_context *, const void *,
size_t );
void hmac_sha256_4way_close( hmac_sha256_4way_context *, void* );
void hmac_sha256_4way_full( void*, const void *, size_t Klen, const void *,
size_t len );
/**
* PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, c, buf, dkLen):
* Compute PBKDF2(passwd, salt, c, dkLen) using HMAC-SHA256 as the PRF, and
* write the output to buf. The value dkLen must be at most 32 * (2^32 - 1).
*/
void pbkdf2_sha256_4way( uint8_t *, size_t, const uint8_t *, size_t,
const uint8_t *, size_t, uint64_t );
#if defined(__AVX2__)
typedef struct _hmac_sha256_8way_context
{
sha256_8way_context ictx;
sha256_8way_context octx;
} hmac_sha256_8way_context;
//void SHA256_Buf( const void *, size_t len, uint8_t digest[32] );
void hmac_sha256_8way_init( hmac_sha256_8way_context *, const void *, size_t );
void hmac_sha256_8way_update( hmac_sha256_8way_context *, const void *,
size_t );
void hmac_sha256_8way_close( hmac_sha256_8way_context *, void* );
void hmac_sha256_8way_full( void*, const void *, size_t Klen, const void *,
size_t len );
void pbkdf2_sha256_8way( uint8_t *, size_t, const uint8_t *, size_t,
const uint8_t *, size_t, uint64_t );
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
typedef struct _hmac_sha256_16way_context
{
sha256_16way_context ictx;
sha256_16way_context octx;
} hmac_sha256_16way_context;
//void SHA256_Buf( const void *, size_t len, uint8_t digest[32] );
void hmac_sha256_16way_init( hmac_sha256_16way_context *,
const void *, size_t );
void hmac_sha256_16way_update( hmac_sha256_16way_context *, const void *,
size_t );
void hmac_sha256_16way_close( hmac_sha256_16way_context *, void* );
void hmac_sha256_16way_full( void*, const void *, size_t Klen, const void *,
size_t len );
void pbkdf2_sha256_16way( uint8_t *, size_t, const uint8_t *, size_t,
const uint8_t *, size_t, uint64_t );
#endif // AVX512
#endif // AVX2
#endif // HMAC_SHA256_4WAY_H__

View File

@@ -39,10 +39,17 @@
void
SHA256_Buf( const void * in, size_t len, uint8_t digest[32] )
{
SHA256_CTX ctx;
#if defined(HMAC_SPH_SHA)
sph_sha256_context ctx;
sph_sha256_init( &ctx );
sph_sha256( &ctx, in, len );
sph_sha256_close( &ctx, digest );
#else
SHA256_CTX ctx;
SHA256_Init( &ctx );
SHA256_Update( &ctx, in, len );
SHA256_Final( digest, &ctx );
#endif
}
/**
@@ -64,34 +71,59 @@ HMAC_SHA256_Buf( const void *K, size_t Klen, const void *in, size_t len,
void
HMAC_SHA256_Init( HMAC_SHA256_CTX *ctx, const void *_K, size_t Klen )
{
unsigned char pad[64];
unsigned char khash[32];
const unsigned char * K = _K;
size_t i;
unsigned char pad[64];
unsigned char khash[32];
const unsigned char * K = _K;
size_t i;
/* If Klen > 64, the key is really SHA256(K). */
if ( Klen > 64 )
/* If Klen > 64, the key is really SHA256(K). */
if ( Klen > 64 )
{
SHA256_Init( &ctx->ictx );
SHA256_Update( &ctx->ictx, K, Klen );
SHA256_Final( khash, &ctx->ictx );
K = khash;
Klen = 32;
}
#if defined(HMAC_SPH_SHA)
sph_sha256_init( &ctx->ictx );
sph_sha256( &ctx->ictx, K, Klen );
sph_sha256_close( &ctx->ictx, khash );
#else
SHA256_Init( &ctx->ictx );
SHA256_Update( &ctx->ictx, K, Klen );
SHA256_Final( khash, &ctx->ictx );
#endif
K = khash;
Klen = 32;
}
/* Inner SHA256 operation is SHA256(K xor [block of 0x36] || data). */
/* Inner SHA256 operation is SHA256(K xor [block of 0x36] || data). */
#if defined(HMAC_SPH_SHA)
sph_sha256_init( &ctx->ictx );
#else
SHA256_Init( &ctx->ictx );
memset( pad, 0x36, 64 );
for ( i = 0; i < Klen; i++ )
pad[i] ^= K[i];
SHA256_Update( &ctx->ictx, pad, 64 );
#endif
/* Outer SHA256 operation is SHA256(K xor [block of 0x5c] || hash). */
SHA256_Init( &ctx->octx );
memset(pad, 0x5c, 64);
for ( i = 0; i < Klen; i++ )
pad[i] ^= K[i];
SHA256_Update( &ctx->octx, pad, 64 );
for ( i = 0; i < Klen; i++ ) pad[i] = K[i] ^ 0x36;
memset( pad + Klen, 0x36, 64 - Klen );
#if defined(HMAC_SPH_SHA)
sph_sha256( &ctx->ictx, pad, 64 );
#else
SHA256_Update( &ctx->ictx, pad, 64 );
#endif
/* Outer SHA256 operation is SHA256(K xor [block of 0x5c] || hash). */
#if defined(HMAC_SPH_SHA)
sph_sha256_init( &ctx->octx );
#else
SHA256_Init( &ctx->octx );
#endif
for ( i = 0; i < Klen; i++ ) pad[i] = K[i] ^ 0x5c;
memset( pad + Klen, 0x5c, 64 - Klen );
#if defined(HMAC_SPH_SHA)
sph_sha256( &ctx->octx, pad, 64 );
#else
SHA256_Update( &ctx->octx, pad, 64 );
#endif
}
/* Add bytes to the HMAC-SHA256 operation. */
@@ -99,23 +131,33 @@ void
HMAC_SHA256_Update( HMAC_SHA256_CTX *ctx, const void *in, size_t len )
{
/* Feed data to the inner SHA256 operation. */
SHA256_Update( &ctx->ictx, in, len );
#if defined(HMAC_SPH_SHA)
sph_sha256( &ctx->ictx, in, len );
#else
SHA256_Update( &ctx->ictx, in, len );
#endif
}
/* Finish an HMAC-SHA256 operation. */
void
HMAC_SHA256_Final( unsigned char digest[32], HMAC_SHA256_CTX *ctx )
{
unsigned char ihash[32];
unsigned char ihash[32];
/* Finish the inner SHA256 operation. */
SHA256_Final( ihash, &ctx->ictx );
#if defined(HMAC_SPH_SHA)
sph_sha256_close( &ctx->ictx, ihash );
sph_sha256( &ctx->octx, ihash, 32 );
sph_sha256_close( &ctx->octx, digest );
#else
/* Finish the inner SHA256 operation. */
SHA256_Final( ihash, &ctx->ictx );
/* Feed the inner hash to the outer SHA256 operation. */
SHA256_Update( &ctx->octx, ihash, 32 );
/* Feed the inner hash to the outer SHA256 operation. */
SHA256_Update( &ctx->octx, ihash, 32 );
/* Finish the outer SHA256 operation. */
SHA256_Final( digest, &ctx->octx );
/* Finish the outer SHA256 operation. */
SHA256_Final( digest, &ctx->octx );
#endif
}
/**
@@ -161,7 +203,13 @@ PBKDF2_SHA256( const uint8_t *passwd, size_t passwdlen, const uint8_t *salt,
HMAC_SHA256_Final( U, &hctx );
/* ... xor U_j ... */
for ( k = 0; k < 32; k++ )
// _mm256_xor_si256( *(__m256i*)T, *(__m256i*)U );
// _mm_xor_si128( ((__m128i*)T)[0], ((__m128i*)U)[0] );
// _mm_xor_si128( ((__m128i*)T)[1], ((__m128i*)U)[1] );
// for ( k = 0; k < 4; k++ ) T[k] ^= U[k];
for ( k = 0; k < 32; k++ )
T[k] ^= U[k];
}

View File

@@ -29,14 +29,24 @@
#ifndef HMAC_SHA256_H__
#define HMAC_SHA256_H__
//#define HMAC_SSL_SHA 1
#define HMAC_SPH_SHA 1
#include <sys/types.h>
#include <stdint.h>
#include "sph_sha2.h"
#include <openssl/sha.h>
typedef struct HMAC_SHA256Context
{
SHA256_CTX ictx;
SHA256_CTX octx;
#if defined(HMAC_SPH_SHA)
sph_sha256_context ictx;
sph_sha256_context octx;
#else
SHA256_CTX ictx;
SHA256_CTX octx;
#endif
} HMAC_SHA256_CTX;
void SHA256_Buf( const void *, size_t len, uint8_t digest[32] );

View File

@@ -58,6 +58,7 @@ void sha256_4way_init( sha256_4way_context *sc );
void sha256_4way_update( sha256_4way_context *sc, const void *data,
size_t len );
void sha256_4way_close( sha256_4way_context *sc, void *dst );
void sha256_4way_full( void *dst, const void *data, size_t len );
#endif // SSE2
@@ -75,6 +76,7 @@ typedef struct {
void sha256_8way_init( sha256_8way_context *sc );
void sha256_8way_update( sha256_8way_context *sc, const void *data, size_t len );
void sha256_8way_close( sha256_8way_context *sc, void *dst );
void sha256_8way_full( void *dst, const void *data, size_t len );
#endif // AVX2
@@ -92,6 +94,7 @@ typedef struct {
void sha256_16way_init( sha256_16way_context *sc );
void sha256_16way_update( sha256_16way_context *sc, const void *data, size_t len );
void sha256_16way_close( sha256_16way_context *sc, void *dst );
void sha256_16way_full( void *dst, const void *data, size_t len );
#endif // AVX512
@@ -110,6 +113,7 @@ void sha512_4way_init( sha512_4way_context *sc);
void sha512_4way_update( sha512_4way_context *sc, const void *data,
size_t len );
void sha512_4way_close( sha512_4way_context *sc, void *dst );
void sha512_4way_full( void *dst, const void *data, size_t len );
#endif // AVX2
@@ -128,6 +132,7 @@ void sha512_8way_init( sha512_8way_context *sc);
void sha512_8way_update( sha512_8way_context *sc, const void *data,
size_t len );
void sha512_8way_close( sha512_8way_context *sc, void *dst );
void sha512_8way_full( void *dst, const void *data, size_t len );
#endif // AVX512

View File

@@ -12,7 +12,6 @@
#include <string.h>
#include <inttypes.h>
#include <openssl/sha.h>
#if defined(USE_ASM) && defined(__arm__) && defined(__APCS_32__)
#define EXTERN_SHA256
@@ -198,16 +197,6 @@ static void sha256d_80_swap(uint32_t *hash, const uint32_t *data)
extern void sha256d(unsigned char *hash, const unsigned char *data, int len)
{
#if defined(__SHA__)
SHA256_CTX ctx;
SHA256_Init( &ctx );
SHA256_Update( &ctx, data, len );
SHA256_Final( (unsigned char*)hash, &ctx );
SHA256_Init( &ctx );
SHA256_Update( &ctx, hash, 32 );
SHA256_Final( (unsigned char*)hash, &ctx );
#else
uint32_t S[16], T[16];
int i, r;
@@ -229,7 +218,6 @@ extern void sha256d(unsigned char *hash, const unsigned char *data, int len)
sha256_transform(T, S, 0);
for (i = 0; i < 8; i++)
be32enc((uint32_t *)hash + i, T[i]);
#endif
}
static inline void sha256d_preextend(uint32_t *W)
@@ -479,8 +467,8 @@ static inline void sha256d_ms(uint32_t *hash, uint32_t *W,
void sha256d_ms_4way(uint32_t *hash, uint32_t *data,
const uint32_t *midstate, const uint32_t *prehash);
static inline int scanhash_sha256d_4way(int thr_id, struct work *work,
uint32_t max_nonce, uint64_t *hashes_done)
static inline int scanhash_sha256d_4way( struct work *work,
uint32_t max_nonce, uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
@@ -492,6 +480,7 @@ static inline int scanhash_sha256d_4way(int thr_id, struct work *work,
uint32_t n = pdata[19] - 1;
const uint32_t first_nonce = pdata[19];
const uint32_t Htarg = ptarget[7];
int thr_id = mythr->id;
int i, j;
memcpy(data, pdata + 16, 64);
@@ -521,10 +510,8 @@ static inline int scanhash_sha256d_4way(int thr_id, struct work *work,
if (swab32(hash[4 * 7 + i]) <= Htarg) {
pdata[19] = data[4 * 3 + i];
sha256d_80_swap(hash, pdata);
if (fulltest(hash, ptarget)) {
*hashes_done = n - first_nonce + 1;
return 1;
}
if ( fulltest( hash, ptarget ) && !opt_benchmark )
submit_solution( work, hash, mythr );
}
}
} while (n < max_nonce && !work_restart[thr_id].restart);
@@ -541,8 +528,8 @@ static inline int scanhash_sha256d_4way(int thr_id, struct work *work,
void sha256d_ms_8way(uint32_t *hash, uint32_t *data,
const uint32_t *midstate, const uint32_t *prehash);
static inline int scanhash_sha256d_8way(int thr_id, struct work *work,
uint32_t max_nonce, uint64_t *hashes_done)
static inline int scanhash_sha256d_8way( struct work *work,
uint32_t max_nonce, uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
@@ -554,6 +541,7 @@ static inline int scanhash_sha256d_8way(int thr_id, struct work *work,
uint32_t n = pdata[19] - 1;
const uint32_t first_nonce = pdata[19];
const uint32_t Htarg = ptarget[7];
int thr_id = mythr->id;
int i, j;
memcpy(data, pdata + 16, 64);
@@ -583,10 +571,8 @@ static inline int scanhash_sha256d_8way(int thr_id, struct work *work,
if (swab32(hash[8 * 7 + i]) <= Htarg) {
pdata[19] = data[8 * 3 + i];
sha256d_80_swap(hash, pdata);
if (fulltest(hash, ptarget)) {
*hashes_done = n - first_nonce + 1;
return 1;
}
if ( fulltest( hash, ptarget ) && !opt_benchmark )
submit_solution( work, hash, mythr );
}
}
} while (n < max_nonce && !work_restart[thr_id].restart);
@@ -614,13 +600,11 @@ int scanhash_sha256d( struct work *work,
#ifdef HAVE_SHA256_8WAY
if (sha256_use_8way())
return scanhash_sha256d_8way(thr_id, work,
max_nonce, hashes_done);
return scanhash_sha256d_8way( work, max_nonce, hashes_done, mythr );
#endif
#ifdef HAVE_SHA256_4WAY
if (sha256_use_4way())
return scanhash_sha256d_4way(thr_id, work,
max_nonce, hashes_done);
return scanhash_sha256d_4way( work, max_nonce, hashes_done, mythr );
#endif
memcpy(data, pdata + 16, 64);
@@ -657,7 +641,7 @@ int scanhash_SHA256d( struct work *work, const uint32_t max_nonce,
uint32_t n = pdata[19] - 1;
const uint32_t first_nonce = pdata[19];
const uint32_t Htarg = ptarget[7];
int thr_id = mythr->id; // thr_id arg is deprecated
int thr_id = mythr->id;
memcpy( data, pdata, 80 );
@@ -680,14 +664,9 @@ int scanhash_SHA256d( struct work *work, const uint32_t max_nonce,
bool register_sha256d_algo( algo_gate_t* gate )
{
#if defined(__SHA__)
gate->optimizations = SHA_OPT;
gate->scanhash = (void*)&scanhash_SHA256d;
#else
gate->optimizations = SSE2_OPT | AVX2_OPT;
gate->scanhash = (void*)&scanhash_sha256d;
#endif
gate->hash = (void*)&sha256d;
return true;
gate->hash = (void*)&sha256d;
return true;
};

View File

@@ -74,9 +74,15 @@ static const uint32_t K256[64] =
#define CHs(X, Y, Z) \
_mm_xor_si128( _mm_and_si128( _mm_xor_si128( Y, Z ), X ), Z )
/*
#define MAJs(X, Y, Z) \
_mm_or_si128( _mm_and_si128( X, Y ), \
_mm_and_si128( _mm_or_si128( X, Y ), Z ) )
*/
#define MAJs(X, Y, Z) \
_mm_xor_si128( Y, _mm_and_si128( _mm_xor_si128( X, Y ), \
_mm_xor_si128( Y, Z ) ) )
#define BSG2_0(x) \
_mm_xor_si128( _mm_xor_si128( \
@@ -330,6 +336,14 @@ void sha256_4way_close( sha256_4way_context *sc, void *dst )
mm128_block_bswap_32( dst, sc->val );
}
void sha256_4way_full( void *dst, const void *data, size_t len )
{
sha256_4way_context ctx;
sha256_4way_init( &ctx );
sha256_4way_update( &ctx, data, len );
sha256_4way_close( &ctx, dst );
}
#if defined(__AVX2__)
// SHA-256 8 way
@@ -337,9 +351,20 @@ void sha256_4way_close( sha256_4way_context *sc, void *dst )
#define CHx(X, Y, Z) \
_mm256_xor_si256( _mm256_and_si256( _mm256_xor_si256( Y, Z ), X ), Z )
/*
#define MAJx(X, Y, Z) \
_mm256_or_si256( _mm256_and_si256( X, Y ), \
_mm256_and_si256( _mm256_or_si256( X, Y ), Z ) )
*/
/*
#define MAJx(X, Y, Z) \
_mm256_xor_si256( Y, _mm256_and_si256( _mm256_xor_si256( X, Y ), \
_mm256_xor_si256( Y, Z ) ) )
*/
#define MAJx(X, Y, Z) \
_mm256_xor_si256( Y, _mm256_and_si256( X_xor_Y = _mm256_xor_si256( X, Y ), \
Y_xor_Z ) )
#define BSG2_0x(x) \
_mm256_xor_si256( _mm256_xor_si256( \
@@ -367,6 +392,7 @@ do { \
T1 = _mm256_add_epi32( H, mm256_add4_32( BSG2_1x(E), CHx(E, F, G), \
K, W[i] ) ); \
T2 = _mm256_add_epi32( BSG2_0x(A), MAJx(A, B, C) ); \
Y_xor_Z = X_xor_Y; \
D = _mm256_add_epi32( D, T1 ); \
H = _mm256_add_epi32( T1, T2 ); \
} while (0)
@@ -374,7 +400,7 @@ do { \
static void
sha256_8way_round( sha256_8way_context *ctx, __m256i *in, __m256i r[8] )
{
register __m256i A, B, C, D, E, F, G, H;
register __m256i A, B, C, D, E, F, G, H, X_xor_Y, Y_xor_Z;
__m256i W[16];
mm256_block_bswap_32( W , in );
@@ -403,6 +429,8 @@ sha256_8way_round( sha256_8way_context *ctx, __m256i *in, __m256i r[8] )
H = m256_const1_64( 0x5BE0CD195BE0CD19 );
}
Y_xor_Z = _mm256_xor_si256( B, C );
SHA2s_8WAY_STEP( A, B, C, D, E, F, G, H, 0, 0 );
SHA2s_8WAY_STEP( H, A, B, C, D, E, F, G, 1, 0 );
SHA2s_8WAY_STEP( G, H, A, B, C, D, E, F, 2, 0 );
@@ -498,6 +526,10 @@ void sha256_8way_init( sha256_8way_context *sc )
*/
}
// need to handle odd byte length for yespower.
// Assume only last update is odd.
void sha256_8way_update( sha256_8way_context *sc, const void *data, size_t len )
{
__m256i *vdata = (__m256i*)data;
@@ -564,6 +596,13 @@ void sha256_8way_close( sha256_8way_context *sc, void *dst )
mm256_block_bswap_32( dst, sc->val );
}
void sha256_8way_full( void *dst, const void *data, size_t len )
{
sha256_8way_context ctx;
sha256_8way_init( &ctx );
sha256_8way_update( &ctx, data, len );
sha256_8way_close( &ctx, dst );
}
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
@@ -572,9 +611,20 @@ void sha256_8way_close( sha256_8way_context *sc, void *dst )
#define CHx16(X, Y, Z) \
_mm512_xor_si512( _mm512_and_si512( _mm512_xor_si512( Y, Z ), X ), Z )
/*
#define MAJx16(X, Y, Z) \
_mm512_or_si512( _mm512_and_si512( X, Y ), \
_mm512_and_si512( _mm512_or_si512( X, Y ), Z ) )
*/
/*
#define MAJx16(X, Y, Z) \
_mm512_xor_si512( Y, _mm512_and_si512( _mm512_xor_si512( X, Y ), \
_mm512_xor_si512( Y, Z ) ) )
*/
#define MAJx16(X, Y, Z) \
_mm512_xor_si512( Y, _mm512_and_si512( X_xor_Y = _mm512_xor_si512( X, Y ), \
Y_xor_Z ) )
#define BSG2_0x16(x) \
_mm512_xor_si512( _mm512_xor_si512( \
@@ -602,6 +652,7 @@ do { \
T1 = _mm512_add_epi32( H, mm512_add4_32( BSG2_1x16(E), CHx16(E, F, G), \
K, W[i] ) ); \
T2 = _mm512_add_epi32( BSG2_0x16(A), MAJx16(A, B, C) ); \
Y_xor_Z = X_xor_Y; \
D = _mm512_add_epi32( D, T1 ); \
H = _mm512_add_epi32( T1, T2 ); \
} while (0)
@@ -609,7 +660,7 @@ do { \
static void
sha256_16way_round( sha256_16way_context *ctx, __m512i *in, __m512i r[8] )
{
register __m512i A, B, C, D, E, F, G, H;
register __m512i A, B, C, D, E, F, G, H, X_xor_Y, Y_xor_Z;
__m512i W[16];
mm512_block_bswap_32( W , in );
@@ -638,6 +689,8 @@ sha256_16way_round( sha256_16way_context *ctx, __m512i *in, __m512i r[8] )
H = m512_const1_64( 0x5BE0CD195BE0CD19 );
}
Y_xor_Z = _mm512_xor_si512( B, C );
SHA2s_16WAY_STEP( A, B, C, D, E, F, G, H, 0, 0 );
SHA2s_16WAY_STEP( H, A, B, C, D, E, F, G, 1, 0 );
SHA2s_16WAY_STEP( G, H, A, B, C, D, E, F, 2, 0 );
@@ -791,6 +844,14 @@ void sha256_16way_close( sha256_16way_context *sc, void *dst )
mm512_block_bswap_32( dst, sc->val );
}
void sha256_16way_full( void *dst, const void *data, size_t len )
{
sha256_16way_context ctx;
sha256_16way_init( &ctx );
sha256_16way_update( &ctx, data, len );
sha256_16way_close( &ctx, dst );
}
#endif // AVX512
#endif // __AVX2__
#endif // __SSE2__

200
algo/sha/sha256-hash-opt.c Normal file
View File

@@ -0,0 +1,200 @@
/* Intel SHA extensions using C intrinsics */
/* Written and place in public domain by Jeffrey Walton */
/* Based on code from Intel, and by Sean Gulley for */
/* the miTLS project. */
// A drop in replacement for the function of the same name in sph_sha2.c.
#if defined(__SHA__)
#include "simd-utils.h"
static void sha2_round( const uint8_t input[], uint32_t state[8] )
{
__m128i STATE0, STATE1;
__m128i MSG, TMP, MASK;
__m128i TMSG0, TMSG1, TMSG2, TMSG3;
__m128i ABEF_SAVE, CDGH_SAVE;
// Load initial values
TMP = _mm_load_si128((__m128i*) &state[0]);
STATE1 = _mm_load_si128((__m128i*) &state[4]);
MASK = _mm_set_epi64x(0x0c0d0e0f08090a0bULL, 0x0405060700010203ULL);
TMP = _mm_shuffle_epi32(TMP, 0xB1); // CDAB
STATE1 = _mm_shuffle_epi32(STATE1, 0x1B); // EFGH
STATE0 = _mm_alignr_epi8(TMP, STATE1, 8); // ABEF
STATE1 = _mm_blend_epi16(STATE1, TMP, 0xF0); // CDGH
// Save current hash
ABEF_SAVE = STATE0;
CDGH_SAVE = STATE1;
// Rounds 0-3
MSG = _mm_load_si128((const __m128i*) (input+0));
TMSG0 = _mm_shuffle_epi8(MSG, MASK);
MSG = _mm_add_epi32(TMSG0, _mm_set_epi64x(0xE9B5DBA5B5C0FBCFULL, 0x71374491428A2F98ULL));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
MSG = _mm_shuffle_epi32(MSG, 0x0E);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
// Rounds 4-7
TMSG1 = _mm_load_si128((const __m128i*) (input+16));
TMSG1 = _mm_shuffle_epi8(TMSG1, MASK);
MSG = _mm_add_epi32(TMSG1, _mm_set_epi64x(0xAB1C5ED5923F82A4ULL, 0x59F111F13956C25BULL));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
MSG = _mm_shuffle_epi32(MSG, 0x0E);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
TMSG0 = _mm_sha256msg1_epu32(TMSG0, TMSG1);
// Rounds 8-11
TMSG2 = _mm_load_si128((const __m128i*) (input+32));
TMSG2 = _mm_shuffle_epi8(TMSG2, MASK);
MSG = _mm_add_epi32(TMSG2, _mm_set_epi64x(0x550C7DC3243185BEULL, 0x12835B01D807AA98ULL));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
MSG = _mm_shuffle_epi32(MSG, 0x0E);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
TMSG1 = _mm_sha256msg1_epu32(TMSG1, TMSG2);
// Rounds 12-15
TMSG3 = _mm_load_si128((const __m128i*) (input+48));
TMSG3 = _mm_shuffle_epi8(TMSG3, MASK);
MSG = _mm_add_epi32(TMSG3, _mm_set_epi64x(0xC19BF1749BDC06A7ULL, 0x80DEB1FE72BE5D74ULL));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
TMP = _mm_alignr_epi8(TMSG3, TMSG2, 4);
TMSG0 = _mm_add_epi32(TMSG0, TMP);
TMSG0 = _mm_sha256msg2_epu32(TMSG0, TMSG3);
MSG = _mm_shuffle_epi32(MSG, 0x0E);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
TMSG2 = _mm_sha256msg1_epu32(TMSG2, TMSG3);
// Rounds 16-19
MSG = _mm_add_epi32(TMSG0, _mm_set_epi64x(0x240CA1CC0FC19DC6ULL, 0xEFBE4786E49B69C1ULL));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
TMP = _mm_alignr_epi8(TMSG0, TMSG3, 4);
TMSG1 = _mm_add_epi32(TMSG1, TMP);
TMSG1 = _mm_sha256msg2_epu32(TMSG1, TMSG0);
MSG = _mm_shuffle_epi32(MSG, 0x0E);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
TMSG3 = _mm_sha256msg1_epu32(TMSG3, TMSG0);
// Rounds 20-23
MSG = _mm_add_epi32(TMSG1, _mm_set_epi64x(0x76F988DA5CB0A9DCULL, 0x4A7484AA2DE92C6FULL));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
TMP = _mm_alignr_epi8(TMSG1, TMSG0, 4);
TMSG2 = _mm_add_epi32(TMSG2, TMP);
TMSG2 = _mm_sha256msg2_epu32(TMSG2, TMSG1);
MSG = _mm_shuffle_epi32(MSG, 0x0E);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
TMSG0 = _mm_sha256msg1_epu32(TMSG0, TMSG1);
// Rounds 24-27
MSG = _mm_add_epi32(TMSG2, _mm_set_epi64x(0xBF597FC7B00327C8ULL, 0xA831C66D983E5152ULL));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
TMP = _mm_alignr_epi8(TMSG2, TMSG1, 4);
TMSG3 = _mm_add_epi32(TMSG3, TMP);
TMSG3 = _mm_sha256msg2_epu32(TMSG3, TMSG2);
MSG = _mm_shuffle_epi32(MSG, 0x0E);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
TMSG1 = _mm_sha256msg1_epu32(TMSG1, TMSG2);
// Rounds 28-31
MSG = _mm_add_epi32(TMSG3, _mm_set_epi64x(0x1429296706CA6351ULL, 0xD5A79147C6E00BF3ULL));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
TMP = _mm_alignr_epi8(TMSG3, TMSG2, 4);
TMSG0 = _mm_add_epi32(TMSG0, TMP);
TMSG0 = _mm_sha256msg2_epu32(TMSG0, TMSG3);
MSG = _mm_shuffle_epi32(MSG, 0x0E);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
TMSG2 = _mm_sha256msg1_epu32(TMSG2, TMSG3);
// Rounds 32-35
MSG = _mm_add_epi32(TMSG0, _mm_set_epi64x(0x53380D134D2C6DFCULL, 0x2E1B213827B70A85ULL));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
TMP = _mm_alignr_epi8(TMSG0, TMSG3, 4);
TMSG1 = _mm_add_epi32(TMSG1, TMP);
TMSG1 = _mm_sha256msg2_epu32(TMSG1, TMSG0);
MSG = _mm_shuffle_epi32(MSG, 0x0E);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
TMSG3 = _mm_sha256msg1_epu32(TMSG3, TMSG0);
// Rounds 36-39
MSG = _mm_add_epi32(TMSG1, _mm_set_epi64x(0x92722C8581C2C92EULL, 0x766A0ABB650A7354ULL));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
TMP = _mm_alignr_epi8(TMSG1, TMSG0, 4);
TMSG2 = _mm_add_epi32(TMSG2, TMP);
TMSG2 = _mm_sha256msg2_epu32(TMSG2, TMSG1);
MSG = _mm_shuffle_epi32(MSG, 0x0E);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
TMSG0 = _mm_sha256msg1_epu32(TMSG0, TMSG1);
// Rounds 40-43
MSG = _mm_add_epi32(TMSG2, _mm_set_epi64x(0xC76C51A3C24B8B70ULL, 0xA81A664BA2BFE8A1ULL));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
TMP = _mm_alignr_epi8(TMSG2, TMSG1, 4);
TMSG3 = _mm_add_epi32(TMSG3, TMP);
TMSG3 = _mm_sha256msg2_epu32(TMSG3, TMSG2);
MSG = _mm_shuffle_epi32(MSG, 0x0E);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
TMSG1 = _mm_sha256msg1_epu32(TMSG1, TMSG2);
// Rounds 44-47
MSG = _mm_add_epi32(TMSG3, _mm_set_epi64x(0x106AA070F40E3585ULL, 0xD6990624D192E819ULL));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
TMP = _mm_alignr_epi8(TMSG3, TMSG2, 4);
TMSG0 = _mm_add_epi32(TMSG0, TMP);
TMSG0 = _mm_sha256msg2_epu32(TMSG0, TMSG3);
MSG = _mm_shuffle_epi32(MSG, 0x0E);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
TMSG2 = _mm_sha256msg1_epu32(TMSG2, TMSG3);
// Rounds 48-51
MSG = _mm_add_epi32(TMSG0, _mm_set_epi64x(0x34B0BCB52748774CULL, 0x1E376C0819A4C116ULL));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
TMP = _mm_alignr_epi8(TMSG0, TMSG3, 4);
TMSG1 = _mm_add_epi32(TMSG1, TMP);
TMSG1 = _mm_sha256msg2_epu32(TMSG1, TMSG0);
MSG = _mm_shuffle_epi32(MSG, 0x0E);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
TMSG3 = _mm_sha256msg1_epu32(TMSG3, TMSG0);
// Rounds 52-55
MSG = _mm_add_epi32(TMSG1, _mm_set_epi64x(0x682E6FF35B9CCA4FULL, 0x4ED8AA4A391C0CB3ULL));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
TMP = _mm_alignr_epi8(TMSG1, TMSG0, 4);
TMSG2 = _mm_add_epi32(TMSG2, TMP);
TMSG2 = _mm_sha256msg2_epu32(TMSG2, TMSG1);
MSG = _mm_shuffle_epi32(MSG, 0x0E);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
// Rounds 56-59
MSG = _mm_add_epi32(TMSG2, _mm_set_epi64x(0x8CC7020884C87814ULL, 0x78A5636F748F82EEULL));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
TMP = _mm_alignr_epi8(TMSG2, TMSG1, 4);
TMSG3 = _mm_add_epi32(TMSG3, TMP);
TMSG3 = _mm_sha256msg2_epu32(TMSG3, TMSG2);
MSG = _mm_shuffle_epi32(MSG, 0x0E);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
// Rounds 60-63
MSG = _mm_add_epi32(TMSG3, _mm_set_epi64x(0xC67178F2BEF9A3F7ULL, 0xA4506CEB90BEFFFAULL));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
MSG = _mm_shuffle_epi32(MSG, 0x0E);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
// Add values back to state
STATE0 = _mm_add_epi32(STATE0, ABEF_SAVE);
STATE1 = _mm_add_epi32(STATE1, CDGH_SAVE);
TMP = _mm_shuffle_epi32(STATE0, 0x1B); // FEBA
STATE1 = _mm_shuffle_epi32(STATE1, 0xB1); // DCHG
STATE0 = _mm_blend_epi16(TMP, STATE1, 0xF0); // DCBA
STATE1 = _mm_alignr_epi8(STATE1, TMP, 8); // ABEF
// Save state
_mm_store_si128((__m128i*) &state[0], STATE0);
_mm_store_si128((__m128i*) &state[4], STATE1);
}
#endif

View File

@@ -5,6 +5,79 @@
#include <stdio.h>
#include "sha-hash-4way.h"
#if defined(SHA256T_16WAY)
static __thread sha256_16way_context sha256_ctx16 __attribute__ ((aligned (64)));
void sha256q_16way_hash( void* output, const void* input )
{
uint32_t vhash[8*16] __attribute__ ((aligned (64)));
sha256_16way_context ctx;
memcpy( &ctx, &sha256_ctx16, sizeof ctx );
sha256_16way_update( &ctx, input + (64<<4), 16 );
sha256_16way_close( &ctx, vhash );
sha256_16way_init( &ctx );
sha256_16way_update( &ctx, vhash, 32 );
sha256_16way_close( &ctx, vhash );
sha256_16way_init( &ctx );
sha256_16way_update( &ctx, vhash, 32 );
sha256_16way_close( &ctx, vhash );
sha256_16way_init( &ctx );
sha256_16way_update( &ctx, vhash, 32 );
sha256_16way_close( &ctx, output );
}
int scanhash_sha256q_16way( struct work *work, const uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t vdata[20*16] __attribute__ ((aligned (64)));
uint32_t hash32[8*16] __attribute__ ((aligned (32)));
uint32_t lane_hash[8] __attribute__ ((aligned (32)));
uint32_t *hash32_d7 = &(hash32[7<<4]);
uint32_t *pdata = work->data;
const uint32_t *ptarget = work->target;
const uint32_t targ32_d7 = ptarget[7];
const uint32_t first_nonce = pdata[19];
const uint32_t last_nonce = max_nonce - 16;
uint32_t n = first_nonce;
__m512i *noncev = (__m512i*)vdata + 19; // aligned
const int thr_id = mythr->id;
const bool bench = opt_benchmark;
mm512_bswap32_intrlv80_16x32( vdata, pdata );
*noncev = _mm512_set_epi32( n+15, n+14, n+13, n+12, n+11, n+10, n+9, n+8,
n+ 7, n+ 6, n+ 5, n+ 4, n+ 3, n+ 2, n+1, n );
sha256_16way_init( &sha256_ctx16 );
sha256_16way_update( &sha256_ctx16, vdata, 64 );
do
{
pdata[19] = n;
sha256q_16way_hash( hash32, vdata );
for ( int lane = 0; lane < 16; lane++ )
if ( unlikely( hash32_d7[ lane ] <= targ32_d7 ) )
{
extr_lane_16x32( lane_hash, hash32, lane, 256 );
if ( likely( valid_hash( lane_hash, ptarget ) && !bench ) )
{
pdata[19] = bswap_32( n + lane );
submit_solution( work, lane_hash, mythr );
}
}
*noncev = _mm512_add_epi32( *noncev, m512_const1_32( 16 ) );
n += 16;
} while ( (n < last_nonce) && !work_restart[thr_id].restart );
pdata[19] = n;
*hashes_done = n - first_nonce;
return 0;
}
#endif
#if defined(SHA256T_8WAY)
static __thread sha256_8way_context sha256_ctx8 __attribute__ ((aligned (64)));
@@ -31,68 +104,47 @@ void sha256q_8way_hash( void* output, const void* input )
sha256_8way_close( &ctx, output );
}
int scanhash_sha256q_8way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
int scanhash_sha256q_8way( struct work *work, const uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t vdata[20*8] __attribute__ ((aligned (64)));
uint32_t hash[8*8] __attribute__ ((aligned (32)));
uint32_t vdata[20*8] __attribute__ ((aligned (64)));
uint32_t hash32[8*8] __attribute__ ((aligned (32)));
uint32_t lane_hash[8] __attribute__ ((aligned (32)));
uint32_t *hash32_d7 = &(hash32[7<<3]);
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
const uint32_t Htarg = ptarget[7];
const uint32_t *ptarget = work->target;
const uint32_t targ32_d7 = ptarget[7];
const uint32_t first_nonce = pdata[19];
const uint32_t last_nonce = max_nonce - 8;
uint32_t n = first_nonce;
__m256i *noncev = (__m256i*)vdata + 19; // aligned
int thr_id = mythr->id; // thr_id arg is deprecated
const int thr_id = mythr->id;
const bool bench = opt_benchmark;
const uint64_t htmax[] = { 0,
0xF,
0xFF,
0xFFF,
0xFFFF,
0x10000000 };
const uint32_t masks[] = { 0xFFFFFFFF,
0xFFFFFFF0,
0xFFFFFF00,
0xFFFFF000,
0xFFFF0000,
0 };
// Need big endian data
mm256_bswap32_intrlv80_8x32( vdata, pdata );
*noncev = _mm256_set_epi32( n+7, n+6, n+5, n+4, n+3, n+2, n+1, n );
sha256_8way_init( &sha256_ctx8 );
sha256_8way_update( &sha256_ctx8, vdata, 64 );
for ( int m = 0; m < 6; m++ ) if ( Htarg <= htmax[m] )
do
{
uint32_t mask = masks[m];
do
{
*noncev = mm256_bswap_32(
_mm256_set_epi32( n+7, n+6, n+5, n+4, n+3, n+2, n+1, n ) );
pdata[19] = n;
sha256q_8way_hash( hash, vdata );
uint32_t *hash7 = &(hash[7<<3]);
for ( int lane = 0; lane < 8; lane++ )
if ( !( hash7[ lane ] & mask ) )
{
// deinterleave hash for lane
extr_lane_8x32( lane_hash, hash, lane, 256 );
if ( fulltest( lane_hash, ptarget ) && !opt_benchmark )
{
pdata[19] = n + lane;
submit_lane_solution( work, lane_hash, mythr, lane );
}
}
n += 8;
} while ( (n < max_nonce-10) && !work_restart[thr_id].restart );
break;
}
*hashes_done = n - first_nonce + 1;
pdata[19] = n;
sha256q_8way_hash( hash32, vdata );
for ( int lane = 0; lane < 8; lane++ )
if ( unlikely( hash32_d7[ lane ] <= targ32_d7 ) )
{
extr_lane_8x32( lane_hash, hash32, lane, 256 );
if ( likely( valid_hash( lane_hash, ptarget ) && !bench ) )
{
pdata[19] = bswap_32( n + lane );
submit_solution( work, lane_hash, mythr );
}
}
*noncev = _mm256_add_epi32( *noncev, m256_const1_32( 8 ) );
n += 8;
} while ( (n < last_nonce) && !work_restart[thr_id].restart );
pdata[19] = n;
*hashes_done = n - first_nonce;
return 0;
}
@@ -173,7 +225,7 @@ int scanhash_sha256q_4way( struct work *work, uint32_t max_nonce,
if ( fulltest( lane_hash, ptarget ) && !opt_benchmark )
{
pdata[19] = n + lane;
submit_lane_solution( work, lane_hash, mythr, lane );
submit_solution( work, lane_hash, mythr );
}
}
n += 4;

View File

@@ -1,108 +1,74 @@
#include "sha256t-gate.h"
#if !defined(SHA256T_16WAY) && !defined(SHA256T_8WAY) && !defined(SHA256T_4WAY)
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <stdio.h>
#include <openssl/sha.h>
#include "algo/sha/sph_sha2.h"
static __thread SHA256_CTX sha256q_ctx __attribute__ ((aligned (64)));
static __thread sph_sha256_context sha256q_ctx __attribute__ ((aligned (64)));
void sha256q_midstate( const void* input )
{
SHA256_Init( &sha256q_ctx );
SHA256_Update( &sha256q_ctx, input, 64 );
sph_sha256_init( &sha256q_ctx );
sph_sha256( &sha256q_ctx, input, 64 );
}
void sha256q_hash( void* output, const void* input )
int sha256q_hash( void* output, const void* input )
{
uint32_t _ALIGN(64) hash[16];
const int midlen = 64; // bytes
const int tail = 80 - midlen; // 16
SHA256_CTX ctx __attribute__ ((aligned (64)));
sph_sha256_context ctx __attribute__ ((aligned (64)));
memcpy( &ctx, &sha256q_ctx, sizeof sha256q_ctx );
SHA256_Update( &ctx, input + midlen, tail );
SHA256_Final( (unsigned char*)hash, &ctx );
sph_sha256( &ctx, input + midlen, tail );
sph_sha256_close( &ctx, hash );
SHA256_Init( &ctx );
SHA256_Update( &ctx, hash, 32 );
SHA256_Final( (unsigned char*)hash, &ctx );
sph_sha256_init( &ctx );
sph_sha256( &ctx, hash, 32 );
sph_sha256_close( &ctx, hash );
SHA256_Init( &ctx );
SHA256_Update( &ctx, hash, 32 );
SHA256_Final( (unsigned char*)hash, &ctx );
sph_sha256_init( &ctx );
sph_sha256( &ctx, hash, 32 );
sph_sha256_close( &ctx, hash );
SHA256_Init( &ctx );
SHA256_Update( &ctx, hash, 32 );
SHA256_Final( (unsigned char*)hash, &ctx );
sph_sha256_init( &ctx );
sph_sha256( &ctx, hash, 32 );
sph_sha256_close( &ctx, output );
memcpy( output, hash, 32 );
return 1;
}
int scanhash_sha256q( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t edata[20] __attribute__((aligned(64)));
uint32_t hash[8] __attribute__((aligned(64)));
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
uint32_t n = pdata[19] - 1;
const uint32_t first_nonce = pdata[19];
const uint32_t Htarg = ptarget[7];
#ifdef _MSC_VER
uint32_t __declspec(align(32)) hash64[8];
#else
uint32_t hash64[8] __attribute__((aligned(32)));
#endif
uint32_t endiandata[32];
int thr_id = mythr->id; // thr_id arg is deprecated
const uint32_t last_nonce = max_nonce - 1;
uint32_t n = first_nonce;
const int thr_id = mythr->id;
const bool bench = opt_benchmark;
uint64_t htmax[] = {
0,
0xF,
0xFF,
0xFFF,
0xFFFF,
0x10000000
};
uint32_t masks[] = {
0xFFFFFFFF,
0xFFFFFFF0,
0xFFFFFF00,
0xFFFFF000,
0xFFFF0000,
0
};
mm128_bswap32_80( edata, pdata );
sha256q_midstate( edata );
// we need bigendian data...
casti_m128i( endiandata, 0 ) = mm128_bswap_32( casti_m128i( pdata, 0 ) );
casti_m128i( endiandata, 1 ) = mm128_bswap_32( casti_m128i( pdata, 1 ) );
casti_m128i( endiandata, 2 ) = mm128_bswap_32( casti_m128i( pdata, 2 ) );
casti_m128i( endiandata, 3 ) = mm128_bswap_32( casti_m128i( pdata, 3 ) );
casti_m128i( endiandata, 4 ) = mm128_bswap_32( casti_m128i( pdata, 4 ) );
sha256q_midstate( endiandata );
for ( int m = 0; m < 6; m++ )
do
{
if ( Htarg <= htmax[m] )
edata[19] = n;
if ( likely( sha256q_hash( hash, edata ) ) )
if ( unlikely( valid_hash( hash, ptarget ) && !bench ) )
{
uint32_t mask = masks[m];
do {
pdata[19] = ++n;
be32enc(&endiandata[19], n);
sha256q_hash( hash64, endiandata );
if ( !( hash64[7] & mask ) )
if ( fulltest( hash64, ptarget ) && !opt_benchmark )
submit_solution( work, hash64, mythr );
} while ( n < max_nonce && !work_restart[thr_id].restart );
break;
pdata[19] = bswap_32( n );
submit_solution( work, hash, mythr );
}
}
*hashes_done = n - first_nonce + 1;
n++;
} while ( n < last_nonce && !work_restart[thr_id].restart );
*hashes_done = n - first_nonce;
pdata[19] = n;
return 0;
}
#endif

View File

@@ -5,6 +5,75 @@
#include <stdio.h>
#include "sha-hash-4way.h"
#if defined(SHA256T_16WAY)
static __thread sha256_16way_context sha256_ctx16 __attribute__ ((aligned (64)));
void sha256t_16way_hash( void* output, const void* input )
{
uint32_t vhash[8*16] __attribute__ ((aligned (64)));
sha256_16way_context ctx;
memcpy( &ctx, &sha256_ctx16, sizeof ctx );
sha256_16way_update( &ctx, input + (64<<4), 16 );
sha256_16way_close( &ctx, vhash );
sha256_16way_init( &ctx );
sha256_16way_update( &ctx, vhash, 32 );
sha256_16way_close( &ctx, vhash );
sha256_16way_init( &ctx );
sha256_16way_update( &ctx, vhash, 32 );
sha256_16way_close( &ctx, output );
}
int scanhash_sha256t_16way( struct work *work, const uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t vdata[20*16] __attribute__ ((aligned (64)));
uint32_t hash32[8*16] __attribute__ ((aligned (32)));
uint32_t lane_hash[8] __attribute__ ((aligned (32)));
uint32_t *hash32_d7 = &(hash32[7<<4]);
uint32_t *pdata = work->data;
const uint32_t *ptarget = work->target;
const uint32_t targ32_d7 = ptarget[7];
const uint32_t first_nonce = pdata[19];
const uint32_t last_nonce = max_nonce - 16;
uint32_t n = first_nonce;
__m512i *noncev = (__m512i*)vdata + 19; // aligned
const int thr_id = mythr->id;
const bool bench = opt_benchmark;
mm512_bswap32_intrlv80_16x32( vdata, pdata );
*noncev = _mm512_set_epi32( n+15, n+14, n+13, n+12, n+11, n+10, n+9, n+8,
n+ 7, n+ 6, n+ 5, n+ 4, n+ 3, n+ 2, n+1, n );
sha256_16way_init( &sha256_ctx16 );
sha256_16way_update( &sha256_ctx16, vdata, 64 );
do
{
pdata[19] = n;
sha256t_16way_hash( hash32, vdata );
for ( int lane = 0; lane < 16; lane++ )
if ( unlikely( hash32_d7[ lane ] <= targ32_d7 ) )
{
extr_lane_16x32( lane_hash, hash32, lane, 256 );
if ( likely( valid_hash( lane_hash, ptarget ) && !bench ) )
{
pdata[19] = bswap_32( n + lane );
submit_solution( work, lane_hash, mythr );
}
}
*noncev = _mm512_add_epi32( *noncev, m512_const1_32( 16 ) );
n += 16;
} while ( (n < last_nonce) && !work_restart[thr_id].restart );
pdata[19] = n;
*hashes_done = n - first_nonce;
return 0;
}
#endif
#if defined(SHA256T_8WAY)
static __thread sha256_8way_context sha256_ctx8 __attribute__ ((aligned (64)));
@@ -31,61 +100,43 @@ int scanhash_sha256t_8way( struct work *work, const uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t vdata[20*8] __attribute__ ((aligned (64)));
uint32_t hash[8*8] __attribute__ ((aligned (32)));
uint32_t hash32[8*8] __attribute__ ((aligned (32)));
uint32_t lane_hash[8] __attribute__ ((aligned (32)));
uint32_t *hash7 = &(hash[7<<3]);
uint32_t *hash32_d7 = &(hash32[7<<3]);
uint32_t *pdata = work->data;
const uint32_t *ptarget = work->target;
const uint32_t Htarg = ptarget[7];
const uint32_t targ32_d7 = ptarget[7];
const uint32_t first_nonce = pdata[19];
const uint32_t last_nonce = max_nonce - 8;
uint32_t n = first_nonce;
__m256i *noncev = (__m256i*)vdata + 19; // aligned
const int thr_id = mythr->id;
const bool bench = opt_benchmark;
const uint64_t htmax[] = { 0,
0xF,
0xFF,
0xFFF,
0xFFFF,
0x10000000 };
const uint32_t masks[] = { 0xFFFFFFFF,
0xFFFFFFF0,
0xFFFFFF00,
0xFFFFF000,
0xFFFF0000,
0 };
// Need big endian data
mm256_bswap32_intrlv80_8x32( vdata, pdata );
*noncev = _mm256_set_epi32( n+7, n+6, n+5, n+4, n+3, n+2, n+1, n );
sha256_8way_init( &sha256_ctx8 );
sha256_8way_update( &sha256_ctx8, vdata, 64 );
for ( int m = 0; m < 6; m++ ) if ( Htarg <= htmax[m] )
do
{
const uint32_t mask = masks[m];
do
{
*noncev = mm256_bswap_32( _mm256_set_epi32(
n+7,n+6,n+5,n+4,n+3,n+2,n+1,n ) );
pdata[19] = n;
sha256t_8way_hash( hash, vdata );
for ( int lane = 0; lane < 8; lane++ )
if ( !( hash7[ lane ] & mask ) )
{
// deinterleave hash for lane
extr_lane_8x32( lane_hash, hash, lane, 256 );
if ( fulltest( lane_hash, ptarget ) && !opt_benchmark )
{
pdata[19] = n + lane;
submit_lane_solution( work, lane_hash, mythr, lane );
}
}
n += 8;
} while ( (n < max_nonce-10) && !work_restart[thr_id].restart );
break;
}
*hashes_done = n - first_nonce + 1;
pdata[19] = n;
sha256t_8way_hash( hash32, vdata );
for ( int lane = 0; lane < 8; lane++ )
if ( unlikely( hash32_d7[ lane ] <= targ32_d7 ) )
{
extr_lane_8x32( lane_hash, hash32, lane, 256 );
if ( likely( valid_hash( lane_hash, ptarget ) && !bench ) )
{
pdata[19] = bswap_32( n + lane );
submit_solution( work, lane_hash, mythr );
}
}
*noncev = _mm256_add_epi32( *noncev, m256_const1_32( 8 ) );
n += 8;
} while ( (n < last_nonce) && !work_restart[thr_id].restart );
pdata[19] = n;
*hashes_done = n - first_nonce;
return 0;
}
@@ -161,7 +212,7 @@ int scanhash_sha256t_4way( struct work *work, const uint32_t max_nonce,
if ( fulltest( lane_hash, ptarget ) && !opt_benchmark )
{
pdata[19] = n + lane;
submit_lane_solution( work, lane_hash, mythr, lane );
submit_solution( work, lane_hash, mythr );
}
}
n += 4;

View File

@@ -2,38 +2,41 @@
bool register_sha256t_algo( algo_gate_t* gate )
{
#if defined(SHA256T_8WAY)
gate->optimizations = SSE2_OPT | AVX2_OPT | SHA_OPT;
gate->scanhash = (void*)&scanhash_sha256t_8way;
gate->hash = (void*)&sha256t_8way_hash;
#elif defined(SHA256T_4WAY)
gate->optimizations = SSE2_OPT | AVX2_OPT | SHA_OPT;
gate->scanhash = (void*)&scanhash_sha256t_4way;
gate->hash = (void*)&sha256t_4way_hash;
#else
gate->optimizations = SSE2_OPT | AVX2_OPT | AVX512_OPT;
#if defined(SHA256T_16WAY)
gate->scanhash = (void*)&scanhash_sha256t_16way;
gate->hash = (void*)&sha256t_16way_hash;
#elif defined(__SHA__)
gate->optimizations = SHA_OPT;
gate->scanhash = (void*)&scanhash_sha256t;
gate->hash = (void*)&sha256t_hash;
#elif defined(SHA256T_8WAY)
gate->scanhash = (void*)&scanhash_sha256t_8way;
gate->hash = (void*)&sha256t_8way_hash;
#else
gate->scanhash = (void*)&scanhash_sha256t_4way;
gate->hash = (void*)&sha256t_4way_hash;
#endif
return true;
}
bool register_sha256q_algo( algo_gate_t* gate )
{
#if defined(SHA256T_8WAY)
gate->optimizations = SSE2_OPT | AVX2_OPT | SHA_OPT;
gate->scanhash = (void*)&scanhash_sha256q_8way;
gate->hash = (void*)&sha256q_8way_hash;
#elif defined(SHA256T_4WAY)
gate->optimizations = SSE2_OPT | AVX2_OPT | SHA_OPT;
gate->scanhash = (void*)&scanhash_sha256q_4way;
gate->hash = (void*)&sha256q_4way_hash;
#else
gate->optimizations = SSE2_OPT | AVX2_OPT | AVX512_OPT;
#if defined(SHA256T_16WAY)
gate->scanhash = (void*)&scanhash_sha256q_16way;
gate->hash = (void*)&sha256q_16way_hash;
#elif defined(__SHA__)
gate->optimizations = SHA_OPT;
gate->scanhash = (void*)&scanhash_sha256q;
gate->hash = (void*)&sha256q_hash;
#elif defined(SHA256T_8WAY)
gate->scanhash = (void*)&scanhash_sha256q_8way;
gate->hash = (void*)&sha256q_8way_hash;
#else
gate->scanhash = (void*)&scanhash_sha256q_4way;
gate->hash = (void*)&sha256q_4way_hash;
#endif
return true;
}

View File

@@ -4,18 +4,27 @@
#include <stdint.h>
#include "algo-gate-api.h"
// Override multi way on ryzen, SHA is better.
#if !defined(__SHA__)
#if defined(__AVX2__)
#define SHA256T_8WAY
#elif defined(__SSE2__)
#define SHA256T_4WAY
#endif
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#define SHA256T_16WAY 1
#elif defined(__AVX2__)
#define SHA256T_8WAY 1
#else
#define SHA256T_4WAY 1
#endif
bool register_sha256t_algo( algo_gate_t* gate );
bool register_sha256q_algo( algo_gate_t* gate );
#if defined(SHA256T_16WAY)
void sha256t_16way_hash( void *output, const void *input );
int scanhash_sha256t_16way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
void sha256q_16way_hash( void *output, const void *input );
int scanhash_sha256q_16way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
#endif
#if defined(SHA256T_8WAY)
void sha256t_8way_hash( void *output, const void *input );
@@ -36,10 +45,11 @@ int scanhash_sha256q_4way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
#endif
void sha256t_hash( void *output, const void *input );
int sha256t_hash( void *output, const void *input );
int scanhash_sha256t( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
void sha256q_hash( void *output, const void *input );
int sha256q_hash( void *output, const void *input );
int scanhash_sha256q( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );

Some files were not shown because too many files have changed in this diff Show More