Compare commits

...

13 Commits
v24.1 ... v25.6

Author SHA1 Message Date
Jay D Dee
12480a3ea5 v25.6 2025-07-20 19:43:10 -04:00
Jay D Dee
aa47e880d5 v25.5 2025-07-09 01:32:38 -04:00
Jay D Dee
66191db93c v25.4 2025-06-20 20:31:41 -04:00
Jay D Dee
dd99580a4c v25.3 2025-01-16 12:31:53 -05:00
Jay D Dee
1ed18bf22e v25.2 2025-01-12 18:58:21 -05:00
Jay D Dee
1d9341ee92 v25.1 2024-12-30 21:33:04 -05:00
Jay D Dee
a45a333b40 v24.8 2024-12-25 23:12:29 -05:00
Jay D Dee
2b1037a7c7 v24.7 2024-12-16 19:17:19 -05:00
Jay D Dee
06624a0ff2 v24.6 2024-12-08 11:14:08 -05:00
Jay D Dee
8e91bfbe19 v24.5 2024-09-13 14:14:57 -04:00
Jay D Dee
47e24b50e8 v24.4 2024-07-01 00:33:19 -04:00
Jay D Dee
c47c4a8885 v24.3 2024-05-28 18:20:19 -04:00
Jay D Dee
042d13d1e1 v24.2 2024-05-20 23:08:50 -04:00
213 changed files with 7114 additions and 10637 deletions

View File

@@ -1,19 +1,39 @@
if WANT_JANSSON
JANSSON_INCLUDES= -I$(top_srcdir)/compat/jansson
if HAVE_APPLE
# MacOS uses Homebrew to install needed packages but they aren't linked for
# the jansson test in configure. Ignore the failed test & link them now,
# different path for different CPU arch.
if ARCH_ARM64
EXTRA_INCLUDES = -I/opt/homebrew/include
EXTRA_LIBS = -L/opt/homebrew/lib
else
JANSSON_INCLUDES=
EXTRA_INCLUDES = -I/usr/local/include
EXTRA_LIBS = -L/usr/local/lib
endif
EXTRA_DIST = example-cfg.json nomacro.pl
else
SUBDIRS = compat
if WANT_JANSSON
# Can't find jansson libraries, compile the included source code.
EXTRA_INCLUDES = -I$(top_srcdir)/compat/jansson
EXTRA_LIBS = -L$(top_srcdir)/compat/jansson
else
EXTRA_INCLUDES =
EXTRA_LIBS =
endif
ALL_INCLUDES = @PTHREAD_FLAGS@ -fno-strict-aliasing $(JANSSON_INCLUDES) -I.
endif
bin_PROGRAMS = cpuminer
EXTRA_DIST = example-cfg.json nomacro.pl
dist_man_MANS = cpuminer.1
SUBDIRS = compat
ALL_INCLUDES = @PTHREAD_FLAGS@ -fno-strict-aliasing $(EXTRA_INCLUDES) -I.
bin_PROGRAMS = cpuminer
dist_man_MANS = cpuminer.1
cpuminer_SOURCES = \
dummy.cpp \
@@ -23,6 +43,7 @@ cpuminer_SOURCES = \
sysinfos.c \
algo-gate-api.c\
malloc-huge.c \
simd-utils/simd-constants.c \
algo/argon2d/argon2d-gate.c \
algo/argon2d/blake2/blake2b.c \
algo/argon2d/argon2d/argon2.c \
@@ -166,9 +187,6 @@ cpuminer_SOURCES = \
algo/shavite/sph-shavite-aesni.c \
algo/shavite/shavite-hash-2way.c \
algo/shavite/shavite-hash-4way.c \
algo/shavite/shavite.c \
algo/simd/nist.c \
algo/simd/vector.c \
algo/simd/sph_simd.c \
algo/simd/simd-hash-2way.c \
algo/skein/sph_skein.c \
@@ -275,29 +293,29 @@ cpuminer_SOURCES = \
algo/yespower/yespower-opt.c \
algo/yespower/yespower-ref.c \
algo/yespower/yespower-blake2b-ref.c
disable_flags =
if USE_ASM
cpuminer_SOURCES += asm/neoscrypt_asm.S
else
disable_flags += -DNOASM
endif
if HAVE_WINDOWS
cpuminer_SOURCES += compat/winansi.c
endif
cpuminer_LDFLAGS = @LDFLAGS@
cpuminer_LDADD = @LIBCURL@ @JANSSON_LIBS@ @PTHREAD_LIBS@ @WS2_LIBS@ -lgmp
cpuminer_CPPFLAGS = @LIBCURL_CPPFLAGS@ $(ALL_INCLUDES)
cpuminer_CFLAGS = -Wno-pointer-sign -Wno-pointer-to-int-cast $(disable_flags)
if USE_ASM
disable_flags =
cpuminer_SOURCES += asm/neoscrypt_asm.S
else
disable_flags = -DNOASM
endif
if HAVE_WINDOWS
cpuminer_CFLAGS += -Wl,--stack,10485760
cpuminer_LDFLAGS = @LDFLAGS@
cpuminer_LDADD = $(EXTRA_LIBS) @LIBCURL@ -ljansson @PTHREAD_LIBS@ @WS2_LIBS@ -lgmp
cpuminer_CPPFLAGS = @LIBCURL_CPPFLAGS@ $(ALL_INCLUDES)
cpuminer_CFLAGS = -Wno-pointer-sign -Wno-pointer-to-int-cast $(disable_flags)
if ARCH_ARM64
cpuminer_CFLAGS += -flax-vector-conversions
endif
if HAVE_WINDOWS
# use to profile an object
# gprof_cflags = -pg -g3
# cpuminer_LDFLAGS += -pg
@@ -311,5 +329,4 @@ cpuminer-neoscrypt.o: neoscrypt.c
@echo "CUSTOM ${@}: ${filter %.o,${^}} ${filter %.c,${^}}"
$(CC) $(common_ccflags) -g -O3 $(gprof_cflags) -MT $@ -MD -MP -c -o $@ $<
endif

View File

@@ -36,44 +36,28 @@ for compile instructions.
Requirements
------------
1. A x86_64 architecture CPU with a minimum of SSE2 support. This includes
Intel Core2 and newer and AMD equivalents. Further optimizations are available
on some algoritms for CPUs with AES, AVX, AVX2, SHA, AVX512 and VAES.
32 bit CPUs are not supported.
Other CPU architectures such as ARM, Raspberry Pi, RISC-V, Xeon Phi, etc,
are not supported.
1. A 64 bit CPU supporting x86_64 (Intel or AMD) or aarch64 (ARM).
x86_64 requires SSE2, aarch64 requires armv8 & NEON.
Mobile CPUs like laptop computers are not recommended because they aren't
designed for extreme heat of operating at full load for extended periods of
time.
Older CPUs and ARM architecture may be supported by cpuminer-multi by TPruvot.
2. 64 bit Linux or Windows OS. Ubuntu and Fedora based distributions,
including Mint and Centos, are known to work and have all dependencies
in their repositories. Others may work but may require more effort. Older
versions such as Centos 6 don't work due to missing features.
Windows 7 or newer is supported with mingw_w64 and msys or using the pre-built
binaries. WindowsXP 64 bit is YMMV.
FreeBSD is not actively tested but should work, YMMV.
MacOS, OSx and Android are not supported.
2. 64 bit operating system including Linux, Windows, MacOS, or BSD.
Android, IOS and alt OSs like Haiku & ReactOS are not supported.
3. Stratum pool supporting stratum+tcp:// or stratum+ssl:// protocols or
RPC getwork using http:// or https://.
GBT is YMMV.
RPC getblocktemplate using http:// or https://.
Supported Algorithms
--------------------
allium Garlicoin
anime Animecoin
argon2 Argon2 coin (AR2)
argon2d250 argon2d-crds, Credits (CRDS)
argon2d500 argon2d-dyn, Dynamic (DYN)
argon2d4096 argon2d-uis, Unitus, (UIS)
argon2d250
argon2d500
argon2d1000
argon2d4096
blake Blake-256
blake2b Blake2-512
blake2s Blake2-256

View File

@@ -75,6 +75,93 @@ If not what makes it happen or not happen?
Change Log
----------
v25.6
Added argon2d1000, argon2d16000 algos.
Target specific AES optimizations improve shavite for ARM64 & x86_64.
v25.5
x86_64: Fixed an insidious bug in sha256 early rejection optimization for AVX2 & AVX512.
x86_64: Faster sha256d, sha256dt for AVX2 & AVX512.
Other small bug fixes.
v25.4
x86_64: improved handling of vector constants used for byte permutations.
x86_64: removed hooks for cancelled AVX10-256.
Minor bug fixes & improvements.
More code cleanup.
v25.3
#442, #443: Fixed a regression in Makefile.am.
Removed algo features log display.
Some code cleanup.
v25.2
ARM: Fixed regression from v25.1 that could cause build fail.
BSD: FreeBSD is now supported. Other BSDs may also work.
MacOS: build with installed jansson library instead of compiling the included source code.
Windows: remove "_WIN32_WINNT=0x0601" which was a downgrade on Win11.
Changed build.sh shell from bash to sh.
v25.1
MacOS ARM64: m7m algo is now working.
MacOS ARM64: can now be compiled with GCC.
MacOS x86_64: is now working compiled with GCC.
Fixed some minor bugs & removed some obsolete code.
v24.8
ARM: Apple MacOS on M series CPU is now supported compiled from source
code, see Wiki for details.
ARM: Fix incorrect compiler version display when using clang.
build.sh can now be used to compile all targets, arm_build.sh & build_msys2.sh
have been removed.
Windows: MSys2 build now enables CPU groups by default, prebuilt binaries
continue to be compiled with CPU groups disabled.
v24.7
ARM: compile works for Windows using MSys2 & MingW, see wiki for details.
v24.6
ARM: Fixed scryptn2, x16*, broken in v24.2.
ARM: Small improvement to interleaving.
Eliminated some potential compile errors in code that was dependent on
compiler optimisations.
x86_64: improved support for AVX10 compilation, needs GCC-14 or higher.
v24.5
Fix MinGW compile error after MSys2 upgrade to GCC-14.2.
#427: GBT: Improved handling of new work.
Removed shavite3 algo.
v24.4
x86_64: fixed a bug in ornot macro for AVX2 which broke some algos in v24.2.
x86_64: fixed a bug in alignr macros for SSE2.
ARM: CPU feature reporting enhancements.
Some code cleanup.
v24.3
ARM: CPU feature detection and reporting is now working.
ARM: Verthash is now working.
ARM: Small speedup for yescrypt, yespower & argon2d.
Code cleanup.
v24.2
x86_64: Fixed blakes2s for AVX2 & AVX512, x25x for AVX512, broken in v3.23.4.
x86_64: Initial support for CPUs with AVX10, needs GCC-14.
ARM NEON: Various code optimisations.
v24.1
#414: fix bug in merkle error handling.

View File

@@ -184,7 +184,7 @@ int scanhash_4way_64in_32out( struct work *work, uint32_t max_nonce,
#endif
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#if defined(SIMD512)
//int scanhash_8way_64_64( struct work *work, uint32_t max_nonce,
// uint64_t *hashes_done, struct thr_info *mythr )
@@ -263,8 +263,8 @@ static void init_algo_gate( algo_gate_t* gate )
gate->build_block_header = (void*)&std_build_block_header;
gate->build_extraheader = (void*)&std_build_extraheader;
gate->set_work_data_endian = (void*)&do_nothing;
gate->resync_threads = (void*)&do_nothing;
gate->do_this_thread = (void*)&return_true;
// gate->resync_threads = (void*)&do_nothing;
// gate->do_this_thread = (void*)&return_true;
gate->longpoll_rpc_call = (void*)&std_longpoll_rpc_call;
gate->get_work_data_size = (void*)&std_get_work_data_size;
gate->optimizations = EMPTY_SET;
@@ -295,8 +295,10 @@ bool register_algo_gate( int algo, algo_gate_t *gate )
{
case ALGO_ALLIUM: rc = register_allium_algo ( gate ); break;
case ALGO_ANIME: rc = register_anime_algo ( gate ); break;
case ALGO_ARGON2D250: rc = register_argon2d_crds_algo ( gate ); break;
case ALGO_ARGON2D500: rc = register_argon2d_dyn_algo ( gate ); break;
case ALGO_ARGON2D250: rc = register_argon2d250_algo ( gate ); break;
case ALGO_ARGON2D500: rc = register_argon2d500_algo ( gate ); break;
case ALGO_ARGON2D1000: rc = register_argon2d1000_algo ( gate ); break;
case ALGO_ARGON2D16000: rc = register_argon2d16000_algo ( gate ); break;
case ALGO_ARGON2D4096: rc = register_argon2d4096_algo ( gate ); break;
case ALGO_AXIOM: rc = register_axiom_algo ( gate ); break;
case ALGO_BLAKE: rc = register_blake_algo ( gate ); break;
@@ -340,7 +342,6 @@ bool register_algo_gate( int algo, algo_gate_t *gate )
case ALGO_SHA256T: rc = register_sha256t_algo ( gate ); break;
case ALGO_SHA3D: rc = register_sha3d_algo ( gate ); break;
case ALGO_SHA512256D: rc = register_sha512256d_algo ( gate ); break;
case ALGO_SHAVITE3: rc = register_shavite_algo ( gate ); break;
case ALGO_SKEIN: rc = register_skein_algo ( gate ); break;
case ALGO_SKEIN2: rc = register_skein2_algo ( gate ); break;
case ALGO_SKUNK: rc = register_skunk_algo ( gate ); break;
@@ -417,8 +418,6 @@ void exec_hash_function( int algo, void *output, const void *pdata )
const char* const algo_alias_map[][2] =
{
// alias proper
{ "argon2d-dyn", "argon2d500" },
{ "argon2d-uis", "argon2d4096" },
{ "bcd", "x13bcd" },
{ "bitcore", "timetravel10" },
{ "bitzeny", "yescryptr8" },

View File

@@ -98,9 +98,11 @@ typedef uint32_t set_t;
#define AVX512_OPT 1 << 6 // Skylake-X, Zen4 (AVX512[F,VL,DQ,BW])
#define AES_OPT 1 << 7 // Intel Westmere, AArch64
#define VAES_OPT 1 << 8 // Icelake, Zen3
#define SHA_OPT 1 << 9 // Zen1, Icelake, AArch64
#define SHA256_OPT 1 << 9 // Zen1, Icelake, AArch64
#define SHA512_OPT 1 << 10 // Intel Arrow Lake, AArch64
#define NEON_OPT 1 << 11 // AArch64
#define AVX10_256 1 << 12
#define AVX10_512 1 << 13
// AVX10 does not have explicit algo features:
// AVX10_512 is compatible with AVX512 + VAES
@@ -163,15 +165,18 @@ char* ( *malloc_txs_request ) ( struct work* );
void ( *set_work_data_endian ) ( struct work* );
// Diverge mining threads
bool ( *do_this_thread ) ( int );
//bool ( *do_this_thread ) ( int );
// After do_this_thread
void ( *resync_threads ) ( int, struct work* );
//void ( *resync_threads ) ( int, struct work* );
json_t* ( *longpoll_rpc_call ) ( CURL*, int*, char* );
// Deprecated
set_t optimizations;
int ( *get_work_data_size ) ();
int ntime_index;
int nbits_index;
int nonce_index; // use with caution, see warning below
@@ -246,7 +251,7 @@ int scanhash_4way_64in_32out( struct work *work, uint32_t max_nonce,
#endif
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#if defined(SIMD512)
//int scanhash_8way_64in_64out( struct work *work, uint32_t max_nonce,
// uint64_t *hashes_done, struct thr_info *mythr );
@@ -272,8 +277,6 @@ void std_get_new_work( struct work *work, struct work *g_work, int thr_id,
void sha256d_gen_merkle_root( char *merkle_root, struct stratum_ctx *sctx );
void sha256_gen_merkle_root ( char *merkle_root, struct stratum_ctx *sctx );
// OpenSSL sha256 deprecated
//void SHA256_gen_merkle_root ( char *merkle_root, struct stratum_ctx *sctx );
bool std_le_work_decode( struct work *work );
bool std_be_work_decode( struct work *work );

View File

@@ -6,9 +6,39 @@ static const size_t INPUT_BYTES = 80; // Lenth of a block header in bytes. Inpu
static const size_t OUTPUT_BYTES = 32; // Length of output needed for a 256-bit hash
static const unsigned int DEFAULT_ARGON2_FLAG = 2; //Same as ARGON2_DEFAULT_FLAGS
// Credits
// generic, works with most variations of argon2d
int scanhash_argon2d( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t _ALIGN(64) edata[20];
uint32_t _ALIGN(64) hash[8];
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
const int thr_id = mythr->id;
const uint32_t first_nonce = (const uint32_t)pdata[19];
const uint32_t last_nonce = (const uint32_t)max_nonce;
uint32_t nonce = first_nonce;
const bool bench = opt_benchmark;
void argon2d_crds_hash( void *output, const void *input )
v128_bswap32_80( edata, pdata );
do
{
edata[19] = nonce;
algo_gate.hash( hash, edata, thr_id );
if ( unlikely( valid_hash( hash, ptarget ) && !bench ) )
{
pdata[19] = bswap_32( nonce );
submit_solution( work, hash, mythr );
}
nonce++;
} while ( likely( nonce < last_nonce && !work_restart[thr_id].restart ) );
pdata[19] = nonce;
*hashes_done = pdata[19] - first_nonce;
return 0;
}
void argon2d250_hash( void *output, const void *input )
{
argon2_context context;
context.out = (uint8_t *)output;
@@ -34,48 +64,15 @@ void argon2d_crds_hash( void *output, const void *input )
argon2_ctx( &context, Argon2_d );
}
int scanhash_argon2d_crds( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
bool register_argon2d250_algo( algo_gate_t* gate )
{
uint32_t _ALIGN(64) edata[20];
uint32_t _ALIGN(64) hash[8];
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
int thr_id = mythr->id; // thr_id arg is deprecated
const uint32_t first_nonce = pdata[19];
const uint32_t Htarg = ptarget[7];
uint32_t nonce = first_nonce;
swab32_array( edata, pdata, 20 );
do {
be32enc(&edata[19], nonce);
argon2d_crds_hash( hash, edata );
if ( hash[7] <= Htarg && fulltest( hash, ptarget ) && !opt_benchmark )
{
pdata[19] = nonce;
submit_solution( work, hash, mythr );
}
nonce++;
} while (nonce < max_nonce && !work_restart[thr_id].restart);
pdata[19] = nonce;
*hashes_done = pdata[19] - first_nonce + 1;
return 0;
}
bool register_argon2d_crds_algo( algo_gate_t* gate )
{
gate->scanhash = (void*)&scanhash_argon2d_crds;
gate->hash = (void*)&argon2d_crds_hash;
gate->optimizations = SSE2_OPT | AVX2_OPT | AVX512_OPT | NEON_OPT;
gate->scanhash = (void*)&scanhash_argon2d;
gate->hash = (void*)&argon2d250_hash;
opt_target_factor = 65536.0;
return true;
}
// Dynamic
void argon2d_dyn_hash( void *output, const void *input )
void argon2d500_hash( void *output, const void *input )
{
argon2_context context;
context.out = (uint8_t *)output;
@@ -101,48 +98,81 @@ void argon2d_dyn_hash( void *output, const void *input )
argon2_ctx( &context, Argon2_d );
}
int scanhash_argon2d_dyn( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
bool register_argon2d500_algo( algo_gate_t* gate )
{
uint32_t _ALIGN(64) edata[20];
uint32_t _ALIGN(64) hash[8];
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
const int thr_id = mythr->id;
const uint32_t first_nonce = (const uint32_t)pdata[19];
const uint32_t last_nonce = (const uint32_t)max_nonce;
uint32_t nonce = first_nonce;
const bool bench = opt_benchmark;
v128_bswap32_80( edata, pdata );
do
{
edata[19] = nonce;
argon2d_dyn_hash( hash, edata );
if ( unlikely( valid_hash( (uint64_t*)hash, (uint64_t*)ptarget )
&& !bench ) )
{
pdata[19] = bswap_32( nonce );;
submit_solution( work, hash, mythr );
}
nonce++;
} while ( likely( nonce < last_nonce && !work_restart[thr_id].restart ) );
pdata[19] = nonce;
*hashes_done = pdata[19] - first_nonce;
return 0;
}
bool register_argon2d_dyn_algo( algo_gate_t* gate )
{
gate->scanhash = (void*)&scanhash_argon2d_dyn;
gate->hash = (void*)&argon2d_dyn_hash;
gate->optimizations = SSE2_OPT | AVX2_OPT | AVX512_OPT | NEON_OPT;
gate->scanhash = (void*)&scanhash_argon2d;
gate->hash = (void*)&argon2d500_hash;
opt_target_factor = 65536.0;
return true;
}
// Unitus
void argon2d1000_hash( void *output, const void *input )
{
argon2_context context;
context.out = (uint8_t *)output;
context.outlen = (uint32_t)OUTPUT_BYTES;
context.pwd = (uint8_t *)input;
context.pwdlen = (uint32_t)INPUT_BYTES;
context.salt = (uint8_t *)input; //salt = input
context.saltlen = (uint32_t)INPUT_BYTES;
context.secret = NULL;
context.secretlen = 0;
context.ad = NULL;
context.adlen = 0;
context.allocate_cbk = NULL;
context.free_cbk = NULL;
context.flags = DEFAULT_ARGON2_FLAG; // = ARGON2_DEFAULT_FLAGS
// main configurable Argon2 hash parameters
context.m_cost = 1000; // Memory in KiB (1MB)
context.lanes = 8; // Degree of Parallelism
context.threads = 1; // Threads
context.t_cost = 2; // Iterations
context.version = ARGON2_VERSION_10;
argon2_ctx( &context, Argon2_d );
}
bool register_argon2d1000_algo( algo_gate_t* gate )
{
gate->scanhash = (void*)&scanhash_argon2d;
gate->hash = (void*)&argon2d1000_hash;
opt_target_factor = 65536.0;
return true;
}
void argon2d16000_hash( void *output, const void *input )
{
argon2_context context;
context.out = (uint8_t *)output;
context.outlen = (uint32_t)OUTPUT_BYTES;
context.pwd = (uint8_t *)input;
context.pwdlen = (uint32_t)INPUT_BYTES;
context.salt = (uint8_t *)input; //salt = input
context.saltlen = (uint32_t)INPUT_BYTES;
context.secret = NULL;
context.secretlen = 0;
context.ad = NULL;
context.adlen = 0;
context.allocate_cbk = NULL;
context.free_cbk = NULL;
context.flags = DEFAULT_ARGON2_FLAG; // = ARGON2_DEFAULT_FLAGS
// main configurable Argon2 hash parameters
context.m_cost = 16000; // Memory in KiB (~16384KB)
context.lanes = 1; // Degree of Parallelism
context.threads = 1; // Threads
context.t_cost = 1; // Iterations
context.version = ARGON2_VERSION_10;
argon2_ctx( &context, Argon2_d );
}
bool register_argon2d16000_algo( algo_gate_t* gate )
{
gate->scanhash = (void*)&scanhash_argon2d;
gate->hash = (void*)&argon2d16000_hash;
opt_target_factor = 65536.0;
return true;
}
int scanhash_argon2d4096( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
@@ -154,7 +184,7 @@ int scanhash_argon2d4096( struct work *work, uint32_t max_nonce,
const uint32_t first_nonce = pdata[19];
const uint32_t last_nonce = (const uint32_t)max_nonce;
uint32_t n = first_nonce;
const int thr_id = mythr->id; // thr_id arg is deprecated
const int thr_id = mythr->id;
uint32_t t_cost = 1; // 1 iteration
uint32_t m_cost = 4096; // use 4MB
uint32_t parallelism = 1; // 1 thread, 2 lanes
@@ -182,7 +212,6 @@ int scanhash_argon2d4096( struct work *work, uint32_t max_nonce,
bool register_argon2d4096_algo( algo_gate_t* gate )
{
gate->scanhash = (void*)&scanhash_argon2d4096;
gate->optimizations = SSE2_OPT | AVX2_OPT | AVX512_OPT |NEON_OPT;
opt_target_factor = 65536.0;
return true;
}

View File

@@ -4,22 +4,27 @@
#include "algo-gate-api.h"
#include <stdint.h>
// Credits: version = 0x10, m_cost = 250.
bool register_argon2d_crds_algo( algo_gate_t* gate );
void argon2d_crds_hash( void *state, const void *input );
int scanhash_argon2d_crds( struct work *work, uint32_t max_nonce,
int scanhash_argon2d( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
// Credits: version = 0x10, m_cost = 250.
bool register_argon2d250_algo( algo_gate_t* gate );
void argon2d250_hash( void *state, const void *input );
// Dynamic: version = 0x10, m_cost = 500.
bool register_argon2d_dyn_algo( algo_gate_t* gate );
bool register_argon2d500_algo( algo_gate_t* gate );
void argon2d_dyn_hash( void *state, const void *input );
void argon2d500_hash( void *state, const void *input );
int scanhash_argon2d_dyn( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
// Zero Dynamics Cash: version = 0x10, m_cost = 1000.
bool register_argon2d1000_algo( algo_gate_t* gate );
void argon2d1000_hash( void *state, const void *input );
bool register_argon2d16000_algo( algo_gate_t* gate );
void argon2d16000_hash( void *state, const void *input );
// Unitus: version = 0x13, m_cost = 4096.
bool register_argon2d4096_algo( algo_gate_t* gate );

View File

@@ -35,7 +35,7 @@
* @pre all block pointers must be valid
*/
#if defined(__AVX512F__)
#if defined(SIMD512)
static inline __m512i blamka( __m512i x, __m512i y )
{
@@ -237,7 +237,7 @@ void fill_segment(const argon2_instance_t *instance,
uint64_t pseudo_rand, ref_index, ref_lane;
uint32_t prev_offset, curr_offset;
uint32_t starting_index, i;
#if defined(__AVX512F__)
#if defined(SIMD512)
__m512i state[ARGON2_512BIT_WORDS_IN_BLOCK];
#elif defined(__AVX2__)
__m256i state[ARGON2_HWORDS_IN_BLOCK];

View File

@@ -21,7 +21,7 @@
#include "blake2-impl.h"
#include "simd-utils.h"
#if !defined(__AVX512F__)
#if !defined(SIMD512)
#if !defined(__AVX2__)

View File

@@ -6,15 +6,15 @@
#if defined (BLAKE_4WAY)
blake256r14_4way_context blake_4w_ctx;
blake256r14_4x32_context blake_4w_ctx;
void blakehash_4way(void *state, const void *input)
{
uint32_t vhash[8*4] __attribute__ ((aligned (64)));
blake256r14_4way_context ctx;
blake256r14_4x32_context ctx;
memcpy( &ctx, &blake_4w_ctx, sizeof ctx );
blake256r14_4way_update( &ctx, input + (64<<2), 16 );
blake256r14_4way_close( &ctx, vhash );
blake256r14_4x32_update( &ctx, input + (64<<2), 16 );
blake256r14_4x32_close( &ctx, vhash );
dintrlv_4x32( state, state+32, state+64, state+96, vhash, 256 );
}
@@ -35,8 +35,8 @@ int scanhash_blake_4way( struct work *work, uint32_t max_nonce,
HTarget = 0x7f;
v128_bswap32_intrlv80_4x32( vdata, pdata );
blake256r14_4way_init( &blake_4w_ctx );
blake256r14_4way_update( &blake_4w_ctx, vdata, 64 );
blake256r14_4x32_init( &blake_4w_ctx );
blake256r14_4x32_update( &blake_4w_ctx, vdata, 64 );
do {
*noncev = v128_bswap32( _mm_set_epi32( n+3, n+2, n+1, n ) );
@@ -61,15 +61,15 @@ int scanhash_blake_4way( struct work *work, uint32_t max_nonce,
#if defined(BLAKE_8WAY)
blake256r14_8way_context blake_8w_ctx;
blake256r14_8x32_context blake_8w_ctx;
void blakehash_8way( void *state, const void *input )
{
uint32_t vhash[8*8] __attribute__ ((aligned (64)));
blake256r14_8way_context ctx;
blake256r14_8x32_context ctx;
memcpy( &ctx, &blake_8w_ctx, sizeof ctx );
blake256r14_8way( &ctx, input + (64<<3), 16 );
blake256r14_8way_close( &ctx, vhash );
blake256r14_8x32( &ctx, input + (64<<3), 16 );
blake256r14_8x32_close( &ctx, vhash );
_dintrlv_8x32( state, state+ 32, state+ 64, state+ 96,
state+128, state+160, state+192, state+224,
vhash, 256 );
@@ -93,8 +93,8 @@ int scanhash_blake_8way( struct work *work, uint32_t max_nonce,
mm256_bswap32_intrlv80_8x32( vdata, pdata );
blake256r14_8way_init( &blake_8w_ctx );
blake256r14_8way( &blake_8w_ctx, vdata, 64 );
blake256r14_8x32_init( &blake_8w_ctx );
blake256r14_8x32( &blake_8w_ctx, vdata, 64 );
do {
*noncev = mm256_bswap_32( _mm256_set_epi32( n+7, n+6, n+5, n+4,

View File

@@ -423,33 +423,6 @@ void blake256_transform_le( uint32_t *H, const uint32_t *buf,
(state)->T1 = T1; \
} while (0)
#if defined(__SSSE3__)
#define BLAKE256_4X32_BLOCK_BSWAP32 \
{ \
v128_t shuf_bswap32 = v128_set64( 0x0c0d0e0f08090a0b, \
0x0405060700010203 ); \
M0 = _mm_shuffle_epi8( buf[ 0], shuf_bswap32 ); \
M1 = _mm_shuffle_epi8( buf[ 1], shuf_bswap32 ); \
M2 = _mm_shuffle_epi8( buf[ 2], shuf_bswap32 ); \
M3 = _mm_shuffle_epi8( buf[ 3], shuf_bswap32 ); \
M4 = _mm_shuffle_epi8( buf[ 4], shuf_bswap32 ); \
M5 = _mm_shuffle_epi8( buf[ 5], shuf_bswap32 ); \
M6 = _mm_shuffle_epi8( buf[ 6], shuf_bswap32 ); \
M7 = _mm_shuffle_epi8( buf[ 7], shuf_bswap32 ); \
M8 = _mm_shuffle_epi8( buf[ 8], shuf_bswap32 ); \
M9 = _mm_shuffle_epi8( buf[ 9], shuf_bswap32 ); \
MA = _mm_shuffle_epi8( buf[10], shuf_bswap32 ); \
MB = _mm_shuffle_epi8( buf[11], shuf_bswap32 ); \
MC = _mm_shuffle_epi8( buf[12], shuf_bswap32 ); \
MD = _mm_shuffle_epi8( buf[13], shuf_bswap32 ); \
ME = _mm_shuffle_epi8( buf[14], shuf_bswap32 ); \
MF = _mm_shuffle_epi8( buf[15], shuf_bswap32 ); \
}
#else // SSE2
#define BLAKE256_4X32_BLOCK_BSWAP32 \
{ \
M0 = v128_bswap32( buf[0] ); \
@@ -470,8 +443,6 @@ void blake256_transform_le( uint32_t *H, const uint32_t *buf,
MF = v128_bswap32( buf[15] ); \
}
#endif // SSSE3 else SSE2
#define COMPRESS32_4X32( rounds ) \
{ \
v128_t M0, M1, M2, M3, M4, M5, M6, M7; \
@@ -926,22 +897,6 @@ void blake256_4x32_final_rounds_le( void *final_hash, const void *midstate,
ROUND_S_4X32_3;
}
#if defined(__SSSE3__)
const v128_t shuf_bswap32 =
v128_set64( 0x0c0d0e0f08090a0b, 0x0405060700010203 );
H[0] = _mm_shuffle_epi8( v128_xor3( V8, V0, h[0] ), shuf_bswap32 );
H[1] = _mm_shuffle_epi8( v128_xor3( V9, V1, h[1] ), shuf_bswap32 );
H[2] = _mm_shuffle_epi8( v128_xor3( VA, V2, h[2] ), shuf_bswap32 );
H[3] = _mm_shuffle_epi8( v128_xor3( VB, V3, h[3] ), shuf_bswap32 );
H[4] = _mm_shuffle_epi8( v128_xor3( VC, V4, h[4] ), shuf_bswap32 );
H[5] = _mm_shuffle_epi8( v128_xor3( VD, V5, h[5] ), shuf_bswap32 );
H[6] = _mm_shuffle_epi8( v128_xor3( VE, V6, h[6] ), shuf_bswap32 );
H[7] = _mm_shuffle_epi8( v128_xor3( VF, V7, h[7] ), shuf_bswap32 );
#else
H[0] = v128_bswap32( v128_xor3( V8, V0, h[0] ) );
H[1] = v128_bswap32( v128_xor3( V9, V1, h[1] ) );
H[2] = v128_bswap32( v128_xor3( VA, V2, h[2] ) );
@@ -950,8 +905,6 @@ void blake256_4x32_final_rounds_le( void *final_hash, const void *midstate,
H[5] = v128_bswap32( v128_xor3( VD, V5, h[5] ) );
H[6] = v128_bswap32( v128_xor3( VE, V6, h[6] ) );
H[7] = v128_bswap32( v128_xor3( VF, V7, h[7] ) );
#endif
}
#if defined (__AVX2__)
@@ -1291,24 +1244,22 @@ do { \
VD = v256_32( T0 ^ 0x299F31D0 ); \
VE = v256_32( T1 ^ 0x082EFA98 ); \
VF = v256_32( T1 ^ 0xEC4E6C89 ); \
const __m256i shuf_bswap32 = mm256_set2_64( \
0x0c0d0e0f08090a0b, 0x0405060700010203 ); \
M0 = _mm256_shuffle_epi8( * buf , shuf_bswap32 ); \
M1 = _mm256_shuffle_epi8( *(buf+ 1), shuf_bswap32 ); \
M2 = _mm256_shuffle_epi8( *(buf+ 2), shuf_bswap32 ); \
M3 = _mm256_shuffle_epi8( *(buf+ 3), shuf_bswap32 ); \
M4 = _mm256_shuffle_epi8( *(buf+ 4), shuf_bswap32 ); \
M5 = _mm256_shuffle_epi8( *(buf+ 5), shuf_bswap32 ); \
M6 = _mm256_shuffle_epi8( *(buf+ 6), shuf_bswap32 ); \
M7 = _mm256_shuffle_epi8( *(buf+ 7), shuf_bswap32 ); \
M8 = _mm256_shuffle_epi8( *(buf+ 8), shuf_bswap32 ); \
M9 = _mm256_shuffle_epi8( *(buf+ 9), shuf_bswap32 ); \
MA = _mm256_shuffle_epi8( *(buf+10), shuf_bswap32 ); \
MB = _mm256_shuffle_epi8( *(buf+11), shuf_bswap32 ); \
MC = _mm256_shuffle_epi8( *(buf+12), shuf_bswap32 ); \
MD = _mm256_shuffle_epi8( *(buf+13), shuf_bswap32 ); \
ME = _mm256_shuffle_epi8( *(buf+14), shuf_bswap32 ); \
MF = _mm256_shuffle_epi8( *(buf+15), shuf_bswap32 ); \
M0 = mm256_bswap_32( * buf ); \
M1 = mm256_bswap_32( *(buf+ 1) ); \
M2 = mm256_bswap_32( *(buf+ 2) ); \
M3 = mm256_bswap_32( *(buf+ 3) ); \
M4 = mm256_bswap_32( *(buf+ 4) ); \
M5 = mm256_bswap_32( *(buf+ 5) ); \
M6 = mm256_bswap_32( *(buf+ 6) ); \
M7 = mm256_bswap_32( *(buf+ 7) ); \
M8 = mm256_bswap_32( *(buf+ 8) ); \
M9 = mm256_bswap_32( *(buf+ 9) ); \
MA = mm256_bswap_32( *(buf+10) ); \
MB = mm256_bswap_32( *(buf+11) ); \
MC = mm256_bswap_32( *(buf+12) ); \
MD = mm256_bswap_32( *(buf+13) ); \
ME = mm256_bswap_32( *(buf+14) ); \
MF = mm256_bswap_32( *(buf+15) ); \
ROUND_S_8WAY(0); \
ROUND_S_8WAY(1); \
ROUND_S_8WAY(2); \
@@ -1401,7 +1352,7 @@ do { \
H7 = mm256_xor3( VF, V7, H7 ); \
}
void blake256_8way_round0_prehash_le( void *midstate, const void *midhash,
void blake256_8x32_round0_prehash_le( void *midstate, const void *midhash,
void *data )
{
__m256i *M = (__m256i*)data;
@@ -1491,7 +1442,7 @@ void blake256_8way_round0_prehash_le( void *midstate, const void *midhash,
_mm256_xor_si256( v256_32( CSE ), M[15] ) );
}
void blake256_8way_final_rounds_le( void *final_hash, const void *midstate,
void blake256_8x32_final_rounds_le( void *final_hash, const void *midstate,
const void *midhash, const void *data, const int rounds )
{
__m256i *H = (__m256i*)final_hash;
@@ -1596,22 +1547,19 @@ void blake256_8way_final_rounds_le( void *final_hash, const void *midstate,
ROUND256_8WAY_3;
}
const __m256i shuf_bswap32 =
mm256_set2_64( 0x0c0d0e0f08090a0b, 0x0405060700010203 );
H[0] = _mm256_shuffle_epi8( mm256_xor3( V8, V0, h[0] ), shuf_bswap32 );
H[1] = _mm256_shuffle_epi8( mm256_xor3( V9, V1, h[1] ), shuf_bswap32 );
H[2] = _mm256_shuffle_epi8( mm256_xor3( VA, V2, h[2] ), shuf_bswap32 );
H[3] = _mm256_shuffle_epi8( mm256_xor3( VB, V3, h[3] ), shuf_bswap32 );
H[4] = _mm256_shuffle_epi8( mm256_xor3( VC, V4, h[4] ), shuf_bswap32 );
H[5] = _mm256_shuffle_epi8( mm256_xor3( VD, V5, h[5] ), shuf_bswap32 );
H[6] = _mm256_shuffle_epi8( mm256_xor3( VE, V6, h[6] ), shuf_bswap32 );
H[7] = _mm256_shuffle_epi8( mm256_xor3( VF, V7, h[7] ), shuf_bswap32 );
H[0] = mm256_bswap_32( mm256_xor3( V8, V0, h[0] ) );
H[1] = mm256_bswap_32( mm256_xor3( V9, V1, h[1] ) );
H[2] = mm256_bswap_32( mm256_xor3( VA, V2, h[2] ) );
H[3] = mm256_bswap_32( mm256_xor3( VB, V3, h[3] ) );
H[4] = mm256_bswap_32( mm256_xor3( VC, V4, h[4] ) );
H[5] = mm256_bswap_32( mm256_xor3( VD, V5, h[5] ) );
H[6] = mm256_bswap_32( mm256_xor3( VE, V6, h[6] ) );
H[7] = mm256_bswap_32( mm256_xor3( VF, V7, h[7] ) );
}
#endif
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#if defined(SIMD512)
///////////////////////////////////////
//
@@ -1933,8 +1881,6 @@ do { \
__m512i M8, M9, MA, MB, MC, MD, ME, MF; \
__m512i V0, V1, V2, V3, V4, V5, V6, V7; \
__m512i V8, V9, VA, VB, VC, VD, VE, VF; \
const __m512i shuf_bswap32 = mm512_bcast_m128( v128_set64( \
0x0c0d0e0f08090a0b, 0x0405060700010203 ) ); \
V0 = H0; \
V1 = H1; \
V2 = H2; \
@@ -1951,22 +1897,22 @@ do { \
VD = v512_32( T0 ^ 0x299F31D0 ); \
VE = v512_32( T1 ^ 0x082EFA98 ); \
VF = v512_32( T1 ^ 0xEC4E6C89 ); \
M0 = _mm512_shuffle_epi8( * buf , shuf_bswap32 ); \
M1 = _mm512_shuffle_epi8( *(buf+ 1), shuf_bswap32 ); \
M2 = _mm512_shuffle_epi8( *(buf+ 2), shuf_bswap32 ); \
M3 = _mm512_shuffle_epi8( *(buf+ 3), shuf_bswap32 ); \
M4 = _mm512_shuffle_epi8( *(buf+ 4), shuf_bswap32 ); \
M5 = _mm512_shuffle_epi8( *(buf+ 5), shuf_bswap32 ); \
M6 = _mm512_shuffle_epi8( *(buf+ 6), shuf_bswap32 ); \
M7 = _mm512_shuffle_epi8( *(buf+ 7), shuf_bswap32 ); \
M8 = _mm512_shuffle_epi8( *(buf+ 8), shuf_bswap32 ); \
M9 = _mm512_shuffle_epi8( *(buf+ 9), shuf_bswap32 ); \
MA = _mm512_shuffle_epi8( *(buf+10), shuf_bswap32 ); \
MB = _mm512_shuffle_epi8( *(buf+11), shuf_bswap32 ); \
MC = _mm512_shuffle_epi8( *(buf+12), shuf_bswap32 ); \
MD = _mm512_shuffle_epi8( *(buf+13), shuf_bswap32 ); \
ME = _mm512_shuffle_epi8( *(buf+14), shuf_bswap32 ); \
MF = _mm512_shuffle_epi8( *(buf+15), shuf_bswap32 ); \
M0 = mm512_bswap_32( * buf ); \
M1 = mm512_bswap_32( *(buf+ 1) ); \
M2 = mm512_bswap_32( *(buf+ 2) ); \
M3 = mm512_bswap_32( *(buf+ 3) ); \
M4 = mm512_bswap_32( *(buf+ 4) ); \
M5 = mm512_bswap_32( *(buf+ 5) ); \
M6 = mm512_bswap_32( *(buf+ 6) ); \
M7 = mm512_bswap_32( *(buf+ 7) ); \
M8 = mm512_bswap_32( *(buf+ 8) ); \
M9 = mm512_bswap_32( *(buf+ 9) ); \
MA = mm512_bswap_32( *(buf+10) ); \
MB = mm512_bswap_32( *(buf+11) ); \
MC = mm512_bswap_32( *(buf+12) ); \
MD = mm512_bswap_32( *(buf+13) ); \
ME = mm512_bswap_32( *(buf+14) ); \
MF = mm512_bswap_32( *(buf+15) ); \
ROUND_S_16WAY(0); \
ROUND_S_16WAY(1); \
ROUND_S_16WAY(2); \
@@ -2063,7 +2009,7 @@ do { \
// is constant for every nonce and only needs to be run once per job. The
// second part is run for each nonce using the precalculated midstate and the
// hash from the first block.
void blake256_16way_round0_prehash_le( void *midstate, const void *midhash,
void blake256_16x32_round0_prehash_le( void *midstate, const void *midhash,
void *data )
{
__m512i *M = (__m512i*)data;
@@ -2157,7 +2103,7 @@ void blake256_16way_round0_prehash_le( void *midstate, const void *midhash,
}
// Dfault is 14 rounds, blakecoin & vanilla are 8.
void blake256_16way_final_rounds_le( void *final_hash, const void *midstate,
void blake256_16x32_final_rounds_le( void *final_hash, const void *midstate,
const void *midhash, const void *data, const int rounds )
{
__m512i *H = (__m512i*)final_hash;
@@ -2274,27 +2220,23 @@ void blake256_16way_final_rounds_le( void *final_hash, const void *midstate,
}
// Byte swap final hash
const __m512i shuf_bswap32 = mm512_bcast_m128( v128_set64(
0x0c0d0e0f08090a0b, 0x0405060700010203 ) );
H[0] = _mm512_shuffle_epi8( mm512_xor3( V8, V0, h[0] ), shuf_bswap32 );
H[1] = _mm512_shuffle_epi8( mm512_xor3( V9, V1, h[1] ), shuf_bswap32 );
H[2] = _mm512_shuffle_epi8( mm512_xor3( VA, V2, h[2] ), shuf_bswap32 );
H[3] = _mm512_shuffle_epi8( mm512_xor3( VB, V3, h[3] ), shuf_bswap32 );
H[4] = _mm512_shuffle_epi8( mm512_xor3( VC, V4, h[4] ), shuf_bswap32 );
H[5] = _mm512_shuffle_epi8( mm512_xor3( VD, V5, h[5] ), shuf_bswap32 );
H[6] = _mm512_shuffle_epi8( mm512_xor3( VE, V6, h[6] ), shuf_bswap32 );
H[7] = _mm512_shuffle_epi8( mm512_xor3( VF, V7, h[7] ), shuf_bswap32 );
H[0] = mm512_bswap_32( mm512_xor3( V8, V0, h[0] ) );
H[1] = mm512_bswap_32( mm512_xor3( V9, V1, h[1] ) );
H[2] = mm512_bswap_32( mm512_xor3( VA, V2, h[2] ) );
H[3] = mm512_bswap_32( mm512_xor3( VB, V3, h[3] ) );
H[4] = mm512_bswap_32( mm512_xor3( VC, V4, h[4] ) );
H[5] = mm512_bswap_32( mm512_xor3( VD, V5, h[5] ) );
H[6] = mm512_bswap_32( mm512_xor3( VE, V6, h[6] ) );
H[7] = mm512_bswap_32( mm512_xor3( VF, V7, h[7] ) );
}
#endif
// Blake-256 4 way
static const uint32_t salt_zero_4x32_small[4] = { 0, 0, 0, 0 };
static void
blake32_4x32_init( blake_4x32_small_context *ctx, const uint32_t *iv,
const uint32_t *salt, int rounds )
int rounds )
{
casti_v128( ctx->H, 0 ) = v128_64( 0x6A09E6676A09E667 );
casti_v128( ctx->H, 1 ) = v128_64( 0xBB67AE85BB67AE85 );
@@ -2404,11 +2346,10 @@ blake32_4x32_close( blake_4x32_small_context *ctx, unsigned ub, unsigned n,
// Blake-256 8 way
static const uint32_t salt_zero_8way_small[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };
static void
blake32_8way_init( blake_8way_small_context *sc, const uint32_t *iv,
const uint32_t *salt, int rounds )
blake32_8way_init( blake256_8x32_context *sc, const uint32_t *iv,
int rounds )
{
casti_m256i( sc->H, 0 ) = v256_64( 0x6A09E6676A09E667 );
casti_m256i( sc->H, 1 ) = v256_64( 0xBB67AE85BB67AE85 );
@@ -2424,7 +2365,7 @@ blake32_8way_init( blake_8way_small_context *sc, const uint32_t *iv,
}
static void
blake32_8way( blake_8way_small_context *sc, const void *data, size_t len )
blake32_8way( blake256_8x32_context *sc, const void *data, size_t len )
{
__m256i *vdata = (__m256i*)data;
__m256i *buf;
@@ -2466,7 +2407,7 @@ blake32_8way( blake_8way_small_context *sc, const void *data, size_t len )
}
static void
blake32_8way_close( blake_8way_small_context *sc, unsigned ub, unsigned n,
blake32_8way_close( blake256_8x32_context *sc, unsigned ub, unsigned n,
void *dst, size_t out_size_w32 )
{
__m256i buf[16];
@@ -2520,7 +2461,7 @@ blake32_8way_close( blake_8way_small_context *sc, unsigned ub, unsigned n,
}
static void
blake32_8way_le( blake_8way_small_context *sc, const void *data, size_t len )
blake32_8way_le( blake256_8x32_context *sc, const void *data, size_t len )
{
__m256i *vdata = (__m256i*)data;
__m256i *buf;
@@ -2562,7 +2503,7 @@ blake32_8way_le( blake_8way_small_context *sc, const void *data, size_t len )
}
static void
blake32_8way_close_le( blake_8way_small_context *sc, unsigned ub, unsigned n,
blake32_8way_close_le( blake256_8x32_context *sc, unsigned ub, unsigned n,
void *dst, size_t out_size_w32 )
{
__m256i buf[16];
@@ -2617,13 +2558,13 @@ blake32_8way_close_le( blake_8way_small_context *sc, unsigned ub, unsigned n,
#endif
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#if defined(SIMD512)
//Blake-256 16 way AVX512
static void
blake32_16way_init( blake_16way_small_context *sc, const uint32_t *iv,
const uint32_t *salt, int rounds )
blake32_16way_init( blake256_16x32_context *sc, const uint32_t *iv,
int rounds )
{
casti_m512i( sc->H, 0 ) = v512_64( 0x6A09E6676A09E667 );
casti_m512i( sc->H, 1 ) = v512_64( 0xBB67AE85BB67AE85 );
@@ -2639,7 +2580,7 @@ blake32_16way_init( blake_16way_small_context *sc, const uint32_t *iv,
}
static void
blake32_16way( blake_16way_small_context *sc, const void *data, size_t len )
blake32_16way( blake256_16x32_context *sc, const void *data, size_t len )
{
__m512i *vdata = (__m512i*)data;
__m512i *buf;
@@ -2679,7 +2620,7 @@ blake32_16way( blake_16way_small_context *sc, const void *data, size_t len )
sc->ptr = ptr;
}
static void
blake32_16way_close( blake_16way_small_context *sc, unsigned ub, unsigned n,
blake32_16way_close( blake256_16x32_context *sc, unsigned ub, unsigned n,
void *dst, size_t out_size_w32 )
{
__m512i buf[16];
@@ -2733,7 +2674,7 @@ blake32_16way_close( blake_16way_small_context *sc, unsigned ub, unsigned n,
}
static void
blake32_16way_le( blake_16way_small_context *sc, const void *data, size_t len )
blake32_16way_le( blake256_16x32_context *sc, const void *data, size_t len )
{
__m512i *vdata = (__m512i*)data;
__m512i *buf;
@@ -2776,7 +2717,7 @@ blake32_16way_le( blake_16way_small_context *sc, const void *data, size_t len )
}
static void
blake32_16way_close_le( blake_16way_small_context *sc, unsigned ub, unsigned n,
blake32_16way_close_le( blake256_16x32_context *sc, unsigned ub, unsigned n,
void *dst, size_t out_size_w32 )
{
__m512i buf[16];
@@ -2827,65 +2768,65 @@ blake32_16way_close_le( blake_16way_small_context *sc, unsigned ub, unsigned n,
}
void
blake256_16way_init(void *cc)
blake256_16x32_init(void *cc)
{
blake32_16way_init( cc, IV256, salt_zero_8way_small, 14 );
blake32_16way_init( cc, IV256, 14 );
}
void
blake256_16way_update(void *cc, const void *data, size_t len)
blake256_16x32_update(void *cc, const void *data, size_t len)
{
blake32_16way(cc, data, len);
}
void
blake256_16way_close(void *cc, void *dst)
blake256_16x32_close(void *cc, void *dst)
{
blake32_16way_close(cc, 0, 0, dst, 8);
}
void
blake256_16way_update_le(void *cc, const void *data, size_t len)
blake256_16x32_update_le(void *cc, const void *data, size_t len)
{
blake32_16way_le(cc, data, len);
}
void
blake256_16way_close_le(void *cc, void *dst)
blake256_16x32_close_le(void *cc, void *dst)
{
blake32_16way_close_le(cc, 0, 0, dst, 8);
}
void blake256r14_16way_init(void *cc)
{
blake32_16way_init( cc, IV256, salt_zero_8way_small, 14 );
blake32_16way_init( cc, IV256, 14 );
}
void
blake256r14_16way_update(void *cc, const void *data, size_t len)
blake256r14_16x32_update(void *cc, const void *data, size_t len)
{
blake32_16way(cc, data, len);
}
void
blake256r14_16way_close(void *cc, void *dst)
blake256r14_16x32_close(void *cc, void *dst)
{
blake32_16way_close(cc, 0, 0, dst, 8);
}
void blake256r8_16way_init(void *cc)
{
blake32_16way_init( cc, IV256, salt_zero_8way_small, 8 );
blake32_16way_init( cc, IV256, 8 );
}
void
blake256r8_16way_update(void *cc, const void *data, size_t len)
blake256r8_16x32_update(void *cc, const void *data, size_t len)
{
blake32_16way(cc, data, len);
}
void
blake256r8_16way_close(void *cc, void *dst)
blake256r8_16x32_close(void *cc, void *dst)
{
blake32_16way_close(cc, 0, 0, dst, 8);
}
@@ -2898,7 +2839,7 @@ blake256r8_16way_close(void *cc, void *dst)
void
blake256_4x32_init(void *ctx)
{
blake32_4x32_init( ctx, IV256, salt_zero_4x32_small, 14 );
blake32_4x32_init( ctx, IV256, 14 );
}
void
@@ -2918,31 +2859,31 @@ blake256_4x32_close(void *ctx, void *dst)
// Blake-256 8 way
void
blake256_8way_init(void *cc)
blake256_8x32_init(void *cc)
{
blake32_8way_init( cc, IV256, salt_zero_8way_small, 14 );
blake32_8way_init( cc, IV256, 14 );
}
void
blake256_8way_update(void *cc, const void *data, size_t len)
blake256_8x32_update(void *cc, const void *data, size_t len)
{
blake32_8way(cc, data, len);
}
void
blake256_8way_close(void *cc, void *dst)
blake256_8x32_close(void *cc, void *dst)
{
blake32_8way_close(cc, 0, 0, dst, 8);
}
void
blake256_8way_update_le(void *cc, const void *data, size_t len)
blake256_8x32_update_le(void *cc, const void *data, size_t len)
{
blake32_8way_le(cc, data, len);
}
void
blake256_8way_close_le(void *cc, void *dst)
blake256_8x32_close_le(void *cc, void *dst)
{
blake32_8way_close_le(cc, 0, 0, dst, 8);
}
@@ -2952,7 +2893,7 @@ blake256_8way_close_le(void *cc, void *dst)
// 14 rounds Blake, Decred
void blake256r14_4x32_init(void *cc)
{
blake32_4x32_init( cc, IV256, salt_zero_4x32_small, 14 );
blake32_4x32_init( cc, IV256, 14 );
}
void
@@ -2969,19 +2910,19 @@ blake256r14_4x32_close(void *cc, void *dst)
#if defined(__AVX2__)
void blake256r14_8way_init(void *cc)
void blake256r14_8x32_init(void *cc)
{
blake32_8way_init( cc, IV256, salt_zero_8way_small, 14 );
blake32_8way_init( cc, IV256, 14 );
}
void
blake256r14_8way_update(void *cc, const void *data, size_t len)
blake256r14_8x32_update(void *cc, const void *data, size_t len)
{
blake32_8way(cc, data, len);
}
void
blake256r14_8way_close(void *cc, void *dst)
blake256r14_8x32_close(void *cc, void *dst)
{
blake32_8way_close(cc, 0, 0, dst, 8);
}
@@ -2991,7 +2932,7 @@ blake256r14_8way_close(void *cc, void *dst)
// 8 rounds Blakecoin, Vanilla
void blake256r8_4x32_init(void *cc)
{
blake32_4x32_init( cc, IV256, salt_zero_4x32_small, 8 );
blake32_4x32_init( cc, IV256, 8 );
}
void
@@ -3008,19 +2949,19 @@ blake256r8_4x32_close(void *cc, void *dst)
#if defined (__AVX2__)
void blake256r8_8way_init(void *cc)
void blake256r8_8x32_init(void *cc)
{
blake32_8way_init( cc, IV256, salt_zero_8way_small, 8 );
blake32_8way_init( cc, IV256, 8 );
}
void
blake256r8_8way_update(void *cc, const void *data, size_t len)
blake256r8_8x32_update(void *cc, const void *data, size_t len)
{
blake32_8way(cc, data, len);
}
void
blake256r8_8way_close(void *cc, void *dst)
blake256r8_8x32_close(void *cc, void *dst)
{
blake32_8way_close(cc, 0, 0, dst, 8);
}

View File

@@ -29,13 +29,6 @@ typedef struct
void blake256_transform_le( uint32_t *H, const uint32_t *buf,
const uint32_t T0, const uint32_t T1, int rounds );
/*
void blake256_init( blake256_context *sc );
void blake256_update( blake256_context *sc, const void *data, size_t len );
void blake256_close( blake256_context *sc, void *dst );
void blake256_full( blake256_context *sc, void *dst, const void *data,
size_t len );
*/
//////////////////////////////////
//
@@ -55,6 +48,10 @@ typedef blake_4x32_small_context blake256_4x32_context;
void blake256_4x32_init(void *ctx);
void blake256_4x32_update(void *ctx, const void *data, size_t len);
void blake256_4x32_close(void *ctx, void *dst);
void blake256_4x32_round0_prehash_le( void *midstate, const void *midhash,
void *data );
void blake256_4x32_final_rounds_le( void *final_hash, const void *midstate,
const void *midhash, const void *data, const int rounds );
// 14 rounds
typedef blake_4x32_small_context blake256r14_4x32_context;
@@ -68,29 +65,6 @@ void blake256r8_4x32_init(void *cc);
void blake256r8_4x32_update(void *cc, const void *data, size_t len);
void blake256r8_4x32_close(void *cc, void *dst);
void blake256_4x32_round0_prehash_le( void *midstate, const void *midhash,
void *data );
void blake256_4x32_final_rounds_le( void *final_hash, const void *midstate,
const void *midhash, const void *data, const int rounds );
#define blake_4way_small_context blake256_4x32_context
#define blake256_4way_context blake256_4x32_context
#define blake256_4way_init blake256_4x32_init
#define blake256_4way_update blake256_4x32_update
#define blake256_4way_close blake256_4x32_close
#define blake256_4way_update_le blake256_4x32_update_le
#define blake256_4way_close_le blake256_4x32_close_le
#define blake256_4way_round0_prehash_le blake256_4x32_round0_prehash_le
#define blake256_4way_final_rounds_le blake256_4x32_final_rounds_le
#define blake256r14_4way_context blake256r14_4x32_context
#define blake256r14_4way_init blake256r14_4x32_init
#define blake256r14_4way_update blake256r14_4x32_update
#define blake256r14_4way_close blake256r14_4x32_close
#define blake256r8_4way_context blake256r14_4x32_context
#define blake256r8_4way_init blake256r14_4x32_init
#define blake256r8_4way_update blake256r14_4x32_update
#define blake256r8_4way_close blake256r14_4x32_close
#ifdef __AVX2__
//////////////////////////////
@@ -107,47 +81,30 @@ typedef struct
} blake_8way_small_context;
// Default 14 rounds
typedef blake_8way_small_context blake256_8way_context;
void blake256_8way_init(void *cc);
void blake256_8way_update(void *cc, const void *data, size_t len);
void blake256_8way_close(void *cc, void *dst);
void blake256_8way_update_le(void *cc, const void *data, size_t len);
void blake256_8way_close_le(void *cc, void *dst);
void blake256_8way_round0_prehash_le( void *midstate, const void *midhash,
typedef blake_8way_small_context blake256_8x32_context;
void blake256_8x32_init(void *cc);
void blake256_8x32_update(void *cc, const void *data, size_t len);
void blake256_8x32_close(void *cc, void *dst);
void blake256_8x32_update_le(void *cc, const void *data, size_t len);
void blake256_8x32_close_le(void *cc, void *dst);
void blake256_8x32_round0_prehash_le( void *midstate, const void *midhash,
void *data );
void blake256_8way_final_rounds_le( void *final_hash, const void *midstate,
void blake256_8x32_final_rounds_le( void *final_hash, const void *midstate,
const void *midhash, const void *data, const int rounds );
// 14 rounds, blake, decred
typedef blake_8way_small_context blake256r14_8way_context;
void blake256r14_8way_init(void *cc);
void blake256r14_8way_update(void *cc, const void *data, size_t len);
void blake256r14_8way_close(void *cc, void *dst);
typedef blake_8way_small_context blake256r14_8x32_context;
void blake256r14_8x32_init(void *cc);
void blake256r14_8x32_update(void *cc, const void *data, size_t len);
void blake256r14_8x32_close(void *cc, void *dst);
// 8 rounds, blakecoin, vanilla
typedef blake_8way_small_context blake256r8_8way_context;
void blake256r8_8way_init(void *cc);
void blake256r8_8way_update(void *cc, const void *data, size_t len);
void blake256r8_8way_close(void *cc, void *dst);
typedef blake_8way_small_context blake256r8_8x32_context;
void blake256r8_8x32_init(void *cc);
void blake256r8_8x32_update(void *cc, const void *data, size_t len);
void blake256r8_8x32_close(void *cc, void *dst);
#define blake_8x32_small_context blake256_8way_context
#define blake_8x32_init blake256_8way_init
#define blake_8x32_update blake256_8way_update
#define blake_8x32_close blake256_8way_close
#define blake_8x32_update_le blake256_8way_update_le
#define blake_8x32_close_le blake256_8way_close_le
#define blake_8x32_round0_prehash_le blake256_8way_round0_prehash
#define blake_8x32_final_rounds_le blake256_8way_final_rounds_le
#define blake256r14_8x32_context blake256r14_8way_context
#define blake256r14_8x32_init blake256r14_8way_init
#define blake256r14_8x32_update blake256r14_8way_update
#define blake256r14_8x32_close blake256r14_8way_close
#define blake256r8_8x32_context blake256r14_8way_context
#define blake256r8_8x32_init blake256r14_8way_init
#define blake256r8_8x32_update blake256r14_8way_update
#define blake256r8_8x32_close blake256r14_8way_close
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#if defined(SIMD512)
///////////////////////////////////
//
@@ -163,46 +120,29 @@ typedef struct
} blake_16way_small_context __attribute__ ((aligned (128)));
// Default 14 rounds
typedef blake_16way_small_context blake256_16way_context;
void blake256_16way_init(void *cc);
void blake256_16way_update(void *cc, const void *data, size_t len);
void blake256_16way_close(void *cc, void *dst);
typedef blake_16way_small_context blake256_16x32_context;
void blake256_16x32_init(void *cc);
void blake256_16x32_update(void *cc, const void *data, size_t len);
void blake256_16x32_close(void *cc, void *dst);
// Expects data in little endian order, no byte swap needed
void blake256_16way_update_le(void *cc, const void *data, size_t len);
void blake256_16way_close_le(void *cc, void *dst);
void blake256_16way_round0_prehash_le( void *midstate, const void *midhash,
void blake256_16x32_update_le(void *cc, const void *data, size_t len);
void blake256_16x32_close_le(void *cc, void *dst);
void blake256_16x32_round0_prehash_le( void *midstate, const void *midhash,
void *data );
void blake256_16way_final_rounds_le( void *final_hash, const void *midstate,
void blake256_16x32_final_rounds_le( void *final_hash, const void *midstate,
const void *midhash, const void *data, const int rounds );
// 14 rounds, blake, decred
typedef blake_16way_small_context blake256r14_16way_context;
void blake256r14_16way_init(void *cc);
void blake256r14_16way_update(void *cc, const void *data, size_t len);
void blake256r14_16way_close(void *cc, void *dst);
typedef blake_16way_small_context blake256r14_16x32_context;
void blake256r14_16x32_init(void *cc);
void blake256r14_16x32_update(void *cc, const void *data, size_t len);
void blake256r14_16x32_close(void *cc, void *dst);
// 8 rounds, blakecoin, vanilla
typedef blake_16way_small_context blake256r8_16way_context;
void blake256r8_16way_init(void *cc);
void blake256r8_16way_update(void *cc, const void *data, size_t len);
void blake256r8_16way_close(void *cc, void *dst);
#define blake_16x32_small_context blake256_16way_context
#define blake_16x32_init blake256_16way_init
#define blake_16x32_update blake256_16way_update
#define blake_16x32_close blake256_16way_close
#define blake_16x32_update_le blake256_16way_update_le
#define blake_16x32_close_le blake256_16way_close_le
#define blake_16x32_round0_prehash_le blake256_16way_round0_prehash
#define blake_16x32_final_rounds_le blake256_16way_final_rounds_le
#define blake256r14_16x32_context blake256r14_16way_context
#define blake256r14_16x32_init blake256r14_16way_init
#define blake256r14_16x32_update blake256r14_16way_update
#define blake256r14_16x32_close blake256r14_16way_close
#define blake256r8_16x32_context blake256r8_16way_context
#define blake256r8_16x32_init blake256r8_16way_init
#define blake256r8_16x32_update blake256r8_16way_update
#define blake256r8_16x32_close blake256r8_16way_close
typedef blake_16way_small_context blake256r8_16x32_context;
void blake256r8_16x32_init(void *cc);
void blake256r8_16x32_update(void *cc, const void *data, size_t len);
void blake256r8_16x32_close(void *cc, void *dst);
#endif // AVX512
#endif // AVX2

View File

@@ -226,7 +226,7 @@ static const uint8_t sigma[12][16] =
#define Mx_(n) Mx__(n)
#define Mx__(n) M ## n
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#if defined(SIMD512)
#define B2B8W_G(a, b, c, d, x, y) \
{ \
@@ -240,7 +240,7 @@ static const uint8_t sigma[12][16] =
v[b] = mm512_ror_64( _mm512_xor_si512( v[b], v[c] ), 63 ); \
}
static void blake2b_8way_compress( blake2b_8way_ctx *ctx, int last )
static void blake2b_8x64_compress( blake2b_8x64_ctx *ctx, int last )
{
__m512i v[16], m[16];
@@ -306,7 +306,7 @@ static void blake2b_8way_compress( blake2b_8way_ctx *ctx, int last )
ctx->h[7] = mm512_xor3( ctx->h[7], v[7], v[15] );
}
int blake2b_8way_init( blake2b_8way_ctx *ctx )
int blake2b_8x64_init( blake2b_8x64_ctx *ctx )
{
size_t i;
@@ -333,7 +333,7 @@ int blake2b_8way_init( blake2b_8way_ctx *ctx )
}
void blake2b_8way_update( blake2b_8way_ctx *ctx, const void *input,
void blake2b_8x64_update( blake2b_8x64_ctx *ctx, const void *input,
size_t inlen )
{
__m512i* in =(__m512i*)input;
@@ -348,7 +348,7 @@ void blake2b_8way_update( blake2b_8way_ctx *ctx, const void *input,
ctx->t[0] += ctx->c;
if ( ctx->t[0] < ctx->c )
ctx->t[1]++;
blake2b_8way_compress( ctx, 0 );
blake2b_8x64_compress( ctx, 0 );
ctx->c = 0;
}
ctx->b[ c++ ] = in[i];
@@ -356,7 +356,7 @@ void blake2b_8way_update( blake2b_8way_ctx *ctx, const void *input,
}
}
void blake2b_8way_final( blake2b_8way_ctx *ctx, void *out )
void blake2b_8x64_final( blake2b_8x64_ctx *ctx, void *out )
{
size_t c;
c = ctx->c >> 3;
@@ -371,7 +371,7 @@ void blake2b_8way_final( blake2b_8way_ctx *ctx, void *out )
ctx->c += 8;
}
blake2b_8way_compress( ctx, 1 ); // final block flag = 1
blake2b_8x64_compress( ctx, 1 ); // final block flag = 1
casti_m512i( out, 0 ) = ctx->h[0];
casti_m512i( out, 1 ) = ctx->h[1];
@@ -407,7 +407,7 @@ static const uint64_t blake2b_iv[8] = {
};
*/
static void blake2b_4way_compress( blake2b_4way_ctx *ctx, int last )
static void blake2b_4x64_compress( blake2b_4x64_ctx *ctx, int last )
{
__m256i v[16], m[16];
@@ -473,7 +473,7 @@ static void blake2b_4way_compress( blake2b_4way_ctx *ctx, int last )
ctx->h[7] = _mm256_xor_si256( _mm256_xor_si256( ctx->h[7], v[7] ), v[15] );
}
int blake2b_4way_init( blake2b_4way_ctx *ctx )
int blake2b_4x64_init( blake2b_4x64_ctx *ctx )
{
size_t i;
@@ -499,7 +499,7 @@ int blake2b_4way_init( blake2b_4way_ctx *ctx )
return 0;
}
void blake2b_4way_update( blake2b_4way_ctx *ctx, const void *input,
void blake2b_4x64_update( blake2b_4x64_ctx *ctx, const void *input,
size_t inlen )
{
__m256i* in =(__m256i*)input;
@@ -514,7 +514,7 @@ void blake2b_4way_update( blake2b_4way_ctx *ctx, const void *input,
ctx->t[0] += ctx->c;
if ( ctx->t[0] < ctx->c )
ctx->t[1]++;
blake2b_4way_compress( ctx, 0 );
blake2b_4x64_compress( ctx, 0 );
ctx->c = 0;
}
ctx->b[ c++ ] = in[i];
@@ -522,7 +522,7 @@ void blake2b_4way_update( blake2b_4way_ctx *ctx, const void *input,
}
}
void blake2b_4way_final( blake2b_4way_ctx *ctx, void *out )
void blake2b_4x64_final( blake2b_4x64_ctx *ctx, void *out )
{
size_t c;
c = ctx->c >> 3;
@@ -537,7 +537,7 @@ void blake2b_4way_final( blake2b_4way_ctx *ctx, void *out )
ctx->c += 8;
}
blake2b_4way_compress( ctx, 1 ); // final block flag = 1
blake2b_4x64_compress( ctx, 1 ); // final block flag = 1
casti_m256i( out, 0 ) = ctx->h[0];
casti_m256i( out, 1 ) = ctx->h[1];

View File

@@ -1,6 +1,6 @@
#pragma once
#ifndef __BLAKE2B_HASH_4WAY_H__
#define __BLAKE2B_HASH_4WAY_H__
#ifndef BLAKE2B_HASH_4WAY_H__
#define BLAKE2B_HASH_4WAY_H__
#include "simd-utils.h"
#include <stddef.h>
@@ -14,8 +14,7 @@
#define ALIGN(x) __attribute__((aligned(x)))
#endif
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#if defined(SIMD512)
typedef struct ALIGN( 64 ) {
__m512i b[16]; // input buffer
@@ -23,12 +22,12 @@ typedef struct ALIGN( 64 ) {
uint64_t t[2]; // total number of bytes
size_t c; // pointer for b[]
size_t outlen; // digest size
} blake2b_8way_ctx;
} blake2b_8x64_ctx;
int blake2b_8way_init( blake2b_8way_ctx *ctx );
void blake2b_8way_update( blake2b_8way_ctx *ctx, const void *input,
int blake2b_8x64_init( blake2b_8x64_ctx *ctx );
void blake2b_8x64_update( blake2b_8x64_ctx *ctx, const void *input,
size_t inlen );
void blake2b_8way_final( blake2b_8way_ctx *ctx, void *out );
void blake2b_8x64_final( blake2b_8x64_ctx *ctx, void *out );
#endif
@@ -41,12 +40,12 @@ typedef struct ALIGN( 64 ) {
uint64_t t[2]; // total number of bytes
size_t c; // pointer for b[]
size_t outlen; // digest size
} blake2b_4way_ctx;
} blake2b_4x64_ctx;
int blake2b_4way_init( blake2b_4way_ctx *ctx );
void blake2b_4way_update( blake2b_4way_ctx *ctx, const void *input,
int blake2b_4x64_init( blake2b_4x64_ctx *ctx );
void blake2b_4x64_update( blake2b_4x64_ctx *ctx, const void *input,
size_t inlen );
void blake2b_4way_final( blake2b_4way_ctx *ctx, void *out );
void blake2b_4x64_final( blake2b_4x64_ctx *ctx, void *out );
#endif

View File

@@ -3,7 +3,7 @@
#include <stdint.h>
#include "blake2b-hash.h"
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#if defined(SIMD512)
#define BLAKE2B_8WAY
#elif defined(__AVX2__)
#define BLAKE2B_4WAY
@@ -17,7 +17,7 @@ int scanhash_blake2b_8way( struct work *work, uint32_t max_nonce,
uint32_t hash[8*8] __attribute__ ((aligned (128)));;
uint32_t vdata[20*8] __attribute__ ((aligned (64)));;
uint32_t lane_hash[8] __attribute__ ((aligned (64)));
blake2b_8way_ctx ctx __attribute__ ((aligned (64)));
blake2b_8x64_ctx ctx __attribute__ ((aligned (64)));
uint32_t *hash7 = &(hash[49]); // 3*16+1
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
@@ -35,9 +35,9 @@ int scanhash_blake2b_8way( struct work *work, uint32_t max_nonce,
_mm512_set_epi32( n+7, 0, n+6, 0, n+5, 0, n+4, 0,
n+3, 0, n+2, 0, n+1, 0, n , 0 ) ), *noncev );
blake2b_8way_init( &ctx );
blake2b_8way_update( &ctx, vdata, 80 );
blake2b_8way_final( &ctx, hash );
blake2b_8x64_init( &ctx );
blake2b_8x64_update( &ctx, vdata, 80 );
blake2b_8x64_final( &ctx, hash );
for ( int lane = 0; lane < 8; lane++ )
if ( hash7[ lane<<1 ] <= Htarg )
@@ -61,10 +61,10 @@ int scanhash_blake2b_8way( struct work *work, uint32_t max_nonce,
// Function not used, code inlined.
void blake2b_4way_hash(void *output, const void *input)
{
blake2b_4way_ctx ctx;
blake2b_4way_init( &ctx );
blake2b_4way_update( &ctx, input, 80 );
blake2b_4way_final( &ctx, output );
blake2b_4x64_ctx ctx;
blake2b_4x64_init( &ctx );
blake2b_4x64_update( &ctx, input, 80 );
blake2b_4x64_final( &ctx, output );
}
int scanhash_blake2b_4way( struct work *work, uint32_t max_nonce,
@@ -73,7 +73,7 @@ int scanhash_blake2b_4way( struct work *work, uint32_t max_nonce,
uint32_t hash[8*4] __attribute__ ((aligned (64)));;
uint32_t vdata[20*4] __attribute__ ((aligned (32)));;
uint32_t lane_hash[8] __attribute__ ((aligned (32)));
blake2b_4way_ctx ctx __attribute__ ((aligned (32)));
blake2b_4x64_ctx ctx __attribute__ ((aligned (32)));
uint32_t *hash7 = &(hash[25]); // 3*8+1
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
@@ -90,9 +90,9 @@ int scanhash_blake2b_4way( struct work *work, uint32_t max_nonce,
*noncev = mm256_intrlv_blend_32( mm256_bswap_32(
_mm256_set_epi32( n+3, 0, n+2, 0, n+1, 0, n, 0 ) ), *noncev );
blake2b_4way_init( &ctx );
blake2b_4way_update( &ctx, vdata, 80 );
blake2b_4way_final( &ctx, hash );
blake2b_4x64_init( &ctx );
blake2b_4x64_update( &ctx, vdata, 80 );
blake2b_4x64_final( &ctx, hash );
for ( int lane = 0; lane < 4; lane++ )
if ( hash7[ lane<<1 ] <= Htarg )

View File

@@ -497,7 +497,7 @@ int blake2s_8way_full_blocks( blake2s_8way_state *S, void *out,
#endif // __AVX2__
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#if defined(SIMD512)
// Blake2s-256 16 way

View File

@@ -11,8 +11,8 @@
* this software. If not, see <http://creativecommons.org/publicdomain/zero/1.0/>.
*/
//#pragma once
#ifndef __BLAKE2S_HASH_4WAY_H__
#define __BLAKE2S_HASH_4WAY_H__ 1
#ifndef BLAKE2S_HASH_4WAY_H__
#define BLAKE2S_HASH_4WAY_H__ 1
#if defined(__SSE2__) || defined(__ARM_NEON)
@@ -29,20 +29,20 @@
#define ALIGN(x) __attribute__((aligned(x)))
#endif
typedef struct __blake2s_nway_param
{
uint8_t digest_length; // 1
uint8_t key_length; // 2
uint8_t fanout; // 3
uint8_t depth; // 4
uint32_t leaf_length; // 8
uint8_t node_offset[6];// 14
uint8_t node_depth; // 15
uint8_t inner_length; // 16
// uint8_t reserved[0];
uint8_t salt[8]; // 24
uint8_t personal[8]; // 32
} blake2s_nway_param;
typedef struct __blake2s_nway_param
{
uint8_t digest_length; // 1
uint8_t key_length; // 2
uint8_t fanout; // 3
uint8_t depth; // 4
uint32_t leaf_length; // 8
uint8_t node_offset[6];// 14
uint8_t node_depth; // 15
uint8_t inner_length; // 16
// uint8_t reserved[0];
uint8_t salt[8]; // 24
uint8_t personal[8]; // 32
} blake2s_nway_param;
typedef struct ALIGN( 64 ) __blake2s_4way_state
{
@@ -61,13 +61,18 @@ int blake2s_4way_final( blake2s_4way_state *S, void *out, uint8_t outlen );
int blake2s_4way_full_blocks( blake2s_4way_state *S, void *out,
const void *input, uint64_t inlen );
#define blake2s_4x32_state blake2s_4way_state
#define blake2s_4x32_init blake2s_4way_init
#define blake2s_4x32_update blake2s_4way_update
#define blake2s_4x32_final blake2s_4way_final
#define blake2s_4x32_full_blocks blake2s_4way_full_blocks
#if defined(__AVX2__)
typedef struct ALIGN( 64 ) __blake2s_8way_state
{
__m256i h[8];
uint8_t buf[ 32 * 8 ];
uint8_t buf[ 64 * 8 ];
uint32_t t[2];
uint32_t f[2];
size_t buflen;
@@ -81,14 +86,20 @@ int blake2s_8way_final( blake2s_8way_state *S, void *out, uint8_t outlen );
int blake2s_8way_full_blocks( blake2s_8way_state *S, void *out,
const void *input, uint64_t inlen );
#define blake2s_8x32_state blake2s_8way_state
#define blake2s_8x32_init blake2s_8way_init
#define blake2s_8x32_update blake2s_8way_update
#define blake2s_8x32_final blake2s_8way_final
#define blake2s_8x32_full_blocks blake2s_8way_full_blocks
#endif
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#if defined(SIMD512)
typedef struct ALIGN( 64 ) __blake2s_16way_state
{
__m512i h[8];
uint8_t buf[ 32 * 16 ];
uint8_t buf[ 64 * 16 ];
uint32_t t[2];
uint32_t f[2];
size_t buflen;
@@ -100,6 +111,11 @@ int blake2s_16way_update( blake2s_16way_state *S, const void *in,
uint64_t inlen );
int blake2s_16way_final( blake2s_16way_state *S, void *out, uint8_t outlen );
#define blake2s_16x32_state blake2s_16way_state
#define blake2s_16x32_init blake2s_16way_init
#define blake2s_16x32_update blake2s_16way_update
#define blake2s_16x32_final blake2s_16way_final
#endif
#if 0

View File

@@ -3,7 +3,7 @@
#include <string.h>
#include <stdint.h>
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#if defined(SIMD512)
#define BLAKE2S_16WAY
#elif defined(__AVX2__)
#define BLAKE2S_8WAY

View File

@@ -349,16 +349,16 @@ void blake512_transform( uint64_t *H, const uint64_t *buf, const uint64_t T0,
Va = v128_add64( Va, v128_add64( Vb, \
v128_set64( CBx( r, Sd ) ^ Mx( r, Sc ), \
CBx( r, Sb ) ^ Mx( r, Sa ) ) ) ); \
Vd = v128_ror64( v128_xor( Vd, Va ), 32 ); \
Vd = v128_ror64xor( Vd, Va, 32 ); \
Vc = v128_add64( Vc, Vd ); \
Vb = v128_ror64( v128_xor( Vb, Vc ), 25 ); \
Vb = v128_ror64xor( Vb, Vc, 25 ); \
\
Va = v128_add64( Va, v128_add64( Vb, \
v128_set64( CBx( r, Sc ) ^ Mx( r, Sd ), \
CBx( r, Sa ) ^ Mx( r, Sb ) ) ) ); \
Vd = v128_ror64( v128_xor( Vd, Va ), 16 ); \
Vd = v128_ror64xor( Vd, Va, 16 ); \
Vc = v128_add64( Vc, Vd ); \
Vb = v128_ror64( v128_xor( Vb, Vc ), 11 ); \
Vb = v128_ror64xor( Vb, Vc, 11 ); \
}
#define BLAKE512_ROUND( R ) \
@@ -559,7 +559,7 @@ void blake512_full( blake512_context *sc, void *dst, const void *data,
#if defined(__AVX2__)
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#if defined(SIMD512)
////////////////////////////////////
//
@@ -617,24 +617,22 @@ void blake512_full( blake512_context *sc, void *dst, const void *data,
VD = v512_64( CB5 ^ T0 ); \
VE = v512_64( CB6 ^ T1 ); \
VF = v512_64( CB7 ^ T1 ); \
const __m512i shuf_bswap64 = mm512_bcast_m128( v128_set64( \
0x08090a0b0c0d0e0f, 0x0001020304050607 ) ); \
M0 = _mm512_shuffle_epi8( *(buf+ 0), shuf_bswap64 ); \
M1 = _mm512_shuffle_epi8( *(buf+ 1), shuf_bswap64 ); \
M2 = _mm512_shuffle_epi8( *(buf+ 2), shuf_bswap64 ); \
M3 = _mm512_shuffle_epi8( *(buf+ 3), shuf_bswap64 ); \
M4 = _mm512_shuffle_epi8( *(buf+ 4), shuf_bswap64 ); \
M5 = _mm512_shuffle_epi8( *(buf+ 5), shuf_bswap64 ); \
M6 = _mm512_shuffle_epi8( *(buf+ 6), shuf_bswap64 ); \
M7 = _mm512_shuffle_epi8( *(buf+ 7), shuf_bswap64 ); \
M8 = _mm512_shuffle_epi8( *(buf+ 8), shuf_bswap64 ); \
M9 = _mm512_shuffle_epi8( *(buf+ 9), shuf_bswap64 ); \
MA = _mm512_shuffle_epi8( *(buf+10), shuf_bswap64 ); \
MB = _mm512_shuffle_epi8( *(buf+11), shuf_bswap64 ); \
MC = _mm512_shuffle_epi8( *(buf+12), shuf_bswap64 ); \
MD = _mm512_shuffle_epi8( *(buf+13), shuf_bswap64 ); \
ME = _mm512_shuffle_epi8( *(buf+14), shuf_bswap64 ); \
MF = _mm512_shuffle_epi8( *(buf+15), shuf_bswap64 ); \
M0 = mm512_bswap_64( *(buf+ 0) ); \
M1 = mm512_bswap_64( *(buf+ 1) ); \
M2 = mm512_bswap_64( *(buf+ 2) ); \
M3 = mm512_bswap_64( *(buf+ 3) ); \
M4 = mm512_bswap_64( *(buf+ 4) ); \
M5 = mm512_bswap_64( *(buf+ 5) ); \
M6 = mm512_bswap_64( *(buf+ 6) ); \
M7 = mm512_bswap_64( *(buf+ 7) ); \
M8 = mm512_bswap_64( *(buf+ 8) ); \
M9 = mm512_bswap_64( *(buf+ 9) ); \
MA = mm512_bswap_64( *(buf+10) ); \
MB = mm512_bswap_64( *(buf+11) ); \
MC = mm512_bswap_64( *(buf+12) ); \
MD = mm512_bswap_64( *(buf+13) ); \
ME = mm512_bswap_64( *(buf+14) ); \
MF = mm512_bswap_64( *(buf+15) ); \
ROUND_B_8WAY(0); \
ROUND_B_8WAY(1); \
ROUND_B_8WAY(2); \
@@ -661,7 +659,7 @@ void blake512_full( blake512_context *sc, void *dst, const void *data,
H7 = mm512_xor3( VF, V7, H7 ); \
}
void blake512_8way_compress( blake_8way_big_context *sc )
void blake512_8x64_compress( blake_8x64_big_context *sc )
{
__m512i M0, M1, M2, M3, M4, M5, M6, M7;
__m512i M8, M9, MA, MB, MC, MD, ME, MF;
@@ -685,25 +683,22 @@ void blake512_8way_compress( blake_8way_big_context *sc )
VE = v512_64( CB6 ^ sc->T1 );
VF = v512_64( CB7 ^ sc->T1 );
const __m512i shuf_bswap64 = mm512_bcast_m128( v128_set64(
0x08090a0b0c0d0e0f, 0x0001020304050607 ) );
M0 = _mm512_shuffle_epi8( sc->buf[ 0], shuf_bswap64 );
M1 = _mm512_shuffle_epi8( sc->buf[ 1], shuf_bswap64 );
M2 = _mm512_shuffle_epi8( sc->buf[ 2], shuf_bswap64 );
M3 = _mm512_shuffle_epi8( sc->buf[ 3], shuf_bswap64 );
M4 = _mm512_shuffle_epi8( sc->buf[ 4], shuf_bswap64 );
M5 = _mm512_shuffle_epi8( sc->buf[ 5], shuf_bswap64 );
M6 = _mm512_shuffle_epi8( sc->buf[ 6], shuf_bswap64 );
M7 = _mm512_shuffle_epi8( sc->buf[ 7], shuf_bswap64 );
M8 = _mm512_shuffle_epi8( sc->buf[ 8], shuf_bswap64 );
M9 = _mm512_shuffle_epi8( sc->buf[ 9], shuf_bswap64 );
MA = _mm512_shuffle_epi8( sc->buf[10], shuf_bswap64 );
MB = _mm512_shuffle_epi8( sc->buf[11], shuf_bswap64 );
MC = _mm512_shuffle_epi8( sc->buf[12], shuf_bswap64 );
MD = _mm512_shuffle_epi8( sc->buf[13], shuf_bswap64 );
ME = _mm512_shuffle_epi8( sc->buf[14], shuf_bswap64 );
MF = _mm512_shuffle_epi8( sc->buf[15], shuf_bswap64 );
M0 = mm512_bswap_64( sc->buf[ 0] );
M1 = mm512_bswap_64( sc->buf[ 1] );
M2 = mm512_bswap_64( sc->buf[ 2] );
M3 = mm512_bswap_64( sc->buf[ 3] );
M4 = mm512_bswap_64( sc->buf[ 4] );
M5 = mm512_bswap_64( sc->buf[ 5] );
M6 = mm512_bswap_64( sc->buf[ 6] );
M7 = mm512_bswap_64( sc->buf[ 7] );
M8 = mm512_bswap_64( sc->buf[ 8] );
M9 = mm512_bswap_64( sc->buf[ 9] );
MA = mm512_bswap_64( sc->buf[10] );
MB = mm512_bswap_64( sc->buf[11] );
MC = mm512_bswap_64( sc->buf[12] );
MD = mm512_bswap_64( sc->buf[13] );
ME = mm512_bswap_64( sc->buf[14] );
MF = mm512_bswap_64( sc->buf[15] );
ROUND_B_8WAY(0);
ROUND_B_8WAY(1);
@@ -733,7 +728,7 @@ void blake512_8way_compress( blake_8way_big_context *sc )
}
// won't be used after prehash implemented
void blake512_8way_compress_le( blake_8x64_big_context *sc )
void blake512_8x64_compress_le( blake_8x64_big_context *sc )
{
__m512i M0, M1, M2, M3, M4, M5, M6, M7;
__m512i M8, M9, MA, MB, MC, MD, ME, MF;
@@ -1177,7 +1172,7 @@ void blake512_8x64_full( blake_8x64_big_context *sc, void * dst,
{
if ( ( sc->T0 = sc->T0 + 1024 ) < 1024 )
sc->T1 = sc->T1 + 1;
blake512_8way_compress( sc );
blake512_8x64_compress( sc );
sc->ptr = 0;
}
@@ -1213,7 +1208,7 @@ void blake512_8x64_full( blake_8x64_big_context *sc, void * dst,
if ( ( sc->T0 = sc->T0 + 1024 ) < 1024 )
sc->T1 = sc->T1 + 1;
blake512_8way_compress( sc );
blake512_8x64_compress( sc );
mm512_block_bswap_64( (__m512i*)dst, sc->H );
}
@@ -1244,7 +1239,7 @@ void blake512_8x64_full_le( blake_8x64_big_context *sc, void * dst,
{
if ( ( sc->T0 = sc->T0 + 1024 ) < 1024 )
sc->T1 = sc->T1 + 1;
blake512_8way_compress_le( sc );
blake512_8x64_compress_le( sc );
sc->ptr = 0;
}
@@ -1280,7 +1275,7 @@ void blake512_8x64_full_le( blake_8x64_big_context *sc, void * dst,
if ( ( sc->T0 = sc->T0 + 1024 ) < 1024 )
sc->T1 = sc->T1 + 1;
blake512_8way_compress_le( sc );
blake512_8x64_compress_le( sc );
mm512_block_bswap_64( (__m512i*)dst, sc->H );
}
@@ -1355,24 +1350,22 @@ blake512_8x64_close(void *cc, void *dst)
VD = v256_64( CB5 ^ T0 ); \
VE = v256_64( CB6 ^ T1 ); \
VF = v256_64( CB7 ^ T1 ); \
const __m256i shuf_bswap64 = mm256_bcast_m128( v128_set64( \
0x08090a0b0c0d0e0f, 0x0001020304050607 ) ); \
M0 = _mm256_shuffle_epi8( *(buf+ 0), shuf_bswap64 ); \
M1 = _mm256_shuffle_epi8( *(buf+ 1), shuf_bswap64 ); \
M2 = _mm256_shuffle_epi8( *(buf+ 2), shuf_bswap64 ); \
M3 = _mm256_shuffle_epi8( *(buf+ 3), shuf_bswap64 ); \
M4 = _mm256_shuffle_epi8( *(buf+ 4), shuf_bswap64 ); \
M5 = _mm256_shuffle_epi8( *(buf+ 5), shuf_bswap64 ); \
M6 = _mm256_shuffle_epi8( *(buf+ 6), shuf_bswap64 ); \
M7 = _mm256_shuffle_epi8( *(buf+ 7), shuf_bswap64 ); \
M8 = _mm256_shuffle_epi8( *(buf+ 8), shuf_bswap64 ); \
M9 = _mm256_shuffle_epi8( *(buf+ 9), shuf_bswap64 ); \
MA = _mm256_shuffle_epi8( *(buf+10), shuf_bswap64 ); \
MB = _mm256_shuffle_epi8( *(buf+11), shuf_bswap64 ); \
MC = _mm256_shuffle_epi8( *(buf+12), shuf_bswap64 ); \
MD = _mm256_shuffle_epi8( *(buf+13), shuf_bswap64 ); \
ME = _mm256_shuffle_epi8( *(buf+14), shuf_bswap64 ); \
MF = _mm256_shuffle_epi8( *(buf+15), shuf_bswap64 ); \
M0 = mm256_bswap_64( *(buf+ 0) ); \
M1 = mm256_bswap_64( *(buf+ 1) ); \
M2 = mm256_bswap_64( *(buf+ 2) ); \
M3 = mm256_bswap_64( *(buf+ 3) ); \
M4 = mm256_bswap_64( *(buf+ 4) ); \
M5 = mm256_bswap_64( *(buf+ 5) ); \
M6 = mm256_bswap_64( *(buf+ 6) ); \
M7 = mm256_bswap_64( *(buf+ 7) ); \
M8 = mm256_bswap_64( *(buf+ 8) ); \
M9 = mm256_bswap_64( *(buf+ 9) ); \
MA = mm256_bswap_64( *(buf+10) ); \
MB = mm256_bswap_64( *(buf+11) ); \
MC = mm256_bswap_64( *(buf+12) ); \
MD = mm256_bswap_64( *(buf+13) ); \
ME = mm256_bswap_64( *(buf+14) ); \
MF = mm256_bswap_64( *(buf+15) ); \
ROUND_B_4WAY(0); \
ROUND_B_4WAY(1); \
ROUND_B_4WAY(2); \
@@ -1400,7 +1393,7 @@ blake512_8x64_close(void *cc, void *dst)
}
void blake512_4way_compress( blake_4x64_big_context *sc )
void blake512_4x64_compress( blake_4x64_big_context *sc )
{
__m256i M0, M1, M2, M3, M4, M5, M6, M7;
__m256i M8, M9, MA, MB, MC, MD, ME, MF;
@@ -1423,25 +1416,23 @@ void blake512_4way_compress( blake_4x64_big_context *sc )
VD = v256_64( CB5 ^ sc->T0 );
VE = v256_64( CB6 ^ sc->T1 );
VF = v256_64( CB7 ^ sc->T1 );
const __m256i shuf_bswap64 = mm256_bcast_m128( v128_set64(
0x08090a0b0c0d0e0f, 0x0001020304050607 ) );
M0 = _mm256_shuffle_epi8( sc->buf[ 0], shuf_bswap64 );
M1 = _mm256_shuffle_epi8( sc->buf[ 1], shuf_bswap64 );
M2 = _mm256_shuffle_epi8( sc->buf[ 2], shuf_bswap64 );
M3 = _mm256_shuffle_epi8( sc->buf[ 3], shuf_bswap64 );
M4 = _mm256_shuffle_epi8( sc->buf[ 4], shuf_bswap64 );
M5 = _mm256_shuffle_epi8( sc->buf[ 5], shuf_bswap64 );
M6 = _mm256_shuffle_epi8( sc->buf[ 6], shuf_bswap64 );
M7 = _mm256_shuffle_epi8( sc->buf[ 7], shuf_bswap64 );
M8 = _mm256_shuffle_epi8( sc->buf[ 8], shuf_bswap64 );
M9 = _mm256_shuffle_epi8( sc->buf[ 9], shuf_bswap64 );
MA = _mm256_shuffle_epi8( sc->buf[10], shuf_bswap64 );
MB = _mm256_shuffle_epi8( sc->buf[11], shuf_bswap64 );
MC = _mm256_shuffle_epi8( sc->buf[12], shuf_bswap64 );
MD = _mm256_shuffle_epi8( sc->buf[13], shuf_bswap64 );
ME = _mm256_shuffle_epi8( sc->buf[14], shuf_bswap64 );
MF = _mm256_shuffle_epi8( sc->buf[15], shuf_bswap64 );
M0 = mm256_bswap_64( sc->buf[ 0] );
M1 = mm256_bswap_64( sc->buf[ 1] );
M2 = mm256_bswap_64( sc->buf[ 2] );
M3 = mm256_bswap_64( sc->buf[ 3] );
M4 = mm256_bswap_64( sc->buf[ 4] );
M5 = mm256_bswap_64( sc->buf[ 5] );
M6 = mm256_bswap_64( sc->buf[ 6] );
M7 = mm256_bswap_64( sc->buf[ 7] );
M8 = mm256_bswap_64( sc->buf[ 8] );
M9 = mm256_bswap_64( sc->buf[ 9] );
MA = mm256_bswap_64( sc->buf[10] );
MB = mm256_bswap_64( sc->buf[11] );
MC = mm256_bswap_64( sc->buf[12] );
MD = mm256_bswap_64( sc->buf[13] );
ME = mm256_bswap_64( sc->buf[14] );
MF = mm256_bswap_64( sc->buf[15] );
ROUND_B_4WAY(0);
ROUND_B_4WAY(1);
@@ -1470,7 +1461,7 @@ void blake512_4way_compress( blake_4x64_big_context *sc )
sc->H[7] = mm256_xor3( VF, V7, sc->H[7] );
}
void blake512_4x64_prehash_le( blake_4x64_big_context *sc, __m256i *midstate,
void blake512_4x64_prehash_le( blake512_4x64_context *sc, __m256i *midstate,
const void *data )
{
__m256i V0, V1, V2, V3, V4, V5, V6, V7;
@@ -1562,7 +1553,7 @@ void blake512_4x64_prehash_le( blake_4x64_big_context *sc, __m256i *midstate,
midstate[15] = VF;
}
void blake512_4x64_final_le( blake_4x64_big_context *sc, void *hash,
void blake512_4x64_final_le( blake512_4x64_context *sc, void *hash,
const __m256i nonce, const __m256i *midstate )
{
__m256i M0, M1, M2, M3, M4, M5, M6, M7;
@@ -1685,7 +1676,7 @@ void blake512_4x64_final_le( blake_4x64_big_context *sc, void *hash,
}
void blake512_4x64_init( blake_4x64_big_context *sc )
void blake512_4x64_init( blake512_4x64_context *sc )
{
casti_m256i( sc->H, 0 ) = v256_64( 0x6A09E667F3BCC908 );
casti_m256i( sc->H, 1 ) = v256_64( 0xBB67AE8584CAA73B );
@@ -1798,7 +1789,7 @@ blake64_4way_close( blake_4x64_big_context *sc, void *dst )
}
// init, update & close
void blake512_4x64_full( blake_4x64_big_context *sc, void * dst,
void blake512_4x64_full( blake512_4x64_context *sc, void * dst,
const void *data, size_t len )
{
@@ -1824,7 +1815,7 @@ void blake512_4x64_full( blake_4x64_big_context *sc, void * dst,
{
if ( ( sc->T0 = sc->T0 + 1024 ) < 1024 )
sc->T1 = sc->T1 + 1;
blake512_4way_compress( sc );
blake512_4x64_compress( sc );
sc->ptr = 0;
}
@@ -1859,7 +1850,7 @@ void blake512_4x64_full( blake_4x64_big_context *sc, void * dst,
if ( ( sc->T0 = sc->T0 + 1024 ) < 1024 )
sc->T1 = sc->T1 + 1;
blake512_4way_compress( sc );
blake512_4x64_compress( sc );
mm256_block_bswap_64( (__m256i*)dst, sc->H );
}
@@ -1887,13 +1878,13 @@ blake512_4x64_close(void *cc, void *dst)
#define GB_2X64( m0, m1, c0, c1, a, b, c, d ) \
{ \
a = v128_add64( v128_add64( v128_xor( v128_64( c1 ), m0 ), b ), a ); \
d = v128_ror64( v128_xor( d, a ), 32 ); \
d = v128_ror64xor( d, a, 32 ); \
c = v128_add64( c, d ); \
b = v128_ror64( v128_xor( b, c ), 25 ); \
b = v128_ror64xor( b, c, 25 ); \
a = v128_add64( v128_add64( v128_xor( v128_64( c0 ), m1 ), b ), a ); \
d = v128_ror64( v128_xor( d, a ), 16 ); \
d = v128_ror64xor( d, a, 16 ); \
c = v128_add64( c, d ); \
b = v128_ror64( v128_xor( b, c ), 11 ); \
b = v128_ror64xor( b, c, 11 ); \
}
#define ROUND_B_2X64(r) \
@@ -1934,29 +1925,6 @@ void blake512_2x64_compress( blake_2x64_big_context *sc )
VE = v128_64( CB6 ^ sc->T1 );
VF = v128_64( CB7 ^ sc->T1 );
#if defined(__SSSE3__)
const v128u64_t shuf_bswap64 = v128_set64(
0x08090a0b0c0d0e0f, 0x0001020304050607 );
M0 = v128_shuffle8( sc->buf[ 0], shuf_bswap64 );
M1 = v128_shuffle8( sc->buf[ 1], shuf_bswap64 );
M2 = v128_shuffle8( sc->buf[ 2], shuf_bswap64 );
M3 = v128_shuffle8( sc->buf[ 3], shuf_bswap64 );
M4 = v128_shuffle8( sc->buf[ 4], shuf_bswap64 );
M5 = v128_shuffle8( sc->buf[ 5], shuf_bswap64 );
M6 = v128_shuffle8( sc->buf[ 6], shuf_bswap64 );
M7 = v128_shuffle8( sc->buf[ 7], shuf_bswap64 );
M8 = v128_shuffle8( sc->buf[ 8], shuf_bswap64 );
M9 = v128_shuffle8( sc->buf[ 9], shuf_bswap64 );
MA = v128_shuffle8( sc->buf[10], shuf_bswap64 );
MB = v128_shuffle8( sc->buf[11], shuf_bswap64 );
MC = v128_shuffle8( sc->buf[12], shuf_bswap64 );
MD = v128_shuffle8( sc->buf[13], shuf_bswap64 );
ME = v128_shuffle8( sc->buf[14], shuf_bswap64 );
MF = v128_shuffle8( sc->buf[15], shuf_bswap64 );
#else // SSE2 & NEON
M0 = v128_bswap64( sc->buf[ 0] );
M1 = v128_bswap64( sc->buf[ 1] );
M2 = v128_bswap64( sc->buf[ 2] );
@@ -1974,8 +1942,6 @@ void blake512_2x64_compress( blake_2x64_big_context *sc )
ME = v128_bswap64( sc->buf[14] );
MF = v128_bswap64( sc->buf[15] );
#endif
ROUND_B_2X64(0);
ROUND_B_2X64(1);
ROUND_B_2X64(2);
@@ -2054,9 +2020,9 @@ void blake512_2x64_prehash_part1_le( blake_2x64_big_context *sc,
// G4 skip nonce
V0 = v128_add64( v128_add64( v128_xor( v128_64( CB9 ), sc->buf[ 8] ), V5 ),
V0 );
VF = v128_ror64( v128_xor( VF, V0 ), 32 );
VF = v128_ror64xor( VF, V0, 32 );
VA = v128_add64( VA, VF );
V5 = v128_ror64( v128_xor( V5, VA ), 25 );
V5 = v128_ror64xor( V5, VA, 25 );
V0 = v128_add64( V0, V5 );
GB_2X64( sc->buf[10], sc->buf[11], CBA, CBB, V1, V6, VB, VC );
@@ -2137,9 +2103,9 @@ void blake512_2x64_prehash_part2_le( blake_2x64_big_context *sc, void *hash,
// finish round 0, with the nonce now available
V0 = v128_add64( V0, v128_xor( v128_64( CB8 ), M9 ) );
VF = v128_ror64( v128_xor( VF, V0 ), 16 );
VF = v128_ror64xor( VF, V0, 16 );
VA = v128_add64( VA, VF );
V5 = v128_ror64( v128_xor( V5, VA ), 11 );
V5 = v128_ror64xor( V5, VA, 11 );
// Round 1
// G0
@@ -2147,34 +2113,34 @@ void blake512_2x64_prehash_part2_le( blake_2x64_big_context *sc, void *hash,
// G1
V1 = v128_add64( V1, V5 );
VD = v128_ror64( v128_xor( VD, V1 ), 32 );
VD = v128_ror64xor( VD, V1, 32 );
V9 = v128_add64( V9, VD );
V5 = v128_ror64( v128_xor( V5, V9 ), 25 );
V5 = v128_ror64xor( V5, V9, 25 );
V1 = v128_add64( V1, v128_add64( v128_xor( v128_64( CBx(1,2) ), Mx(1,3) ),
V5 ) );
VD = v128_ror64( v128_xor( VD, V1 ), 16 );
VD = v128_ror64xor( VD, V1, 16 );
V9 = v128_add64( V9, VD );
V5 = v128_ror64( v128_xor( V5, V9 ), 11 );
V5 = v128_ror64xor( V5, V9, 11 );
// G2
V2 = v128_add64( V2, v128_xor( v128_64( CBF ), M9 ) );
VE = v128_ror64( v128_xor( VE, V2 ), 32 );
VE = v128_ror64xor( VE, V2, 32 );
VA = v128_add64( VA, VE );
V6 = v128_ror64( v128_xor( V6, VA ), 25 );
V6 = v128_ror64xor( V6, VA, 25 );
V2 = v128_add64( V2, v128_add64( v128_xor( v128_64( CB9 ), MF ), V6 ) );
VE = v128_ror64( v128_xor( VE, V2 ), 16 );
VE = v128_ror64xor( VE, V2, 16 );
VA = v128_add64( VA, VE );
V6 = v128_ror64( v128_xor( V6, VA ), 11 );
V6 = v128_ror64xor( V6, VA, 11 );
// G3
VF = v128_ror64( v128_xor( VF, V3 ), 32 );
VF = v128_ror64xor( VF, V3, 32 );
VB = v128_add64( VB, VF );
V7 = v128_ror64( v128_xor( V7, VB ), 25 );
V7 = v128_ror64xor( V7, VB, 25 );
V3 = v128_add64( V3, v128_add64( v128_xor( v128_64( CBx(1, 6) ), Mx(1, 7) ),
V7 ) );
VF = v128_ror64( v128_xor( VF, V3 ), 16 );
VF = v128_ror64xor( VF, V3, 16 );
VB = v128_add64( VB, VF );
V7 = v128_ror64( v128_xor( V7, VB ), 11 );
V7 = v128_ror64xor( V7, VB, 11 );
// G4, G5, G6, G7
GB_2X64(Mx(1, 8), Mx(1, 9), CBx(1, 8), CBx(1, 9), V0, V5, VA, VF);

View File

@@ -92,7 +92,7 @@ void blake512_4x64_final_le( blake_4x64_big_context *sc, void *hash,
#define blake512_4way_prehash_le blake512_4x64_prehash_le
#define blake512_4way_final_le blake512_4x64_final_le
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#if defined(SIMD512)
////////////////////////////
//

View File

@@ -54,10 +54,10 @@ int scanhash_blakecoin_16way( struct work *work, uint32_t max_nonce,
n+ 7, n+ 6, n+ 5, n+ 4, n+ 3, n+ 2, n +1, n );
// Partialy prehash second block without touching nonces in block_buf[3].
blake256_16way_round0_prehash_le( midstate_vars, block0_hash, block_buf );
blake256_16x32_round0_prehash_le( midstate_vars, block0_hash, block_buf );
do {
blake256_16way_final_rounds_le( hash32, midstate_vars, block0_hash,
blake256_16x32_final_rounds_le( hash32, midstate_vars, block0_hash,
block_buf, rounds );
for ( int lane = 0; lane < 16; lane++ )
if ( unlikely( hash32_d7[ lane ] <= targ32_d7 ) )
@@ -123,10 +123,10 @@ int scanhash_blakecoin_8way( struct work *work, uint32_t max_nonce,
block_buf[3] = _mm256_set_epi32( n+7, n+6, n+5, n+4, n+3, n+2, n+1, n );
// Partialy prehash second block without touching nonces in block_buf[3].
blake256_8way_round0_prehash_le( midstate_vars, block0_hash, block_buf );
blake256_8x32_round0_prehash_le( midstate_vars, block0_hash, block_buf );
do {
blake256_8way_final_rounds_le( hash32, midstate_vars, block0_hash,
blake256_8x32_final_rounds_le( hash32, midstate_vars, block0_hash,
block_buf, rounds );
for ( int lane = 0; lane < 8; lane++ )
if ( unlikely( hash32_d7[ lane ] <= targ32_d7 ) )
@@ -148,16 +148,16 @@ int scanhash_blakecoin_8way( struct work *work, uint32_t max_nonce,
#elif defined (BLAKECOIN_4WAY)
blake256r8_4way_context blakecoin_4w_ctx;
blake256r8_4x32_context blakecoin_4w_ctx;
void blakecoin_4way_hash(void *state, const void *input)
{
uint32_t vhash[8*4] __attribute__ ((aligned (64)));
blake256r8_4way_context ctx;
blake256r8_4x32_context ctx;
memcpy( &ctx, &blakecoin_4w_ctx, sizeof ctx );
blake256r8_4way_update( &ctx, input + (64<<2), 16 );
blake256r8_4way_close( &ctx, vhash );
blake256r8_4x32_update( &ctx, input + (64<<2), 16 );
blake256r8_4x32_close( &ctx, vhash );
dintrlv_4x32( state, state+32, state+64, state+96, vhash, 256 );
}
@@ -178,8 +178,8 @@ int scanhash_blakecoin_4way( struct work *work, uint32_t max_nonce,
HTarget = 0x7f;
v128_bswap32_intrlv80_4x32( vdata, pdata );
blake256r8_4way_init( &blakecoin_4w_ctx );
blake256r8_4way_update( &blakecoin_4w_ctx, vdata, 64 );
blake256r8_4x32_init( &blakecoin_4w_ctx );
blake256r8_4x32_update( &blakecoin_4w_ctx, vdata, 64 );
do {
*noncev = v128_bswap32( _mm_set_epi32( n+3, n+2, n+1, n ) );

View File

@@ -4,7 +4,7 @@
#include "algo-gate-api.h"
#include <stdint.h>
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#if defined(SIMD512)
#define BLAKECOIN_16WAY
#elif defined(__AVX2__)
#define BLAKECOIN_8WAY

View File

@@ -16,28 +16,27 @@ extern void pentablakehash_4way( void *output, const void *input )
uint64_t hash2[8] __attribute__ ((aligned (64)));
uint64_t hash3[8] __attribute__ ((aligned (64)));
uint64_t vhash[8*4] __attribute__ ((aligned (64)));
blake512_4way_context ctx;
blake512_4x64_context ctx;
blake512_4x64_init( &ctx );
blake512_4x64_update( &ctx, input, 80 );
blake512_4x64_close( &ctx, vhash );
blake512_4way_init( &ctx );
blake512_4way_update( &ctx, input, 80 );
blake512_4way_close( &ctx, vhash );
blake512_4x64_init( &ctx );
blake512_4x64_update( &ctx, vhash, 64 );
blake512_4x64_close( &ctx, vhash );
blake512_4way_init( &ctx );
blake512_4way_update( &ctx, vhash, 64 );
blake512_4way_close( &ctx, vhash );
blake512_4x64_init( &ctx );
blake512_4x64_update( &ctx, vhash, 64 );
blake512_4x64_close( &ctx, vhash );
blake512_4way_init( &ctx );
blake512_4way_update( &ctx, vhash, 64 );
blake512_4way_close( &ctx, vhash );
blake512_4x64_init( &ctx );
blake512_4x64_update( &ctx, vhash, 64 );
blake512_4x64_close( &ctx, vhash );
blake512_4way_init( &ctx );
blake512_4way_update( &ctx, vhash, 64 );
blake512_4way_close( &ctx, vhash );
blake512_4way_init( &ctx );
blake512_4way_update( &ctx, vhash, 64 );
blake512_4way_close( &ctx, vhash );
blake512_4x64_init( &ctx );
blake512_4x64_update( &ctx, vhash, 64 );
blake512_4x64_close( &ctx, vhash );
memcpy( output, hash0, 32 );
memcpy( output+32, hash1, 32 );

View File

@@ -227,7 +227,7 @@ int blake2s_compress( blake2s_state *S, const uint8_t block[64] )
v[14] = S->f[0] ^ blake2s_IV[6];
v[15] = S->f[1] ^ blake2s_IV[7];
#if defined(__SSE2__)
#if defined(__SSE2__) || defined(__ARM_NEON)
v128_t *V = (v128_t*)v;
@@ -263,19 +263,6 @@ int blake2s_compress( blake2s_state *S, const uint8_t block[64] )
V[3] = v128_swap64( V[3] ); \
V[2] = v128_shufll32( V[2] )
BLAKE2S_ROUND(0);
BLAKE2S_ROUND(1);
BLAKE2S_ROUND(2);
BLAKE2S_ROUND(3);
BLAKE2S_ROUND(4);
BLAKE2S_ROUND(5);
BLAKE2S_ROUND(6);
BLAKE2S_ROUND(7);
BLAKE2S_ROUND(8);
BLAKE2S_ROUND(9);
#undef BLAKE2S_ROUND
#else
#define G(r,i,a,b,c,d) \
@@ -290,7 +277,7 @@ int blake2s_compress( blake2s_state *S, const uint8_t block[64] )
b = SPH_ROTR32(b ^ c, 7); \
} while(0)
#define ROUND(r) \
#define BLAKE2S_ROUND(r) \
do { \
G(r,0,v[ 0],v[ 4],v[ 8],v[12]); \
G(r,1,v[ 1],v[ 5],v[ 9],v[13]); \
@@ -302,24 +289,25 @@ int blake2s_compress( blake2s_state *S, const uint8_t block[64] )
G(r,7,v[ 3],v[ 4],v[ 9],v[14]); \
} while(0)
ROUND( 0 );
ROUND( 1 );
ROUND( 2 );
ROUND( 3 );
ROUND( 4 );
ROUND( 5 );
ROUND( 6 );
ROUND( 7 );
ROUND( 8 );
ROUND( 9 );
#endif
BLAKE2S_ROUND(0);
BLAKE2S_ROUND(1);
BLAKE2S_ROUND(2);
BLAKE2S_ROUND(3);
BLAKE2S_ROUND(4);
BLAKE2S_ROUND(5);
BLAKE2S_ROUND(6);
BLAKE2S_ROUND(7);
BLAKE2S_ROUND(8);
BLAKE2S_ROUND(9);
for( size_t i = 0; i < 8; ++i )
S->h[i] = S->h[i] ^ v[i] ^ v[i + 8];
#undef G
#undef ROUND
#undef BLAKE2S_ROUND
return 0;
}

View File

@@ -101,15 +101,15 @@
{ \
Va = v128_add64( Va, v128_add64( Vb, \
v128_set64( m[ sigmaR[ Sc ] ], m[ sigmaR[ Sa ] ] ) ) ); \
Vd = v128_ror64( v128_xor( Vd, Va ), 32 ); \
Vd = v128_ror64xor( Vd, Va, 32 ); \
Vc = v128_add64( Vc, Vd ); \
Vb = v128_ror64( v128_xor( Vb, Vc ), 24 ); \
Vb = v128_ror64xor( Vb, Vc, 24 ); \
\
Va = v128_add64( Va, v128_add64( Vb, \
v128_set64( m[ sigmaR[ Sd ] ], m[ sigmaR[ Sb ] ] ) ) ); \
Vd = v128_ror64( v128_xor( Vd, Va ), 16 ); \
Vd = v128_ror64xor( Vd, Va, 16 ); \
Vc = v128_add64( Vc, Vd ); \
Vb = v128_ror64( v128_xor( Vb, Vc ), 63 ); \
Vb = v128_ror64xor( Vb, Vc, 63 ); \
}
#define BLAKE2B_ROUND( R ) \

View File

@@ -39,16 +39,14 @@
#include <stddef.h>
#include "simd-utils.h"
#define SPH_SIZE_bmw256 256
#define SPH_SIZE_bmw512 512
// BMW-256 4 way 32
#if defined(__SSE2__) || defined(__ARM_NEON)
typedef struct
{
v128_t buf[64];
v128_t H[16];
v128u32_t buf[64];
v128u32_t H[16];
size_t ptr;
uint32_t bit_count; // assume bit_count fits in 32 bits
} bmw_4way_small_context;
@@ -58,13 +56,19 @@ typedef bmw_4way_small_context bmw256_4way_context;
void bmw256_4way_init( bmw256_4way_context *ctx );
void bmw256_4way_update(void *cc, const void *data, size_t len);
#define bmw256_4way bmw256_4way_update
void bmw256_4way_close(void *cc, void *dst);
void bmw256_4way_addbits_and_close(
void *cc, unsigned ub, unsigned n, void *dst);
#define bmw256_4x32_context bmw256_4way_context
#define bmw256_4x32_init bmw256_4way_init
#define bmw256_4x32_update bmw256_4way_update
#define bmw256_4x32_close bmw256_4way_close
#endif
#if defined(__AVX2__)
// BMW-256 8 way 32
@@ -85,9 +89,14 @@ void bmw256_8way_update( bmw256_8way_context *ctx, const void *data,
#define bmw256_8way bmw256_8way_update
void bmw256_8way_close( bmw256_8way_context *ctx, void *dst );
#define bmw256_8x32_context bmw256_8way_context
#define bmw256_8x32_init bmw256_8way_init
#define bmw256_8x32_update bmw256_8way_update
#define bmw256_8x32_close bmw256_8way_close
#endif
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#if defined(SIMD512)
// BMW-256 16 way 32
@@ -106,6 +115,11 @@ void bmw256_16way_update( bmw256_16way_context *ctx, const void *data,
size_t len );
void bmw256_16way_close( bmw256_16way_context *ctx, void *dst );
#define bmw256_16x32_context bmw256_16way_context
#define bmw256_16x32_init bmw256_16way_init
#define bmw256_16x32_update bmw256_16way_update
#define bmw256_16x32_close bmw256_16way_close
#endif
// BMW-512 2 way 64
@@ -157,7 +171,7 @@ void bmw512_4way_addbits_and_close(
#endif // __AVX2__
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#if defined(SIMD512)
// BMW-512 64 bit 8 way
typedef struct

View File

@@ -45,7 +45,7 @@ extern "C"{
#define LPAR (
#if defined(__SSE2__)
#if defined(__SSE2__) || defined(__ARM_NEON)
// BMW-256 4 way 32
/*
@@ -284,9 +284,9 @@ static const uint32_t IV256[] = {
v128_xor( M[13], H[13] ) ) )
void compress_small( const v128u64_t *M, const v128u64_t H[16], v128u64_t dH[16] )
void compress_small( const v128u32_t *M, const v128u32_t H[16], v128u32_t dH[16] )
{
v128u64_t qt[32], xl, xh; \
v128u32_t qt[32], xl, xh; \
qt[ 0] = v128_add32( ss0( Ws0 ), H[ 1] );
qt[ 1] = v128_add32( ss1( Ws1 ), H[ 2] );
@@ -428,49 +428,25 @@ static const uint32_t final_s[16][4] =
{ 0xaaaaaaae, 0xaaaaaaae, 0xaaaaaaae, 0xaaaaaaae },
{ 0xaaaaaaaf, 0xaaaaaaaf, 0xaaaaaaaf, 0xaaaaaaaf }
};
/*
static const v128u64_t final_s[16] =
{
{ 0xaaaaaaa0aaaaaaa0, 0xaaaaaaa0aaaaaaa0 },
{ 0xaaaaaaa1aaaaaaa1, 0xaaaaaaa1aaaaaaa1 },
{ 0xaaaaaaa2aaaaaaa2, 0xaaaaaaa2aaaaaaa2 },
{ 0xaaaaaaa3aaaaaaa3, 0xaaaaaaa3aaaaaaa3 },
{ 0xaaaaaaa4aaaaaaa4, 0xaaaaaaa4aaaaaaa4 },
{ 0xaaaaaaa5aaaaaaa5, 0xaaaaaaa5aaaaaaa5 },
{ 0xaaaaaaa6aaaaaaa6, 0xaaaaaaa6aaaaaaa6 },
{ 0xaaaaaaa7aaaaaaa7, 0xaaaaaaa7aaaaaaa7 },
{ 0xaaaaaaa8aaaaaaa8, 0xaaaaaaa8aaaaaaa8 },
{ 0xaaaaaaa9aaaaaaa9, 0xaaaaaaa9aaaaaaa9 },
{ 0xaaaaaaaaaaaaaaaa, 0xaaaaaaaaaaaaaaaa },
{ 0xaaaaaaabaaaaaaab, 0xaaaaaaabaaaaaaab },
{ 0xaaaaaaacaaaaaaac, 0xaaaaaaacaaaaaaac },
{ 0xaaaaaaadaaaaaaad, 0xaaaaaaadaaaaaaad },
{ 0xaaaaaaaeaaaaaaae, 0xaaaaaaaeaaaaaaae },
{ 0xaaaaaaafaaaaaaaf, 0xaaaaaaafaaaaaaaf }
};
*/
void bmw256_4way_init( bmw256_4way_context *ctx )
{
ctx->H[ 0] = v128_64( 0x4041424340414243 );
ctx->H[ 1] = v128_64( 0x4445464744454647 );
ctx->H[ 2] = v128_64( 0x48494A4B48494A4B );
ctx->H[ 3] = v128_64( 0x4C4D4E4F4C4D4E4F );
ctx->H[ 4] = v128_64( 0x5051525350515253 );
ctx->H[ 5] = v128_64( 0x5455565754555657 );
ctx->H[ 6] = v128_64( 0x58595A5B58595A5B );
ctx->H[ 7] = v128_64( 0x5C5D5E5F5C5D5E5F );
ctx->H[ 8] = v128_64( 0x6061626360616263 );
ctx->H[ 9] = v128_64( 0x6465666764656667 );
ctx->H[10] = v128_64( 0x68696A6B68696A6B );
ctx->H[11] = v128_64( 0x6C6D6E6F6C6D6E6F );
ctx->H[12] = v128_64( 0x7071727370717273 );
ctx->H[13] = v128_64( 0x7475767774757677 );
ctx->H[14] = v128_64( 0x78797A7B78797A7B );
ctx->H[15] = v128_64( 0x7C7D7E7F7C7D7E7F );
// for ( int i = 0; i < 16; i++ )
// sc->H[i] = v128_32( iv[i] );
ctx->H[ 0] = v128_32( 0x40414243 );
ctx->H[ 1] = v128_32( 0x44454647 );
ctx->H[ 2] = v128_32( 0x48494A4B );
ctx->H[ 3] = v128_32( 0x4C4D4E4F );
ctx->H[ 4] = v128_32( 0x50515253 );
ctx->H[ 5] = v128_32( 0x54555657 );
ctx->H[ 6] = v128_32( 0x58595A5B );
ctx->H[ 7] = v128_32( 0x5C5D5E5F );
ctx->H[ 8] = v128_32( 0x60616263 );
ctx->H[ 9] = v128_32( 0x64656667 );
ctx->H[10] = v128_32( 0x68696A6B );
ctx->H[11] = v128_32( 0x6C6D6E6F );
ctx->H[12] = v128_32( 0x70717273 );
ctx->H[13] = v128_32( 0x74757677 );
ctx->H[14] = v128_32( 0x78797A7B );
ctx->H[15] = v128_32( 0x7C7D7E7F );
ctx->ptr = 0;
ctx->bit_count = 0;
}
@@ -478,10 +454,10 @@ void bmw256_4way_init( bmw256_4way_context *ctx )
static void
bmw32_4way(bmw_4way_small_context *sc, const void *data, size_t len)
{
v128u64_t *vdata = (v128u64_t*)data;
v128u64_t *buf;
v128u64_t htmp[16];
v128u64_t *h1, *h2;
v128u32_t *vdata = (v128u32_t*)data;
v128u32_t *buf;
v128u32_t htmp[16];
v128u32_t *h1, *h2;
size_t ptr;
const int buf_size = 64; // bytes of one lane, compatible with len
@@ -503,7 +479,7 @@ bmw32_4way(bmw_4way_small_context *sc, const void *data, size_t len)
ptr += clen;
if ( ptr == buf_size )
{
v128u64_t *ht;
v128u32_t *ht;
compress_small( buf, h1, h2 );
ht = h1;
h1 = h2;
@@ -521,14 +497,14 @@ static void
bmw32_4way_close(bmw_4way_small_context *sc, unsigned ub, unsigned n,
void *dst, size_t out_size_w32)
{
v128u64_t *buf;
v128u64_t h1[16], h2[16], *h;
v128u32_t *buf;
v128u32_t h1[16], h2[16], *h;
size_t ptr, u, v;
const int buf_size = 64; // bytes of one lane, compatible with len
buf = sc->buf;
ptr = sc->ptr;
buf[ ptr>>2 ] = v128_64( 0x0000008000000080 );
buf[ ptr>>2 ] = v128_32( 0x00000080 );
ptr += 4;
h = sc->H;
@@ -548,7 +524,7 @@ bmw32_4way_close(bmw_4way_small_context *sc, unsigned ub, unsigned n,
for ( u = 0; u < 16; u ++ )
buf[u] = h2[u];
compress_small( buf, (v128u64_t*)final_s, h1 );
compress_small( buf, (v128u32_t*)final_s, h1 );
for (u = 0, v = 16 - out_size_w32; u < out_size_w32; u ++, v ++)
casti_v128( dst, u ) = h1[v];
@@ -1057,7 +1033,7 @@ void bmw256_8way_close( bmw256_8way_context *ctx, void *dst )
#endif // __AVX2__
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#if defined(SIMD512)
// BMW-256 16 way 32

View File

@@ -4,7 +4,7 @@
#include "algo-gate-api.h"
#include <stdint.h>
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#if defined(SIMD512)
#define BMW512_8WAY 1
#elif defined(__AVX2__)
#define BMW512_4WAY 1

View File

@@ -950,7 +950,7 @@ bmw512_4way_addbits_and_close(void *cc, unsigned ub, unsigned n, void *dst)
#endif // __AVX2__
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#if defined(SIMD512)
// BMW-512 8 WAY

View File

@@ -26,7 +26,7 @@ static const uint64_t IV512[] =
0xA5A70E75D65C8A2B, 0xBC796576B1C62456, 0xE7989AF11921C8F7, 0xD43E3B447795D246
};
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#if defined(SIMD512)
// 4 way 128 is handy to avoid reinterleaving in many algos.
// If reinterleaving is necessary it may be more efficient to use

View File

@@ -6,7 +6,7 @@
#if defined(__AVX2__)
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#if defined(SIMD512)
struct _cube_4way_context
{

View File

@@ -13,7 +13,7 @@ static void transform( cubehashParam *sp )
int r;
const int rounds = sp->rounds;
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#if defined(SIMD512)
register __m512i x0, x1;
@@ -39,7 +39,7 @@ static void transform( cubehashParam *sp )
#elif defined(__AVX2__)
register __m256i x0, x1, x2, x3, y0, y1;
register __m256i x0, x1, x2, x3, t0;
x0 = _mm256_load_si256( (__m256i*)sp->x );
x1 = _mm256_load_si256( (__m256i*)sp->x + 1 );
@@ -50,10 +50,10 @@ static void transform( cubehashParam *sp )
{
x2 = _mm256_add_epi32( x0, x2 );
x3 = _mm256_add_epi32( x1, x3 );
y0 = mm256_rol_32( x1, 7 );
y1 = mm256_rol_32( x0, 7 );
x0 = _mm256_xor_si256( y0, x2 );
x1 = _mm256_xor_si256( y1, x3 );
t0 = mm256_rol_32( x1, 7 );
x1 = mm256_rol_32( x0, 7 );
x0 = _mm256_xor_si256( t0, x2 );
x1 = _mm256_xor_si256( x1, x3 );
x2 = mm256_swap128_64( x2 );
x3 = mm256_swap128_64( x3 );
x2 = _mm256_add_epi32( x0, x2 );
@@ -75,7 +75,7 @@ static void transform( cubehashParam *sp )
#else // AVX, SSE2, NEON
v128_t x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3;
v128_t x0, x1, x2, x3, x4, x5, x6, x7, t0, t1;
x0 = casti_v128( sp->x, 0 );
x1 = casti_v128( sp->x, 1 );
@@ -92,16 +92,12 @@ static void transform( cubehashParam *sp )
x5 = v128_add32( x1, x5 );
x6 = v128_add32( x2, x6 );
x7 = v128_add32( x3, x7 );
y0 = x2;
y1 = x3;
y2 = x0;
y3 = x1;
x0 = v128_rol32( y0, 7 );
x1 = v128_rol32( y1, 7 );
x2 = v128_rol32( y2, 7 );
x3 = v128_rol32( y3, 7 );
x0 = v128_xor( x0, x4 );
x1 = v128_xor( x1, x5 );
t0 = v128_rol32( x2, 7 );
t1 = v128_rol32( x3, 7 );
x2 = v128_rol32( x0, 7 );
x3 = v128_rol32( x1, 7 );
x0 = v128_xor( t0, x4 );
x1 = v128_xor( t1, x5 );
x2 = v128_xor( x2, x6 );
x3 = v128_xor( x3, x7 );
x4 = v128_swap64( x4 );
@@ -112,19 +108,15 @@ static void transform( cubehashParam *sp )
x5 = v128_add32( x1, x5 );
x6 = v128_add32( x2, x6 );
x7 = v128_add32( x3, x7 );
y0 = x1;
y1 = x0;
y2 = x3;
y3 = x2;
x0 = v128_rol32( y0, 11 );
x1 = v128_rol32( y1, 11 );
x2 = v128_rol32( y2, 11 );
x3 = v128_rol32( y3, 11 );
x0 = v128_xor( x0, x4 );
x1 = v128_xor( x1, x5 );
x2 = v128_xor( x2, x6 );
x3 = v128_xor( x3, x7 );
x4 = v128_swap64_32( x4 );
t0 = v128_rol32( x1, 11 );
x1 = v128_rol32( x0, 11 );
t1 = v128_rol32( x3, 11 );
x3 = v128_rol32( x2, 11 );
x0 = v128_xor( t0, x4 );
x1 = v128_xor( x1, x5 );
x2 = v128_xor( t1, x6 );
x3 = v128_xor( x3, x7 );
x4 = v128_swap64_32( x4 );
x5 = v128_swap64_32( x5 );
x6 = v128_swap64_32( x6 );
x7 = v128_swap64_32( x7 );

View File

@@ -11,7 +11,7 @@ static const unsigned int mul2ipt[] __attribute__ ((aligned (64))) =
};
*/
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#if defined(SIMD512)
#define ECHO_SUBBYTES4(state, j) \
state[0][j] = _mm512_aesenc_epi128( state[0][j], k1 ); \

View File

@@ -5,7 +5,7 @@
#include "simd-utils.h"
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#if defined(SIMD512)
typedef struct
{

View File

@@ -696,7 +696,7 @@ static void AddModulo512(const void *a,const void *b,void *c)
static void AddXor512(const void *a,const void *b,void *c)
{
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#if defined(SIMD512)
casti_m512i( c, 0 ) = _mm512_xor_si512( casti_m512i( a, 0 ),
casti_m512i( b, 0 ) );
#elif defined(__AVX2__)

View File

@@ -103,7 +103,7 @@ static const v128u32_t gr_mask __attribute__ ((aligned (16))) =
This implementation costs 7.7 c/b giving total speed on SNB: 10.7c/b.
K. Matusiewicz, 2011/05/29 */
#if defined(__AVX512VL__)
#if defined(VL256)
#define MixBytes(a0, a1, a2, a3, a4, a5, a6, a7, b0, b1, b2, b3, b4, b5, b6, b7){\
/* t_i = a_i + a_{i+1} */\

View File

@@ -95,7 +95,7 @@ static const v128u32_t gr_mask __attribute__ ((aligned (16))) =
This implementation costs 7.7 c/b giving total speed on SNB: 10.7c/b.
K. Matusiewicz, 2011/05/29 */
#if defined(__AVX512VL__)
#if defined(VL256)
#define MixBytes(a0, a1, a2, a3, a4, a5, a6, a7, b0, b1, b2, b3, b4, b5, b6, b7){\
/* t_i = a_i + a_{i+1} */\

View File

@@ -4,7 +4,7 @@
#include "algo-gate-api.h"
#include <stdint.h>
#if defined(__VAES__) && defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#if defined(__VAES__) && defined(SIMD512)
#define GROESTL_4WAY_VAES 1
#endif

View File

@@ -17,7 +17,7 @@
#if defined(__AVX2__) && defined(__VAES__)
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#if defined(SIMD512)
int groestl256_4way_init( groestl256_4way_context* ctx, uint64_t hashlen )

View File

@@ -43,7 +43,7 @@
#define SIZE256 (SIZE_512/16)
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#if defined(SIMD512)
typedef struct {
__attribute__ ((aligned (128))) __m512i chaining[SIZE256];

View File

@@ -42,7 +42,7 @@ static const __m128i round_const_l7[] __attribute__ ((aligned (64))) =
{ 0x0000000000000000, 0x8696a6b6c6d6e6f6 }
};
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#if defined(SIMD512)
static const __m512i TRANSP_MASK = { 0x0d0509010c040800, 0x0f070b030e060a02,
0x1d1519111c141810, 0x1f171b131e161a12,

View File

@@ -17,7 +17,7 @@
#if defined(__AVX2__) && defined(__VAES__)
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#if defined(SIMD512)
int groestl512_4way_init( groestl512_4way_context* ctx, uint64_t hashlen )
{

View File

@@ -33,7 +33,7 @@
#define SIZE512 (SIZE_1024/16)
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#if defined(SIMD512)
typedef struct {
__attribute__ ((aligned (128))) __m512i chaining[SIZE512];

View File

@@ -50,7 +50,7 @@ static const __m128i round_const_q[] __attribute__ ((aligned (64))) =
{ 0x8292a2b2c2d2e2f2, 0x0212223242526272 }
};
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#if defined(SIMD512)
static const __m512i TRANSP_MASK = { 0x0d0509010c040800, 0x0f070b030e060a02,
0x1d1519111c141810, 0x1f171b131e161a12,
@@ -239,7 +239,7 @@ static const __m512i SUBSH_MASK7 = { 0x06090c0f0205080b, 0x0e0104070a0d0003,
{ \
/* AddRoundConstant P1024 */\
xmm8 = _mm512_xor_si512( xmm8, mm512_bcast_m128( \
casti_m128i( round_const_p, round_counter ) ) ); \
casti_v128u32( round_const_p, round_counter ) ) ); \
/* ShiftBytes P1024 + pre-AESENCLAST */\
xmm8 = _mm512_shuffle_epi8( xmm8, SUBSH_MASK0 ); \
xmm9 = _mm512_shuffle_epi8( xmm9, SUBSH_MASK1 );\
@@ -254,7 +254,7 @@ static const __m512i SUBSH_MASK7 = { 0x06090c0f0205080b, 0x0e0104070a0d0003,
\
/* AddRoundConstant P1024 */\
xmm0 = _mm512_xor_si512( xmm0, mm512_bcast_m128( \
casti_m128i( round_const_p, round_counter+1 ) ) ); \
casti_v128u32( round_const_p, round_counter+1 ) ) ); \
/* ShiftBytes P1024 + pre-AESENCLAST */\
xmm0 = _mm512_shuffle_epi8( xmm0, SUBSH_MASK0 );\
xmm1 = _mm512_shuffle_epi8( xmm1, SUBSH_MASK1 );\
@@ -283,7 +283,7 @@ static const __m512i SUBSH_MASK7 = { 0x06090c0f0205080b, 0x0e0104070a0d0003,
xmm13 = _mm512_xor_si512( xmm13, xmm1 );\
xmm14 = _mm512_xor_si512( xmm14, xmm1 );\
xmm15 = _mm512_xor_si512( xmm15, mm512_bcast_m128( \
casti_m128i( round_const_q, round_counter ) ) ); \
casti_v128u32( round_const_q, round_counter ) ) ); \
/* ShiftBytes Q1024 + pre-AESENCLAST */\
xmm8 = _mm512_shuffle_epi8( xmm8, SUBSH_MASK1 );\
xmm9 = _mm512_shuffle_epi8( xmm9, SUBSH_MASK3 );\
@@ -306,7 +306,7 @@ static const __m512i SUBSH_MASK7 = { 0x06090c0f0205080b, 0x0e0104070a0d0003,
xmm5 = _mm512_xor_si512( xmm5, xmm9 );\
xmm6 = _mm512_xor_si512( xmm6, xmm9 );\
xmm7 = _mm512_xor_si512( xmm7, mm512_bcast_m128( \
casti_m128i( round_const_q, round_counter+1 ) ) ); \
casti_v128u32( round_const_q, round_counter+1 ) ) ); \
/* ShiftBytes Q1024 + pre-AESENCLAST */\
xmm0 = _mm512_shuffle_epi8( xmm0, SUBSH_MASK1 );\
xmm1 = _mm512_shuffle_epi8( xmm1, SUBSH_MASK3 );\
@@ -812,7 +812,7 @@ static const __m256i SUBSH_MASK7_2WAY =
{ \
/* AddRoundConstant P1024 */\
xmm8 = _mm256_xor_si256( xmm8, mm256_bcast_m128( \
casti_m128i( round_const_p, round_counter ) ) ); \
casti_v128u32( round_const_p, round_counter ) ) ); \
/* ShiftBytes P1024 + pre-AESENCLAST */\
xmm8 = _mm256_shuffle_epi8( xmm8, SUBSH_MASK0_2WAY ); \
xmm9 = _mm256_shuffle_epi8( xmm9, SUBSH_MASK1_2WAY );\
@@ -827,7 +827,7 @@ static const __m256i SUBSH_MASK7_2WAY =
\
/* AddRoundConstant P1024 */\
xmm0 = _mm256_xor_si256( xmm0, mm256_bcast_m128( \
casti_m128i( round_const_p, round_counter+1 ) ) ); \
casti_v128u32( round_const_p, round_counter+1 ) ) ); \
/* ShiftBytes P1024 + pre-AESENCLAST */\
xmm0 = _mm256_shuffle_epi8( xmm0, SUBSH_MASK0_2WAY );\
xmm1 = _mm256_shuffle_epi8( xmm1, SUBSH_MASK1_2WAY );\
@@ -856,7 +856,7 @@ static const __m256i SUBSH_MASK7_2WAY =
xmm13 = _mm256_xor_si256( xmm13, xmm1 );\
xmm14 = _mm256_xor_si256( xmm14, xmm1 );\
xmm15 = _mm256_xor_si256( xmm15, mm256_bcast_m128( \
casti_m128i( round_const_q, round_counter ) ) ); \
casti_v128u32( round_const_q, round_counter ) ) ); \
/* ShiftBytes Q1024 + pre-AESENCLAST */\
xmm8 = _mm256_shuffle_epi8( xmm8, SUBSH_MASK1_2WAY );\
xmm9 = _mm256_shuffle_epi8( xmm9, SUBSH_MASK3_2WAY );\
@@ -879,7 +879,7 @@ static const __m256i SUBSH_MASK7_2WAY =
xmm5 = _mm256_xor_si256( xmm5, xmm9 );\
xmm6 = _mm256_xor_si256( xmm6, xmm9 );\
xmm7 = _mm256_xor_si256( xmm7, mm256_bcast_m128( \
casti_m128i( round_const_q, round_counter+1 ) ) ); \
casti_v128u32( round_const_q, round_counter+1 ) ) ); \
/* ShiftBytes Q1024 + pre-AESENCLAST */\
xmm0 = _mm256_shuffle_epi8( xmm0, SUBSH_MASK1_2WAY );\
xmm1 = _mm256_shuffle_epi8( xmm1, SUBSH_MASK3_2WAY );\

View File

@@ -17,7 +17,7 @@ typedef struct {
#else
hashState_groestl groestl;
#endif
sha256_8way_context sha;
sha256_8x32_context sha;
} myrgr_8way_ctx_holder;
myrgr_8way_ctx_holder myrgr_8way_ctx;
@@ -29,7 +29,7 @@ void init_myrgr_8way_ctx()
#else
init_groestl( &myrgr_8way_ctx.groestl, 64 );
#endif
sha256_8way_init( &myrgr_8way_ctx.sha );
sha256_8x32_init( &myrgr_8way_ctx.sha );
}
void myriad_8way_hash( void *output, const void *input )
@@ -96,8 +96,8 @@ void myriad_8way_hash( void *output, const void *input )
intrlv_8x32_512( vhash, hash0, hash1, hash2, hash3, hash4, hash5,
hash6, hash7 );
sha256_8way_update( &ctx.sha, vhash, 64 );
sha256_8way_close( &ctx.sha, output );
sha256_8x32_update( &ctx.sha, vhash, 64 );
sha256_8x32_close( &ctx.sha, output );
}
int scanhash_myriad_8way( struct work *work, uint32_t max_nonce,
@@ -156,7 +156,7 @@ int scanhash_myriad_8way( struct work *work, uint32_t max_nonce,
typedef struct {
hashState_groestl groestl;
sha256_4way_context sha;
sha256_4x32_context sha;
} myrgr_4way_ctx_holder;
myrgr_4way_ctx_holder myrgr_4way_ctx;
@@ -164,7 +164,7 @@ myrgr_4way_ctx_holder myrgr_4way_ctx;
void init_myrgr_4way_ctx()
{
init_groestl (&myrgr_4way_ctx.groestl, 64 );
sha256_4way_init( &myrgr_4way_ctx.sha );
sha256_4x32_init( &myrgr_4way_ctx.sha );
}
void myriad_4way_hash( void *output, const void *input )
@@ -189,8 +189,8 @@ void myriad_4way_hash( void *output, const void *input )
intrlv_4x32( vhash, hash0, hash1, hash2, hash3, 512 );
sha256_4way_update( &ctx.sha, vhash, 64 );
sha256_4way_close( &ctx.sha, output );
sha256_4x32_update( &ctx.sha, vhash, 64 );
sha256_4x32_close( &ctx.sha, output );
}
int scanhash_myriad_4way( struct work *work, uint32_t max_nonce,

View File

@@ -16,7 +16,7 @@ bool register_myriad_algo( algo_gate_t* gate )
init_myrgr_ctx();
gate->scanhash = (void*)&scanhash_myriad;
gate->hash = (void*)&myriad_hash;
gate->optimizations = AES_OPT | SSE2_OPT | AVX2_OPT | SHA_OPT | VAES_OPT;
gate->optimizations = AES_OPT | SSE2_OPT | AVX2_OPT | SHA256_OPT | VAES_OPT;
#endif
return true;
};

View File

@@ -4,7 +4,7 @@
#include "algo-gate-api.h"
#include <stdint.h>
#if defined(__VAES__) && defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#if defined(__VAES__) && defined(SIMD512)
#define MYRGR_8WAY 1
#elif defined(__AVX2__) && defined(__AES__) && !defined(__SHA__)
#define MYRGR_4WAY 1

View File

@@ -382,12 +382,12 @@ static const uint32_t T512[64][16] __attribute__ ((aligned (32))) =
#define S1F MF
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#if defined(SIMD512)
// Hamsi 8 way AVX512
// Intel docs say _mm512_movepi64_mask & _mm512_cmplt_epi64_mask have same
// timig. However, when tested hashing X13 on i9-9940x using cmplt with zero
// timing. However, testing hashing X13 on i9-9940x using cmplt with zero
// had a 3% faster overall hashrate than than using movepi.
#define INPUT_BIG8 \
@@ -418,13 +418,11 @@ static const uint32_t T512[64][16] __attribute__ ((aligned (32))) =
tb = mm512_xoror( b, d, a ); \
a = _mm512_xor_si512( a, c ); \
b = mm512_xoror( td, tb, a ); \
td = mm512_xorand( a, td, tb ); \
d = _mm512_ternarylogic_epi64( a, td, tb, 0x87 );/* not( xorand( a, td, tb ) ); */ \
a = c; \
c = mm512_xor3( tb, b, td ); \
d = mm512_not( td ); \
c = _mm512_ternarylogic_epi64( tb, b, d, 0x69 ); /* not( xor3( tb, b, d ) ); */ \
}
/*
#define SBOX8( a, b, c, d ) \
do { \
@@ -1061,7 +1059,7 @@ void hamsi_8way_big( hamsi_8way_big_context *sc, __m512i *buf, size_t num )
WRITE_STATE_BIG8( sc );
}
void hamsi_8way_big_final( hamsi_8way_big_context *sc, __m512i *buf )
void hamsi_8way_big_final( hamsi512_8x64_context *sc, __m512i *buf )
{
__m512i m0, m1, m2, m3, m4, m5, m6, m7;
@@ -1073,7 +1071,7 @@ void hamsi_8way_big_final( hamsi_8way_big_context *sc, __m512i *buf )
WRITE_STATE_BIG8( sc );
}
void hamsi512_8way_init( hamsi_8way_big_context *sc )
void hamsi512_8x64_init( hamsi512_8x64_context *sc )
{
sc->partial_len = 0;
sc->count_high = sc->count_low = 0;
@@ -1089,7 +1087,7 @@ void hamsi512_8way_init( hamsi_8way_big_context *sc )
sc->h[7] = v512_64( iv[7] );
}
void hamsi512_8way_update( hamsi_8way_big_context *sc, const void *data,
void hamsi512_8x64_update( hamsi512_8x64_context *sc, const void *data,
size_t len )
{
__m512i *vdata = (__m512i*)data;
@@ -1101,7 +1099,7 @@ void hamsi512_8way_update( hamsi_8way_big_context *sc, const void *data,
sc->partial_len = len;
}
void hamsi512_8way_close( hamsi_8way_big_context *sc, void *dst )
void hamsi512_8x64_close( hamsi512_8x64_context *sc, void *dst )
{
__m512i pad[1];
uint32_t ch, cl;
@@ -1122,7 +1120,7 @@ void hamsi512_8way_close( hamsi_8way_big_context *sc, void *dst )
// Hamsi 4 way AVX2
#if defined(__AVX512VL__)
#if defined(VL256)
#define INPUT_BIG \
do { \
@@ -1155,11 +1153,99 @@ do { \
b = mm256_xoror( td, tb, a ); \
d = _mm256_ternarylogic_epi64( a, td, tb, 0x87 );/* mm256_not( mm256_xorand( a, td, tb ) ); */ \
a = c; \
c = _mm256_ternarylogic_epi64( tb, b, d, 0x69 ); /*mm256_not( mm256_xor3( tb, b, d ) );*/ \
c = _mm256_ternarylogic_epi64( tb, b, d, 0x69 ); /* mm256_not( mm256_xor3( tb, b, d ) ); */ \
}
#else
#define INPUT_BIG_sub( db_i ) \
{ \
const __m256i dm = _mm256_cmpgt_epi64( zero, db_i ); \
m0 = _mm256_xor_si256( m0, _mm256_and_si256( dm, v256_64( tp[0] ) ) ); \
m1 = _mm256_xor_si256( m1, _mm256_and_si256( dm, v256_64( tp[1] ) ) ); \
m2 = _mm256_xor_si256( m2, _mm256_and_si256( dm, v256_64( tp[2] ) ) ); \
m3 = _mm256_xor_si256( m3, _mm256_and_si256( dm, v256_64( tp[3] ) ) ); \
m4 = _mm256_xor_si256( m4, _mm256_and_si256( dm, v256_64( tp[4] ) ) ); \
m5 = _mm256_xor_si256( m5, _mm256_and_si256( dm, v256_64( tp[5] ) ) ); \
m6 = _mm256_xor_si256( m6, _mm256_and_si256( dm, v256_64( tp[6] ) ) ); \
m7 = _mm256_xor_si256( m7, _mm256_and_si256( dm, v256_64( tp[7] ) ) ); \
tp += 8; \
}
#define INPUT_BIG \
{ \
const __m256i db = *buf; \
const __m256i zero = m256_zero; \
const uint64_t *tp = (const uint64_t*)T512; \
m0 = m1 = m2 = m3 = m4 = m5 = m6 = m7 = zero; \
INPUT_BIG_sub( _mm256_slli_epi64( db,63 ) ); \
INPUT_BIG_sub( _mm256_slli_epi64( db,62 ) ); \
INPUT_BIG_sub( _mm256_slli_epi64( db,61 ) ); \
INPUT_BIG_sub( _mm256_slli_epi64( db,60 ) ); \
INPUT_BIG_sub( _mm256_slli_epi64( db,59 ) ); \
INPUT_BIG_sub( _mm256_slli_epi64( db,58 ) ); \
INPUT_BIG_sub( _mm256_slli_epi64( db,57 ) ); \
INPUT_BIG_sub( _mm256_slli_epi64( db,56 ) ); \
INPUT_BIG_sub( _mm256_slli_epi64( db,55 ) ); \
INPUT_BIG_sub( _mm256_slli_epi64( db,54 ) ); \
INPUT_BIG_sub( _mm256_slli_epi64( db,53 ) ); \
INPUT_BIG_sub( _mm256_slli_epi64( db,52 ) ); \
INPUT_BIG_sub( _mm256_slli_epi64( db,51 ) ); \
INPUT_BIG_sub( _mm256_slli_epi64( db,50 ) ); \
INPUT_BIG_sub( _mm256_slli_epi64( db,49 ) ); \
INPUT_BIG_sub( _mm256_slli_epi64( db,48 ) ); \
INPUT_BIG_sub( _mm256_slli_epi64( db,47 ) ); \
INPUT_BIG_sub( _mm256_slli_epi64( db,46 ) ); \
INPUT_BIG_sub( _mm256_slli_epi64( db,45 ) ); \
INPUT_BIG_sub( _mm256_slli_epi64( db,44 ) ); \
INPUT_BIG_sub( _mm256_slli_epi64( db,43 ) ); \
INPUT_BIG_sub( _mm256_slli_epi64( db,42 ) ); \
INPUT_BIG_sub( _mm256_slli_epi64( db,41 ) ); \
INPUT_BIG_sub( _mm256_slli_epi64( db,40 ) ); \
INPUT_BIG_sub( _mm256_slli_epi64( db,39 ) ); \
INPUT_BIG_sub( _mm256_slli_epi64( db,38 ) ); \
INPUT_BIG_sub( _mm256_slli_epi64( db,37 ) ); \
INPUT_BIG_sub( _mm256_slli_epi64( db,36 ) ); \
INPUT_BIG_sub( _mm256_slli_epi64( db,35 ) ); \
INPUT_BIG_sub( _mm256_slli_epi64( db,34 ) ); \
INPUT_BIG_sub( _mm256_slli_epi64( db,33 ) ); \
INPUT_BIG_sub( _mm256_slli_epi64( db,32 ) ); \
INPUT_BIG_sub( _mm256_slli_epi64( db,31 ) ); \
INPUT_BIG_sub( _mm256_slli_epi64( db,30 ) ); \
INPUT_BIG_sub( _mm256_slli_epi64( db,29 ) ); \
INPUT_BIG_sub( _mm256_slli_epi64( db,28 ) ); \
INPUT_BIG_sub( _mm256_slli_epi64( db,27 ) ); \
INPUT_BIG_sub( _mm256_slli_epi64( db,26 ) ); \
INPUT_BIG_sub( _mm256_slli_epi64( db,25 ) ); \
INPUT_BIG_sub( _mm256_slli_epi64( db,24 ) ); \
INPUT_BIG_sub( _mm256_slli_epi64( db,23 ) ); \
INPUT_BIG_sub( _mm256_slli_epi64( db,22 ) ); \
INPUT_BIG_sub( _mm256_slli_epi64( db,21 ) ); \
INPUT_BIG_sub( _mm256_slli_epi64( db,20 ) ); \
INPUT_BIG_sub( _mm256_slli_epi64( db,19 ) ); \
INPUT_BIG_sub( _mm256_slli_epi64( db,18 ) ); \
INPUT_BIG_sub( _mm256_slli_epi64( db,17 ) ); \
INPUT_BIG_sub( _mm256_slli_epi64( db,16 ) ); \
INPUT_BIG_sub( _mm256_slli_epi64( db,15 ) ); \
INPUT_BIG_sub( _mm256_slli_epi64( db,14 ) ); \
INPUT_BIG_sub( _mm256_slli_epi64( db,13 ) ); \
INPUT_BIG_sub( _mm256_slli_epi64( db,12 ) ); \
INPUT_BIG_sub( _mm256_slli_epi64( db,11 ) ); \
INPUT_BIG_sub( _mm256_slli_epi64( db,10 ) ); \
INPUT_BIG_sub( _mm256_slli_epi64( db, 9 ) ); \
INPUT_BIG_sub( _mm256_slli_epi64( db, 8 ) ); \
INPUT_BIG_sub( _mm256_slli_epi64( db, 7 ) ); \
INPUT_BIG_sub( _mm256_slli_epi64( db, 6 ) ); \
INPUT_BIG_sub( _mm256_slli_epi64( db, 5 ) ); \
INPUT_BIG_sub( _mm256_slli_epi64( db, 4 ) ); \
INPUT_BIG_sub( _mm256_slli_epi64( db, 3 ) ); \
INPUT_BIG_sub( _mm256_slli_epi64( db, 2 ) ); \
INPUT_BIG_sub( _mm256_slli_epi64( db, 1 ) ); \
INPUT_BIG_sub( db ); \
}
#if 0
// dependent on the compiler unrolling the loop
#define INPUT_BIG \
do { \
__m256i db = *buf; \
@@ -1180,6 +1266,7 @@ do { \
tp += 8; \
} \
} while (0)
#endif
// v3 no ternary logic, 15 instructions, 9 TL equivalent instructions
#define SBOX( a, b, c, d ) \
@@ -1219,7 +1306,7 @@ do { \
do { \
a = mm256_rol_32( a, 13 ); \
c = mm256_rol_32( c, 3 ); \
b = mm256_xor3( a, b, c ); \
b = mm256_xor3( b, a, c ); \
d = mm256_xor3( d, c, _mm256_slli_epi32( a, 3 ) ); \
b = mm256_rol_32( b, 1 ); \
d = mm256_rol_32( d, 7 ); \
@@ -1501,7 +1588,7 @@ do { /* order is important */ \
sc->h[14] = CE; \
sc->h[15] = CF;
#if defined(__AVX512VL__)
#if defined(VL256)
#define INPUT_8X32 \
{ \
@@ -1857,7 +1944,7 @@ void hamsi512_8x32_full( hamsi512_8x32_context *sc, void * dst,
////////////
void hamsi_big( hamsi_4way_big_context *sc, __m256i *buf, size_t num )
void hamsi_big( hamsi512_4x64_context *sc, __m256i *buf, size_t num )
{
DECL_STATE_BIG
uint32_t tmp;
@@ -1881,7 +1968,7 @@ void hamsi_big( hamsi_4way_big_context *sc, __m256i *buf, size_t num )
WRITE_STATE_BIG( sc );
}
void hamsi_big_final( hamsi_4way_big_context *sc, __m256i *buf )
void hamsi_big_final( hamsi512_4x64_context *sc, __m256i *buf )
{
__m256i m0, m1, m2, m3, m4, m5, m6, m7;
DECL_STATE_BIG
@@ -1892,7 +1979,7 @@ void hamsi_big_final( hamsi_4way_big_context *sc, __m256i *buf )
WRITE_STATE_BIG( sc );
}
void hamsi512_4way_init( hamsi_4way_big_context *sc )
void hamsi512_4x64_init( hamsi512_4x64_context *sc )
{
sc->partial_len = 0;
sc->count_high = sc->count_low = 0;
@@ -1907,7 +1994,7 @@ void hamsi512_4way_init( hamsi_4way_big_context *sc )
sc->h[7] = v256_64( iv[7] );
}
void hamsi512_4way_update( hamsi_4way_big_context *sc, const void *data,
void hamsi512_4x64_update( hamsi512_4x64_context *sc, const void *data,
size_t len )
{
__m256i *vdata = (__m256i*)data;
@@ -1919,7 +2006,7 @@ void hamsi512_4way_update( hamsi_4way_big_context *sc, const void *data,
sc->partial_len = len;
}
void hamsi512_4way_close( hamsi_4way_big_context *sc, void *dst )
void hamsi512_4x64_close( hamsi512_4x64_context *sc, void *dst )
{
__m256i pad[1];
uint32_t ch, cl;
@@ -1961,6 +2048,94 @@ void hamsi512_4way_close( hamsi_4way_big_context *sc, void *dst )
sc->h[6] = c6; \
sc->h[7] = c7;
#define INPUT_2x64_sub( db_i ) \
{ \
const v128u64_t dm = v128_cmpgt64( zero, db_i ); \
m0 = v128_xor( m0, v128_and( dm, v128_64( tp[0] ) ) ); \
m1 = v128_xor( m1, v128_and( dm, v128_64( tp[1] ) ) ); \
m2 = v128_xor( m2, v128_and( dm, v128_64( tp[2] ) ) ); \
m3 = v128_xor( m3, v128_and( dm, v128_64( tp[3] ) ) ); \
m4 = v128_xor( m4, v128_and( dm, v128_64( tp[4] ) ) ); \
m5 = v128_xor( m5, v128_and( dm, v128_64( tp[5] ) ) ); \
m6 = v128_xor( m6, v128_and( dm, v128_64( tp[6] ) ) ); \
m7 = v128_xor( m7, v128_and( dm, v128_64( tp[7] ) ) ); \
tp += 8; \
}
#define INPUT_2x64 \
{ \
const v128u64_t db = *buf; \
const v128u64_t zero = v128_zero; \
const uint64_t *tp = (const uint64_t*)T512; \
m0 = m1 = m2 = m3 = m4 = m5 = m6 = m7 = zero; \
INPUT_2x64_sub( v128_sl64( db,63 ) ); \
INPUT_2x64_sub( v128_sl64( db,62 ) ); \
INPUT_2x64_sub( v128_sl64( db,61 ) ); \
INPUT_2x64_sub( v128_sl64( db,60 ) ); \
INPUT_2x64_sub( v128_sl64( db,59 ) ); \
INPUT_2x64_sub( v128_sl64( db,58 ) ); \
INPUT_2x64_sub( v128_sl64( db,57 ) ); \
INPUT_2x64_sub( v128_sl64( db,56 ) ); \
INPUT_2x64_sub( v128_sl64( db,55 ) ); \
INPUT_2x64_sub( v128_sl64( db,54 ) ); \
INPUT_2x64_sub( v128_sl64( db,53 ) ); \
INPUT_2x64_sub( v128_sl64( db,52 ) ); \
INPUT_2x64_sub( v128_sl64( db,51 ) ); \
INPUT_2x64_sub( v128_sl64( db,50 ) ); \
INPUT_2x64_sub( v128_sl64( db,49 ) ); \
INPUT_2x64_sub( v128_sl64( db,48 ) ); \
INPUT_2x64_sub( v128_sl64( db,47 ) ); \
INPUT_2x64_sub( v128_sl64( db,46 ) ); \
INPUT_2x64_sub( v128_sl64( db,45 ) ); \
INPUT_2x64_sub( v128_sl64( db,44 ) ); \
INPUT_2x64_sub( v128_sl64( db,43 ) ); \
INPUT_2x64_sub( v128_sl64( db,42 ) ); \
INPUT_2x64_sub( v128_sl64( db,41 ) ); \
INPUT_2x64_sub( v128_sl64( db,40 ) ); \
INPUT_2x64_sub( v128_sl64( db,39 ) ); \
INPUT_2x64_sub( v128_sl64( db,38 ) ); \
INPUT_2x64_sub( v128_sl64( db,37 ) ); \
INPUT_2x64_sub( v128_sl64( db,36 ) ); \
INPUT_2x64_sub( v128_sl64( db,35 ) ); \
INPUT_2x64_sub( v128_sl64( db,34 ) ); \
INPUT_2x64_sub( v128_sl64( db,33 ) ); \
INPUT_2x64_sub( v128_sl64( db,32 ) ); \
INPUT_2x64_sub( v128_sl64( db,31 ) ); \
INPUT_2x64_sub( v128_sl64( db,30 ) ); \
INPUT_2x64_sub( v128_sl64( db,29 ) ); \
INPUT_2x64_sub( v128_sl64( db,28 ) ); \
INPUT_2x64_sub( v128_sl64( db,27 ) ); \
INPUT_2x64_sub( v128_sl64( db,26 ) ); \
INPUT_2x64_sub( v128_sl64( db,25 ) ); \
INPUT_2x64_sub( v128_sl64( db,24 ) ); \
INPUT_2x64_sub( v128_sl64( db,23 ) ); \
INPUT_2x64_sub( v128_sl64( db,22 ) ); \
INPUT_2x64_sub( v128_sl64( db,21 ) ); \
INPUT_2x64_sub( v128_sl64( db,20 ) ); \
INPUT_2x64_sub( v128_sl64( db,19 ) ); \
INPUT_2x64_sub( v128_sl64( db,18 ) ); \
INPUT_2x64_sub( v128_sl64( db,17 ) ); \
INPUT_2x64_sub( v128_sl64( db,16 ) ); \
INPUT_2x64_sub( v128_sl64( db,15 ) ); \
INPUT_2x64_sub( v128_sl64( db,14 ) ); \
INPUT_2x64_sub( v128_sl64( db,13 ) ); \
INPUT_2x64_sub( v128_sl64( db,12 ) ); \
INPUT_2x64_sub( v128_sl64( db,11 ) ); \
INPUT_2x64_sub( v128_sl64( db,10 ) ); \
INPUT_2x64_sub( v128_sl64( db, 9 ) ); \
INPUT_2x64_sub( v128_sl64( db, 8 ) ); \
INPUT_2x64_sub( v128_sl64( db, 7 ) ); \
INPUT_2x64_sub( v128_sl64( db, 6 ) ); \
INPUT_2x64_sub( v128_sl64( db, 5 ) ); \
INPUT_2x64_sub( v128_sl64( db, 4 ) ); \
INPUT_2x64_sub( v128_sl64( db, 3 ) ); \
INPUT_2x64_sub( v128_sl64( db, 2 ) ); \
INPUT_2x64_sub( v128_sl64( db, 1 ) ); \
INPUT_2x64_sub( db ); \
}
#if 0
// Dependent on the compiler unrolling the loop.
#define INPUT_2x64 \
{ \
v128u64_t db = *buf; \
@@ -1981,6 +2156,7 @@ void hamsi512_4way_close( hamsi_4way_big_context *sc, void *dst )
tp += 8; \
} \
}
#endif
// v3 no ternary logic, 15 instructions, 9 TL equivalent instructions
#define SBOX_2x64( a, b, c, d ) \
@@ -2001,7 +2177,7 @@ void hamsi512_4way_close( hamsi_4way_big_context *sc, void *dst )
{ \
a = v128_rol32( a, 13 ); \
c = v128_rol32( c, 3 ); \
b = v128_xor3( a, b, c ); \
b = v128_xor3( c, a, b ); \
d = v128_xor3( d, c, v128_sl32( a, 3 ) ); \
b = v128_rol32( b, 1 ); \
d = v128_rol32( d, 7 ); \

View File

@@ -72,17 +72,17 @@ typedef struct
size_t partial_len;
uint32_t count_high, count_low;
} hamsi_4way_big_context;
typedef hamsi_4way_big_context hamsi512_4way_context;
typedef hamsi_4way_big_context hamsi512_4x64_context;
void hamsi512_4way_init( hamsi512_4way_context *sc );
void hamsi512_4way_update( hamsi512_4way_context *sc, const void *data,
void hamsi512_4x64_init( hamsi512_4x64_context *sc );
void hamsi512_4x64_update( hamsi512_4x64_context *sc, const void *data,
size_t len );
void hamsi512_4way_close( hamsi512_4way_context *sc, void *dst );
void hamsi512_4x64_close( hamsi512_4x64_context *sc, void *dst );
#define hamsi512_4x64_context hamsi512_4way_context
#define hamsi512_4x64_init hamsi512_4way_init
#define hamsi512_4x64_update hamsi512_4way_update
#define hamsi512_4x64_close hamsi512_4way_close
#define hamsi512_4way_context hamsi512_4x64_context
#define hamsi512_4way_init hamsi512_4x64_init
#define hamsi512_4way_update hamsi512_4x64_update
#define hamsi512_4way_close hamsi512_4x64_close
// Hamsi-512 8x32
@@ -104,7 +104,7 @@ void hamsi512_8x32_full( hamsi512_8x32_context *sc, void *dst, const void *data,
#endif
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#if defined(SIMD512)
// Hamsi-512 8x64
@@ -115,17 +115,17 @@ typedef struct
size_t partial_len;
uint32_t count_high, count_low;
} hamsi_8way_big_context;
typedef hamsi_8way_big_context hamsi512_8way_context;
typedef hamsi_8way_big_context hamsi512_8x64_context;
void hamsi512_8way_init( hamsi512_8way_context *sc );
void hamsi512_8way_update( hamsi512_8way_context *sc, const void *data,
void hamsi512_8x64_init( hamsi512_8x64_context *sc );
void hamsi512_8x64_update( hamsi512_8x64_context *sc, const void *data,
size_t len );
void hamsi512_8way_close( hamsi512_8way_context *sc, void *dst );
void hamsi512_8x64_close( hamsi512_8x64_context *sc, void *dst );
#define hamsi512_8x64_context hamsi512_8way_context
#define hamsi512_8x64_init hamsi512_8way_init
#define hamsi512_8x64_update hamsi512_8way_update
#define hamsi512_8x64_close hamsi512_8way_close
#define hamsi512_8way_context hamsi512_8x64_context
#define hamsi512_8way_init hamsi512_8x64_init
#define hamsi512_8way_update hamsi512_8x64_update
#define hamsi512_8way_close hamsi512_8x64_close
// Hamsi-512 16x32

View File

@@ -53,7 +53,7 @@ extern "C"{
#define SPH_SMALL_FOOTPRINT_HAVAL 1
//#endif
#if defined(__AVX512VL__)
#if defined(VL256)
// ( ~( a ^ b ) ) & c
#define v128_andnotxor( a, b, c ) \
@@ -583,7 +583,7 @@ do { \
// Haval-256 8 way 32 bit avx2
#if defined (__AVX512VL__)
#if defined (VL256)
// ( ~( a ^ b ) ) & c
#define mm256_andnotxor( a, b, c ) \
@@ -882,7 +882,7 @@ do { \
#endif // AVX2
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#if defined(SIMD512)
// ( ~( a ^ b ) ) & c
#define mm512_andnotxor( a, b, c ) \

View File

@@ -82,12 +82,15 @@ typedef struct {
typedef haval_4way_context haval256_5_4way_context;
void haval256_5_4way_init( void *cc );
void haval256_5_4way_update( void *cc, const void *data, size_t len );
//#define haval256_5_4way haval256_5_4way_update
void haval256_5_4way_close( void *cc, void *dst );
#define haval256_4x32_context haval256_5_4way_context
#define haval256_4x32_init haval256_5_4way_init
#define haval256_4x32_update haval256_5_4way_update
#define haval256_4x32_close haval256_5_4way_close
#if defined(__AVX2__)
typedef struct {
@@ -100,14 +103,17 @@ typedef struct {
typedef haval_8way_context haval256_5_8way_context;
void haval256_5_8way_init( void *cc );
void haval256_5_8way_update( void *cc, const void *data, size_t len );
void haval256_5_8way_close( void *cc, void *dst );
#define haval256_8x32_context haval256_5_8way_context
#define haval256_8x32_init haval256_5_8way_init
#define haval256_8x32_update haval256_5_8way_update
#define haval256_8x32_close haval256_5_8way_close
#endif // AVX2
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#if defined(SIMD512)
typedef struct {
__m512i buf[32];
@@ -119,11 +125,14 @@ typedef struct {
typedef haval_16way_context haval256_5_16way_context;
void haval256_5_16way_init( void *cc );
void haval256_5_16way_update( void *cc, const void *data, size_t len );
void haval256_5_16way_close( void *cc, void *dst );
#define haval256_16x32_context haval256_5_16way_context
#define haval256_16x32_init haval256_5_16way_init
#define haval256_16x32_update haval256_5_16way_update
#define haval256_16x32_close haval256_5_16way_close
#endif // AVX512
#ifdef __cplusplus

View File

@@ -204,7 +204,7 @@ static const uint64_t IV512[] =
(state)->H[15] = h7l; \
} while (0)
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#if defined(SIMD512)
#define Sb_8W(x0, x1, x2, x3, c) \
{ \
@@ -364,8 +364,7 @@ static const uint64_t IV512[] =
#if defined(__AVX2__)
#if defined(__AVX512VL__)
//TODO enable for AVX10_256, not used with AVX512VL
#if defined(VL256)
#define notxorandnot( a, b, c ) \
_mm256_ternarylogic_epi64( a, b, c, 0x2d )
@@ -522,7 +521,7 @@ static const uint64_t IV512[] =
#endif // AVX2
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#if defined(SIMD512)
void jh256_8x64_init( jh_8x64_context *sc )
{

View File

@@ -55,7 +55,7 @@
* <code>memcpy()</code>).
*/
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#if defined(SIMD512)
typedef struct
{

View File

@@ -4,7 +4,7 @@
#include "algo-gate-api.h"
#include <stdint.h>
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#if defined(SIMD512)
#define KECCAK_8WAY 1
#elif defined(__AVX2__)
#define KECCAK_4WAY 1
@@ -12,7 +12,7 @@
#define KECCAK_2WAY 1
#endif
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#if defined(SIMD512)
#define SHA3D_8WAY 1
#elif defined(__AVX2__)
#define SHA3D_4WAY 1

View File

@@ -57,7 +57,7 @@ static const uint64_t RC[] = {
#define DO(x) x
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#if defined(SIMD512)
#define INPUT_BUF(size) do { \
size_t j; \
@@ -161,29 +161,25 @@ keccak64_8way_core( keccak64_ctx_m512i *kc, const void *data, size_t len,
static void keccak64_8way_close( keccak64_ctx_m512i *kc, void *dst,
size_t byte_len, size_t lim )
{
unsigned eb;
union {
__m512i tmp[lim + 1];
uint64_t dummy; /* for alignment */
} u;
__m512i tmp[lim + 1] __attribute__ ((aligned (64)));
size_t j;
size_t m512_len = byte_len >> 3;
const unsigned eb = hard_coded_eb;
eb = hard_coded_eb;
if ( kc->ptr == (lim - 8) )
{
const uint64_t t = eb | 0x8000000000000000;
u.tmp[0] = _mm512_set1_epi64( t );
tmp[0] = _mm512_set1_epi64( t );
j = 8;
}
else
{
j = lim - kc->ptr;
u.tmp[0] = _mm512_set1_epi64( eb );
memset_zero_512( u.tmp + 1, (j>>3) - 2 );
u.tmp[ (j>>3) - 1] = _mm512_set1_epi64( 0x8000000000000000 );
tmp[0] = _mm512_set1_epi64( eb );
memset_zero_512( tmp + 1, (j>>3) - 2 );
tmp[ (j>>3) - 1] = _mm512_set1_epi64( 0x8000000000000000 );
}
keccak64_8way_core( kc, u.tmp, j, lim );
keccak64_8way_core( kc, tmp, j, lim );
/* Finalize the "lane complement" */
NOT64( kc->w[ 1], kc->w[ 1] );
NOT64( kc->w[ 2], kc->w[ 2] );
@@ -194,7 +190,7 @@ static void keccak64_8way_close( keccak64_ctx_m512i *kc, void *dst,
memcpy_512( dst, kc->w, m512_len );
}
void keccak256_8way_init( void *kc )
void keccak256_8x64_init( void *kc )
{
keccak64_8way_init( kc, 256 );
}
@@ -361,29 +357,25 @@ keccak64_core( keccak64_ctx_m256i *kc, const void *data, size_t len,
static void keccak64_close( keccak64_ctx_m256i *kc, void *dst, size_t byte_len,
size_t lim )
{
unsigned eb;
union {
__m256i tmp[lim + 1];
uint64_t dummy; /* for alignment */
} u;
__m256i tmp[lim + 1] __attribute__ ((aligned (32)));
size_t j;
size_t m256_len = byte_len >> 3;
const unsigned eb = hard_coded_eb;
eb = hard_coded_eb;
if ( kc->ptr == (lim - 8) )
{
const uint64_t t = eb | 0x8000000000000000;
u.tmp[0] = _mm256_set1_epi64x( t );
tmp[0] = _mm256_set1_epi64x( t );
j = 8;
}
else
{
j = lim - kc->ptr;
u.tmp[0] = _mm256_set1_epi64x( eb );
memset_zero_256( u.tmp + 1, (j>>3) - 2 );
u.tmp[ (j>>3) - 1] = _mm256_set1_epi64x( 0x8000000000000000 );
tmp[0] = _mm256_set1_epi64x( eb );
memset_zero_256( tmp + 1, (j>>3) - 2 );
tmp[ (j>>3) - 1] = _mm256_set1_epi64x( 0x8000000000000000 );
}
keccak64_core( kc, u.tmp, j, lim );
keccak64_core( kc, tmp, j, lim );
/* Finalize the "lane complement" */
NOT64( kc->w[ 1], kc->w[ 1] );
NOT64( kc->w[ 2], kc->w[ 2] );

View File

@@ -4,7 +4,7 @@
#include <stddef.h>
#include "simd-utils.h"
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#if defined(SIMD512)
typedef struct
{

View File

@@ -9,7 +9,7 @@
void sha3d_hash_8way(void *state, const void *input)
{
uint32_t buffer[16*8] __attribute__ ((aligned (128)));
keccak256_8way_context ctx;
keccak256_8x64_context ctx;
keccak256_8x64_init( &ctx );
keccak256_8x64_update( &ctx, input, 80 );
@@ -69,7 +69,7 @@ int scanhash_sha3d_8way( struct work *work, uint32_t max_nonce,
void sha3d_hash_4way(void *state, const void *input)
{
uint32_t buffer[16*4] __attribute__ ((aligned (64)));
keccak256_4way_context ctx;
keccak256_4x64_context ctx;
keccak256_4x64_init( &ctx );
keccak256_4x64_update( &ctx, input, 80 );

View File

@@ -59,7 +59,7 @@ static const uint32_t CNS_INIT[128] __attribute((aligned(64))) = {
};
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#if defined(SIMD512)
#define cns4w(i) mm512_bcast_m128( ( (__m128i*)CNS_INIT)[i] )
@@ -273,8 +273,6 @@ void finalization512_4way( luffa_4way_context *state, uint32 *b )
uint32_t hash[8*4] __attribute((aligned(128)));
__m512i* chainv = state->chainv;
__m512i t[2];
const __m512i shuff_bswap32 = mm512_bcast_m128( _mm_set_epi64x(
0x0c0d0e0f08090a0b, 0x0405060700010203 ) );
/*---- blank round with m=0 ----*/
rnd512_4way( state, NULL );
@@ -289,10 +287,8 @@ void finalization512_4way( luffa_4way_context *state, uint32 *b )
_mm512_store_si512( (__m512i*)&hash[ 0], t[0] );
_mm512_store_si512( (__m512i*)&hash[16], t[1] );
casti_m512i( b,0 ) = _mm512_shuffle_epi8(
casti_m512i( hash,0 ), shuff_bswap32 );
casti_m512i( b,1 ) = _mm512_shuffle_epi8(
casti_m512i( hash,1 ), shuff_bswap32 );
casti_m512i( b,0 ) = mm512_bswap_32( casti_m512i( hash,0 ) );
casti_m512i( b,1 ) = mm512_bswap_32( casti_m512i( hash,1 ) );
rnd512_4way( state, NULL );
@@ -306,10 +302,8 @@ void finalization512_4way( luffa_4way_context *state, uint32 *b )
_mm512_store_si512( (__m512i*)&hash[ 0], t[0] );
_mm512_store_si512( (__m512i*)&hash[16], t[1] );
casti_m512i( b,2 ) = _mm512_shuffle_epi8(
casti_m512i( hash,0 ), shuff_bswap32 );
casti_m512i( b,3 ) = _mm512_shuffle_epi8(
casti_m512i( hash,1 ), shuff_bswap32 );
casti_m512i( b,2 ) = mm512_bswap_32( casti_m512i( hash,0 ) );
casti_m512i( b,3 ) = mm512_bswap_32( casti_m512i( hash,1 ) );
}
int luffa_4way_init( luffa_4way_context *state, int hashbitlen )
@@ -349,16 +343,14 @@ int luffa_4way_update( luffa_4way_context *state, const void *data,
__m512i msg[2];
int i;
int blocks = (int)len >> 5;
const __m512i shuff_bswap32 = mm512_bcast_m128( _mm_set_epi64x(
0x0c0d0e0f08090a0b, 0x0405060700010203 ) );
state->rembytes = (int)len & 0x1F;
// full blocks
for ( i = 0; i < blocks; i++, vdata+=2 )
{
msg[0] = _mm512_shuffle_epi8( vdata[ 0 ], shuff_bswap32 );
msg[1] = _mm512_shuffle_epi8( vdata[ 1 ], shuff_bswap32 );
msg[0] = mm512_bswap_32( vdata[ 0 ] );
msg[1] = mm512_bswap_32( vdata[ 1 ] );
rnd512_4way( state, msg );
}
@@ -367,7 +359,7 @@ int luffa_4way_update( luffa_4way_context *state, const void *data,
if ( state->rembytes )
{
// remaining data bytes
buffer[0] = _mm512_shuffle_epi8( vdata[0], shuff_bswap32 );
buffer[0] = mm512_bswap_32( vdata[0] );
buffer[1] = mm512_bcast128lo_64( 0x0000000080000000 );
}
return 0;
@@ -434,16 +426,14 @@ int luffa512_4way_full( luffa_4way_context *state, void *output,
__m512i msg[2];
int i;
const int blocks = (int)( inlen >> 5 );
const __m512i shuff_bswap32 = mm512_bcast_m128( _mm_set_epi64x(
0x0c0d0e0f08090a0b, 0x0405060700010203 ) );
state->rembytes = inlen & 0x1F;
// full blocks
for ( i = 0; i < blocks; i++, vdata+=2 )
{
msg[0] = _mm512_shuffle_epi8( vdata[ 0 ], shuff_bswap32 );
msg[1] = _mm512_shuffle_epi8( vdata[ 1 ], shuff_bswap32 );
msg[0] = mm512_bswap_32( vdata[ 0 ] );
msg[1] = mm512_bswap_32( vdata[ 1 ] );
rnd512_4way( state, msg );
}
@@ -451,7 +441,7 @@ int luffa512_4way_full( luffa_4way_context *state, void *output,
if ( state->rembytes )
{
// padding of partial block
msg[0] = _mm512_shuffle_epi8( vdata[ 0 ], shuff_bswap32 );
msg[0] = mm512_bswap_32( vdata[ 0 ] );
msg[1] = mm512_bcast128lo_64( 0x0000000080000000 );
rnd512_4way( state, msg );
}
@@ -479,16 +469,14 @@ int luffa_4way_update_close( luffa_4way_context *state,
__m512i msg[2];
int i;
const int blocks = (int)( inlen >> 5 );
const __m512i shuff_bswap32 = mm512_bcast_m128( _mm_set_epi64x(
0x0c0d0e0f08090a0b, 0x0405060700010203 ) );
state->rembytes = inlen & 0x1F;
// full blocks
for ( i = 0; i < blocks; i++, vdata+=2 )
{
msg[0] = _mm512_shuffle_epi8( vdata[ 0 ], shuff_bswap32 );
msg[1] = _mm512_shuffle_epi8( vdata[ 1 ], shuff_bswap32 );
msg[0] = mm512_bswap_32( vdata[ 0 ] );
msg[1] = mm512_bswap_32( vdata[ 1 ] );
rnd512_4way( state, msg );
}
@@ -496,7 +484,7 @@ int luffa_4way_update_close( luffa_4way_context *state,
if ( state->rembytes )
{
// padding of partial block
msg[0] = _mm512_shuffle_epi8( vdata[ 0 ], shuff_bswap32 );
msg[0] = mm512_bswap_32( vdata[ 0 ] );
msg[1] = mm512_bcast128lo_64( 0x0000000080000000 );
rnd512_4way( state, msg );
}
@@ -524,8 +512,7 @@ int luffa_4way_update_close( luffa_4way_context *state,
a = _mm256_xor_si256( a, c0 ); \
b = _mm256_xor_si256( b, c1 );
//TODO Enable for AVX10_256, not used with AVX512 or AVX10_512
#if defined(__AVX512VL__)
#if defined(VL256)
#define MULT2( a0, a1 ) \
{ \
@@ -776,8 +763,6 @@ void finalization512_2way( luffa_2way_context *state, uint32 *b )
uint32 hash[8*2] __attribute((aligned(64)));
__m256i* chainv = state->chainv;
__m256i t0, t1;
const __m256i shuff_bswap32 = mm256_set2_64( 0x0c0d0e0f08090a0b,
0x0405060700010203 );
/*---- blank round with m=0 ----*/
rnd512_2way( state, NULL );
@@ -792,10 +777,8 @@ void finalization512_2way( luffa_2way_context *state, uint32 *b )
_mm256_store_si256( (__m256i*)&hash[0], t0 );
_mm256_store_si256( (__m256i*)&hash[8], t1 );
casti_m256i( b, 0 ) = _mm256_shuffle_epi8(
casti_m256i( hash, 0 ), shuff_bswap32 );
casti_m256i( b, 1 ) = _mm256_shuffle_epi8(
casti_m256i( hash, 1 ), shuff_bswap32 );
casti_m256i( b, 0 ) = mm256_bswap_32( casti_m256i( hash, 0 ) );
casti_m256i( b, 1 ) = mm256_bswap_32( casti_m256i( hash, 1 ) );
rnd512_2way( state, NULL );
@@ -810,10 +793,8 @@ void finalization512_2way( luffa_2way_context *state, uint32 *b )
_mm256_store_si256( (__m256i*)&hash[0], t0 );
_mm256_store_si256( (__m256i*)&hash[8], t1 );
casti_m256i( b, 2 ) = _mm256_shuffle_epi8(
casti_m256i( hash, 0 ), shuff_bswap32 );
casti_m256i( b, 3 ) = _mm256_shuffle_epi8(
casti_m256i( hash, 1 ), shuff_bswap32 );
casti_m256i( b, 2 ) = mm256_bswap_32( casti_m256i( hash, 0 ) );
casti_m256i( b, 3 ) = mm256_bswap_32( casti_m256i( hash, 1 ) );
}
int luffa_2way_init( luffa_2way_context *state, int hashbitlen )
@@ -848,15 +829,13 @@ int luffa_2way_update( luffa_2way_context *state, const void *data,
__m256i msg[2];
int i;
int blocks = (int)len >> 5;
const __m256i shuff_bswap32 = mm256_set2_64( 0x0c0d0e0f08090a0b,
0x0405060700010203 );
state-> rembytes = (int)len & 0x1F;
// full blocks
for ( i = 0; i < blocks; i++, vdata+=2 )
{
msg[0] = _mm256_shuffle_epi8( vdata[ 0 ], shuff_bswap32 );
msg[1] = _mm256_shuffle_epi8( vdata[ 1 ], shuff_bswap32 );
msg[0] = mm256_bswap_32( vdata[ 0 ] );
msg[1] = mm256_bswap_32( vdata[ 1 ] );
rnd512_2way( state, msg );
}
@@ -865,7 +844,7 @@ int luffa_2way_update( luffa_2way_context *state, const void *data,
if ( state->rembytes )
{
// remaining data bytes
buffer[0] = _mm256_shuffle_epi8( vdata[0], shuff_bswap32 );
buffer[0] = mm256_bswap_32( vdata[0] );
buffer[1] = mm256_bcast128lo_64( 0x0000000080000000 );
}
return 0;
@@ -917,16 +896,14 @@ int luffa512_2way_full( luffa_2way_context *state, void *output,
__m256i msg[2];
int i;
const int blocks = (int)( inlen >> 5 );
const __m256i shuff_bswap32 = mm256_set2_64( 0x0c0d0e0f08090a0b,
0x0405060700010203 );
state->rembytes = inlen & 0x1F;
// full blocks
for ( i = 0; i < blocks; i++, vdata+=2 )
{
msg[0] = _mm256_shuffle_epi8( vdata[ 0 ], shuff_bswap32 );
msg[1] = _mm256_shuffle_epi8( vdata[ 1 ], shuff_bswap32 );
msg[0] = mm256_bswap_32( vdata[ 0 ] );
msg[1] = mm256_bswap_32( vdata[ 1 ] );
rnd512_2way( state, msg );
}
@@ -934,7 +911,7 @@ int luffa512_2way_full( luffa_2way_context *state, void *output,
if ( state->rembytes )
{
// padding of partial block
msg[0] = _mm256_shuffle_epi8( vdata[ 0 ], shuff_bswap32 );
msg[0] = mm256_bswap_32( vdata[ 0 ] );
msg[1] = mm256_bcast128lo_64( 0x0000000080000000 );
rnd512_2way( state, msg );
}
@@ -962,16 +939,14 @@ int luffa_2way_update_close( luffa_2way_context *state,
__m256i msg[2];
int i;
const int blocks = (int)( inlen >> 5 );
const __m256i shuff_bswap32 = mm256_set2_64( 0x0c0d0e0f08090a0b,
0x0405060700010203 );
state->rembytes = inlen & 0x1F;
// full blocks
for ( i = 0; i < blocks; i++, vdata+=2 )
{
msg[0] = _mm256_shuffle_epi8( vdata[ 0 ], shuff_bswap32 );
msg[1] = _mm256_shuffle_epi8( vdata[ 1 ], shuff_bswap32 );
msg[0] = mm256_bswap_32( vdata[ 0 ] );
msg[1] = mm256_bswap_32( vdata[ 1 ] );
rnd512_2way( state, msg );
}
@@ -979,7 +954,7 @@ int luffa_2way_update_close( luffa_2way_context *state,
if ( state->rembytes )
{
// padding of partial block
msg[0] = _mm256_shuffle_epi8( vdata[ 0 ], shuff_bswap32 );
msg[0] = mm256_bswap_32( vdata[ 0 ] );
msg[1] = mm256_bcast128lo_64( 0x0000000080000000 );
rnd512_2way( state, msg );
}

View File

@@ -51,7 +51,7 @@
#define LIMIT_512 128
/*********************************/
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#if defined(SIMD512)
typedef struct {
uint32_t buffer[8*4];

View File

@@ -28,8 +28,7 @@
a = v128_xor( a, c0 ); \
b = v128_xor( b, c1 ); \
#if defined(__AVX512VL__)
//TODO enable for AVX10_512 AVX10_256
#if defined(VL256)
#define MULT2( a0, a1 ) \
{ \
@@ -48,29 +47,22 @@
a1 = _mm_alignr_epi8( b, a1, 4 ); \
}
#elif defined(__ARM_NEON)
#elif defined(__ARM_NEON) || defined(__SSE2__)
// { a1_0, 0, a1_0, a1_0 }
#define MULT2( a0, a1 ) \
{ \
v128_t b = v128_xor( a0, v128_and( vdupq_laneq_u32( a1, 0 ), MASK ) ); \
v128_t b = v128_xor( a0, v128_and( v128_bcast32( a1 ), MASK ) ); \
a0 = v128_alignr32( a1, b, 1 ); \
a1 = v128_alignr32( b, a1, 1 ); \
}
#else // assume SSE2
#define MULT2( a0, a1 ) \
{ \
v128_t b = v128_xor( a0, v128_and( _mm_shuffle_epi32( a1, 0 ), MASK ) ); \
a0 = v128_or( _mm_srli_si128( b, 4 ), _mm_slli_si128( a1, 12 ) ); \
a1 = v128_or( _mm_srli_si128( a1, 4 ), _mm_slli_si128( b, 12 ) ); \
}
#else
#warning __FILE__ ":" __LINE__ " Unknown or unsupported CPU architecture."
#endif
#if defined(__AVX512VL__)
//TODO enable for AVX10_512 AVX10_256
#if defined(VL256)
#define SUBCRUMB( a0, a1, a2, a3 ) \
{ \

View File

@@ -68,4 +68,4 @@ int update_and_final_luffa( hashState_luffa *state, void* output,
int luffa_full( hashState_luffa *state, void* output, int hashbitlen,
const void* data, size_t inlen );
#endif // LUFFA_FOR_SSE2_H___
#endif // LUFFA_FOR_SSE2_H__

View File

@@ -15,7 +15,7 @@
#include "algo/groestl/sph_groestl.h"
#endif
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#if defined(SIMD512)
#define ALLIUM_16WAY 1
#elif defined(__AVX2__)
#define ALLIUM_8WAY 1
@@ -26,9 +26,9 @@
#if defined (ALLIUM_16WAY)
typedef union {
keccak256_8way_context keccak;
keccak256_8x64_context keccak;
cube_4way_2buf_context cube;
skein256_8way_context skein;
skein256_8x64_context skein;
#if defined(__VAES__)
groestl256_4way_context groestl;
#else
@@ -60,7 +60,7 @@ static void allium_16way_hash( void *state, const void *midstate_vars,
uint32_t hash15[8] __attribute__ ((aligned (32)));
allium_16way_ctx_holder ctx __attribute__ ((aligned (64)));
blake256_16way_final_rounds_le( vhash, midstate_vars, midhash, block, 14 );
blake256_16x32_final_rounds_le( vhash, midstate_vars, midhash, block, 14 );
dintrlv_16x32( hash0, hash1, hash2, hash3, hash4, hash5, hash6, hash7,
hash8, hash9, hash10, hash11, hash12, hash13, hash14, hash15,
@@ -70,12 +70,12 @@ static void allium_16way_hash( void *state, const void *midstate_vars,
intrlv_8x64( vhashB, hash8, hash9, hash10, hash11, hash12, hash13, hash14,
hash15, 256 );
keccak256_8way_init( &ctx.keccak );
keccak256_8way_update( &ctx.keccak, vhashA, 32 );
keccak256_8way_close( &ctx.keccak, vhashA);
keccak256_8way_init( &ctx.keccak );
keccak256_8way_update( &ctx.keccak, vhashB, 32 );
keccak256_8way_close( &ctx.keccak, vhashB);
keccak256_8x64_init( &ctx.keccak );
keccak256_8x64_update( &ctx.keccak, vhashA, 32 );
keccak256_8x64_close( &ctx.keccak, vhashA);
keccak256_8x64_init( &ctx.keccak );
keccak256_8x64_update( &ctx.keccak, vhashB, 32 );
keccak256_8x64_close( &ctx.keccak, vhashB);
dintrlv_8x64( hash0, hash1, hash2, hash3, hash4, hash5, hash6, hash7,
vhashA, 256 );
@@ -153,12 +153,12 @@ static void allium_16way_hash( void *state, const void *midstate_vars,
intrlv_8x64( vhashB, hash8, hash9, hash10, hash11, hash12, hash13, hash14,
hash15, 256 );
skein256_8way_init( &ctx.skein );
skein256_8way_update( &ctx.skein, vhashA, 32 );
skein256_8way_close( &ctx.skein, vhashA );
skein256_8way_init( &ctx.skein );
skein256_8way_update( &ctx.skein, vhashB, 32 );
skein256_8way_close( &ctx.skein, vhashB );
skein256_8x64_init( &ctx.skein );
skein256_8x64_update( &ctx.skein, vhashA, 32 );
skein256_8x64_close( &ctx.skein, vhashA );
skein256_8x64_init( &ctx.skein );
skein256_8x64_update( &ctx.skein, vhashB, 32 );
skein256_8x64_close( &ctx.skein, vhashB );
dintrlv_8x64( hash0, hash1, hash2, hash3, hash4, hash5, hash6, hash7,
vhashA, 256 );
@@ -251,7 +251,7 @@ int scanhash_allium_16way( struct work *work, uint32_t max_nonce,
n+ 7, n+ 6, n+ 5, n+ 4, n+ 3, n+ 2, n+ 1, n );
// Partialy prehash second block without touching nonces in block_buf[3].
blake256_16way_round0_prehash_le( midstate_vars, block0_hash, block_buf );
blake256_16x32_round0_prehash_le( midstate_vars, block0_hash, block_buf );
do {
allium_16way_hash( hash, midstate_vars, block0_hash, block_buf );
@@ -273,9 +273,9 @@ int scanhash_allium_16way( struct work *work, uint32_t max_nonce,
#elif defined (ALLIUM_8WAY)
typedef union {
keccak256_4way_context keccak;
keccak256_4x64_context keccak;
cube_2way_context cube;
skein256_4way_context skein;
skein256_4x64_context skein;
#if defined(__VAES__)
groestl256_2way_context groestl;
#else
@@ -298,19 +298,19 @@ static void allium_8way_hash( void *hash, const void *midstate_vars,
uint64_t *hash7 = (uint64_t*)hash+28;
allium_8way_ctx_holder ctx __attribute__ ((aligned (64)));
blake256_8way_final_rounds_le( vhashA, midstate_vars, midhash, block, 14 );
blake256_8x32_final_rounds_le( vhashA, midstate_vars, midhash, block, 14 );
dintrlv_8x32( hash0, hash1, hash2, hash3, hash4, hash5, hash6, hash7,
vhashA, 256 );
intrlv_4x64( vhashA, hash0, hash1, hash2, hash3, 256 );
intrlv_4x64( vhashB, hash4, hash5, hash6, hash7, 256 );
keccak256_4way_init( &ctx.keccak );
keccak256_4way_update( &ctx.keccak, vhashA, 32 );
keccak256_4way_close( &ctx.keccak, vhashA );
keccak256_4way_init( &ctx.keccak );
keccak256_4way_update( &ctx.keccak, vhashB, 32 );
keccak256_4way_close( &ctx.keccak, vhashB );
keccak256_4x64_init( &ctx.keccak );
keccak256_4x64_update( &ctx.keccak, vhashA, 32 );
keccak256_4x64_close( &ctx.keccak, vhashA );
keccak256_4x64_init( &ctx.keccak );
keccak256_4x64_update( &ctx.keccak, vhashB, 32 );
keccak256_4x64_close( &ctx.keccak, vhashB );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhashA, 256 );
dintrlv_4x64( hash4, hash5, hash6, hash7, vhashB, 256 );
@@ -350,12 +350,12 @@ static void allium_8way_hash( void *hash, const void *midstate_vars,
intrlv_4x64( vhashA, hash0, hash1, hash2, hash3, 256 );
intrlv_4x64( vhashB, hash4, hash5, hash6, hash7, 256 );
skein256_4way_init( &ctx.skein );
skein256_4way_update( &ctx.skein, vhashA, 32 );
skein256_4way_close( &ctx.skein, vhashA );
skein256_4way_init( &ctx.skein );
skein256_4way_update( &ctx.skein, vhashB, 32 );
skein256_4way_close( &ctx.skein, vhashB );
skein256_4x64_init( &ctx.skein );
skein256_4x64_update( &ctx.skein, vhashA, 32 );
skein256_4x64_close( &ctx.skein, vhashA );
skein256_4x64_init( &ctx.skein );
skein256_4x64_update( &ctx.skein, vhashB, 32 );
skein256_4x64_close( &ctx.skein, vhashB );
#if defined(__VAES__)
@@ -433,7 +433,7 @@ int scanhash_allium_8way( struct work *work, uint32_t max_nonce,
n+ 3, n+ 2, n+ 1, n );
// Partialy prehash second block without touching nonces
blake256_8way_round0_prehash_le( midstate_vars, block0_hash, block_buf );
blake256_8x32_round0_prehash_le( midstate_vars, block0_hash, block_buf );
do {
allium_8way_hash( hash, midstate_vars, block0_hash, block_buf );
@@ -483,7 +483,7 @@ static void allium_4way_hash( void *hash, const void *midstate_vars,
uint64_t *hash3 = (uint64_t*)hash+12;
allium_4way_ctx_holder ctx __attribute__ ((aligned (64)));
blake256_4way_final_rounds_le( vhashA, midstate_vars, midhash, block, 14 );
blake256_4x32_final_rounds_le( vhashA, midstate_vars, midhash, block, 14 );
dintrlv_4x32( hash0, hash1, hash2, hash3, vhashA, 256 );
intrlv_2x64( vhashA, hash0, hash1, 256 );
@@ -588,7 +588,7 @@ int scanhash_allium_4way( struct work *work, uint32_t max_nonce,
block_buf[15] = v128_32( 640 );
// Partialy prehash second block without touching nonces
blake256_4way_round0_prehash_le( midstate_vars, block0_hash, block_buf );
blake256_4x32_round0_prehash_le( midstate_vars, block0_hash, block_buf );
do {
allium_4way_hash( hash, midstate_vars, block0_hash, block_buf );
@@ -616,7 +616,6 @@ int scanhash_allium_4way( struct work *work, uint32_t max_nonce,
//
// 1 way
typedef struct
{
blake256_context blake;

View File

@@ -5,7 +5,7 @@
#include <stdint.h>
#include "lyra2.h"
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#if defined(SIMD512)
#define LYRA2REV3_16WAY 1
#elif defined(__AVX2__)
#define LYRA2REV3_8WAY 1
@@ -49,7 +49,7 @@ bool init_lyra2rev3_ctx();
//////////////////////////////////
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#if defined(SIMD512)
#define LYRA2REV2_16WAY 1
#elif defined(__AVX2__)
#define LYRA2REV2_8WAY 1
@@ -108,7 +108,7 @@ bool lyra2h_thread_init();
/////////////////////////////////////////
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#if defined(SIMD512)
#define PHI2_8WAY 1
#elif defined(__AVX2__) && defined(__AES__)
#define PHI2_4WAY 1

View File

@@ -41,7 +41,7 @@
// lyra2z330, lyra2h,
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#if defined(SIMD512)
/**
* Executes Lyra2 based on the G function from Blake2b. This version supports salts and passwords

View File

@@ -59,7 +59,7 @@ int LYRA2Z( uint64_t*, void *K, uint64_t kLen, const void *pwd,
int LYRA2(void *K, int64_t kLen, const void *pwd, int32_t pwdlen, const void *salt, int32_t saltlen, int64_t timeCost, const int16_t nRows, const int16_t nCols);
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#if defined(SIMD512)
int LYRA2RE_2WAY( void *K, uint64_t kLen, const void *pwd, uint64_t pwdlen,
uint64_t timeCost, uint64_t nRows, uint64_t nCols );

View File

@@ -14,12 +14,12 @@ bool lyra2h_4way_thread_init()
return ( lyra2h_4way_matrix = mm_malloc( LYRA2H_MATRIX_SIZE, 64 ) );
}
static __thread blake256_4way_context l2h_4way_blake_mid;
static __thread blake256_4x32_context l2h_4way_blake_mid;
void lyra2h_4way_midstate( const void* input )
{
blake256_4way_init( &l2h_4way_blake_mid );
blake256_4way_update( &l2h_4way_blake_mid, input, 64 );
blake256_4x32_init( &l2h_4way_blake_mid );
blake256_4x32_update( &l2h_4way_blake_mid, input, 64 );
}
void lyra2h_4way_hash( void *state, const void *input )
@@ -29,11 +29,11 @@ void lyra2h_4way_hash( void *state, const void *input )
uint32_t hash2[8] __attribute__ ((aligned (64)));
uint32_t hash3[8] __attribute__ ((aligned (64)));
uint32_t vhash[8*4] __attribute__ ((aligned (64)));
blake256_4way_context ctx_blake __attribute__ ((aligned (64)));
blake256_4x32_context ctx_blake __attribute__ ((aligned (64)));
memcpy( &ctx_blake, &l2h_4way_blake_mid, sizeof l2h_4way_blake_mid );
blake256_4way_update( &ctx_blake, input + (64*4), 16 );
blake256_4way_close( &ctx_blake, vhash );
blake256_4x32_update( &ctx_blake, input + (64*4), 16 );
blake256_4x32_close( &ctx_blake, vhash );
dintrlv_4x32( hash0, hash1, hash2, hash3, vhash, 256 );

View File

@@ -7,25 +7,24 @@
#include "algo/cubehash/cubehash_sse2.h"
#include "algo/cubehash/cube-hash-2way.h"
#if defined (LYRA2REV2_16WAY)
typedef struct {
blake256_16way_context blake;
keccak256_8way_context keccak;
blake256_16x32_context blake;
keccak256_8x64_context keccak;
cubehashParam cube;
skein256_8way_context skein;
bmw256_16way_context bmw;
skein256_8x64_context skein;
bmw256_16x32_context bmw;
} lyra2v2_16way_ctx_holder __attribute__ ((aligned (64)));
static lyra2v2_16way_ctx_holder l2v2_16way_ctx;
bool init_lyra2rev2_16way_ctx()
{
keccak256_8way_init( &l2v2_16way_ctx.keccak );
keccak256_8x64_init( &l2v2_16way_ctx.keccak );
cubehashInit( &l2v2_16way_ctx.cube, 256, 16, 32 );
skein256_8way_init( &l2v2_16way_ctx.skein );
bmw256_16way_init( &l2v2_16way_ctx.bmw );
skein256_8x64_init( &l2v2_16way_ctx.skein );
bmw256_16x32_init( &l2v2_16way_ctx.bmw );
return true;
}
@@ -51,8 +50,8 @@ void lyra2rev2_16way_hash( void *state, const void *input )
lyra2v2_16way_ctx_holder ctx __attribute__ ((aligned (64)));
memcpy( &ctx, &l2v2_16way_ctx, sizeof(l2v2_16way_ctx) );
blake256_16way_update( &ctx.blake, input + (64<<4), 16 );
blake256_16way_close( &ctx.blake, vhash );
blake256_16x32_update( &ctx.blake, input + (64<<4), 16 );
blake256_16x32_close( &ctx.blake, vhash );
dintrlv_16x32( hash0, hash1, hash2, hash3,
hash4, hash5, hash6, hash7,
@@ -62,17 +61,17 @@ void lyra2rev2_16way_hash( void *state, const void *input )
intrlv_8x64( vhash, hash0, hash1, hash2, hash3,
hash4, hash5, hash6, hash7, 256 );
keccak256_8way_update( &ctx.keccak, vhash, 32 );
keccak256_8way_close( &ctx.keccak, vhash );
keccak256_8x64_update( &ctx.keccak, vhash, 32 );
keccak256_8x64_close( &ctx.keccak, vhash );
dintrlv_8x64( hash0, hash1, hash2, hash3,
hash4, hash5, hash6, hash7, vhash, 256 );
intrlv_8x64( vhash, hash8, hash9, hash10, hash11,
hash12, hash13, hash14, hash15, 256 );
keccak256_8way_init( &ctx.keccak );
keccak256_8way_update( &ctx.keccak, vhash, 32 );
keccak256_8way_close( &ctx.keccak, vhash );
keccak256_8x64_init( &ctx.keccak );
keccak256_8x64_update( &ctx.keccak, vhash, 32 );
keccak256_8x64_close( &ctx.keccak, vhash );
dintrlv_8x64( hash8, hash9, hash10, hash11,
hash12, hash13, hash14, hash15, vhash, 256 );
@@ -122,21 +121,20 @@ void lyra2rev2_16way_hash( void *state, const void *input )
intrlv_8x64( vhash, hash0, hash1, hash2, hash3,
hash4, hash5, hash6, hash7, 256 );
skein256_8way_update( &ctx.skein, vhash, 32 );
skein256_8way_close( &ctx.skein, vhash );
skein256_8x64_update( &ctx.skein, vhash, 32 );
skein256_8x64_close( &ctx.skein, vhash );
dintrlv_8x64( hash0, hash1, hash2, hash3,
hash4, hash5, hash6, hash7, vhash, 256 );
intrlv_8x64( vhash, hash8, hash9, hash10, hash11, hash12,
hash13, hash14, hash15, 256 );
skein256_8way_init( &ctx.skein );
skein256_8way_update( &ctx.skein, vhash, 32 );
skein256_8way_close( &ctx.skein, vhash );
skein256_8x64_init( &ctx.skein );
skein256_8x64_update( &ctx.skein, vhash, 32 );
skein256_8x64_close( &ctx.skein, vhash );
dintrlv_8x64( hash8, hash9, hash10, hash11,
hash12, hash13, hash14, hash15, vhash, 256 );
cubehash_full( &ctx.cube, (byte*) hash0, 256, (const byte*) hash0, 32 );
cubehash_full( &ctx.cube, (byte*) hash1, 256, (const byte*) hash1, 32 );
@@ -160,8 +158,8 @@ void lyra2rev2_16way_hash( void *state, const void *input )
hash8, hash9, hash10, hash11,
hash12, hash13, hash14, hash15, 256 );
bmw256_16way_update( &ctx.bmw, vhash, 32 );
bmw256_16way_close( &ctx.bmw, state );
bmw256_16x32_update( &ctx.bmw, vhash, 32 );
bmw256_16x32_close( &ctx.bmw, state );
}
int scanhash_lyra2rev2_16way( struct work *work, const uint32_t max_nonce,
@@ -186,8 +184,8 @@ int scanhash_lyra2rev2_16way( struct work *work, const uint32_t max_nonce,
mm512_bswap32_intrlv80_16x32( vdata, pdata );
*noncev = _mm512_set_epi32( n+15, n+14, n+13, n+12, n+11, n+10, n+ 9, n+ 8,
n+ 7, n+ 6, n+ 5, n+ 4, n+ 3, n+ 2, n+ 1, n );
blake256_16way_init( &l2v2_16way_ctx.blake );
blake256_16way_update( &l2v2_16way_ctx.blake, vdata, 64 );
blake256_16x32_init( &l2v2_16way_ctx.blake );
blake256_16x32_update( &l2v2_16way_ctx.blake, vdata, 64 );
do
{
@@ -214,21 +212,21 @@ int scanhash_lyra2rev2_16way( struct work *work, const uint32_t max_nonce,
#elif defined (LYRA2REV2_8WAY)
typedef struct {
blake256_8way_context blake;
keccak256_4way_context keccak;
blake256_8x32_context blake;
keccak256_4x64_context keccak;
cubehashParam cube;
skein256_4way_context skein;
bmw256_8way_context bmw;
skein256_4x64_context skein;
bmw256_8x32_context bmw;
} lyra2v2_8way_ctx_holder __attribute__ ((aligned (64)));
static lyra2v2_8way_ctx_holder l2v2_8way_ctx;
bool init_lyra2rev2_8way_ctx()
{
keccak256_4way_init( &l2v2_8way_ctx.keccak );
keccak256_4x64_init( &l2v2_8way_ctx.keccak );
cubehashInit( &l2v2_8way_ctx.cube, 256, 16, 32 );
skein256_4way_init( &l2v2_8way_ctx.skein );
bmw256_8way_init( &l2v2_8way_ctx.bmw );
skein256_4x64_init( &l2v2_8way_ctx.skein );
bmw256_8x32_init( &l2v2_8way_ctx.bmw );
return true;
}
@@ -246,20 +244,20 @@ void lyra2rev2_8way_hash( void *state, const void *input )
lyra2v2_8way_ctx_holder ctx __attribute__ ((aligned (64)));
memcpy( &ctx, &l2v2_8way_ctx, sizeof(l2v2_8way_ctx) );
blake256_8way_update( &ctx.blake, input + (64<<3), 16 );
blake256_8way_close( &ctx.blake, vhash );
blake256_8x32_update( &ctx.blake, input + (64<<3), 16 );
blake256_8x32_close( &ctx.blake, vhash );
dintrlv_8x32( hash0, hash1, hash2, hash3,
hash4, hash5, hash6, hash7, vhash, 256 );
intrlv_4x64( vhash, hash0, hash1, hash2, hash3, 256 );
keccak256_4way_update( &ctx.keccak, vhash, 32 );
keccak256_4way_close( &ctx.keccak, vhash );
keccak256_4x64_update( &ctx.keccak, vhash, 32 );
keccak256_4x64_close( &ctx.keccak, vhash );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 256 );
intrlv_4x64( vhash, hash4, hash5, hash6, hash7, 256 );
keccak256_4way_init( &ctx.keccak );
keccak256_4way_update( &ctx.keccak, vhash, 32 );
keccak256_4way_close( &ctx.keccak, vhash );
keccak256_4x64_init( &ctx.keccak );
keccak256_4x64_update( &ctx.keccak, vhash, 32 );
keccak256_4x64_close( &ctx.keccak, vhash );
dintrlv_4x64( hash4, hash5, hash6, hash7, vhash, 256 );
cubehash_full( &ctx.cube, (byte*) hash0, 256, (const byte*) hash0, 32 );
@@ -282,13 +280,13 @@ void lyra2rev2_8way_hash( void *state, const void *input )
LYRA2REV2( l2v2_wholeMatrix, hash7, 32, hash7, 32, hash7, 32, 1, 4, 4 );
intrlv_4x64( vhash, hash0, hash1, hash2, hash3, 256 );
skein256_4way_update( &ctx.skein, vhash, 32 );
skein256_4way_close( &ctx.skein, vhash );
skein256_4x64_update( &ctx.skein, vhash, 32 );
skein256_4x64_close( &ctx.skein, vhash );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 256 );
intrlv_4x64( vhash, hash4, hash5, hash6, hash7, 256 );
skein256_4way_init( &ctx.skein );
skein256_4way_update( &ctx.skein, vhash, 32 );
skein256_4way_close( &ctx.skein, vhash );
skein256_4x64_init( &ctx.skein );
skein256_4x64_update( &ctx.skein, vhash, 32 );
skein256_4x64_close( &ctx.skein, vhash );
dintrlv_4x64( hash4, hash5, hash6, hash7, vhash, 256 );
cubehash_full( &ctx.cube, (byte*) hash0, 256, (const byte*) hash0, 32 );
@@ -303,8 +301,8 @@ void lyra2rev2_8way_hash( void *state, const void *input )
intrlv_8x32( vhash, hash0, hash1, hash2, hash3,
hash4, hash5, hash6, hash7, 256 );
bmw256_8way_update( &ctx.bmw, vhash, 32 );
bmw256_8way_close( &ctx.bmw, state );
bmw256_8x32_update( &ctx.bmw, vhash, 32 );
bmw256_8x32_close( &ctx.bmw, state );
}
int scanhash_lyra2rev2_8way( struct work *work, const uint32_t max_nonce,
@@ -328,8 +326,8 @@ int scanhash_lyra2rev2_8way( struct work *work, const uint32_t max_nonce,
mm256_bswap32_intrlv80_8x32( vdata, pdata );
*noncev = _mm256_set_epi32( n+7, n+6, n+5, n+4, n+3, n+2, n+1, n );
blake256_8way_init( &l2v2_8way_ctx.blake );
blake256_8way_update( &l2v2_8way_ctx.blake, vdata, 64 );
blake256_8x32_init( &l2v2_8way_ctx.blake );
blake256_8x32_update( &l2v2_8way_ctx.blake, vdata, 64 );
do
{
@@ -356,21 +354,21 @@ int scanhash_lyra2rev2_8way( struct work *work, const uint32_t max_nonce,
#elif defined (LYRA2REV2_4WAY)
typedef struct {
blake256_4way_context blake;
keccak256_4way_context keccak;
blake256_4x32_context blake;
keccak256_4x64_context keccak;
cubehashParam cube;
skein256_4way_context skein;
bmw256_4way_context bmw;
skein256_4x64_context skein;
bmw256_4x32_context bmw;
} lyra2v2_4way_ctx_holder;
static lyra2v2_4way_ctx_holder l2v2_4way_ctx;
bool init_lyra2rev2_4way_ctx()
{
keccak256_4way_init( &l2v2_4way_ctx.keccak );
keccak256_4x64_init( &l2v2_4way_ctx.keccak );
cubehashInit( &l2v2_4way_ctx.cube, 256, 16, 32 );
skein256_4way_init( &l2v2_4way_ctx.skein );
bmw256_4way_init( &l2v2_4way_ctx.bmw );
skein256_4x64_init( &l2v2_4way_ctx.skein );
bmw256_4x32_init( &l2v2_4way_ctx.bmw );
return true;
}
@@ -385,13 +383,13 @@ void lyra2rev2_4way_hash( void *state, const void *input )
lyra2v2_4way_ctx_holder ctx __attribute__ ((aligned (64)));
memcpy( &ctx, &l2v2_4way_ctx, sizeof(l2v2_4way_ctx) );
blake256_4way_update( &ctx.blake, input + (64<<2), 16 );
blake256_4way_close( &ctx.blake, vhash );
blake256_4x32_update( &ctx.blake, input + (64<<2), 16 );
blake256_4x32_close( &ctx.blake, vhash );
rintrlv_4x32_4x64( vhash64, vhash, 256 );
keccak256_4way_update( &ctx.keccak, vhash64, 32 );
keccak256_4way_close( &ctx.keccak, vhash64 );
keccak256_4x64_update( &ctx.keccak, vhash64, 32 );
keccak256_4x64_close( &ctx.keccak, vhash64 );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhash64, 256 );
@@ -410,8 +408,8 @@ void lyra2rev2_4way_hash( void *state, const void *input )
intrlv_4x64( vhash64, hash0, hash1, hash2, hash3, 256 );
skein256_4way_update( &ctx.skein, vhash64, 32 );
skein256_4way_close( &ctx.skein, vhash64 );
skein256_4x64_update( &ctx.skein, vhash64, 32 );
skein256_4x64_close( &ctx.skein, vhash64 );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhash64, 256 );
@@ -426,8 +424,8 @@ void lyra2rev2_4way_hash( void *state, const void *input )
intrlv_4x32( vhash, hash0, hash1, hash2, hash3, 256 );
bmw256_4way_update( &ctx.bmw, vhash, 32 );
bmw256_4way_close( &ctx.bmw, state );
bmw256_4x32_update( &ctx.bmw, vhash, 32 );
bmw256_4x32_close( &ctx.bmw, state );
}
int scanhash_lyra2rev2_4way( struct work *work, uint32_t max_nonce,
@@ -451,8 +449,8 @@ int scanhash_lyra2rev2_4way( struct work *work, uint32_t max_nonce,
v128_bswap32_intrlv80_4x32( vdata, pdata );
blake256_4way_init( &l2v2_4way_ctx.blake );
blake256_4way_update( &l2v2_4way_ctx.blake, vdata, 64 );
blake256_4x32_init( &l2v2_4way_ctx.blake );
blake256_4x32_update( &l2v2_4way_ctx.blake, vdata, 64 );
do
{

View File

@@ -9,18 +9,18 @@
#if defined (LYRA2REV3_16WAY)
typedef struct {
blake256_16way_context blake;
blake256_16x32_context blake;
cube_4way_context cube;
bmw256_16way_context bmw;
bmw256_16x32_context bmw;
} lyra2v3_16way_ctx_holder;
static __thread lyra2v3_16way_ctx_holder l2v3_16way_ctx;
bool init_lyra2rev3_16way_ctx()
{
blake256_16way_init( &l2v3_16way_ctx.blake );
blake256_16x32_init( &l2v3_16way_ctx.blake );
cube_4way_init( &l2v3_16way_ctx.cube, 256, 16, 32 );
bmw256_16way_init( &l2v3_16way_ctx.bmw );
bmw256_16x32_init( &l2v3_16way_ctx.bmw );
return true;
}
@@ -46,8 +46,8 @@ void lyra2rev3_16way_hash( void *state, const void *input )
lyra2v3_16way_ctx_holder ctx __attribute__ ((aligned (64)));
memcpy( &ctx, &l2v3_16way_ctx, sizeof(l2v3_16way_ctx) );
blake256_16way_update( &ctx.blake, input + (64*16), 16 );
blake256_16way_close( &ctx.blake, vhash );
blake256_16x32_update( &ctx.blake, input + (64*16), 16 );
blake256_16x32_close( &ctx.blake, vhash );
dintrlv_16x32( hash0, hash1, hash2, hash3, hash4, hash5, hash6, hash7,
hash8, hash9, hash10, hash11 ,hash12, hash13, hash14, hash15,
@@ -120,8 +120,8 @@ void lyra2rev3_16way_hash( void *state, const void *input )
hash7, hash8, hash9, hash10, hash11, hash12, hash13, hash14,
hash15, 256 );
bmw256_16way_update( &ctx.bmw, vhash, 32 );
bmw256_16way_close( &ctx.bmw, state );
bmw256_16x32_update( &ctx.bmw, vhash, 32 );
bmw256_16x32_close( &ctx.bmw, state );
}
@@ -145,8 +145,8 @@ int scanhash_lyra2rev3_16way( struct work *work, const uint32_t max_nonce,
mm512_bswap32_intrlv80_16x32( vdata, pdata );
blake256_16way_init( &l2v3_16way_ctx.blake );
blake256_16way_update( &l2v3_16way_ctx.blake, vdata, 64 );
blake256_16x32_init( &l2v3_16way_ctx.blake );
blake256_16x32_update( &l2v3_16way_ctx.blake, vdata, 64 );
do
{
@@ -178,18 +178,18 @@ int scanhash_lyra2rev3_16way( struct work *work, const uint32_t max_nonce,
#elif defined (LYRA2REV3_8WAY)
typedef struct {
blake256_8way_context blake;
blake256_8x32_context blake;
cubehashParam cube;
bmw256_8way_context bmw;
bmw256_8x32_context bmw;
} lyra2v3_8way_ctx_holder;
static __thread lyra2v3_8way_ctx_holder l2v3_8way_ctx;
bool init_lyra2rev3_8way_ctx()
{
blake256_8way_init( &l2v3_8way_ctx.blake );
blake256_8x32_init( &l2v3_8way_ctx.blake );
cubehashInit( &l2v3_8way_ctx.cube, 256, 16, 32 );
bmw256_8way_init( &l2v3_8way_ctx.bmw );
bmw256_8x32_init( &l2v3_8way_ctx.bmw );
return true;
}
@@ -207,8 +207,8 @@ void lyra2rev3_8way_hash( void *state, const void *input )
lyra2v3_8way_ctx_holder ctx __attribute__ ((aligned (64)));
memcpy( &ctx, &l2v3_8way_ctx, sizeof(l2v3_8way_ctx) );
blake256_8way_update( &ctx.blake, input + (64*8), 16 );
blake256_8way_close( &ctx.blake, vhash );
blake256_8x32_update( &ctx.blake, input + (64*8), 16 );
blake256_8x32_close( &ctx.blake, vhash );
dintrlv_8x32( hash0, hash1, hash2, hash3,
hash4, hash5, hash6, hash7, vhash, 256 );
@@ -243,8 +243,8 @@ void lyra2rev3_8way_hash( void *state, const void *input )
intrlv_8x32( vhash, hash0, hash1, hash2, hash3,
hash4, hash5, hash6, hash7, 256 );
bmw256_8way_update( &ctx.bmw, vhash, 32 );
bmw256_8way_close( &ctx.bmw, state );
bmw256_8x32_update( &ctx.bmw, vhash, 32 );
bmw256_8x32_close( &ctx.bmw, state );
}
@@ -269,8 +269,8 @@ int scanhash_lyra2rev3_8way( struct work *work, const uint32_t max_nonce,
mm256_bswap32_intrlv80_8x32( vdata, pdata );
*noncev = _mm256_set_epi32( n+7, n+6, n+5, n+4, n+3, n+2, n+1, n );
blake256_8way_init( &l2v3_8way_ctx.blake );
blake256_8way_update( &l2v3_8way_ctx.blake, vdata, 64 );
blake256_8x32_init( &l2v3_8way_ctx.blake );
blake256_8x32_update( &l2v3_8way_ctx.blake, vdata, 64 );
do
{
@@ -300,19 +300,18 @@ int scanhash_lyra2rev3_8way( struct work *work, const uint32_t max_nonce,
#if defined (LYRA2REV3_4WAY)
typedef struct {
blake256_4way_context blake;
blake256_4x32_context blake;
cubehashParam cube;
bmw256_4way_context bmw;
bmw256_4x32_context bmw;
} lyra2v3_4way_ctx_holder;
//static lyra2v3_4way_ctx_holder l2v3_4way_ctx;
static __thread lyra2v3_4way_ctx_holder l2v3_4way_ctx;
bool init_lyra2rev3_4way_ctx()
{
blake256_4way_init( &l2v3_4way_ctx.blake );
blake256_4x32_init( &l2v3_4way_ctx.blake );
cubehashInit( &l2v3_4way_ctx.cube, 256, 16, 32 );
bmw256_4way_init( &l2v3_4way_ctx.bmw );
bmw256_4x32_init( &l2v3_4way_ctx.bmw );
return true;
}
@@ -326,8 +325,8 @@ void lyra2rev3_4way_hash( void *state, const void *input )
lyra2v3_4way_ctx_holder ctx __attribute__ ((aligned (64)));
memcpy( &ctx, &l2v3_4way_ctx, sizeof(l2v3_4way_ctx) );
blake256_4way_update( &ctx.blake, input + (64*4), 16 );
blake256_4way_close( &ctx.blake, vhash );
blake256_4x32_update( &ctx.blake, input + (64*4), 16 );
blake256_4x32_close( &ctx.blake, vhash );
dintrlv_4x32( hash0, hash1, hash2, hash3, vhash, 256 );
LYRA2REV3( l2v3_wholeMatrix, hash0, 32, hash0, 32, hash0, 32, 1, 4, 4 );
@@ -349,8 +348,8 @@ void lyra2rev3_4way_hash( void *state, const void *input )
LYRA2REV3( l2v3_wholeMatrix, hash3, 32, hash3, 32, hash3, 32, 1, 4, 4 );
intrlv_4x32( vhash, hash0, hash1, hash2, hash3, 256 );
bmw256_4way_update( &ctx.bmw, vhash, 32 );
bmw256_4way_close( &ctx.bmw, state );
bmw256_4x32_update( &ctx.bmw, vhash, 32 );
bmw256_4x32_close( &ctx.bmw, state );
}
int scanhash_lyra2rev3_4way( struct work *work, const uint32_t max_nonce,
@@ -374,8 +373,8 @@ int scanhash_lyra2rev3_4way( struct work *work, const uint32_t max_nonce,
v128_bswap32_intrlv80_4x32( vdata, pdata );
*noncev = _mm_set_epi32( n+3, n+2, n+1, n );
blake256_4way_init( &l2v3_4way_ctx.blake );
blake256_4way_update( &l2v3_4way_ctx.blake, vdata, 64 );
blake256_4x32_init( &l2v3_4way_ctx.blake );
blake256_4x32_update( &l2v3_4way_ctx.blake, vdata, 64 );
do
{

View File

@@ -3,7 +3,7 @@
#include "lyra2.h"
#include "algo/blake/blake256-hash.h"
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#if defined(SIMD512)
#define LYRA2Z_16WAY 1
#elif defined(__AVX2__)
#define LYRA2Z_8WAY 1
@@ -45,7 +45,7 @@ static void lyra2z_16way_hash( void *state, const void *midstate_vars,
uint32_t hash14[8] __attribute__ ((aligned (32)));
uint32_t hash15[8] __attribute__ ((aligned (32)));
blake256_16way_final_rounds_le( vhash, midstate_vars, midhash, block, 14 );
blake256_16x32_final_rounds_le( vhash, midstate_vars, midhash, block, 14 );
dintrlv_16x32( hash0, hash1, hash2, hash3, hash4, hash5, hash6, hash7,
hash8, hash9, hash10, hash11 ,hash12, hash13, hash14, hash15,
@@ -139,7 +139,7 @@ int scanhash_lyra2z_16way( struct work *work, uint32_t max_nonce,
n+ 7, n+ 6, n+ 5, n+ 4, n+ 3, n+ 2, n +1, n );
// Partialy prehash second block without touching nonces in block_buf[3].
blake256_16way_round0_prehash_le( midstate_vars, block0_hash, block_buf );
blake256_16x32_round0_prehash_le( midstate_vars, block0_hash, block_buf );
do {
lyra2z_16way_hash( hash, midstate_vars, block0_hash, block_buf );
@@ -180,7 +180,7 @@ static void lyra2z_8way_hash( void *state, const void *midstate_vars,
uint32_t hash7[8] __attribute__ ((aligned (32)));
uint32_t vhash[8*8] __attribute__ ((aligned (64)));
blake256_8way_final_rounds_le( vhash, midstate_vars, midhash, block, 14 );
blake256_8x32_final_rounds_le( vhash, midstate_vars, midhash, block, 14 );
dintrlv_8x32( hash0, hash1, hash2, hash3,
hash4, hash5, hash6, hash7, vhash, 256 );
@@ -246,7 +246,7 @@ int scanhash_lyra2z_8way( struct work *work, uint32_t max_nonce,
_mm256_set_epi32( n+ 7, n+ 6, n+ 5, n+ 4, n+ 3, n+ 2, n +1, n );
// Partialy prehash second block without touching nonces
blake256_8way_round0_prehash_le( midstate_vars, block0_hash, block_buf );
blake256_8x32_round0_prehash_le( midstate_vars, block0_hash, block_buf );
do {
lyra2z_8way_hash( hash, midstate_vars, block0_hash, block_buf );
@@ -279,12 +279,12 @@ bool lyra2z_4way_thread_init()
return ( lyra2z_4way_matrix = mm_malloc( LYRA2Z_MATRIX_SIZE, 64 ) );
}
static __thread blake256_4way_context l2z_4way_blake_mid;
static __thread blake256_4x32_context l2z_4way_blake_mid;
void lyra2z_4way_midstate( const void* input )
{
blake256_4way_init( &l2z_4way_blake_mid );
blake256_4way_update( &l2z_4way_blake_mid, input, 64 );
blake256_4x32_init( &l2z_4way_blake_mid );
blake256_4x32_update( &l2z_4way_blake_mid, input, 64 );
}
void lyra2z_4way_hash( void *hash, const void *midstate_vars,
@@ -295,15 +295,8 @@ void lyra2z_4way_hash( void *hash, const void *midstate_vars,
uint32_t hash2[8] __attribute__ ((aligned (64)));
uint32_t hash3[8] __attribute__ ((aligned (64)));
uint32_t vhash[8*4] __attribute__ ((aligned (64)));
// blake256_4way_context ctx_blake __attribute__ ((aligned (64)));
blake256_4way_final_rounds_le( vhash, midstate_vars, midhash, block, 14 );
/*
memcpy( &ctx_blake, &l2z_4way_blake_mid, sizeof l2z_4way_blake_mid );
blake256_4way_update( &ctx_blake, input + (64*4), 16 );
blake256_4way_close( &ctx_blake, vhash );
*/
blake256_4x32_final_rounds_le( vhash, midstate_vars, midhash, block, 14 );
dintrlv_4x32( hash0, hash1, hash2, hash3, vhash, 256 );
@@ -357,7 +350,7 @@ int scanhash_lyra2z_4way( struct work *work, uint32_t max_nonce,
block_buf[15] = v128_32( 640 );
// Partialy prehash second block without touching nonces
blake256_4way_round0_prehash_le( midstate_vars, block0_hash, block_buf );
blake256_4x32_round0_prehash_le( midstate_vars, block0_hash, block_buf );
do {
lyra2z_4way_hash( hash, midstate_vars, block0_hash, block_buf );
@@ -454,11 +447,9 @@ bool register_lyra2z_algo( algo_gate_t* gate )
#if defined(LYRA2Z_16WAY)
gate->miner_thread_init = (void*)&lyra2z_16way_thread_init;
gate->scanhash = (void*)&scanhash_lyra2z_16way;
// gate->hash = (void*)&lyra2z_16way_hash;
#elif defined(LYRA2Z_8WAY)
gate->miner_thread_init = (void*)&lyra2z_8way_thread_init;
gate->scanhash = (void*)&scanhash_lyra2z_8way;
// gate->hash = (void*)&lyra2z_8way_hash;
#elif defined(LYRA2Z_4WAY)
gate->miner_thread_init = (void*)&lyra2z_4way_thread_init;
gate->scanhash = (void*)&scanhash_lyra2z_4way;

View File

@@ -4,7 +4,7 @@
#include "algo/gost/sph_gost.h"
#include "algo/cubehash/cubehash_sse2.h"
#include "lyra2.h"
#if defined(__VAES__) && defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#if defined(__VAES__) && defined(SIMD512)
#include "algo/echo/echo-hash-4way.h"
#elif defined(__AES__)
#include "algo/echo/aes_ni/hash_api.h"

View File

@@ -27,7 +27,7 @@
#include "lyra2.h"
#include "simd-utils.h"
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#if defined(SIMD512)
inline void squeeze_2way( uint64_t *State, byte *Out, unsigned int len )
{

View File

@@ -43,9 +43,9 @@ static const uint64_t blake2b_IV[8] =
0x1f83d9abfb41bd6bULL, 0x5be0cd19137e2179ULL
};
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#if defined(SIMD512)
#define G2W_4X64(a,b,c,d) \
#define G2W(a,b,c,d) \
a = _mm512_add_epi64( a, b ); \
d = _mm512_ror_epi64( _mm512_xor_si512( d, a ), 32 ); \
c = _mm512_add_epi64( c, d ); \
@@ -56,27 +56,15 @@ static const uint64_t blake2b_IV[8] =
b = _mm512_ror_epi64( _mm512_xor_si512( b, c ), 63 );
#define LYRA_ROUND_2WAY_AVX512( s0, s1, s2, s3 ) \
G2W_4X64( s0, s1, s2, s3 ); \
G2W( s0, s1, s2, s3 ); \
s0 = mm512_shufll256_64( s0 ); \
s3 = mm512_swap256_128( s3); \
s3 = mm512_swap256_128( s3 ); \
s2 = mm512_shuflr256_64( s2 ); \
G2W_4X64( s0, s1, s2, s3 ); \
G2W( s0, s1, s2, s3 ); \
s0 = mm512_shuflr256_64( s0 ); \
s3 = mm512_swap256_128( s3 ); \
s2 = mm512_shufll256_64( s2 );
/*
#define LYRA_ROUND_2WAY_AVX512( s0, s1, s2, s3 ) \
G2W_4X64( s0, s1, s2, s3 ); \
s3 = mm512_shufll256_64( s3 ); \
s1 = mm512_shuflr256_64( s1); \
s2 = mm512_swap256_128( s2 ); \
G2W_4X64( s0, s1, s2, s3 ); \
s3 = mm512_shuflr256_64( s3 ); \
s1 = mm512_shufll256_64( s1 ); \
s2 = mm512_swap256_128( s2 );
*/
#define LYRA_12_ROUNDS_2WAY_AVX512( s0, s1, s2, s3 ) \
LYRA_ROUND_2WAY_AVX512( s0, s1, s2, s3 ) \
LYRA_ROUND_2WAY_AVX512( s0, s1, s2, s3 ) \
@@ -95,7 +83,7 @@ static const uint64_t blake2b_IV[8] =
#if defined(__AVX2__)
#define G_4X64(a,b,c,d) \
#define G_AVX2(a,b,c,d) \
a = _mm256_add_epi64( a, b ); \
d = mm256_ror_64( _mm256_xor_si256( d, a ), 32 ); \
c = _mm256_add_epi64( c, d ); \
@@ -107,27 +95,15 @@ static const uint64_t blake2b_IV[8] =
// Pivot about s1 instead of s0 reduces latency.
#define LYRA_ROUND_AVX2( s0, s1, s2, s3 ) \
G_4X64( s0, s1, s2, s3 ); \
G_AVX2( s0, s1, s2, s3 ); \
s0 = mm256_shufll_64( s0 ); \
s3 = mm256_swap_128( s3); \
s3 = mm256_swap_128( s3 ); \
s2 = mm256_shuflr_64( s2 ); \
G_4X64( s0, s1, s2, s3 ); \
G_AVX2( s0, s1, s2, s3 ); \
s0 = mm256_shuflr_64( s0 ); \
s3 = mm256_swap_128( s3 ); \
s2 = mm256_shufll_64( s2 );
/*
#define LYRA_ROUND_AVX2( s0, s1, s2, s3 ) \
G_4X64( s0, s1, s2, s3 ); \
s3 = mm256_shufll_64( s3 ); \
s1 = mm256_shuflr_64( s1); \
s2 = mm256_swap_128( s2 ); \
G_4X64( s0, s1, s2, s3 ); \
s3 = mm256_shuflr_64( s3 ); \
s1 = mm256_shufll_64( s1 ); \
s2 = mm256_swap_128( s2 );
*/
#define LYRA_12_ROUNDS_AVX2( s0, s1, s2, s3 ) \
LYRA_ROUND_AVX2( s0, s1, s2, s3 ) \
LYRA_ROUND_AVX2( s0, s1, s2, s3 ) \
@@ -148,29 +124,29 @@ static const uint64_t blake2b_IV[8] =
// process 2 columns in parallel
// returns void, all args updated
#define G_2X64(a,b,c,d) \
#define G_128(a,b,c,d) \
a = v128_add64( a, b ); \
d = v128_ror64( v128_xor( d, a), 32 ); \
d = v128_ror64xor( d, a, 32 ); \
c = v128_add64( c, d ); \
b = v128_ror64( v128_xor( b, c ), 24 ); \
b = v128_ror64xor( b, c, 24 ); \
a = v128_add64( a, b ); \
d = v128_ror64( v128_xor( d, a ), 16 ); \
d = v128_ror64xor( d, a, 16 ); \
c = v128_add64( c, d ); \
b = v128_ror64( v128_xor( b, c ), 63 );
b = v128_ror64xor( b, c, 63 );
#define LYRA_ROUND_AVX(s0,s1,s2,s3,s4,s5,s6,s7) \
{ \
v128u64_t t; \
G_2X64( s0, s2, s4, s6 ); \
G_2X64( s1, s3, s5, s7 ); \
G_128( s0, s2, s4, s6 ); \
G_128( s1, s3, s5, s7 ); \
t = v128_alignr64( s7, s6, 1 ); \
s6 = v128_alignr64( s6, s7, 1 ); \
s7 = t; \
t = v128_alignr64( s2, s3, 1 ); \
s2 = v128_alignr64( s3, s2, 1 ); \
s3 = t; \
G_2X64( s0, s2, s5, s6 ); \
G_2X64( s1, s3, s4, s7 ); \
G_128( s0, s2, s5, s6 ); \
G_128( s1, s3, s4, s7 ); \
t = v128_alignr64( s6, s7, 1 ); \
s6 = v128_alignr64( s7, s6, 1 ); \
s7 = t; \
@@ -195,10 +171,6 @@ static const uint64_t blake2b_IV[8] =
#endif // AVX2 else SSE2
static inline uint64_t rotr64( const uint64_t w, const unsigned c ){
return ( w >> c ) | ( w << ( 64 - c ) );
}
#define G( r, i, a, b, c, d ) \
{ \
a = a + b; \
@@ -222,7 +194,7 @@ static inline uint64_t rotr64( const uint64_t w, const unsigned c ){
G( r, 7, v[ 3], v[ 4], v[ 9], v[14] );
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#if defined(SIMD512)
union _ovly_512
{

View File

@@ -1,8 +1,6 @@
#include "cpuminer-config.h"
#include "algo-gate-api.h"
#if !defined(__APPLE__)
#include <gmp.h>
#include <stdbool.h>
#include <stdlib.h>
@@ -33,6 +31,7 @@ static inline double exp_n( double xt )
return exp( xt );
}
/*
static inline double exp_n2( double x1, double x2 )
{
double p1 = -700., p2 = -37., p3 = -0.8e-8, p4 = 0.8e-8,
@@ -53,6 +52,7 @@ static inline double exp_n2( double x1, double x2 )
else if ( xt > p6 - 1.e-200 )
return 0.;
}
*/
double swit2_( double wvnmb )
{
@@ -298,15 +298,9 @@ int scanhash_m7m_hash( struct work* work, uint64_t max_nonce,
return 0;
}
#endif // not apple
bool register_m7m_algo( algo_gate_t *gate )
{
#if defined(__APPLE__)
applog( LOG_ERR, "M7M algo is not supported on MacOS");
return false;
#else
gate->optimizations = SHA_OPT;
gate->optimizations = SHA256_OPT;
init_m7m_ctx();
gate->scanhash = (void*)&scanhash_m7m_hash;
gate->build_stratum_request = (void*)&std_be_build_stratum_request;
@@ -315,6 +309,5 @@ bool register_m7m_algo( algo_gate_t *gate )
gate->set_work_data_endian = (void*)&set_work_data_big_endian;
opt_target_factor = 65536.0;
return true;
#endif
}

View File

@@ -4,7 +4,7 @@
#include "algo-gate-api.h"
#include <stdint.h>
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#if defined(SIMD512)
#define NIST5_8WAY 1
#elif defined(__AVX2__) && defined(__AES__)
#define NIST5_4WAY 1

View File

@@ -71,8 +71,7 @@ do { \
} while (0)
#define GAMMA_4W(n0, n1, n2, n4) \
(g ## n0 = v128_xor( a ## n0, \
v128_or( a ## n1, v128_not( a ## n2 ) ) ) )
(g ## n0 = v128_xor( a ## n0, v128_ornot( a ## n2, a ## n1 ) ) )
#define PI_ALL_4W do { \
a0 = g0; \
@@ -312,7 +311,7 @@ do { \
BUPDATE1_8W( 7, 1 ); \
} while (0)
#if defined(__AVX512VL__)
#if defined(VL256)
#define GAMMA_8W(n0, n1, n2, n4) \
( g ## n0 = _mm256_ternarylogic_epi32( a ## n0, a ## n2, a ## n1, 0x4b ) )

View File

@@ -18,11 +18,14 @@ typedef struct {
} panama_4way_context __attribute__ ((aligned (64)));
void panama_4way_init( void *cc );
void panama_4way_update( void *cc, const void *data, size_t len );
void panama_4way_close( void *cc, void *dst );
#define panama_4x32_context panama_4way_context
#define panama_4x32_init panama_4way_init
#define panama_4x32_update panama_4way_update
#define panama_4x32_close panama_4way_close
#if defined(__AVX2__)
typedef struct {
@@ -34,10 +37,13 @@ typedef struct {
} panama_8way_context __attribute__ ((aligned (128)));
void panama_8way_init( void *cc );
void panama_8way_update( void *cc, const void *data, size_t len );
void panama_8way_close( void *cc, void *dst );
#define panama_8x32_context panama_8way_context
#define panama_8x32_init panama_8way_init
#define panama_8x32_update panama_8way_update
#define panama_8x32_close panama_8way_close
#endif
#endif

View File

@@ -4,7 +4,7 @@
#include "algo-gate-api.h"
#include <stdint.h>
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#if defined(SIMD512)
#define ANIME_8WAY 1
#elif defined(__AVX2__) && defined(__AES__)
#define ANIME_4WAY 1

View File

@@ -11,7 +11,6 @@
#include "algo/luffa/luffa-hash-2way.h"
#include "algo/cubehash/cube-hash-2way.h"
#include "algo/cubehash/cubehash_sse2.h"
#include "algo/simd/nist.h"
#include "algo/shavite/sph_shavite.h"
#include "algo/shavite/shavite-hash-2way.h"
#include "algo/simd/simd-hash-2way.h"
@@ -32,20 +31,20 @@
union _hmq1725_8way_context_overlay
{
blake512_8way_context blake;
bmw512_8way_context bmw;
skein512_8way_context skein;
jh512_8way_context jh;
keccak512_8way_context keccak;
blake512_8x64_context blake;
bmw512_8x64_context bmw;
skein512_8x64_context skein;
jh512_8x64_context jh;
keccak512_8x64_context keccak;
luffa_4way_context luffa;
cube_4way_context cube;
simd_4way_context simd;
hamsi512_8way_context hamsi;
hamsi512_8x64_context hamsi;
hashState_fugue fugue;
shabal512_8way_context shabal;
shabal512_8x32_context shabal;
sph_whirlpool_context whirlpool;
sha512_8way_context sha512;
haval256_5_8way_context haval;
sha512_8x64_context sha512;
haval256_8x32_context haval;
#if defined(__VAES__)
groestl512_4way_context groestl;
shavite512_4way_context shavite;
@@ -82,7 +81,7 @@ extern void hmq1725_8way_hash(void *state, const void *input)
__m512i* vhB = (__m512i*)vhashB;
__m512i* vhC = (__m512i*)vhashC;
bmw512_8way_full( &ctx.bmw, vhash, input, 80 );
bmw512_8x64_full( &ctx.bmw, vhash, input, 80 );
dintrlv_8x64_512( hash0, hash1, hash2, hash3,
hash4, hash5, hash6, hash7, vhash );
@@ -142,26 +141,26 @@ extern void hmq1725_8way_hash(void *state, const void *input)
// B
if ( likely( vh_mask & 0xff ) )
skein512_8way_full( &ctx.skein, vhashB, vhash, 64 );
skein512_8x64_full( &ctx.skein, vhashB, vhash, 64 );
mm512_blend_hash_8x64( vh, vhC, vhB, vh_mask );
jh512_8way_init( &ctx.jh );
jh512_8way_update( &ctx.jh, vhash, 64 );
jh512_8way_close( &ctx.jh, vhash );
jh512_8x64_init( &ctx.jh );
jh512_8x64_update( &ctx.jh, vhash, 64 );
jh512_8x64_close( &ctx.jh, vhash );
keccak512_8way_init( &ctx.keccak );
keccak512_8way_update( &ctx.keccak, vhash, 64 );
keccak512_8way_close( &ctx.keccak, vhash );
keccak512_8x64_init( &ctx.keccak );
keccak512_8x64_update( &ctx.keccak, vhash, 64 );
keccak512_8x64_close( &ctx.keccak, vhash );
vh_mask = _mm512_testn_epi64_mask( vh[0], vmask );
// A
if ( ( vh_mask & 0xff ) != 0xff )
blake512_8way_full( &ctx.blake, vhashA, vhash, 64 );
blake512_8x64_full( &ctx.blake, vhashA, vhash, 64 );
// B
if ( vh_mask & 0xff )
bmw512_8way_full( &ctx.bmw, vhashB, vhash, 64 );
bmw512_8x64_full( &ctx.bmw, vhashB, vhash, 64 );
mm512_blend_hash_8x64( vh, vhA, vhB, vh_mask );
rintrlv_8x64_4x128( vhashA, vhashB, vhash, 512 );
@@ -177,16 +176,16 @@ extern void hmq1725_8way_hash(void *state, const void *input)
if ( likely( ( vh_mask & 0xff ) != 0xff ) )
{
keccak512_8way_init( &ctx.keccak );
keccak512_8way_update( &ctx.keccak, vhash, 64 );
keccak512_8way_close( &ctx.keccak, vhashA );
keccak512_8x64_init( &ctx.keccak );
keccak512_8x64_update( &ctx.keccak, vhash, 64 );
keccak512_8x64_close( &ctx.keccak, vhashA );
}
if ( likely( vh_mask & 0xff ) )
{
jh512_8way_init( &ctx.jh );
jh512_8way_update( &ctx.jh, vhash, 64 );
jh512_8way_close( &ctx.jh, vhashB );
jh512_8x64_init( &ctx.jh );
jh512_8x64_update( &ctx.jh, vhash, 64 );
jh512_8x64_close( &ctx.jh, vhashB );
}
mm512_blend_hash_8x64( vh, vhA, vhB, vh_mask );
@@ -252,9 +251,9 @@ extern void hmq1725_8way_hash(void *state, const void *input)
// B
if ( likely( vh_mask & 0xff ) )
{
haval256_5_8way_init( &ctx.haval );
haval256_5_8way_update( &ctx.haval, vhash, 64 );
haval256_5_8way_close( &ctx.haval, vhash );
haval256_8x32_init( &ctx.haval );
haval256_8x32_update( &ctx.haval, vhash, 64 );
haval256_8x32_close( &ctx.haval, vhash );
memset( &vhash[8<<3], 0, 32<<3 );
rintrlv_8x32_8x64( vhashB, vhash, 512 );
}
@@ -297,7 +296,7 @@ extern void hmq1725_8way_hash(void *state, const void *input)
#endif
blake512_8way_full( &ctx.blake, vhash, vhash, 64 );
blake512_8x64_full( &ctx.blake, vhash, vhash, 64 );
vh_mask = _mm512_testn_epi64_mask( vh[0], vmask );
@@ -352,9 +351,9 @@ extern void hmq1725_8way_hash(void *state, const void *input)
mm512_blend_hash_8x64( vh, vhC, vhB, vh_mask );
hamsi512_8way_init( &ctx.hamsi );
hamsi512_8way_update( &ctx.hamsi, vhash, 64 );
hamsi512_8way_close( &ctx.hamsi, vhash );
hamsi512_8x64_init( &ctx.hamsi );
hamsi512_8x64_update( &ctx.hamsi, vhash, 64 );
hamsi512_8x64_close( &ctx.hamsi, vhash );
dintrlv_8x64_512( hash0, hash1, hash2, hash3,
hash4, hash5, hash6, hash7, vhash );
@@ -430,9 +429,9 @@ extern void hmq1725_8way_hash(void *state, const void *input)
rintrlv_8x64_8x32( vhashA, vhash, 512 );
shabal512_8way_init( &ctx.shabal );
shabal512_8way_update( &ctx.shabal, vhashA, 64 );
shabal512_8way_close( &ctx.shabal, vhash );
shabal512_8x32_init( &ctx.shabal );
shabal512_8x32_update( &ctx.shabal, vhashA, 64 );
shabal512_8x32_close( &ctx.shabal, vhash );
dintrlv_8x32_512( hash0, hash1, hash2, hash3,
hash4, hash5, hash6, hash7, vhash );
@@ -475,9 +474,9 @@ extern void hmq1725_8way_hash(void *state, const void *input)
// B
if ( likely( vh_mask & 0xff ) )
{
sha512_8way_init( &ctx.sha512 );
sha512_8way_update( &ctx.sha512, vhash, 64 );
sha512_8way_close( &ctx.sha512, vhashB );
sha512_8x64_init( &ctx.sha512 );
sha512_8x64_update( &ctx.sha512, vhash, 64 );
sha512_8x64_close( &ctx.sha512, vhashB );
}
mm512_blend_hash_8x64( vh, vhA, vhB, vh_mask );
@@ -510,9 +509,9 @@ extern void hmq1725_8way_hash(void *state, const void *input)
#endif
sha512_8way_init( &ctx.sha512 );
sha512_8way_update( &ctx.sha512, vhash, 64 );
sha512_8way_close( &ctx.sha512, vhash );
sha512_8x64_init( &ctx.sha512 );
sha512_8x64_update( &ctx.sha512, vhash, 64 );
sha512_8x64_close( &ctx.sha512, vhash );
vh_mask = _mm512_testn_epi64_mask( vh[0], vmask );
dintrlv_8x64_512( hash0, hash1, hash2, hash3,
@@ -523,9 +522,9 @@ extern void hmq1725_8way_hash(void *state, const void *input)
{
intrlv_8x32_512( vhash, hash0, hash1, hash2, hash3, hash4, hash5, hash6,
hash7 );
haval256_5_8way_init( &ctx.haval );
haval256_5_8way_update( &ctx.haval, vhash, 64 );
haval256_5_8way_close( &ctx.haval, vhash );
haval256_8x32_init( &ctx.haval );
haval256_8x32_update( &ctx.haval, vhash, 64 );
haval256_8x32_close( &ctx.haval, vhash );
memset( &vhash[8<<3], 0, 32<<3 );
rintrlv_8x32_8x64( vhashA, vhash, 512 );
}
@@ -552,9 +551,9 @@ extern void hmq1725_8way_hash(void *state, const void *input)
hash7 );
mm512_blend_hash_8x64( vh, vhA, vhB, vh_mask );
bmw512_8way_init( &ctx.bmw );
bmw512_8way_update( &ctx.bmw, vhash, 64 );
bmw512_8way_close( &ctx.bmw, state );
bmw512_8x64_init( &ctx.bmw );
bmw512_8x64_update( &ctx.bmw, vhash, 64 );
bmw512_8x64_close( &ctx.bmw, state );
}
int scanhash_hmq1725_8way( struct work *work, uint32_t max_nonce,
@@ -606,27 +605,27 @@ int scanhash_hmq1725_8way( struct work *work, uint32_t max_nonce,
union _hmq1725_4way_context_overlay
{
blake512_4way_context blake;
bmw512_4way_context bmw;
blake512_4x64_context blake;
bmw512_4x64_context bmw;
hashState_groestl groestl;
skein512_4way_context skein;
jh512_4way_context jh;
keccak512_4way_context keccak;
skein512_4x64_context skein;
jh512_4x64_context jh;
keccak512_4x64_context keccak;
hashState_luffa luffa;
luffa_2way_context luffa2;
cubehashParam cube;
cube_2way_context cube2;
sph_shavite512_context shavite;
hashState_sd sd;
simd512_context simd;
shavite512_2way_context shavite2;
simd_2way_context simd;
simd_2way_context simd_2way;
hashState_echo echo;
hamsi512_4way_context hamsi;
hamsi512_4x64_context hamsi;
hashState_fugue fugue;
shabal512_4way_context shabal;
shabal512_4x32_context shabal;
sph_whirlpool_context whirlpool;
sha512_4way_context sha512;
haval256_5_4way_context haval;
sha512_4x64_context sha512;
haval256_4x32_context haval;
#if defined(__VAES__)
groestl512_2way_context groestl2;
echo_2way_context echo2;
@@ -653,9 +652,9 @@ extern void hmq1725_4way_hash(void *state, const void *input)
__m256i* vhA = (__m256i*)vhashA;
__m256i* vhB = (__m256i*)vhashB;
bmw512_4way_init( &ctx.bmw );
bmw512_4way_update( &ctx.bmw, input, 80 );
bmw512_4way_close( &ctx.bmw, vhash );
bmw512_4x64_init( &ctx.bmw );
bmw512_4x64_update( &ctx.bmw, input, 80 );
bmw512_4x64_close( &ctx.bmw, vhash );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
@@ -687,17 +686,17 @@ extern void hmq1725_4way_hash(void *state, const void *input)
// B
if ( h_mask & 0xffffffff )
skein512_4way_full( &ctx.skein, vhashB, vhash, 64 );
skein512_4x64_full( &ctx.skein, vhashB, vhash, 64 );
mm256_blend_hash_4x64( vh, vhA, vhB, vh_mask );
jh512_4way_init( &ctx.jh );
jh512_4way_update( &ctx.jh, vhash, 64 );
jh512_4way_close( &ctx.jh, vhash );
jh512_4x64_init( &ctx.jh );
jh512_4x64_update( &ctx.jh, vhash, 64 );
jh512_4x64_close( &ctx.jh, vhash );
keccak512_4way_init( &ctx.keccak );
keccak512_4way_update( &ctx.keccak, vhash, 64 );
keccak512_4way_close( &ctx.keccak, vhash );
keccak512_4x64_init( &ctx.keccak );
keccak512_4x64_update( &ctx.keccak, vhash, 64 );
keccak512_4x64_close( &ctx.keccak, vhash );
// second fork, A = blake parallel, B= bmw parallel.
@@ -705,13 +704,13 @@ extern void hmq1725_4way_hash(void *state, const void *input)
h_mask = _mm256_movemask_epi8( vh_mask );
if ( ( h_mask & 0xffffffff ) != 0xffffffff )
blake512_4way_full( &ctx.blake, vhashA, vhash, 64 );
blake512_4x64_full( &ctx.blake, vhashA, vhash, 64 );
if ( h_mask & 0xffffffff )
{
bmw512_4way_init( &ctx.bmw );
bmw512_4way_update( &ctx.bmw, vhash, 64 );
bmw512_4way_close( &ctx.bmw, vhashB );
bmw512_4x64_init( &ctx.bmw );
bmw512_4x64_update( &ctx.bmw, vhash, 64 );
bmw512_4x64_close( &ctx.bmw, vhashB );
}
mm256_blend_hash_4x64( vh, vhA, vhB, vh_mask );
@@ -734,16 +733,16 @@ extern void hmq1725_4way_hash(void *state, const void *input)
if ( ( h_mask & 0xffffffff ) != 0xffffffff )
{
keccak512_4way_init( &ctx.keccak );
keccak512_4way_update( &ctx.keccak, vhash, 64 );
keccak512_4way_close( &ctx.keccak, vhashA );
keccak512_4x64_init( &ctx.keccak );
keccak512_4x64_update( &ctx.keccak, vhash, 64 );
keccak512_4x64_close( &ctx.keccak, vhashA );
}
if ( h_mask & 0xffffffff )
{
jh512_4way_init( &ctx.jh );
jh512_4way_update( &ctx.jh, vhash, 64 );
jh512_4way_close( &ctx.jh, vhashB );
jh512_4x64_init( &ctx.jh );
jh512_4x64_update( &ctx.jh, vhash, 64 );
jh512_4x64_close( &ctx.jh, vhashB );
}
mm256_blend_hash_4x64( vh, vhA, vhB, vh_mask );
@@ -753,8 +752,8 @@ extern void hmq1725_4way_hash(void *state, const void *input)
shavite512_2way_full( &ctx.shavite2, vhashA, vhashA, 64 );
shavite512_2way_full( &ctx.shavite2, vhashB, vhashB, 64 );
simd512_2way_full( &ctx.simd, vhashA, vhashA, 64 );
simd512_2way_full( &ctx.simd, vhashB, vhashB, 64 );
simd512_2way_full( &ctx.simd_2way, vhashA, vhashA, 64 );
simd512_2way_full( &ctx.simd_2way, vhashB, vhashB, 64 );
rintrlv_2x128_4x64( vhash, vhashA, vhashB, 512 );
@@ -779,9 +778,9 @@ extern void hmq1725_4way_hash(void *state, const void *input)
// B
if ( h_mask & 0xffffffff )
{
haval256_5_4way_init( &ctx.haval );
haval256_5_4way_update( &ctx.haval, vhash, 64 );
haval256_5_4way_close( &ctx.haval, vhash );
haval256_4x32_init( &ctx.haval );
haval256_4x32_update( &ctx.haval, vhash, 64 );
haval256_4x32_close( &ctx.haval, vhash );
memset( &vhash[8<<2], 0, 32<<2 );
rintrlv_4x32_4x64( vhashB, vhash, 512 );
}
@@ -814,7 +813,7 @@ extern void hmq1725_4way_hash(void *state, const void *input)
#endif
blake512_4way_full( &ctx.blake, vhash, vhash, 64 );
blake512_4x64_full( &ctx.blake, vhash, vhash, 64 );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
@@ -846,9 +845,9 @@ extern void hmq1725_4way_hash(void *state, const void *input)
intrlv_4x64( vhash, hash0, hash1, hash2, hash3, 512 );
hamsi512_4way_init( &ctx.hamsi );
hamsi512_4way_update( &ctx.hamsi, vhash, 64 );
hamsi512_4way_close( &ctx.hamsi, vhash );
hamsi512_4x64_init( &ctx.hamsi );
hamsi512_4x64_update( &ctx.hamsi, vhash, 64 );
hamsi512_4x64_close( &ctx.hamsi, vhash );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
@@ -869,47 +868,31 @@ extern void hmq1725_4way_hash(void *state, const void *input)
echo_full( &ctx.echo, (BitSequence *)hash0, 512,
(const BitSequence *)hash0, 64 );
else
{
init_sd( &ctx.sd, 512 );
update_final_sd( &ctx.sd, (BitSequence *)hash0,
(const BitSequence *)hash0, 512 );
}
simd512_ctx( &ctx.simd, hash0, hash0, 64 );
if ( hash1[0] & mask ) //4
echo_full( &ctx.echo, (BitSequence *)hash1, 512,
(const BitSequence *)hash1, 64 );
else
{
init_sd( &ctx.sd, 512 );
update_final_sd( &ctx.sd, (BitSequence *)hash1,
(const BitSequence *)hash1, 512 );
}
simd512_ctx( &ctx.simd, hash1, hash1, 64 );
if ( hash2[0] & mask ) //4
echo_full( &ctx.echo, (BitSequence *)hash2, 512,
(const BitSequence *)hash2, 64 );
else
{
init_sd( &ctx.sd, 512 );
update_final_sd( &ctx.sd, (BitSequence *)hash2,
(const BitSequence *)hash2, 512 );
}
simd512_ctx( &ctx.simd, hash2, hash2, 64 );
if ( hash3[0] & mask ) //4
echo_full( &ctx.echo, (BitSequence *)hash3, 512,
(const BitSequence *)hash3, 64 );
else
{
init_sd( &ctx.sd, 512 );
update_final_sd( &ctx.sd, (BitSequence *)hash3,
(const BitSequence *)hash3, 512 );
}
simd512_ctx( &ctx.simd, hash3, hash3, 64 );
intrlv_4x32( vhash, hash0, hash1, hash2, hash3, 512 );
shabal512_4way_init( &ctx.shabal );
shabal512_4way_update( &ctx.shabal, vhash, 64 );
shabal512_4way_close( &ctx.shabal, vhash );
shabal512_4x32_init( &ctx.shabal );
shabal512_4x32_update( &ctx.shabal, vhash, 64 );
shabal512_4x32_close( &ctx.shabal, vhash );
dintrlv_4x32( hash0, hash1, hash2, hash3, vhash, 512 );
@@ -938,9 +921,9 @@ extern void hmq1725_4way_hash(void *state, const void *input)
if ( h_mask & 0xffffffff )
{
sha512_4way_init( &ctx.sha512 );
sha512_4way_update( &ctx.sha512, vhash, 64 );
sha512_4way_close( &ctx.sha512, vhashB );
sha512_4x64_init( &ctx.sha512 );
sha512_4x64_update( &ctx.sha512, vhash, 64 );
sha512_4x64_close( &ctx.sha512, vhashB );
}
mm256_blend_hash_4x64( vh, vhA, vhB, vh_mask );
@@ -967,9 +950,9 @@ extern void hmq1725_4way_hash(void *state, const void *input)
#endif
sha512_4way_init( &ctx.sha512 );
sha512_4way_update( &ctx.sha512, vhash, 64 );
sha512_4way_close( &ctx.sha512, vhash );
sha512_4x64_init( &ctx.sha512 );
sha512_4x64_update( &ctx.sha512, vhash, 64 );
sha512_4x64_close( &ctx.sha512, vhash );
// A = haval parallel, B = Whirlpool serial
@@ -981,9 +964,9 @@ extern void hmq1725_4way_hash(void *state, const void *input)
if ( ( h_mask & 0xffffffff ) != 0xffffffff )
{
haval256_5_4way_init( &ctx.haval );
haval256_5_4way_update( &ctx.haval, vhash, 64 );
haval256_5_4way_close( &ctx.haval, vhash );
haval256_4x32_init( &ctx.haval );
haval256_4x32_update( &ctx.haval, vhash, 64 );
haval256_4x32_close( &ctx.haval, vhash );
memset( &vhash[8<<2], 0, 32<<2 );
rintrlv_4x32_4x64( vhashA, vhash, 512 );
}
@@ -1001,9 +984,9 @@ extern void hmq1725_4way_hash(void *state, const void *input)
mm256_blend_hash_4x64( vh, vhA, vhB, vh_mask );
bmw512_4way_init( &ctx.bmw );
bmw512_4way_update( &ctx.bmw, vhash, 64 );
bmw512_4way_close( &ctx.bmw, state );
bmw512_4x64_init( &ctx.bmw );
bmw512_4x64_update( &ctx.bmw, vhash, 64 );
bmw512_4x64_close( &ctx.bmw, state );
}
int scanhash_hmq1725_4way( struct work *work, uint32_t max_nonce,

View File

@@ -4,7 +4,7 @@
#include "algo-gate-api.h"
#include <stdint.h>
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#if defined(SIMD512)
#define HMQ1725_8WAY 1
#elif defined(__AVX2__) && defined(__AES__)
#define HMQ1725_4WAY 1

View File

@@ -4,7 +4,7 @@
#include "algo-gate-api.h"
#include <stdint.h>
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#if defined(SIMD512)
#define QUARK_8WAY 1
#elif defined(__AVX2__) && defined(__AES__)
#define QUARK_4WAY 1

View File

@@ -5,7 +5,7 @@
#include <stdint.h>
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#if defined(SIMD512)
#define QUBIT_4WAY 1
#elif defined(__AVX2__) && defined(__AES__)
#define QUBIT_2WAY 1

View File

@@ -13,7 +13,7 @@
#if defined(LBRY_16WAY)
static __thread sha256_16way_context sha256_16w_mid;
static __thread sha256_16x32_context sha256_16w_mid;
void lbry_16way_hash( void* output, const void* input )
{
@@ -36,17 +36,17 @@ void lbry_16way_hash( void* output, const void* input )
uint32_t _ALIGN(64) h13[32];
uint32_t _ALIGN(64) h14[32];
uint32_t _ALIGN(64) h15[32];
sha256_16way_context ctx_sha256 __attribute__ ((aligned (64)));
sha512_8way_context ctx_sha512;
ripemd160_16way_context ctx_ripemd;
sha256_16x32_context ctx_sha256 __attribute__ ((aligned (64)));
sha512_8x64_context ctx_sha512;
ripemd160_16x32_context ctx_ripemd;
memcpy( &ctx_sha256, &sha256_16w_mid, sizeof(ctx_sha256) );
sha256_16way_update( &ctx_sha256, input + (LBRY_MIDSTATE<<4), LBRY_TAIL );
sha256_16way_close( &ctx_sha256, vhashA );
sha256_16x32_update( &ctx_sha256, input + (LBRY_MIDSTATE<<4), LBRY_TAIL );
sha256_16x32_close( &ctx_sha256, vhashA );
sha256_16way_init( &ctx_sha256 );
sha256_16way_update( &ctx_sha256, vhashA, 32 );
sha256_16way_close( &ctx_sha256, vhashA );
sha256_16x32_init( &ctx_sha256 );
sha256_16x32_update( &ctx_sha256, vhashA, 32 );
sha256_16x32_close( &ctx_sha256, vhashA );
// reinterleave to do sha512 4-way 64 bit twice.
dintrlv_16x32( h0, h1, h2, h3, h4, h5, h6, h7,
@@ -54,13 +54,13 @@ void lbry_16way_hash( void* output, const void* input )
intrlv_8x64( vhashA, h0, h1, h2, h3, h4, h5, h6, h7, 256 );
intrlv_8x64( vhashB, h8, h9, h10, h11, h12, h13, h14, h15, 256 );
sha512_8way_init( &ctx_sha512 );
sha512_8way_update( &ctx_sha512, vhashA, 32 );
sha512_8way_close( &ctx_sha512, vhashA );
sha512_8x64_init( &ctx_sha512 );
sha512_8x64_update( &ctx_sha512, vhashA, 32 );
sha512_8x64_close( &ctx_sha512, vhashA );
sha512_8way_init( &ctx_sha512 );
sha512_8way_update( &ctx_sha512, vhashB, 32 );
sha512_8way_close( &ctx_sha512, vhashB );
sha512_8x64_init( &ctx_sha512 );
sha512_8x64_update( &ctx_sha512, vhashB, 32 );
sha512_8x64_close( &ctx_sha512, vhashB );
// back to 8-way 32 bit
dintrlv_8x64( h0, h1, h2, h3, h4, h5, h6, h7, vhashA, 512 );
@@ -68,22 +68,22 @@ void lbry_16way_hash( void* output, const void* input )
intrlv_16x32( vhashA, h0, h1, h2, h3, h4, h5, h6, h7,
h8, h9, h10, h11, h12, h13, h14, h15, 512 );
ripemd160_16way_init( &ctx_ripemd );
ripemd160_16way_update( &ctx_ripemd, vhashA, 32 );
ripemd160_16way_close( &ctx_ripemd, vhashB );
ripemd160_16x32_init( &ctx_ripemd );
ripemd160_16x32_update( &ctx_ripemd, vhashA, 32 );
ripemd160_16x32_close( &ctx_ripemd, vhashB );
ripemd160_16way_init( &ctx_ripemd );
ripemd160_16way_update( &ctx_ripemd, vhashA+(8<<4), 32 );
ripemd160_16way_close( &ctx_ripemd, vhashC );
ripemd160_16x32_init( &ctx_ripemd );
ripemd160_16x32_update( &ctx_ripemd, vhashA+(8<<4), 32 );
ripemd160_16x32_close( &ctx_ripemd, vhashC );
sha256_16way_init( &ctx_sha256 );
sha256_16way_update( &ctx_sha256, vhashB, 20 );
sha256_16way_update( &ctx_sha256, vhashC, 20 );
sha256_16way_close( &ctx_sha256, vhashA );
sha256_16x32_init( &ctx_sha256 );
sha256_16x32_update( &ctx_sha256, vhashB, 20 );
sha256_16x32_update( &ctx_sha256, vhashC, 20 );
sha256_16x32_close( &ctx_sha256, vhashA );
sha256_16way_init( &ctx_sha256 );
sha256_16way_update( &ctx_sha256, vhashA, 32 );
sha256_16way_close( &ctx_sha256, output );
sha256_16x32_init( &ctx_sha256 );
sha256_16x32_update( &ctx_sha256, vhashA, 32 );
sha256_16x32_close( &ctx_sha256, output );
}
int scanhash_lbry_16way( struct work *work, uint32_t max_nonce,
@@ -104,19 +104,19 @@ int scanhash_lbry_16way( struct work *work, uint32_t max_nonce,
int thr_id = mythr->id; // thr_id arg is deprecated
// we need bigendian data...
casti_m128i( edata, 0 ) = mm128_bswap_32( casti_m128i( pdata, 0 ) );
casti_m128i( edata, 1 ) = mm128_bswap_32( casti_m128i( pdata, 1 ) );
casti_m128i( edata, 2 ) = mm128_bswap_32( casti_m128i( pdata, 2 ) );
casti_m128i( edata, 3 ) = mm128_bswap_32( casti_m128i( pdata, 3 ) );
casti_m128i( edata, 4 ) = mm128_bswap_32( casti_m128i( pdata, 4 ) );
casti_m128i( edata, 5 ) = mm128_bswap_32( casti_m128i( pdata, 5 ) );
casti_m128i( edata, 6 ) = mm128_bswap_32( casti_m128i( pdata, 6 ) );
casti_m128i( edata, 7 ) = mm128_bswap_32( casti_m128i( pdata, 7 ) );
casti_v128u32( edata, 0 ) = v128_bswap32( casti_v128u32( pdata, 0 ) );
casti_v128u32( edata, 1 ) = v128_bswap32( casti_v128u32( pdata, 1 ) );
casti_v128u32( edata, 2 ) = v128_bswap32( casti_v128u32( pdata, 2 ) );
casti_v128u32( edata, 3 ) = v128_bswap32( casti_v128u32( pdata, 3 ) );
casti_v128u32( edata, 4 ) = v128_bswap32( casti_v128u32( pdata, 4 ) );
casti_v128u32( edata, 5 ) = v128_bswap32( casti_v128u32( pdata, 5 ) );
casti_v128u32( edata, 6 ) = v128_bswap32( casti_v128u32( pdata, 6 ) );
casti_v128u32( edata, 7 ) = v128_bswap32( casti_v128u32( pdata, 7 ) );
intrlv_16x32( vdata, edata, edata, edata, edata, edata, edata, edata,
edata, edata, edata, edata, edata, edata, edata, edata, edata, 1024 );
sha256_16way_init( &sha256_16w_mid );
sha256_16way_update( &sha256_16w_mid, vdata, LBRY_MIDSTATE );
sha256_16x32_init( &sha256_16w_mid );
sha256_16x32_update( &sha256_16w_mid, vdata, LBRY_MIDSTATE );
do
{
@@ -144,7 +144,7 @@ int scanhash_lbry_16way( struct work *work, uint32_t max_nonce,
#elif defined(LBRY_8WAY)
static __thread sha256_8way_context sha256_8w_mid;
static __thread sha256_8x32_context sha256_8w_mid;
void lbry_8way_hash( void* output, const void* input )
{
@@ -159,52 +159,52 @@ void lbry_8way_hash( void* output, const void* input )
uint32_t _ALIGN(32) h5[32];
uint32_t _ALIGN(32) h6[32];
uint32_t _ALIGN(32) h7[32];
sha256_8way_context ctx_sha256 __attribute__ ((aligned (64)));
sha512_4way_context ctx_sha512;
ripemd160_8way_context ctx_ripemd;
sha256_8x32_context ctx_sha256 __attribute__ ((aligned (64)));
sha512_4x64_context ctx_sha512;
ripemd160_8x32_context ctx_ripemd;
memcpy( &ctx_sha256, &sha256_8w_mid, sizeof(ctx_sha256) );
sha256_8way_update( &ctx_sha256, input + (LBRY_MIDSTATE<<3), LBRY_TAIL );
sha256_8way_close( &ctx_sha256, vhashA );
sha256_8x32_update( &ctx_sha256, input + (LBRY_MIDSTATE<<3), LBRY_TAIL );
sha256_8x32_close( &ctx_sha256, vhashA );
sha256_8way_init( &ctx_sha256 );
sha256_8way_update( &ctx_sha256, vhashA, 32 );
sha256_8way_close( &ctx_sha256, vhashA );
sha256_8x32_init( &ctx_sha256 );
sha256_8x32_update( &ctx_sha256, vhashA, 32 );
sha256_8x32_close( &ctx_sha256, vhashA );
// reinterleave to do sha512 4-way 64 bit twice.
dintrlv_8x32( h0, h1, h2, h3, h4, h5, h6, h7, vhashA, 256 );
intrlv_4x64( vhashA, h0, h1, h2, h3, 256 );
intrlv_4x64( vhashB, h4, h5, h6, h7, 256 );
sha512_4way_init( &ctx_sha512 );
sha512_4way_update( &ctx_sha512, vhashA, 32 );
sha512_4way_close( &ctx_sha512, vhashA );
sha512_4x64_init( &ctx_sha512 );
sha512_4x64_update( &ctx_sha512, vhashA, 32 );
sha512_4x64_close( &ctx_sha512, vhashA );
sha512_4way_init( &ctx_sha512 );
sha512_4way_update( &ctx_sha512, vhashB, 32 );
sha512_4way_close( &ctx_sha512, vhashB );
sha512_4x64_init( &ctx_sha512 );
sha512_4x64_update( &ctx_sha512, vhashB, 32 );
sha512_4x64_close( &ctx_sha512, vhashB );
// back to 8-way 32 bit
dintrlv_4x64( h0, h1, h2, h3, vhashA, 512 );
dintrlv_4x64( h4, h5, h6, h7, vhashB, 512 );
intrlv_8x32( vhashA, h0, h1, h2, h3, h4, h5, h6, h7, 512 );
ripemd160_8way_init( &ctx_ripemd );
ripemd160_8way_update( &ctx_ripemd, vhashA, 32 );
ripemd160_8way_close( &ctx_ripemd, vhashB );
ripemd160_8x32_init( &ctx_ripemd );
ripemd160_8x32_update( &ctx_ripemd, vhashA, 32 );
ripemd160_8x32_close( &ctx_ripemd, vhashB );
ripemd160_8way_init( &ctx_ripemd );
ripemd160_8way_update( &ctx_ripemd, vhashA+(8<<3), 32 );
ripemd160_8way_close( &ctx_ripemd, vhashC );
ripemd160_8x32_init( &ctx_ripemd );
ripemd160_8x32_update( &ctx_ripemd, vhashA+(8<<3), 32 );
ripemd160_8x32_close( &ctx_ripemd, vhashC );
sha256_8way_init( &ctx_sha256 );
sha256_8way_update( &ctx_sha256, vhashB, 20 );
sha256_8way_update( &ctx_sha256, vhashC, 20 );
sha256_8way_close( &ctx_sha256, vhashA );
sha256_8x32_init( &ctx_sha256 );
sha256_8x32_update( &ctx_sha256, vhashB, 20 );
sha256_8x32_update( &ctx_sha256, vhashC, 20 );
sha256_8x32_close( &ctx_sha256, vhashA );
sha256_8way_init( &ctx_sha256 );
sha256_8way_update( &ctx_sha256, vhashA, 32 );
sha256_8way_close( &ctx_sha256, output );
sha256_8x32_init( &ctx_sha256 );
sha256_8x32_update( &ctx_sha256, vhashA, 32 );
sha256_8x32_close( &ctx_sha256, output );
}
int scanhash_lbry_8way( struct work *work, uint32_t max_nonce,
@@ -224,19 +224,19 @@ int scanhash_lbry_8way( struct work *work, uint32_t max_nonce,
int thr_id = mythr->id; // thr_id arg is deprecated
// we need bigendian data...
casti_m128i( edata, 0 ) = mm128_bswap_32( casti_m128i( pdata, 0 ) );
casti_m128i( edata, 1 ) = mm128_bswap_32( casti_m128i( pdata, 1 ) );
casti_m128i( edata, 2 ) = mm128_bswap_32( casti_m128i( pdata, 2 ) );
casti_m128i( edata, 3 ) = mm128_bswap_32( casti_m128i( pdata, 3 ) );
casti_m128i( edata, 4 ) = mm128_bswap_32( casti_m128i( pdata, 4 ) );
casti_m128i( edata, 5 ) = mm128_bswap_32( casti_m128i( pdata, 5 ) );
casti_m128i( edata, 6 ) = mm128_bswap_32( casti_m128i( pdata, 6 ) );
casti_m128i( edata, 7 ) = mm128_bswap_32( casti_m128i( pdata, 7 ) );
casti_v128u32( edata, 0 ) = v128_bswap32( casti_v128u32( pdata, 0 ) );
casti_v128u32( edata, 1 ) = v128_bswap32( casti_v128u32( pdata, 1 ) );
casti_v128u32( edata, 2 ) = v128_bswap32( casti_v128u32( pdata, 2 ) );
casti_v128u32( edata, 3 ) = v128_bswap32( casti_v128u32( pdata, 3 ) );
casti_v128u32( edata, 4 ) = v128_bswap32( casti_v128u32( pdata, 4 ) );
casti_v128u32( edata, 5 ) = v128_bswap32( casti_v128u32( pdata, 5 ) );
casti_v128u32( edata, 6 ) = v128_bswap32( casti_v128u32( pdata, 6 ) );
casti_v128u32( edata, 7 ) = v128_bswap32( casti_v128u32( pdata, 7 ) );
intrlv_8x32( vdata, edata, edata, edata, edata,
edata, edata, edata, edata, 1024 );
sha256_8way_init( &sha256_8w_mid );
sha256_8way_update( &sha256_8w_mid, vdata, LBRY_MIDSTATE );
sha256_8x32_init( &sha256_8w_mid );
sha256_8x32_update( &sha256_8w_mid, vdata, LBRY_MIDSTATE );
do
{

View File

@@ -51,7 +51,6 @@ int lbry_get_work_data_size() { return LBRY_WORK_DATA_SIZE; }
bool register_lbry_algo( algo_gate_t* gate )
{
// gate->optimizations = AVX2_OPT | AVX512_OPT | SHA_OPT;
#if defined (LBRY_16WAY)
gate->scanhash = (void*)&scanhash_lbry_16way;
gate->hash = (void*)&lbry_16way_hash;
@@ -67,7 +66,7 @@ bool register_lbry_algo( algo_gate_t* gate )
#else
gate->scanhash = (void*)&scanhash_lbry;
gate->hash = (void*)&lbry_hash;
gate->optimizations = AVX2_OPT | AVX512_OPT | SHA_OPT;
gate->optimizations = AVX2_OPT | AVX512_OPT | SHA256_OPT;
#endif
gate->build_stratum_request = (void*)&lbry_le_build_stratum_request;
gate->build_extraheader = (void*)&lbry_build_extraheader;

View File

@@ -5,7 +5,7 @@
#include <stdint.h>
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#if defined(SIMD512)
#define LBRY_16WAY 1
#elif defined(__AVX2__)
#define LBRY_8WAY 1

View File

@@ -35,13 +35,13 @@ static const uint32_t IV[5] =
_mm_xor_si128( _mm_and_si128( _mm_xor_si128( y, z ), x ), z )
#define F3(x, y, z) \
_mm_xor_si128( _mm_or_si128( x, v128_not( y ) ), z )
_mm_xor_si128( v128_ornot( y, x ), z )
#define F4(x, y, z) \
_mm_xor_si128( _mm_and_si128( _mm_xor_si128( x, y ), z ), y )
#define F5(x, y, z) \
_mm_xor_si128( x, _mm_or_si128( y, v128_not( z ) ) )
_mm_xor_si128( x, v128_ornot( z, y ) )
#define RR(a, b, c, d, e, f, s, r, k) \
do{ \
@@ -57,7 +57,7 @@ do{ \
#define ROUND2(a, b, c, d, e, f, s, r, k) \
RR(a ## 2, b ## 2, c ## 2, d ## 2, e ## 2, f, s, r, K2 ## k)
static void ripemd160_4way_round( ripemd160_4way_context *sc )
static void ripemd160_4x32_round( ripemd160_4x32_context *sc )
{
const __m128i *in = (__m128i*)sc->buf;
__m128i *h = (__m128i*)sc->val;
@@ -249,7 +249,7 @@ static void ripemd160_4way_round( ripemd160_4way_context *sc )
h[0] = tmp;
}
void ripemd160_4way_init( ripemd160_4way_context *sc )
void ripemd160_4x32_init( ripemd160_4x32_context *sc )
{
sc->val[0] = _mm_set1_epi64x( 0x6745230167452301 );
sc->val[1] = _mm_set1_epi64x( 0xEFCDAB89EFCDAB89 );
@@ -259,7 +259,7 @@ void ripemd160_4way_init( ripemd160_4way_context *sc )
sc->count_high = sc->count_low = 0;
}
void ripemd160_4way_update( ripemd160_4way_context *sc, const void *data,
void ripemd160_4x32_update( ripemd160_4x32_context *sc, const void *data,
size_t len )
{
__m128i *vdata = (__m128i*)data;
@@ -281,7 +281,7 @@ void ripemd160_4way_update( ripemd160_4way_context *sc, const void *data,
len -= clen;
if ( ptr == block_size )
{
ripemd160_4way_round( sc );
ripemd160_4x32_round( sc );
ptr = 0;
}
clow = sc->count_low;
@@ -292,7 +292,7 @@ void ripemd160_4way_update( ripemd160_4way_context *sc, const void *data,
}
}
void ripemd160_4way_close( ripemd160_4way_context *sc, void *dst )
void ripemd160_4x32_close( ripemd160_4x32_context *sc, void *dst )
{
unsigned ptr, u;
uint32_t low, high;
@@ -306,7 +306,7 @@ void ripemd160_4way_close( ripemd160_4way_context *sc, void *dst )
if ( ptr > pad )
{
memset_zero_128( sc->buf + (ptr>>2), (block_size - ptr) >> 2 );
ripemd160_4way_round( sc );
ripemd160_4x32_round( sc );
memset_zero_128( sc->buf, pad>>2 );
}
else
@@ -317,9 +317,9 @@ void ripemd160_4way_close( ripemd160_4way_context *sc, void *dst )
low = low << 3;
sc->buf[ pad>>2 ] = _mm_set1_epi32( low );
sc->buf[ (pad>>2) + 1 ] = _mm_set1_epi32( high );
ripemd160_4way_round( sc );
ripemd160_4x32_round( sc );
for (u = 0; u < 5; u ++)
casti_m128i( dst, u ) = sc->val[u];
casti_v128u32( dst, u ) = sc->val[u];
}
#endif
@@ -335,13 +335,13 @@ void ripemd160_4way_close( ripemd160_4way_context *sc, void *dst )
_mm256_xor_si256( _mm256_and_si256( _mm256_xor_si256( y, z ), x ), z )
#define F8W_3(x, y, z) \
_mm256_xor_si256( _mm256_or_si256( x, mm256_not( y ) ), z )
_mm256_xor_si256( mm256_ornot( y, x ), z )
#define F8W_4(x, y, z) \
_mm256_xor_si256( _mm256_and_si256( _mm256_xor_si256( x, y ), z ), y )
#define F8W_5(x, y, z) \
_mm256_xor_si256( x, _mm256_or_si256( y, mm256_not( z ) ) )
_mm256_xor_si256( x, mm256_ornot( z, y ) )
#define RR_8W(a, b, c, d, e, f, s, r, k) \
do{ \
@@ -357,7 +357,7 @@ do{ \
#define ROUND2_8W(a, b, c, d, e, f, s, r, k) \
RR_8W(a ## 2, b ## 2, c ## 2, d ## 2, e ## 2, f, s, r, K2 ## k)
static void ripemd160_8way_round( ripemd160_8way_context *sc )
static void ripemd160_8x32_round( ripemd160_8x32_context *sc )
{
const __m256i *in = (__m256i*)sc->buf;
__m256i *h = (__m256i*)sc->val;
@@ -550,7 +550,7 @@ static void ripemd160_8way_round( ripemd160_8way_context *sc )
}
void ripemd160_8way_init( ripemd160_8way_context *sc )
void ripemd160_8x32_init( ripemd160_8x32_context *sc )
{
sc->val[0] = _mm256_set1_epi64x( 0x6745230167452301 );
sc->val[1] = _mm256_set1_epi64x( 0xEFCDAB89EFCDAB89 );
@@ -560,7 +560,7 @@ void ripemd160_8way_init( ripemd160_8way_context *sc )
sc->count_high = sc->count_low = 0;
}
void ripemd160_8way_update( ripemd160_8way_context *sc, const void *data,
void ripemd160_8x32_update( ripemd160_8x32_context *sc, const void *data,
size_t len )
{
__m256i *vdata = (__m256i*)data;
@@ -582,7 +582,7 @@ void ripemd160_8way_update( ripemd160_8way_context *sc, const void *data,
len -= clen;
if ( ptr == block_size )
{
ripemd160_8way_round( sc );
ripemd160_8x32_round( sc );
ptr = 0;
}
clow = sc->count_low;
@@ -593,7 +593,7 @@ void ripemd160_8way_update( ripemd160_8way_context *sc, const void *data,
}
}
void ripemd160_8way_close( ripemd160_8way_context *sc, void *dst )
void ripemd160_8x32_close( ripemd160_8x32_context *sc, void *dst )
{
unsigned ptr, u;
uint32_t low, high;
@@ -607,7 +607,7 @@ void ripemd160_8way_close( ripemd160_8way_context *sc, void *dst )
if ( ptr > pad )
{
memset_zero_256( sc->buf + (ptr>>2), (block_size - ptr) >> 2 );
ripemd160_8way_round( sc );
ripemd160_8x32_round( sc );
memset_zero_256( sc->buf, pad>>2 );
}
else
@@ -618,18 +618,17 @@ void ripemd160_8way_close( ripemd160_8way_context *sc, void *dst )
low = low << 3;
sc->buf[ pad>>2 ] = _mm256_set1_epi32( low );
sc->buf[ (pad>>2) + 1 ] = _mm256_set1_epi32( high );
ripemd160_8way_round( sc );
ripemd160_8x32_round( sc );
for (u = 0; u < 5; u ++)
casti_m256i( dst, u ) = sc->val[u];
}
#endif // __AVX2__
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#if defined(SIMD512)
// RIPEMD-160 16 way
#define F16W_1(x, y, z) \
_mm512_xor_si512( _mm512_xor_si512( x, y ), z )
@@ -659,7 +658,7 @@ do{ \
#define ROUND2_16W(a, b, c, d, e, f, s, r, k) \
RR_16W(a ## 2, b ## 2, c ## 2, d ## 2, e ## 2, f, s, r, K2 ## k)
static void ripemd160_16way_round( ripemd160_16way_context *sc )
static void ripemd160_16x32_round( ripemd160_16x32_context *sc )
{
const __m512i *in = (__m512i*)sc->buf;
__m512i *h = (__m512i*)sc->val;
@@ -851,7 +850,7 @@ static void ripemd160_16way_round( ripemd160_16way_context *sc )
h[0] = tmp;
}
void ripemd160_16way_init( ripemd160_16way_context *sc )
void ripemd160_16x32_init( ripemd160_16x32_context *sc )
{
sc->val[0] = _mm512_set1_epi64( 0x6745230167452301 );
sc->val[1] = _mm512_set1_epi64( 0xEFCDAB89EFCDAB89 );
@@ -861,7 +860,7 @@ void ripemd160_16way_init( ripemd160_16way_context *sc )
sc->count_high = sc->count_low = 0;
}
void ripemd160_16way_update( ripemd160_16way_context *sc, const void *data,
void ripemd160_16x32_update( ripemd160_16x32_context *sc, const void *data,
size_t len )
{
__m512i *vdata = (__m512i*)data;
@@ -883,7 +882,7 @@ void ripemd160_16way_update( ripemd160_16way_context *sc, const void *data,
len -= clen;
if ( ptr == block_size )
{
ripemd160_16way_round( sc );
ripemd160_16x32_round( sc );
ptr = 0;
}
clow = sc->count_low;
@@ -894,7 +893,7 @@ void ripemd160_16way_update( ripemd160_16way_context *sc, const void *data,
}
}
void ripemd160_16way_close( ripemd160_16way_context *sc, void *dst )
void ripemd160_16x32_close( ripemd160_16x32_context *sc, void *dst )
{
unsigned ptr, u;
uint32_t low, high;
@@ -908,7 +907,7 @@ void ripemd160_16way_close( ripemd160_16way_context *sc, void *dst )
if ( ptr > pad )
{
memset_zero_512( sc->buf + (ptr>>2), (block_size - ptr) >> 2 );
ripemd160_16way_round( sc );
ripemd160_16x32_round( sc );
memset_zero_512( sc->buf, pad>>2 );
}
else
@@ -919,7 +918,7 @@ void ripemd160_16way_close( ripemd160_16way_context *sc, void *dst )
low = low << 3;
sc->buf[ pad>>2 ] = _mm512_set1_epi32( low );
sc->buf[ (pad>>2) + 1 ] = _mm512_set1_epi32( high );
ripemd160_16way_round( sc );
ripemd160_16x32_round( sc );
for (u = 0; u < 5; u ++)
casti_m512i( dst, u ) = sc->val[u];
}

View File

@@ -12,12 +12,12 @@ typedef struct
__m128i buf[64>>2];
__m128i val[5];
uint32_t count_high, count_low;
} __attribute__ ((aligned (64))) ripemd160_4way_context;
} __attribute__ ((aligned (64))) ripemd160_4x32_context;
void ripemd160_4way_init( ripemd160_4way_context *sc );
void ripemd160_4way_update( ripemd160_4way_context *sc, const void *data,
void ripemd160_4x32_init( ripemd160_4x32_context *sc );
void ripemd160_4x32_update( ripemd160_4x32_context *sc, const void *data,
size_t len );
void ripemd160_4way_close( ripemd160_4way_context *sc, void *dst );
void ripemd160_4x32_close( ripemd160_4x32_context *sc, void *dst );
#if defined (__AVX2__)
@@ -26,26 +26,26 @@ typedef struct
__m256i buf[64>>2];
__m256i val[5];
uint32_t count_high, count_low;
} __attribute__ ((aligned (128))) ripemd160_8way_context;
} __attribute__ ((aligned (128))) ripemd160_8x32_context;
void ripemd160_8way_init( ripemd160_8way_context *sc );
void ripemd160_8way_update( ripemd160_8way_context *sc, const void *data,
void ripemd160_8x32_init( ripemd160_8x32_context *sc );
void ripemd160_8x32_update( ripemd160_8x32_context *sc, const void *data,
size_t len );
void ripemd160_8way_close( ripemd160_8way_context *sc, void *dst );
void ripemd160_8x32_close( ripemd160_8x32_context *sc, void *dst );
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#if defined(SIMD512)
typedef struct
{
__m512i buf[64>>2];
__m512i val[5];
uint32_t count_high, count_low;
} __attribute__ ((aligned (128))) ripemd160_16way_context;
} __attribute__ ((aligned (128))) ripemd160_16x32_context;
void ripemd160_16way_init( ripemd160_16way_context *sc );
void ripemd160_16way_update( ripemd160_16way_context *sc, const void *data,
void ripemd160_16x32_init( ripemd160_16x32_context *sc );
void ripemd160_16x32_update( ripemd160_16x32_context *sc, const void *data,
size_t len );
void ripemd160_16way_close( ripemd160_16way_context *sc, void *dst );
void ripemd160_16x32_close( ripemd160_16x32_context *sc, void *dst );
#endif // AVX512
#endif // __AVX2__

View File

@@ -46,7 +46,7 @@
#endif
#ifdef __GNUC__
#if defined(NOASM) || defined(__arm__) || defined(__aarch64__)
#if defined(NOASM) || defined(__arm__) || defined(__aarch64__) || defined(__APPLE__)
#define ASM 0
#else
#define ASM 1
@@ -597,6 +597,45 @@ static void blake2s_compress(blake2s_state *S, const void *buf) {
v[13] = S->t[1] ^ blake2s_IV[5];
v[14] = S->f[0] ^ blake2s_IV[6];
v[15] = S->f[1] ^ blake2s_IV[7];
#if defined(__SSE2__) || defined(__ARM_NEON)
v128_t *V = (v128_t*)v;
#define ROUND( r ) \
V[0] = v128_add32( V[0], v128_add32( V[1], v128_set32( \
m[blake2s_sigma[r][ 6]], m[blake2s_sigma[r][ 4]], \
m[blake2s_sigma[r][ 2]], m[blake2s_sigma[r][ 0]] ) ) ); \
V[3] = v128_ror32( v128_xor( V[3], V[0] ), 16 ); \
V[2] = v128_add32( V[2], V[3] ); \
V[1] = v128_ror32( v128_xor( V[1], V[2] ), 12 ); \
V[0] = v128_add32( V[0], v128_add32( V[1], v128_set32( \
m[blake2s_sigma[r][ 7]], m[blake2s_sigma[r][ 5]], \
m[blake2s_sigma[r][ 3]], m[blake2s_sigma[r][ 1]] ) ) ); \
V[3] = v128_ror32( v128_xor( V[3], V[0] ), 8 ); \
V[2] = v128_add32( V[2], V[3] ); \
V[1] = v128_ror32( v128_xor( V[1], V[2] ), 7 ); \
V[0] = v128_shufll32( V[0] ); \
V[3] = v128_swap64( V[3] ); \
V[2] = v128_shuflr32( V[2] ); \
V[0] = v128_add32( V[0], v128_add32( V[1], v128_set32( \
m[blake2s_sigma[r][12]], m[blake2s_sigma[r][10]], \
m[blake2s_sigma[r][ 8]], m[blake2s_sigma[r][14]] ) ) ); \
V[3] = v128_ror32( v128_xor( V[3], V[0] ), 16 ); \
V[2] = v128_add32( V[2], V[3] ); \
V[1] = v128_ror32( v128_xor( V[1], V[2] ), 12 ); \
V[0] = v128_add32( V[0], v128_add32( V[1], v128_set32( \
m[blake2s_sigma[r][13]], m[blake2s_sigma[r][11]], \
m[blake2s_sigma[r][ 9]], m[blake2s_sigma[r][15]] ) ) ); \
V[3] = v128_ror32( v128_xor( V[3], V[0] ), 8 ); \
V[2] = v128_add32( V[2], V[3] ); \
V[1] = v128_ror32( v128_xor( V[1], V[2] ), 7 ); \
V[0] = v128_shuflr32( V[0] ); \
V[3] = v128_swap64( V[3] ); \
V[2] = v128_shufll32( V[2] )
#else
#define G(r,i,a,b,c,d) \
do { \
a = a + b + m[blake2s_sigma[r][2*i+0]]; \
@@ -619,6 +658,9 @@ static void blake2s_compress(blake2s_state *S, const void *buf) {
G(r, 6, v[ 2], v[ 7], v[ 8], v[13]); \
G(r, 7, v[ 3], v[ 4], v[ 9], v[14]); \
} while(0)
#endif
ROUND(0);
ROUND(1);
ROUND(2);

View File

@@ -745,7 +745,7 @@ do{ \
SALSA_2ROUNDS; SALSA_2ROUNDS; SALSA_2ROUNDS; SALSA_2ROUNDS;
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#if defined(SIMD512)
// Tested OK but very slow
// 16 way parallel, requires 16x32 interleaving
@@ -2074,7 +2074,7 @@ void scrypt_core_4way( v128_t *X, v128_t *V, const uint32_t N )
v128_ovly v;
for ( int l = 0; l < 4; l++ )
v.u32[l] = ( *(vptr[l] +i ) ) .u32[l];
X[i] = v128_xor( X[i], v.m128 );
X[i] = v128_xor( X[i], v.v128 );
}
xor_salsa8_4way( &X[ 0], &X[16] );
@@ -2211,10 +2211,10 @@ static void salsa8_simd128( uint32_t *b, const uint32_t * const c)
// X2 is shuffled left 2 (swap_64) { xd, x8, x7, x2 }
// X3 is shuffled left 3 (ror_1x32) { xc, xb, x6, x1 }
y[0].m128 = X0;
y[1].m128 = X1;
y[2].m128 = X2;
y[3].m128 = X3;
y[0].v128 = X0;
y[1].v128 = X1;
y[2].v128 = X2;
y[3].v128 = X3;
z[0].u32[0] = y[0].u32[0];
z[0].u32[3] = y[1].u32[0];
@@ -2236,10 +2236,10 @@ static void salsa8_simd128( uint32_t *b, const uint32_t * const c)
z[3].u32[1] = y[2].u32[3];
z[3].u32[0] = y[3].u32[3];
B[0] = v128_add32( B[0], z[0].m128 );
B[1] = v128_add32( B[1], z[1].m128 );
B[2] = v128_add32( B[2], z[2].m128 );
B[3] = v128_add32( B[3], z[3].m128 );
B[0] = v128_add32( B[0], z[0].v128 );
B[1] = v128_add32( B[1], z[1].v128 );
B[2] = v128_add32( B[2], z[2].v128 );
B[3] = v128_add32( B[3], z[3].v128 );
#endif
@@ -2404,14 +2404,14 @@ static inline void salsa_simd128_unshuffle_2buf( uint32_t* xa, uint32_t* xb )
/*
v128_ovly ya[4], za[4], yb[4], zb[4];
ya[0].m128 = XA[0];
yb[0].m128 = XB[0];
ya[1].m128 = XA[1];
yb[1].m128 = XB[1];
ya[2].m128 = XA[2];
yb[2].m128 = XB[2];
ya[3].m128 = XA[3];
yb[3].m128 = XB[3];
ya[0].v128 = XA[0];
yb[0].v128 = XB[0];
ya[1].v128 = XA[1];
yb[1].v128 = XB[1];
ya[2].v128 = XA[2];
yb[2].v128 = XB[2];
ya[3].v128 = XA[3];
yb[3].v128 = XB[3];
za[0].u32[0] = ya[0].u32[0];
zb[0].u32[0] = yb[0].u32[0];
@@ -2449,14 +2449,14 @@ static inline void salsa_simd128_unshuffle_2buf( uint32_t* xa, uint32_t* xb )
za[3].u32[3] = ya[0].u32[3];
zb[3].u32[3] = yb[0].u32[3];
XA[0] = za[0].m128;
XB[0] = zb[0].m128;
XA[1] = za[1].m128;
XB[1] = zb[1].m128;
XA[2] = za[2].m128;
XB[2] = zb[2].m128;
XA[3] = za[3].m128;
XB[3] = zb[3].m128;
XA[0] = za[0].v128;
XB[0] = zb[0].v128;
XA[1] = za[1].v128;
XB[1] = zb[1].v128;
XA[2] = za[2].v128;
XB[2] = zb[2].v128;
XA[3] = za[3].v128;
XB[3] = zb[3].v128;
*/
}
@@ -2487,7 +2487,7 @@ static void salsa8_simd128_2buf( uint32_t * const ba, uint32_t * const bb,
XA3 = BA[3] = v128_xor( BA[3], CA[3] );
XB3 = BB[3] = v128_xor( BB[3], CB[3] );
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#if defined(SIMD512)
SALSA_8ROUNDS_SIMD128_2BUF;
@@ -2770,18 +2770,18 @@ static inline void salsa_simd128_unshuffle_3buf( uint32_t* xa, uint32_t* xb,
/*
v128_ovly ya[4], za[4], yb[4], zb[4], yc[4], zc[4];
ya[0].m128 = XA[0];
yb[0].m128 = XB[0];
yc[0].m128 = XC[0];
ya[1].m128 = XA[1];
yb[1].m128 = XB[1];
yc[1].m128 = XC[1];
ya[2].m128 = XA[2];
yb[2].m128 = XB[2];
yc[2].m128 = XC[2];
ya[3].m128 = XA[3];
yb[3].m128 = XB[3];
yc[3].m128 = XC[3];
ya[0].v128 = XA[0];
yb[0].v128 = XB[0];
yc[0].v128 = XC[0];
ya[1].v128 = XA[1];
yb[1].v128 = XB[1];
yc[1].v128 = XC[1];
ya[2].v128 = XA[2];
yb[2].v128 = XB[2];
yc[2].v128 = XC[2];
ya[3].v128 = XA[3];
yb[3].v128 = XB[3];
yc[3].v128 = XC[3];
za[0].u32[0] = ya[0].u32[0];
zb[0].u32[0] = yb[0].u32[0];
@@ -2835,18 +2835,18 @@ static inline void salsa_simd128_unshuffle_3buf( uint32_t* xa, uint32_t* xb,
zb[3].u32[3] = yb[0].u32[3];
zc[3].u32[3] = yc[0].u32[3];
XA[0] = za[0].m128;
XB[0] = zb[0].m128;
XC[0] = zc[0].m128;
XA[1] = za[1].m128;
XB[1] = zb[1].m128;
XC[1] = zc[1].m128;
XA[2] = za[2].m128;
XB[2] = zb[2].m128;
XC[2] = zc[2].m128;
XA[3] = za[3].m128;
XB[3] = zb[3].m128;
XC[3] = zc[3].m128;
XA[0] = za[0].v128;
XB[0] = zb[0].v128;
XC[0] = zc[0].v128;
XA[1] = za[1].v128;
XB[1] = zb[1].v128;
XC[1] = zc[1].v128;
XA[2] = za[2].v128;
XB[2] = zb[2].v128;
XC[2] = zc[2].v128;
XA[3] = za[3].v128;
XB[3] = zb[3].v128;
XC[3] = zc[3].v128;
*/
}
@@ -2886,7 +2886,7 @@ static void salsa8_simd128_3buf( uint32_t *ba, uint32_t *bb, uint32_t *bc,
XB3 = BB[3] = v128_xor( BB[3], CB[3] );
XC3 = BC[3] = v128_xor( BC[3], CC[3] );
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#if defined(SIMD512)
SALSA_8ROUNDS_SIMD128_3BUF;
@@ -3049,7 +3049,7 @@ static void xor_salsa8(uint32_t * const B, const uint32_t * const C)
xf = (B[15] ^= C[15]);
#define ROL32( a, c ) ror32( a, c )
#define ROL32( a, c ) rol32( a, c )
#define ADD32( a, b ) ( (a)+(b) )
#define XOR( a, b ) ( (a)^(b) )

View File

@@ -5,7 +5,7 @@
#include <stdlib.h>
#include <stdint.h>
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#if defined(SIMD512)
void scrypt_core_16way( __m512i *X, __m512i *V, const uint32_t N );

View File

@@ -35,7 +35,7 @@
//#include <mm_malloc.h>
#include "malloc-huge.h"
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#if defined(SIMD512)
#define SCRYPT_THROUGHPUT 16
#elif defined(__SHA__) || defined(__ARM_FEATURE_SHA2)
#define SCRYPT_THROUGHPUT 2
@@ -274,9 +274,6 @@ static inline void PBKDF2_SHA256_128_32_SHA_2BUF( uint32_t *tstate0,
#endif // SHA
static const uint32_t keypad_4way[ 4*12 ] __attribute((aligned(32))) =
{
0x80000000, 0x80000000, 0x80000000, 0x80000000,
@@ -339,7 +336,7 @@ static const uint32_t _ALIGN(16) finalblk_4way[4 * 16] = {
};
*/
static inline void sha256_4way_init_state( void *state )
static inline void sha256_4x32_init_state( void *state )
{
casti_v128( state, 0 ) = v128_32( 0x6A09E667 );
casti_v128( state, 1 ) = v128_32( 0xBB67AE85 );
@@ -362,21 +359,21 @@ static inline void HMAC_SHA256_80_init_4way( const uint32_t *key,
memcpy( pad, key + 4*16, 4*16 );
memcpy( pad + 4*4, keypad_4way, 4*48 );
sha256_4way_transform_le( (v128_t*)ihash, (v128_t*)pad,
sha256_4x32_transform_le( (v128_t*)ihash, (v128_t*)pad,
(const v128_t*)tstate );
sha256_4way_init_state( tstate );
sha256_4x32_init_state( tstate );
for ( i = 0; i < 4*8; i++ ) pad[i] = ihash[i] ^ 0x5c5c5c5c;
for ( ; i < 4*16; i++ ) pad[i] = 0x5c5c5c5c;
sha256_4way_transform_le( (v128_t*)ostate, (v128_t*)pad,
sha256_4x32_transform_le( (v128_t*)ostate, (v128_t*)pad,
(const v128_t*)tstate );
for ( i = 0; i < 4*8; i++ ) pad[i] = ihash[i] ^ 0x36363636;
for ( ; i < 4*16; i++ ) pad[i] = 0x36363636;
sha256_4way_transform_le( (v128_t*)tstate, (v128_t*)pad,
sha256_4x32_transform_le( (v128_t*)tstate, (v128_t*)pad,
(const v128_t*)tstate );
}
@@ -389,7 +386,7 @@ static inline void PBKDF2_SHA256_80_128_4way( const uint32_t *tstate,
uint32_t _ALIGN(16) obuf[4 * 16];
int i, j;
sha256_4way_transform_le( (v128_t*)istate, (v128_t*)salt,
sha256_4x32_transform_le( (v128_t*)istate, (v128_t*)salt,
(const v128_t*)tstate );
memcpy(ibuf, salt + 4 * 16, 4 * 16);
@@ -403,10 +400,10 @@ static inline void PBKDF2_SHA256_80_128_4way( const uint32_t *tstate,
ibuf[4 * 4 + 2] = i + 1;
ibuf[4 * 4 + 3] = i + 1;
sha256_4way_transform_le( (v128_t*)obuf, (v128_t*)ibuf,
sha256_4x32_transform_le( (v128_t*)obuf, (v128_t*)ibuf,
(const v128_t*)istate );
sha256_4way_transform_le( (v128_t*)ostate2, (v128_t*)obuf,
sha256_4x32_transform_le( (v128_t*)ostate2, (v128_t*)obuf,
(const v128_t*)ostate );
for ( j = 0; j < 4 * 8; j++ )
@@ -421,9 +418,9 @@ static inline void PBKDF2_SHA256_128_32_4way( uint32_t *tstate,
uint32_t _ALIGN(64) buf[4 * 16];
int i;
sha256_4way_transform_be( (v128_t*)tstate, (v128_t*)salt,
sha256_4x32_transform_be( (v128_t*)tstate, (v128_t*)salt,
(const v128_t*)tstate );
sha256_4way_transform_be( (v128_t*)tstate, (v128_t*)( salt + 4*16),
sha256_4x32_transform_be( (v128_t*)tstate, (v128_t*)( salt + 4*16),
(const v128_t*)tstate );
final[ 0] = v128_32( 0x00000001 );
@@ -434,20 +431,20 @@ static inline void PBKDF2_SHA256_128_32_4way( uint32_t *tstate,
= v128_xor( final[ 0], final[ 0] ); //_mm_setzero_si128();
final[15] = v128_32 ( 0x00000620 );
sha256_4way_transform_le( (v128_t*)tstate, (v128_t*)final,
sha256_4x32_transform_le( (v128_t*)tstate, (v128_t*)final,
(const v128_t*)tstate );
memcpy(buf, tstate, 4 * 32);
memcpy(buf + 4 * 8, outerpad_4way, 4 * 32);
sha256_4way_transform_le( (v128_t*)ostate, (v128_t*)buf,
sha256_4x32_transform_le( (v128_t*)ostate, (v128_t*)buf,
(const v128_t*)ostate );
for ( i = 0; i < 4 * 8; i++ )
output[i] = bswap_32( ostate[i] );
}
#ifdef HAVE_SHA256_8WAY
#if defined(__AVX2__)
/*
static const uint32_t _ALIGN(32) finalblk_8way[8 * 16] = {
@@ -470,7 +467,7 @@ static const uint32_t _ALIGN(32) finalblk_8way[8 * 16] = {
};
*/
static inline void sha256_8way_init_state( void *state )
static inline void sha256_8x32_init_state( void *state )
{
casti_m256i( state, 0 ) = _mm256_set1_epi32( 0x6A09E667 );
casti_m256i( state, 1 ) = _mm256_set1_epi32( 0xBB67AE85 );
@@ -494,21 +491,21 @@ static inline void HMAC_SHA256_80_init_8way( const uint32_t *key,
memset( pad + 8*5, 0x00, 8*40 );
for ( i = 0; i < 8; i++ ) pad[ 8*15 + i ] = 0x00000280;
sha256_8way_transform_le( (__m256i*)ihash, (__m256i*)pad,
sha256_8x32_transform_le( (__m256i*)ihash, (__m256i*)pad,
(const __m256i*)tstate );
sha256_8way_init_state( tstate );
sha256_8x32_init_state( tstate );
for ( i = 0; i < 8*8; i++ ) pad[i] = ihash[i] ^ 0x5c5c5c5c;
for ( ; i < 8*16; i++ ) pad[i] = 0x5c5c5c5c;
sha256_8way_transform_le( (__m256i*)ostate, (__m256i*)pad,
sha256_8x32_transform_le( (__m256i*)ostate, (__m256i*)pad,
(const __m256i*)tstate );
for ( i = 0; i < 8*8; i++ ) pad[i] = ihash[i] ^ 0x36363636;
for ( ; i < 8*16; i++ ) pad[i] = 0x36363636;
sha256_8way_transform_le( (__m256i*)tstate, (__m256i*)pad,
sha256_8x32_transform_le( (__m256i*)tstate, (__m256i*)pad,
(const __m256i*)tstate );
}
@@ -521,7 +518,7 @@ static inline void PBKDF2_SHA256_80_128_8way( const uint32_t *tstate,
uint32_t _ALIGN(32) obuf[8 * 16];
int i, j;
sha256_8way_transform_le( (__m256i*)istate, (__m256i*)salt,
sha256_8x32_transform_le( (__m256i*)istate, (__m256i*)salt,
(const __m256i*)tstate );
memcpy( ibuf, salt + 8*16, 8*16 );
@@ -544,10 +541,10 @@ static inline void PBKDF2_SHA256_80_128_8way( const uint32_t *tstate,
ibuf[8 * 4 + 6] = i + 1;
ibuf[8 * 4 + 7] = i + 1;
sha256_8way_transform_le( (__m256i*)obuf, (__m256i*)ibuf,
sha256_8x32_transform_le( (__m256i*)obuf, (__m256i*)ibuf,
(const __m256i*)istate );
sha256_8way_transform_le( (__m256i*)ostate2, (__m256i*)obuf,
sha256_8x32_transform_le( (__m256i*)ostate2, (__m256i*)obuf,
(const __m256i*)ostate );
for ( j = 0; j < 8*8; j++ )
@@ -562,9 +559,9 @@ static inline void PBKDF2_SHA256_128_32_8way( uint32_t *tstate,
uint32_t _ALIGN(128) buf[ 8*16 ];
int i;
sha256_8way_transform_be( (__m256i*)tstate, (__m256i*)salt,
sha256_8x32_transform_be( (__m256i*)tstate, (__m256i*)salt,
(const __m256i*)tstate );
sha256_8way_transform_be( (__m256i*)tstate, (__m256i*)( salt + 8*16),
sha256_8x32_transform_be( (__m256i*)tstate, (__m256i*)( salt + 8*16),
(const __m256i*)tstate );
final[ 0] = _mm256_set1_epi32( 0x00000001 );
@@ -575,7 +572,7 @@ static inline void PBKDF2_SHA256_128_32_8way( uint32_t *tstate,
= _mm256_setzero_si256();
final[15] = _mm256_set1_epi32 ( 0x00000620 );
sha256_8way_transform_le( (__m256i*)tstate, final,
sha256_8x32_transform_le( (__m256i*)tstate, final,
(const __m256i*)tstate );
memcpy( buf, tstate, 8*32 );
@@ -583,18 +580,18 @@ static inline void PBKDF2_SHA256_128_32_8way( uint32_t *tstate,
memset( buf + 8*9, 0x00, 8*24 );
for ( i = 0; i < 8; i++ ) buf[ 8*15 + i ] = 0x00000300;
sha256_8way_transform_le( (__m256i*)ostate, (__m256i*)buf,
sha256_8x32_transform_le( (__m256i*)ostate, (__m256i*)buf,
(const __m256i*)ostate );
for (i = 0; i < 8 * 8; i++)
output[i] = bswap_32(ostate[i]);
}
#endif /* HAVE_SHA256_8WAY */
#endif //AVX2
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#if defined(SIMD512)
static inline void sha256_16way_init_state( void *state )
static inline void sha256_16x32_init_state( void *state )
{
casti_m512i( state, 0 ) = _mm512_set1_epi32( 0x6A09E667 );
casti_m512i( state, 1 ) = _mm512_set1_epi32( 0xBB67AE85 );
@@ -618,21 +615,21 @@ static inline void HMAC_SHA256_80_init_16way( const uint32_t *key,
memset( pad + 16*5, 0x00, 16*40 );
for ( i = 0; i < 16; i++ ) pad[ 16*15 + i ] = 0x00000280;
sha256_16way_transform_le( (__m512i*)ihash, (__m512i*)pad,
sha256_16x32_transform_le( (__m512i*)ihash, (__m512i*)pad,
(const __m512i*)tstate );
sha256_16way_init_state( tstate );
sha256_16x32_init_state( tstate );
for ( i = 0; i < 16*8; i++ ) pad[i] = ihash[i] ^ 0x5c5c5c5c;
for ( ; i < 16*16; i++ ) pad[i] = 0x5c5c5c5c;
sha256_16way_transform_le( (__m512i*)ostate, (__m512i*)pad,
sha256_16x32_transform_le( (__m512i*)ostate, (__m512i*)pad,
(const __m512i*)tstate );
for ( i = 0; i < 16*8; i++ ) pad[i] = ihash[i] ^ 0x36363636;
for ( ; i < 16*16; i++ ) pad[i] = 0x36363636;
sha256_16way_transform_le( (__m512i*)tstate, (__m512i*)pad,
sha256_16x32_transform_le( (__m512i*)tstate, (__m512i*)pad,
(const __m512i*)tstate );
}
@@ -645,7 +642,7 @@ static inline void PBKDF2_SHA256_80_128_16way( const uint32_t *tstate,
uint32_t _ALIGN(128) ostate2[ 16*8 ];
int i, j;
sha256_16way_transform_le( (__m512i*)istate, (__m512i*)salt,
sha256_16x32_transform_le( (__m512i*)istate, (__m512i*)salt,
(const __m512i*)tstate );
memcpy( ibuf, salt + 16*16, 16*16 );
@@ -676,10 +673,10 @@ static inline void PBKDF2_SHA256_80_128_16way( const uint32_t *tstate,
ibuf[ 16*4 + 14 ] = i + 1;
ibuf[ 16*4 + 15 ] = i + 1;
sha256_16way_transform_le( (__m512i*)obuf, (__m512i*)ibuf,
sha256_16x32_transform_le( (__m512i*)obuf, (__m512i*)ibuf,
(const __m512i*)istate );
sha256_16way_transform_le( (__m512i*)ostate2, (__m512i*)obuf,
sha256_16x32_transform_le( (__m512i*)ostate2, (__m512i*)obuf,
(const __m512i*)ostate );
for ( j = 0; j < 16*8; j++ )
@@ -694,9 +691,9 @@ static inline void PBKDF2_SHA256_128_32_16way( uint32_t *tstate,
uint32_t _ALIGN(128) buf[ 16*16 ];
int i;
sha256_16way_transform_be( (__m512i*)tstate, (__m512i*)salt,
sha256_16x32_transform_be( (__m512i*)tstate, (__m512i*)salt,
(const __m512i*)tstate );
sha256_16way_transform_be( (__m512i*)tstate, (__m512i*)( salt + 16*16),
sha256_16x32_transform_be( (__m512i*)tstate, (__m512i*)( salt + 16*16),
(const __m512i*)tstate );
final[ 0] = _mm512_set1_epi32( 0x00000001 );
@@ -707,7 +704,7 @@ static inline void PBKDF2_SHA256_128_32_16way( uint32_t *tstate,
= _mm512_setzero_si512();
final[15] = _mm512_set1_epi32 ( 0x00000620 );
sha256_16way_transform_le( (__m512i*)tstate, final,
sha256_16x32_transform_le( (__m512i*)tstate, final,
(const __m512i*)tstate );
memcpy( buf, tstate, 16*32 );
@@ -715,7 +712,7 @@ static inline void PBKDF2_SHA256_128_32_16way( uint32_t *tstate,
memset( buf + 16*9, 0x00, 16*24 );
for ( i = 0; i < 16; i++ ) buf[ 16*15 + i ] = 0x00000300;
sha256_16way_transform_le( (__m512i*)ostate, (__m512i*)buf,
sha256_16x32_transform_le( (__m512i*)ostate, (__m512i*)buf,
(const __m512i*)ostate );
for ( i = 0; i < 16*8; i++ )
@@ -724,25 +721,10 @@ static inline void PBKDF2_SHA256_128_32_16way( uint32_t *tstate,
#endif // AVX512
#define SCRYPT_MAX_WAYS 12
#define HAVE_SCRYPT_3WAY 1
void scrypt_core(uint32_t *X, uint32_t *V, int N);
void scrypt_core_3way(uint32_t *X, uint32_t *V, int N);
#if defined(__AVX2__)
#undef SCRYPT_MAX_WAYS
#define SCRYPT_MAX_WAYS 24
#define HAVE_SCRYPT_6WAY 1
void scrypt_core_6way(uint32_t *X, uint32_t *V, int N);
#endif
#ifndef SCRYPT_MAX_WAYS
#define SCRYPT_MAX_WAYS 1
#endif
#include "scrypt-core-4way.h"
/*
#if ( SCRYPT_THROUGHPUT == 1 )
static bool scrypt_N_1_1_256( const uint32_t *input, uint32_t *output,
uint32_t *midstate, int N, int thr_id )
{
@@ -752,15 +734,12 @@ static bool scrypt_N_1_1_256( const uint32_t *input, uint32_t *output,
memcpy(tstate, midstate, 32);
HMAC_SHA256_80_init(input, tstate, ostate);
PBKDF2_SHA256_80_128(tstate, ostate, input, X);
scrypt_core_simd128( X, scratchbuf, N ); // woring
// scrypt_core_1way( X, V, N ); // working
// scrypt_core(X, V, N);
scrypt_core_1way( X, scratchbuf, N );
PBKDF2_SHA256_128_32(tstate, ostate, X, output);
return true;
}
*/
#endif
#if ( SCRYPT_THROUGHPUT == 8 )
@@ -1201,20 +1180,6 @@ static int scrypt_N_1_1_256_16way( const uint32_t *input, uint32_t *output,
if ( work_restart[thrid].restart ) return 0;
scrypt_core_simd128_2buf( X+448, V, N );
********************/
/*
scrypt_core_3way( X, V, N );
if ( work_restart[thrid].restart ) return 0;
scrypt_core_3way( X+ 96, V, N );
if ( work_restart[thrid].restart ) return 0;
scrypt_core_simd128_2buf( X+192, V, N );
if ( work_restart[thrid].restart ) return 0;
scrypt_core_3way( X+256, V, N );
if ( work_restart[thrid].restart ) return 0;
scrypt_core_3way( X+352, V, N );
if ( work_restart[thrid].restart ) return 0;
scrypt_core_simd128_2buf( X+448, V, N );
*/
if ( work_restart[thrid].restart ) return 0;
@@ -1321,8 +1286,7 @@ static int scrypt_N_1_1_256_4way_sha( const uint32_t *input, uint32_t *output,
return 1;
}
#else
// SSE2
#elif defined(__SSE2__) || defined(__ARM_NEON)
static int scrypt_N_1_1_256_4way( const uint32_t *input, uint32_t *output,
uint32_t *midstate, int N, int thrid )
@@ -1481,7 +1445,7 @@ bool scrypt_miner_thread_init( int thr_id )
bool register_scrypt_algo( algo_gate_t* gate )
{
#if defined(__SHA__) || defined(__ARM_FEATURE_SHA2)
gate->optimizations = SSE2_OPT | SHA_OPT | NEON_OPT;
gate->optimizations = SSE2_OPT | SSE42_OPT | AVX_OPT | SHA256_OPT | NEON_OPT;
#else
gate->optimizations = SSE2_OPT | SSE42_OPT | AVX_OPT | AVX2_OPT | AVX512_OPT | NEON_OPT;
#endif
@@ -1491,31 +1455,31 @@ bool register_scrypt_algo( algo_gate_t* gate )
opt_param_n = opt_param_n ? opt_param_n : 1024;
applog( LOG_INFO,"Scrypt paramaters: N= %d, R= 1", opt_param_n );
// scrypt_throughput defined at compile time and used to replace
// MAX_WAYS to reduce memory usage.
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
// scrypt_throughput = 16;
if ( opt_param_n > 0x4000 )
scratchbuf_size = opt_param_n * 3 * 128; // 3 buf
else
scratchbuf_size = opt_param_n * 4 * 128; // 4 way
#elif defined(__SHA__) || defined(__ARM_FEATURE_SHA2)
// scrypt_throughput = 2;
scratchbuf_size = opt_param_n * 2 * 128; // 2 buf
#elif defined(__AVX2__)
// scrypt_throughput = 8;
if ( opt_param_n > 0x4000 )
scratchbuf_size = opt_param_n * 3 * 128; // 3 buf
else
scratchbuf_size = opt_param_n * 2 * 128; // 2 way
#else
// scrypt_throughput = 4;
if ( opt_param_n > 0x4000 )
scratchbuf_size = opt_param_n * 2 * 128; // 2 buf
else
scratchbuf_size = opt_param_n * 4 * 128; // 4 way
#endif
switch ( SCRYPT_THROUGHPUT )
{
case 16: // AVX512
if ( opt_param_n > 0x4000 )
scratchbuf_size = opt_param_n * 3 * 128; // 3 buf
else
scratchbuf_size = opt_param_n * 4 * 128; // 4 way
break;
case 2: // SHA256
scratchbuf_size = opt_param_n * 2 * 128; // 2 buf
break;
case 8: // AVX2
if ( opt_param_n > 0x4000 )
scratchbuf_size = opt_param_n * 3 * 128; // 3 buf
else
scratchbuf_size = opt_param_n * 2 * 128; // 2 way
break;
case 4: // SSE2, NEON
if ( opt_param_n > 0x4000 )
scratchbuf_size = opt_param_n * 2 * 128; // 2 buf
else
scratchbuf_size = opt_param_n * 4 * 128; // 4 way
default:
scratchbuf_size = opt_param_n; // 1 way
}
char t_units[4] = {0};
char d_units[4] = {0};

View File

@@ -31,7 +31,7 @@
#include "hmac-sha256-hash-4way.h"
#include "compat.h"
#if defined(__SSE2__)
#if defined(__SSE2__) || defined(__ARM_NEON)
// HMAC 4-way SSE2
/**
@@ -62,30 +62,30 @@ hmac_sha256_4way_init( hmac_sha256_4way_context *ctx, const void *_K,
/* If Klen > 64, the key is really SHA256(K). */
if ( Klen > 64 )
{
sha256_4way_init( &ctx->ictx );
sha256_4way_update( &ctx->ictx, K, Klen );
sha256_4way_close( &ctx->ictx, khash );
sha256_4x32_init( &ctx->ictx );
sha256_4x32_update( &ctx->ictx, K, Klen );
sha256_4x32_close( &ctx->ictx, khash );
K = khash;
Klen = 32;
}
/* Inner SHA256 operation is SHA256(K xor [block of 0x36] || data). */
sha256_4way_init( &ctx->ictx );
sha256_4x32_init( &ctx->ictx );
memset( pad, 0x36, 64*4 );
for ( i = 0; i < Klen; i++ )
casti_m128i( pad, i ) = _mm_xor_si128( casti_m128i( pad, i ),
casti_m128i( K, i ) );
casti_v128u32( pad, i ) = v128_xor( casti_v128u32( pad, i ),
casti_v128u32( K, i ) );
sha256_4way_update( &ctx->ictx, pad, 64 );
sha256_4x32_update( &ctx->ictx, pad, 64 );
/* Outer SHA256 operation is SHA256(K xor [block of 0x5c] || hash). */
sha256_4way_init( &ctx->octx );
sha256_4x32_init( &ctx->octx );
memset( pad, 0x5c, 64*4 );
for ( i = 0; i < Klen/4; i++ )
casti_m128i( pad, i ) = _mm_xor_si128( casti_m128i( pad, i ),
casti_m128i( K, i ) );
sha256_4way_update( &ctx->octx, pad, 64 );
casti_v128u32( pad, i ) = v128_xor( casti_v128u32( pad, i ),
casti_v128u32( K, i ) );
sha256_4x32_update( &ctx->octx, pad, 64 );
}
/* Add bytes to the HMAC-SHA256 operation. */
@@ -94,7 +94,7 @@ hmac_sha256_4way_update( hmac_sha256_4way_context *ctx, const void *in,
size_t len )
{
/* Feed data to the inner SHA256 operation. */
sha256_4way_update( &ctx->ictx, in, len );
sha256_4x32_update( &ctx->ictx, in, len );
}
/* Finish an HMAC-SHA256 operation. */
@@ -104,13 +104,13 @@ hmac_sha256_4way_close( hmac_sha256_4way_context *ctx, void *digest )
unsigned char ihash[32*4] __attribute__ ((aligned (64)));
/* Finish the inner SHA256 operation. */
sha256_4way_close( &ctx->ictx, ihash );
sha256_4x32_close( &ctx->ictx, ihash );
/* Feed the inner hash to the outer SHA256 operation. */
sha256_4way_update( &ctx->octx, ihash, 32 );
sha256_4x32_update( &ctx->octx, ihash, 32 );
/* Finish the outer SHA256 operation. */
sha256_4way_close( &ctx->octx, digest );
sha256_4x32_close( &ctx->octx, digest );
}
/**
@@ -126,7 +126,7 @@ pbkdf2_sha256_4way( uint8_t *buf, size_t dkLen,
hmac_sha256_4way_context PShctx, hctx;
uint8_t _ALIGN(128) T[32*4];
uint8_t _ALIGN(128) U[32*4];
__m128i ivec;
v128u32_t ivec;
size_t i, clen;
uint64_t j;
int k;
@@ -139,7 +139,7 @@ pbkdf2_sha256_4way( uint8_t *buf, size_t dkLen,
for ( i = 0; i * 32 < dkLen; i++ )
{
/* Generate INT(i + 1). */
ivec = _mm_set1_epi32( bswap_32( i+1 ) );
ivec = v128_32( bswap_32( i+1 ) );
/* Compute U_1 = PRF(P, S || INT(i)). */
memcpy( &hctx, &PShctx, sizeof(hmac_sha256_4way_context) );
@@ -158,8 +158,8 @@ pbkdf2_sha256_4way( uint8_t *buf, size_t dkLen,
/* ... xor U_j ... */
for ( k = 0; k < 8; k++ )
casti_m128i( T, k ) = _mm_xor_si128( casti_m128i( T, k ),
casti_m128i( U, k ) );
casti_v128u32( T, k ) = v128_xor( casti_v128u32( T, k ),
casti_v128u32( U, k ) );
}
/* Copy as many bytes as necessary into buf. */
@@ -199,30 +199,30 @@ hmac_sha256_8way_init( hmac_sha256_8way_context *ctx, const void *_K,
/* If Klen > 64, the key is really SHA256(K). */
if ( Klen > 64 )
{
sha256_8way_init( &ctx->ictx );
sha256_8way_update( &ctx->ictx, K, Klen );
sha256_8way_close( &ctx->ictx, khash );
sha256_8x32_init( &ctx->ictx );
sha256_8x32_update( &ctx->ictx, K, Klen );
sha256_8x32_close( &ctx->ictx, khash );
K = khash;
Klen = 32;
}
/* Inner SHA256 operation is SHA256(K xor [block of 0x36] || data). */
sha256_8way_init( &ctx->ictx );
sha256_8x32_init( &ctx->ictx );
memset( pad, 0x36, 64*8);
for ( i = 0; i < Klen/4; i++ )
casti_m256i( pad, i ) = _mm256_xor_si256( casti_m256i( pad, i ),
casti_m256i( K, i ) );
sha256_8way_update( &ctx->ictx, pad, 64 );
sha256_8x32_update( &ctx->ictx, pad, 64 );
/* Outer SHA256 operation is SHA256(K xor [block of 0x5c] || hash). */
sha256_8way_init( &ctx->octx );
sha256_8x32_init( &ctx->octx );
memset( pad, 0x5c, 64*8 );
for ( i = 0; i < Klen/4; i++ )
casti_m256i( pad, i ) = _mm256_xor_si256( casti_m256i( pad, i ),
casti_m256i( K, i ) );
sha256_8way_update( &ctx->octx, pad, 64 );
sha256_8x32_update( &ctx->octx, pad, 64 );
}
void
@@ -230,7 +230,7 @@ hmac_sha256_8way_update( hmac_sha256_8way_context *ctx, const void *in,
size_t len )
{
/* Feed data to the inner SHA256 operation. */
sha256_8way_update( &ctx->ictx, in, len );
sha256_8x32_update( &ctx->ictx, in, len );
}
/* Finish an HMAC-SHA256 operation. */
@@ -240,13 +240,13 @@ hmac_sha256_8way_close( hmac_sha256_8way_context *ctx, void *digest )
unsigned char ihash[32*8] __attribute__ ((aligned (128)));
/* Finish the inner SHA256 operation. */
sha256_8way_close( &ctx->ictx, ihash );
sha256_8x32_close( &ctx->ictx, ihash );
/* Feed the inner hash to the outer SHA256 operation. */
sha256_8way_update( &ctx->octx, ihash, 32 );
sha256_8x32_update( &ctx->octx, ihash, 32 );
/* Finish the outer SHA256 operation. */
sha256_8way_close( &ctx->octx, digest );
sha256_8x32_close( &ctx->octx, digest );
}
/**
@@ -306,7 +306,7 @@ pbkdf2_sha256_8way( uint8_t *buf, size_t dkLen, const uint8_t *passwd,
}
}
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#if defined(SIMD512)
// HMAC 16-way AVX512
@@ -332,21 +332,21 @@ hmac_sha256_16way_init( hmac_sha256_16way_context *ctx, const void *_K,
/* If Klen > 64, the key is really SHA256(K). */
if ( Klen > 64 )
{
sha256_16way_init( &ctx->ictx );
sha256_16way_update( &ctx->ictx, K, Klen );
sha256_16way_close( &ctx->ictx, khash );
sha256_16x32_init( &ctx->ictx );
sha256_16x32_update( &ctx->ictx, K, Klen );
sha256_16x32_close( &ctx->ictx, khash );
K = khash;
Klen = 32;
}
/* Inner SHA256 operation is SHA256(K xor [block of 0x36] || data). */
sha256_16way_init( &ctx->ictx );
sha256_16x32_init( &ctx->ictx );
memset( pad, 0x36, 64*16 );
for ( i = 0; i < Klen; i++ )
casti_m512i( pad, i ) = _mm512_xor_si512( casti_m512i( pad, i ),
casti_m512i( K, i ) );
sha256_16way_update( &ctx->ictx, pad, 64 );
sha256_16x32_update( &ctx->ictx, pad, 64 );
/* Outer SHA256 operation is SHA256(K xor [block of 0x5c] || hash). */
sha256_16way_init( &ctx->octx );
@@ -354,7 +354,7 @@ hmac_sha256_16way_init( hmac_sha256_16way_context *ctx, const void *_K,
for ( i = 0; i < Klen/4; i++ )
casti_m512i( pad, i ) = _mm512_xor_si512( casti_m512i( pad, i ),
casti_m512i( K, i ) );
sha256_16way_update( &ctx->octx, pad, 64 );
sha256_16x32_update( &ctx->octx, pad, 64 );
}
void
@@ -362,7 +362,7 @@ hmac_sha256_16way_update( hmac_sha256_16way_context *ctx, const void *in,
size_t len )
{
/* Feed data to the inner SHA256 operation. */
sha256_16way_update( &ctx->ictx, in, len );
sha256_16x32_update( &ctx->ictx, in, len );
}
/* Finish an HMAC-SHA256 operation. */
@@ -372,13 +372,13 @@ hmac_sha256_16way_close( hmac_sha256_16way_context *ctx, void *digest )
unsigned char ihash[32*16] __attribute__ ((aligned (128)));
/* Finish the inner SHA256 operation. */
sha256_16way_close( &ctx->ictx, ihash );
sha256_16x32_close( &ctx->ictx, ihash );
/* Feed the inner hash to the outer SHA256 operation. */
sha256_16way_update( &ctx->octx, ihash, 32 );
sha256_16x32_update( &ctx->octx, ihash, 32 );
/* Finish the outer SHA256 operation. */
sha256_16way_close( &ctx->octx, digest );
sha256_16x32_close( &ctx->octx, digest );
}
/**

View File

@@ -1,6 +1,6 @@
/*-
* Copyright 2005,2007,2009 Colin Percival
* Copyright 2020 JayDDee@gmailcom
* Copyright 2020 JayDDee246@gmailcom
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
@@ -38,11 +38,12 @@
#include "simd-utils.h"
#include "sha256-hash.h"
#if defined(__SSE2__)
#if defined(__SSE2__) || defined(__ARM_NEON)
typedef struct _hmac_sha256_4way_context
{
sha256_4way_context ictx;
sha256_4way_context octx;
sha256_4x32_context ictx;
sha256_4x32_context octx;
} hmac_sha256_4way_context;
//void SHA256_Buf( const void *, size_t len, uint8_t digest[32] );
@@ -67,8 +68,8 @@ void pbkdf2_sha256_4way( uint8_t *, size_t, const uint8_t *, size_t,
typedef struct _hmac_sha256_8way_context
{
sha256_8way_context ictx;
sha256_8way_context octx;
sha256_8x32_context ictx;
sha256_8x32_context octx;
} hmac_sha256_8way_context;
//void SHA256_Buf( const void *, size_t len, uint8_t digest[32] );
@@ -84,12 +85,12 @@ void pbkdf2_sha256_8way( uint8_t *, size_t, const uint8_t *, size_t,
#endif // AVX2
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#if defined(SIMD512)
typedef struct _hmac_sha256_16way_context
{
sha256_16way_context ictx;
sha256_16way_context octx;
sha256_16x32_context ictx;
sha256_16x32_context octx;
} hmac_sha256_16way_context;
//void SHA256_Buf( const void *, size_t len, uint8_t digest[32] );

View File

@@ -30,6 +30,7 @@ static const uint32_t K256[64] =
0x90BEFFFA, 0xA4506CEB, 0xBEF9A3F7, 0xC67178F2
};
#if defined(__SSE2__) || defined(__ARM_NEON)
// SHA-256 4 way SSE2
#define CHs(X, Y, Z) \
@@ -309,142 +310,6 @@ void sha256_4x32_final_rounds( v128_t *state_out, const v128_t *data,
v128_store( state_out + 7, H );
}
# if 0
// Working correctly but still slower
int sha256_4x32_transform_le_short( v128_t *state_out, const v128_t *data,
const v128_t *state_in, const uint32_t *target )
{
v128_t A, B, C, D, E, F, G, H, T0, T1, T2;
v128_t vmask, targ, hash;
int t6_mask, flip;
v128_t W[16]; v128_memcpy( W, data, 16 );
A = v128_load( state_in );
B = v128_load( state_in+1 );
C = v128_load( state_in+2 );
D = v128_load( state_in+3 );
E = v128_load( state_in+4 );
F = v128_load( state_in+5 );
G = v128_load( state_in+6 );
H = v128_load( state_in+7 );
const v128_t IV7 = H;
const v128_t IV6 = G;
SHA256_4X32_16ROUNDS( A, B, C, D, E, F, G, H, 0 );
SHA256_4X32_MSG_EXPANSION( W );
SHA256_4X32_16ROUNDS( A, B, C, D, E, F, G, H, 16 );
SHA256_4X32_MSG_EXPANSION( W );
SHA256_4X32_16ROUNDS( A, B, C, D, E, F, G, H, 32 );
W[ 0] = SHA256_4X32_MEXP( W[14], W[ 9], W[ 1], W[ 0] );
W[ 1] = SHA256_4X32_MEXP( W[15], W[10], W[ 2], W[ 1] );
W[ 2] = SHA256_4X32_MEXP( W[ 0], W[11], W[ 3], W[ 2] );
W[ 3] = SHA256_4X32_MEXP( W[ 1], W[12], W[ 4], W[ 3] );
W[ 4] = SHA256_4X32_MEXP( W[ 2], W[13], W[ 5], W[ 4] );
W[ 5] = SHA256_4X32_MEXP( W[ 3], W[14], W[ 6], W[ 5] );
W[ 6] = SHA256_4X32_MEXP( W[ 4], W[15], W[ 7], W[ 6] );
W[ 7] = SHA256_4X32_MEXP( W[ 5], W[ 0], W[ 8], W[ 7] );
W[ 8] = SHA256_4X32_MEXP( W[ 6], W[ 1], W[ 9], W[ 8] );
W[ 9] = SHA256_4X32_MEXP( W[ 7], W[ 2], W[10], W[ 9] );
W[10] = SHA256_4X32_MEXP( W[ 8], W[ 3], W[11], W[10] );
W[11] = SHA256_4X32_MEXP( W[ 9], W[ 4], W[12], W[11] );
W[12] = SHA256_4X32_MEXP( W[10], W[ 5], W[13], W[12] );
v128_t X_xor_Y, Y_xor_Z = v128_xor( B, C );
SHA256_4X32_ROUND( A, B, C, D, E, F, G, H, 0, 48 );
SHA256_4X32_ROUND( H, A, B, C, D, E, F, G, 1, 48 );
SHA256_4X32_ROUND( G, H, A, B, C, D, E, F, 2, 48 );
SHA256_4X32_ROUND( F, G, H, A, B, C, D, E, 3, 48 );
SHA256_4X32_ROUND( E, F, G, H, A, B, C, D, 4, 48 );
SHA256_4X32_ROUND( D, E, F, G, H, A, B, C, 5, 48 );
SHA256_4X32_ROUND( C, D, E, F, G, H, A, B, 6, 48 );
SHA256_4X32_ROUND( B, C, D, E, F, G, H, A, 7, 48 );
SHA256_4X32_ROUND( A, B, C, D, E, F, G, H, 8, 48 );
SHA256_4X32_ROUND( H, A, B, C, D, E, F, G, 9, 48 );
T0 = v128_add32( v128_32( K256[58] ),
v128_add4_32( BSG2_1( C ), CHs( C, D, E ), W[10], F ) );
B = v128_add32( B, T0 );
T1 = v128_add32( v128_32( K256[59] ),
v128_add4_32( BSG2_1( B ), CHs( B, C, D ), W[11], E ) );
A = v128_add32( A, T1 );
T2 = v128_add32( v128_32( K256[60] ),
v128_add4_32( BSG2_1( A ), CHs( A, B, C ), W[12], D ) );
H = v128_add32( H, T2 );
targ = v128_32( target[7] );
hash = v128_bswap32( v128_add32( H, IV7 ) );
flip = ( (int)target[7] < 0 ? 0xf : 0 ) ^ v128_movmask32( hash );
if ( likely(
0xf == ( flip ^ v128_movmask32( v128_cmpgt32( hash, targ ) ) ) ))
return 0;
t6_mask = v128_movmask32( vmask = v128_cmpeq32( hash, targ ) );
// round 58 part 2
F = v128_add32( T0, v128_add32( BSG2_0( G ), MAJs( G, H, A ) ) );
// round 61 part 1
W[13] = SHA256_4X32_MEXP( W[11], W[ 6], W[14], W[13] );
T0 = v128_add32( v128_32( K256[61] ),
v128_add4_32( BSG2_1( H ), CHs( H, A, B ), W[13], C ) );
G = v128_add32( G, T0 );
if ( t6_mask )
{
targ = v128_and( vmask, v128_32( target[6] ) );
hash = v128_bswap32( v128_add32( G, IV6 ) );
if ( ( 0 != ( t6_mask & v128_movmask32( v128_cmpeq32( hash, targ ) ) ) ))
return 0;
else
{
flip = ( (int)target[6] < 0 ? 0xf : 0 ) ^ v128_movmask32( hash );
if ( 0 != ( t6_mask & ( flip ^ v128_movmask32(
v128_cmpgt32( hash, targ ) ) ) ) )
return 0;
else if ( target[6] == 0x80000000 )
{
if ( 0 == ( t6_mask & v128_movmask32(
v128_cmpgt32( hash, v128_xor( hash, hash ) ) ) ) )
return 0;
}
}
}
// rounds 59 to 61 part 2
E = v128_add32( T1, v128_add32( BSG2_0( F ), MAJs( F, G, H ) ) );
D = v128_add32( T2, v128_add32( BSG2_0( E ), MAJs( E, F, G ) ) );
C = v128_add32( T0, v128_add32( BSG2_0( D ), MAJs( D, E, F ) ) );
// rounds 62 & 63
W[14] = SHA256_4X32_MEXP( W[12], W[ 7], W[15], W[14] );
W[15] = SHA256_4X32_MEXP( W[13], W[ 8], W[ 0], W[15] );
SHA256_4X32_ROUND( C, D, E, F, G, H, A, B, 14, 48 );
SHA256_4X32_ROUND( B, C, D, E, F, G, H, A, 15, 48 );
state_out[0] = v128_add32( state_in[0], A );
state_out[1] = v128_add32( state_in[1], B );
state_out[2] = v128_add32( state_in[2], C );
state_out[3] = v128_add32( state_in[3], D );
state_out[4] = v128_add32( state_in[4], E );
state_out[5] = v128_add32( state_in[5], F );
state_out[6] = v128_add32( state_in[6], G );
state_out[7] = v128_add32( state_in[7], H );
return 1;
}
#endif
void sha256_4x32_init( sha256_4x32_context *sc )
{
sc->count_high = sc->count_low = 0;
@@ -529,29 +394,31 @@ void sha256_4x32_full( void *dst, const void *data, size_t len )
sha256_4x32_close( &ctx, dst );
}
#endif // SSE2 || NEON
#if defined(__AVX2__)
// SHA-256 8 way
#define BSG2_0x(x) \
_mm256_xor_si256( _mm256_xor_si256( mm256_ror_32( x, 2 ), \
mm256_ror_32( x, 13 ) ), \
mm256_ror_32( x, 22 ) )
mm256_xor3( mm256_ror_32( x, 2 ), \
mm256_ror_32( x, 13 ), \
mm256_ror_32( x, 22 ) )
#define BSG2_1x(x) \
_mm256_xor_si256( _mm256_xor_si256( mm256_ror_32( x, 6 ), \
mm256_ror_32( x, 11 ) ), \
mm256_ror_32( x, 25 ) )
mm256_xor3( mm256_ror_32( x, 6 ), \
mm256_ror_32( x, 11 ), \
mm256_ror_32( x, 25 ) )
#define SSG2_0x(x) \
_mm256_xor_si256( _mm256_xor_si256( mm256_ror_32( x, 7 ), \
mm256_ror_32( x, 18 ) ), \
_mm256_srli_epi32( x, 3 ) )
mm256_xor3( mm256_ror_32( x, 7 ), \
mm256_ror_32( x, 18 ), \
_mm256_srli_epi32( x, 3 ) )
#define SSG2_1x(x) \
_mm256_xor_si256( _mm256_xor_si256( mm256_ror_32( x, 17 ), \
mm256_ror_32( x, 19 ) ), \
_mm256_srli_epi32( x, 10 ) )
mm256_xor3( mm256_ror_32( x, 17 ), \
mm256_ror_32( x, 19 ), \
_mm256_srli_epi32( x, 10 ) )
#define SHA256_8WAY_MEXP( a, b, c, d ) \
mm256_add4_32( SSG2_1x( a ), b, SSG2_0x( c ), d );
@@ -574,62 +441,6 @@ void sha256_4x32_full( void *dst, const void *data, size_t len )
W[14] = SHA256_8WAY_MEXP( W[12], W[ 7], W[15], W[14] ); \
W[15] = SHA256_8WAY_MEXP( W[13], W[ 8], W[ 0], W[15] );
// With AVX512VL ternary logic optimizations are available.
// If not optimize by forwarding the result of X^Y in MAJ to the next round
// to avoid recalculating it as Y^Z. This optimization is not applicable
// when MAJ is optimized with ternary logic.
#if defined(__AVX512VL__)
#define CHx(X, Y, Z) _mm256_ternarylogic_epi32( X, Y, Z, 0xca )
#define MAJx(X, Y, Z) _mm256_ternarylogic_epi32( X, Y, Z, 0xe8 )
#define SHA256_8WAY_ROUND( A, B, C, D, E, F, G, H, i, j ) \
do { \
__m256i T0 = _mm256_add_epi32( v256_32( K256[ (j)+(i) ] ), \
W[ i ] ); \
__m256i T1 = BSG2_1x( E ); \
__m256i T2 = BSG2_0x( A ); \
T0 = _mm256_add_epi32( T0, CHx( E, F, G ) ); \
T1 = _mm256_add_epi32( T1, H ); \
T2 = _mm256_add_epi32( T2, MAJx( A, B, C ) ); \
T1 = _mm256_add_epi32( T1, T0 ); \
D = _mm256_add_epi32( D, T1 ); \
H = _mm256_add_epi32( T1, T2 ); \
} while (0)
#define SHA256_8WAY_16ROUNDS( A, B, C, D, E, F, G, H, j ) \
SHA256_8WAY_ROUND( A, B, C, D, E, F, G, H, 0, j ); \
SHA256_8WAY_ROUND( H, A, B, C, D, E, F, G, 1, j ); \
SHA256_8WAY_ROUND( G, H, A, B, C, D, E, F, 2, j ); \
SHA256_8WAY_ROUND( F, G, H, A, B, C, D, E, 3, j ); \
SHA256_8WAY_ROUND( E, F, G, H, A, B, C, D, 4, j ); \
SHA256_8WAY_ROUND( D, E, F, G, H, A, B, C, 5, j ); \
SHA256_8WAY_ROUND( C, D, E, F, G, H, A, B, 6, j ); \
SHA256_8WAY_ROUND( B, C, D, E, F, G, H, A, 7, j ); \
SHA256_8WAY_ROUND( A, B, C, D, E, F, G, H, 8, j ); \
SHA256_8WAY_ROUND( H, A, B, C, D, E, F, G, 9, j ); \
SHA256_8WAY_ROUND( G, H, A, B, C, D, E, F, 10, j ); \
SHA256_8WAY_ROUND( F, G, H, A, B, C, D, E, 11, j ); \
SHA256_8WAY_ROUND( E, F, G, H, A, B, C, D, 12, j ); \
SHA256_8WAY_ROUND( D, E, F, G, H, A, B, C, 13, j ); \
SHA256_8WAY_ROUND( C, D, E, F, G, H, A, B, 14, j ); \
SHA256_8WAY_ROUND( B, C, D, E, F, G, H, A, 15, j );
// Not used with AVX512, needed to satisfy the compiler
#define SHA256_8WAY_ROUND_NOMSG( A, B, C, D, E, F, G, H, i, j ) \
{ \
__m256i T1 = mm256_add4_32( H, BSG2_1x(E), CHx(E, F, G), \
v256_32( K256[(i)+(j)] ) ); \
__m256i T2 = _mm256_add_epi32( BSG2_0x(A), MAJx(A, B, C) ); \
D = _mm256_add_epi32( D, T1 ); \
H = _mm256_add_epi32( T1, T2 ); \
}
#else // AVX2
#define CHx(X, Y, Z) \
_mm256_xor_si256( _mm256_and_si256( _mm256_xor_si256( Y, Z ), X ), Z )
@@ -641,61 +452,58 @@ do { \
#define SHA256_8WAY_ROUND_NOMSG( A, B, C, D, E, F, G, H, i, j ) \
{ \
__m256i T1 = mm256_add4_32( H, BSG2_1x(E), CHx(E, F, G), \
H = mm256_add4_32( H, BSG2_1x(E), CHx(E, F, G), \
v256_32( K256[(i)+(j)] ) ); \
__m256i T2 = _mm256_add_epi32( BSG2_0x(A), MAJx(A, B, C) ); \
__m256i T = _mm256_add_epi32( BSG2_0x(A), MAJx(A, B, C) ); \
Y_xor_Z = X_xor_Y; \
D = _mm256_add_epi32( D, T1 ); \
H = _mm256_add_epi32( T1, T2 ); \
D = _mm256_add_epi32( D, H ); \
H = _mm256_add_epi32( H, T ); \
}
#define SHA256_8WAY_ROUND( A, B, C, D, E, F, G, H, i, j ) \
do { \
__m256i T0 = _mm256_add_epi32( v256_32( K256[(j)+(i)] ), W[i] ); \
__m256i T1 = BSG2_1x( E ); \
{ \
__m256i T1 = _mm256_add_epi32( v256_32( K256[(j)+(i)] ), W[i] ); \
H = _mm256_add_epi32( H, BSG2_1x( E ) ); \
__m256i T2 = BSG2_0x( A ); \
T0 = _mm256_add_epi32( T0, CHx( E, F, G ) ); \
T1 = _mm256_add_epi32( T1, H ); \
T1 = _mm256_add_epi32( T1, CHx( E, F, G ) ); \
T2 = _mm256_add_epi32( T2, MAJx( A, B, C ) ); \
T1 = _mm256_add_epi32( T1, T0 ); \
H = _mm256_add_epi32( H, T1 ); \
Y_xor_Z = X_xor_Y; \
D = _mm256_add_epi32( D, T1 ); \
H = _mm256_add_epi32( T1, T2 ); \
} while (0)
D = _mm256_add_epi32( D, H ); \
H = _mm256_add_epi32( H, T2 ); \
}
// read Y_xor_Z, update X_xor_Y
#define MAJ_2step(X, Y, Z, X_xor_Y, Y_xor_Z ) \
_mm256_xor_si256( Y, _mm256_and_si256( X_xor_Y = _mm256_xor_si256( X, Y ), \
Y_xor_Z ) )
// start with toc initialized to y^z: toc = B ^ C
// start with toc initialized to y^z, toc = B ^ C for first ound.
// First round reads toc as Y_xor_Z and saves X_xor_Y as tic.
// Second round reads tic as Y_xor_Z and saves X_xor_Y as toc.
#define SHA256_8WAY_2ROUNDS( A, B, C, D, E, F, G, H, i0, i1, j ) \
do { \
__m256i T0 = _mm256_add_epi32( v256_32( K256[ (j)+(i0) ] ), \
{ \
__m256i T1 = _mm256_add_epi32( v256_32( K256[ (j)+(i0) ] ), \
W[ i0 ] ); \
__m256i T1 = BSG2_1x( E ); \
H = _mm256_add_epi32( H, BSG2_1x( E ) ); \
__m256i T2 = BSG2_0x( A ); \
T0 = _mm256_add_epi32( T0, CHx( E, F, G ) ); \
T1 = _mm256_add_epi32( T1, H ); \
T1 = _mm256_add_epi32( T1, CHx( E, F, G ) ); \
T2 = _mm256_add_epi32( T2, MAJ_2step( A, B, C, tic, toc ) ); \
T1 = _mm256_add_epi32( T1, T0 ); \
D = _mm256_add_epi32( D, T1 ); \
H = _mm256_add_epi32( T1, T2 ); \
H = _mm256_add_epi32( H, T1 ); \
D = _mm256_add_epi32( D, H ); \
H = _mm256_add_epi32( H, T2 ); \
\
T0 = _mm256_add_epi32( v256_32( K256[ (j)+(i1) ] ), \
T1 = _mm256_add_epi32( v256_32( K256[ (j)+(i1) ] ), \
W[ (i1) ] ); \
T1 = BSG2_1x( D ); \
G = _mm256_add_epi32( G, BSG2_1x( D ) ); \
T2 = BSG2_0x( H ); \
T0 = _mm256_add_epi32( T0, CHx( D, E, F ) ); \
T1 = _mm256_add_epi32( T1, G ); \
T1 = _mm256_add_epi32( T1, CHx( D, E, F ) ); \
T2 = _mm256_add_epi32( T2, MAJ_2step( H, A, B, toc, tic ) ); \
T1 = _mm256_add_epi32( T1, T0 ); \
C = _mm256_add_epi32( C, T1 ); \
G = _mm256_add_epi32( T1, T2 ); \
} while (0)
G = _mm256_add_epi32( G, T1 ); \
C = _mm256_add_epi32( C, G ); \
G = _mm256_add_epi32( G, T2 ); \
}
#define SHA256_8WAY_16ROUNDS( A, B, C, D, E, F, G, H, j ) \
{ \
@@ -710,8 +518,6 @@ do { \
SHA256_8WAY_2ROUNDS( C, D, E, F, G, H, A, B, 14, 15, j ); \
}
#endif // AVX512VL else AVX2
static inline void SHA256_8WAY_TRANSFORM( __m256i *out, __m256i *W,
const __m256i *in ) \
{
@@ -745,7 +551,7 @@ static inline void SHA256_8WAY_TRANSFORM( __m256i *out, __m256i *W,
}
// accepts LE input data
void sha256_8way_transform_le( __m256i *state_out, const __m256i *data,
void sha256_8x32_transform_le( __m256i *state_out, const __m256i *data,
const __m256i *state_in )
{
__m256i W[16];
@@ -754,7 +560,7 @@ void sha256_8way_transform_le( __m256i *state_out, const __m256i *data,
}
// Accepts BE input data, need to bswap
void sha256_8way_transform_be( __m256i *state_out, const __m256i *data,
void sha256_8x32_transform_be( __m256i *state_out, const __m256i *data,
const __m256i *state_in )
{
__m256i W[16];
@@ -764,7 +570,7 @@ void sha256_8way_transform_be( __m256i *state_out, const __m256i *data,
}
// Aggressive prehashing, LE byte order
void sha256_8way_prehash_3rounds( __m256i *state_mid, __m256i *X,
void sha256_8x32_prehash_3rounds( __m256i *state_mid, __m256i *X,
const __m256i *W, const __m256i *state_in )
{
__m256i A, B, C, D, E, F, G, H, T1;
@@ -788,9 +594,7 @@ void sha256_8way_prehash_3rounds( __m256i *state_mid, __m256i *X,
G = _mm256_load_si256( state_in + 6 );
H = _mm256_load_si256( state_in + 7 );
#if !defined(__AVX512VL__)
__m256i X_xor_Y, Y_xor_Z = _mm256_xor_si256( B, C );
#endif
SHA256_8WAY_ROUND( A, B, C, D, E, F, G, H, 0, 0 );
SHA256_8WAY_ROUND( H, A, B, C, D, E, F, G, 1, 0 );
@@ -813,7 +617,7 @@ void sha256_8way_prehash_3rounds( __m256i *state_mid, __m256i *X,
_mm256_store_si256( state_mid + 7, H );
}
void sha256_8way_final_rounds( __m256i *state_out, const __m256i *data,
void sha256_8x32_final_rounds( __m256i *state_out, const __m256i *data,
const __m256i *state_in, const __m256i *state_mid, const __m256i *X )
{
__m256i A, B, C, D, E, F, G, H;
@@ -830,9 +634,7 @@ void sha256_8way_final_rounds( __m256i *state_out, const __m256i *data,
G = _mm256_load_si256( state_mid + 6 );
H = _mm256_load_si256( state_mid + 7 );
#if !defined(__AVX512VL__)
__m256i X_xor_Y, Y_xor_Z = _mm256_xor_si256( F, G );
#endif
// round 3 part 2, add nonces
A = _mm256_add_epi32( A, W[3] );
@@ -914,15 +716,13 @@ void sha256_8way_final_rounds( __m256i *state_out, const __m256i *data,
_mm256_store_si256( state_out + 7, H );
}
int sha256_8way_transform_le_short( __m256i *state_out, const __m256i *data,
int sha256_8x32_transform_le_short( __m256i *state_out, const __m256i *data,
const __m256i *state_in, const uint32_t *target )
{
__m256i A, B, C, D, E, F, G, H, T0, T1, T2;
__m256i A, B, C, D, E, F, G, H, G57, H56;
__m256i vmask, targ, hash;
__m256i W[16]; memcpy_256( W, data, 16 );
const __m256i bswap_shuf = mm256_bcast_m128( _mm_set_epi64x(
0x0c0d0e0f08090a0b, 0x0405060700010203 ) );
uint8_t flip, t6_mask;
uint8_t flip, t6_mask, t7_mask;
A = _mm256_load_si256( state_in );
B = _mm256_load_si256( state_in+1 );
@@ -933,12 +733,10 @@ int sha256_8way_transform_le_short( __m256i *state_out, const __m256i *data,
G = _mm256_load_si256( state_in+6 );
H = _mm256_load_si256( state_in+7 );
const __m256i IV7 = H;
const __m256i IV6 = G;
const __m256i istate6 = G;
const __m256i istate7 = H;
#if !defined(__AVX512VL__)
__m256i X_xor_Y, Y_xor_Z = _mm256_xor_si256( B, C );
#endif
// rounds 0 to 16, ignore zero padding W[9..14]
SHA256_8WAY_ROUND( A, B, C, D, E, F, G, H, 0, 0 );
@@ -981,11 +779,9 @@ int sha256_8way_transform_le_short( __m256i *state_out, const __m256i *data,
W[11] = SHA256_8WAY_MEXP( W[ 9], W[ 4], W[12], W[11] );
W[12] = SHA256_8WAY_MEXP( W[10], W[ 5], W[13], W[12] );
#if !defined(__AVX512VL__)
Y_xor_Z = _mm256_xor_si256( B, C );
#endif
// rounds 48 to 57
// Rounds 48 to 55
SHA256_8WAY_ROUND( A, B, C, D, E, F, G, H, 0, 48 );
SHA256_8WAY_ROUND( H, A, B, C, D, E, F, G, 1, 48 );
SHA256_8WAY_ROUND( G, H, A, B, C, D, E, F, 2, 48 );
@@ -994,77 +790,83 @@ int sha256_8way_transform_le_short( __m256i *state_out, const __m256i *data,
SHA256_8WAY_ROUND( D, E, F, G, H, A, B, C, 5, 48 );
SHA256_8WAY_ROUND( C, D, E, F, G, H, A, B, 6, 48 );
SHA256_8WAY_ROUND( B, C, D, E, F, G, H, A, 7, 48 );
SHA256_8WAY_ROUND( A, B, C, D, E, F, G, H, 8, 48 );
SHA256_8WAY_ROUND( H, A, B, C, D, E, F, G, 9, 48 );
// round 58 to 60 part 1
T0 = _mm256_add_epi32( v256_32( K256[58] ),
// Round 56
H = _mm256_add_epi32( v256_32( K256[56] ),
mm256_add4_32( BSG2_1x( E ), CHx( E, F, G ), W[ 8], H ) );
D = _mm256_add_epi32( D, H );
H56 = _mm256_add_epi32( H, _mm256_add_epi32( BSG2_0x( A ),
MAJx( A, B, C ) ) );
Y_xor_Z = X_xor_Y;
// Rounds 57 to 60 part 1
G = _mm256_add_epi32( v256_32( K256[57] ),
mm256_add4_32( BSG2_1x( D ), CHx( D, E, F ), W[ 9], G ) );
C = _mm256_add_epi32( C, G );
G57 = _mm256_add_epi32( G, MAJx( H56, A, B ) );
F = _mm256_add_epi32( v256_32( K256[58] ),
mm256_add4_32( BSG2_1x( C ), CHx( C, D, E ), W[10], F ) );
B = _mm256_add_epi32( B, T0 );
B = _mm256_add_epi32( B, F );
T1 = _mm256_add_epi32( v256_32( K256[59] ),
E = _mm256_add_epi32( v256_32( K256[59] ),
mm256_add4_32( BSG2_1x( B ), CHx( B, C, D ), W[11], E ) );
A = _mm256_add_epi32( A, T1 );
A = _mm256_add_epi32( A, E );
T2 = _mm256_add_epi32( v256_32( K256[60] ),
D = _mm256_add_epi32( v256_32( K256[60] ),
mm256_add4_32( BSG2_1x( A ), CHx( A, B, C ), W[12], D ) );
H = _mm256_add_epi32( H, T2 );
H = _mm256_add_epi32( H56, D );
// Got H, test it.
hash = mm256_bswap_32( _mm256_add_epi32( H, istate7 ) );
targ = v256_32( target[7] );
hash = _mm256_shuffle_epi8( _mm256_add_epi32( H, IV7 ), bswap_shuf );
if ( target[7] )
{
flip = ( (int)target[7] < 0 ? -1 : 0 ) ^ mm256_movmask_32( hash );
if ( likely( 0xff == ( flip ^
mm256_movmask_32( _mm256_cmpgt_epi32( hash, targ ) ) ) ))
return 0;
}
// A simple unsigned LE test is complicated by the lack of a cmple
// instruction, and lack of unsigned compares in AVX2.
flip = ( (int)target[7] < 0 ? -1 : 0 ) ^ mm256_movmask_32( hash );
if ( likely( 0xff == ( t7_mask = ( flip ^
mm256_movmask_32( _mm256_cmpgt_epi32( hash, targ ) ) ) )))
return 0;
t6_mask = mm256_movmask_32( vmask =_mm256_cmpeq_epi32( hash, targ ) );
// round 58 part 2
F = _mm256_add_epi32( T0, _mm256_add_epi32( BSG2_0x( G ),
MAJx( G, H, A ) ) );
// round 61 part 1
W[13] = SHA256_8WAY_MEXP( W[11], W[ 6], W[14], W[13] );
T0 = _mm256_add_epi32( v256_32( K256[61] ),
mm256_add4_32( BSG2_1x( H ), CHx( H, A, B ), W[13], C ) );
G = _mm256_add_epi32( G, T0 );
// Round 57 part 2
G57 = _mm256_add_epi32( G57, BSG2_0x( H56 ) );
Y_xor_Z = X_xor_Y;
if ( t6_mask )
// Round 61 part 1
W[13] = SHA256_8WAY_MEXP( W[11], W[ 6], W[14], W[13] );
C = _mm256_add_epi32( v256_32( K256[61] ),
mm256_add4_32( BSG2_1x( H ), CHx( H, A, B ), W[13], C ) );
G = _mm256_add_epi32( G57, C );
if ( t6_mask == (0xff & ~t7_mask ) )
{
// Testing H was inconclusive: hash7 == target7, need to test G
targ = _mm256_and_si256( vmask, v256_32( target[6] ) );
hash = _mm256_shuffle_epi8( _mm256_add_epi32( G, IV6 ), bswap_shuf );
if ( likely( 0 == ( t6_mask & mm256_movmask_32(
_mm256_cmpeq_epi32( hash, targ ) ) ) ))
{
flip = ( (int)target[6] < 0 ? -1 : 0 ) ^ mm256_movmask_32( hash );
if ( likely( 0 != ( t6_mask & ( flip ^
hash = mm256_bswap_32( _mm256_add_epi32( G, istate6 ) );
flip = ( (int)target[6] < 0 ? -1 : 0 ) ^ mm256_movmask_32( hash );
if ( likely( 0 != ( t6_mask & ( flip ^
mm256_movmask_32( _mm256_cmpgt_epi32( hash, targ ) ) ) ) ))
return 0;
if ( likely( ( target[6] == 0x80000000 )
&& ( 0 == ( t6_mask & mm256_movmask_32( _mm256_cmpgt_epi32(
hash, _mm256_xor_si256( hash, hash ) ) ) ) ) ))
return 0;
}
// else inconclusive, testing targ5 isn't practical, fininsh hashing
return 0;
}
// At this point either the hash will be good or the test was inconclusive.
// If the latter it's probably a high target difficulty with a nearly equal
// high difficulty hash that has a good chance of being good.
// Rounds 58 to 61 part 2
F = _mm256_add_epi32( F, _mm256_add_epi32( BSG2_0x( G57 ),
MAJx( G57, H, A ) ) );
Y_xor_Z = X_xor_Y;
// rounds 59 to 61 part 2
E = _mm256_add_epi32( T1, _mm256_add_epi32( BSG2_0x( F ),
MAJx( F, G, H ) ) );
D = _mm256_add_epi32( T2, _mm256_add_epi32( BSG2_0x( E ),
MAJx( E, F, G ) ) );
C = _mm256_add_epi32( T0, _mm256_add_epi32( BSG2_0x( D ),
MAJx( D, E, F ) ) );
E = _mm256_add_epi32( E, _mm256_add_epi32( BSG2_0x( F ),
MAJx( F, G57, H ) ) );
Y_xor_Z = X_xor_Y;
// rounds 62 & 63
D = _mm256_add_epi32( D, _mm256_add_epi32( BSG2_0x( E ),
MAJx( E, F, G57 ) ) );
Y_xor_Z = X_xor_Y;
C = _mm256_add_epi32( C, _mm256_add_epi32( BSG2_0x( D ),
MAJx( D, E, F ) ) );
Y_xor_Z = X_xor_Y;
// Rounds 62 & 63
W[14] = SHA256_8WAY_MEXP( W[12], W[ 7], W[15], W[14] );
W[15] = SHA256_8WAY_MEXP( W[13], W[ 8], W[ 0], W[15] );
@@ -1083,8 +885,7 @@ int sha256_8way_transform_le_short( __m256i *state_out, const __m256i *data,
return 1;
}
void sha256_8way_init( sha256_8way_context *sc )
void sha256_8x32_init( sha256_8x32_context *sc )
{
sc->count_high = sc->count_low = 0;
sc->val[0] = v256_32( sha256_iv[0] );
@@ -1100,7 +901,7 @@ void sha256_8way_init( sha256_8way_context *sc )
// need to handle odd byte length for yespower.
// Assume only last update is odd.
void sha256_8way_update( sha256_8way_context *sc, const void *data, size_t len )
void sha256_8x32_update( sha256_8x32_context *sc, const void *data, size_t len )
{
__m256i *vdata = (__m256i*)data;
size_t ptr;
@@ -1121,7 +922,7 @@ void sha256_8way_update( sha256_8way_context *sc, const void *data, size_t len )
len -= clen;
if ( ptr == buf_size )
{
sha256_8way_transform_be( sc->val, sc->buf, sc->val );
sha256_8x32_transform_be( sc->val, sc->buf, sc->val );
ptr = 0;
}
clow = sc->count_low;
@@ -1132,7 +933,7 @@ void sha256_8way_update( sha256_8way_context *sc, const void *data, size_t len )
}
}
void sha256_8way_close( sha256_8way_context *sc, void *dst )
void sha256_8x32_close( sha256_8x32_context *sc, void *dst )
{
unsigned ptr;
uint32_t low, high;
@@ -1146,7 +947,7 @@ void sha256_8way_close( sha256_8way_context *sc, void *dst )
if ( ptr > pad )
{
memset_zero_256( sc->buf + (ptr>>2), (buf_size - ptr) >> 2 );
sha256_8way_transform_be( sc->val, sc->buf, sc->val );
sha256_8x32_transform_be( sc->val, sc->buf, sc->val );
memset_zero_256( sc->buf, pad >> 2 );
}
else
@@ -1159,20 +960,20 @@ void sha256_8way_close( sha256_8way_context *sc, void *dst )
sc->buf[ pad >> 2 ] = v256_32( bswap_32( high ) );
sc->buf[ ( pad+4 ) >> 2 ] = v256_32( bswap_32( low ) );
sha256_8way_transform_be( sc->val, sc->buf, sc->val );
sha256_8x32_transform_be( sc->val, sc->buf, sc->val );
mm256_block_bswap_32( dst, sc->val );
}
void sha256_8way_full( void *dst, const void *data, size_t len )
void sha256_8x32_full( void *dst, const void *data, size_t len )
{
sha256_8way_context ctx;
sha256_8way_init( &ctx );
sha256_8way_update( &ctx, data, len );
sha256_8way_close( &ctx, dst );
sha256_8x32_context ctx;
sha256_8x32_init( &ctx );
sha256_8x32_update( &ctx, data, len );
sha256_8x32_close( &ctx, dst );
}
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#if defined(SIMD512)
// SHA-256 16 way
@@ -1218,40 +1019,26 @@ void sha256_8way_full( void *dst, const void *data, size_t len )
W[15] = SHA256_16WAY_MEXP( W[13], W[ 8], W[ 0], W[15] );
#define SHA256_16WAY_ROUND( A, B, C, D, E, F, G, H, i, j ) \
do { \
__m512i T0 = _mm512_add_epi32( v512_32( K256[(j)+(i)] ), W[i] ); \
__m512i T1 = BSG2_1x16( E ); \
{ \
__m512i T1 = _mm512_add_epi32( v512_32( K256[(j)+(i)] ), W[i] ); \
H = _mm512_add_epi32( H, BSG2_1x16( E ) ); \
__m512i T2 = BSG2_0x16( A ); \
T0 = _mm512_add_epi32( T0, CHx16( E, F, G ) ); \
T1 = _mm512_add_epi32( T1, H ); \
T1 = _mm512_add_epi32( T1, CHx16( E, F, G ) ); \
T2 = _mm512_add_epi32( T2, MAJx16( A, B, C ) ); \
T1 = _mm512_add_epi32( T1, T0 ); \
D = _mm512_add_epi32( D, T1 ); \
H = _mm512_add_epi32( T1, T2 ); \
} while (0)
H = _mm512_add_epi32( H, T1 ); \
D = _mm512_add_epi32( D, H ); \
H = _mm512_add_epi32( H, T2 ); \
}
#define SHA256_16WAY_ROUND_NOMSG( A, B, C, D, E, F, G, H, i, j ) \
{ \
__m512i T1 = mm512_add4_32( H, BSG2_1x16(E), CHx16(E, F, G), \
H = mm512_add4_32( H, BSG2_1x16(E), CHx16(E, F, G), \
v512_32( K256[(i)+(j)] ) ); \
__m512i T2 = _mm512_add_epi32( BSG2_0x16(A), MAJx16(A, B, C) ); \
D = _mm512_add_epi32( D, T1 ); \
H = _mm512_add_epi32( T1, T2 ); \
__m512i T = _mm512_add_epi32( BSG2_0x16(A), MAJx16(A, B, C) ); \
D = _mm512_add_epi32( D, H ); \
H = _mm512_add_epi32( H, T ); \
}
/*
#define SHA256_16WAY_ROUND(A, B, C, D, E, F, G, H, i, j) \
do { \
__m512i T1, T2; \
__m512i K = v512_32( K256[( (j)+(i) )] ); \
T1 = _mm512_add_epi32( H, mm512_add4_32( BSG2_1x16(E), CHx16(E, F, G), \
K, W[i] ) ); \
T2 = _mm512_add_epi32( BSG2_0x16(A), MAJx16(A, B, C) ); \
D = _mm512_add_epi32( D, T1 ); \
H = _mm512_add_epi32( T1, T2 ); \
} while (0)
*/
#define SHA256_16WAY_16ROUNDS( A, B, C, D, E, F, G, H, j ) \
SHA256_16WAY_ROUND( A, B, C, D, E, F, G, H, 0, j ); \
SHA256_16WAY_ROUND( H, A, B, C, D, E, F, G, 1, j ); \
@@ -1302,7 +1089,7 @@ static inline void SHA256_16WAY_TRANSFORM( __m512i *out, __m512i *W,
}
// accepts LE input data
void sha256_16way_transform_le( __m512i *state_out, const __m512i *data,
void sha256_16x32_transform_le( __m512i *state_out, const __m512i *data,
const __m512i *state_in )
{
__m512i W[16];
@@ -1311,7 +1098,7 @@ void sha256_16way_transform_le( __m512i *state_out, const __m512i *data,
}
// Accepts BE input data, need to bswap
void sha256_16way_transform_be( __m512i *state_out, const __m512i *data,
void sha256_16x32_transform_be( __m512i *state_out, const __m512i *data,
const __m512i *state_in )
{
__m512i W[16];
@@ -1321,7 +1108,7 @@ void sha256_16way_transform_be( __m512i *state_out, const __m512i *data,
}
// Aggressive prehashing, LE byte order
void sha256_16way_prehash_3rounds( __m512i *state_mid, __m512i *X,
void sha256_16x32_prehash_3rounds( __m512i *state_mid, __m512i *X,
const __m512i *W, const __m512i *state_in )
{
__m512i A, B, C, D, E, F, G, H, T1;
@@ -1369,7 +1156,7 @@ void sha256_16way_prehash_3rounds( __m512i *state_mid, __m512i *X,
_mm512_store_si512( state_mid + 7, H );
}
void sha256_16way_final_rounds( __m512i *state_out, const __m512i *data,
void sha256_16x32_final_rounds( __m512i *state_out, const __m512i *data,
const __m512i *state_in, const __m512i *state_mid, const __m512i *X )
{
__m512i A, B, C, D, E, F, G, H;
@@ -1470,16 +1257,13 @@ void sha256_16way_final_rounds( __m512i *state_out, const __m512i *data,
// returns 0 if hash aborted early and invalid,
// returns 1 for completed hash with at least one valid candidate.
int sha256_16way_transform_le_short( __m512i *state_out, const __m512i *data,
int sha256_16x32_transform_le_short( __m512i *state_out, const __m512i *data,
const __m512i *state_in, const uint32_t *target )
{
__m512i A, B, C, D, E, F, G, H, hash, targ;
__m512i T0, T1, T2;
__m512i A, B, C, D, E, F, G, H, hash, targ, G57, H56;
__m512i W[16]; memcpy_512( W, data, 16 );
__mmask16 t6_mask;
const __m512i bswap_shuf = mm512_bcast_m128( _mm_set_epi64x(
0x0c0d0e0f08090a0b, 0x0405060700010203 ) );
__mmask16 mask;
A = _mm512_load_si512( state_in );
B = _mm512_load_si512( state_in+1 );
C = _mm512_load_si512( state_in+2 );
@@ -1489,9 +1273,9 @@ int sha256_16way_transform_le_short( __m512i *state_out, const __m512i *data,
G = _mm512_load_si512( state_in+6 );
H = _mm512_load_si512( state_in+7 );
const __m512i IV6 = G;
const __m512i IV7 = H;
const __m512i istate6 = G;
const __m512i istate7 = H;
// rounds 0 to 8
SHA256_16WAY_ROUND( A, B, C, D, E, F, G, H, 0, 0 );
SHA256_16WAY_ROUND( H, A, B, C, D, E, F, G, 1, 0 );
@@ -1562,7 +1346,7 @@ int sha256_16way_transform_le_short( __m512i *state_out, const __m512i *data,
W[11] = SHA256_16WAY_MEXP( W[ 9], W[ 4], W[12], W[11] );
W[12] = SHA256_16WAY_MEXP( W[10], W[ 5], W[13], W[12] );
// Rounds 48 to 57
// Rounds 48 to 55
SHA256_16WAY_ROUND( A, B, C, D, E, F, G, H, 0, 48 );
SHA256_16WAY_ROUND( H, A, B, C, D, E, F, G, 1, 48 );
SHA256_16WAY_ROUND( G, H, A, B, C, D, E, F, 2, 48 );
@@ -1571,62 +1355,67 @@ int sha256_16way_transform_le_short( __m512i *state_out, const __m512i *data,
SHA256_16WAY_ROUND( D, E, F, G, H, A, B, C, 5, 48 );
SHA256_16WAY_ROUND( C, D, E, F, G, H, A, B, 6, 48 );
SHA256_16WAY_ROUND( B, C, D, E, F, G, H, A, 7, 48 );
SHA256_16WAY_ROUND( A, B, C, D, E, F, G, H, 8, 48 );
SHA256_16WAY_ROUND( H, A, B, C, D, E, F, G, 9, 48 );
// rounds 58 to 60 part 1
T0 = _mm512_add_epi32( v512_32( K256[58] ),
mm512_add4_32( BSG2_1x16( C ), CHx16( C, D, E ), W[10], F ) );
B = _mm512_add_epi32( B, T0 );
// Round 56
H = _mm512_add_epi32( v512_32( K256[56] ),
mm512_add4_32( BSG2_1x16( E ), CHx16( E, F, G ), W[ 8], H ) );
D = _mm512_add_epi32( D, H );
H56 = _mm512_add_epi32( H, _mm512_add_epi32( BSG2_0x16( A ),
MAJx16( A, B, C ) ) );
T1 = _mm512_add_epi32( v512_32( K256[59] ),
// Rounds 57 to 60 part 1
G = _mm512_add_epi32( v512_32( K256[57] ),
mm512_add4_32( BSG2_1x16( D ), CHx16( D, E, F ), W[ 9], G ) );
C = _mm512_add_epi32( C, G );
G57 = _mm512_add_epi32( G, MAJx16( H56, A, B ) );
F = _mm512_add_epi32( v512_32( K256[58] ),
mm512_add4_32( BSG2_1x16( C ), CHx16( C, D, E ), W[10], F ) );
B = _mm512_add_epi32( B, F );
E = _mm512_add_epi32( v512_32( K256[59] ),
mm512_add4_32( BSG2_1x16( B ), CHx16( B, C, D ), W[11], E ) );
A = _mm512_add_epi32( A, T1 );
A = _mm512_add_epi32( A, E );
T2 = _mm512_add_epi32( v512_32( K256[60] ),
D = _mm512_add_epi32( v512_32( K256[60] ),
mm512_add4_32( BSG2_1x16( A ), CHx16( A, B, C ), W[12], D ) );
H = _mm512_add_epi32( H, T2 );
H = _mm512_add_epi32( H56, D );
// got H, test it against target[7]
hash = _mm512_shuffle_epi8( _mm512_add_epi32( H , IV7 ), bswap_shuf );
// got final H, test it against target[7]
hash = mm512_bswap_32( _mm512_add_epi32( H , istate7 ) );
targ = v512_32( target[7] );
if ( target[7] )
if ( likely( 0 == _mm512_cmple_epu32_mask( hash, targ ) ))
if ( likely( 0 == ( mask = _mm512_cmple_epu32_mask( hash, targ ) ) ))
return 0;
t6_mask = _mm512_cmpeq_epi32_mask( hash, targ );
// round 58 part 2
F = _mm512_add_epi32( T0, _mm512_add_epi32( BSG2_0x16( G ),
MAJx16( G, H, A ) ) );
// round 61 part 1
// Round 57 part 2
G57 = _mm512_add_epi32( G57, BSG2_0x16( H56 ) );
// Round 61 part 1
W[13] = SHA256_16WAY_MEXP( W[11], W[ 6], W[14], W[13] );
T0 = _mm512_add_epi32( v512_32( K256[61] ),
C = _mm512_add_epi32( v512_32( K256[61] ),
mm512_add4_32( BSG2_1x16( H ), CHx16( H, A, B ), W[13], C ) );
G = _mm512_add_epi32( G, T0 );
G = _mm512_add_epi32( G57, C );
// got G, test it against target[6] if indicated
if ( (uint16_t)t6_mask )
// got final G, test it against target[6] if indicated.
if ( mask == _mm512_cmpeq_epi32_mask( hash, targ ) )
{
hash = _mm512_shuffle_epi8( _mm512_add_epi32( G, IV6 ), bswap_shuf );
hash = mm512_bswap_32( _mm512_add_epi32( G, istate6 ) );
targ = v512_32( target[6] );
if ( likely( 0 == _mm512_mask_cmple_epu32_mask( t6_mask, hash, targ ) ))
if ( likely( 0 == _mm512_mask_cmple_epu32_mask( mask, hash, targ ) ))
return 0;
}
// round 59 part 2
E = _mm512_add_epi32( T1, _mm512_add_epi32( BSG2_0x16( F ),
MAJx16( F, G, H ) ) );
// round 60 part 2
D = _mm512_add_epi32( T2, _mm512_add_epi32( BSG2_0x16( E ),
MAJx16( E, F, G ) ) );
// round 61 part 2
C = _mm512_add_epi32( T0, _mm512_add_epi32( BSG2_0x16( D ),
MAJx16( D, E, F ) ) );
// Round 58 to 61 part 2
F = _mm512_add_epi32( F, _mm512_add_epi32( BSG2_0x16( G57 ),
MAJx16( G57, H, A ) ) );
E = _mm512_add_epi32( E, _mm512_add_epi32( BSG2_0x16( F ),
MAJx16( F, G57, H ) ) );
D = _mm512_add_epi32( D, _mm512_add_epi32( BSG2_0x16( E ),
MAJx16( E, F, G57 ) ) );
C = _mm512_add_epi32( C, _mm512_add_epi32( BSG2_0x16( D ),
MAJx16( D, E, F ) ) );
// rounds 62, 63
// Rounds 62, 63
W[14] = SHA256_16WAY_MEXP( W[12], W[ 7], W[15], W[14] );
W[15] = SHA256_16WAY_MEXP( W[13], W[ 8], W[ 0], W[15] );
@@ -1644,7 +1433,7 @@ int sha256_16way_transform_le_short( __m512i *state_out, const __m512i *data,
return 1;
}
void sha256_16way_init( sha256_16way_context *sc )
void sha256_16x32_init( sha256_16x32_context *sc )
{
sc->count_high = sc->count_low = 0;
sc->val[0] = v512_32( sha256_iv[0] );
@@ -1657,7 +1446,7 @@ void sha256_16way_init( sha256_16way_context *sc )
sc->val[7] = v512_32( sha256_iv[7] );
}
void sha256_16way_update( sha256_16way_context *sc, const void *data,
void sha256_16x32_update( sha256_16x32_context *sc, const void *data,
size_t len )
{
__m512i *vdata = (__m512i*)data;
@@ -1679,7 +1468,7 @@ void sha256_16way_update( sha256_16way_context *sc, const void *data,
len -= clen;
if ( ptr == buf_size )
{
sha256_16way_transform_be( sc->val, sc->buf, sc->val );
sha256_16x32_transform_be( sc->val, sc->buf, sc->val );
ptr = 0;
}
clow = sc->count_low;
@@ -1690,7 +1479,7 @@ void sha256_16way_update( sha256_16way_context *sc, const void *data,
}
}
void sha256_16way_close( sha256_16way_context *sc, void *dst )
void sha256_16x32_close( sha256_16x32_context *sc, void *dst )
{
unsigned ptr;
uint32_t low, high;
@@ -1704,7 +1493,7 @@ void sha256_16way_close( sha256_16way_context *sc, void *dst )
if ( ptr > pad )
{
memset_zero_512( sc->buf + (ptr>>2), (buf_size - ptr) >> 2 );
sha256_16way_transform_be( sc->val, sc->buf, sc->val );
sha256_16x32_transform_be( sc->val, sc->buf, sc->val );
memset_zero_512( sc->buf, pad >> 2 );
}
else
@@ -1717,17 +1506,17 @@ void sha256_16way_close( sha256_16way_context *sc, void *dst )
sc->buf[ pad >> 2 ] = v512_32( bswap_32( high ) );
sc->buf[ ( pad+4 ) >> 2 ] = v512_32( bswap_32( low ) );
sha256_16way_transform_be( sc->val, sc->buf, sc->val );
sha256_16x32_transform_be( sc->val, sc->buf, sc->val );
mm512_block_bswap_32( dst, sc->val );
}
void sha256_16way_full( void *dst, const void *data, size_t len )
void sha256_16x32_full( void *dst, const void *data, size_t len )
{
sha256_16way_context ctx;
sha256_16way_init( &ctx );
sha256_16way_update( &ctx, data, len );
sha256_16way_close( &ctx, dst );
sha256_16x32_context ctx;
sha256_16x32_init( &ctx );
sha256_16x32_update( &ctx, data, len );
sha256_16x32_close( &ctx, dst );
}
#undef CH

View File

@@ -10,6 +10,28 @@ static const uint32_t SHA256_IV[8] =
#if defined(__x86_64__) && defined(__SHA__)
/* common code used for rounds 12 through 51 */
#define sha256_generic_qround( s0, s1, m, a, b, c ) \
TMP = _mm_alignr_epi8( a, c, 4 ); \
s1 = _mm_sha256rnds2_epu32( s1, s0, m ); \
b = _mm_add_epi32( b, TMP ); \
b = _mm_sha256msg2_epu32( b, a ); \
m = _mm_shuffle_epi32( m, 0x0e ); \
s0 = _mm_sha256rnds2_epu32( s0, s1, m ); \
c = _mm_sha256msg1_epu32( c, a );
// r12-15
// sha256_generic_qround( s0, s1, m, t3, t0, t2 )
// r16-19
// sha256_generic_qround( s0, s1, m, t0, t1, t3 )
// r20-23
// sha256_generic_qround( s0, s1, m, t1, t2, t0 )
// r24-27
// sha256_generic_qround( s0, s1, m, t2, t3, t1 ) ...
#define sha256_opt_rounds( state_out, input, state_in ) \
{ \
__m128i STATE0, STATE1; \
@@ -547,8 +569,8 @@ void sha256_x86_sha_prehash_3rounds( uint32_t *ostate, const void *msg,
__m128i STATE0, STATE1, MSG, TMP;
// Load initial values
TMP = casti_m128i( istate, 0 );
STATE1 = casti_m128i( istate, 1 );
TMP = casti_v128u32( istate, 0 );
STATE1 = casti_v128u32( istate, 1 );
TMP = _mm_shuffle_epi32( TMP, 0xB1 ); // CDAB
STATE1 = _mm_shuffle_epi32( STATE1, 0x1B ); // EFGH
@@ -556,17 +578,17 @@ void sha256_x86_sha_prehash_3rounds( uint32_t *ostate, const void *msg,
STATE1 = _mm_blend_epi16( STATE1, TMP, 0xF0 ); // CDGH
// Save current hash
casti_m128i( sstate, 0 ) = STATE0;
casti_m128i( sstate, 1 ) = STATE1;
casti_v128u32( sstate, 0 ) = STATE0;
casti_v128u32( sstate, 1 ) = STATE1;
// Rounds 0 to 3
MSG = casti_m128i( msg, 0 );
MSG = casti_v128u32( msg, 0 );
TMP = _mm_set_epi64x( 0xE9B5DBA5B5C0FBCFULL, 0x71374491428A2F98ULL );
MSG = _mm_add_epi32( MSG, TMP );
STATE1 = _mm_sha256rnds2_epu32( STATE1, STATE0, MSG );
MSG = _mm_shuffle_epi32( MSG, 0x0E );
casti_m128i( ostate, 0 ) = _mm_sha256rnds2_epu32( STATE0, STATE1, MSG );
casti_m128i( ostate, 1 ) = STATE1;
casti_v128u32( ostate, 0 ) = _mm_sha256rnds2_epu32( STATE0, STATE1, MSG );
casti_v128u32( ostate, 1 ) = STATE1;
}
void sha256_x86_x2sha_final_rounds( uint32_t *out_X, uint32_t *out_Y,
@@ -579,22 +601,22 @@ void sha256_x86_x2sha_final_rounds( uint32_t *out_X, uint32_t *out_Y,
__m128i TMSG0_X, TMSG1_X, TMSG2_X, TMSG3_X;
__m128i TMSG0_Y, TMSG1_Y, TMSG2_Y, TMSG3_Y;
STATE0_X = casti_m128i( state_mid_X, 0 );
STATE1_X = casti_m128i( state_mid_X, 1 );
STATE0_Y = casti_m128i( state_mid_Y, 0 );
STATE1_Y = casti_m128i( state_mid_Y, 1 );
STATE0_X = casti_v128u32( state_mid_X, 0 );
STATE1_X = casti_v128u32( state_mid_X, 1 );
STATE0_Y = casti_v128u32( state_mid_Y, 0 );
STATE1_Y = casti_v128u32( state_mid_Y, 1 );
// Add the nonces (msg[0] lane 3) to A & E (STATE0 lanes 1 & 3)
TMSG0_X = casti_m128i( msg_X, 0 );
TMSG0_Y = casti_m128i( msg_Y, 0 );
TMSG0_X = casti_v128u32( msg_X, 0 );
TMSG0_Y = casti_v128u32( msg_Y, 0 );
TMP_X = v128_xim32( TMSG0_X, TMSG0_X, 0xd5 );
TMP_Y = v128_xim32( TMSG0_Y, TMSG0_Y, 0xd5 );
STATE0_X = _mm_add_epi32( STATE0_X, TMP_X );
STATE0_Y = _mm_add_epi32( STATE0_Y, TMP_Y );
// Rounds 4 to 7
TMSG1_X = casti_m128i( msg_X, 1 );
TMSG1_Y = casti_m128i( msg_Y, 1 );
TMSG1_X = casti_v128u32( msg_X, 1 );
TMSG1_Y = casti_v128u32( msg_Y, 1 );
TMP_X = _mm_set_epi64x( 0xAB1C5ED5923F82A4ULL, 0x59F111F13956C25BULL );
MSG_X = _mm_add_epi32( TMSG1_X, TMP_X );
MSG_Y = _mm_add_epi32( TMSG1_Y, TMP_X );
@@ -616,8 +638,8 @@ void sha256_x86_x2sha_final_rounds( uint32_t *out_X, uint32_t *out_Y,
STATE0_Y = _mm_sha256rnds2_epu32( STATE0_Y, STATE1_Y, MSG_X );
// Rounds 12 to 15
TMSG3_X = casti_m128i( msg_X, 3 );
TMSG3_Y = casti_m128i( msg_Y, 3 );
TMSG3_X = casti_v128u32( msg_X, 3 );
TMSG3_Y = casti_v128u32( msg_Y, 3 );
TMP_X = _mm_set_epi64x( 0xC19BF1749BDC06A7ULL, 0x80DEB1FE72BE5D74ULL );
MSG_X = _mm_add_epi32( TMSG3_X, TMP_X );
MSG_Y = _mm_add_epi32( TMSG3_Y, TMP_X );
@@ -845,20 +867,20 @@ void sha256_x86_x2sha_final_rounds( uint32_t *out_X, uint32_t *out_Y,
STATE0_Y = _mm_sha256rnds2_epu32( STATE0_Y, STATE1_Y, MSG_Y );
// Add saved state to new state
STATE0_X = _mm_add_epi32( STATE0_X, casti_m128i( state_save_X, 0 ) );
STATE1_X = _mm_add_epi32( STATE1_X, casti_m128i( state_save_X, 1 ) );
STATE0_Y = _mm_add_epi32( STATE0_Y, casti_m128i( state_save_Y, 0 ) );
STATE1_Y = _mm_add_epi32( STATE1_Y, casti_m128i( state_save_Y, 1 ) );
STATE0_X = _mm_add_epi32( STATE0_X, casti_v128u32( state_save_X, 0 ) );
STATE1_X = _mm_add_epi32( STATE1_X, casti_v128u32( state_save_X, 1 ) );
STATE0_Y = _mm_add_epi32( STATE0_Y, casti_v128u32( state_save_Y, 0 ) );
STATE1_Y = _mm_add_epi32( STATE1_Y, casti_v128u32( state_save_Y, 1 ) );
// Unshuffle & save state
TMP_X = _mm_shuffle_epi32( STATE0_X, 0x1B ); // FEBA
TMP_Y = _mm_shuffle_epi32( STATE0_Y, 0x1B );
STATE1_X = _mm_shuffle_epi32( STATE1_X, 0xB1 ); // DCHG
STATE1_Y = _mm_shuffle_epi32( STATE1_Y, 0xB1 );
casti_m128i( out_X, 0 ) = _mm_blend_epi16( TMP_X, STATE1_X, 0xF0 ); // DCBA
casti_m128i( out_Y, 0 ) = _mm_blend_epi16( TMP_Y, STATE1_Y, 0xF0 );
casti_m128i( out_X, 1 ) = _mm_alignr_epi8( STATE1_X, TMP_X, 8 ); // ABEF
casti_m128i( out_Y, 1 ) = _mm_alignr_epi8( STATE1_Y, TMP_Y, 8 );
casti_v128u32( out_X, 0 ) = _mm_blend_epi16( TMP_X, STATE1_X, 0xF0 ); // DCBA
casti_v128u32( out_Y, 0 ) = _mm_blend_epi16( TMP_Y, STATE1_Y, 0xF0 );
casti_v128u32( out_X, 1 ) = _mm_alignr_epi8( STATE1_X, TMP_X, 8 ); // ABEF
casti_v128u32( out_Y, 1 ) = _mm_alignr_epi8( STATE1_Y, TMP_Y, 8 );
}
#endif // SHA
@@ -887,14 +909,14 @@ static const uint32_t K256[64] =
#define sha256_neon_rounds( state_out, input, state_in ) \
{ \
uint32x4_t STATE0, STATE1, ABEF_SAVE, CDGH_SAVE; \
uint32x4_t STATE0, STATE1, ABCD_SAVE, EFGH_SAVE; \
uint32x4_t MSG0, MSG1, MSG2, MSG3; \
uint32x4_t TMP0, TMP1, TMP2; \
\
STATE0 = vld1q_u32( state_in ); \
STATE1 = vld1q_u32( state_in+4 ); \
ABEF_SAVE = STATE0; \
CDGH_SAVE = STATE1; \
ABCD_SAVE = STATE0; \
EFGH_SAVE = STATE1; \
\
MSG0 = load_msg( input, 0 ); \
MSG1 = load_msg( input, 1 ); \
@@ -1004,8 +1026,8 @@ static const uint32_t K256[64] =
TMP2 = STATE0; \
STATE0 = vsha256hq_u32( STATE0, STATE1, TMP1 ); \
STATE1 = vsha256h2q_u32( STATE1, TMP2, TMP1 ); \
STATE0 = vaddq_u32( STATE0, ABEF_SAVE ); \
STATE1 = vaddq_u32( STATE1, CDGH_SAVE ); \
STATE0 = vaddq_u32( STATE0, ABCD_SAVE ); \
STATE1 = vaddq_u32( STATE1, EFGH_SAVE ); \
vst1q_u32( state_out , STATE0 ); \
vst1q_u32( state_out+4, STATE1 ); \
}
@@ -1029,8 +1051,8 @@ void sha256_neon_sha_transform_le( uint32_t *state_out, const void *input,
#define sha256_neon_x2sha_rounds( state_out_X, state_out_Y, input_X, \
input_Y, state_in_X, state_in_Y ) \
{ \
uint32x4_t STATE0_X, STATE1_X, ABEF_SAVE_X, CDGH_SAVE_X; \
uint32x4_t STATE0_Y, STATE1_Y, ABEF_SAVE_Y, CDGH_SAVE_Y; \
uint32x4_t STATE0_X, STATE1_X, ABCD_SAVE_X, EFGH_SAVE_X; \
uint32x4_t STATE0_Y, STATE1_Y, ABCD_SAVE_Y, EFGH_SAVE_Y; \
uint32x4_t MSG0_X, MSG1_X, MSG2_X, MSG3_X; \
uint32x4_t MSG0_Y, MSG1_Y, MSG2_Y, MSG3_Y; \
uint32x4_t TMP0_X, TMP1_X, TMP2_X; \
@@ -1040,10 +1062,10 @@ void sha256_neon_sha_transform_le( uint32_t *state_out, const void *input,
STATE0_Y = vld1q_u32( state_in_Y ); \
STATE1_X = vld1q_u32( state_in_X+4 ); \
STATE1_Y = vld1q_u32( state_in_Y+4 ); \
ABEF_SAVE_X = STATE0_X; \
ABEF_SAVE_Y = STATE0_Y; \
CDGH_SAVE_X = STATE1_X; \
CDGH_SAVE_Y = STATE1_Y; \
ABCD_SAVE_X = STATE0_X; \
ABCD_SAVE_Y = STATE0_Y; \
EFGH_SAVE_X = STATE1_X; \
EFGH_SAVE_Y = STATE1_Y; \
\
MSG0_X = load_msg( input_X, 0 ); \
MSG0_Y = load_msg( input_Y, 0 ); \
@@ -1245,10 +1267,10 @@ void sha256_neon_sha_transform_le( uint32_t *state_out, const void *input,
STATE0_Y = vsha256hq_u32( STATE0_Y, STATE1_Y, TMP1_Y ); \
STATE1_X = vsha256h2q_u32( STATE1_X, TMP2_X, TMP1_X ); \
STATE1_Y = vsha256h2q_u32( STATE1_Y, TMP2_Y, TMP1_Y ); \
STATE0_X = vaddq_u32( STATE0_X, ABEF_SAVE_X ); \
STATE0_Y = vaddq_u32( STATE0_Y, ABEF_SAVE_Y ); \
STATE1_X = vaddq_u32( STATE1_X, CDGH_SAVE_X ); \
STATE1_Y = vaddq_u32( STATE1_Y, CDGH_SAVE_Y ); \
STATE0_X = vaddq_u32( STATE0_X, ABCD_SAVE_X ); \
STATE0_Y = vaddq_u32( STATE0_Y, ABCD_SAVE_Y ); \
STATE1_X = vaddq_u32( STATE1_X, EFGH_SAVE_X ); \
STATE1_Y = vaddq_u32( STATE1_Y, EFGH_SAVE_Y ); \
vst1q_u32( state_out_X , STATE0_X ); \
vst1q_u32( state_out_Y , STATE0_Y ); \
vst1q_u32( state_out_X+4, STATE1_X ); \

View File

@@ -113,7 +113,7 @@ void sha256_neon_x2sha_final_rounds( uint32_t *state_out_X,
#endif
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#if defined(SIMD512)
// SHA-256 16 way x86_64
@@ -180,20 +180,9 @@ void sha256_8x32_final_rounds( __m256i *state_out, const __m256i *data,
int sha256_8x32_transform_le_short( __m256i *state_out, const __m256i *data,
const __m256i *state_in, const uint32_t *target );
// Temporary API during naming transition
#define sha256_8way_context sha256_8x32_context
#define sha256_8way_init sha256_8x32_init
#define sha256_8way_update sha256_8x32_update
#define sha256_8way_close sha256_8x32_close
#define sha256_8way_full sha256_8x32_full
#define sha256_8way_transform_le sha256_8x32_transform_le
#define sha256_8way_transform_be sha256_8x32_transform_be
#define sha256_8way_prehash_3rounds sha256_8x32_prehash_3rounds
#define sha256_8way_final_rounds sha256_8x32_final_rounds
#define sha256_8way_transform_le_short sha256_8x32_transform_le_short
#endif // AVX2
#if defined(__SSE2__) || defined(__ARM_NEON)
// SHA-256 4 way x86_64 with SSE2 or AArch64 with NEON
typedef struct
@@ -219,16 +208,5 @@ void sha256_4x32_final_rounds( v128_t *state_out, const v128_t *data,
int sha256_4x32_transform_le_short( v128_t *state_out, const v128_t *data,
const v128_t *state_in, const uint32_t *target );
// Temporary API during naming transition
#define sha256_4way_context sha256_4x32_context
#define sha256_4way_init sha256_4x32_init
#define sha256_4way_update sha256_4x32_update
#define sha256_4way_close sha256_4x32_close
#define sha256_4way_full sha256_4x32_full
#define sha256_4way_transform_le sha256_4x32_transform_le
#define sha256_4way_transform_be sha256_4x32_transform_be
#define sha256_4way_prehash_3rounds sha256_4x32_prehash_3rounds
#define sha256_4way_final_rounds sha256_4x32_final_rounds
#define sha256_4way_transform_le_short sha256_4x32_transform_le_short
#endif
#endif // SSE2 || NEON
#endif // SHA256_HASH_H__

View File

@@ -32,8 +32,6 @@ int scanhash_sha256d_sha( struct work *work, uint32_t max_nonce,
uint32_t n = first_nonce;
const int thr_id = mythr->id;
const bool bench = opt_benchmark;
const v128_t shuf_bswap32 =
v128_set64( 0x0c0d0e0f08090a0bULL, 0x0405060700010203ULL );
// hash first 64 byte block of data
sha256_transform_le( mstatea, pdata, sha256_iv );
@@ -69,10 +67,8 @@ int scanhash_sha256d_sha( struct work *work, uint32_t max_nonce,
if ( unlikely( bswap_32( hasha[7] ) <= ptarget[7] ) )
{
casti_v128( hasha, 0 ) =
_mm_shuffle_epi8( casti_v128( hasha, 0 ), shuf_bswap32 );
casti_v128( hasha, 1 ) =
_mm_shuffle_epi8( casti_v128( hasha, 1 ), shuf_bswap32 );
casti_v128( hasha, 0 ) = v128_bswap32( casti_v128( hasha, 0 ) );
casti_v128( hasha, 1 ) = v128_bswap32( casti_v128( hasha, 1 ) );
if ( likely( valid_hash( hasha, ptarget ) && !bench ) )
{
pdata[19] = n;
@@ -81,10 +77,8 @@ int scanhash_sha256d_sha( struct work *work, uint32_t max_nonce,
}
if ( unlikely( bswap_32( hashb[7] ) <= ptarget[7] ) )
{
casti_v128( hashb, 0 ) =
_mm_shuffle_epi8( casti_v128( hashb, 0 ), shuf_bswap32 );
casti_v128( hashb, 1 ) =
_mm_shuffle_epi8( casti_v128( hashb, 1 ), shuf_bswap32 );
casti_v128( hashb, 0 ) = v128_bswap32( casti_v128( hashb, 0 ) );
casti_v128( hashb, 1 ) = v128_bswap32( casti_v128( hashb, 1 ) );
if ( likely( valid_hash( hashb, ptarget ) && !bench ) )
{
pdata[19] = n+1;
@@ -204,8 +198,6 @@ int scanhash_sha256d_16way( struct work *work, const uint32_t max_nonce,
const int thr_id = mythr->id;
const __m512i sixteen = v512_32( 16 );
const bool bench = opt_benchmark;
const __m256i bswap_shuf = mm256_bcast_m128( _mm_set_epi64x(
0x0c0d0e0f08090a0b, 0x0405060700010203 ) );
// prehash first block directly from pdata
sha256_transform_le( phash, pdata, sha256_iv );
@@ -231,7 +223,7 @@ int scanhash_sha256d_16way( struct work *work, const uint32_t max_nonce,
buf[15] = v512_32( 80*8 ); // bit count
// partially pre-expand & prehash second message block, avoiding the nonces
sha256_16way_prehash_3rounds( mstate2, mexp_pre, buf, mstate1 );
sha256_16x32_prehash_3rounds( mstate2, mexp_pre, buf, mstate1 );
// vectorize IV for second hash
istate[0] = v512_32( sha256_iv[0] );
@@ -250,15 +242,14 @@ int scanhash_sha256d_16way( struct work *work, const uint32_t max_nonce,
do
{
sha256_16way_final_rounds( block, buf, mstate1, mstate2, mexp_pre );
if ( unlikely( sha256_16way_transform_le_short(
sha256_16x32_final_rounds( block, buf, mstate1, mstate2, mexp_pre );
if ( unlikely( sha256_16x32_transform_le_short(
hash32, block, istate, ptarget ) ) )
{
for ( int lane = 0; lane < 16; lane++ )
{
extr_lane_16x32( phash, hash32, lane, 256 );
casti_m256i( phash, 0 ) =
_mm256_shuffle_epi8( casti_m256i( phash, 0 ), bswap_shuf );
casti_m256i( phash, 0 ) = mm256_bswap_32( casti_m256i( phash, 0 ) );
if ( likely( valid_hash( phash, ptarget ) && !bench ) )
{
pdata[19] = n + lane;
@@ -299,8 +290,6 @@ int scanhash_sha256d_8way( struct work *work, const uint32_t max_nonce,
const bool bench = opt_benchmark;
const __m256i last_byte = v256_32( 0x80000000 );
const __m256i eight = v256_32( 8 );
const __m256i bswap_shuf = mm256_bcast_m128( _mm_set_epi64x(
0x0c0d0e0f08090a0b, 0x0405060700010203 ) );
for ( int i = 0; i < 19; i++ )
vdata[i] = v256_32( pdata[i] );
@@ -325,22 +314,22 @@ int scanhash_sha256d_8way( struct work *work, const uint32_t max_nonce,
istate[6] = v256_32( sha256_iv[6] );
istate[7] = v256_32( sha256_iv[7] );
sha256_8way_transform_le( mstate1, vdata, istate );
sha256_8x32_transform_le( mstate1, vdata, istate );
// Do 3 rounds on the first 12 bytes of the next block
sha256_8way_prehash_3rounds( mstate2, mexp_pre, vdata + 16, mstate1 );
sha256_8x32_prehash_3rounds( mstate2, mexp_pre, vdata + 16, mstate1 );
do
{
sha256_8way_final_rounds( block, vdata+16, mstate1, mstate2, mexp_pre );
if ( unlikely( sha256_8way_transform_le_short( hash32, block,
sha256_8x32_final_rounds( block, vdata+16, mstate1, mstate2, mexp_pre );
if ( unlikely( sha256_8x32_transform_le_short( hash32, block,
istate, ptarget ) ) )
{
for ( int lane = 0; lane < 8; lane++ )
{
extr_lane_8x32( lane_hash, hash32, lane, 256 );
casti_m256i( lane_hash, 0 ) =
_mm256_shuffle_epi8( casti_m256i( lane_hash, 0 ), bswap_shuf );
mm256_bswap_32( casti_m256i( lane_hash, 0 ) );
if ( likely( valid_hash( lane_hash, ptarget ) && !bench ) )
{
pdata[19] = n + lane;

View File

@@ -4,7 +4,7 @@
#include <stdint.h>
#include "algo-gate-api.h"
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#if defined(SIMD512)
#define SHA256D_16WAY 1
#elif defined(__SHA__)
#define SHA256D_SHA 1

View File

@@ -8,14 +8,14 @@ void sha256d( void *hash, const void *data, int len )
}
bool register_sha256d_algo( algo_gate_t* gate )
{
gate->optimizations = SSE2_OPT | AVX2_OPT | AVX512_OPT;
gate->optimizations = SSE2_OPT | AVX2_OPT | AVX512_OPT | NEON_OPT;
#if defined(SHA256D_16WAY)
gate->scanhash = (void*)&scanhash_sha256d_16way;
#elif defined(SHA256D_SHA)
gate->optimizations = SHA_OPT;
gate->optimizations = SSE2_OPT | SHA256_OPT;
gate->scanhash = (void*)&scanhash_sha256d_sha;
#elif defined(SHA256D_NEON_SHA2)
gate->optimizations = SHA_OPT;
gate->optimizations = NEON_OPT | SHA256_OPT;
gate->scanhash = (void*)&scanhash_sha256d_neon_sha2;
#elif defined(SHA256D_8WAY)
gate->scanhash = (void*)&scanhash_sha256d_8way;

View File

@@ -4,7 +4,7 @@
#include <stdint.h>
#include "algo-gate-api.h"
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#if defined(SIMD512)
#define SHA256D_16WAY 1
#elif defined(__SHA__)
#define SHA256D_SHA 1
@@ -12,7 +12,7 @@
#define SHA256D_NEON_SHA2 1
#elif defined(__AVX2__)
#define SHA256D_8WAY 1
#else
#elif defined(__SSE2__) || defined(__ARM_NEON)
#define SHA256D_4WAY 1
#endif

View File

@@ -6,7 +6,7 @@
#include "sha256-hash.h"
#include "sph_sha2.h"
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#if defined(SIMD512)
#define SHA256DT_16X32 1
#elif defined(__x86_64__) && defined(__SHA__)
#define SHA256DT_X86_SHA256 1
@@ -17,7 +17,6 @@
#elif defined (__SSE2__) || defined(__ARM_NEON)
#define SHA256DT_4X32 1
#endif
// else ref, should never happen
static const uint32_t sha256dt_iv[8] __attribute__ ((aligned (32))) =
{
@@ -205,8 +204,6 @@ int scanhash_sha256dt_16x32( struct work *work, const uint32_t max_nonce,
const int thr_id = mythr->id;
const __m512i sixteen = v512_32( 16 );
const bool bench = opt_benchmark;
const __m256i bswap_shuf = mm256_bcast_m128( v128_set64(
0x0c0d0e0f08090a0b, 0x0405060700010203 ) );
// prehash first block directly from pdata
sha256_transform_le( phash, pdata, sha256dt_iv );
@@ -258,8 +255,7 @@ int scanhash_sha256dt_16x32( struct work *work, const uint32_t max_nonce,
for ( int lane = 0; lane < 16; lane++ )
{
extr_lane_16x32( phash, hash32, lane, 256 );
casti_m256i( phash, 0 ) =
_mm256_shuffle_epi8( casti_m256i( phash, 0 ), bswap_shuf );
casti_m256i( phash, 0 ) = mm256_bswap_32( casti_m256i( phash, 0 ) );
if ( likely( valid_hash( phash, ptarget ) && !bench ) )
{
pdata[19] = n + lane;
@@ -298,8 +294,6 @@ int scanhash_sha256dt_8x32( struct work *work, const uint32_t max_nonce,
const bool bench = opt_benchmark;
const __m256i last_byte = v256_32( 0x80000000 );
const __m256i eight = v256_32( 8 );
const __m256i bswap_shuf = mm256_bcast_m128( v128_set64(
0x0c0d0e0f08090a0b, 0x0405060700010203 ) );
for ( int i = 0; i < 19; i++ )
vdata[i] = v256_32( pdata[i] );
@@ -339,7 +333,7 @@ int scanhash_sha256dt_8x32( struct work *work, const uint32_t max_nonce,
{
extr_lane_8x32( lane_hash, hash32, lane, 256 );
casti_m256i( lane_hash, 0 ) =
_mm256_shuffle_epi8( casti_m256i( lane_hash, 0 ), bswap_shuf );
mm256_bswap_32( casti_m256i( lane_hash, 0 ) );
if ( likely( valid_hash( lane_hash, ptarget ) && !bench ) )
{
pdata[19] = n + lane;
@@ -406,7 +400,6 @@ int scanhash_sha256dt_4x32( struct work *work, const uint32_t max_nonce,
do
{
sha256_4x32_final_rounds( block, vdata+16, mhash1, mhash2, mexp_pre );
// sha256_4x32_transform_le( block, vdata+16, mhash1 );
sha256_4x32_transform_le( hash32, block, iv );
for ( int lane = 0; lane < 4; lane++ )
@@ -500,10 +493,10 @@ bool register_sha256dt_algo( algo_gate_t* gate )
#if defined(SHA256DT_16X32)
gate->scanhash = (void*)&scanhash_sha256dt_16x32;
#elif defined(SHA256DT_X86_SHA256)
gate->optimizations = SHA_OPT;
gate->optimizations = SSE2_OPT | SHA256_OPT;
gate->scanhash = (void*)&scanhash_sha256dt_x86_x2sha;
#elif defined(SHA256DT_NEON_SHA256)
gate->optimizations = SHA_OPT;
gate->optimizations = NEON_OPT | SHA256_OPT;
gate->scanhash = (void*)&scanhash_sha256dt_neon_x2sha;
#elif defined(SHA256DT_8X32)
gate->scanhash = (void*)&scanhash_sha256dt_8x32;

Some files were not shown because too many files have changed in this diff Show More