This commit is contained in:
Jay D Dee
2021-03-19 15:45:32 -04:00
parent 40089428c5
commit d0b4941321
19 changed files with 1290 additions and 18 deletions

View File

@@ -129,7 +129,7 @@ cpuminer_SOURCES = \
algo/lyra2/allium.c \
algo/lyra2/phi2-4way.c \
algo/lyra2/phi2.c \
algo//m7m/m7m.c \
algo/m7m/m7m.c \
algo/m7m/magimath.cpp \
algo/nist5/nist5-gate.c \
algo/nist5/nist5-4way.c \
@@ -192,6 +192,10 @@ cpuminer_SOURCES = \
algo/sm3/sm3-hash-4way.c \
algo/swifftx/swifftx.c \
algo/tiger/sph_tiger.c \
algo/verthash/verthash-gate.c \
algo/verthash/Verthash.c \
algo/verthash/fopen_utf8.c \
algo/verthash/tiny_sha3/sha3.c \
algo/whirlpool/sph_whirlpool.c \
algo/whirlpool/whirlpool-hash-4way.c \
algo/whirlpool/whirlpool-gate.c \

View File

@@ -65,6 +65,10 @@ If not what makes it happen or not happen?
Change Log
----------
v3.16.0
Added verthash algo.
v3.15.7
Added accepted/stale/rejected percentage to summary log report.

View File

@@ -349,6 +349,7 @@ bool register_algo_gate( int algo, algo_gate_t *gate )
case ALGO_TRIBUS: register_tribus_algo ( gate ); break;
case ALGO_VANILLA: register_vanilla_algo ( gate ); break;
case ALGO_VELTOR: register_veltor_algo ( gate ); break;
case ALGO_VERTHASH: register_verthash_algo ( gate ); break;
case ALGO_WHIRLPOOL: register_whirlpool_algo ( gate ); break;
case ALGO_WHIRLPOOLX: register_whirlpoolx_algo ( gate ); break;
case ALGO_X11: register_x11_algo ( gate ); break;

View File

@@ -691,6 +691,14 @@ sph_sha256_addbits_and_close(void *cc, unsigned ub, unsigned n, void *dst)
// sph_sha256_init(cc);
}
void sph_sha256_full( void *dst, const void *data, size_t len )
{
sph_sha256_context cc;
sph_sha256_init( &cc );
sph_sha256( &cc, data, len );
sph_sha256_close( &cc, dst );
}
/* see sph_sha2.h */
//void
//sph_sha224_comp(const sph_u32 msg[16], sph_u32 val[8])

View File

@@ -205,6 +205,10 @@ void sph_sha256_comp(const sph_u32 msg[16], sph_u32 val[8]);
#define sph_sha256_comp sph_sha224_comp
#endif
void sph_sha256_full( void *dst, const void *data, size_t len );
#if SPH_64
/**

Binary file not shown.

621
algo/verthash/Verthash.c Normal file
View File

@@ -0,0 +1,621 @@
/*
* Copyright 2018-2021 CryptoGraphics
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 2 of the License, or (at your option)
* any later version. See LICENSE for more details.
*/
#include "Verthash.h"
//-----------------------------------------------------------------------------
// Verthash info management
int verthash_info_init(verthash_info_t* info, const char* file_name)
{
// init fields to 0
info->fileName = NULL;
info->data = NULL;
info->dataSize = 0;
info->bitmask = 0;
// get name
if (file_name == NULL) { return 1; }
size_t fileNameLen = strlen(file_name);
if (fileNameLen == 0) { return 1; }
info->fileName = (char*)malloc(fileNameLen+1);
if (!info->fileName)
{
// Memory allocation fatal error.
return 2;
}
memset(info->fileName, 0, fileNameLen+1);
memcpy(info->fileName, file_name, fileNameLen);
// Load data
FILE *fileMiningData = fopen_utf8(info->fileName, "rb");
// Failed to open file for reading
if (!fileMiningData) { return 1; }
// Get file size
fseek(fileMiningData, 0, SEEK_END);
uint64_t fileSize = (uint64_t)ftell(fileMiningData);
fseek(fileMiningData, 0, SEEK_SET);
// Allocate data
info->data = (uint8_t *)malloc(fileSize);
if (!info->data)
{
fclose(fileMiningData);
// Memory allocation fatal error.
return 2;
}
// Load data
fread(info->data, fileSize, 1, fileMiningData);
fclose(fileMiningData);
// Update fields
info->bitmask = ((fileSize - VH_HASH_OUT_SIZE)/VH_BYTE_ALIGNMENT) + 1;
info->dataSize = fileSize;
return 0;
}
//-----------------------------------------------------------------------------
void verthash_info_free(verthash_info_t* info)
{
free(info->fileName);
free(info->data);
info->dataSize = 0;
info->bitmask = 0;
}
//-----------------------------------------------------------------------------
// Verthash hash
#define VH_P0_SIZE 64
#define VH_N_ITER 8
#define VH_N_SUBSET VH_P0_SIZE*VH_N_ITER
#define VH_N_ROT 32
#define VH_N_INDEXES 4096
#define VH_BYTE_ALIGNMENT 16
static __thread sha3_ctx_t sha3_midstate_ctx;
void verthash_sha3_prehash_72( const void *data )
{
sha3_init( &sha3_midstate_ctx, 256 );
sha3_update( &sha3_midstate_ctx, data, 72 );
}
void verthash_sha3_final_8( sha3_ctx_t *ctx, void *out, const void *data )
{
sha3_update( ctx, data, 8 );
sha3_final( out, ctx );
}
static inline uint32_t fnv1a(const uint32_t a, const uint32_t b)
{
return (a ^ b) * 0x1000193;
}
void verthash_hash(const unsigned char* blob_bytes,
const size_t blob_size,
const unsigned char(*input)[VH_HEADER_SIZE],
unsigned char(*output)[VH_HASH_OUT_SIZE])
{
unsigned char p1[VH_HASH_OUT_SIZE];
// sha3_ctx_t sha3_ctx;
// memcpy ( &sha3_ctx, &sha3_midstate_ctx, sizeof sha3_ctx );
// verthash_sha3_final_8( &sha3_ctx, &p1[0], &input[72] );
sha3(&input[0], VH_HEADER_SIZE, &p1[0], VH_HASH_OUT_SIZE);
unsigned char p0[VH_N_SUBSET];
unsigned char input_header[VH_HEADER_SIZE];
memcpy(input_header, input, VH_HEADER_SIZE);
for (size_t i = 0; i < VH_N_ITER; ++i)
{
input_header[0] += 1;
sha3(&input_header[0], VH_HEADER_SIZE, p0 + i * VH_P0_SIZE, VH_P0_SIZE);
}
uint32_t* p0_index = (uint32_t*)p0;
uint32_t seek_indexes[VH_N_INDEXES];
for (size_t x = 0; x < VH_N_ROT; ++x)
{
memcpy( seek_indexes + x * (VH_N_SUBSET / sizeof(uint32_t)),
p0, VH_N_SUBSET);
for (size_t y = 0; y < VH_N_SUBSET / sizeof(uint32_t); ++y)
{
*(p0_index + y) = ( *(p0_index + y) << 1 )
| ( 1 & (*(p0_index + y) >> 31) );
}
}
uint32_t* p1_32 = (uint32_t*)p1;
uint32_t* blob_bytes_32 = (uint32_t*)blob_bytes;
uint32_t value_accumulator = 0x811c9dc5;
const uint32_t mdiv = ((blob_size - VH_HASH_OUT_SIZE) / VH_BYTE_ALIGNMENT) + 1;
for (size_t i = 0; i < VH_N_INDEXES; i++)
{
const uint32_t offset = (fnv1a(seek_indexes[i], value_accumulator) % mdiv) * VH_BYTE_ALIGNMENT / sizeof(uint32_t);
for (size_t i2 = 0; i2 < VH_HASH_OUT_SIZE / sizeof(uint32_t); i2++)
{
const uint32_t value = *(blob_bytes_32 + offset + i2);
uint32_t* p1_ptr = p1_32 + i2;
*p1_ptr = fnv1a(*p1_ptr, value);
value_accumulator = fnv1a(value_accumulator, value);
}
}
memcpy(output, p1, VH_HASH_OUT_SIZE);
}
//-----------------------------------------------------------------------------
// Verthash data file generator
#define NODE_SIZE 32
struct Graph
{
FILE *db;
int64_t log2;
int64_t pow2;
uint8_t *pk;
int64_t index;
};
int64_t Log2(int64_t x)
{
int64_t r = 0;
for (; x > 1; x >>= 1)
{
r++;
}
return r;
}
int64_t bfsToPost(struct Graph *g, const int64_t node)
{
return node & ~g->pow2;
}
int64_t numXi(int64_t index)
{
return (1 << ((uint64_t)index)) * (index + 1) * index;
}
void WriteId(struct Graph *g, uint8_t *Node, const int64_t id)
{
fseek(g->db, id * NODE_SIZE, SEEK_SET);
fwrite(Node, 1, NODE_SIZE, g->db);
}
void WriteNode(struct Graph *g, uint8_t *Node, const int64_t id)
{
const int64_t idx = bfsToPost(g, id);
WriteId(g, Node, idx);
}
void NewNode(struct Graph *g, const int64_t id, uint8_t *hash)
{
WriteNode(g, hash, id);
}
uint8_t *GetId(struct Graph *g, const int64_t id)
{
fseek(g->db, id * NODE_SIZE, SEEK_SET);
uint8_t *node = (uint8_t *)malloc(NODE_SIZE);
const size_t bytes_read = fread(node, 1, NODE_SIZE, g->db);
if(bytes_read != NODE_SIZE) {
return NULL;
}
return node;
}
uint8_t *GetNode(struct Graph *g, const int64_t id)
{
const int64_t idx = bfsToPost(g, id);
return GetId(g, idx);
}
uint32_t WriteVarInt(uint8_t *buffer, int64_t val)
{
memset(buffer, 0, NODE_SIZE);
uint64_t uval = ((uint64_t)(val)) << 1;
if (val < 0)
{
uval = ~uval;
}
uint32_t i = 0;
while (uval >= 0x80)
{
buffer[i] = (uint8_t)uval | 0x80;
uval >>= 7;
i++;
}
buffer[i] = (uint8_t)uval;
return i;
}
void ButterflyGraph(struct Graph *g, int64_t index, int64_t *count)
{
if (index == 0)
{
index = 1;
}
int64_t numLevel = 2 * index;
int64_t perLevel = (int64_t)(1 << (uint64_t)index);
int64_t begin = *count - perLevel;
int64_t level, i;
for (level = 1; level < numLevel; level++)
{
for (i = 0; i < perLevel; i++)
{
int64_t prev;
int64_t shift = index - level;
if (level > numLevel / 2)
{
shift = level - numLevel / 2;
}
if (((i >> (uint64_t)shift) & 1) == 0)
{
prev = i + (1 << (uint64_t)shift);
}
else
{
prev = i - (1 << (uint64_t)shift);
}
uint8_t *parent0 = GetNode(g, begin + (level - 1) * perLevel + prev);
uint8_t *parent1 = GetNode(g, *count - perLevel);
uint8_t *buf = (uint8_t *)malloc(NODE_SIZE);
WriteVarInt(buf, *count);
uint8_t *hashInput = (uint8_t *)malloc(NODE_SIZE * 4);
memcpy(hashInput, g->pk, NODE_SIZE);
memcpy(hashInput + NODE_SIZE, buf, NODE_SIZE);
memcpy(hashInput + (NODE_SIZE * 2), parent0, NODE_SIZE);
memcpy(hashInput + (NODE_SIZE * 3), parent1, NODE_SIZE);
uint8_t *hashOutput = (uint8_t *)malloc(NODE_SIZE);
sha3(hashInput, NODE_SIZE * 4, hashOutput, NODE_SIZE);
NewNode(g, *count, hashOutput);
(*count)++;
free(hashOutput);
free(hashInput);
free(parent0);
free(parent1);
free(buf);
}
}
}
void XiGraphIter(struct Graph *g, int64_t index)
{
int64_t count = g->pow2;
int8_t stackSize = 5;
int64_t *stack = (int64_t *)malloc(sizeof(int64_t) * stackSize);
for (int i = 0; i < 5; i++)
stack[i] = index;
int8_t graphStackSize = 5;
int32_t *graphStack = (int32_t *)malloc(sizeof(int32_t) * graphStackSize);
for (int i = 0; i < 5; i++)
graphStack[i] = graphStackSize - i - 1;
int64_t i = 0;
int64_t graph = 0;
int64_t pow2index = 1 << ((uint64_t)index);
for (i = 0; i < pow2index; i++)
{
uint8_t *buf = (uint8_t *)malloc(NODE_SIZE);
WriteVarInt(buf, count);
uint8_t *hashInput = (uint8_t *)malloc(NODE_SIZE * 2);
memcpy(hashInput, g->pk, NODE_SIZE);
memcpy(hashInput + NODE_SIZE, buf, NODE_SIZE);
uint8_t *hashOutput = (uint8_t *)malloc(NODE_SIZE);
sha3(hashInput, NODE_SIZE * 2, hashOutput, NODE_SIZE);
NewNode(g, count, hashOutput);
count++;
free(hashOutput);
free(hashInput);
free(buf);
}
if (index == 1)
{
ButterflyGraph(g, index, &count);
return;
}
while (stackSize != 0 && graphStackSize != 0)
{
index = stack[stackSize - 1];
graph = graphStack[graphStackSize - 1];
stackSize--;
if (stackSize > 0)
{
int64_t *tempStack = (int64_t *)malloc(sizeof(int64_t) * (stackSize));
memcpy(tempStack, stack, sizeof(int64_t) * (stackSize));
free(stack);
stack = tempStack;
}
graphStackSize--;
if (graphStackSize > 0)
{
int32_t *tempGraphStack = (int32_t *)malloc(sizeof(int32_t) * (graphStackSize));
memcpy(tempGraphStack, graphStack, sizeof(int32_t) * (graphStackSize));
free(graphStack);
graphStack = tempGraphStack;
}
int8_t indicesSize = 5;
int64_t *indices = (int64_t *)malloc(sizeof(int64_t) * indicesSize);
for (int i = 0; i < indicesSize; i++)
indices[i] = index - 1;
int8_t graphsSize = 5;
int32_t *graphs = (int32_t *)malloc(sizeof(int32_t) * graphsSize);
for (int i = 0; i < graphsSize; i++)
graphs[i] = graphsSize - i - 1;
int64_t pow2indexInner = 1 << ((uint64_t)index);
int64_t pow2indexInner_1 = 1 << ((uint64_t)index - 1);
if (graph == 0)
{
uint64_t sources = count - pow2indexInner;
for (i = 0; i < pow2indexInner_1; i++)
{
uint8_t *parent0 = GetNode(g, sources + i);
uint8_t *parent1 = GetNode(g, sources + i + pow2indexInner_1);
uint8_t *buf = (uint8_t *)malloc(NODE_SIZE);
WriteVarInt(buf, count);
uint8_t *hashInput = (uint8_t *)malloc(NODE_SIZE * 4);
memcpy(hashInput, g->pk, NODE_SIZE);
memcpy(hashInput + NODE_SIZE, buf, NODE_SIZE);
memcpy(hashInput + (NODE_SIZE * 2), parent0, NODE_SIZE);
memcpy(hashInput + (NODE_SIZE * 3), parent1, NODE_SIZE);
uint8_t *hashOutput = (uint8_t *)malloc(NODE_SIZE);
sha3(hashInput, NODE_SIZE * 4, hashOutput, NODE_SIZE);
NewNode(g, count, hashOutput);
count++;
free(hashOutput);
free(hashInput);
free(parent0);
free(parent1);
free(buf);
}
}
else if (graph == 1)
{
uint64_t firstXi = count;
for (i = 0; i < pow2indexInner_1; i++)
{
uint64_t nodeId = firstXi + i;
uint8_t *parent = GetNode(g, firstXi - pow2indexInner_1 + i);
uint8_t *buf = (uint8_t *)malloc(NODE_SIZE);
WriteVarInt(buf, nodeId);
uint8_t *hashInput = (uint8_t *)malloc(NODE_SIZE * 3);
memcpy(hashInput, g->pk, NODE_SIZE);
memcpy(hashInput + NODE_SIZE, buf, NODE_SIZE);
memcpy(hashInput + (NODE_SIZE * 2), parent, NODE_SIZE);
uint8_t *hashOutput = (uint8_t *)malloc(NODE_SIZE);
sha3(hashInput, NODE_SIZE * 3, hashOutput, NODE_SIZE);
NewNode(g, count, hashOutput);
count++;
free(hashOutput);
free(hashInput);
free(parent);
free(buf);
}
}
else if (graph == 2)
{
uint64_t secondXi = count;
for (i = 0; i < pow2indexInner_1; i++)
{
uint64_t nodeId = secondXi + i;
uint8_t *parent = GetNode(g, secondXi - pow2indexInner_1 + i);
uint8_t *buf = (uint8_t *)malloc(NODE_SIZE);
WriteVarInt(buf, nodeId);
uint8_t *hashInput = (uint8_t *)malloc(NODE_SIZE * 3);
memcpy(hashInput, g->pk, NODE_SIZE);
memcpy(hashInput + NODE_SIZE, buf, NODE_SIZE);
memcpy(hashInput + (NODE_SIZE * 2), parent, NODE_SIZE);
uint8_t *hashOutput = (uint8_t *)malloc(NODE_SIZE);
sha3(hashInput, NODE_SIZE * 3, hashOutput, NODE_SIZE);
NewNode(g, count, hashOutput);
count++;
free(hashOutput);
free(hashInput);
free(parent);
free(buf);
}
}
else if (graph == 3)
{
uint64_t secondButter = count;
for (i = 0; i < pow2indexInner_1; i++)
{
uint64_t nodeId = secondButter + i;
uint8_t *parent = GetNode(g, secondButter - pow2indexInner_1 + i);
uint8_t *buf = (uint8_t *)malloc(NODE_SIZE);
WriteVarInt(buf, nodeId);
uint8_t *hashInput = (uint8_t *)malloc(NODE_SIZE * 3);
memcpy(hashInput, g->pk, NODE_SIZE);
memcpy(hashInput + NODE_SIZE, buf, NODE_SIZE);
memcpy(hashInput + (NODE_SIZE * 2), parent, NODE_SIZE);
uint8_t *hashOutput = (uint8_t *)malloc(NODE_SIZE);
sha3(hashInput, NODE_SIZE * 3, hashOutput, NODE_SIZE);
NewNode(g, count, hashOutput);
count++;
free(hashOutput);
free(hashInput);
free(parent);
free(buf);
}
}
else
{
uint64_t sinks = count;
uint64_t sources = sinks + pow2indexInner - numXi(index);
for (i = 0; i < pow2indexInner_1; i++)
{
uint64_t nodeId0 = sinks + i;
uint64_t nodeId1 = sinks + i + pow2indexInner_1;
uint8_t *parent0 = GetNode(g, sinks - pow2indexInner_1 + i);
uint8_t *parent1_0 = GetNode(g, sources + i);
uint8_t *parent1_1 = GetNode(g, sources + i + pow2indexInner_1);
uint8_t *buf = (uint8_t *)malloc(NODE_SIZE);
WriteVarInt(buf, nodeId0);
uint8_t *hashInput = (uint8_t *)malloc(NODE_SIZE * 4);
memcpy(hashInput, g->pk, NODE_SIZE);
memcpy(hashInput + NODE_SIZE, buf, NODE_SIZE);
memcpy(hashInput + (NODE_SIZE * 2), parent0, NODE_SIZE);
memcpy(hashInput + (NODE_SIZE * 3), parent1_0, NODE_SIZE);
uint8_t *hashOutput0 = (uint8_t *)malloc(NODE_SIZE);
sha3(hashInput, NODE_SIZE * 4, hashOutput0, NODE_SIZE);
WriteVarInt(buf, nodeId1);
memcpy(hashInput, g->pk, NODE_SIZE);
memcpy(hashInput + NODE_SIZE, buf, NODE_SIZE);
memcpy(hashInput + (NODE_SIZE * 2), parent0, NODE_SIZE);
memcpy(hashInput + (NODE_SIZE * 3), parent1_1, NODE_SIZE);
uint8_t *hashOutput1 = (uint8_t *)malloc(NODE_SIZE);
sha3(hashInput, NODE_SIZE * 4, hashOutput1, NODE_SIZE);
NewNode(g, nodeId0, hashOutput0);
NewNode(g, nodeId1, hashOutput1);
count += 2;
free(parent0);
free(parent1_0);
free(parent1_1);
free(buf);
free(hashInput);
free(hashOutput0);
free(hashOutput1);
}
}
if ((graph == 0 || graph == 3) ||
((graph == 1 || graph == 2) && index == 2))
{
ButterflyGraph(g, index - 1, &count);
}
else if (graph == 1 || graph == 2)
{
int64_t *tempStack = (int64_t *)malloc(sizeof(int64_t) * (stackSize + indicesSize));
memcpy(tempStack, stack, stackSize * sizeof(int64_t));
memcpy(tempStack + stackSize, indices, indicesSize * sizeof(int64_t));
stackSize += indicesSize;
free(stack);
stack = tempStack;
int32_t *tempGraphStack = (int32_t *)malloc(sizeof(int32_t) * (graphStackSize + graphsSize));
memcpy(tempGraphStack, graphStack, graphStackSize * sizeof(int32_t));
memcpy(tempGraphStack + graphStackSize, graphs, graphsSize * sizeof(int32_t));
graphStackSize += graphsSize;
free(graphStack);
graphStack = tempGraphStack;
}
free(indices);
free(graphs);
}
free(stack);
free(graphStack);
}
struct Graph *NewGraph(int64_t index, const char* targetFile, uint8_t *pk)
{
uint8_t exists = 0;
FILE *db;
if ((db = fopen_utf8(targetFile, "r")) != NULL)
{
fclose(db);
exists = 1;
}
db = fopen_utf8(targetFile, "wb+");
int64_t size = numXi(index);
int64_t log2 = Log2(size) + 1;
int64_t pow2 = 1 << ((uint64_t)log2);
struct Graph *g = (struct Graph *)malloc(sizeof(struct Graph));
g->db = db;
g->log2 = log2;
g->pow2 = pow2;
g->pk = pk;
g->index = index;
if (exists == 0)
{
XiGraphIter(g, index);
}
fclose(db);
return g;
}
//-----------------------------------------------------------------------------
int verthash_generate_data_file(const char* output_file_name)
{
const char *hashInput = "Verthash Proof-of-Space Datafile";
uint8_t *pk = (uint8_t*)malloc(NODE_SIZE);
sha3(hashInput, 32, pk, NODE_SIZE);
int64_t index = 17;
NewGraph(index, output_file_name, pk);
return 0;
}

61
algo/verthash/Verthash.h Normal file
View File

@@ -0,0 +1,61 @@
/*
* Copyright 2018-2021 CryptoGraphics
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 2 of the License, or (at your option)
* any later version. See LICENSE for more details.
*/
#ifndef Verthash_INCLUDE_ONCE
#define Verthash_INCLUDE_ONCE
#include "tiny_sha3/sha3.h"
#include "fopen_utf8.h"
#include <stdlib.h>
#include <stdio.h>
#include <stdint.h>
#include <string.h>
// Verthash constants used to compute bitmask, used inside kernel during IO pass
#define VH_HASH_OUT_SIZE 32
#define VH_BYTE_ALIGNMENT 16
#define VH_HEADER_SIZE 80
//-----------------------------------------------------------------------------
// Verthash data
//! Verthash C api for data maniputation.
typedef struct VerthashInfo
{
char* fileName;
uint8_t* data;
uint64_t dataSize;
uint32_t bitmask;
} verthash_info_t;
//! Must be called before usage. Reset all fields and set a mining data file name.
//! Error codes
//! 0 - Success(No error).
//! 1 - File name is invalid.
//! 2 - Memory allocation error
int verthash_info_init(verthash_info_t* info, const char* file_name);
//! Reset all fields and free allocated data.
void verthash_info_free(verthash_info_t* info);
//! Generate verthash data file and save it to specified location.
int verthash_generate_data_file(const char* output_file_name);
void verthash_sha3_prehash_72( const void *data );
void verthash_sha3_final_8( sha3_ctx_t *ctx, void *out, const void *data );
void verthash_hash(const unsigned char* blob_bytes,
const size_t blob_size,
const unsigned char(*input)[VH_HEADER_SIZE],
unsigned char(*output)[VH_HASH_OUT_SIZE]);
#endif // !Verthash_INCLUDE_ONCE

181
algo/verthash/fopen_utf8.c Normal file
View File

@@ -0,0 +1,181 @@
#ifndef H_FOPEN_UTF8
#define H_FOPEN_UTF8
#include "fopen_utf8.h"
#include <stdint.h>
#include <stddef.h>
#include <stdlib.h>
#include <stdio.h>
int utf8_char_size(const uint8_t *c)
{
const uint8_t m0x = 0x80, c0x = 0x00,
m10x = 0xC0, c10x = 0x80,
m110x = 0xE0, c110x = 0xC0,
m1110x = 0xF0, c1110x = 0xE0,
m11110x = 0xF8, c11110x = 0xF0;
if ((c[0] & m0x) == c0x)
return 1;
if ((c[0] & m110x) == c110x)
if ((c[1] & m10x) == c10x)
return 2;
if ((c[0] & m1110x) == c1110x)
if ((c[1] & m10x) == c10x)
if ((c[2] & m10x) == c10x)
return 3;
if ((c[0] & m11110x) == c11110x)
if ((c[1] & m10x) == c10x)
if ((c[2] & m10x) == c10x)
if ((c[3] & m10x) == c10x)
return 4;
if ((c[0] & m10x) == c10x) // not a first UTF-8 byte
return 0;
return -1; // if c[0] is a first byte but the other bytes don't match
}
uint32_t utf8_to_unicode32(const uint8_t *c, size_t *index)
{
uint32_t v;
int size;
const uint8_t m6 = 63, m5 = 31, m4 = 15, m3 = 7;
if (c==NULL)
return 0;
size = utf8_char_size(c);
if (size > 0 && index)
*index += size-1;
switch (size)
{
case 1:
v = c[0];
break;
case 2:
v = c[0] & m5;
v = v << 6 | (c[1] & m6);
break;
case 3:
v = c[0] & m4;
v = v << 6 | (c[1] & m6);
v = v << 6 | (c[2] & m6);
break;
case 4:
v = c[0] & m3;
v = v << 6 | (c[1] & m6);
v = v << 6 | (c[2] & m6);
v = v << 6 | (c[3] & m6);
break;
case 0: // not a first UTF-8 byte
case -1: // corrupt UTF-8 letter
default:
v = -1;
break;
}
return v;
}
int codepoint_utf16_size(uint32_t c)
{
if (c < 0x10000) return 1;
if (c < 0x110000) return 2;
return 0;
}
uint16_t *sprint_utf16(uint16_t *str, uint32_t c) // str must be able to hold 1 to 3 entries and will be null-terminated by this function
{
int c_size;
if (str==NULL)
return NULL;
c_size = codepoint_utf16_size(c);
switch (c_size)
{
case 1:
str[0] = c;
if (c > 0)
str[1] = '\0';
break;
case 2:
c -= 0x10000;
str[0] = 0xD800 + (c >> 10);
str[1] = 0xDC00 + (c & 0x3FF);
str[2] = '\0';
break;
default:
str[0] = '\0';
}
return str;
}
size_t strlen_utf8_to_utf16(const uint8_t *str)
{
size_t i, count;
uint32_t c;
for (i=0, count=0; ; i++)
{
if (str[i]==0)
return count;
c = utf8_to_unicode32(&str[i], &i);
count += codepoint_utf16_size(c);
}
}
uint16_t *utf8_to_utf16(const uint8_t *utf8, uint16_t *utf16)
{
size_t i, j;
uint32_t c;
if (utf8==NULL)
return NULL;
if (utf16==NULL)
utf16 = (uint16_t *) calloc(strlen_utf8_to_utf16(utf8) + 1, sizeof(uint16_t));
for (i=0, j=0, c=1; c; i++)
{
c = utf8_to_unicode32(&utf8[i], &i);
sprint_utf16(&utf16[j], c);
j += codepoint_utf16_size(c);
}
return utf16;
}
FILE *fopen_utf8(const char *path, const char *mode)
{
#ifdef _WIN32
wchar_t *wpath, wmode[8];
FILE *file;
if (utf8_to_utf16((const uint8_t *) mode, (uint16_t *) wmode)==NULL)
return NULL;
wpath = (wchar_t *) utf8_to_utf16((const uint8_t *) path, NULL);
if (wpath==NULL)
return NULL;
file = _wfopen(wpath, wmode);
free(wpath);
return file;
#else
return fopen(path, mode);
#endif
}
#endif

View File

@@ -0,0 +1,25 @@
#ifndef H_FOPEN_UTF8
#define H_FOPEN_UTF8
#ifdef __cplusplus
extern "C" {
#endif
#include <stdlib.h>
#include <stdio.h>
#include <stdint.h>
#include <stddef.h>
int utf8_char_size(const uint8_t *c);
uint32_t utf8_to_unicode32(const uint8_t *c, size_t *index);
int codepoint_utf16_size(uint32_t c);
uint16_t *sprint_utf16(uint16_t *str, uint32_t c);
size_t strlen_utf8_to_utf16(const uint8_t *str);
uint16_t *utf8_to_utf16(const uint8_t *utf8, uint16_t *utf16);
FILE *fopen_utf8(const char *path, const char *mode);
#ifdef __cplusplus
}
#endif
#endif

View File

@@ -0,0 +1,191 @@
// sha3.c
// 19-Nov-11 Markku-Juhani O. Saarinen <mjos@iki.fi>
// Revised 07-Aug-15 to match with official release of FIPS PUB 202 "SHA3"
// Revised 03-Sep-15 for portability + OpenSSL - style API
#include "sha3.h"
// update the state with given number of rounds
void sha3_keccakf(uint64_t st[25])
{
// constants
const uint64_t keccakf_rndc[24] = {
0x0000000000000001, 0x0000000000008082, 0x800000000000808a,
0x8000000080008000, 0x000000000000808b, 0x0000000080000001,
0x8000000080008081, 0x8000000000008009, 0x000000000000008a,
0x0000000000000088, 0x0000000080008009, 0x000000008000000a,
0x000000008000808b, 0x800000000000008b, 0x8000000000008089,
0x8000000000008003, 0x8000000000008002, 0x8000000000000080,
0x000000000000800a, 0x800000008000000a, 0x8000000080008081,
0x8000000000008080, 0x0000000080000001, 0x8000000080008008
};
const int keccakf_rotc[24] = {
1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 2, 14,
27, 41, 56, 8, 25, 43, 62, 18, 39, 61, 20, 44
};
const int keccakf_piln[24] = {
10, 7, 11, 17, 18, 3, 5, 16, 8, 21, 24, 4,
15, 23, 19, 13, 12, 2, 20, 14, 22, 9, 6, 1
};
// variables
int i, j, r;
uint64_t t, bc[5];
#if __BYTE_ORDER__ != __ORDER_LITTLE_ENDIAN__
uint8_t *v;
// endianess conversion. this is redundant on little-endian targets
for (i = 0; i < 25; i++) {
v = (uint8_t *) &st[i];
st[i] = ((uint64_t) v[0]) | (((uint64_t) v[1]) << 8) |
(((uint64_t) v[2]) << 16) | (((uint64_t) v[3]) << 24) |
(((uint64_t) v[4]) << 32) | (((uint64_t) v[5]) << 40) |
(((uint64_t) v[6]) << 48) | (((uint64_t) v[7]) << 56);
}
#endif
// actual iteration
for (r = 0; r < KECCAKF_ROUNDS; r++) {
// Theta
for (i = 0; i < 5; i++)
bc[i] = st[i] ^ st[i + 5] ^ st[i + 10] ^ st[i + 15] ^ st[i + 20];
for (i = 0; i < 5; i++) {
t = bc[(i + 4) % 5] ^ ROTL64(bc[(i + 1) % 5], 1);
for (j = 0; j < 25; j += 5)
st[j + i] ^= t;
}
// Rho Pi
t = st[1];
for (i = 0; i < 24; i++) {
j = keccakf_piln[i];
bc[0] = st[j];
st[j] = ROTL64(t, keccakf_rotc[i]);
t = bc[0];
}
// Chi
for (j = 0; j < 25; j += 5) {
for (i = 0; i < 5; i++)
bc[i] = st[j + i];
for (i = 0; i < 5; i++)
st[j + i] ^= (~bc[(i + 1) % 5]) & bc[(i + 2) % 5];
}
// Iota
st[0] ^= keccakf_rndc[r];
}
#if __BYTE_ORDER__ != __ORDER_LITTLE_ENDIAN__
// endianess conversion. this is redundant on little-endian targets
for (i = 0; i < 25; i++) {
v = (uint8_t *) &st[i];
t = st[i];
v[0] = t & 0xFF;
v[1] = (t >> 8) & 0xFF;
v[2] = (t >> 16) & 0xFF;
v[3] = (t >> 24) & 0xFF;
v[4] = (t >> 32) & 0xFF;
v[5] = (t >> 40) & 0xFF;
v[6] = (t >> 48) & 0xFF;
v[7] = (t >> 56) & 0xFF;
}
#endif
}
// Initialize the context for SHA3
int sha3_init(sha3_ctx_t *c, int mdlen)
{
int i;
for (i = 0; i < 25; i++)
c->st.q[i] = 0;
c->mdlen = mdlen;
c->rsiz = 200 - 2 * mdlen;
c->pt = 0;
return 1;
}
// update state with more data
int sha3_update(sha3_ctx_t *c, const void *data, size_t len)
{
size_t i;
int j;
j = c->pt;
for (i = 0; i < len; i++) {
c->st.b[j++] ^= ((const uint8_t *) data)[i];
if (j >= c->rsiz) {
sha3_keccakf(c->st.q);
j = 0;
}
}
c->pt = j;
return 1;
}
// finalize and output a hash
int sha3_final(void *md, sha3_ctx_t *c)
{
int i;
c->st.b[c->pt] ^= 0x06;
c->st.b[c->rsiz - 1] ^= 0x80;
sha3_keccakf(c->st.q);
for (i = 0; i < c->mdlen; i++) {
((uint8_t *) md)[i] = c->st.b[i];
}
return 1;
}
// compute a SHA-3 hash (md) of given byte length from "in"
void *sha3(const void *in, size_t inlen, void *md, int mdlen)
{
sha3_ctx_t sha3;
sha3_init(&sha3, mdlen);
sha3_update(&sha3, in, inlen);
sha3_final(md, &sha3);
return md;
}
// SHAKE128 and SHAKE256 extensible-output functionality
void shake_xof(sha3_ctx_t *c)
{
c->st.b[c->pt] ^= 0x1F;
c->st.b[c->rsiz - 1] ^= 0x80;
sha3_keccakf(c->st.q);
c->pt = 0;
}
void shake_out(sha3_ctx_t *c, void *out, size_t len)
{
size_t i;
int j;
j = c->pt;
for (i = 0; i < len; i++) {
if (j >= c->rsiz) {
sha3_keccakf(c->st.q);
j = 0;
}
((uint8_t *) out)[i] = c->st.b[j++];
}
c->pt = j;
}

View File

@@ -0,0 +1,55 @@
// sha3.h
// 19-Nov-11 Markku-Juhani O. Saarinen <mjos@iki.fi>
#ifndef SHA3_H
#define SHA3_H
#include <stddef.h>
#include <stdint.h>
#if defined(__cplusplus)
extern "C" {
#endif
#ifndef KECCAKF_ROUNDS
#define KECCAKF_ROUNDS 24
#endif
#ifndef ROTL64
#define ROTL64(x, y) (((x) << (y)) | ((x) >> (64 - (y))))
#endif
// state context
typedef struct {
union { // state:
uint8_t b[200]; // 8-bit bytes
uint64_t q[25]; // 64-bit words
} st;
int pt, rsiz, mdlen; // these don't overflow
} sha3_ctx_t;
// Compression function.
void sha3_keccakf(uint64_t st[25]);
// OpenSSL - like interfece
int sha3_init(sha3_ctx_t *c, int mdlen); // mdlen = hash output in bytes
int sha3_update(sha3_ctx_t *c, const void *data, size_t len);
int sha3_final(void *md, sha3_ctx_t *c); // digest goes to md
// compute a sha3 hash (md) of given byte length from "in"
void *sha3(const void *in, size_t inlen, void *md, int mdlen);
// SHAKE128 and SHAKE256 extensible-output functions
#define shake128_init(c) sha3_init(c, 16)
#define shake256_init(c) sha3_init(c, 32)
#define shake_update sha3_update
void shake_xof(sha3_ctx_t *c);
void shake_out(sha3_ctx_t *c, void *out, size_t len);
#if defined(__cplusplus)
}
#endif
#endif

View File

@@ -0,0 +1,96 @@
#include "algo-gate-api.h"
#include "algo/sha/sph_sha2.h"
#include "Verthash.h"
static verthash_info_t verthashInfo;
// Verthash data file hash in bytes for verification
// 0x48aa21d7afededb63976d48a8ff8ec29d5b02563af4a1110b056cd43e83155a5
static const uint8_t verthashDatFileHash_bytes[32] =
{ 0xa5, 0x55, 0x31, 0xe8, 0x43, 0xcd, 0x56, 0xb0,
0x10, 0x11, 0x4a, 0xaf, 0x63, 0x25, 0xb0, 0xd5,
0x29, 0xec, 0xf8, 0x8f, 0x8a, 0xd4, 0x76, 0x39,
0xb6, 0xed, 0xed, 0xaf, 0xd7, 0x21, 0xaa, 0x48 };
static const char* verthash_data_file_name = "verthash.dat";
int scanhash_verthash( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t edata[20] __attribute__((aligned(64)));
uint32_t hash[8] __attribute__((aligned(64)));
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
const uint32_t first_nonce = pdata[19];
const uint32_t last_nonce = max_nonce - 1;
uint32_t n = first_nonce;
const int thr_id = mythr->id;
const bool bench = opt_benchmark;
mm128_bswap32_80( edata, pdata );
// verthash_sha3_prehash_72( edata );
do
{
edata[19] = n;
verthash_hash( verthashInfo.data, verthashInfo.dataSize,
(const unsigned char (*)[80]) edata,
(unsigned char (*)[32]) hash );
if ( valid_hash( hash, ptarget ) && !bench )
{
pdata[19] = bswap_32( n );
submit_solution( work, hash, mythr );
}
n++;
} while ( n < last_nonce && !work_restart[thr_id].restart );
*hashes_done = n - first_nonce;
pdata[19] = n;
return 0;
}
bool register_verthash_algo( algo_gate_t* gate )
{
opt_target_factor = 256.0;
gate->scanhash = (void*)&scanhash_verthash;
// verthash data file
int vhLoadResult = verthash_info_init(&verthashInfo, verthash_data_file_name );
// Check Verthash initialization status
if (vhLoadResult == 0) // No Error
{
applog(LOG_INFO, "Verthash data file has been loaded succesfully!");
// and verify data file(if it was enabled)
if ( true )
// if (!cmdr.disableVerthashDataFileVerification)
{
uint8_t vhDataFileHash[32] = { 0 };
sph_sha256_full( vhDataFileHash, verthashInfo.data,
verthashInfo.dataSize );
if ( memcmp( vhDataFileHash, verthashDatFileHash_bytes,
sizeof(verthashDatFileHash_bytes) ) == 0 )
applog(LOG_INFO, "Verthash data file has been verified succesfully!");
else
applog(LOG_ERR, "Verthash data file verification has failed!");
}
else
applog(LOG_WARNING, "Verthash data file verification stage is disabled!");
}
else
{
// Handle Verthash error codes
if (vhLoadResult == 1)
applog(LOG_ERR, "Verthash data file name is invalid");
else if (vhLoadResult == 2)
applog(LOG_ERR, "Failed to allocate memory for Verthash data");
else // for debugging purposes
applog(LOG_ERR, "Verthash data initialization unknown error code: %d",
vhLoadResult);
return false;
}
return true;
}

20
configure vendored
View File

@@ -1,6 +1,6 @@
#! /bin/sh
# Guess values for system-dependent variables and create Makefiles.
# Generated by GNU Autoconf 2.69 for cpuminer-opt 3.15.7.
# Generated by GNU Autoconf 2.69 for cpuminer-opt 3.15.8.
#
#
# Copyright (C) 1992-1996, 1998-2012 Free Software Foundation, Inc.
@@ -577,8 +577,8 @@ MAKEFLAGS=
# Identity of this package.
PACKAGE_NAME='cpuminer-opt'
PACKAGE_TARNAME='cpuminer-opt'
PACKAGE_VERSION='3.15.7'
PACKAGE_STRING='cpuminer-opt 3.15.7'
PACKAGE_VERSION='3.15.8'
PACKAGE_STRING='cpuminer-opt 3.15.8'
PACKAGE_BUGREPORT=''
PACKAGE_URL=''
@@ -1332,7 +1332,7 @@ if test "$ac_init_help" = "long"; then
# Omit some internal or obsolete options to make the list less imposing.
# This message is too long to be a string in the A/UX 3.1 sh.
cat <<_ACEOF
\`configure' configures cpuminer-opt 3.15.7 to adapt to many kinds of systems.
\`configure' configures cpuminer-opt 3.15.8 to adapt to many kinds of systems.
Usage: $0 [OPTION]... [VAR=VALUE]...
@@ -1404,7 +1404,7 @@ fi
if test -n "$ac_init_help"; then
case $ac_init_help in
short | recursive ) echo "Configuration of cpuminer-opt 3.15.7:";;
short | recursive ) echo "Configuration of cpuminer-opt 3.15.8:";;
esac
cat <<\_ACEOF
@@ -1509,7 +1509,7 @@ fi
test -n "$ac_init_help" && exit $ac_status
if $ac_init_version; then
cat <<\_ACEOF
cpuminer-opt configure 3.15.7
cpuminer-opt configure 3.15.8
generated by GNU Autoconf 2.69
Copyright (C) 2012 Free Software Foundation, Inc.
@@ -2012,7 +2012,7 @@ cat >config.log <<_ACEOF
This file contains any messages produced by compilers while
running configure, to aid debugging if configure makes a mistake.
It was created by cpuminer-opt $as_me 3.15.7, which was
It was created by cpuminer-opt $as_me 3.15.8, which was
generated by GNU Autoconf 2.69. Invocation command line was
$ $0 $@
@@ -2993,7 +2993,7 @@ fi
# Define the identity of the package.
PACKAGE='cpuminer-opt'
VERSION='3.15.7'
VERSION='3.15.8'
cat >>confdefs.h <<_ACEOF
@@ -6690,7 +6690,7 @@ cat >>$CONFIG_STATUS <<\_ACEOF || ac_write_fail=1
# report actual input values of CONFIG_FILES etc. instead of their
# values after options handling.
ac_log="
This file was extended by cpuminer-opt $as_me 3.15.7, which was
This file was extended by cpuminer-opt $as_me 3.15.8, which was
generated by GNU Autoconf 2.69. Invocation command line was
CONFIG_FILES = $CONFIG_FILES
@@ -6756,7 +6756,7 @@ _ACEOF
cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1
ac_cs_config="`$as_echo "$ac_configure_args" | sed 's/^ //; s/[\\""\`\$]/\\\\&/g'`"
ac_cs_version="\\
cpuminer-opt config.status 3.15.7
cpuminer-opt config.status 3.15.8
configured by $0, generated by GNU Autoconf 2.69,
with options \\"\$ac_cs_config\\"

View File

@@ -1,4 +1,4 @@
AC_INIT([cpuminer-opt], [3.15.7])
AC_INIT([cpuminer-opt], [3.16.0])
AC_PREREQ([2.59c])
AC_CANONICAL_SYSTEM

View File

@@ -119,14 +119,14 @@ bool opt_sapling = false;
// Need compile time and run time test.
#if defined(__linux) && defined(GCC_INT128)
#define AFFINITY_USES_UINT128 1
uint128_t opt_affinity = -1;
static uint128_t opt_affinity = -1;
static bool affinity_uses_uint128 = true;
#else
uint64_t opt_affinity = -1;
static uint64_t opt_affinity = -1;
static bool affinity_uses_uint128 = false;
#endif
int opt_priority = 0;
int opt_priority = 0; // deprecated
int num_cpus = 1;
int num_cpugroups = 1;
char *rpc_url = NULL;;
@@ -3186,14 +3186,12 @@ void parse_arg(int key, char *arg )
ul = strtoull( p, NULL, 16 );
else
ul = atoll( arg );
// if ( ul > ( 1ULL << num_cpus ) - 1ULL )
// ul = -1LL;
#if AFFINITY_USES_UINT128
// replicate the low 64 bits to make a full 128 bit mask if there are more
// than 64 CPUs, otherwise zero extend the upper half.
opt_affinity = (uint128_t)ul;
if ( num_cpus > 64 )
opt_affinity = (opt_affinity << 64 ) | opt_affinity;
opt_affinity |= opt_affinity << 64;
#else
opt_affinity = ul;
#endif
@@ -3202,6 +3200,8 @@ void parse_arg(int key, char *arg )
v = atoi(arg);
if (v < 0 || v > 5) /* sanity check */
show_usage_and_exit(1);
// option is deprecated, show warning
applog( LOG_WARNING, "High priority mining threads may cause system instability");
opt_priority = v;
break;
case 'N': // N parameter for various scrypt algos

View File

@@ -573,6 +573,7 @@ enum algos {
ALGO_TRIBUS,
ALGO_VANILLA,
ALGO_VELTOR,
ALGO_VERTHASH,
ALGO_WHIRLPOOL,
ALGO_WHIRLPOOLX,
ALGO_X11,
@@ -665,6 +666,7 @@ static const char* const algo_names[] = {
"tribus",
"vanilla",
"veltor",
"verthash",
"whirlpool",
"whirlpoolx",
"x11",
@@ -824,6 +826,7 @@ Options:\n\
tribus Denarius (DNR)\n\
vanilla blake256r8vnl (VCash)\n\
veltor\n\
verthash\n\
whirlpool\n\
whirlpoolx\n\
x11 Dash\n\

17
verthash-help.txt Normal file
View File

@@ -0,0 +1,17 @@
The verthash data file must be named verthash.dat and located in the same
directory as the cpuminer executable. A Linux symlink works.
The verthash data file must be obtained seperately. If you already use
VerthashMiner you can simply copy or link the existing data file to the
cpuminer directory, using the required name.
Otherwise it may be created using
https://github.com/CryptoGraphics/VerthashMiner/releases
following the instructions. A GPU is not necessary to create the file.
The same data file can be used by both cpuminer and VerthashMiner
simultaneously.
Launching cpuminer to mine verthash is the same as any other algorithm,
no extra options are required.

View File

@@ -31,6 +31,7 @@ mkdir release
cp README.txt release/
cp README.md release/
cp RELEASE_NOTES release/
cp verthash-help.txt release/
cp $MINGW_LIB/zlib1.dll release/
cp $MINGW_LIB/libwinpthread-1.dll release/
cp $GCC_MINGW_LIB/libstdc++-6.dll release/