Initial upload v3.4.7

This commit is contained in:
Jay D Dee
2016-09-22 13:16:18 -04:00
parent a3c8079774
commit a35039bc05
480 changed files with 211015 additions and 3 deletions

0
algo/argon2/.dirstamp Normal file
View File

View File

View File

@@ -0,0 +1,249 @@
/*
scrypt-jane by Andrew M, https://github.com/floodyberry/scrypt-jane
Public Domain or MIT License, whichever is easier
*/
#include <string.h>
#if defined( _WINDOWS )
#if !defined( QT_GUI )
extern "C" {
#endif
#endif
#include "ar2-scrypt-jane.h"
#include "sj/scrypt-jane-portable.h"
#include "sj/scrypt-jane-hash.h"
#include "sj/scrypt-jane-romix.h"
#include "sj/scrypt-jane-test-vectors.h"
#define scrypt_maxNfactor 30 /* (1 << (30 + 1)) = ~2 billion */
#if (SCRYPT_BLOCK_BYTES == 64)
#define scrypt_r_32kb 8 /* (1 << 8) = 256 * 2 blocks in a chunk * 64 bytes = Max of 32kb in a chunk */
#elif (SCRYPT_BLOCK_BYTES == 128)
#define scrypt_r_32kb 7 /* (1 << 7) = 128 * 2 blocks in a chunk * 128 bytes = Max of 32kb in a chunk */
#elif (SCRYPT_BLOCK_BYTES == 256)
#define scrypt_r_32kb 6 /* (1 << 6) = 64 * 2 blocks in a chunk * 256 bytes = Max of 32kb in a chunk */
#elif (SCRYPT_BLOCK_BYTES == 512)
#define scrypt_r_32kb 5 /* (1 << 5) = 32 * 2 blocks in a chunk * 512 bytes = Max of 32kb in a chunk */
#endif
#define scrypt_maxrfactor scrypt_r_32kb /* 32kb */
#define scrypt_maxpfactor 25 /* (1 << 25) = ~33 million */
#include <stdio.h>
//#include <malloc.h>
static void NORETURN
scrypt_fatal_error_default(const char *msg) {
fprintf(stderr, "%s\n", msg);
exit(1);
}
static scrypt_fatal_errorfn scrypt_fatal_error = scrypt_fatal_error_default;
void scrypt_set_fatal_error(scrypt_fatal_errorfn fn) {
scrypt_fatal_error = fn;
}
static int scrypt_power_on_self_test(void)
{
const scrypt_test_setting *t;
uint8_t test_digest[64];
uint32_t i;
int res = 7, scrypt_valid;
if (!scrypt_test_mix()) {
#if !defined(SCRYPT_TEST)
scrypt_fatal_error("scrypt: mix function power-on-self-test failed");
#endif
res &= ~1;
}
if (!scrypt_test_hash()) {
#if !defined(SCRYPT_TEST)
scrypt_fatal_error("scrypt: hash function power-on-self-test failed");
#endif
res &= ~2;
}
for (i = 0, scrypt_valid = 1; post_settings[i].pw; i++) {
t = post_settings + i;
scrypt((uint8_t *)t->pw, strlen(t->pw), (uint8_t *)t->salt, strlen(t->salt), t->Nfactor, t->rfactor, t->pfactor, test_digest, sizeof(test_digest));
scrypt_valid &= scrypt_verify(post_vectors[i], test_digest, sizeof(test_digest));
}
if (!scrypt_valid) {
#if !defined(SCRYPT_TEST)
scrypt_fatal_error("scrypt: scrypt power-on-self-test failed");
#endif
res &= ~4;
}
return res;
}
typedef struct scrypt_aligned_alloc_t {
uint8_t *mem, *ptr;
} scrypt_aligned_alloc;
#ifdef SCRYPT_TEST_SPEED
static uint8_t *mem_base = (uint8_t *)0;
static size_t mem_bump = 0;
/* allocations are assumed to be multiples of 64 bytes and total allocations not to exceed ~1.01gb */
static scrypt_aligned_alloc scrypt_alloc(uint64_t size)
{
scrypt_aligned_alloc aa;
if (!mem_base) {
mem_base = (uint8_t *)malloc((1024 * 1024 * 1024) + (1024 * 1024) + (SCRYPT_BLOCK_BYTES - 1));
if (!mem_base)
scrypt_fatal_error("scrypt: out of memory");
mem_base = (uint8_t *)(((size_t)mem_base + (SCRYPT_BLOCK_BYTES - 1)) & ~(SCRYPT_BLOCK_BYTES - 1));
}
aa.mem = mem_base + mem_bump;
aa.ptr = aa.mem;
mem_bump += (size_t)size;
return aa;
}
static void scrypt_free(scrypt_aligned_alloc *aa) {
mem_bump = 0;
}
#else
static scrypt_aligned_alloc scrypt_alloc(uint64_t size)
{
static const size_t max_alloc = (size_t)-1;
scrypt_aligned_alloc aa;
size += (SCRYPT_BLOCK_BYTES - 1);
if (size > max_alloc)
scrypt_fatal_error("scrypt: not enough address space on this CPU to allocate required memory");
aa.mem = (uint8_t *)malloc((size_t)size);
aa.ptr = (uint8_t *)(((size_t)aa.mem + (SCRYPT_BLOCK_BYTES - 1)) & ~(SCRYPT_BLOCK_BYTES - 1));
if (!aa.mem)
scrypt_fatal_error("scrypt: out of memory");
return aa;
}
static void scrypt_free(scrypt_aligned_alloc *aa)
{
free(aa->mem);
}
#endif /* SCRYPT_TEST_SPEED */
void scrypt(const uint8_t *password, size_t password_len, const uint8_t *salt, size_t salt_len,
uint8_t Nfactor, uint8_t rfactor, uint8_t pfactor, uint8_t *out, size_t bytes)
{
scrypt_aligned_alloc YX, V;
uint8_t *X, *Y;
uint32_t N, r, p, chunk_bytes, i;
#if !defined(SCRYPT_CHOOSE_COMPILETIME)
scrypt_ROMixfn scrypt_ROMix = scrypt_getROMix();
#endif
#if !defined(SCRYPT_TEST)
static int power_on_self_test = 0;
if (!power_on_self_test) {
power_on_self_test = 1;
if (!scrypt_power_on_self_test())
scrypt_fatal_error("scrypt: power on self test failed");
}
#endif
if (Nfactor > scrypt_maxNfactor)
scrypt_fatal_error("scrypt: N out of range");
if (rfactor > scrypt_maxrfactor)
scrypt_fatal_error("scrypt: r out of range");
if (pfactor > scrypt_maxpfactor)
scrypt_fatal_error("scrypt: p out of range");
N = (1 << (Nfactor + 1));
r = (1 << rfactor);
p = (1 << pfactor);
chunk_bytes = SCRYPT_BLOCK_BYTES * r * 2;
V = scrypt_alloc((uint64_t)N * chunk_bytes);
YX = scrypt_alloc((p + 1) * chunk_bytes);
/* 1: X = PBKDF2(password, salt) */
Y = YX.ptr;
X = Y + chunk_bytes;
scrypt_pbkdf2(password, password_len, salt, salt_len, 1, X, chunk_bytes * p);
/* 2: X = ROMix(X) */
for (i = 0; i < p; i++)
scrypt_ROMix((scrypt_mix_word_t *)(X + (chunk_bytes * i)), (scrypt_mix_word_t *)Y, (scrypt_mix_word_t *)V.ptr, N, r);
/* 3: Out = PBKDF2(password, X) */
scrypt_pbkdf2(password, password_len, X, chunk_bytes * p, 1, out, bytes);
scrypt_ensure_zero(YX.ptr, (p + 1) * chunk_bytes);
scrypt_free(&V);
scrypt_free(&YX);
}
#define Nfactor 8
#define rfactor 0
#define pfactor 0
#if (SCRYPT_BLOCK_BYTES == 64)
#define chunk_bytes 128
#elif (SCRYPT_BLOCK_BYTES == 128)
#define chunk_bytes 256
#elif (SCRYPT_BLOCK_BYTES == 256)
#define chunk_bytes 512
#elif (SCRYPT_BLOCK_BYTES == 512)
#define chunk_bytes 1024
#endif
void my_scrypt(const uint8_t *password, size_t password_len, const uint8_t *salt, size_t salt_len, uint8_t *out)
{
scrypt_aligned_alloc YX, V;
uint8_t *X, *Y;
#if !defined(SCRYPT_CHOOSE_COMPILETIME)
scrypt_ROMixfn scrypt_ROMix = scrypt_getROMix();
#endif
/*
#if !defined(SCRYPT_TEST)
static int power_on_self_test = 0;
if (!power_on_self_test) {
power_on_self_test = 1;
if (!scrypt_power_on_self_test())
scrypt_fatal_error("scrypt: power on self test failed");
}
#endif
*/
V = scrypt_alloc((uint64_t)512 * chunk_bytes);
YX = scrypt_alloc(2 * chunk_bytes);
/* 1: X = PBKDF2(password, salt) */
Y = YX.ptr;
X = Y + chunk_bytes;
scrypt_pbkdf2(password, password_len, salt, salt_len, 1, X, chunk_bytes);
/* 2: X = ROMix(X) */
scrypt_ROMix((scrypt_mix_word_t *)X, (scrypt_mix_word_t *)Y, (scrypt_mix_word_t *)V.ptr, 512, 1);
/* 3: Out = PBKDF2(password, X) */
scrypt_pbkdf2(password, password_len, X, chunk_bytes, 1, out, 32);
scrypt_ensure_zero(YX.ptr, 2 * chunk_bytes);
scrypt_free(&V);
scrypt_free(&YX);
}
#if defined( _WINDOWS )
#if !defined( QT_GUI )
} /* extern "C" */
#endif
#endif

View File

@@ -0,0 +1,35 @@
#ifndef AR2_SCRYPT_JANE_H
#define AR2_SCRYPT_JANE_H
#ifdef _MSC_VER
#undef SCRYPT_CHOOSE_COMPILETIME
#endif
//#define SCRYPT_TEST
#define SCRYPT_SKEIN512
#define SCRYPT_SALSA64
/*
Nfactor: Increases CPU & Memory Hardness
N = (1 << (Nfactor + 1)): How many times to mix a chunk and how many temporary chunks are used
rfactor: Increases Memory Hardness
r = (1 << rfactor): How large a chunk is
pfactor: Increases CPU Hardness
p = (1 << pfactor): Number of times to mix the main chunk
A block is the basic mixing unit (salsa/chacha block = 64 bytes)
A chunk is (2 * r) blocks
~Memory used = (N + 2) * ((2 * r) * block size)
*/
#include <stdlib.h>
#include <stdint.h>
typedef void (*scrypt_fatal_errorfn)(const char *msg);
void scrypt_set_fatal_error(scrypt_fatal_errorfn fn);
void scrypt(const unsigned char *password, size_t password_len, const unsigned char *salt, size_t salt_len, unsigned char Nfactor, unsigned char rfactor, unsigned char pfactor, unsigned char *out, size_t bytes);
void my_scrypt(const uint8_t *password, size_t password_len, const uint8_t *salt, size_t salt_len, uint8_t *out);
#endif /* AR2_SCRYPT_JANE_H */

284
algo/argon2/ar2/argon2.c Normal file
View File

@@ -0,0 +1,284 @@
/*
* Argon2 source code package
*
* Written by Daniel Dinu and Dmitry Khovratovich, 2015
*
* This work is licensed under a Creative Commons CC0 1.0 License/Waiver.
*
* You should have received a copy of the CC0 Public Domain Dedication along
* with
* this software. If not, see
* <http://creativecommons.org/publicdomain/zero/1.0/>.
*/
#include <stdint.h>
#include <string.h>
#include <stdio.h>
#include <limits.h>
#include "argon2.h"
#include "cores.h"
/* Error messages */
static const char *Argon2_ErrorMessage[] = {
/*{ARGON2_OK, */ "OK",
/*},
{ARGON2_OUTPUT_PTR_NULL, */ "Output pointer is NULL",
/*},
{ARGON2_OUTPUT_TOO_SHORT, */ "Output is too short",
/*},
{ARGON2_OUTPUT_TOO_LONG, */ "Output is too long",
/*},
{ARGON2_PWD_TOO_SHORT, */ "Password is too short",
/*},
{ARGON2_PWD_TOO_LONG, */ "Password is too long",
/*},
{ARGON2_SALT_TOO_SHORT, */ "Salt is too short",
/*},
{ARGON2_SALT_TOO_LONG, */ "Salt is too long",
/*},
{ARGON2_AD_TOO_SHORT, */ "Associated data is too short",
/*},
{ARGON2_AD_TOO_LONG, */ "Associated date is too long",
/*},
{ARGON2_SECRET_TOO_SHORT, */ "Secret is too short",
/*},
{ARGON2_SECRET_TOO_LONG, */ "Secret is too long",
/*},
{ARGON2_TIME_TOO_SMALL, */ "Time cost is too small",
/*},
{ARGON2_TIME_TOO_LARGE, */ "Time cost is too large",
/*},
{ARGON2_MEMORY_TOO_LITTLE, */ "Memory cost is too small",
/*},
{ARGON2_MEMORY_TOO_MUCH, */ "Memory cost is too large",
/*},
{ARGON2_LANES_TOO_FEW, */ "Too few lanes",
/*},
{ARGON2_LANES_TOO_MANY, */ "Too many lanes",
/*},
{ARGON2_PWD_PTR_MISMATCH, */ "Password pointer is NULL, but password length is not 0",
/*},
{ARGON2_SALT_PTR_MISMATCH, */ "Salt pointer is NULL, but salt length is not 0",
/*},
{ARGON2_SECRET_PTR_MISMATCH, */ "Secret pointer is NULL, but secret length is not 0",
/*},
{ARGON2_AD_PTR_MISMATCH, */ "Associated data pointer is NULL, but ad length is not 0",
/*},
{ARGON2_MEMORY_ALLOCATION_ERROR, */ "Memory allocation error",
/*},
{ARGON2_FREE_MEMORY_CBK_NULL, */ "The free memory callback is NULL",
/*},
{ARGON2_ALLOCATE_MEMORY_CBK_NULL, */ "The allocate memory callback is NULL",
/*},
{ARGON2_INCORRECT_PARAMETER, */ "Argon2_Context context is NULL",
/*},
{ARGON2_INCORRECT_TYPE, */ "There is no such version of Argon2",
/*},
{ARGON2_OUT_PTR_MISMATCH, */ "Output pointer mismatch",
/*},
{ARGON2_THREADS_TOO_FEW, */ "Not enough threads",
/*},
{ARGON2_THREADS_TOO_MANY, */ "Too many threads",
/*},
{ARGON2_MISSING_ARGS, */ "Missing arguments", /*},*/
};
int argon2d(argon2_context *context) { return argon2_core(context, Argon2_d); }
int argon2i(argon2_context *context) { return argon2_core(context, Argon2_i); }
int verify_d(argon2_context *context, const char *hash)
{
int result;
/*if (0 == context->outlen || NULL == hash) {
return ARGON2_OUT_PTR_MISMATCH;
}*/
result = argon2_core(context, Argon2_d);
if (ARGON2_OK != result) {
return result;
}
return 0 == memcmp(hash, context->out, 32);
}
const char *error_message(int error_code)
{
enum {
/* Make sure---at compile time---that the enum size matches the array
size */
ERROR_STRING_CHECK =
1 /
!!((sizeof(Argon2_ErrorMessage) / sizeof(Argon2_ErrorMessage[0])) ==
ARGON2_ERROR_CODES_LENGTH)
};
if (error_code < ARGON2_ERROR_CODES_LENGTH) {
return Argon2_ErrorMessage[(argon2_error_codes)error_code];
}
return "Unknown error code.";
}
/* encoding/decoding helpers */
/*
* Some macros for constant-time comparisons. These work over values in
* the 0..255 range. Returned value is 0x00 on "false", 0xFF on "true".
*/
#define EQ(x, y) ((((0U - ((unsigned)(x) ^ (unsigned)(y))) >> 8) & 0xFF) ^ 0xFF)
#define GT(x, y) ((((unsigned)(y) - (unsigned)(x)) >> 8) & 0xFF)
#define GE(x, y) (GT(y, x) ^ 0xFF)
#define LT(x, y) GT(y, x)
#define LE(x, y) GE(y, x)
/*
* Convert value x (0..63) to corresponding Base64 character.
*/
static int b64_byte_to_char(unsigned x) {
//static inline int b64_byte_to_char(unsigned x) {
return (LT(x, 26) & (x + 'A')) |
(GE(x, 26) & LT(x, 52) & (x + ('a' - 26))) |
(GE(x, 52) & LT(x, 62) & (x + ('0' - 52))) | (EQ(x, 62) & '+') |
(EQ(x, 63) & '/');
}
/*
* Convert some bytes to Base64. 'dst_len' is the length (in characters)
* of the output buffer 'dst'; if that buffer is not large enough to
* receive the result (including the terminating 0), then (size_t)-1
* is returned. Otherwise, the zero-terminated Base64 string is written
* in the buffer, and the output length (counted WITHOUT the terminating
* zero) is returned.
*/
static size_t to_base64(char *dst, size_t dst_len, const void *src)
{
size_t olen;
const unsigned char *buf;
unsigned acc, acc_len;
olen = 43;
/*switch (32 % 3) {
case 2:
olen++;*/
/* fall through */
/*case 1:
olen += 2;
break;
}*/
if (dst_len <= olen) {
return (size_t)-1;
}
acc = 0;
acc_len = 0;
buf = (const unsigned char *)src;
size_t src_len = 32;
while (src_len-- > 0) {
acc = (acc << 8) + (*buf++);
acc_len += 8;
while (acc_len >= 6) {
acc_len -= 6;
*dst++ = b64_byte_to_char((acc >> acc_len) & 0x3F);
}
}
if (acc_len > 0) {
*dst++ = b64_byte_to_char((acc << (6 - acc_len)) & 0x3F);
}
*dst++ = 0;
return olen;
}
/* ==================================================================== */
/*
* Code specific to Argon2i.
*
* The code below applies the following format:
*
* $argon2i$m=<num>,t=<num>,p=<num>[,keyid=<bin>][,data=<bin>][$<bin>[$<bin>]]
*
* where <num> is a decimal integer (positive, fits in an 'unsigned long')
* and <bin> is Base64-encoded data (no '=' padding characters, no newline
* or whitespace). The "keyid" is a binary identifier for a key (up to 8
* bytes); "data" is associated data (up to 32 bytes). When the 'keyid'
* (resp. the 'data') is empty, then it is ommitted from the output.
*
* The last two binary chunks (encoded in Base64) are, in that order,
* the salt and the output. Both are optional, but you cannot have an
* output without a salt. The binary salt length is between 8 and 48 bytes.
* The output length is always exactly 32 bytes.
*/
int encode_string(char *dst, size_t dst_len, argon2_context *ctx)
{
#define SS(str) \
do { \
size_t pp_len = strlen(str); \
if (pp_len >= dst_len) { \
return 0; \
} \
memcpy(dst, str, pp_len + 1); \
dst += pp_len; \
dst_len -= pp_len; \
} while (0)
#define SX(x) \
do { \
char tmp[30]; \
sprintf(tmp, "%lu", (unsigned long)(x)); \
SS(tmp); \
} while (0);
#define SB(buf) \
do { \
size_t sb_len = to_base64(dst, dst_len, buf); \
if (sb_len == (size_t)-1) { \
return 0; \
} \
dst += sb_len; \
dst_len -= sb_len; \
} while (0);
SS("$argon2i$m=");
SX(16);
SS(",t=");
SX(2);
SS(",p=");
SX(1);
/*if (ctx->adlen > 0) {
SS(",data=");
SB(ctx->ad, ctx->adlen);
}*/
/*if (ctx->saltlen == 0)
return 1;*/
SS("$");
SB(ctx->salt);
/*if (ctx->outlen32 == 0)
return 1;*/
SS("$");
SB(ctx->out);
return 1;
#undef SS
#undef SX
#undef SB
}

292
algo/argon2/ar2/argon2.h Normal file
View File

@@ -0,0 +1,292 @@
/*
* Argon2 source code package
*
* Written by Daniel Dinu and Dmitry Khovratovich, 2015
*
* This work is licensed under a Creative Commons CC0 1.0 License/Waiver.
*
* You should have received a copy of the CC0 Public Domain Dedication along
* with
* this software. If not, see
* <http://creativecommons.org/publicdomain/zero/1.0/>.
*/
#ifndef ARGON2_H
#define ARGON2_H
#include <stdint.h>
#include <stddef.h>
#include <limits.h>
#if defined(__cplusplus)
extern "C" {
#endif
/*************************Argon2 input parameter
* restrictions**************************************************/
/* Minimum and maximum number of lanes (degree of parallelism) */
#define ARGON2_MIN_LANES UINT32_C(1)
#define ARGON2_MAX_LANES UINT32_C(0xFFFFFF)
/* Minimum and maximum number of threads */
#define ARGON2_MIN_THREADS UINT32_C(1)
#define ARGON2_MAX_THREADS UINT32_C(0xFFFFFF)
/* Number of synchronization points between lanes per pass */
#define ARGON2_SYNC_POINTS UINT32_C(4)
/* Minimum and maximum digest size in bytes */
#define ARGON2_MIN_OUTLEN UINT32_C(4)
#define ARGON2_MAX_OUTLEN UINT32_C(0xFFFFFFFF)
/* Minimum and maximum number of memory blocks (each of BLOCK_SIZE bytes) */
#define ARGON2_MIN_MEMORY (2 * ARGON2_SYNC_POINTS) /* 2 blocks per slice */
#define ARGON2_MIN(a, b) ((a) < (b) ? (a) : (b))
/* Max memory size is half the addressing space, topping at 2^32 blocks (4 TB)
*/
#define ARGON2_MAX_MEMORY_BITS \
ARGON2_MIN(UINT32_C(32), (sizeof(void *) * CHAR_BIT - 10 - 1))
#define ARGON2_MAX_MEMORY \
ARGON2_MIN(UINT32_C(0xFFFFFFFF), UINT64_C(1) << ARGON2_MAX_MEMORY_BITS)
/* Minimum and maximum number of passes */
#define ARGON2_MIN_TIME UINT32_C(1)
#define ARGON2_MAX_TIME UINT32_C(0xFFFFFFFF)
/* Minimum and maximum password length in bytes */
#define ARGON2_MIN_PWD_LENGTH UINT32_C(0)
#define ARGON2_MAX_PWD_LENGTH UINT32_C(0xFFFFFFFF)
/* Minimum and maximum associated data length in bytes */
#define ARGON2_MIN_AD_LENGTH UINT32_C(0)
#define ARGON2_MAX_AD_LENGTH UINT32_C(0xFFFFFFFF)
/* Minimum and maximum salt length in bytes */
#define ARGON2_MIN_SALT_LENGTH UINT32_C(8)
#define ARGON2_MAX_SALT_LENGTH UINT32_C(0xFFFFFFFF)
/* Minimum and maximum key length in bytes */
#define ARGON2_MIN_SECRET UINT32_C(0)
#define ARGON2_MAX_SECRET UINT32_C(0xFFFFFFFF)
#define ARGON2_FLAG_CLEAR_PASSWORD (UINT32_C(1) << 0)
#define ARGON2_FLAG_CLEAR_SECRET (UINT32_C(1) << 1)
#define ARGON2_FLAG_CLEAR_MEMORY (UINT32_C(1) << 2)
#define ARGON2_DEFAULT_FLAGS \
(ARGON2_FLAG_CLEAR_PASSWORD | ARGON2_FLAG_CLEAR_MEMORY)
/* Error codes */
typedef enum Argon2_ErrorCodes {
ARGON2_OK = 0,
ARGON2_OUTPUT_PTR_NULL = 1,
ARGON2_OUTPUT_TOO_SHORT = 2,
ARGON2_OUTPUT_TOO_LONG = 3,
ARGON2_PWD_TOO_SHORT = 4,
ARGON2_PWD_TOO_LONG = 5,
ARGON2_SALT_TOO_SHORT = 6,
ARGON2_SALT_TOO_LONG = 7,
ARGON2_AD_TOO_SHORT = 8,
ARGON2_AD_TOO_LONG = 9,
ARGON2_SECRET_TOO_SHORT = 10,
ARGON2_SECRET_TOO_LONG = 11,
ARGON2_TIME_TOO_SMALL = 12,
ARGON2_TIME_TOO_LARGE = 13,
ARGON2_MEMORY_TOO_LITTLE = 14,
ARGON2_MEMORY_TOO_MUCH = 15,
ARGON2_LANES_TOO_FEW = 16,
ARGON2_LANES_TOO_MANY = 17,
ARGON2_PWD_PTR_MISMATCH = 18, /* NULL ptr with non-zero length */
ARGON2_SALT_PTR_MISMATCH = 19, /* NULL ptr with non-zero length */
ARGON2_SECRET_PTR_MISMATCH = 20, /* NULL ptr with non-zero length */
ARGON2_AD_PTR_MISMATCH = 21, /* NULL ptr with non-zero length */
ARGON2_MEMORY_ALLOCATION_ERROR = 22,
ARGON2_FREE_MEMORY_CBK_NULL = 23,
ARGON2_ALLOCATE_MEMORY_CBK_NULL = 24,
ARGON2_INCORRECT_PARAMETER = 25,
ARGON2_INCORRECT_TYPE = 26,
ARGON2_OUT_PTR_MISMATCH = 27,
ARGON2_THREADS_TOO_FEW = 28,
ARGON2_THREADS_TOO_MANY = 29,
ARGON2_MISSING_ARGS = 30,
ARGON2_ERROR_CODES_LENGTH /* Do NOT remove; Do NOT add error codes after
this
error code */
} argon2_error_codes;
/* Memory allocator types --- for external allocation */
typedef int (*allocate_fptr)(uint8_t **memory, size_t bytes_to_allocate);
typedef void (*deallocate_fptr)(uint8_t *memory, size_t bytes_to_allocate);
/* Argon2 external data structures */
/*
*****Context: structure to hold Argon2 inputs:
* output array and its length,
* password and its length,
* salt and its length,
* secret and its length,
* associated data and its length,
* number of passes, amount of used memory (in KBytes, can be rounded up a bit)
* number of parallel threads that will be run.
* All the parameters above affect the output hash value.
* Additionally, two function pointers can be provided to allocate and
deallocate the memory (if NULL, memory will be allocated internally).
* Also, three flags indicate whether to erase password, secret as soon as they
are pre-hashed (and thus not needed anymore), and the entire memory
****************************
Simplest situation: you have output array out[8], password is stored in
pwd[32], salt is stored in salt[16], you do not have keys nor associated data.
You need to spend 1 GB of RAM and you run 5 passes of Argon2d with 4 parallel
lanes.
You want to erase the password, but you're OK with last pass not being erased.
You want to use the default memory allocator.
*/
typedef struct Argon2_Context {
uint8_t *out; /* output array */
uint8_t *pwd; /* password array */
uint8_t *salt; /* salt array */
/*uint8_t *secret;*/ /* key array */
/*uint8_t *ad;*/ /* associated data array */
allocate_fptr allocate_cbk; /* pointer to memory allocator */
deallocate_fptr free_cbk; /* pointer to memory deallocator */
/*uint32_t outlen;*/ /* digest length */
uint32_t pwdlen; /* password length */
/*uint32_t saltlen;*/ /* salt length */
/*uint32_t secretlen;*/ /* key length */
/*uint32_t adlen;*/ /* associated data length */
/*uint32_t t_cost;*/ /* number of passes */
/*uint32_t m_cost;*/ /* amount of memory requested (KB) */
/*uint32_t lanes;*/ /* number of lanes */
/*uint32_t threads;*/ /* maximum number of threads */
/*uint32_t flags;*/ /* array of bool options */
} argon2_context;
/**
* Function to hash the inputs in the memory-hard fashion (uses Argon2i)
* @param out Pointer to the memory where the hash digest will be written
* @param outlen Digest length in bytes
* @param in Pointer to the input (password)
* @param inlen Input length in bytes
* @param salt Pointer to the salt
* @param saltlen Salt length in bytes
* @pre @a out must have at least @a outlen bytes allocated
* @pre @a in must be at least @inlen bytes long
* @pre @a saltlen must be at least @saltlen bytes long
* @return Zero if successful, 1 otherwise.
*/
/*int hash_argon2i(void *out, size_t outlen, const void *in, size_t inlen,
const void *salt, size_t saltlen, unsigned int t_cost,
unsigned int m_cost);*/
/* same for argon2d */
/*int hash_argon2d(void *out, size_t outlen, const void *in, size_t inlen,
const void *salt, size_t saltlen, unsigned int t_cost,
unsigned int m_cost);*/
/*
* **************Argon2d: Version of Argon2 that picks memory blocks depending
* on the password and salt. Only for side-channel-free
* environment!!***************
* @param context Pointer to current Argon2 context
* @return Zero if successful, a non zero error code otherwise
*/
int argon2d(argon2_context *context);
/*
* * **************Argon2i: Version of Argon2 that picks memory blocks
*independent on the password and salt. Good for side-channels,
******************* but worse w.r.t. tradeoff attacks if
*******************only one pass is used***************
* @param context Pointer to current Argon2 context
* @return Zero if successful, a non zero error code otherwise
*/
int argon2i(argon2_context *context);
/*
* * **************Argon2di: Reserved name***************
* @param context Pointer to current Argon2 context
* @return Zero if successful, a non zero error code otherwise
*/
int argon2di(argon2_context *context);
/*
* * **************Argon2ds: Argon2d hardened against GPU attacks, 20%
* slower***************
* @param context Pointer to current Argon2 context
* @return Zero if successful, a non zero error code otherwise
*/
int argon2ds(argon2_context *context);
/*
* * **************Argon2id: First half-pass over memory is
*password-independent, the rest are password-dependent
********************OK against side channels: they reduce to 1/2-pass
*Argon2i***************
* @param context Pointer to current Argon2 context
* @return Zero if successful, a non zero error code otherwise
*/
int argon2id(argon2_context *context);
/*
* Verify if a given password is correct for Argon2d hashing
* @param context Pointer to current Argon2 context
* @param hash The password hash to verify. The length of the hash is
* specified by the context outlen member
* @return Zero if successful, a non zero error code otherwise
*/
int verify_d(argon2_context *context, const char *hash);
/*
* Get the associated error message for given error code
* @return The error message associated with the given error code
*/
const char *error_message(int error_code);
/* ==================================================================== */
/*
* Code specific to Argon2i.
*
* The code below applies the following format:
*
* $argon2i$m=<num>,t=<num>,p=<num>[,keyid=<bin>][,data=<bin>][$<bin>[$<bin>]]
*
* where <num> is a decimal integer (positive, fits in an 'unsigned long')
* and <bin> is Base64-encoded data (no '=' padding characters, no newline
* or whitespace). The "keyid" is a binary identifier for a key (up to 8
* bytes); "data" is associated data (up to 32 bytes). When the 'keyid'
* (resp. the 'data') is empty, then it is ommitted from the output.
*
* The last two binary chunks (encoded in Base64) are, in that order,
* the salt and the output. Both are optional, but you cannot have an
* output without a salt. The binary salt length is between 8 and 48 bytes.
* The output length is always exactly 32 bytes.
*/
int encode_string(char *dst, size_t dst_len, argon2_context *ctx);
#if defined(__cplusplus)
}
#endif
#endif

114
algo/argon2/ar2/bench.c Normal file
View File

@@ -0,0 +1,114 @@
#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#ifdef _MSC_VER
#include <intrin.h>
#endif
#include "argon2.h"
static uint64_t rdtsc(void)
{
#ifdef _MSC_VER
return __rdtsc();
#else
#if defined(__amd64__) || defined(__x86_64__)
uint64_t rax, rdx;
__asm__ __volatile__("rdtsc" : "=a"(rax), "=d"(rdx) : :);
return (rdx << 32) | rax;
#elif defined(__i386__) || defined(__i386) || defined(__X86__)
uint64_t rax;
__asm__ __volatile__("rdtsc" : "=A"(rax) : :);
return rax;
#else
#error "Not implemented!"
#endif
#endif
}
/*
* Benchmarks Argon2 with salt length 16, password length 16, t_cost 1,
and different m_cost and threads
*/
static void benchmark()
{
#define BENCH_OUTLEN 16
#define BENCH_INLEN 16
const uint32_t inlen = BENCH_INLEN;
const unsigned outlen = BENCH_OUTLEN;
unsigned char out[BENCH_OUTLEN];
unsigned char pwd_array[BENCH_INLEN];
unsigned char salt_array[BENCH_INLEN];
#undef BENCH_INLEN
#undef BENCH_OUTLEN
uint32_t t_cost = 1;
uint32_t m_cost;
uint32_t thread_test[6] = {1, 2, 4, 6, 8, 16};
memset(pwd_array, 0, inlen);
memset(salt_array, 1, inlen);
for (m_cost = (uint32_t)1 << 10; m_cost <= (uint32_t)1 << 22; m_cost *= 2) {
unsigned i;
for (i = 0; i < 6; ++i) {
argon2_context context;
uint32_t thread_n = thread_test[i];
uint64_t stop_cycles, stop_cycles_i;
clock_t stop_time;
uint64_t delta_d, delta_i;
double mcycles_d, mcycles_i, run_time;
clock_t start_time = clock();
uint64_t start_cycles = rdtsc();
context.out = out;
context.outlen = outlen;
context.pwd = pwd_array;
context.pwdlen = inlen;
context.salt = salt_array;
context.saltlen = inlen;
context.secret = NULL;
context.secretlen = 0;
context.ad = NULL;
context.adlen = 0;
context.t_cost = t_cost;
context.m_cost = m_cost;
context.lanes = thread_n;
context.threads = thread_n;
context.allocate_cbk = NULL;
context.free_cbk = NULL;
context.flags = 0;
argon2d(&context);
stop_cycles = rdtsc();
argon2i(&context);
stop_cycles_i = rdtsc();
stop_time = clock();
delta_d = (stop_cycles - start_cycles) / (m_cost);
delta_i = (stop_cycles_i - stop_cycles) / (m_cost);
mcycles_d = (double)(stop_cycles - start_cycles) / (1UL << 20);
mcycles_i = (double)(stop_cycles_i - stop_cycles) / (1UL << 20);
printf("Argon2d %d iterations %d MiB %d threads: %2.2f cpb %2.2f "
"Mcycles \n",
t_cost, m_cost >> 10, thread_n, (float)delta_d / 1024,
mcycles_d);
printf("Argon2i %d iterations %d MiB %d threads: %2.2f cpb %2.2f "
"Mcycles \n",
t_cost, m_cost >> 10, thread_n, (float)delta_i / 1024,
mcycles_i);
run_time = ((double)stop_time - start_time) / (CLOCKS_PER_SEC);
printf("%2.4f seconds\n\n", run_time);
}
}
}
int main()
{
benchmark();
return ARGON2_OK;
}

View File

@@ -0,0 +1,143 @@
#ifndef PORTABLE_BLAKE2_IMPL_H
#define PORTABLE_BLAKE2_IMPL_H
#include <stdint.h>
#include <string.h>
#if defined(_MSC_VER)
#define BLAKE2_INLINE __inline
#elif defined(__GNUC__) || defined(__clang__)
#define BLAKE2_INLINE __inline__
#else
#define BLAKE2_INLINE
#endif
/* Argon2 Team - Begin Code */
/*
Not an exhaustive list, but should cover the majority of modern platforms
Additionally, the code will always be correct---this is only a performance
tweak.
*/
#if (defined(__BYTE_ORDER__) && \
(__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__)) || \
defined(__LITTLE_ENDIAN__) || defined(__ARMEL__) || defined(__MIPSEL__) || \
defined(__AARCH64EL__) || defined(__amd64__) || defined(__i386__) || \
defined(_M_IX86) || defined(_M_X64) || defined(_M_AMD64) || \
defined(_M_ARM)
#define NATIVE_LITTLE_ENDIAN
#endif
/* Argon2 Team - End Code */
static BLAKE2_INLINE uint32_t load32(const void *src) {
#if defined(NATIVE_LITTLE_ENDIAN)
uint32_t w;
memcpy(&w, src, sizeof w);
return w;
#else
const uint8_t *p = (const uint8_t *)src;
uint32_t w = *p++;
w |= (uint32_t)(*p++) << 8;
w |= (uint32_t)(*p++) << 16;
w |= (uint32_t)(*p++) << 24;
return w;
#endif
}
static BLAKE2_INLINE uint64_t load64(const void *src) {
#if defined(NATIVE_LITTLE_ENDIAN)
uint64_t w;
memcpy(&w, src, sizeof w);
return w;
#else
const uint8_t *p = (const uint8_t *)src;
uint64_t w = *p++;
w |= (uint64_t)(*p++) << 8;
w |= (uint64_t)(*p++) << 16;
w |= (uint64_t)(*p++) << 24;
w |= (uint64_t)(*p++) << 32;
w |= (uint64_t)(*p++) << 40;
w |= (uint64_t)(*p++) << 48;
w |= (uint64_t)(*p++) << 56;
return w;
#endif
}
static BLAKE2_INLINE void store32(void *dst, uint32_t w) {
#if defined(NATIVE_LITTLE_ENDIAN)
memcpy(dst, &w, sizeof w);
#else
uint8_t *p = (uint8_t *)dst;
*p++ = (uint8_t)w;
w >>= 8;
*p++ = (uint8_t)w;
w >>= 8;
*p++ = (uint8_t)w;
w >>= 8;
*p++ = (uint8_t)w;
#endif
}
static BLAKE2_INLINE void store64(void *dst, uint64_t w) {
#if defined(NATIVE_LITTLE_ENDIAN)
memcpy(dst, &w, sizeof w);
#else
uint8_t *p = (uint8_t *)dst;
*p++ = (uint8_t)w;
w >>= 8;
*p++ = (uint8_t)w;
w >>= 8;
*p++ = (uint8_t)w;
w >>= 8;
*p++ = (uint8_t)w;
w >>= 8;
*p++ = (uint8_t)w;
w >>= 8;
*p++ = (uint8_t)w;
w >>= 8;
*p++ = (uint8_t)w;
w >>= 8;
*p++ = (uint8_t)w;
#endif
}
static BLAKE2_INLINE uint64_t load48(const void *src) {
const uint8_t *p = (const uint8_t *)src;
uint64_t w = *p++;
w |= (uint64_t)(*p++) << 8;
w |= (uint64_t)(*p++) << 16;
w |= (uint64_t)(*p++) << 24;
w |= (uint64_t)(*p++) << 32;
w |= (uint64_t)(*p++) << 40;
return w;
}
static BLAKE2_INLINE void store48(void *dst, uint64_t w) {
uint8_t *p = (uint8_t *)dst;
*p++ = (uint8_t)w;
w >>= 8;
*p++ = (uint8_t)w;
w >>= 8;
*p++ = (uint8_t)w;
w >>= 8;
*p++ = (uint8_t)w;
w >>= 8;
*p++ = (uint8_t)w;
w >>= 8;
*p++ = (uint8_t)w;
}
static BLAKE2_INLINE uint32_t rotr32(const uint32_t w, const unsigned c) {
return (w >> c) | (w << (32 - c));
}
static BLAKE2_INLINE uint64_t rotr64(const uint64_t w, const unsigned c) {
return (w >> c) | (w << (64 - c));
}
/* prevents compiler optimizing out memset() */
static BLAKE2_INLINE void burn(void *v, size_t n) {
static void *(*const volatile memset_v)(void *, int, size_t) = &memset;
memset_v(v, 0, n);
}
#endif

View File

@@ -0,0 +1,76 @@
#ifndef PORTABLE_BLAKE2_H
#define PORTABLE_BLAKE2_H
#include <stddef.h>
#include <stdint.h>
#include <limits.h>
#if defined(__cplusplus)
extern "C" {
#endif
enum blake2b_constant {
BLAKE2B_BLOCKBYTES = 128,
BLAKE2B_OUTBYTES = 64,
BLAKE2B_KEYBYTES = 64,
BLAKE2B_SALTBYTES = 16,
BLAKE2B_PERSONALBYTES = 16
};
#pragma pack(push, 1)
typedef struct __blake2b_param {
uint8_t digest_length; /* 1 */
uint8_t key_length; /* 2 */
uint8_t fanout; /* 3 */
uint8_t depth; /* 4 */
uint32_t leaf_length; /* 8 */
uint64_t node_offset; /* 16 */
uint8_t node_depth; /* 17 */
uint8_t inner_length; /* 18 */
uint8_t reserved[14]; /* 32 */
uint8_t salt[BLAKE2B_SALTBYTES]; /* 48 */
uint8_t personal[BLAKE2B_PERSONALBYTES]; /* 64 */
} blake2b_param;
#pragma pack(pop)
typedef struct __blake2b_state {
uint64_t h[8];
uint64_t t[2];
uint64_t f[2];
unsigned buflen;
unsigned outlen;
uint8_t last_node;
uint8_t buf[BLAKE2B_BLOCKBYTES];
} blake2b_state;
/* Ensure param structs have not been wrongly padded */
/* Poor man's static_assert */
enum {
blake2_size_check_0 = 1 / !!(CHAR_BIT == 8),
blake2_size_check_2 =
1 / !!(sizeof(blake2b_param) == sizeof(uint64_t) * CHAR_BIT)
};
/* Streaming API */
int blake2b_init(blake2b_state *S, size_t outlen);
int blake2b_init_key(blake2b_state *S, size_t outlen, const void *key,
size_t keylen);
int blake2b_init_param(blake2b_state *S, const blake2b_param *P);
int blake2b_update(blake2b_state *S, const void *in, size_t inlen);
void my_blake2b_update(blake2b_state *S, const void *in, size_t inlen);
int blake2b_final(blake2b_state *S, void *out, size_t outlen);
/* Simple API */
int blake2b(void *out, const void *in, const void *key, size_t keylen);
/* Argon2 Team - Begin Code */
int blake2b_long(void *out, const void *in);
/* Argon2 Team - End Code */
/* Miouyouyou */
void blake2b_too(void *out, const void *in);
#if defined(__cplusplus)
}
#endif
#endif

View File

@@ -0,0 +1,162 @@
#ifndef BLAKE_ROUND_MKA_OPT_H
#define BLAKE_ROUND_MKA_OPT_H
#include "blake2-impl.h"
#if defined(_MSC_VER)
#include <intrin.h>
#endif
#include <immintrin.h>
#if defined(__XOP__) && (defined(__GNUC__) || defined(__clang__))
#include <x86intrin.h>
#endif
#if !defined(__XOP__)
#if defined(__SSSE3__)
#define r16 \
(_mm_setr_epi8(2, 3, 4, 5, 6, 7, 0, 1, 10, 11, 12, 13, 14, 15, 8, 9))
#define r24 \
(_mm_setr_epi8(3, 4, 5, 6, 7, 0, 1, 2, 11, 12, 13, 14, 15, 8, 9, 10))
#define _mm_roti_epi64(x, c) \
(-(c) == 32) \
? _mm_shuffle_epi32((x), _MM_SHUFFLE(2, 3, 0, 1)) \
: (-(c) == 24) \
? _mm_shuffle_epi8((x), r24) \
: (-(c) == 16) \
? _mm_shuffle_epi8((x), r16) \
: (-(c) == 63) \
? _mm_xor_si128(_mm_srli_epi64((x), -(c)), \
_mm_add_epi64((x), (x))) \
: _mm_xor_si128(_mm_srli_epi64((x), -(c)), \
_mm_slli_epi64((x), 64 - (-(c))))
#else /* defined(__SSE2__) */
#define _mm_roti_epi64(r, c) \
_mm_xor_si128(_mm_srli_epi64((r), -(c)), _mm_slli_epi64((r), 64 - (-(c))))
#endif
#else
#endif
static BLAKE2_INLINE __m128i fBlaMka(__m128i x, __m128i y) {
const __m128i z = _mm_mul_epu32(x, y);
return _mm_add_epi64(_mm_add_epi64(x, y), _mm_add_epi64(z, z));
}
#define G1(A0, B0, C0, D0, A1, B1, C1, D1) \
do { \
A0 = fBlaMka(A0, B0); \
A1 = fBlaMka(A1, B1); \
\
D0 = _mm_xor_si128(D0, A0); \
D1 = _mm_xor_si128(D1, A1); \
\
D0 = _mm_roti_epi64(D0, -32); \
D1 = _mm_roti_epi64(D1, -32); \
\
C0 = fBlaMka(C0, D0); \
C1 = fBlaMka(C1, D1); \
\
B0 = _mm_xor_si128(B0, C0); \
B1 = _mm_xor_si128(B1, C1); \
\
B0 = _mm_roti_epi64(B0, -24); \
B1 = _mm_roti_epi64(B1, -24); \
} while ((void)0, 0)
#define G2(A0, B0, C0, D0, A1, B1, C1, D1) \
do { \
A0 = fBlaMka(A0, B0); \
A1 = fBlaMka(A1, B1); \
\
D0 = _mm_xor_si128(D0, A0); \
D1 = _mm_xor_si128(D1, A1); \
\
D0 = _mm_roti_epi64(D0, -16); \
D1 = _mm_roti_epi64(D1, -16); \
\
C0 = fBlaMka(C0, D0); \
C1 = fBlaMka(C1, D1); \
\
B0 = _mm_xor_si128(B0, C0); \
B1 = _mm_xor_si128(B1, C1); \
\
B0 = _mm_roti_epi64(B0, -63); \
B1 = _mm_roti_epi64(B1, -63); \
} while ((void)0, 0)
#if defined(__SSSE3__)
#define DIAGONALIZE(A0, B0, C0, D0, A1, B1, C1, D1) \
do { \
__m128i t0 = _mm_alignr_epi8(B1, B0, 8); \
__m128i t1 = _mm_alignr_epi8(B0, B1, 8); \
B0 = t0; \
B1 = t1; \
\
t0 = C0; \
C0 = C1; \
C1 = t0; \
\
t0 = _mm_alignr_epi8(D1, D0, 8); \
t1 = _mm_alignr_epi8(D0, D1, 8); \
D0 = t1; \
D1 = t0; \
} while ((void)0, 0)
#define UNDIAGONALIZE(A0, B0, C0, D0, A1, B1, C1, D1) \
do { \
__m128i t0 = _mm_alignr_epi8(B0, B1, 8); \
__m128i t1 = _mm_alignr_epi8(B1, B0, 8); \
B0 = t0; \
B1 = t1; \
\
t0 = C0; \
C0 = C1; \
C1 = t0; \
\
t0 = _mm_alignr_epi8(D0, D1, 8); \
t1 = _mm_alignr_epi8(D1, D0, 8); \
D0 = t1; \
D1 = t0; \
} while ((void)0, 0)
#else /* SSE2 */
#define DIAGONALIZE(A0, B0, C0, D0, A1, B1, C1, D1) \
do { \
__m128i t0 = D0; \
__m128i t1 = B0; \
D0 = C0; \
C0 = C1; \
C1 = D0; \
D0 = _mm_unpackhi_epi64(D1, _mm_unpacklo_epi64(t0, t0)); \
D1 = _mm_unpackhi_epi64(t0, _mm_unpacklo_epi64(D1, D1)); \
B0 = _mm_unpackhi_epi64(B0, _mm_unpacklo_epi64(B1, B1)); \
B1 = _mm_unpackhi_epi64(B1, _mm_unpacklo_epi64(t1, t1)); \
} while ((void)0, 0)
#define UNDIAGONALIZE(A0, B0, C0, D0, A1, B1, C1, D1) \
do { \
__m128i t0 = C0; \
C0 = C1; \
C1 = t0; \
t0 = B0; \
__m128i t1 = D0; \
B0 = _mm_unpackhi_epi64(B1, _mm_unpacklo_epi64(B0, B0)); \
B1 = _mm_unpackhi_epi64(t0, _mm_unpacklo_epi64(B1, B1)); \
D0 = _mm_unpackhi_epi64(D0, _mm_unpacklo_epi64(D1, D1)); \
D1 = _mm_unpackhi_epi64(D1, _mm_unpacklo_epi64(t1, t1)); \
} while ((void)0, 0)
#endif
#define BLAKE2_ROUND(A0, A1, B0, B1, C0, C1, D0, D1) \
do { \
G1(A0, B0, C0, D0, A1, B1, C1, D1); \
G2(A0, B0, C0, D0, A1, B1, C1, D1); \
\
DIAGONALIZE(A0, B0, C0, D0, A1, B1, C1, D1); \
\
G1(A0, B0, C0, D0, A1, B1, C1, D1); \
G2(A0, B0, C0, D0, A1, B1, C1, D1); \
\
UNDIAGONALIZE(A0, B0, C0, D0, A1, B1, C1, D1); \
} while ((void)0, 0)
#endif

View File

@@ -0,0 +1,39 @@
#ifndef BLAKE_ROUND_MKA_H
#define BLAKE_ROUND_MKA_H
#include "blake2.h"
#include "blake2-impl.h"
/*designed by the Lyra PHC team */
static BLAKE2_INLINE uint64_t fBlaMka(uint64_t x, uint64_t y) {
const uint64_t m = UINT64_C(0xFFFFFFFF);
const uint64_t xy = (x & m) * (y & m);
return x + y + 2 * xy;
}
#define G(a, b, c, d) \
do { \
a = fBlaMka(a, b); \
d = rotr64(d ^ a, 32); \
c = fBlaMka(c, d); \
b = rotr64(b ^ c, 24); \
a = fBlaMka(a, b); \
d = rotr64(d ^ a, 16); \
c = fBlaMka(c, d); \
b = rotr64(b ^ c, 63); \
} while ((void)0, 0)
#define BLAKE2_ROUND_NOMSG(v0, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, \
v12, v13, v14, v15) \
do { \
G(v0, v4, v8, v12); \
G(v1, v5, v9, v13); \
G(v2, v6, v10, v14); \
G(v3, v7, v11, v15); \
G(v0, v5, v10, v15); \
G(v1, v6, v11, v12); \
G(v2, v7, v8, v13); \
G(v3, v4, v9, v14); \
} while ((void)0, 0)
#endif

316
algo/argon2/ar2/blake2b.c Normal file
View File

@@ -0,0 +1,316 @@
#include <stdint.h>
#include <string.h>
#include <stdio.h>
#include <inttypes.h>
#include "blake2/blake2.h"
#include "blake2/blake2-impl.h"
#if defined(_MSC_VER)
// i know there is a trick but nvm :p
#define PRIu64 "%llu"
#define PRIx64 "%llx"
#endif
static const uint64_t blake2b_IV[8] = {
UINT64_C(0x6a09e667f3bcc908), UINT64_C(0xbb67ae8584caa73b),
UINT64_C(0x3c6ef372fe94f82b), UINT64_C(0xa54ff53a5f1d36f1),
UINT64_C(0x510e527fade682d1), UINT64_C(0x9b05688c2b3e6c1f),
UINT64_C(0x1f83d9abfb41bd6b), UINT64_C(0x5be0cd19137e2179)
};
static const unsigned int blake2b_sigma[12][16] = {
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15},
{14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3},
{11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4},
{7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8},
{9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13},
{2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9},
{12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11},
{13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10},
{6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5},
{10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13, 0},
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15},
{14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3},
};
static BLAKE2_INLINE void blake2b_set_lastnode(blake2b_state *S) {
S->f[1] = (uint64_t)-1;
}
static BLAKE2_INLINE void blake2b_set_lastblock(blake2b_state *S) {
if (S->last_node) {
blake2b_set_lastnode(S);
}
S->f[0] = (uint64_t)-1;
}
static BLAKE2_INLINE void blake2b_increment_counter(blake2b_state *S, uint64_t inc) {
S->t[0] += inc;
S->t[1] += (S->t[0] < inc);
}
static BLAKE2_INLINE void blake2b_invalidate_state(blake2b_state *S) {
burn(S, sizeof(*S)); /* wipe */
blake2b_set_lastblock(S); /* invalidate for further use */
}
static BLAKE2_INLINE void blake2b_init0(blake2b_state *S) {
memset(S, 0, sizeof(*S));
memcpy(S->h, blake2b_IV, sizeof(S->h));
}
/*
void print_state(blake2b_state BlakeHash)
{
printf(".h = {UINT64_C(%" PRIu64 "), UINT64_C(%" PRIu64 "),\n"
"UINT64_C(%" PRIu64 "), UINT64_C(%" PRIu64 "),\n"
"UINT64_C(%" PRIu64 "), UINT64_C(%" PRIu64 "),\n"
"UINT64_C(%" PRIu64 "), UINT64_C(%" PRIu64 ")},\n"
".t = {UINT64_C(%" PRIu64 "), UINT64_C(%" PRIu64 ")},\n"
".f = {UINT64_C(%" PRIu64 "), UINT64_C(%" PRIu64 ")}\n",
BlakeHash.h[0], BlakeHash.h[1], BlakeHash.h[2], BlakeHash.h[3],
BlakeHash.h[4], BlakeHash.h[5], BlakeHash.h[6], BlakeHash.h[7],
BlakeHash.t[0], BlakeHash.t[1],
BlakeHash.f[0], BlakeHash.f[1]);
printf(".buf = {");
for (register uint8_t i = 0; i < BLAKE2B_BLOCKBYTES; i++)
printf("%" PRIu8 ", ", BlakeHash.buf[i]);
puts("\n");
printf("}\n.buflen = %d\n.outlen = %d\n",
BlakeHash.buflen, BlakeHash.outlen);
printf(".last_node = %" PRIu8 "\n", BlakeHash.last_node);
fflush(stdout);
}
*/
static const blake2b_state miou = {
.h = {
UINT64_C(7640891576939301128), UINT64_C(13503953896175478587),
UINT64_C(4354685564936845355), UINT64_C(11912009170470909681),
UINT64_C(5840696475078001361), UINT64_C(11170449401992604703),
UINT64_C(2270897969802886507), UINT64_C(6620516959819538809)
},
.t = {UINT64_C(0), UINT64_C(0)},
.f = {UINT64_C(0), UINT64_C(0)},
.buf = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
},
.buflen = 0,
.outlen = 64,
.last_node = 0
};
int blake2b_init_param(blake2b_state *S, const blake2b_param *P)
{
const unsigned char *p = (const unsigned char *)P;
unsigned int i;
if (NULL == P || NULL == S) {
return -1;
}
blake2b_init0(S);
/* IV XOR Parameter Block */
for (i = 0; i < 8; ++i) {
S->h[i] ^= load64(&p[i * sizeof(S->h[i])]);
}
S->outlen = P->digest_length;
return 0;
}
void compare_buffs(uint64_t *h, size_t outlen)
{
// printf("CMP : %d", memcmp(h, miou.h, 8*(sizeof(uint64_t))));
printf("miou : %" PRIu64 " - h : %" PRIu64 " - outlen : %ld\n", miou.h[0], h[0], outlen);
fflush(stdout);
}
/* Sequential blake2b initialization */
int blake2b_init(blake2b_state *S, size_t outlen)
{
memcpy(S, &miou, sizeof(*S));
S->h[0] += outlen;
return 0;
}
void print64(const char *name, const uint64_t *array, uint16_t size)
{
printf("%s = {", name);
for (uint8_t i = 0; i < size; i++) printf("UINT64_C(%" PRIu64 "), ", array[i]);
printf("};\n");
}
int blake2b_init_key(blake2b_state *S, size_t outlen, const void *key, size_t keylen)
{
return 0;
}
static void blake2b_compress(blake2b_state *S, const uint8_t *block)
{
uint64_t m[16];
uint64_t v[16];
unsigned int i, r;
for (i = 0; i < 16; ++i) {
m[i] = load64(block + i * 8);
}
for (i = 0; i < 8; ++i) {
v[i] = S->h[i];
}
v[8] = blake2b_IV[0];
v[9] = blake2b_IV[1];
v[10] = blake2b_IV[2];
v[11] = blake2b_IV[3];
v[12] = blake2b_IV[4] ^ S->t[0];
v[13] = blake2b_IV[5]/* ^ S->t[1]*/;
v[14] = blake2b_IV[6] ^ S->f[0];
v[15] = blake2b_IV[7]/* ^ S->f[1]*/;
#define G(r, i, a, b, c, d) \
do { \
a = a + b + m[blake2b_sigma[r][2 * i + 0]]; \
d = rotr64(d ^ a, 32); \
c = c + d; \
b = rotr64(b ^ c, 24); \
a = a + b + m[blake2b_sigma[r][2 * i + 1]]; \
d = rotr64(d ^ a, 16); \
c = c + d; \
b = rotr64(b ^ c, 63); \
} while ((void)0, 0)
#define ROUND(r) \
do { \
G(r, 0, v[0], v[4], v[8], v[12]); \
G(r, 1, v[1], v[5], v[9], v[13]); \
G(r, 2, v[2], v[6], v[10], v[14]); \
G(r, 3, v[3], v[7], v[11], v[15]); \
G(r, 4, v[0], v[5], v[10], v[15]); \
G(r, 5, v[1], v[6], v[11], v[12]); \
G(r, 6, v[2], v[7], v[8], v[13]); \
G(r, 7, v[3], v[4], v[9], v[14]); \
} while ((void)0, 0)
for (r = 0; r < 12; ++r) ROUND(r);
for (i = 0; i < 8; ++i) S->h[i] = S->h[i] ^ v[i] ^ v[i + 8];
#undef G
#undef ROUND
}
int blake2b_update(blake2b_state *S, const void *in, size_t inlen)
{
const uint8_t *pin = (const uint8_t *)in;
/* Complete current block */
memcpy(&S->buf[4], pin, 124);
blake2b_increment_counter(S, BLAKE2B_BLOCKBYTES);
blake2b_compress(S, S->buf);
S->buflen = 0;
pin += 124;
register int8_t i = 7;
/* Avoid buffer copies when possible */
while (i--) {
blake2b_increment_counter(S, BLAKE2B_BLOCKBYTES);
blake2b_compress(S, pin);
pin += BLAKE2B_BLOCKBYTES;
}
memcpy(&S->buf[S->buflen], pin, 4);
S->buflen += 4;
return 0;
}
void my_blake2b_update(blake2b_state *S, const void *in, size_t inlen)
{
memcpy(&S->buf[S->buflen], in, inlen);
S->buflen += (unsigned int)inlen;
}
int blake2b_final(blake2b_state *S, void *out, size_t outlen)
{
uint8_t buffer[BLAKE2B_OUTBYTES] = {0};
unsigned int i;
blake2b_increment_counter(S, S->buflen);
blake2b_set_lastblock(S);
memset(&S->buf[S->buflen], 0, BLAKE2B_BLOCKBYTES - S->buflen); /* Padding */
blake2b_compress(S, S->buf);
for (i = 0; i < 8; ++i) { /* Output full hash to temp buffer */
store64(buffer + sizeof(S->h[i]) * i, S->h[i]);
}
memcpy(out, buffer, S->outlen);
burn(buffer, sizeof(buffer));
burn(S->buf, sizeof(S->buf));
burn(S->h, sizeof(S->h));
return 0;
}
int blake2b(void *out, const void *in, const void *key, size_t keylen)
{
blake2b_state S;
blake2b_init(&S, 64);
my_blake2b_update(&S, in, 64);
blake2b_final(&S, out, 64);
burn(&S, sizeof(S));
return 0;
}
void blake2b_too(void *pout, const void *in)
{
uint8_t *out = (uint8_t *)pout;
uint8_t out_buffer[64];
uint8_t in_buffer[64];
blake2b_state blake_state;
blake2b_init(&blake_state, 64);
blake_state.buflen = blake_state.buf[1] = 4;
my_blake2b_update(&blake_state, in, 72);
blake2b_final(&blake_state, out_buffer, 64);
memcpy(out, out_buffer, 32);
out += 32;
register uint8_t i = 29;
while (i--) {
memcpy(in_buffer, out_buffer, 64);
blake2b(out_buffer, in_buffer, NULL, 0);
memcpy(out, out_buffer, 32);
out += 32;
}
memcpy(in_buffer, out_buffer, 64);
blake2b(out_buffer, in_buffer, NULL, 0);
memcpy(out, out_buffer, 64);
burn(&blake_state, sizeof(blake_state));
}
/* Argon2 Team - Begin Code */
int blake2b_long(void *pout, const void *in)
{
uint8_t *out = (uint8_t *)pout;
blake2b_state blake_state;
uint8_t outlen_bytes[sizeof(uint32_t)] = {0};
store32(outlen_bytes, 32);
blake2b_init(&blake_state, 32);
my_blake2b_update(&blake_state, outlen_bytes, sizeof(outlen_bytes));
blake2b_update(&blake_state, in, 1024);
blake2b_final(&blake_state, out, 32);
burn(&blake_state, sizeof(blake_state));
return 0;
}
/* Argon2 Team - End Code */

349
algo/argon2/ar2/cores.c Normal file
View File

@@ -0,0 +1,349 @@
/*
* Argon2 source code package
*
* Written by Daniel Dinu and Dmitry Khovratovich, 2015
*
* This work is licensed under a Creative Commons CC0 1.0 License/Waiver.
*
* You should have received a copy of the CC0 Public Domain Dedication along
* with
* this software. If not, see
* <http://creativecommons.org/publicdomain/zero/1.0/>.
*/
/*For memory wiping*/
#ifdef _MSC_VER
#include <windows.h>
#include <winbase.h> /* For SecureZeroMemory */
#endif
#if defined __STDC_LIB_EXT1__
#define __STDC_WANT_LIB_EXT1__ 1
#endif
#define VC_GE_2005(version) (version >= 1400)
#include <inttypes.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "argon2.h"
#include "cores.h"
#include "blake2/blake2.h"
#include "blake2/blake2-impl.h"
#ifdef GENKAT
#include "genkat.h"
#endif
#if defined(__clang__)
#if __has_attribute(optnone)
#define NOT_OPTIMIZED __attribute__((optnone))
#endif
#elif defined(__GNUC__)
#define GCC_VERSION \
(__GNUC__ * 10000 + __GNUC_MINOR__ * 100 + __GNUC_PATCHLEVEL__)
#if GCC_VERSION >= 40400
#define NOT_OPTIMIZED __attribute__((optimize("O0")))
#endif
#endif
#ifndef NOT_OPTIMIZED
#define NOT_OPTIMIZED
#endif
/***************Instance and Position constructors**********/
void init_block_value(block *b, uint8_t in) { memset(b->v, in, sizeof(b->v)); }
//inline void init_block_value(block *b, uint8_t in) { memset(b->v, in, sizeof(b->v)); }
void copy_block(block *dst, const block *src) {
//inline void copy_block(block *dst, const block *src) {
memcpy(dst->v, src->v, sizeof(uint64_t) * ARGON2_WORDS_IN_BLOCK);
}
void xor_block(block *dst, const block *src) {
//inline void xor_block(block *dst, const block *src) {
int i;
for (i = 0; i < ARGON2_WORDS_IN_BLOCK; ++i) {
dst->v[i] ^= src->v[i];
}
}
static void load_block(block *dst, const void *input) {
//static inline void load_block(block *dst, const void *input) {
unsigned i;
for (i = 0; i < ARGON2_WORDS_IN_BLOCK; ++i) {
dst->v[i] = load64((const uint8_t *)input + i * sizeof(dst->v[i]));
}
}
static void store_block(void *output, const block *src) {
//static inline void store_block(void *output, const block *src) {
unsigned i;
for (i = 0; i < ARGON2_WORDS_IN_BLOCK; ++i) {
store64((uint8_t *)output + i * sizeof(src->v[i]), src->v[i]);
}
}
/***************Memory allocators*****************/
int allocate_memory(block **memory, uint32_t m_cost) {
if (memory != NULL) {
size_t memory_size = sizeof(block) * m_cost;
if (m_cost != 0 &&
memory_size / m_cost !=
sizeof(block)) { /*1. Check for multiplication overflow*/
return ARGON2_MEMORY_ALLOCATION_ERROR;
}
*memory = (block *)malloc(memory_size); /*2. Try to allocate*/
if (!*memory) {
return ARGON2_MEMORY_ALLOCATION_ERROR;
}
return ARGON2_OK;
} else {
return ARGON2_MEMORY_ALLOCATION_ERROR;
}
}
void secure_wipe_memory(void *v, size_t n) { memset(v, 0, n); }
//inline void secure_wipe_memory(void *v, size_t n) { memset(v, 0, n); }
/*********Memory functions*/
void clear_memory(argon2_instance_t *instance, int clear) {
//inline void clear_memory(argon2_instance_t *instance, int clear) {
if (instance->memory != NULL && clear) {
secure_wipe_memory(instance->memory,
sizeof(block) * /*instance->memory_blocks*/16);
}
}
void free_memory(block *memory) { free(memory); }
//inline void free_memory(block *memory) { free(memory); }
void finalize(const argon2_context *context, argon2_instance_t *instance) {
if (context != NULL && instance != NULL) {
block blockhash;
copy_block(&blockhash, instance->memory + 15);
/* Hash the result */
{
uint8_t blockhash_bytes[ARGON2_BLOCK_SIZE];
store_block(blockhash_bytes, &blockhash);
blake2b_long(context->out, blockhash_bytes);
secure_wipe_memory(blockhash.v, ARGON2_BLOCK_SIZE);
secure_wipe_memory(blockhash_bytes, ARGON2_BLOCK_SIZE); /* clear blockhash_bytes */
}
#ifdef GENKAT
print_tag(context->out, context->outlen);
#endif
/* Clear memory */
// clear_memory(instance, 1);
free_memory(instance->memory);
}
}
uint32_t index_alpha(const argon2_instance_t *instance,
const argon2_position_t *position, uint32_t pseudo_rand,
int same_lane) {
/*
* Pass 0:
* This lane : all already finished segments plus already constructed
* blocks in this segment
* Other lanes : all already finished segments
* Pass 1+:
* This lane : (SYNC_POINTS - 1) last segments plus already constructed
* blocks in this segment
* Other lanes : (SYNC_POINTS - 1) last segments
*/
uint32_t reference_area_size;
uint64_t relative_position;
uint32_t start_position, absolute_position;
if (0 == position->pass) {
/* First pass */
if (0 == position->slice) {
/* First slice */
reference_area_size =
position->index - 1; /* all but the previous */
} else {
if (same_lane) {
/* The same lane => add current segment */
reference_area_size =
position->slice * 4 +
position->index - 1;
} else {
reference_area_size =
position->slice * 4 +
((position->index == 0) ? (-1) : 0);
}
}
} else {
/* Second pass */
if (same_lane) {reference_area_size = 11 + position->index;}
else {reference_area_size = 12 - (position->index == 0);}
}
/* 1.2.4. Mapping pseudo_rand to 0..<reference_area_size-1> and produce
* relative position */
relative_position = pseudo_rand;
relative_position = relative_position * relative_position >> 32;
relative_position = reference_area_size - 1 -
(reference_area_size * relative_position >> 32);
/* 1.2.5 Computing starting position */
start_position = 0;
if (0 != position->pass) {
start_position = (position->slice == ARGON2_SYNC_POINTS - 1)
? 0 : (position->slice + 1) * 4;
}
/* 1.2.6. Computing absolute position */
absolute_position = (start_position + relative_position) % 16;
return absolute_position;
}
void fill_memory_blocks(argon2_instance_t *instance) {
uint32_t r, s;
for (r = 0; r < 2; ++r) {
for (s = 0; s < ARGON2_SYNC_POINTS; ++s) {
argon2_position_t position;
position.pass = r;
position.lane = 0;
position.slice = (uint8_t)s;
position.index = 0;
fill_segment(instance, position);
}
#ifdef GENKAT
internal_kat(instance, r); /* Print all memory blocks */
#endif
}
}
void fill_first_blocks(uint8_t *blockhash, const argon2_instance_t *instance) {
/* Make the first and second block in each lane as G(H0||i||0) or
G(H0||i||1) */
uint8_t blockhash_bytes[ARGON2_BLOCK_SIZE];
store32(blockhash + ARGON2_PREHASH_DIGEST_LENGTH, 0);
store32(blockhash + ARGON2_PREHASH_DIGEST_LENGTH + 4, 0);
blake2b_too(blockhash_bytes, blockhash);
load_block(&instance->memory[0], blockhash_bytes);
store32(blockhash + ARGON2_PREHASH_DIGEST_LENGTH, 1);
blake2b_too(blockhash_bytes, blockhash);
load_block(&instance->memory[1], blockhash_bytes);
secure_wipe_memory(blockhash_bytes, ARGON2_BLOCK_SIZE);
}
static const blake2b_state base_hash = {
.h = {
UINT64_C(7640891576939301192), UINT64_C(13503953896175478587),
UINT64_C(4354685564936845355), UINT64_C(11912009170470909681),
UINT64_C(5840696475078001361), UINT64_C(11170449401992604703),
UINT64_C(2270897969802886507), UINT64_C(6620516959819538809)
},
.t = {UINT64_C(0),UINT64_C(0)},
.f = {UINT64_C(0),UINT64_C(0)},
.buf = {
1, 0, 0, 0, 32, 0, 0, 0, 16, 0, 0, 0, 2, 0, 0, 0, 16, 0, 0, 0, 1, 0,
0, 0, 32, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
.buflen = 28,
.outlen = 64,
.last_node = 0
};
#define PWDLEN 32
#define SALTLEN 32
#define SECRETLEN 0
#define ADLEN 0
void initial_hash(uint8_t *blockhash, argon2_context *context,
argon2_type type) {
uint8_t value[sizeof(uint32_t)];
/* Is it generating cache invalidation between cores ? */
blake2b_state BlakeHash = base_hash;
BlakeHash.buf[20] = (uint8_t) type;
my_blake2b_update(&BlakeHash, (const uint8_t *)context->pwd,
PWDLEN);
secure_wipe_memory(context->pwd, PWDLEN);
context->pwdlen = 0;
store32(&value, SALTLEN);
my_blake2b_update(&BlakeHash, (const uint8_t *)&value, sizeof(value));
my_blake2b_update(&BlakeHash, (const uint8_t *)context->salt,
SALTLEN);
store32(&value, SECRETLEN);
my_blake2b_update(&BlakeHash, (const uint8_t *)&value, sizeof(value));
store32(&value, ADLEN);
my_blake2b_update(&BlakeHash, (const uint8_t *)&value, sizeof(value));
blake2b_final(&BlakeHash, blockhash, ARGON2_PREHASH_DIGEST_LENGTH);
}
int initialize(argon2_instance_t *instance, argon2_context *context) {
/* 1. Memory allocation */
allocate_memory(&(instance->memory), 16);
/* 2. Initial hashing */
/* H_0 + 8 extra bytes to produce the first blocks */
/* Hashing all inputs */
uint8_t blockhash[ARGON2_PREHASH_SEED_LENGTH];
initial_hash(blockhash, context, instance->type);
/* Zeroing 8 extra bytes */
secure_wipe_memory(blockhash + ARGON2_PREHASH_DIGEST_LENGTH,
ARGON2_PREHASH_SEED_LENGTH -
ARGON2_PREHASH_DIGEST_LENGTH);
#ifdef GENKAT
initial_kat(blockhash, context, instance->type);
#endif
/* 3. Creating first blocks, we always have at least two blocks in a slice
*/
fill_first_blocks(blockhash, instance);
/* Clearing the hash */
secure_wipe_memory(blockhash, ARGON2_PREHASH_SEED_LENGTH);
return ARGON2_OK;
}
int argon2_core(argon2_context *context, argon2_type type) {
argon2_instance_t instance;
instance.memory = NULL;
instance.type = type;
/* 3. Initialization: Hashing inputs, allocating memory, filling first
* blocks
*/
int result = initialize(&instance, context);
if (ARGON2_OK != result) return result;
/* 4. Filling memory */
fill_memory_blocks(&instance);
/* 5. Finalization */
finalize(context, &instance);
return ARGON2_OK;
}

216
algo/argon2/ar2/cores.h Normal file
View File

@@ -0,0 +1,216 @@
/*
* Argon2 source code package
*
* Written by Daniel Dinu and Dmitry Khovratovich, 2015
*
* This work is licensed under a Creative Commons CC0 1.0 License/Waiver.
*
* You should have received a copy of the CC0 Public Domain Dedication along
* with
* this software. If not, see
* <http://creativecommons.org/publicdomain/zero/1.0/>.
*/
#ifndef ARGON2_CORES_H
#define ARGON2_CORES_H
#if defined(_MSC_VER)
#include <Windows.h>
#include <process.h>
#define ALIGN(n) __declspec(align(n))
#elif defined(__GNUC__) || defined(__clang)
#define ALIGN(x) __attribute__((__aligned__(x)))
#else
#define ALIGN(x)
#endif
/*************************Argon2 internal
* constants**************************************************/
enum argon2_core_constants {
/* Version of the algorithm */
ARGON2_VERSION_NUMBER = 0x10,
/* Memory block size in bytes */
ARGON2_BLOCK_SIZE = 1024,
ARGON2_WORDS_IN_BLOCK = ARGON2_BLOCK_SIZE / 8,
ARGON2_QWORDS_IN_BLOCK = 64,
/* Number of pseudo-random values generated by one call to Blake in Argon2i
to
generate reference block positions */
ARGON2_ADDRESSES_IN_BLOCK = 128,
/* Pre-hashing digest length and its extension*/
ARGON2_PREHASH_DIGEST_LENGTH = 64,
ARGON2_PREHASH_SEED_LENGTH = 72
};
/* Argon2 primitive type */
typedef enum Argon2_type { Argon2_d = 0, Argon2_i = 1 } argon2_type;
/*************************Argon2 internal data
* types**************************************************/
/*
* Structure for the (1KB) memory block implemented as 128 64-bit words.
* Memory blocks can be copied, XORed. Internal words can be accessed by [] (no
* bounds checking).
*/
typedef struct _block { uint64_t v[ARGON2_WORDS_IN_BLOCK]; } ALIGN(16) block;
/*****************Functions that work with the block******************/
/* Initialize each byte of the block with @in */
void init_block_value(block *b, uint8_t in);
/* Copy block @src to block @dst */
void copy_block(block *dst, const block *src);
/* XOR @src onto @dst bytewise */
void xor_block(block *dst, const block *src);
/*
* Argon2 instance: memory pointer, number of passes, amount of memory, type,
* and derived values.
* Used to evaluate the number and location of blocks to construct in each
* thread
*/
typedef struct Argon2_instance_t {
block *memory; /* Memory pointer */
argon2_type type;
int print_internals; /* whether to print the memory blocks */
} argon2_instance_t;
/*
* Argon2 position: where we construct the block right now. Used to distribute
* work between threads.
*/
typedef struct Argon2_position_t {
uint32_t pass;
uint32_t lane;
uint8_t slice;
uint32_t index;
} argon2_position_t;
/*************************Argon2 core
* functions**************************************************/
/* Allocates memory to the given pointer
* @param memory pointer to the pointer to the memory
* @param m_cost number of blocks to allocate in the memory
* @return ARGON2_OK if @memory is a valid pointer and memory is allocated
*/
int allocate_memory(block **memory, uint32_t m_cost);
/* Function that securely cleans the memory
* @param mem Pointer to the memory
* @param s Memory size in bytes
*/
void secure_wipe_memory(void *v, size_t n);
/* Clears memory
* @param instance pointer to the current instance
* @param clear_memory indicates if we clear the memory with zeros.
*/
void clear_memory(argon2_instance_t *instance, int clear);
/* Deallocates memory
* @param memory pointer to the blocks
*/
void free_memory(block *memory);
/*
* Computes absolute position of reference block in the lane following a skewed
* distribution and using a pseudo-random value as input
* @param instance Pointer to the current instance
* @param position Pointer to the current position
* @param pseudo_rand 32-bit pseudo-random value used to determine the position
* @param same_lane Indicates if the block will be taken from the current lane.
* If so we can reference the current segment
* @pre All pointers must be valid
*/
uint32_t index_alpha(const argon2_instance_t *instance,
const argon2_position_t *position, uint32_t pseudo_rand,
int same_lane);
/*
* Function that validates all inputs against predefined restrictions and return
* an error code
* @param context Pointer to current Argon2 context
* @return ARGON2_OK if everything is all right, otherwise one of error codes
* (all defined in <argon2.h>
*/
int validate_inputs(const argon2_context *context);
/*
* Hashes all the inputs into @a blockhash[PREHASH_DIGEST_LENGTH], clears
* password and secret if needed
* @param context Pointer to the Argon2 internal structure containing memory
* pointer, and parameters for time and space requirements.
* @param blockhash Buffer for pre-hashing digest
* @param type Argon2 type
* @pre @a blockhash must have at least @a PREHASH_DIGEST_LENGTH bytes
* allocated
*/
void initial_hash(uint8_t *blockhash, argon2_context *context,
argon2_type type);
/*
* Function creates first 2 blocks per lane
* @param instance Pointer to the current instance
* @param blockhash Pointer to the pre-hashing digest
* @pre blockhash must point to @a PREHASH_SEED_LENGTH allocated values
*/
void fill_firsts_blocks(uint8_t *blockhash, const argon2_instance_t *instance);
/*
* Function allocates memory, hashes the inputs with Blake, and creates first
* two blocks. Returns the pointer to the main memory with 2 blocks per lane
* initialized
* @param context Pointer to the Argon2 internal structure containing memory
* pointer, and parameters for time and space requirements.
* @param instance Current Argon2 instance
* @return Zero if successful, -1 if memory failed to allocate. @context->state
* will be modified if successful.
*/
int initialize(argon2_instance_t *instance, argon2_context *context);
/*
* XORing the last block of each lane, hashing it, making the tag. Deallocates
* the memory.
* @param context Pointer to current Argon2 context (use only the out parameters
* from it)
* @param instance Pointer to current instance of Argon2
* @pre instance->state must point to necessary amount of memory
* @pre context->out must point to outlen bytes of memory
* @pre if context->free_cbk is not NULL, it should point to a function that
* deallocates memory
*/
void finalize(const argon2_context *context, argon2_instance_t *instance);
/*
* Function that fills the segment using previous segments also from other
* threads
* @param instance Pointer to the current instance
* @param position Current position
* @pre all block pointers must be valid
*/
void fill_segment(const argon2_instance_t *instance,
argon2_position_t position);
/*
* Function that fills the entire memory t_cost times based on the first two
* blocks in each lane
* @param instance Pointer to the current instance
*/
void fill_memory_blocks(argon2_instance_t *instance);
/*
* Function that performs memory-hard hashing with certain degree of parallelism
* @param context Pointer to the Argon2 internal structure
* @return Error code if smth is wrong, ARGON2_OK otherwise
*/
int argon2_core(argon2_context *context, argon2_type type);
#endif

186
algo/argon2/ar2/genkat.c Normal file
View File

@@ -0,0 +1,186 @@
#include <inttypes.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "argon2.h"
#include "cores.h"
void initial_kat(const uint8_t *blockhash, const argon2_context *context,
argon2_type type)
{
unsigned i;
if (blockhash != NULL && context != NULL) {
printf("=======================================");
switch (type) {
case Argon2_d:
printf("Argon2d\n");
break;
case Argon2_i:
printf("Argon2i\n");
break;
default:
break;
}
printf("Memory: %u KiB, Iterations: %u, Parallelism: %u lanes, Tag "
"length: %u bytes\n",
context->m_cost, context->t_cost, context->lanes,
context->outlen);
printf("Password[%u]: ", context->pwdlen);
if (context->flags & ARGON2_FLAG_CLEAR_PASSWORD) {
printf("CLEARED\n");
} else {
for (i = 0; i < context->pwdlen; ++i) {
printf("%2.2x ", ((unsigned char *)context->pwd)[i]);
}
printf("\n");
}
printf("Salt[%u]: ", context->saltlen);
for (i = 0; i < context->saltlen; ++i) {
printf("%2.2x ", ((unsigned char *)context->salt)[i]);
}
printf("\n");
printf("Secret[%u]: ", context->secretlen);
if (context->flags & ARGON2_FLAG_CLEAR_SECRET) {
printf("CLEARED\n");
} else {
for (i = 0; i < context->secretlen; ++i) {
printf("%2.2x ", ((unsigned char *)context->secret)[i]);
}
printf("\n");
}
printf("Associated data[%u]: ", context->adlen);
for (i = 0; i < context->adlen; ++i) {
printf("%2.2x ", ((unsigned char *)context->ad)[i]);
}
printf("\n");
printf("Pre-hashing digest: ");
for (i = 0; i < ARGON2_PREHASH_DIGEST_LENGTH; ++i) {
printf("%2.2x ", ((unsigned char *)blockhash)[i]);
}
printf("\n");
}
}
void print_tag(const void *out, uint32_t outlen)
{
unsigned i;
if (out != NULL) {
printf("Tag: ");
for (i = 0; i < outlen; ++i) {
printf("%2.2x ", ((uint8_t *)out)[i]);
}
printf("\n");
}
}
void internal_kat(const argon2_instance_t *instance, uint32_t pass)
{
if (instance != NULL) {
uint32_t i, j;
printf("\n After pass %u:\n", pass);
for (i = 0; i < instance->memory_blocks; ++i) {
uint32_t how_many_words =
(instance->memory_blocks > ARGON2_WORDS_IN_BLOCK)
? 1
: ARGON2_WORDS_IN_BLOCK;
for (j = 0; j < how_many_words; ++j)
printf("Block %.4u [%3u]: %016" PRIx64 "\n", i, j,
instance->memory[i].v[j]);
}
}
}
static void fatal(const char *error) {
fprintf(stderr, "Error: %s\n", error);
exit(1);
}
static void generate_testvectors(const char *type)
{
#define TEST_OUTLEN 32
#define TEST_PWDLEN 32
#define TEST_SALTLEN 16
#define TEST_SECRETLEN 8
#define TEST_ADLEN 12
argon2_context context;
unsigned char out[TEST_OUTLEN];
unsigned char pwd[TEST_PWDLEN];
unsigned char salt[TEST_SALTLEN];
unsigned char secret[TEST_SECRETLEN];
unsigned char ad[TEST_ADLEN];
const allocate_fptr myown_allocator = NULL;
const deallocate_fptr myown_deallocator = NULL;
unsigned t_cost = 3;
unsigned m_cost = 16;
unsigned lanes = 4;
memset(pwd, 1, TEST_OUTLEN);
memset(salt, 2, TEST_SALTLEN);
memset(secret, 3, TEST_SECRETLEN);
memset(ad, 4, TEST_ADLEN);
context.out = out;
context.outlen = TEST_OUTLEN;
context.pwd = pwd;
context.pwdlen = TEST_PWDLEN;
context.salt = salt;
context.saltlen = TEST_SALTLEN;
context.secret = secret;
context.secretlen = TEST_SECRETLEN;
context.ad = ad;
context.adlen = TEST_ADLEN;
context.t_cost = t_cost;
context.m_cost = m_cost;
context.lanes = lanes;
context.threads = lanes;
context.allocate_cbk = myown_allocator;
context.free_cbk = myown_deallocator;
context.flags = 0;
#undef TEST_OUTLEN
#undef TEST_PWDLEN
#undef TEST_SALTLEN
#undef TEST_SECRETLEN
#undef TEST_ADLEN
if (!strcmp(type, "d")) {
argon2d(&context);
} else if (!strcmp(type, "i")) {
argon2i(&context);
} else
fatal("wrong Argon2 type");
}
int main(int argc, char *argv[])
{
const char *type = (argc > 1) ? argv[1] : "i";
generate_testvectors(type);
return ARGON2_OK;
}

45
algo/argon2/ar2/genkat.h Normal file
View File

@@ -0,0 +1,45 @@
/*
* Argon2 source code package
*
* Written by Daniel Dinu and Dmitry Khovratovich, 2015
*
* This work is licensed under a Creative Commons CC0 1.0 License/Waiver.
*
* You should have received a copy of the CC0 Public Domain Dedication along
* with
* this software. If not, see
* <http://creativecommons.org/publicdomain/zero/1.0/>.
*/
#ifndef ARGON2_KAT_H
#define ARGON2_KAT_H
/*
* Initial KAT function that prints the inputs to the file
* @param blockhash Array that contains pre-hashing digest
* @param context Holds inputs
* @param type Argon2 type
* @pre blockhash must point to INPUT_INITIAL_HASH_LENGTH bytes
* @pre context member pointers must point to allocated memory of size according
* to the length values
*/
void initial_kat(const uint8_t *blockhash, const argon2_context *context,
argon2_type type);
/*
* Function that prints the output tag
* @param out output array pointer
* @param outlen digest length
* @pre out must point to @a outlen bytes
**/
void print_tag(const void *out, uint32_t outlen);
/*
* Function that prints the internal state at given moment
* @param instance pointer to the current instance
* @param pass current pass number
* @pre instance must have necessary memory allocated
**/
void internal_kat(const argon2_instance_t *instance, uint32_t pass);
#endif

185
algo/argon2/ar2/opt.c Normal file
View File

@@ -0,0 +1,185 @@
/*
* Argon2 source code package
*
* Written by Daniel Dinu and Dmitry Khovratovich, 2015
*
* This work is licensed under a Creative Commons CC0 1.0 License/Waiver.
*
* You should have received a copy of the CC0 Public Domain Dedication along
* with
* this software. If not, see
* <http://creativecommons.org/publicdomain/zero/1.0/>.
*/
#include <stdint.h>
#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include <inttypes.h>
#include <immintrin.h>
#include "argon2.h"
#include "cores.h"
#include "opt.h"
#include "blake2/blake2.h"
#include "blake2/blamka-round-opt.h"
void fill_block(__m128i *state, __m128i const *ref_block, __m128i *next_block)
{
__m128i ALIGN(16) block_XY[ARGON2_QWORDS_IN_BLOCK];
uint32_t i;
for (i = 0; i < ARGON2_QWORDS_IN_BLOCK; i++) {
block_XY[i] = state[i] = _mm_xor_si128(
state[i], _mm_load_si128(&ref_block[i]));
}
BLAKE2_ROUND(state[0], state[1], state[2], state[3], state[4], state[5], state[6], state[7]);
BLAKE2_ROUND(state[8], state[9], state[10], state[11], state[12], state[13], state[14], state[15]);
BLAKE2_ROUND(state[16], state[17], state[18], state[19], state[20], state[21], state[22], state[23]);
BLAKE2_ROUND(state[24], state[25], state[26], state[27], state[28], state[29], state[30], state[31]);
BLAKE2_ROUND(state[32], state[33], state[34], state[35], state[36], state[37], state[38], state[39]);
BLAKE2_ROUND(state[40], state[41], state[42], state[43], state[44], state[45], state[46], state[47]);
BLAKE2_ROUND(state[48], state[49], state[50], state[51], state[52], state[53], state[54], state[55]);
BLAKE2_ROUND(state[56], state[57], state[58], state[59], state[60], state[61], state[62], state[63]);
/*for (i = 0; i < 8; ++i) {
BLAKE2_ROUND(state[8 * i + 0], state[8 * i + 1], state[8 * i + 2],
state[8 * i + 3], state[8 * i + 4], state[8 * i + 5],
state[8 * i + 6], state[8 * i + 7]);
}*/
BLAKE2_ROUND(state[0], state[8], state[16], state[24], state[32], state[40], state[48], state[56]);
BLAKE2_ROUND(state[1], state[9], state[17], state[25], state[33], state[41], state[49], state[57]);
BLAKE2_ROUND(state[2], state[10], state[18], state[26], state[34], state[42], state[50], state[58]);
BLAKE2_ROUND(state[3], state[11], state[19], state[27], state[35], state[43], state[51], state[59]);
BLAKE2_ROUND(state[4], state[12], state[20], state[28], state[36], state[44], state[52], state[60]);
BLAKE2_ROUND(state[5], state[13], state[21], state[29], state[37], state[45], state[53], state[61]);
BLAKE2_ROUND(state[6], state[14], state[22], state[30], state[38], state[46], state[54], state[62]);
BLAKE2_ROUND(state[7], state[15], state[23], state[31], state[39], state[47], state[55], state[63]);
/*for (i = 0; i < 8; ++i) {
BLAKE2_ROUND(state[8 * 0 + i], state[8 * 1 + i], state[8 * 2 + i],
state[8 * 3 + i], state[8 * 4 + i], state[8 * 5 + i],
state[8 * 6 + i], state[8 * 7 + i]);
}*/
for (i = 0; i < ARGON2_QWORDS_IN_BLOCK; i++) {
state[i] = _mm_xor_si128(state[i], block_XY[i]);
_mm_storeu_si128(&next_block[i], state[i]);
}
}
static const uint64_t bad_rands[32] = {
UINT64_C(17023632018251376180), UINT64_C(4911461131397773491),
UINT64_C(15927076453364631751), UINT64_C(7860239898779391109),
UINT64_C(11820267568857244377), UINT64_C(12188179869468676617),
UINT64_C(3732913385414474778), UINT64_C(7651458777762572084),
UINT64_C(3062274162574341415), UINT64_C(17922653540258786897),
UINT64_C(17393848266100524980), UINT64_C(8539695715554563839),
UINT64_C(13824538050656654359), UINT64_C(12078939433126460936),
UINT64_C(15331979418564540430), UINT64_C(12058346794217174273),
UINT64_C(13593922096015221049), UINT64_C(18356682276374416500),
UINT64_C(4968040514092703824), UINT64_C(11202790346130235567),
UINT64_C(2276229735041314644), UINT64_C(220837743321691382),
UINT64_C(4861211596230784273), UINT64_C(6330592584132590331),
UINT64_C(3515580430960296763), UINT64_C(9869356316971855173),
UINT64_C(485533243489193056), UINT64_C(14596447761048148032),
UINT64_C(16531790085730132900), UINT64_C(17328824500878824371),
UINT64_C(8548260058287621283), UINT64_C(8641748798041936364)
};
void generate_addresses(const argon2_instance_t *instance,
const argon2_position_t *position,
uint64_t *pseudo_rands)
{
uint8_t offset = position->pass * 16 + position->slice * 4;
pseudo_rands[0] = bad_rands[offset++];
pseudo_rands[1] = bad_rands[offset++];
pseudo_rands[2] = bad_rands[offset++];
pseudo_rands[3] = bad_rands[offset++];
/*if ((position->pass == 1 && position->slice == 3))
print64("pseudo_rands", pseudo_rands, 4);*/
}
#define SEGMENT_LENGTH 4
#define LANE_LENGTH 16
#define POS_LANE 0
void fill_segment(const argon2_instance_t *instance,
argon2_position_t position)
{
block *ref_block = NULL, *curr_block = NULL;
uint64_t pseudo_rand, ref_index;
uint32_t prev_offset, curr_offset;
uint8_t i;
__m128i state[64];
int data_independent_addressing = (instance->type == Argon2_i);
/* Pseudo-random values that determine the reference block position */
uint64_t *pseudo_rands = NULL;
pseudo_rands = (uint64_t *)malloc(/*sizeof(uint64_t) * 4*/32);
if (data_independent_addressing) {
generate_addresses(instance, &position, pseudo_rands);
}
i = 0;
if ((0 == position.pass) && (0 == position.slice)) {
i = 2; /* we have already generated the first two blocks */
}
/*printf("Position.lane = %d\nPosition.slice = %d\nStarting index : %d\n", position.lane, position.slice, starting_index);*/
/* Offset of the current block */
curr_offset = position.slice * 4 + i;
if (0 == curr_offset % 16) {
/* Last block in this lane */
prev_offset = curr_offset + /*instance->lane_length - 1*/15;
} else {
/* Previous block */
prev_offset = curr_offset - 1;
}
memcpy(state, ((instance->memory + prev_offset)->v), ARGON2_BLOCK_SIZE);
for (; i < SEGMENT_LENGTH;
++i, ++curr_offset, ++prev_offset) {
/*1.1 Rotating prev_offset if needed */
if (curr_offset % LANE_LENGTH == 1) {
prev_offset = curr_offset - 1;
}
/* 1.2 Computing the index of the reference block */
/* 1.2.1 Taking pseudo-random value from the previous block */
if (data_independent_addressing) {
pseudo_rand = pseudo_rands[i];
} else {
pseudo_rand = instance->memory[prev_offset].v[0];
}
/* 1.2.2 Computing the lane of the reference block */
/* 1.2.3 Computing the number of possible reference block within the
* lane.
*/
position.index = i;
ref_index = index_alpha(instance, &position, pseudo_rand & 0xFFFFFFFF,1);
/* 2 Creating a new block */
ref_block = instance->memory + ref_index;
curr_block = instance->memory + curr_offset;
fill_block(state, (__m128i const *)ref_block->v, (__m128i *)curr_block->v);
}
free(pseudo_rands);
}

49
algo/argon2/ar2/opt.h Normal file
View File

@@ -0,0 +1,49 @@
/*
* Argon2 source code package
*
* Written by Daniel Dinu and Dmitry Khovratovich, 2015
*
* This work is licensed under a Creative Commons CC0 1.0 License/Waiver.
*
* You should have received a copy of the CC0 Public Domain Dedication along
* with
* this software. If not, see
* <http://creativecommons.org/publicdomain/zero/1.0/>.
*/
#ifndef ARGON2_OPT_H
#define ARGON2_OPT_H
/*
* Function fills a new memory block. Differs from the
* @param state Pointer to the just produced block. Content will be updated(!)
* @param ref_block Pointer to the reference block
* @param next_block Pointer to the block to be constructed
* @pre all block pointers must be valid
*/
void fill_block(__m128i *state, __m128i const *ref_block, __m128i *next_block);
/*
* Generate pseudo-random values to reference blocks in the segment and puts
* them into the array
* @param instance Pointer to the current instance
* @param position Pointer to the current position
* @param pseudo_rands Pointer to the array of 64-bit values
* @pre pseudo_rands must point to @a instance->segment_length allocated values
*/
void generate_addresses(const argon2_instance_t *instance,
const argon2_position_t *position,
uint64_t *pseudo_rands);
/*
* Function that fills the segment using previous segments also from other
* threads.
* Identical to the reference code except that it calls optimized FillBlock()
* @param instance Pointer to the current instance
* @param position Current position
* @pre all block pointers must be valid
*/
void fill_segment(const argon2_instance_t *instance,
argon2_position_t position);
#endif /* ARGON2_OPT_H */

174
algo/argon2/ar2/ref.c Normal file
View File

@@ -0,0 +1,174 @@
/*
* Argon2 source code package
*
* Written by Daniel Dinu and Dmitry Khovratovich, 2015
*
* This work is licensed under a Creative Commons CC0 1.0 License/Waiver.
*
* You should have received a copy of the CC0 Public Domain Dedication along
* with
* this software. If not, see
* <http://creativecommons.org/publicdomain/zero/1.0/>.
*/
#include <stdint.h>
#include <string.h>
#include <stdlib.h>
#include "argon2.h"
#include "cores.h"
#include "ref.h"
#include "blake2/blamka-round-ref.h"
#include "blake2/blake2-impl.h"
#include "blake2/blake2.h"
void fill_block(const block *prev_block, const block *ref_block,
block *next_block) {
block blockR, block_tmp;
unsigned i;
copy_block(&blockR, ref_block);
xor_block(&blockR, prev_block);
copy_block(&block_tmp, &blockR);
/* Apply Blake2 on columns of 64-bit words: (0,1,...,15) , then
(16,17,..31)... finally (112,113,...127) */
for (i = 0; i < 8; ++i) {
BLAKE2_ROUND_NOMSG(
blockR.v[16 * i], blockR.v[16 * i + 1], blockR.v[16 * i + 2],
blockR.v[16 * i + 3], blockR.v[16 * i + 4], blockR.v[16 * i + 5],
blockR.v[16 * i + 6], blockR.v[16 * i + 7], blockR.v[16 * i + 8],
blockR.v[16 * i + 9], blockR.v[16 * i + 10], blockR.v[16 * i + 11],
blockR.v[16 * i + 12], blockR.v[16 * i + 13], blockR.v[16 * i + 14],
blockR.v[16 * i + 15]);
}
/* Apply Blake2 on rows of 64-bit words: (0,1,16,17,...112,113), then
(2,3,18,19,...,114,115).. finally (14,15,30,31,...,126,127) */
for (i = 0; i < 8; i++) {
BLAKE2_ROUND_NOMSG(
blockR.v[2 * i], blockR.v[2 * i + 1], blockR.v[2 * i + 16],
blockR.v[2 * i + 17], blockR.v[2 * i + 32], blockR.v[2 * i + 33],
blockR.v[2 * i + 48], blockR.v[2 * i + 49], blockR.v[2 * i + 64],
blockR.v[2 * i + 65], blockR.v[2 * i + 80], blockR.v[2 * i + 81],
blockR.v[2 * i + 96], blockR.v[2 * i + 97], blockR.v[2 * i + 112],
blockR.v[2 * i + 113]);
}
copy_block(next_block, &block_tmp);
xor_block(next_block, &blockR);
}
void generate_addresses(const argon2_instance_t *instance,
const argon2_position_t *position,
uint64_t *pseudo_rands) {
block zero_block, input_block, address_block;
uint32_t i;
init_block_value(&zero_block, 0);
init_block_value(&input_block, 0);
init_block_value(&address_block, 0);
if (instance != NULL && position != NULL) {
input_block.v[0] = position->pass;
input_block.v[1] = position->lane;
input_block.v[2] = position->slice;
input_block.v[3] = 16;
input_block.v[4] = 2;
input_block.v[5] = instance->type;
for (i = 0; i < 4; ++i) {
if (i % ARGON2_ADDRESSES_IN_BLOCK == 0) {
input_block.v[6]++;
fill_block(&zero_block, &input_block, &address_block);
fill_block(&zero_block, &address_block, &address_block);
}
pseudo_rands[i] = address_block.v[i % ARGON2_ADDRESSES_IN_BLOCK];
}
}
}
void fill_segment(const argon2_instance_t *instance,
argon2_position_t position) {
block *ref_block = NULL, *curr_block = NULL;
uint64_t pseudo_rand, ref_index, ref_lane;
uint32_t prev_offset, curr_offset;
uint32_t starting_index;
uint32_t i;
int data_independent_addressing = (instance->type == Argon2_i);
/* Pseudo-random values that determine the reference block position */
uint64_t *pseudo_rands = NULL;
if (instance == NULL) {
return;
}
pseudo_rands =
(uint64_t *)malloc(sizeof(uint64_t) * 4);
if (pseudo_rands == NULL) {
return;
}
if (data_independent_addressing) {
generate_addresses(instance, &position, pseudo_rands);
}
starting_index = 0;
if ((0 == position.pass) && (0 == position.slice)) {
starting_index = 2; /* we have already generated the first two blocks */
}
/* Offset of the current block */
curr_offset = position.lane * 16 +
position.slice * 4 + starting_index;
if (0 == curr_offset % 16) {
/* Last block in this lane */
prev_offset = curr_offset + 16 - 1;
} else {
/* Previous block */
prev_offset = curr_offset - 1;
}
for (i = starting_index; i < 4; ++i, ++curr_offset, ++prev_offset) {
/*1.1 Rotating prev_offset if needed */
if (curr_offset % 16 == 1) {
prev_offset = curr_offset - 1;
}
/* 1.2 Computing the index of the reference block */
/* 1.2.1 Taking pseudo-random value from the previous block */
if (data_independent_addressing) {
pseudo_rand = pseudo_rands[i];
} else {
pseudo_rand = instance->memory[prev_offset].v[0];
}
/* 1.2.2 Computing the lane of the reference block */
ref_lane = ((pseudo_rand >> 32)) % 1;
if ((position.pass == 0) && (position.slice == 0)) {
/* Can not reference other lanes yet */
ref_lane = position.lane;
}
/* 1.2.3 Computing the number of possible reference block within the
* lane.
*/
position.index = i;
ref_index = index_alpha(instance, &position, pseudo_rand & 0xFFFFFFFF,
ref_lane == position.lane);
/* 2 Creating a new block */
ref_block =
instance->memory + 16 * ref_lane + ref_index;
curr_block = instance->memory + curr_offset;
fill_block(instance->memory + prev_offset, ref_block, curr_block);
}
free(pseudo_rands);
}

49
algo/argon2/ar2/ref.h Normal file
View File

@@ -0,0 +1,49 @@
/*
* Argon2 source code package
*
* Written by Daniel Dinu and Dmitry Khovratovich, 2015
*
* This work is licensed under a Creative Commons CC0 1.0 License/Waiver.
*
* You should have received a copy of the CC0 Public Domain Dedication along
* with
* this software. If not, see
* <http://creativecommons.org/publicdomain/zero/1.0/>.
*/
#ifndef ARGON2_REF_H
#define ARGON2_REF_H
/*
* Function fills a new memory block
* @param prev_block Pointer to the previous block
* @param ref_block Pointer to the reference block
* @param next_block Pointer to the block to be constructed
* @pre all block pointers must be valid
*/
void fill_block(const block *prev_block, const block *ref_block,
block *next_block);
/*
* Generate pseudo-random values to reference blocks in the segment and puts
* them into the array
* @param instance Pointer to the current instance
* @param position Pointer to the current position
* @param pseudo_rands Pointer to the array of 64-bit values
* @pre pseudo_rands must point to @a instance->segment_length allocated values
*/
void generate_addresses(const argon2_instance_t *instance,
const argon2_position_t *position,
uint64_t *pseudo_rands);
/*
* Function that fills the segment using previous segments also from other
* threads
* @param instance Pointer to the current instance
* @param position Current position
* @pre all block pointers must be valid
*/
void fill_segment(const argon2_instance_t *instance,
argon2_position_t position);
#endif /* ARGON2_REF_H */

223
algo/argon2/ar2/run.c Normal file
View File

@@ -0,0 +1,223 @@
/*
* Argon2 source code package
*
* Written by Daniel Dinu and Dmitry Khovratovich, 2015
*
* This work is licensed under a Creative Commons CC0 1.0 License/Waiver.
*
* You should have received a copy of the CC0 Public Domain Dedication along
* with
* this software. If not, see
* <http://creativecommons.org/publicdomain/zero/1.0/>.
*/
#include <stdio.h>
#include <stdint.h>
#include <inttypes.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include "argon2.h"
#include "cores.h"
#define T_COST_DEF 3
#define LOG_M_COST_DEF 12 /* 2^12 = 4 MiB */
#define LANES_DEF 1
#define THREADS_DEF 1
#define OUT_LEN 32
#define SALT_LEN 16
#define UNUSED_PARAMETER(x) (void)(x)
static void usage(const char *cmd) {
printf("Usage: %s pwd salt [-y version] [-t iterations] [-m memory] [-p "
"parallelism]\n",
cmd);
printf("Parameters:\n");
printf("\tpwd\t\tThe password to hash\n");
printf("\tsalt\t\tThe salt to use, at most 16 characters\n");
printf("\t-d\t\tUse Argon2d instead of Argon2i (which is the default)\n");
printf("\t-t N\t\tSets the number of iterations to N (default = %d)\n",
T_COST_DEF);
printf("\t-m N\t\tSets the memory usage of 2^N KiB (default %d)\n",
LOG_M_COST_DEF);
printf("\t-p N\t\tSets parallelism to N threads (default %d)\n",
THREADS_DEF);
}
static void fatal(const char *error) {
fprintf(stderr, "Error: %s\n", error);
exit(1);
}
/*
Runs Argon2 with certain inputs and parameters, inputs not cleared. Prints the
Base64-encoded hash string
@out output array with at least 32 bytes allocated
@pwd NULL-terminated string, presumably from argv[]
@salt salt array with at least SALTLEN_DEF bytes allocated
@t_cost number of iterations
@m_cost amount of requested memory in KB
@lanes amount of requested parallelism
@threads actual parallelism
@type String, only "d" and "i" are accepted
*/
static void run(uint8_t *out, char *pwd, uint8_t *salt, uint32_t t_cost,
uint32_t m_cost, uint32_t lanes, uint32_t threads,
const char *type) {
clock_t start_time, stop_time;
unsigned pwd_length;
argon2_context context;
int i;
start_time = clock();
if (!pwd) {
fatal("password missing");
}
if (!salt) {
secure_wipe_memory(pwd, strlen(pwd));
fatal("salt missing");
}
pwd_length = strlen(pwd);
UNUSED_PARAMETER(threads);
context.out = out;
context.outlen = OUT_LEN;
context.pwd = (uint8_t *)pwd;
context.pwdlen = pwd_length;
context.salt = salt;
context.saltlen = SALT_LEN;
context.secret = NULL;
context.secretlen = 0;
context.ad = NULL;
context.adlen = 0;
context.t_cost = t_cost;
context.m_cost = m_cost;
context.lanes = lanes;
context.threads = lanes;
context.allocate_cbk = NULL;
context.free_cbk = NULL;
context.flags = ARGON2_FLAG_CLEAR_PASSWORD;
if (!strcmp(type, "d")) {
int result = argon2d(&context);
if (result != ARGON2_OK)
fatal(error_message(result));
} else if (!strcmp(type, "i")) {
int result = argon2i(&context);
if (result != ARGON2_OK)
fatal(error_message(result));
} else {
secure_wipe_memory(pwd, strlen(pwd));
fatal("wrong Argon2 type");
}
stop_time = clock();
/* add back when proper decoding */
/*
char encoded[300];
encode_string(encoded, sizeof encoded, &context);
printf("%s\n", encoded);
*/
printf("Hash:\t\t");
for (i = 0; i < context.outlen; ++i) {
printf("%02x", context.out[i]);
}
printf("\n");
printf("%2.3f seconds\n",
((double)stop_time - start_time) / (CLOCKS_PER_SEC));
}
int main(int argc, char *argv[]) {
unsigned char out[OUT_LEN];
uint32_t m_cost = 1 << LOG_M_COST_DEF;
uint32_t t_cost = T_COST_DEF;
uint32_t lanes = LANES_DEF;
uint32_t threads = THREADS_DEF;
char *pwd = NULL;
uint8_t salt[SALT_LEN];
const char *type = "i";
int i;
if (argc < 3) {
usage(argv[0]);
return ARGON2_MISSING_ARGS;
}
/* get password and salt from command line */
pwd = argv[1];
if (strlen(argv[2]) > SALT_LEN) {
fatal("salt too long");
}
memset(salt, 0x00, SALT_LEN); /* pad with null bytes */
memcpy(salt, argv[2], strlen(argv[2]));
/* parse options */
for (i = 3; i < argc; i++) {
const char *a = argv[i];
unsigned long input = 0;
if (!strcmp(a, "-m")) {
if (i < argc - 1) {
i++;
input = strtoul(argv[i], NULL, 10);
if (input == 0 || input == ULONG_MAX ||
input > ARGON2_MAX_MEMORY_BITS) {
fatal("bad numeric input for -m");
}
m_cost = ARGON2_MIN(UINT64_C(1) << input, UINT32_C(0xFFFFFFFF));
if (m_cost > ARGON2_MAX_MEMORY) {
fatal("m_cost overflow");
}
continue;
} else {
fatal("missing -m argument");
}
} else if (!strcmp(a, "-t")) {
if (i < argc - 1) {
i++;
input = strtoul(argv[i], NULL, 10);
if (input == 0 || input == ULONG_MAX ||
input > ARGON2_MAX_TIME) {
fatal("bad numeric input for -t");
}
t_cost = input;
continue;
} else {
fatal("missing -t argument");
}
} else if (!strcmp(a, "-p")) {
if (i < argc - 1) {
i++;
input = strtoul(argv[i], NULL, 10);
if (input == 0 || input == ULONG_MAX ||
input > ARGON2_MAX_THREADS || input > ARGON2_MAX_LANES) {
fatal("bad numeric input for -p");
}
threads = input;
lanes = threads;
continue;
} else {
fatal("missing -p argument");
}
} else if (!strcmp(a, "-d")) {
type = "d";
} else {
fatal("unknown argument");
}
}
printf("Type:\t\tArgon2%c\n", type[0]);
printf("Iterations:\t%" PRIu32 " \n", t_cost);
printf("Memory:\t\t%" PRIu32 " KiB\n", m_cost);
printf("Parallelism:\t%" PRIu32 " \n", lanes);
run(out, pwd, salt, t_cost, m_cost, lanes, threads, type);
return ARGON2_OK;
}

View File

@@ -0,0 +1,38 @@
#if defined(SCRYPT_SKEIN512)
#include "scrypt-jane-hash_skein512.h"
#else
#define SCRYPT_HASH "ERROR"
#define SCRYPT_HASH_BLOCK_SIZE 64
#define SCRYPT_HASH_DIGEST_SIZE 64
typedef struct scrypt_hash_state_t { size_t dummy; } scrypt_hash_state;
typedef uint8_t scrypt_hash_digest[SCRYPT_HASH_DIGEST_SIZE];
static void scrypt_hash_init(scrypt_hash_state *S) {}
static void scrypt_hash_update(scrypt_hash_state *S, const uint8_t *in, size_t inlen) {}
static void scrypt_hash_finish(scrypt_hash_state *S, uint8_t *hash) {}
static const uint8_t scrypt_test_hash_expected[SCRYPT_HASH_DIGEST_SIZE] = {0};
#error must define a hash function!
#endif
#include "scrypt-jane-pbkdf2.h"
#define SCRYPT_TEST_HASH_LEN 257 /* (2 * largest block size) + 1 */
static int
scrypt_test_hash(void) {
scrypt_hash_state st;
scrypt_hash_digest hash, final;
uint8_t msg[SCRYPT_TEST_HASH_LEN];
size_t i;
for (i = 0; i < SCRYPT_TEST_HASH_LEN; i++)
msg[i] = (uint8_t)i;
scrypt_hash_init(&st);
for (i = 0; i < SCRYPT_TEST_HASH_LEN + 1; i++) {
scrypt_hash(hash, msg, i);
scrypt_hash_update(&st, hash, sizeof(hash));
}
scrypt_hash_finish(&st, final);
return scrypt_verify(final, scrypt_test_hash_expected, SCRYPT_HASH_DIGEST_SIZE);
}

View File

@@ -0,0 +1,188 @@
#define SCRYPT_HASH "Skein-512"
#define SCRYPT_HASH_BLOCK_SIZE 64
#define SCRYPT_HASH_DIGEST_SIZE 64
typedef uint8_t scrypt_hash_digest[SCRYPT_HASH_DIGEST_SIZE];
typedef struct scrypt_hash_state_t {
uint64_t X[8], T[2];
uint32_t leftover;
uint8_t buffer[SCRYPT_HASH_BLOCK_SIZE];
} scrypt_hash_state;
#include <stdio.h>
static void
skein512_blocks(scrypt_hash_state *S, const uint8_t *in, size_t blocks, size_t add) {
uint64_t X[8], key[8], Xt[9+18], T[3+1];
size_t r;
while (blocks--) {
T[0] = S->T[0] + add;
T[1] = S->T[1];
T[2] = T[0] ^ T[1];
key[0] = U8TO64_LE(in + 0); Xt[0] = S->X[0]; X[0] = key[0] + Xt[0];
key[1] = U8TO64_LE(in + 8); Xt[1] = S->X[1]; X[1] = key[1] + Xt[1];
key[2] = U8TO64_LE(in + 16); Xt[2] = S->X[2]; X[2] = key[2] + Xt[2];
key[3] = U8TO64_LE(in + 24); Xt[3] = S->X[3]; X[3] = key[3] + Xt[3];
key[4] = U8TO64_LE(in + 32); Xt[4] = S->X[4]; X[4] = key[4] + Xt[4];
key[5] = U8TO64_LE(in + 40); Xt[5] = S->X[5]; X[5] = key[5] + Xt[5] + T[0];
key[6] = U8TO64_LE(in + 48); Xt[6] = S->X[6]; X[6] = key[6] + Xt[6] + T[1];
key[7] = U8TO64_LE(in + 56); Xt[7] = S->X[7]; X[7] = key[7] + Xt[7];
Xt[8] = 0x1BD11BDAA9FC1A22ull ^ Xt[0] ^ Xt[1] ^ Xt[2] ^ Xt[3] ^ Xt[4] ^ Xt[5] ^ Xt[6] ^ Xt[7];
in += SCRYPT_HASH_BLOCK_SIZE;
for (r = 0; r < 18; r++)
Xt[r + 9] = Xt[r + 0];
for (r = 0; r < 18; r += 2) {
X[0] += X[1]; X[1] = ROTL64(X[1], 46) ^ X[0];
X[2] += X[3]; X[3] = ROTL64(X[3], 36) ^ X[2];
X[4] += X[5]; X[5] = ROTL64(X[5], 19) ^ X[4];
X[6] += X[7]; X[7] = ROTL64(X[7], 37) ^ X[6];
X[2] += X[1]; X[1] = ROTL64(X[1], 33) ^ X[2];
X[0] += X[3]; X[3] = ROTL64(X[3], 42) ^ X[0];
X[6] += X[5]; X[5] = ROTL64(X[5], 14) ^ X[6];
X[4] += X[7]; X[7] = ROTL64(X[7], 27) ^ X[4];
X[4] += X[1]; X[1] = ROTL64(X[1], 17) ^ X[4];
X[6] += X[3]; X[3] = ROTL64(X[3], 49) ^ X[6];
X[0] += X[5]; X[5] = ROTL64(X[5], 36) ^ X[0];
X[2] += X[7]; X[7] = ROTL64(X[7], 39) ^ X[2];
X[6] += X[1]; X[1] = ROTL64(X[1], 44) ^ X[6];
X[4] += X[3]; X[3] = ROTL64(X[3], 56) ^ X[4];
X[2] += X[5]; X[5] = ROTL64(X[5], 54) ^ X[2];
X[0] += X[7]; X[7] = ROTL64(X[7], 9) ^ X[0];
X[0] += Xt[r + 1];
X[1] += Xt[r + 2];
X[2] += Xt[r + 3];
X[3] += Xt[r + 4];
X[4] += Xt[r + 5];
X[5] += Xt[r + 6] + T[1];
X[6] += Xt[r + 7] + T[2];
X[7] += Xt[r + 8] + r + 1;
T[3] = T[0];
T[0] = T[1];
T[1] = T[2];
T[2] = T[3];
X[0] += X[1]; X[1] = ROTL64(X[1], 39) ^ X[0];
X[2] += X[3]; X[3] = ROTL64(X[3], 30) ^ X[2];
X[4] += X[5]; X[5] = ROTL64(X[5], 34) ^ X[4];
X[6] += X[7]; X[7] = ROTL64(X[7], 24) ^ X[6];
X[2] += X[1]; X[1] = ROTL64(X[1], 13) ^ X[2];
X[0] += X[3]; X[3] = ROTL64(X[3], 17) ^ X[0];
X[6] += X[5]; X[5] = ROTL64(X[5], 10) ^ X[6];
X[4] += X[7]; X[7] = ROTL64(X[7], 50) ^ X[4];
X[4] += X[1]; X[1] = ROTL64(X[1], 25) ^ X[4];
X[6] += X[3]; X[3] = ROTL64(X[3], 29) ^ X[6];
X[0] += X[5]; X[5] = ROTL64(X[5], 39) ^ X[0];
X[2] += X[7]; X[7] = ROTL64(X[7], 43) ^ X[2];
X[6] += X[1]; X[1] = ROTL64(X[1], 8) ^ X[6];
X[4] += X[3]; X[3] = ROTL64(X[3], 22) ^ X[4];
X[2] += X[5]; X[5] = ROTL64(X[5], 56) ^ X[2];
X[0] += X[7]; X[7] = ROTL64(X[7], 35) ^ X[0];
X[0] += Xt[r + 2];
X[1] += Xt[r + 3];
X[2] += Xt[r + 4];
X[3] += Xt[r + 5];
X[4] += Xt[r + 6];
X[5] += Xt[r + 7] + T[1];
X[6] += Xt[r + 8] + T[2];
X[7] += Xt[r + 9] + r + 2;
T[3] = T[0];
T[0] = T[1];
T[1] = T[2];
T[2] = T[3];
}
S->X[0] = key[0] ^ X[0];
S->X[1] = key[1] ^ X[1];
S->X[2] = key[2] ^ X[2];
S->X[3] = key[3] ^ X[3];
S->X[4] = key[4] ^ X[4];
S->X[5] = key[5] ^ X[5];
S->X[6] = key[6] ^ X[6];
S->X[7] = key[7] ^ X[7];
S->T[0] = T[0];
S->T[1] = T[1] & ~0x4000000000000000ull;
}
}
static void
scrypt_hash_init(scrypt_hash_state *S) {
S->X[0] = 0x4903ADFF749C51CEull;
S->X[1] = 0x0D95DE399746DF03ull;
S->X[2] = 0x8FD1934127C79BCEull;
S->X[3] = 0x9A255629FF352CB1ull;
S->X[4] = 0x5DB62599DF6CA7B0ull;
S->X[5] = 0xEABE394CA9D5C3F4ull;
S->X[6] = 0x991112C71A75B523ull;
S->X[7] = 0xAE18A40B660FCC33ull;
S->T[0] = 0x0000000000000000ull;
S->T[1] = 0x7000000000000000ull;
S->leftover = 0;
}
static void
scrypt_hash_update(scrypt_hash_state *S, const uint8_t *in, size_t inlen) {
size_t blocks, want;
/* skein processes the final <=64 bytes raw, so we can only update if there are at least 64+1 bytes available */
if ((S->leftover + inlen) > SCRYPT_HASH_BLOCK_SIZE) {
/* handle the previous data, we know there is enough for at least one block */
if (S->leftover) {
want = (SCRYPT_HASH_BLOCK_SIZE - S->leftover);
memcpy(S->buffer + S->leftover, in, want);
in += want;
inlen -= want;
S->leftover = 0;
skein512_blocks(S, S->buffer, 1, SCRYPT_HASH_BLOCK_SIZE);
}
/* handle the current data if there's more than one block */
if (inlen > SCRYPT_HASH_BLOCK_SIZE) {
blocks = ((inlen - 1) & ~(SCRYPT_HASH_BLOCK_SIZE - 1));
skein512_blocks(S, in, blocks / SCRYPT_HASH_BLOCK_SIZE, SCRYPT_HASH_BLOCK_SIZE);
inlen -= blocks;
in += blocks;
}
}
/* handle leftover data */
memcpy(S->buffer + S->leftover, in, inlen);
S->leftover += (int) inlen;
}
static void
scrypt_hash_finish(scrypt_hash_state *S, uint8_t *hash) {
memset(S->buffer + S->leftover, 0, SCRYPT_HASH_BLOCK_SIZE - S->leftover);
S->T[1] |= 0x8000000000000000ull;
skein512_blocks(S, S->buffer, 1, S->leftover);
memset(S->buffer, 0, SCRYPT_HASH_BLOCK_SIZE);
S->T[0] = 0;
S->T[1] = 0xff00000000000000ull;
skein512_blocks(S, S->buffer, 1, 8);
U64TO8_LE(&hash[ 0], S->X[0]);
U64TO8_LE(&hash[ 8], S->X[1]);
U64TO8_LE(&hash[16], S->X[2]);
U64TO8_LE(&hash[24], S->X[3]);
U64TO8_LE(&hash[32], S->X[4]);
U64TO8_LE(&hash[40], S->X[5]);
U64TO8_LE(&hash[48], S->X[6]);
U64TO8_LE(&hash[56], S->X[7]);
}
static const uint8_t scrypt_test_hash_expected[SCRYPT_HASH_DIGEST_SIZE] = {
0x4d,0x52,0x29,0xff,0x10,0xbc,0xd2,0x62,0xd1,0x61,0x83,0xc8,0xe6,0xf0,0x83,0xc4,
0x9f,0xf5,0x6a,0x42,0x75,0x2a,0x26,0x4e,0xf0,0x28,0x72,0x28,0x47,0xe8,0x23,0xdf,
0x1e,0x64,0xf1,0x51,0x38,0x35,0x9d,0xc2,0x83,0xfc,0x35,0x4e,0xc0,0x52,0x5f,0x41,
0x6a,0x0b,0x7d,0xf5,0xce,0x98,0xde,0x6f,0x36,0xd8,0x51,0x15,0x78,0x78,0x93,0x67,
};

View File

@@ -0,0 +1,367 @@
/* x64 */
#if defined(X86_64ASM_AVX) && (!defined(SCRYPT_CHOOSE_COMPILETIME) || !defined(SCRYPT_SALSA64_INCLUDED)) && !defined(CPU_X86_FORCE_INTRINSICS)
#define SCRYPT_SALSA64_AVX
asm_naked_fn_proto(void, scrypt_ChunkMix_avx)(uint64_t *Bout/*[chunkBytes]*/, uint64_t *Bin/*[chunkBytes]*/, uint64_t *Bxor/*[chunkBytes]*/, uint32_t r)
asm_naked_fn(scrypt_ChunkMix_avx)
a1(push rbp)
a2(mov rbp, rsp)
a2(and rsp, ~63)
a2(sub rsp, 128)
a2(lea rcx,[ecx*2]) /* zero extend uint32_t by using ecx, win64 can leave garbage in the top half */
a2(shl rcx,7)
a2(lea r9,[rcx-128])
a2(lea rax,[rsi+r9])
a2(lea r9,[rdx+r9])
a2(and rdx, rdx)
a2(vmovdqa xmm0,[rax+0])
a2(vmovdqa xmm1,[rax+16])
a2(vmovdqa xmm2,[rax+32])
a2(vmovdqa xmm3,[rax+48])
a2(vmovdqa xmm4,[rax+64])
a2(vmovdqa xmm5,[rax+80])
a2(vmovdqa xmm6,[rax+96])
a2(vmovdqa xmm7,[rax+112])
aj(jz scrypt_ChunkMix_avx_no_xor1)
a3(vpxor xmm0,xmm0,[r9+0])
a3(vpxor xmm1,xmm1,[r9+16])
a3(vpxor xmm2,xmm2,[r9+32])
a3(vpxor xmm3,xmm3,[r9+48])
a3(vpxor xmm4,xmm4,[r9+64])
a3(vpxor xmm5,xmm5,[r9+80])
a3(vpxor xmm6,xmm6,[r9+96])
a3(vpxor xmm7,xmm7,[r9+112])
a1(scrypt_ChunkMix_avx_no_xor1:)
a2(xor r9,r9)
a2(xor r8,r8)
a1(scrypt_ChunkMix_avx_loop:)
a2(and rdx, rdx)
a3(vpxor xmm0,xmm0,[rsi+r9+0])
a3(vpxor xmm1,xmm1,[rsi+r9+16])
a3(vpxor xmm2,xmm2,[rsi+r9+32])
a3(vpxor xmm3,xmm3,[rsi+r9+48])
a3(vpxor xmm4,xmm4,[rsi+r9+64])
a3(vpxor xmm5,xmm5,[rsi+r9+80])
a3(vpxor xmm6,xmm6,[rsi+r9+96])
a3(vpxor xmm7,xmm7,[rsi+r9+112])
aj(jz scrypt_ChunkMix_avx_no_xor2)
a3(vpxor xmm0,xmm0,[rdx+r9+0])
a3(vpxor xmm1,xmm1,[rdx+r9+16])
a3(vpxor xmm2,xmm2,[rdx+r9+32])
a3(vpxor xmm3,xmm3,[rdx+r9+48])
a3(vpxor xmm4,xmm4,[rdx+r9+64])
a3(vpxor xmm5,xmm5,[rdx+r9+80])
a3(vpxor xmm6,xmm6,[rdx+r9+96])
a3(vpxor xmm7,xmm7,[rdx+r9+112])
a1(scrypt_ChunkMix_avx_no_xor2:)
a2(vmovdqa [rsp+0],xmm0)
a2(vmovdqa [rsp+16],xmm1)
a2(vmovdqa [rsp+32],xmm2)
a2(vmovdqa [rsp+48],xmm3)
a2(vmovdqa [rsp+64],xmm4)
a2(vmovdqa [rsp+80],xmm5)
a2(vmovdqa [rsp+96],xmm6)
a2(vmovdqa [rsp+112],xmm7)
a2(mov rax,8)
a1(scrypt_salsa64_avx_loop: )
a3(vpaddq xmm8, xmm0, xmm2)
a3(vpaddq xmm9, xmm1, xmm3)
a3(vpshufd xmm8, xmm8, 0xb1)
a3(vpshufd xmm9, xmm9, 0xb1)
a3(vpxor xmm6, xmm6, xmm8)
a3(vpxor xmm7, xmm7, xmm9)
a3(vpaddq xmm10, xmm0, xmm6)
a3(vpaddq xmm11, xmm1, xmm7)
a3(vpsrlq xmm8, xmm10, 51)
a3(vpsrlq xmm9, xmm11, 51)
a3(vpsllq xmm10, xmm10, 13)
a3(vpsllq xmm11, xmm11, 13)
a3(vpxor xmm4, xmm4, xmm8)
a3(vpxor xmm5, xmm5, xmm9)
a3(vpxor xmm4, xmm4, xmm10)
a3(vpxor xmm5, xmm5, xmm11)
a3(vpaddq xmm8, xmm6, xmm4)
a3(vpaddq xmm9, xmm7, xmm5)
a3(vpsrlq xmm10, xmm8, 25)
a3(vpsrlq xmm11, xmm9, 25)
a3(vpsllq xmm8, xmm8, 39)
a3(vpsllq xmm9, xmm9, 39)
a3(vpxor xmm2, xmm2, xmm10)
a3(vpxor xmm3, xmm3, xmm11)
a3(vpxor xmm2, xmm2, xmm8)
a3(vpxor xmm3, xmm3, xmm9)
a3(vpaddq xmm10, xmm4, xmm2)
a3(vpaddq xmm11, xmm5, xmm3)
a3(vpshufd xmm10, xmm10, 0xb1)
a3(vpshufd xmm11, xmm11, 0xb1)
a3(vpxor xmm0, xmm0, xmm10)
a3(vpxor xmm1, xmm1, xmm11)
a2(vmovdqa xmm8, xmm2)
a2(vmovdqa xmm9, xmm3)
a4(vpalignr xmm2, xmm6, xmm7, 8)
a4(vpalignr xmm3, xmm7, xmm6, 8)
a4(vpalignr xmm6, xmm9, xmm8, 8)
a4(vpalignr xmm7, xmm8, xmm9, 8)
a3(vpaddq xmm10, xmm0, xmm2)
a3(vpaddq xmm11, xmm1, xmm3)
a3(vpshufd xmm10, xmm10, 0xb1)
a3(vpshufd xmm11, xmm11, 0xb1)
a3(vpxor xmm6, xmm6, xmm10)
a3(vpxor xmm7, xmm7, xmm11)
a3(vpaddq xmm8, xmm0, xmm6)
a3(vpaddq xmm9, xmm1, xmm7)
a3(vpsrlq xmm10, xmm8, 51)
a3(vpsrlq xmm11, xmm9, 51)
a3(vpsllq xmm8, xmm8, 13)
a3(vpsllq xmm9, xmm9, 13)
a3(vpxor xmm5, xmm5, xmm10)
a3(vpxor xmm4, xmm4, xmm11)
a3(vpxor xmm5, xmm5, xmm8)
a3(vpxor xmm4, xmm4, xmm9)
a3(vpaddq xmm10, xmm6, xmm5)
a3(vpaddq xmm11, xmm7, xmm4)
a3(vpsrlq xmm8, xmm10, 25)
a3(vpsrlq xmm9, xmm11, 25)
a3(vpsllq xmm10, xmm10, 39)
a3(vpsllq xmm11, xmm11, 39)
a3(vpxor xmm2, xmm2, xmm8)
a3(vpxor xmm3, xmm3, xmm9)
a3(vpxor xmm2, xmm2, xmm10)
a3(vpxor xmm3, xmm3, xmm11)
a3(vpaddq xmm8, xmm5, xmm2)
a3(vpaddq xmm9, xmm4, xmm3)
a3(vpshufd xmm8, xmm8, 0xb1)
a3(vpshufd xmm9, xmm9, 0xb1)
a3(vpxor xmm0, xmm0, xmm8)
a3(vpxor xmm1, xmm1, xmm9)
a2(vmovdqa xmm10, xmm2)
a2(vmovdqa xmm11, xmm3)
a4(vpalignr xmm2, xmm6, xmm7, 8)
a4(vpalignr xmm3, xmm7, xmm6, 8)
a4(vpalignr xmm6, xmm11, xmm10, 8)
a4(vpalignr xmm7, xmm10, xmm11, 8)
a2(sub rax, 2)
aj(ja scrypt_salsa64_avx_loop)
a3(vpaddq xmm0,xmm0,[rsp+0])
a3(vpaddq xmm1,xmm1,[rsp+16])
a3(vpaddq xmm2,xmm2,[rsp+32])
a3(vpaddq xmm3,xmm3,[rsp+48])
a3(vpaddq xmm4,xmm4,[rsp+64])
a3(vpaddq xmm5,xmm5,[rsp+80])
a3(vpaddq xmm6,xmm6,[rsp+96])
a3(vpaddq xmm7,xmm7,[rsp+112])
a2(lea rax,[r8+r9])
a2(xor r8,rcx)
a2(and rax,~0xff)
a2(add r9,128)
a2(shr rax,1)
a2(add rax, rdi)
a2(cmp r9,rcx)
a2(vmovdqa [rax+0],xmm0)
a2(vmovdqa [rax+16],xmm1)
a2(vmovdqa [rax+32],xmm2)
a2(vmovdqa [rax+48],xmm3)
a2(vmovdqa [rax+64],xmm4)
a2(vmovdqa [rax+80],xmm5)
a2(vmovdqa [rax+96],xmm6)
a2(vmovdqa [rax+112],xmm7)
aj(jne scrypt_ChunkMix_avx_loop)
a2(mov rsp, rbp)
a1(pop rbp)
a1(ret)
asm_naked_fn_end(scrypt_ChunkMix_avx)
#endif
/* intrinsic */
#if defined(X86_INTRINSIC_AVX) && (!defined(SCRYPT_CHOOSE_COMPILETIME) || !defined(SCRYPT_SALSA64_INCLUDED))
#define SCRYPT_SALSA64_AVX
static void asm_calling_convention
scrypt_ChunkMix_avx(uint64_t *Bout/*[chunkBytes]*/, uint64_t *Bin/*[chunkBytes]*/, uint64_t *Bxor/*[chunkBytes]*/, uint32_t r) {
uint32_t i, blocksPerChunk = r * 2, half = 0;
xmmi *xmmp,x0,x1,x2,x3,x4,x5,x6,x7,t0,t1,t2,t3,t4,t5,t6,t7,z0,z1,z2,z3;
size_t rounds;
/* 1: X = B_{2r - 1} */
xmmp = (xmmi *)scrypt_block(Bin, blocksPerChunk - 1);
x0 = xmmp[0];
x1 = xmmp[1];
x2 = xmmp[2];
x3 = xmmp[3];
x4 = xmmp[4];
x5 = xmmp[5];
x6 = xmmp[6];
x7 = xmmp[7];
if (Bxor) {
xmmp = (xmmi *)scrypt_block(Bxor, blocksPerChunk - 1);
x0 = _mm_xor_si128(x0, xmmp[0]);
x1 = _mm_xor_si128(x1, xmmp[1]);
x2 = _mm_xor_si128(x2, xmmp[2]);
x3 = _mm_xor_si128(x3, xmmp[3]);
x4 = _mm_xor_si128(x4, xmmp[4]);
x5 = _mm_xor_si128(x5, xmmp[5]);
x6 = _mm_xor_si128(x6, xmmp[6]);
x7 = _mm_xor_si128(x7, xmmp[7]);
}
/* 2: for i = 0 to 2r - 1 do */
for (i = 0; i < blocksPerChunk; i++, half ^= r) {
/* 3: X = H(X ^ B_i) */
xmmp = (xmmi *)scrypt_block(Bin, i);
x0 = _mm_xor_si128(x0, xmmp[0]);
x1 = _mm_xor_si128(x1, xmmp[1]);
x2 = _mm_xor_si128(x2, xmmp[2]);
x3 = _mm_xor_si128(x3, xmmp[3]);
x4 = _mm_xor_si128(x4, xmmp[4]);
x5 = _mm_xor_si128(x5, xmmp[5]);
x6 = _mm_xor_si128(x6, xmmp[6]);
x7 = _mm_xor_si128(x7, xmmp[7]);
if (Bxor) {
xmmp = (xmmi *)scrypt_block(Bxor, i);
x0 = _mm_xor_si128(x0, xmmp[0]);
x1 = _mm_xor_si128(x1, xmmp[1]);
x2 = _mm_xor_si128(x2, xmmp[2]);
x3 = _mm_xor_si128(x3, xmmp[3]);
x4 = _mm_xor_si128(x4, xmmp[4]);
x5 = _mm_xor_si128(x5, xmmp[5]);
x6 = _mm_xor_si128(x6, xmmp[6]);
x7 = _mm_xor_si128(x7, xmmp[7]);
}
t0 = x0;
t1 = x1;
t2 = x2;
t3 = x3;
t4 = x4;
t5 = x5;
t6 = x6;
t7 = x7;
for (rounds = 8; rounds; rounds -= 2) {
z0 = _mm_add_epi64(x0, x2);
z1 = _mm_add_epi64(x1, x3);
z0 = _mm_shuffle_epi32(z0, _MM_SHUFFLE(2,3,0,1));
z1 = _mm_shuffle_epi32(z1, _MM_SHUFFLE(2,3,0,1));
x6 = _mm_xor_si128(x6, z0);
x7 = _mm_xor_si128(x7, z1);
z0 = _mm_add_epi64(x6, x0);
z1 = _mm_add_epi64(x7, x1);
z2 = _mm_srli_epi64(z0, 64-13);
z3 = _mm_srli_epi64(z1, 64-13);
z0 = _mm_slli_epi64(z0, 13);
z1 = _mm_slli_epi64(z1, 13);
x4 = _mm_xor_si128(x4, z2);
x5 = _mm_xor_si128(x5, z3);
x4 = _mm_xor_si128(x4, z0);
x5 = _mm_xor_si128(x5, z1);
z0 = _mm_add_epi64(x4, x6);
z1 = _mm_add_epi64(x5, x7);
z2 = _mm_srli_epi64(z0, 64-39);
z3 = _mm_srli_epi64(z1, 64-39);
z0 = _mm_slli_epi64(z0, 39);
z1 = _mm_slli_epi64(z1, 39);
x2 = _mm_xor_si128(x2, z2);
x3 = _mm_xor_si128(x3, z3);
x2 = _mm_xor_si128(x2, z0);
x3 = _mm_xor_si128(x3, z1);
z0 = _mm_add_epi64(x2, x4);
z1 = _mm_add_epi64(x3, x5);
z0 = _mm_shuffle_epi32(z0, _MM_SHUFFLE(2,3,0,1));
z1 = _mm_shuffle_epi32(z1, _MM_SHUFFLE(2,3,0,1));
x0 = _mm_xor_si128(x0, z0);
x1 = _mm_xor_si128(x1, z1);
z0 = x2;
z1 = x3;
x2 = _mm_alignr_epi8(x6, x7, 8);
x3 = _mm_alignr_epi8(x7, x6, 8);
x6 = _mm_alignr_epi8(z1, z0, 8);
x7 = _mm_alignr_epi8(z0, z1, 8);
z0 = _mm_add_epi64(x0, x2);
z1 = _mm_add_epi64(x1, x3);
z0 = _mm_shuffle_epi32(z0, _MM_SHUFFLE(2,3,0,1));
z1 = _mm_shuffle_epi32(z1, _MM_SHUFFLE(2,3,0,1));
x6 = _mm_xor_si128(x6, z0);
x7 = _mm_xor_si128(x7, z1);
z0 = _mm_add_epi64(x6, x0);
z1 = _mm_add_epi64(x7, x1);
z2 = _mm_srli_epi64(z0, 64-13);
z3 = _mm_srli_epi64(z1, 64-13);
z0 = _mm_slli_epi64(z0, 13);
z1 = _mm_slli_epi64(z1, 13);
x5 = _mm_xor_si128(x5, z2);
x4 = _mm_xor_si128(x4, z3);
x5 = _mm_xor_si128(x5, z0);
x4 = _mm_xor_si128(x4, z1);
z0 = _mm_add_epi64(x5, x6);
z1 = _mm_add_epi64(x4, x7);
z2 = _mm_srli_epi64(z0, 64-39);
z3 = _mm_srli_epi64(z1, 64-39);
z0 = _mm_slli_epi64(z0, 39);
z1 = _mm_slli_epi64(z1, 39);
x2 = _mm_xor_si128(x2, z2);
x3 = _mm_xor_si128(x3, z3);
x2 = _mm_xor_si128(x2, z0);
x3 = _mm_xor_si128(x3, z1);
z0 = _mm_add_epi64(x2, x5);
z1 = _mm_add_epi64(x3, x4);
z0 = _mm_shuffle_epi32(z0, _MM_SHUFFLE(2,3,0,1));
z1 = _mm_shuffle_epi32(z1, _MM_SHUFFLE(2,3,0,1));
x0 = _mm_xor_si128(x0, z0);
x1 = _mm_xor_si128(x1, z1);
z0 = x2;
z1 = x3;
x2 = _mm_alignr_epi8(x6, x7, 8);
x3 = _mm_alignr_epi8(x7, x6, 8);
x6 = _mm_alignr_epi8(z1, z0, 8);
x7 = _mm_alignr_epi8(z0, z1, 8);
}
x0 = _mm_add_epi64(x0, t0);
x1 = _mm_add_epi64(x1, t1);
x2 = _mm_add_epi64(x2, t2);
x3 = _mm_add_epi64(x3, t3);
x4 = _mm_add_epi64(x4, t4);
x5 = _mm_add_epi64(x5, t5);
x6 = _mm_add_epi64(x6, t6);
x7 = _mm_add_epi64(x7, t7);
/* 4: Y_i = X */
/* 6: B'[0..r-1] = Y_even */
/* 6: B'[r..2r-1] = Y_odd */
xmmp = (xmmi *)scrypt_block(Bout, (i / 2) + half);
xmmp[0] = x0;
xmmp[1] = x1;
xmmp[2] = x2;
xmmp[3] = x3;
xmmp[4] = x4;
xmmp[5] = x5;
xmmp[6] = x6;
xmmp[7] = x7;
}
}
#endif
#if defined(SCRYPT_SALSA64_AVX)
/* uses salsa64_core_tangle_sse2 */
#undef SCRYPT_MIX
#define SCRYPT_MIX "Salsa64/8-AVX"
#undef SCRYPT_SALSA64_INCLUDED
#define SCRYPT_SALSA64_INCLUDED
#endif

View File

@@ -0,0 +1,221 @@
/* x64 */
#if defined(X86_64ASM_AVX2) && (!defined(SCRYPT_CHOOSE_COMPILETIME) || !defined(SCRYPT_SALSA64_INCLUDED)) && !defined(CPU_X86_FORCE_INTRINSICS)
#define SCRYPT_SALSA64_AVX2
asm_naked_fn_proto(void, scrypt_ChunkMix_avx2)(uint64_t *Bout/*[chunkBytes]*/, uint64_t *Bin/*[chunkBytes]*/, uint64_t *Bxor/*[chunkBytes]*/, uint32_t r)
asm_naked_fn(scrypt_ChunkMix_avx2)
a2(lea rcx,[ecx*2]) /* zero extend uint32_t by using ecx, win64 can leave garbage in the top half */
a2(shl rcx,7)
a2(lea r9,[rcx-128])
a2(lea rax,[rsi+r9])
a2(lea r9,[rdx+r9])
a2(and rdx, rdx)
a2(vmovdqa ymm0,[rax+0])
a2(vmovdqa ymm1,[rax+32])
a2(vmovdqa ymm2,[rax+64])
a2(vmovdqa ymm3,[rax+96])
aj(jz scrypt_ChunkMix_avx2_no_xor1)
a3(vpxor ymm0,ymm0,[r9+0])
a3(vpxor ymm1,ymm1,[r9+32])
a3(vpxor ymm2,ymm2,[r9+64])
a3(vpxor ymm3,ymm3,[r9+96])
a1(scrypt_ChunkMix_avx2_no_xor1:)
a2(xor r9,r9)
a2(xor r8,r8)
a1(scrypt_ChunkMix_avx2_loop:)
a2(and rdx, rdx)
a3(vpxor ymm0,ymm0,[rsi+r9+0])
a3(vpxor ymm1,ymm1,[rsi+r9+32])
a3(vpxor ymm2,ymm2,[rsi+r9+64])
a3(vpxor ymm3,ymm3,[rsi+r9+96])
aj(jz scrypt_ChunkMix_avx2_no_xor2)
a3(vpxor ymm0,ymm0,[rdx+r9+0])
a3(vpxor ymm1,ymm1,[rdx+r9+32])
a3(vpxor ymm2,ymm2,[rdx+r9+64])
a3(vpxor ymm3,ymm3,[rdx+r9+96])
a1(scrypt_ChunkMix_avx2_no_xor2:)
a2(vmovdqa ymm6,ymm0)
a2(vmovdqa ymm7,ymm1)
a2(vmovdqa ymm8,ymm2)
a2(vmovdqa ymm9,ymm3)
a2(mov rax,4)
a1(scrypt_salsa64_avx2_loop: )
a3(vpaddq ymm4, ymm1, ymm0)
a3(vpshufd ymm4, ymm4, 0xb1)
a3(vpxor ymm3, ymm3, ymm4)
a3(vpaddq ymm4, ymm0, ymm3)
a3(vpsrlq ymm5, ymm4, 51)
a3(vpxor ymm2, ymm2, ymm5)
a3(vpsllq ymm4, ymm4, 13)
a3(vpxor ymm2, ymm2, ymm4)
a3(vpaddq ymm4, ymm3, ymm2)
a3(vpsrlq ymm5, ymm4, 25)
a3(vpxor ymm1, ymm1, ymm5)
a3(vpsllq ymm4, ymm4, 39)
a3(vpxor ymm1, ymm1, ymm4)
a3(vpaddq ymm4, ymm2, ymm1)
a3(vpshufd ymm4, ymm4, 0xb1)
a3(vpermq ymm1, ymm1, 0x39)
a3(vpermq ymm10, ymm2, 0x4e)
a3(vpxor ymm0, ymm0, ymm4)
a3(vpermq ymm3, ymm3, 0x93)
a3(vpaddq ymm4, ymm3, ymm0)
a3(vpshufd ymm4, ymm4, 0xb1)
a3(vpxor ymm1, ymm1, ymm4)
a3(vpaddq ymm4, ymm0, ymm1)
a3(vpsrlq ymm5, ymm4, 51)
a3(vpxor ymm10, ymm10, ymm5)
a3(vpsllq ymm4, ymm4, 13)
a3(vpxor ymm10, ymm10, ymm4)
a3(vpaddq ymm4, ymm1, ymm10)
a3(vpsrlq ymm5, ymm4, 25)
a3(vpxor ymm3, ymm3, ymm5)
a3(vpsllq ymm4, ymm4, 39)
a3(vpermq ymm1, ymm1, 0x93)
a3(vpxor ymm3, ymm3, ymm4)
a3(vpermq ymm2, ymm10, 0x4e)
a3(vpaddq ymm4, ymm10, ymm3)
a3(vpshufd ymm4, ymm4, 0xb1)
a3(vpermq ymm3, ymm3, 0x39)
a3(vpxor ymm0, ymm0, ymm4)
a1(dec rax)
aj(jnz scrypt_salsa64_avx2_loop)
a3(vpaddq ymm0,ymm0,ymm6)
a3(vpaddq ymm1,ymm1,ymm7)
a3(vpaddq ymm2,ymm2,ymm8)
a3(vpaddq ymm3,ymm3,ymm9)
a2(lea rax,[r8+r9])
a2(xor r8,rcx)
a2(and rax,~0xff)
a2(add r9,128)
a2(shr rax,1)
a2(add rax, rdi)
a2(cmp r9,rcx)
a2(vmovdqa [rax+0],ymm0)
a2(vmovdqa [rax+32],ymm1)
a2(vmovdqa [rax+64],ymm2)
a2(vmovdqa [rax+96],ymm3)
aj(jne scrypt_ChunkMix_avx2_loop)
a1(vzeroupper)
a1(ret)
asm_naked_fn_end(scrypt_ChunkMix_avx2)
#endif
/* intrinsic */
#if defined(X86_INTRINSIC_AVX2) && (!defined(SCRYPT_CHOOSE_COMPILETIME) || !defined(SCRYPT_SALSA64_INCLUDED))
#define SCRYPT_SALSA64_AVX2
static void asm_calling_convention
scrypt_ChunkMix_avx2(uint64_t *Bout/*[chunkBytes]*/, uint64_t *Bin/*[chunkBytes]*/, uint64_t *Bxor/*[chunkBytes]*/, uint32_t r) {
uint32_t i, blocksPerChunk = r * 2, half = 0;
ymmi *ymmp,y0,y1,y2,y3,t0,t1,t2,t3,z0,z1;
size_t rounds;
/* 1: X = B_{2r - 1} */
ymmp = (ymmi *)scrypt_block(Bin, blocksPerChunk - 1);
y0 = ymmp[0];
y1 = ymmp[1];
y2 = ymmp[2];
y3 = ymmp[3];
if (Bxor) {
ymmp = (ymmi *)scrypt_block(Bxor, blocksPerChunk - 1);
y0 = _mm256_xor_si256(y0, ymmp[0]);
y1 = _mm256_xor_si256(y1, ymmp[1]);
y2 = _mm256_xor_si256(y2, ymmp[2]);
y3 = _mm256_xor_si256(y3, ymmp[3]);
}
/* 2: for i = 0 to 2r - 1 do */
for (i = 0; i < blocksPerChunk; i++, half ^= r) {
/* 3: X = H(X ^ B_i) */
ymmp = (ymmi *)scrypt_block(Bin, i);
y0 = _mm256_xor_si256(y0, ymmp[0]);
y1 = _mm256_xor_si256(y1, ymmp[1]);
y2 = _mm256_xor_si256(y2, ymmp[2]);
y3 = _mm256_xor_si256(y3, ymmp[3]);
if (Bxor) {
ymmp = (ymmi *)scrypt_block(Bxor, i);
y0 = _mm256_xor_si256(y0, ymmp[0]);
y1 = _mm256_xor_si256(y1, ymmp[1]);
y2 = _mm256_xor_si256(y2, ymmp[2]);
y3 = _mm256_xor_si256(y3, ymmp[3]);
}
t0 = y0;
t1 = y1;
t2 = y2;
t3 = y3;
for (rounds = 8; rounds; rounds -= 2) {
z0 = _mm256_add_epi64(y0, y1);
z0 = _mm256_shuffle_epi32(z0, _MM_SHUFFLE(2,3,0,1));
y3 = _mm256_xor_si256(y3, z0);
z0 = _mm256_add_epi64(y3, y0);
z1 = _mm256_srli_epi64(z0, 64-13);
y2 = _mm256_xor_si256(y2, z1);
z0 = _mm256_slli_epi64(z0, 13);
y2 = _mm256_xor_si256(y2, z0);
z0 = _mm256_add_epi64(y2, y3);
z1 = _mm256_srli_epi64(z0, 64-39);
y1 = _mm256_xor_si256(y1, z1);
z0 = _mm256_slli_epi64(z0, 39);
y1 = _mm256_xor_si256(y1, z0);
y1 = _mm256_permute4x64_epi64(y1, _MM_SHUFFLE(0,3,2,1));
y2 = _mm256_permute4x64_epi64(y2, _MM_SHUFFLE(1,0,3,2));
y3 = _mm256_permute4x64_epi64(y3, _MM_SHUFFLE(2,1,0,3));
z0 = _mm256_add_epi64(y1, y2);
z0 = _mm256_shuffle_epi32(z0, _MM_SHUFFLE(2,3,0,1));
y0 = _mm256_xor_si256(y0, z0);
z0 = _mm256_add_epi64(y0, y3);
z0 = _mm256_shuffle_epi32(z0, _MM_SHUFFLE(2,3,0,1));
y1 = _mm256_xor_si256(y1, z0);
z0 = _mm256_add_epi64(y1, y0);
z1 = _mm256_srli_epi64(z0, 64-13);
y2 = _mm256_xor_si256(y2, z1);
z0 = _mm256_slli_epi64(z0, 13);
y2 = _mm256_xor_si256(y2, z0);
z0 = _mm256_add_epi64(y2, y1);
z1 = _mm256_srli_epi64(z0, 64-39);
y3 = _mm256_xor_si256(y3, z1);
z0 = _mm256_slli_epi64(z0, 39);
y3 = _mm256_xor_si256(y3, z0);
z0 = _mm256_add_epi64(y3, y2);
z0 = _mm256_shuffle_epi32(z0, _MM_SHUFFLE(2,3,0,1));
y0 = _mm256_xor_si256(y0, z0);
y1 = _mm256_permute4x64_epi64(y1, _MM_SHUFFLE(2,1,0,3));
y2 = _mm256_permute4x64_epi64(y2, _MM_SHUFFLE(1,0,3,2));
y3 = _mm256_permute4x64_epi64(y3, _MM_SHUFFLE(0,3,2,1));
}
y0 = _mm256_add_epi64(y0, t0);
y1 = _mm256_add_epi64(y1, t1);
y2 = _mm256_add_epi64(y2, t2);
y3 = _mm256_add_epi64(y3, t3);
/* 4: Y_i = X */
/* 6: B'[0..r-1] = Y_even */
/* 6: B'[r..2r-1] = Y_odd */
ymmp = (ymmi *)scrypt_block(Bout, (i / 2) + half);
ymmp[0] = y0;
ymmp[1] = y1;
ymmp[2] = y2;
ymmp[3] = y3;
}
}
#endif
#if defined(SCRYPT_SALSA64_AVX2)
/* uses salsa64_core_tangle_sse2 */
#undef SCRYPT_MIX
#define SCRYPT_MIX "Salsa64/8-AVX2"
#undef SCRYPT_SALSA64_INCLUDED
#define SCRYPT_SALSA64_INCLUDED
#endif

View File

@@ -0,0 +1,449 @@
/* x64 */
#if defined(X86_64ASM_SSE2) && (!defined(SCRYPT_CHOOSE_COMPILETIME) || !defined(SCRYPT_SALSA64_INCLUDED)) && !defined(CPU_X86_FORCE_INTRINSICS)
#define SCRYPT_SALSA64_SSE2
asm_naked_fn_proto(void, scrypt_ChunkMix_sse2)(uint64_t *Bout/*[chunkBytes]*/, uint64_t *Bin/*[chunkBytes]*/, uint64_t *Bxor/*[chunkBytes]*/, uint32_t r)
asm_naked_fn(scrypt_ChunkMix_sse2)
a1(push rbp)
a2(mov rbp, rsp)
a2(and rsp, ~63)
a2(sub rsp, 128)
a2(lea rcx,[ecx*2]) /* zero extend uint32_t by using ecx, win64 can leave garbage in the top half */
a2(shl rcx,7)
a2(lea r9,[rcx-128])
a2(lea rax,[rsi+r9])
a2(lea r9,[rdx+r9])
a2(and rdx, rdx)
a2(movdqa xmm0,[rax+0])
a2(movdqa xmm1,[rax+16])
a2(movdqa xmm2,[rax+32])
a2(movdqa xmm3,[rax+48])
a2(movdqa xmm4,[rax+64])
a2(movdqa xmm5,[rax+80])
a2(movdqa xmm6,[rax+96])
a2(movdqa xmm7,[rax+112])
aj(jz scrypt_ChunkMix_sse2_no_xor1)
a2(pxor xmm0,[r9+0])
a2(pxor xmm1,[r9+16])
a2(pxor xmm2,[r9+32])
a2(pxor xmm3,[r9+48])
a2(pxor xmm4,[r9+64])
a2(pxor xmm5,[r9+80])
a2(pxor xmm6,[r9+96])
a2(pxor xmm7,[r9+112])
a1(scrypt_ChunkMix_sse2_no_xor1:)
a2(xor r9,r9)
a2(xor r8,r8)
a1(scrypt_ChunkMix_sse2_loop:)
a2(and rdx, rdx)
a2(pxor xmm0,[rsi+r9+0])
a2(pxor xmm1,[rsi+r9+16])
a2(pxor xmm2,[rsi+r9+32])
a2(pxor xmm3,[rsi+r9+48])
a2(pxor xmm4,[rsi+r9+64])
a2(pxor xmm5,[rsi+r9+80])
a2(pxor xmm6,[rsi+r9+96])
a2(pxor xmm7,[rsi+r9+112])
aj(jz scrypt_ChunkMix_sse2_no_xor2)
a2(pxor xmm0,[rdx+r9+0])
a2(pxor xmm1,[rdx+r9+16])
a2(pxor xmm2,[rdx+r9+32])
a2(pxor xmm3,[rdx+r9+48])
a2(pxor xmm4,[rdx+r9+64])
a2(pxor xmm5,[rdx+r9+80])
a2(pxor xmm6,[rdx+r9+96])
a2(pxor xmm7,[rdx+r9+112])
a1(scrypt_ChunkMix_sse2_no_xor2:)
a2(movdqa [rsp+0],xmm0)
a2(movdqa [rsp+16],xmm1)
a2(movdqa [rsp+32],xmm2)
a2(movdqa [rsp+48],xmm3)
a2(movdqa [rsp+64],xmm4)
a2(movdqa [rsp+80],xmm5)
a2(movdqa [rsp+96],xmm6)
a2(movdqa [rsp+112],xmm7)
a2(mov rax,8)
a1(scrypt_salsa64_sse2_loop: )
a2(movdqa xmm8, xmm0)
a2(movdqa xmm9, xmm1)
a2(paddq xmm8, xmm2)
a2(paddq xmm9, xmm3)
a3(pshufd xmm8, xmm8, 0xb1)
a3(pshufd xmm9, xmm9, 0xb1)
a2(pxor xmm6, xmm8)
a2(pxor xmm7, xmm9)
a2(movdqa xmm10, xmm0)
a2(movdqa xmm11, xmm1)
a2(paddq xmm10, xmm6)
a2(paddq xmm11, xmm7)
a2(movdqa xmm8, xmm10)
a2(movdqa xmm9, xmm11)
a2(psrlq xmm10, 51)
a2(psrlq xmm11, 51)
a2(psllq xmm8, 13)
a2(psllq xmm9, 13)
a2(pxor xmm4, xmm10)
a2(pxor xmm5, xmm11)
a2(pxor xmm4, xmm8)
a2(pxor xmm5, xmm9)
a2(movdqa xmm10, xmm6)
a2(movdqa xmm11, xmm7)
a2(paddq xmm10, xmm4)
a2(paddq xmm11, xmm5)
a2(movdqa xmm8, xmm10)
a2(movdqa xmm9, xmm11)
a2(psrlq xmm10, 25)
a2(psrlq xmm11, 25)
a2(psllq xmm8, 39)
a2(psllq xmm9, 39)
a2(pxor xmm2, xmm10)
a2(pxor xmm3, xmm11)
a2(pxor xmm2, xmm8)
a2(pxor xmm3, xmm9)
a2(movdqa xmm8, xmm4)
a2(movdqa xmm9, xmm5)
a2(paddq xmm8, xmm2)
a2(paddq xmm9, xmm3)
a3(pshufd xmm8, xmm8, 0xb1)
a3(pshufd xmm9, xmm9, 0xb1)
a2(pxor xmm0, xmm8)
a2(pxor xmm1, xmm9)
a2(movdqa xmm8, xmm2)
a2(movdqa xmm9, xmm3)
a2(movdqa xmm10, xmm6)
a2(movdqa xmm11, xmm7)
a2(movdqa xmm2, xmm7)
a2(movdqa xmm3, xmm6)
a2(punpcklqdq xmm10, xmm6)
a2(punpcklqdq xmm11, xmm7)
a2(movdqa xmm6, xmm8)
a2(movdqa xmm7, xmm9)
a2(punpcklqdq xmm9, xmm9)
a2(punpcklqdq xmm8, xmm8)
a2(punpckhqdq xmm2, xmm10)
a2(punpckhqdq xmm3, xmm11)
a2(punpckhqdq xmm6, xmm9)
a2(punpckhqdq xmm7, xmm8)
a2(sub rax, 2)
a2(movdqa xmm8, xmm0)
a2(movdqa xmm9, xmm1)
a2(paddq xmm8, xmm2)
a2(paddq xmm9, xmm3)
a3(pshufd xmm8, xmm8, 0xb1)
a3(pshufd xmm9, xmm9, 0xb1)
a2(pxor xmm6, xmm8)
a2(pxor xmm7, xmm9)
a2(movdqa xmm10, xmm0)
a2(movdqa xmm11, xmm1)
a2(paddq xmm10, xmm6)
a2(paddq xmm11, xmm7)
a2(movdqa xmm8, xmm10)
a2(movdqa xmm9, xmm11)
a2(psrlq xmm10, 51)
a2(psrlq xmm11, 51)
a2(psllq xmm8, 13)
a2(psllq xmm9, 13)
a2(pxor xmm5, xmm10)
a2(pxor xmm4, xmm11)
a2(pxor xmm5, xmm8)
a2(pxor xmm4, xmm9)
a2(movdqa xmm10, xmm6)
a2(movdqa xmm11, xmm7)
a2(paddq xmm10, xmm5)
a2(paddq xmm11, xmm4)
a2(movdqa xmm8, xmm10)
a2(movdqa xmm9, xmm11)
a2(psrlq xmm10, 25)
a2(psrlq xmm11, 25)
a2(psllq xmm8, 39)
a2(psllq xmm9, 39)
a2(pxor xmm2, xmm10)
a2(pxor xmm3, xmm11)
a2(pxor xmm2, xmm8)
a2(pxor xmm3, xmm9)
a2(movdqa xmm8, xmm5)
a2(movdqa xmm9, xmm4)
a2(paddq xmm8, xmm2)
a2(paddq xmm9, xmm3)
a3(pshufd xmm8, xmm8, 0xb1)
a3(pshufd xmm9, xmm9, 0xb1)
a2(pxor xmm0, xmm8)
a2(pxor xmm1, xmm9)
a2(movdqa xmm8, xmm2)
a2(movdqa xmm9, xmm3)
a2(movdqa xmm10, xmm6)
a2(movdqa xmm11, xmm7)
a2(movdqa xmm2, xmm7)
a2(movdqa xmm3, xmm6)
a2(punpcklqdq xmm10, xmm6)
a2(punpcklqdq xmm11, xmm7)
a2(movdqa xmm6, xmm8)
a2(movdqa xmm7, xmm9)
a2(punpcklqdq xmm9, xmm9)
a2(punpcklqdq xmm8, xmm8)
a2(punpckhqdq xmm2, xmm10)
a2(punpckhqdq xmm3, xmm11)
a2(punpckhqdq xmm6, xmm9)
a2(punpckhqdq xmm7, xmm8)
aj(ja scrypt_salsa64_sse2_loop)
a2(paddq xmm0,[rsp+0])
a2(paddq xmm1,[rsp+16])
a2(paddq xmm2,[rsp+32])
a2(paddq xmm3,[rsp+48])
a2(paddq xmm4,[rsp+64])
a2(paddq xmm5,[rsp+80])
a2(paddq xmm6,[rsp+96])
a2(paddq xmm7,[rsp+112])
a2(lea rax,[r8+r9])
a2(xor r8,rcx)
a2(and rax,~0xff)
a2(add r9,128)
a2(shr rax,1)
a2(add rax, rdi)
a2(cmp r9,rcx)
a2(movdqa [rax+0],xmm0)
a2(movdqa [rax+16],xmm1)
a2(movdqa [rax+32],xmm2)
a2(movdqa [rax+48],xmm3)
a2(movdqa [rax+64],xmm4)
a2(movdqa [rax+80],xmm5)
a2(movdqa [rax+96],xmm6)
a2(movdqa [rax+112],xmm7)
aj(jne scrypt_ChunkMix_sse2_loop)
a2(mov rsp, rbp)
a1(pop rbp)
a1(ret)
asm_naked_fn_end(scrypt_ChunkMix_sse2)
#endif
/* intrinsic */
#if defined(X86_INTRINSIC_SSE2) && (!defined(SCRYPT_CHOOSE_COMPILETIME) || !defined(SCRYPT_SALSA64_INCLUDED))
#define SCRYPT_SALSA64_SSE2
static void asm_calling_convention
scrypt_ChunkMix_sse2(uint64_t *Bout/*[chunkBytes]*/, uint64_t *Bin/*[chunkBytes]*/, uint64_t *Bxor/*[chunkBytes]*/, uint32_t r) {
uint32_t i, blocksPerChunk = r * 2, half = 0;
xmmi *xmmp,x0,x1,x2,x3,x4,x5,x6,x7,t0,t1,t2,t3,t4,t5,t6,t7,z0,z1,z2,z3;
size_t rounds;
/* 1: X = B_{2r - 1} */
xmmp = (xmmi *)scrypt_block(Bin, blocksPerChunk - 1);
x0 = xmmp[0];
x1 = xmmp[1];
x2 = xmmp[2];
x3 = xmmp[3];
x4 = xmmp[4];
x5 = xmmp[5];
x6 = xmmp[6];
x7 = xmmp[7];
if (Bxor) {
xmmp = (xmmi *)scrypt_block(Bxor, blocksPerChunk - 1);
x0 = _mm_xor_si128(x0, xmmp[0]);
x1 = _mm_xor_si128(x1, xmmp[1]);
x2 = _mm_xor_si128(x2, xmmp[2]);
x3 = _mm_xor_si128(x3, xmmp[3]);
x4 = _mm_xor_si128(x4, xmmp[4]);
x5 = _mm_xor_si128(x5, xmmp[5]);
x6 = _mm_xor_si128(x6, xmmp[6]);
x7 = _mm_xor_si128(x7, xmmp[7]);
}
/* 2: for i = 0 to 2r - 1 do */
for (i = 0; i < blocksPerChunk; i++, half ^= r) {
/* 3: X = H(X ^ B_i) */
xmmp = (xmmi *)scrypt_block(Bin, i);
x0 = _mm_xor_si128(x0, xmmp[0]);
x1 = _mm_xor_si128(x1, xmmp[1]);
x2 = _mm_xor_si128(x2, xmmp[2]);
x3 = _mm_xor_si128(x3, xmmp[3]);
x4 = _mm_xor_si128(x4, xmmp[4]);
x5 = _mm_xor_si128(x5, xmmp[5]);
x6 = _mm_xor_si128(x6, xmmp[6]);
x7 = _mm_xor_si128(x7, xmmp[7]);
if (Bxor) {
xmmp = (xmmi *)scrypt_block(Bxor, i);
x0 = _mm_xor_si128(x0, xmmp[0]);
x1 = _mm_xor_si128(x1, xmmp[1]);
x2 = _mm_xor_si128(x2, xmmp[2]);
x3 = _mm_xor_si128(x3, xmmp[3]);
x4 = _mm_xor_si128(x4, xmmp[4]);
x5 = _mm_xor_si128(x5, xmmp[5]);
x6 = _mm_xor_si128(x6, xmmp[6]);
x7 = _mm_xor_si128(x7, xmmp[7]);
}
t0 = x0;
t1 = x1;
t2 = x2;
t3 = x3;
t4 = x4;
t5 = x5;
t6 = x6;
t7 = x7;
for (rounds = 8; rounds; rounds -= 2) {
z0 = _mm_add_epi64(x0, x2);
z1 = _mm_add_epi64(x1, x3);
z0 = _mm_shuffle_epi32(z0, _MM_SHUFFLE(2,3,0,1));
z1 = _mm_shuffle_epi32(z1, _MM_SHUFFLE(2,3,0,1));
x6 = _mm_xor_si128(x6, z0);
x7 = _mm_xor_si128(x7, z1);
z0 = _mm_add_epi64(x6, x0);
z1 = _mm_add_epi64(x7, x1);
z2 = _mm_srli_epi64(z0, 64-13);
z3 = _mm_srli_epi64(z1, 64-13);
z0 = _mm_slli_epi64(z0, 13);
z1 = _mm_slli_epi64(z1, 13);
x4 = _mm_xor_si128(x4, z2);
x5 = _mm_xor_si128(x5, z3);
x4 = _mm_xor_si128(x4, z0);
x5 = _mm_xor_si128(x5, z1);
z0 = _mm_add_epi64(x4, x6);
z1 = _mm_add_epi64(x5, x7);
z2 = _mm_srli_epi64(z0, 64-39);
z3 = _mm_srli_epi64(z1, 64-39);
z0 = _mm_slli_epi64(z0, 39);
z1 = _mm_slli_epi64(z1, 39);
x2 = _mm_xor_si128(x2, z2);
x3 = _mm_xor_si128(x3, z3);
x2 = _mm_xor_si128(x2, z0);
x3 = _mm_xor_si128(x3, z1);
z0 = _mm_add_epi64(x2, x4);
z1 = _mm_add_epi64(x3, x5);
z0 = _mm_shuffle_epi32(z0, _MM_SHUFFLE(2,3,0,1));
z1 = _mm_shuffle_epi32(z1, _MM_SHUFFLE(2,3,0,1));
x0 = _mm_xor_si128(x0, z0);
x1 = _mm_xor_si128(x1, z1);
z0 = x4;
z1 = x5;
z2 = x2;
z3 = x3;
x4 = z1;
x5 = z0;
x2 = _mm_unpackhi_epi64(x7, _mm_unpacklo_epi64(x6, x6));
x3 = _mm_unpackhi_epi64(x6, _mm_unpacklo_epi64(x7, x7));
x6 = _mm_unpackhi_epi64(z2, _mm_unpacklo_epi64(z3, z3));
x7 = _mm_unpackhi_epi64(z3, _mm_unpacklo_epi64(z2, z2));
z0 = _mm_add_epi64(x0, x2);
z1 = _mm_add_epi64(x1, x3);
z0 = _mm_shuffle_epi32(z0, _MM_SHUFFLE(2,3,0,1));
z1 = _mm_shuffle_epi32(z1, _MM_SHUFFLE(2,3,0,1));
x6 = _mm_xor_si128(x6, z0);
x7 = _mm_xor_si128(x7, z1);
z0 = _mm_add_epi64(x6, x0);
z1 = _mm_add_epi64(x7, x1);
z2 = _mm_srli_epi64(z0, 64-13);
z3 = _mm_srli_epi64(z1, 64-13);
z0 = _mm_slli_epi64(z0, 13);
z1 = _mm_slli_epi64(z1, 13);
x4 = _mm_xor_si128(x4, z2);
x5 = _mm_xor_si128(x5, z3);
x4 = _mm_xor_si128(x4, z0);
x5 = _mm_xor_si128(x5, z1);
z0 = _mm_add_epi64(x4, x6);
z1 = _mm_add_epi64(x5, x7);
z2 = _mm_srli_epi64(z0, 64-39);
z3 = _mm_srli_epi64(z1, 64-39);
z0 = _mm_slli_epi64(z0, 39);
z1 = _mm_slli_epi64(z1, 39);
x2 = _mm_xor_si128(x2, z2);
x3 = _mm_xor_si128(x3, z3);
x2 = _mm_xor_si128(x2, z0);
x3 = _mm_xor_si128(x3, z1);
z0 = _mm_add_epi64(x2, x4);
z1 = _mm_add_epi64(x3, x5);
z0 = _mm_shuffle_epi32(z0, _MM_SHUFFLE(2,3,0,1));
z1 = _mm_shuffle_epi32(z1, _MM_SHUFFLE(2,3,0,1));
x0 = _mm_xor_si128(x0, z0);
x1 = _mm_xor_si128(x1, z1);
z0 = x4;
z1 = x5;
z2 = x2;
z3 = x3;
x4 = z1;
x5 = z0;
x2 = _mm_unpackhi_epi64(x7, _mm_unpacklo_epi64(x6, x6));
x3 = _mm_unpackhi_epi64(x6, _mm_unpacklo_epi64(x7, x7));
x6 = _mm_unpackhi_epi64(z2, _mm_unpacklo_epi64(z3, z3));
x7 = _mm_unpackhi_epi64(z3, _mm_unpacklo_epi64(z2, z2));
}
x0 = _mm_add_epi64(x0, t0);
x1 = _mm_add_epi64(x1, t1);
x2 = _mm_add_epi64(x2, t2);
x3 = _mm_add_epi64(x3, t3);
x4 = _mm_add_epi64(x4, t4);
x5 = _mm_add_epi64(x5, t5);
x6 = _mm_add_epi64(x6, t6);
x7 = _mm_add_epi64(x7, t7);
/* 4: Y_i = X */
/* 6: B'[0..r-1] = Y_even */
/* 6: B'[r..2r-1] = Y_odd */
xmmp = (xmmi *)scrypt_block(Bout, (i / 2) + half);
xmmp[0] = x0;
xmmp[1] = x1;
xmmp[2] = x2;
xmmp[3] = x3;
xmmp[4] = x4;
xmmp[5] = x5;
xmmp[6] = x6;
xmmp[7] = x7;
}
}
#endif
#if defined(SCRYPT_SALSA64_SSE2)
#undef SCRYPT_MIX
#define SCRYPT_MIX "Salsa64/8-SSE2"
#undef SCRYPT_SALSA64_INCLUDED
#define SCRYPT_SALSA64_INCLUDED
#endif
/* sse3/avx use this as well */
#if defined(SCRYPT_SALSA64_INCLUDED)
/*
Default layout:
0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15
SSE2 layout:
0 5 10 15
12 1 6 11
8 13 2 7
4 9 14 3
*/
static void asm_calling_convention
salsa64_core_tangle_sse2(uint64_t *blocks, size_t count) {
uint64_t t;
while (count--) {
t = blocks[1]; blocks[1] = blocks[5]; blocks[5] = t;
t = blocks[2]; blocks[2] = blocks[10]; blocks[10] = t;
t = blocks[3]; blocks[3] = blocks[15]; blocks[15] = t;
t = blocks[4]; blocks[4] = blocks[12]; blocks[12] = t;
t = blocks[7]; blocks[7] = blocks[11]; blocks[11] = t;
t = blocks[9]; blocks[9] = blocks[13]; blocks[13] = t;
blocks += 16;
}
}
#endif

View File

@@ -0,0 +1,399 @@
/* x64 */
#if defined(X86_64ASM_SSSE3) && (!defined(SCRYPT_CHOOSE_COMPILETIME) || !defined(SCRYPT_SALSA64_INCLUDED)) && !defined(CPU_X86_FORCE_INTRINSICS)
#define SCRYPT_SALSA64_SSSE3
asm_naked_fn_proto(void, scrypt_ChunkMix_ssse3)(uint64_t *Bout/*[chunkBytes]*/, uint64_t *Bin/*[chunkBytes]*/, uint64_t *Bxor/*[chunkBytes]*/, uint32_t r)
asm_naked_fn(scrypt_ChunkMix_ssse3)
a1(push rbp)
a2(mov rbp, rsp)
a2(and rsp, ~63)
a2(sub rsp, 128)
a2(lea rcx,[ecx*2]) /* zero extend uint32_t by using ecx, win64 can leave garbage in the top half */
a2(shl rcx,7)
a2(lea r9,[rcx-128])
a2(lea rax,[rsi+r9])
a2(lea r9,[rdx+r9])
a2(and rdx, rdx)
a2(movdqa xmm0,[rax+0])
a2(movdqa xmm1,[rax+16])
a2(movdqa xmm2,[rax+32])
a2(movdqa xmm3,[rax+48])
a2(movdqa xmm4,[rax+64])
a2(movdqa xmm5,[rax+80])
a2(movdqa xmm6,[rax+96])
a2(movdqa xmm7,[rax+112])
aj(jz scrypt_ChunkMix_ssse3_no_xor1)
a2(pxor xmm0,[r9+0])
a2(pxor xmm1,[r9+16])
a2(pxor xmm2,[r9+32])
a2(pxor xmm3,[r9+48])
a2(pxor xmm4,[r9+64])
a2(pxor xmm5,[r9+80])
a2(pxor xmm6,[r9+96])
a2(pxor xmm7,[r9+112])
a1(scrypt_ChunkMix_ssse3_no_xor1:)
a2(xor r9,r9)
a2(xor r8,r8)
a1(scrypt_ChunkMix_ssse3_loop:)
a2(and rdx, rdx)
a2(pxor xmm0,[rsi+r9+0])
a2(pxor xmm1,[rsi+r9+16])
a2(pxor xmm2,[rsi+r9+32])
a2(pxor xmm3,[rsi+r9+48])
a2(pxor xmm4,[rsi+r9+64])
a2(pxor xmm5,[rsi+r9+80])
a2(pxor xmm6,[rsi+r9+96])
a2(pxor xmm7,[rsi+r9+112])
aj(jz scrypt_ChunkMix_ssse3_no_xor2)
a2(pxor xmm0,[rdx+r9+0])
a2(pxor xmm1,[rdx+r9+16])
a2(pxor xmm2,[rdx+r9+32])
a2(pxor xmm3,[rdx+r9+48])
a2(pxor xmm4,[rdx+r9+64])
a2(pxor xmm5,[rdx+r9+80])
a2(pxor xmm6,[rdx+r9+96])
a2(pxor xmm7,[rdx+r9+112])
a1(scrypt_ChunkMix_ssse3_no_xor2:)
a2(movdqa [rsp+0],xmm0)
a2(movdqa [rsp+16],xmm1)
a2(movdqa [rsp+32],xmm2)
a2(movdqa [rsp+48],xmm3)
a2(movdqa [rsp+64],xmm4)
a2(movdqa [rsp+80],xmm5)
a2(movdqa [rsp+96],xmm6)
a2(movdqa [rsp+112],xmm7)
a2(mov rax,8)
a1(scrypt_salsa64_ssse3_loop: )
a2(movdqa xmm8, xmm0)
a2(movdqa xmm9, xmm1)
a2(paddq xmm8, xmm2)
a2(paddq xmm9, xmm3)
a3(pshufd xmm8, xmm8, 0xb1)
a3(pshufd xmm9, xmm9, 0xb1)
a2(pxor xmm6, xmm8)
a2(pxor xmm7, xmm9)
a2(movdqa xmm10, xmm0)
a2(movdqa xmm11, xmm1)
a2(paddq xmm10, xmm6)
a2(paddq xmm11, xmm7)
a2(movdqa xmm8, xmm10)
a2(movdqa xmm9, xmm11)
a2(psrlq xmm10, 51)
a2(psrlq xmm11, 51)
a2(psllq xmm8, 13)
a2(psllq xmm9, 13)
a2(pxor xmm4, xmm10)
a2(pxor xmm5, xmm11)
a2(pxor xmm4, xmm8)
a2(pxor xmm5, xmm9)
a2(movdqa xmm10, xmm6)
a2(movdqa xmm11, xmm7)
a2(paddq xmm10, xmm4)
a2(paddq xmm11, xmm5)
a2(movdqa xmm8, xmm10)
a2(movdqa xmm9, xmm11)
a2(psrlq xmm10, 25)
a2(psrlq xmm11, 25)
a2(psllq xmm8, 39)
a2(psllq xmm9, 39)
a2(pxor xmm2, xmm10)
a2(pxor xmm3, xmm11)
a2(pxor xmm2, xmm8)
a2(pxor xmm3, xmm9)
a2(movdqa xmm8, xmm4)
a2(movdqa xmm9, xmm5)
a2(paddq xmm8, xmm2)
a2(paddq xmm9, xmm3)
a3(pshufd xmm8, xmm8, 0xb1)
a3(pshufd xmm9, xmm9, 0xb1)
a2(pxor xmm0, xmm8)
a2(pxor xmm1, xmm9)
a2(movdqa xmm10, xmm2)
a2(movdqa xmm11, xmm3)
a2(movdqa xmm2, xmm6)
a2(movdqa xmm3, xmm7)
a3(palignr xmm2, xmm7, 8)
a3(palignr xmm3, xmm6, 8)
a2(movdqa xmm6, xmm11)
a2(movdqa xmm7, xmm10)
a3(palignr xmm6, xmm10, 8)
a3(palignr xmm7, xmm11, 8)
a2(sub rax, 2)
a2(movdqa xmm8, xmm0)
a2(movdqa xmm9, xmm1)
a2(paddq xmm8, xmm2)
a2(paddq xmm9, xmm3)
a3(pshufd xmm8, xmm8, 0xb1)
a3(pshufd xmm9, xmm9, 0xb1)
a2(pxor xmm6, xmm8)
a2(pxor xmm7, xmm9)
a2(movdqa xmm10, xmm0)
a2(movdqa xmm11, xmm1)
a2(paddq xmm10, xmm6)
a2(paddq xmm11, xmm7)
a2(movdqa xmm8, xmm10)
a2(movdqa xmm9, xmm11)
a2(psrlq xmm10, 51)
a2(psrlq xmm11, 51)
a2(psllq xmm8, 13)
a2(psllq xmm9, 13)
a2(pxor xmm5, xmm10)
a2(pxor xmm4, xmm11)
a2(pxor xmm5, xmm8)
a2(pxor xmm4, xmm9)
a2(movdqa xmm10, xmm6)
a2(movdqa xmm11, xmm7)
a2(paddq xmm10, xmm5)
a2(paddq xmm11, xmm4)
a2(movdqa xmm8, xmm10)
a2(movdqa xmm9, xmm11)
a2(psrlq xmm10, 25)
a2(psrlq xmm11, 25)
a2(psllq xmm8, 39)
a2(psllq xmm9, 39)
a2(pxor xmm2, xmm10)
a2(pxor xmm3, xmm11)
a2(pxor xmm2, xmm8)
a2(pxor xmm3, xmm9)
a2(movdqa xmm8, xmm5)
a2(movdqa xmm9, xmm4)
a2(paddq xmm8, xmm2)
a2(paddq xmm9, xmm3)
a3(pshufd xmm8, xmm8, 0xb1)
a3(pshufd xmm9, xmm9, 0xb1)
a2(pxor xmm0, xmm8)
a2(pxor xmm1, xmm9)
a2(movdqa xmm10, xmm2)
a2(movdqa xmm11, xmm3)
a2(movdqa xmm2, xmm6)
a2(movdqa xmm3, xmm7)
a3(palignr xmm2, xmm7, 8)
a3(palignr xmm3, xmm6, 8)
a2(movdqa xmm6, xmm11)
a2(movdqa xmm7, xmm10)
a3(palignr xmm6, xmm10, 8)
a3(palignr xmm7, xmm11, 8)
aj(ja scrypt_salsa64_ssse3_loop)
a2(paddq xmm0,[rsp+0])
a2(paddq xmm1,[rsp+16])
a2(paddq xmm2,[rsp+32])
a2(paddq xmm3,[rsp+48])
a2(paddq xmm4,[rsp+64])
a2(paddq xmm5,[rsp+80])
a2(paddq xmm6,[rsp+96])
a2(paddq xmm7,[rsp+112])
a2(lea rax,[r8+r9])
a2(xor r8,rcx)
a2(and rax,~0xff)
a2(add r9,128)
a2(shr rax,1)
a2(add rax, rdi)
a2(cmp r9,rcx)
a2(movdqa [rax+0],xmm0)
a2(movdqa [rax+16],xmm1)
a2(movdqa [rax+32],xmm2)
a2(movdqa [rax+48],xmm3)
a2(movdqa [rax+64],xmm4)
a2(movdqa [rax+80],xmm5)
a2(movdqa [rax+96],xmm6)
a2(movdqa [rax+112],xmm7)
aj(jne scrypt_ChunkMix_ssse3_loop)
a2(mov rsp, rbp)
a1(pop rbp)
a1(ret)
asm_naked_fn_end(scrypt_ChunkMix_ssse3)
#endif
/* intrinsic */
#if defined(X86_INTRINSIC_SSSE3) && (!defined(SCRYPT_CHOOSE_COMPILETIME) || !defined(SCRYPT_SALSA64_INCLUDED))
#define SCRYPT_SALSA64_SSSE3
static void asm_calling_convention
scrypt_ChunkMix_ssse3(uint64_t *Bout/*[chunkBytes]*/, uint64_t *Bin/*[chunkBytes]*/, uint64_t *Bxor/*[chunkBytes]*/, uint32_t r) {
uint32_t i, blocksPerChunk = r * 2, half = 0;
xmmi *xmmp,x0,x1,x2,x3,x4,x5,x6,x7,t0,t1,t2,t3,t4,t5,t6,t7,z0,z1,z2,z3;
size_t rounds;
/* 1: X = B_{2r - 1} */
xmmp = (xmmi *)scrypt_block(Bin, blocksPerChunk - 1);
x0 = xmmp[0];
x1 = xmmp[1];
x2 = xmmp[2];
x3 = xmmp[3];
x4 = xmmp[4];
x5 = xmmp[5];
x6 = xmmp[6];
x7 = xmmp[7];
if (Bxor) {
xmmp = (xmmi *)scrypt_block(Bxor, blocksPerChunk - 1);
x0 = _mm_xor_si128(x0, xmmp[0]);
x1 = _mm_xor_si128(x1, xmmp[1]);
x2 = _mm_xor_si128(x2, xmmp[2]);
x3 = _mm_xor_si128(x3, xmmp[3]);
x4 = _mm_xor_si128(x4, xmmp[4]);
x5 = _mm_xor_si128(x5, xmmp[5]);
x6 = _mm_xor_si128(x6, xmmp[6]);
x7 = _mm_xor_si128(x7, xmmp[7]);
}
/* 2: for i = 0 to 2r - 1 do */
for (i = 0; i < blocksPerChunk; i++, half ^= r) {
/* 3: X = H(X ^ B_i) */
xmmp = (xmmi *)scrypt_block(Bin, i);
x0 = _mm_xor_si128(x0, xmmp[0]);
x1 = _mm_xor_si128(x1, xmmp[1]);
x2 = _mm_xor_si128(x2, xmmp[2]);
x3 = _mm_xor_si128(x3, xmmp[3]);
x4 = _mm_xor_si128(x4, xmmp[4]);
x5 = _mm_xor_si128(x5, xmmp[5]);
x6 = _mm_xor_si128(x6, xmmp[6]);
x7 = _mm_xor_si128(x7, xmmp[7]);
if (Bxor) {
xmmp = (xmmi *)scrypt_block(Bxor, i);
x0 = _mm_xor_si128(x0, xmmp[0]);
x1 = _mm_xor_si128(x1, xmmp[1]);
x2 = _mm_xor_si128(x2, xmmp[2]);
x3 = _mm_xor_si128(x3, xmmp[3]);
x4 = _mm_xor_si128(x4, xmmp[4]);
x5 = _mm_xor_si128(x5, xmmp[5]);
x6 = _mm_xor_si128(x6, xmmp[6]);
x7 = _mm_xor_si128(x7, xmmp[7]);
}
t0 = x0;
t1 = x1;
t2 = x2;
t3 = x3;
t4 = x4;
t5 = x5;
t6 = x6;
t7 = x7;
for (rounds = 8; rounds; rounds -= 2) {
z0 = _mm_add_epi64(x0, x2);
z1 = _mm_add_epi64(x1, x3);
z0 = _mm_shuffle_epi32(z0, _MM_SHUFFLE(2,3,0,1));
z1 = _mm_shuffle_epi32(z1, _MM_SHUFFLE(2,3,0,1));
x6 = _mm_xor_si128(x6, z0);
x7 = _mm_xor_si128(x7, z1);
z0 = _mm_add_epi64(x6, x0);
z1 = _mm_add_epi64(x7, x1);
z2 = _mm_srli_epi64(z0, 64-13);
z3 = _mm_srli_epi64(z1, 64-13);
z0 = _mm_slli_epi64(z0, 13);
z1 = _mm_slli_epi64(z1, 13);
x4 = _mm_xor_si128(x4, z2);
x5 = _mm_xor_si128(x5, z3);
x4 = _mm_xor_si128(x4, z0);
x5 = _mm_xor_si128(x5, z1);
z0 = _mm_add_epi64(x4, x6);
z1 = _mm_add_epi64(x5, x7);
z2 = _mm_srli_epi64(z0, 64-39);
z3 = _mm_srli_epi64(z1, 64-39);
z0 = _mm_slli_epi64(z0, 39);
z1 = _mm_slli_epi64(z1, 39);
x2 = _mm_xor_si128(x2, z2);
x3 = _mm_xor_si128(x3, z3);
x2 = _mm_xor_si128(x2, z0);
x3 = _mm_xor_si128(x3, z1);
z0 = _mm_add_epi64(x2, x4);
z1 = _mm_add_epi64(x3, x5);
z0 = _mm_shuffle_epi32(z0, _MM_SHUFFLE(2,3,0,1));
z1 = _mm_shuffle_epi32(z1, _MM_SHUFFLE(2,3,0,1));
x0 = _mm_xor_si128(x0, z0);
x1 = _mm_xor_si128(x1, z1);
z0 = x2;
z1 = x3;
x2 = _mm_alignr_epi8(x6, x7, 8);
x3 = _mm_alignr_epi8(x7, x6, 8);
x6 = _mm_alignr_epi8(z1, z0, 8);
x7 = _mm_alignr_epi8(z0, z1, 8);
z0 = _mm_add_epi64(x0, x2);
z1 = _mm_add_epi64(x1, x3);
z0 = _mm_shuffle_epi32(z0, _MM_SHUFFLE(2,3,0,1));
z1 = _mm_shuffle_epi32(z1, _MM_SHUFFLE(2,3,0,1));
x6 = _mm_xor_si128(x6, z0);
x7 = _mm_xor_si128(x7, z1);
z0 = _mm_add_epi64(x6, x0);
z1 = _mm_add_epi64(x7, x1);
z2 = _mm_srli_epi64(z0, 64-13);
z3 = _mm_srli_epi64(z1, 64-13);
z0 = _mm_slli_epi64(z0, 13);
z1 = _mm_slli_epi64(z1, 13);
x5 = _mm_xor_si128(x5, z2);
x4 = _mm_xor_si128(x4, z3);
x5 = _mm_xor_si128(x5, z0);
x4 = _mm_xor_si128(x4, z1);
z0 = _mm_add_epi64(x5, x6);
z1 = _mm_add_epi64(x4, x7);
z2 = _mm_srli_epi64(z0, 64-39);
z3 = _mm_srli_epi64(z1, 64-39);
z0 = _mm_slli_epi64(z0, 39);
z1 = _mm_slli_epi64(z1, 39);
x2 = _mm_xor_si128(x2, z2);
x3 = _mm_xor_si128(x3, z3);
x2 = _mm_xor_si128(x2, z0);
x3 = _mm_xor_si128(x3, z1);
z0 = _mm_add_epi64(x2, x5);
z1 = _mm_add_epi64(x3, x4);
z0 = _mm_shuffle_epi32(z0, _MM_SHUFFLE(2,3,0,1));
z1 = _mm_shuffle_epi32(z1, _MM_SHUFFLE(2,3,0,1));
x0 = _mm_xor_si128(x0, z0);
x1 = _mm_xor_si128(x1, z1);
z0 = x2;
z1 = x3;
x2 = _mm_alignr_epi8(x6, x7, 8);
x3 = _mm_alignr_epi8(x7, x6, 8);
x6 = _mm_alignr_epi8(z1, z0, 8);
x7 = _mm_alignr_epi8(z0, z1, 8);
}
x0 = _mm_add_epi64(x0, t0);
x1 = _mm_add_epi64(x1, t1);
x2 = _mm_add_epi64(x2, t2);
x3 = _mm_add_epi64(x3, t3);
x4 = _mm_add_epi64(x4, t4);
x5 = _mm_add_epi64(x5, t5);
x6 = _mm_add_epi64(x6, t6);
x7 = _mm_add_epi64(x7, t7);
/* 4: Y_i = X */
/* 6: B'[0..r-1] = Y_even */
/* 6: B'[r..2r-1] = Y_odd */
xmmp = (xmmi *)scrypt_block(Bout, (i / 2) + half);
xmmp[0] = x0;
xmmp[1] = x1;
xmmp[2] = x2;
xmmp[3] = x3;
xmmp[4] = x4;
xmmp[5] = x5;
xmmp[6] = x6;
xmmp[7] = x7;
}
}
#endif
#if defined(SCRYPT_SALSA64_SSSE3)
/* uses salsa64_core_tangle_sse2 */
#undef SCRYPT_MIX
#define SCRYPT_MIX "Salsa64/8-SSSE3"
#undef SCRYPT_SALSA64_INCLUDED
#define SCRYPT_SALSA64_INCLUDED
#endif

View File

@@ -0,0 +1,335 @@
/* x64 */
#if defined(X86_64ASM_XOP) && (!defined(SCRYPT_CHOOSE_COMPILETIME) || !defined(SCRYPT_SALSA64_INCLUDED)) && !defined(CPU_X86_FORCE_INTRINSICS)
#define SCRYPT_SALSA64_XOP
asm_naked_fn_proto(void, scrypt_ChunkMix_xop)(uint64_t *Bout/*[chunkBytes]*/, uint64_t *Bin/*[chunkBytes]*/, uint64_t *Bxor/*[chunkBytes]*/, uint32_t r)
asm_naked_fn(scrypt_ChunkMix_xop)
a1(push rbp)
a2(mov rbp, rsp)
a2(and rsp, ~63)
a2(sub rsp, 128)
a2(lea rcx,[ecx*2]) /* zero extend uint32_t by using ecx, win64 can leave garbage in the top half */
a2(shl rcx,7)
a2(lea r9,[rcx-128])
a2(lea rax,[rsi+r9])
a2(lea r9,[rdx+r9])
a2(and rdx, rdx)
a2(vmovdqa xmm0,[rax+0])
a2(vmovdqa xmm1,[rax+16])
a2(vmovdqa xmm2,[rax+32])
a2(vmovdqa xmm3,[rax+48])
a2(vmovdqa xmm4,[rax+64])
a2(vmovdqa xmm5,[rax+80])
a2(vmovdqa xmm6,[rax+96])
a2(vmovdqa xmm7,[rax+112])
aj(jz scrypt_ChunkMix_xop_no_xor1)
a3(vpxor xmm0,xmm0,[r9+0])
a3(vpxor xmm1,xmm1,[r9+16])
a3(vpxor xmm2,xmm2,[r9+32])
a3(vpxor xmm3,xmm3,[r9+48])
a3(vpxor xmm4,xmm4,[r9+64])
a3(vpxor xmm5,xmm5,[r9+80])
a3(vpxor xmm6,xmm6,[r9+96])
a3(vpxor xmm7,xmm7,[r9+112])
a1(scrypt_ChunkMix_xop_no_xor1:)
a2(xor r9,r9)
a2(xor r8,r8)
a1(scrypt_ChunkMix_xop_loop:)
a2(and rdx, rdx)
a3(vpxor xmm0,xmm0,[rsi+r9+0])
a3(vpxor xmm1,xmm1,[rsi+r9+16])
a3(vpxor xmm2,xmm2,[rsi+r9+32])
a3(vpxor xmm3,xmm3,[rsi+r9+48])
a3(vpxor xmm4,xmm4,[rsi+r9+64])
a3(vpxor xmm5,xmm5,[rsi+r9+80])
a3(vpxor xmm6,xmm6,[rsi+r9+96])
a3(vpxor xmm7,xmm7,[rsi+r9+112])
aj(jz scrypt_ChunkMix_xop_no_xor2)
a3(vpxor xmm0,xmm0,[rdx+r9+0])
a3(vpxor xmm1,xmm1,[rdx+r9+16])
a3(vpxor xmm2,xmm2,[rdx+r9+32])
a3(vpxor xmm3,xmm3,[rdx+r9+48])
a3(vpxor xmm4,xmm4,[rdx+r9+64])
a3(vpxor xmm5,xmm5,[rdx+r9+80])
a3(vpxor xmm6,xmm6,[rdx+r9+96])
a3(vpxor xmm7,xmm7,[rdx+r9+112])
a1(scrypt_ChunkMix_xop_no_xor2:)
a2(vmovdqa [rsp+0],xmm0)
a2(vmovdqa [rsp+16],xmm1)
a2(vmovdqa [rsp+32],xmm2)
a2(vmovdqa [rsp+48],xmm3)
a2(vmovdqa [rsp+64],xmm4)
a2(vmovdqa [rsp+80],xmm5)
a2(vmovdqa [rsp+96],xmm6)
a2(vmovdqa [rsp+112],xmm7)
a2(mov rax,8)
a1(scrypt_salsa64_xop_loop: )
a3(vpaddq xmm8, xmm0, xmm2)
a3(vpaddq xmm9, xmm1, xmm3)
a3(vpshufd xmm8, xmm8, 0xb1)
a3(vpshufd xmm9, xmm9, 0xb1)
a3(vpxor xmm6, xmm6, xmm8)
a3(vpxor xmm7, xmm7, xmm9)
a3(vpaddq xmm10, xmm0, xmm6)
a3(vpaddq xmm11, xmm1, xmm7)
a3(vprotq xmm10, xmm10, 13)
a3(vprotq xmm11, xmm11, 13)
a3(vpxor xmm4, xmm4, xmm10)
a3(vpxor xmm5, xmm5, xmm11)
a3(vpaddq xmm8, xmm6, xmm4)
a3(vpaddq xmm9, xmm7, xmm5)
a3(vprotq xmm8, xmm8, 39)
a3(vprotq xmm9, xmm9, 39)
a3(vpxor xmm2, xmm2, xmm8)
a3(vpxor xmm3, xmm3, xmm9)
a3(vpaddq xmm10, xmm4, xmm2)
a3(vpaddq xmm11, xmm5, xmm3)
a3(vpshufd xmm10, xmm10, 0xb1)
a3(vpshufd xmm11, xmm11, 0xb1)
a3(vpxor xmm0, xmm0, xmm10)
a3(vpxor xmm1, xmm1, xmm11)
a2(vmovdqa xmm8, xmm2)
a2(vmovdqa xmm9, xmm3)
a4(vpalignr xmm2, xmm6, xmm7, 8)
a4(vpalignr xmm3, xmm7, xmm6, 8)
a4(vpalignr xmm6, xmm9, xmm8, 8)
a4(vpalignr xmm7, xmm8, xmm9, 8)
a3(vpaddq xmm10, xmm0, xmm2)
a3(vpaddq xmm11, xmm1, xmm3)
a3(vpshufd xmm10, xmm10, 0xb1)
a3(vpshufd xmm11, xmm11, 0xb1)
a3(vpxor xmm6, xmm6, xmm10)
a3(vpxor xmm7, xmm7, xmm11)
a3(vpaddq xmm8, xmm0, xmm6)
a3(vpaddq xmm9, xmm1, xmm7)
a3(vprotq xmm8, xmm8, 13)
a3(vprotq xmm9, xmm9, 13)
a3(vpxor xmm5, xmm5, xmm8)
a3(vpxor xmm4, xmm4, xmm9)
a3(vpaddq xmm10, xmm6, xmm5)
a3(vpaddq xmm11, xmm7, xmm4)
a3(vprotq xmm10, xmm10, 39)
a3(vprotq xmm11, xmm11, 39)
a3(vpxor xmm2, xmm2, xmm10)
a3(vpxor xmm3, xmm3, xmm11)
a3(vpaddq xmm8, xmm5, xmm2)
a3(vpaddq xmm9, xmm4, xmm3)
a3(vpshufd xmm8, xmm8, 0xb1)
a3(vpshufd xmm9, xmm9, 0xb1)
a3(vpxor xmm0, xmm0, xmm8)
a3(vpxor xmm1, xmm1, xmm9)
a2(vmovdqa xmm10, xmm2)
a2(vmovdqa xmm11, xmm3)
a4(vpalignr xmm2, xmm6, xmm7, 8)
a4(vpalignr xmm3, xmm7, xmm6, 8)
a4(vpalignr xmm6, xmm11, xmm10, 8)
a4(vpalignr xmm7, xmm10, xmm11, 8)
a2(sub rax, 2)
aj(ja scrypt_salsa64_xop_loop)
a3(vpaddq xmm0,xmm0,[rsp+0])
a3(vpaddq xmm1,xmm1,[rsp+16])
a3(vpaddq xmm2,xmm2,[rsp+32])
a3(vpaddq xmm3,xmm3,[rsp+48])
a3(vpaddq xmm4,xmm4,[rsp+64])
a3(vpaddq xmm5,xmm5,[rsp+80])
a3(vpaddq xmm6,xmm6,[rsp+96])
a3(vpaddq xmm7,xmm7,[rsp+112])
a2(lea rax,[r8+r9])
a2(xor r8,rcx)
a2(and rax,~0xff)
a2(add r9,128)
a2(shr rax,1)
a2(add rax, rdi)
a2(cmp r9,rcx)
a2(vmovdqa [rax+0],xmm0)
a2(vmovdqa [rax+16],xmm1)
a2(vmovdqa [rax+32],xmm2)
a2(vmovdqa [rax+48],xmm3)
a2(vmovdqa [rax+64],xmm4)
a2(vmovdqa [rax+80],xmm5)
a2(vmovdqa [rax+96],xmm6)
a2(vmovdqa [rax+112],xmm7)
aj(jne scrypt_ChunkMix_xop_loop)
a2(mov rsp, rbp)
a1(pop rbp)
a1(ret)
asm_naked_fn_end(scrypt_ChunkMix_xop)
#endif
/* intrinsic */
#if defined(X86_INTRINSIC_XOP) && (!defined(SCRYPT_CHOOSE_COMPILETIME) || !defined(SCRYPT_SALSA64_INCLUDED))
#define SCRYPT_SALSA64_XOP
static void asm_calling_convention
scrypt_ChunkMix_xop(uint64_t *Bout/*[chunkBytes]*/, uint64_t *Bin/*[chunkBytes]*/, uint64_t *Bxor/*[chunkBytes]*/, uint32_t r) {
uint32_t i, blocksPerChunk = r * 2, half = 0;
xmmi *xmmp,x0,x1,x2,x3,x4,x5,x6,x7,t0,t1,t2,t3,t4,t5,t6,t7,z0,z1;
size_t rounds;
/* 1: X = B_{2r - 1} */
xmmp = (xmmi *)scrypt_block(Bin, blocksPerChunk - 1);
x0 = xmmp[0];
x1 = xmmp[1];
x2 = xmmp[2];
x3 = xmmp[3];
x4 = xmmp[4];
x5 = xmmp[5];
x6 = xmmp[6];
x7 = xmmp[7];
if (Bxor) {
xmmp = (xmmi *)scrypt_block(Bxor, blocksPerChunk - 1);
x0 = _mm_xor_si128(x0, xmmp[0]);
x1 = _mm_xor_si128(x1, xmmp[1]);
x2 = _mm_xor_si128(x2, xmmp[2]);
x3 = _mm_xor_si128(x3, xmmp[3]);
x4 = _mm_xor_si128(x4, xmmp[4]);
x5 = _mm_xor_si128(x5, xmmp[5]);
x6 = _mm_xor_si128(x6, xmmp[6]);
x7 = _mm_xor_si128(x7, xmmp[7]);
}
/* 2: for i = 0 to 2r - 1 do */
for (i = 0; i < blocksPerChunk; i++, half ^= r) {
/* 3: X = H(X ^ B_i) */
xmmp = (xmmi *)scrypt_block(Bin, i);
x0 = _mm_xor_si128(x0, xmmp[0]);
x1 = _mm_xor_si128(x1, xmmp[1]);
x2 = _mm_xor_si128(x2, xmmp[2]);
x3 = _mm_xor_si128(x3, xmmp[3]);
x4 = _mm_xor_si128(x4, xmmp[4]);
x5 = _mm_xor_si128(x5, xmmp[5]);
x6 = _mm_xor_si128(x6, xmmp[6]);
x7 = _mm_xor_si128(x7, xmmp[7]);
if (Bxor) {
xmmp = (xmmi *)scrypt_block(Bxor, i);
x0 = _mm_xor_si128(x0, xmmp[0]);
x1 = _mm_xor_si128(x1, xmmp[1]);
x2 = _mm_xor_si128(x2, xmmp[2]);
x3 = _mm_xor_si128(x3, xmmp[3]);
x4 = _mm_xor_si128(x4, xmmp[4]);
x5 = _mm_xor_si128(x5, xmmp[5]);
x6 = _mm_xor_si128(x6, xmmp[6]);
x7 = _mm_xor_si128(x7, xmmp[7]);
}
t0 = x0;
t1 = x1;
t2 = x2;
t3 = x3;
t4 = x4;
t5 = x5;
t6 = x6;
t7 = x7;
for (rounds = 8; rounds; rounds -= 2) {
z0 = _mm_add_epi64(x0, x2);
z1 = _mm_add_epi64(x1, x3);
z0 = _mm_shuffle_epi32(z0, _MM_SHUFFLE(2,3,0,1));
z1 = _mm_shuffle_epi32(z1, _MM_SHUFFLE(2,3,0,1));
x6 = _mm_xor_si128(x6, z0);
x7 = _mm_xor_si128(x7, z1);
z0 = _mm_add_epi64(x6, x0);
z1 = _mm_add_epi64(x7, x1);
z0 = _mm_roti_epi64(z0, 13);
z1 = _mm_roti_epi64(z1, 13);
x4 = _mm_xor_si128(x4, z0);
x5 = _mm_xor_si128(x5, z1);
z0 = _mm_add_epi64(x4, x6);
z1 = _mm_add_epi64(x5, x7);
z0 = _mm_roti_epi64(z0, 39);
z1 = _mm_roti_epi64(z1, 39);
x2 = _mm_xor_si128(x2, z0);
x3 = _mm_xor_si128(x3, z1);
z0 = _mm_add_epi64(x2, x4);
z1 = _mm_add_epi64(x3, x5);
z0 = _mm_shuffle_epi32(z0, _MM_SHUFFLE(2,3,0,1));
z1 = _mm_shuffle_epi32(z1, _MM_SHUFFLE(2,3,0,1));
x0 = _mm_xor_si128(x0, z0);
x1 = _mm_xor_si128(x1, z1);
z0 = x2;
z1 = x3;
x2 = _mm_alignr_epi8(x6, x7, 8);
x3 = _mm_alignr_epi8(x7, x6, 8);
x6 = _mm_alignr_epi8(z1, z0, 8);
x7 = _mm_alignr_epi8(z0, z1, 8);
z0 = _mm_add_epi64(x0, x2);
z1 = _mm_add_epi64(x1, x3);
z0 = _mm_shuffle_epi32(z0, _MM_SHUFFLE(2,3,0,1));
z1 = _mm_shuffle_epi32(z1, _MM_SHUFFLE(2,3,0,1));
x6 = _mm_xor_si128(x6, z0);
x7 = _mm_xor_si128(x7, z1);
z0 = _mm_add_epi64(x6, x0);
z1 = _mm_add_epi64(x7, x1);
z0 = _mm_roti_epi64(z0, 13);
z1 = _mm_roti_epi64(z1, 13);
x5 = _mm_xor_si128(x5, z0);
x4 = _mm_xor_si128(x4, z1);
z0 = _mm_add_epi64(x5, x6);
z1 = _mm_add_epi64(x4, x7);
z0 = _mm_roti_epi64(z0, 39);
z1 = _mm_roti_epi64(z1, 39);
x2 = _mm_xor_si128(x2, z0);
x3 = _mm_xor_si128(x3, z1);
z0 = _mm_add_epi64(x2, x5);
z1 = _mm_add_epi64(x3, x4);
z0 = _mm_shuffle_epi32(z0, _MM_SHUFFLE(2,3,0,1));
z1 = _mm_shuffle_epi32(z1, _MM_SHUFFLE(2,3,0,1));
x0 = _mm_xor_si128(x0, z0);
x1 = _mm_xor_si128(x1, z1);
z0 = x2;
z1 = x3;
x2 = _mm_alignr_epi8(x6, x7, 8);
x3 = _mm_alignr_epi8(x7, x6, 8);
x6 = _mm_alignr_epi8(z1, z0, 8);
x7 = _mm_alignr_epi8(z0, z1, 8);
}
x0 = _mm_add_epi64(x0, t0);
x1 = _mm_add_epi64(x1, t1);
x2 = _mm_add_epi64(x2, t2);
x3 = _mm_add_epi64(x3, t3);
x4 = _mm_add_epi64(x4, t4);
x5 = _mm_add_epi64(x5, t5);
x6 = _mm_add_epi64(x6, t6);
x7 = _mm_add_epi64(x7, t7);
/* 4: Y_i = X */
/* 6: B'[0..r-1] = Y_even */
/* 6: B'[r..2r-1] = Y_odd */
xmmp = (xmmi *)scrypt_block(Bout, (i / 2) + half);
xmmp[0] = x0;
xmmp[1] = x1;
xmmp[2] = x2;
xmmp[3] = x3;
xmmp[4] = x4;
xmmp[5] = x5;
xmmp[6] = x6;
xmmp[7] = x7;
}
}
#endif
#if defined(SCRYPT_SALSA64_XOP)
/* uses salsa64_core_tangle_sse2 */
#undef SCRYPT_MIX
#define SCRYPT_MIX "Salsa64/8-XOP"
#undef SCRYPT_SALSA64_INCLUDED
#define SCRYPT_SALSA64_INCLUDED
#endif

View File

@@ -0,0 +1,41 @@
#if !defined(SCRYPT_CHOOSE_COMPILETIME) || !defined(SCRYPT_SALSA64_INCLUDED)
#undef SCRYPT_MIX
#define SCRYPT_MIX "Salsa64/8 Ref"
#undef SCRYPT_SALSA64_INCLUDED
#define SCRYPT_SALSA64_INCLUDED
#define SCRYPT_SALSA64_BASIC
static void
salsa64_core_basic(uint64_t state[16]) {
const size_t rounds = 8;
uint64_t v[16], t;
size_t i;
for (i = 0; i < 16; i++) v[i] = state[i];
#define G(a,b,c,d) \
t = v[a]+v[d]; t = ROTL64(t, 32); v[b] ^= t; \
t = v[b]+v[a]; t = ROTL64(t, 13); v[c] ^= t; \
t = v[c]+v[b]; t = ROTL64(t, 39); v[d] ^= t; \
t = v[d]+v[c]; t = ROTL64(t, 32); v[a] ^= t; \
for (i = 0; i < rounds; i += 2) {
G( 0, 4, 8,12);
G( 5, 9,13, 1);
G(10,14, 2, 6);
G(15, 3, 7,11);
G( 0, 1, 2, 3);
G( 5, 6, 7, 4);
G(10,11, 8, 9);
G(15,12,13,14);
}
for (i = 0; i < 16; i++) state[i] += v[i];
#undef G
}
#endif

View File

@@ -0,0 +1,112 @@
typedef struct scrypt_hmac_state_t {
scrypt_hash_state inner, outer;
} scrypt_hmac_state;
static void
scrypt_hash(scrypt_hash_digest hash, const uint8_t *m, size_t mlen) {
scrypt_hash_state st;
scrypt_hash_init(&st);
scrypt_hash_update(&st, m, mlen);
scrypt_hash_finish(&st, hash);
}
/* hmac */
static void
scrypt_hmac_init(scrypt_hmac_state *st, const uint8_t *key, size_t keylen) {
uint8_t pad[SCRYPT_HASH_BLOCK_SIZE] = {0};
size_t i;
scrypt_hash_init(&st->inner);
scrypt_hash_init(&st->outer);
if (keylen <= SCRYPT_HASH_BLOCK_SIZE) {
/* use the key directly if it's <= blocksize bytes */
memcpy(pad, key, keylen);
} else {
/* if it's > blocksize bytes, hash it */
scrypt_hash(pad, key, keylen);
}
/* inner = (key ^ 0x36) */
/* h(inner || ...) */
for (i = 0; i < SCRYPT_HASH_BLOCK_SIZE; i++)
pad[i] ^= 0x36;
scrypt_hash_update(&st->inner, pad, SCRYPT_HASH_BLOCK_SIZE);
/* outer = (key ^ 0x5c) */
/* h(outer || ...) */
for (i = 0; i < SCRYPT_HASH_BLOCK_SIZE; i++)
pad[i] ^= (0x5c ^ 0x36);
scrypt_hash_update(&st->outer, pad, SCRYPT_HASH_BLOCK_SIZE);
scrypt_ensure_zero(pad, sizeof(pad));
}
static void
scrypt_hmac_update(scrypt_hmac_state *st, const uint8_t *m, size_t mlen) {
/* h(inner || m...) */
scrypt_hash_update(&st->inner, m, mlen);
}
static void
scrypt_hmac_finish(scrypt_hmac_state *st, scrypt_hash_digest mac) {
/* h(inner || m) */
scrypt_hash_digest innerhash;
scrypt_hash_finish(&st->inner, innerhash);
/* h(outer || h(inner || m)) */
scrypt_hash_update(&st->outer, innerhash, sizeof(innerhash));
scrypt_hash_finish(&st->outer, mac);
scrypt_ensure_zero(st, sizeof(*st));
}
static void
scrypt_pbkdf2(const uint8_t *password, size_t password_len, const uint8_t *salt, size_t salt_len, uint64_t N, uint8_t *out, size_t bytes) {
scrypt_hmac_state hmac_pw, hmac_pw_salt, work;
scrypt_hash_digest ti, u;
uint8_t be[4];
uint32_t i, j, blocks;
uint64_t c;
/* bytes must be <= (0xffffffff - (SCRYPT_HASH_DIGEST_SIZE - 1)), which they will always be under scrypt */
/* hmac(password, ...) */
scrypt_hmac_init(&hmac_pw, password, password_len);
/* hmac(password, salt...) */
hmac_pw_salt = hmac_pw;
scrypt_hmac_update(&hmac_pw_salt, salt, salt_len);
blocks = ((uint32_t)bytes + (SCRYPT_HASH_DIGEST_SIZE - 1)) / SCRYPT_HASH_DIGEST_SIZE;
for (i = 1; i <= blocks; i++) {
/* U1 = hmac(password, salt || be(i)) */
U32TO8_BE(be, i);
work = hmac_pw_salt;
scrypt_hmac_update(&work, be, 4);
scrypt_hmac_finish(&work, ti);
memcpy(u, ti, sizeof(u));
/* T[i] = U1 ^ U2 ^ U3... */
for (c = 0; c < N - 1; c++) {
/* UX = hmac(password, U{X-1}) */
work = hmac_pw;
scrypt_hmac_update(&work, u, SCRYPT_HASH_DIGEST_SIZE);
scrypt_hmac_finish(&work, u);
/* T[i] ^= UX */
for (j = 0; j < sizeof(u); j++)
ti[j] ^= u[j];
}
memcpy(out, ti, (bytes > SCRYPT_HASH_DIGEST_SIZE) ? SCRYPT_HASH_DIGEST_SIZE : bytes);
out += SCRYPT_HASH_DIGEST_SIZE;
bytes -= SCRYPT_HASH_DIGEST_SIZE;
}
scrypt_ensure_zero(ti, sizeof(ti));
scrypt_ensure_zero(u, sizeof(u));
scrypt_ensure_zero(&hmac_pw, sizeof(hmac_pw));
scrypt_ensure_zero(&hmac_pw_salt, sizeof(hmac_pw_salt));
}

View File

@@ -0,0 +1,463 @@
#if defined(CPU_X86) && (defined(COMPILER_MSVC) || defined(COMPILER_GCC))
#define X86ASM
/* gcc 2.95 royally screws up stack alignments on variables */
#if ((defined(COMPILER_MSVC) && (COMPILER_MSVC >= COMPILER_MSVC_VS6PP)) || (defined(COMPILER_GCC) && (COMPILER_GCC >= 30000)))
#define X86ASM_SSE
#define X86ASM_SSE2
#endif
#if ((defined(COMPILER_MSVC) && (COMPILER_MSVC >= COMPILER_MSVC_VS2005)) || (defined(COMPILER_GCC) && (COMPILER_GCC >= 40102)))
#define X86ASM_SSSE3
#endif
#if ((defined(COMPILER_MSVC) && (COMPILER_MSVC >= COMPILER_MSVC_VS2010SP1)) || (defined(COMPILER_GCC) && (COMPILER_GCC >= 40400)))
#define X86ASM_AVX
#define X86ASM_XOP
#endif
#if ((defined(COMPILER_MSVC) && (COMPILER_MSVC >= COMPILER_MSVC_VS2012)) || (defined(COMPILER_GCC) && (COMPILER_GCC >= 40700)))
#define X86ASM_AVX2
#endif
#endif
#if defined(CPU_X86_64) && defined(COMPILER_GCC)
#define X86_64ASM
#define X86_64ASM_SSE2
#if (COMPILER_GCC >= 40102)
#define X86_64ASM_SSSE3
#endif
#if (COMPILER_GCC >= 40400)
#define X86_64ASM_AVX
#define X86_64ASM_XOP
#endif
#if (COMPILER_GCC >= 40700)
#define X86_64ASM_AVX2
#endif
#endif
#if defined(COMPILER_MSVC) && (defined(CPU_X86_FORCE_INTRINSICS) || defined(CPU_X86_64))
#define X86_INTRINSIC
#if defined(CPU_X86_64) || defined(X86ASM_SSE)
#define X86_INTRINSIC_SSE
#endif
#if defined(CPU_X86_64) || defined(X86ASM_SSE2)
#define X86_INTRINSIC_SSE2
#endif
#if (COMPILER_MSVC >= COMPILER_MSVC_VS2005)
#define X86_INTRINSIC_SSSE3
#endif
#if (COMPILER_MSVC >= COMPILER_MSVC_VS2010SP1)
#define X86_INTRINSIC_AVX
#define X86_INTRINSIC_XOP
#endif
#if (COMPILER_MSVC >= COMPILER_MSVC_VS2012)
#define X86_INTRINSIC_AVX2
#endif
#endif
#if defined(COMPILER_GCC) && defined(CPU_X86_FORCE_INTRINSICS)
#define X86_INTRINSIC
#if defined(__SSE__)
#define X86_INTRINSIC_SSE
#endif
#if defined(__SSE2__)
#define X86_INTRINSIC_SSE2
#endif
#if defined(__SSSE3__)
#define X86_INTRINSIC_SSSE3
#endif
#if defined(__AVX__)
#define X86_INTRINSIC_AVX
#endif
#if defined(__XOP__)
#define X86_INTRINSIC_XOP
#endif
#if defined(__AVX2__)
#define X86_INTRINSIC_AVX2
#endif
#endif
/* only use simd on windows (or SSE2 on gcc)! */
#if defined(CPU_X86_FORCE_INTRINSICS) || defined(X86_INTRINSIC)
#if defined(X86_INTRINSIC_SSE)
#include <mmintrin.h>
#include <xmmintrin.h>
typedef __m64 qmm;
typedef __m128 xmm;
typedef __m128d xmmd;
#endif
#if defined(X86_INTRINSIC_SSE2)
#include <emmintrin.h>
typedef __m128i xmmi;
#endif
#if defined(X86_INTRINSIC_SSSE3)
#include <tmmintrin.h>
#endif
#if defined(X86_INTRINSIC_AVX)
#include <immintrin.h>
#endif
#if defined(X86_INTRINSIC_XOP)
#if defined(COMPILER_MSVC)
#include <intrin.h>
#else
#include <x86intrin.h>
#endif
#endif
#if defined(X86_INTRINSIC_AVX2)
typedef __m256i ymmi;
#endif
#endif
#if defined(X86_INTRINSIC_SSE2)
typedef union packedelem8_t {
uint8_t u[16];
xmmi v;
} packedelem8;
typedef union packedelem32_t {
uint32_t u[4];
xmmi v;
} packedelem32;
typedef union packedelem64_t {
uint64_t u[2];
xmmi v;
} packedelem64;
#else
typedef union packedelem8_t {
uint8_t u[16];
uint32_t dw[4];
} packedelem8;
typedef union packedelem32_t {
uint32_t u[4];
uint8_t b[16];
} packedelem32;
typedef union packedelem64_t {
uint64_t u[2];
uint8_t b[16];
} packedelem64;
#endif
#if defined(X86_INTRINSIC_SSSE3)
static const packedelem8 ALIGN(16) ssse3_rotl16_32bit = {{2,3,0,1,6,7,4,5,10,11,8,9,14,15,12,13}};
static const packedelem8 ALIGN(16) ssse3_rotl8_32bit = {{3,0,1,2,7,4,5,6,11,8,9,10,15,12,13,14}};
#endif
/*
x86 inline asm for gcc/msvc. usage:
asm_naked_fn_proto(return_type, name) (type parm1, type parm2..)
asm_naked_fn(name)
a1(..)
a2(.., ..)
a3(.., .., ..)
64bit OR 0 paramters: a1(ret)
32bit AND n parameters: aret(4n), eg aret(16) for 4 parameters
asm_naked_fn_end(name)
*/
#if defined(X86ASM) || defined(X86_64ASM)
#if defined(COMPILER_MSVC)
#pragma warning(disable : 4731) /* frame pointer modified by inline assembly */
#define a1(x) __asm {x}
#define a2(x, y) __asm {x, y}
#define a3(x, y, z) __asm {x, y, z}
#define a4(x, y, z, w) __asm {x, y, z, w}
#define aj(x) __asm {x}
#define asm_align8 a1(ALIGN 8)
#define asm_align16 a1(ALIGN 16)
#define asm_calling_convention STDCALL
#define aret(n) a1(ret n)
#define asm_naked_fn_proto(type, fn) static NAKED type asm_calling_convention fn
#define asm_naked_fn(fn) {
#define asm_naked_fn_end(fn) }
#elif defined(COMPILER_GCC)
#define GNU_AS1(x) #x ";\n"
#define GNU_AS2(x, y) #x ", " #y ";\n"
#define GNU_AS3(x, y, z) #x ", " #y ", " #z ";\n"
#define GNU_AS4(x, y, z, w) #x ", " #y ", " #z ", " #w ";\n"
#define GNU_ASFN(x) "\n_" #x ":\n" #x ":\n"
#define GNU_ASJ(x) ".att_syntax prefix\n" #x "\n.intel_syntax noprefix\n"
#define a1(x) GNU_AS1(x)
#define a2(x, y) GNU_AS2(x, y)
#define a3(x, y, z) GNU_AS3(x, y, z)
#define a4(x, y, z, w) GNU_AS4(x, y, z, w)
#define aj(x) GNU_ASJ(x)
#define asm_align8 ".p2align 3,,7"
#define asm_align16 ".p2align 4,,15"
#if defined(OS_WINDOWS)
#define asm_calling_convention CDECL
#define aret(n) a1(ret)
#if defined(X86_64ASM)
#define asm_naked_fn(fn) ; __asm__ ( \
".text\n" \
asm_align16 GNU_ASFN(fn) \
"subq $136, %rsp;" \
"movdqa %xmm6, 0(%rsp);" \
"movdqa %xmm7, 16(%rsp);" \
"movdqa %xmm8, 32(%rsp);" \
"movdqa %xmm9, 48(%rsp);" \
"movdqa %xmm10, 64(%rsp);" \
"movdqa %xmm11, 80(%rsp);" \
"movdqa %xmm12, 96(%rsp);" \
"movq %rdi, 112(%rsp);" \
"movq %rsi, 120(%rsp);" \
"movq %rcx, %rdi;" \
"movq %rdx, %rsi;" \
"movq %r8, %rdx;" \
"movq %r9, %rcx;" \
"call 1f;" \
"movdqa 0(%rsp), %xmm6;" \
"movdqa 16(%rsp), %xmm7;" \
"movdqa 32(%rsp), %xmm8;" \
"movdqa 48(%rsp), %xmm9;" \
"movdqa 64(%rsp), %xmm10;" \
"movdqa 80(%rsp), %xmm11;" \
"movdqa 96(%rsp), %xmm12;" \
"movq 112(%rsp), %rdi;" \
"movq 120(%rsp), %rsi;" \
"addq $136, %rsp;" \
"ret;" \
".intel_syntax noprefix;" \
".p2align 4,,15;" \
"1:;"
#else
#define asm_naked_fn(fn) ; __asm__ (".intel_syntax noprefix;\n.text\n" asm_align16 GNU_ASFN(fn)
#endif
#else
#define asm_calling_convention STDCALL
#define aret(n) a1(ret n)
#define asm_naked_fn(fn) ; __asm__ (".intel_syntax noprefix;\n.text\n" asm_align16 GNU_ASFN(fn)
#endif
#define asm_naked_fn_proto(type, fn) extern type asm_calling_convention fn
#define asm_naked_fn_end(fn) ".att_syntax prefix;\n" );
#define asm_gcc() __asm__ __volatile__(".intel_syntax noprefix;\n"
#define asm_gcc_parms() ".att_syntax prefix;"
#define asm_gcc_trashed() __asm__ __volatile__("" :::
#define asm_gcc_end() );
#else
need x86 asm
#endif
#endif /* X86ASM || X86_64ASM */
#if defined(CPU_X86) || defined(CPU_X86_64)
typedef enum cpu_flags_x86_t {
cpu_mmx = 1 << 0,
cpu_sse = 1 << 1,
cpu_sse2 = 1 << 2,
cpu_sse3 = 1 << 3,
cpu_ssse3 = 1 << 4,
cpu_sse4_1 = 1 << 5,
cpu_sse4_2 = 1 << 6,
cpu_avx = 1 << 7,
cpu_xop = 1 << 8,
cpu_avx2 = 1 << 9
} cpu_flags_x86;
typedef enum cpu_vendors_x86_t {
cpu_nobody,
cpu_intel,
cpu_amd
} cpu_vendors_x86;
typedef struct x86_regs_t {
uint32_t eax, ebx, ecx, edx;
} x86_regs;
#if defined(X86ASM)
asm_naked_fn_proto(int, has_cpuid)(void)
asm_naked_fn(has_cpuid)
a1(pushfd)
a1(pop eax)
a2(mov ecx, eax)
a2(xor eax, 0x200000)
a1(push eax)
a1(popfd)
a1(pushfd)
a1(pop eax)
a2(xor eax, ecx)
a2(shr eax, 21)
a2(and eax, 1)
a1(push ecx)
a1(popfd)
a1(ret)
asm_naked_fn_end(has_cpuid)
#endif /* X86ASM */
static void NOINLINE
get_cpuid(x86_regs *regs, uint32_t flags) {
#if defined(COMPILER_MSVC)
__cpuid((int *)regs, (int)flags);
#else
#if defined(CPU_X86_64)
#define cpuid_bx rbx
#else
#define cpuid_bx ebx
#endif
asm_gcc()
a1(push cpuid_bx)
a2(xor ecx, ecx)
a1(cpuid)
a2(mov [%1 + 0], eax)
a2(mov [%1 + 4], ebx)
a2(mov [%1 + 8], ecx)
a2(mov [%1 + 12], edx)
a1(pop cpuid_bx)
asm_gcc_parms() : "+a"(flags) : "S"(regs) : "%ecx", "%edx", "cc"
asm_gcc_end()
#endif
}
#if defined(X86ASM_AVX) || defined(X86_64ASM_AVX)
static uint64_t NOINLINE
get_xgetbv(uint32_t flags) {
#if defined(COMPILER_MSVC)
return _xgetbv(flags);
#else
uint32_t lo, hi;
asm_gcc()
a1(xgetbv)
asm_gcc_parms() : "+c"(flags), "=a" (lo), "=d" (hi)
asm_gcc_end()
return ((uint64_t)lo | ((uint64_t)hi << 32));
#endif
}
#endif // AVX support
#if defined(SCRYPT_TEST_SPEED)
size_t cpu_detect_mask = (size_t)-1;
#endif
static size_t
detect_cpu(void) {
//union { uint8_t s[12]; uint32_t i[3]; } vendor_string;
//cpu_vendors_x86 vendor = cpu_nobody;
x86_regs regs;
uint32_t max_level, max_ext_level;
size_t cpu_flags = 0;
#if defined(X86ASM_AVX) || defined(X86_64ASM_AVX)
uint64_t xgetbv_flags;
#endif
#if defined(CPU_X86)
if (!has_cpuid())
return cpu_flags;
#endif
get_cpuid(&regs, 0);
max_level = regs.eax;
#if 0
vendor_string.i[0] = regs.ebx;
vendor_string.i[1] = regs.edx;
vendor_string.i[2] = regs.ecx;
if (scrypt_verify(vendor_string.s, (const uint8_t *)"GenuineIntel", 12))
vendor = cpu_intel;
else if (scrypt_verify(vendor_string.s, (const uint8_t *)"AuthenticAMD", 12))
vendor = cpu_amd;
#endif
if (max_level & 0x00000500) {
/* "Intel P5 pre-B0" */
cpu_flags |= cpu_mmx;
return cpu_flags;
}
if (max_level < 1)
return cpu_flags;
get_cpuid(&regs, 1);
#if defined(X86ASM_AVX) || defined(X86_64ASM_AVX)
/* xsave/xrestore */
if (regs.ecx & (1 << 27)) {
xgetbv_flags = get_xgetbv(0);
if ((regs.ecx & (1 << 28)) && (xgetbv_flags & 0x6)) cpu_flags |= cpu_avx;
}
#endif
if (regs.ecx & (1 << 20)) cpu_flags |= cpu_sse4_2;
if (regs.ecx & (1 << 19)) cpu_flags |= cpu_sse4_2;
if (regs.ecx & (1 << 9)) cpu_flags |= cpu_ssse3;
if (regs.ecx & (1 )) cpu_flags |= cpu_sse3;
if (regs.edx & (1 << 26)) cpu_flags |= cpu_sse2;
if (regs.edx & (1 << 25)) cpu_flags |= cpu_sse;
if (regs.edx & (1 << 23)) cpu_flags |= cpu_mmx;
if (cpu_flags & cpu_avx) {
if (max_level >= 7) {
get_cpuid(&regs, 7);
if (regs.ebx & (1 << 5)) cpu_flags |= cpu_avx2;
}
get_cpuid(&regs, 0x80000000);
max_ext_level = regs.eax;
if (max_ext_level >= 0x80000001) {
get_cpuid(&regs, 0x80000001);
if (regs.ecx & (1 << 11)) cpu_flags |= cpu_xop;
}
}
#if defined(SCRYPT_TEST_SPEED)
cpu_flags &= cpu_detect_mask;
#endif
return cpu_flags;
}
#if defined(SCRYPT_TEST_SPEED)
static const char *
get_top_cpuflag_desc(size_t flag) {
if (flag & cpu_avx2) return "AVX2";
else if (flag & cpu_xop) return "XOP";
else if (flag & cpu_avx) return "AVX";
else if (flag & cpu_sse4_2) return "SSE4.2";
else if (flag & cpu_sse4_1) return "SSE4.1";
else if (flag & cpu_ssse3) return "SSSE3";
else if (flag & cpu_sse2) return "SSE2";
else if (flag & cpu_sse) return "SSE";
else if (flag & cpu_mmx) return "MMX";
else return "Basic";
}
#endif
/* enable the highest system-wide option */
#if defined(SCRYPT_CHOOSE_COMPILETIME)
#if !defined(__AVX2__)
#undef X86_64ASM_AVX2
#undef X86ASM_AVX2
#undef X86_INTRINSIC_AVX2
#endif
#if !defined(__XOP__)
#undef X86_64ASM_XOP
#undef X86ASM_XOP
#undef X86_INTRINSIC_XOP
#endif
#if !defined(__AVX__)
#undef X86_64ASM_AVX
#undef X86ASM_AVX
#undef X86_INTRINSIC_AVX
#endif
#if !defined(__SSSE3__)
#undef X86_64ASM_SSSE3
#undef X86ASM_SSSE3
#undef X86_INTRINSIC_SSSE3
#endif
#if !defined(__SSE2__)
#undef X86_64ASM_SSE2
#undef X86ASM_SSE2
#undef X86_INTRINSIC_SSE2
#endif
#endif
#endif /* defined(CPU_X86) || defined(CPU_X86_64) */

View File

@@ -0,0 +1,310 @@
/* determine os */
#if defined(_WIN32) || defined(_WIN64) || defined(__TOS_WIN__) || defined(__WINDOWS__)
#include <windows.h>
#include <wincrypt.h>
#define OS_WINDOWS
#elif defined(sun) || defined(__sun) || defined(__SVR4) || defined(__svr4__)
#include <sys/mman.h>
#include <sys/time.h>
#include <fcntl.h>
#define OS_SOLARIS
#else
#include <sys/mman.h>
#include <sys/time.h>
#include <sys/param.h> /* need this to define BSD */
#include <unistd.h>
#include <fcntl.h>
#define OS_NIX
#if defined(__linux__)
#include <endian.h>
#define OS_LINUX
#elif defined(BSD)
#define OS_BSD
#if defined(MACOS_X) || (defined(__APPLE__) & defined(__MACH__))
#define OS_OSX
#elif defined(macintosh) || defined(Macintosh)
#define OS_MAC
#elif defined(__OpenBSD__)
#define OS_OPENBSD
#endif
#endif
#endif
/* determine compiler */
#if defined(_MSC_VER)
#define COMPILER_MSVC_VS6 120000000
#define COMPILER_MSVC_VS6PP 121000000
#define COMPILER_MSVC_VS2002 130000000
#define COMPILER_MSVC_VS2003 131000000
#define COMPILER_MSVC_VS2005 140050727
#define COMPILER_MSVC_VS2008 150000000
#define COMPILER_MSVC_VS2008SP1 150030729
#define COMPILER_MSVC_VS2010 160000000
#define COMPILER_MSVC_VS2010SP1 160040219
#define COMPILER_MSVC_VS2012RC 170000000
#define COMPILER_MSVC_VS2012 170050727
#if _MSC_FULL_VER > 100000000
#define COMPILER_MSVC (_MSC_FULL_VER)
#else
#define COMPILER_MSVC (_MSC_FULL_VER * 10)
#endif
#if ((_MSC_VER == 1200) && defined(_mm_free))
#undef COMPILER_MSVC
#define COMPILER_MSVC COMPILER_MSVC_VS6PP
#endif
#pragma warning(disable : 4127) /* conditional expression is constant */
#pragma warning(disable : 4100) /* unreferenced formal parameter */
#ifndef _CRT_SECURE_NO_WARNINGS
#define _CRT_SECURE_NO_WARNINGS
#endif
#include <float.h>
#include <stdlib.h> /* _rotl */
#include <intrin.h>
typedef unsigned char uint8_t;
typedef unsigned short uint16_t;
typedef unsigned int uint32_t;
typedef signed int int32_t;
typedef unsigned __int64 uint64_t;
typedef signed __int64 int64_t;
#define ROTL32(a,b) _rotl(a,b)
#define ROTR32(a,b) _rotr(a,b)
#define ROTL64(a,b) _rotl64(a,b)
#define ROTR64(a,b) _rotr64(a,b)
#undef NOINLINE
#define NOINLINE __declspec(noinline)
#undef NORETURN
#define NORETURN
#undef INLINE
#define INLINE __forceinline
#undef FASTCALL
#define FASTCALL __fastcall
#undef CDECL
#define CDECL __cdecl
#undef STDCALL
#define STDCALL __stdcall
#undef NAKED
#define NAKED __declspec(naked)
#define ALIGN(n) __declspec(align(n))
#endif
#if defined(__ICC)
#define COMPILER_INTEL
#endif
#if defined(__GNUC__)
#if (__GNUC__ >= 3)
#define COMPILER_GCC_PATCHLEVEL __GNUC_PATCHLEVEL__
#else
#define COMPILER_GCC_PATCHLEVEL 0
#endif
#define COMPILER_GCC (__GNUC__ * 10000 + __GNUC_MINOR__ * 100 + COMPILER_GCC_PATCHLEVEL)
#define ROTL32(a,b) (((a) << (b)) | ((a) >> (32 - b)))
#define ROTR32(a,b) (((a) >> (b)) | ((a) << (32 - b)))
#define ROTL64(a,b) (((a) << (b)) | ((a) >> (64 - b)))
#define ROTR64(a,b) (((a) >> (b)) | ((a) << (64 - b)))
#undef NOINLINE
#if (COMPILER_GCC >= 30000)
#define NOINLINE __attribute__((noinline))
#else
#define NOINLINE
#endif
#undef NORETURN
#if (COMPILER_GCC >= 30000)
#define NORETURN __attribute__((noreturn))
#else
#define NORETURN
#endif
#undef INLINE
#if (COMPILER_GCC >= 30000)
#define INLINE __attribute__((always_inline))
#else
#define INLINE inline
#endif
#undef FASTCALL
#if (COMPILER_GCC >= 30400)
#define FASTCALL __attribute__((fastcall))
#else
#define FASTCALL
#endif
#undef CDECL
#define CDECL __attribute__((cdecl))
#undef STDCALL
#define STDCALL __attribute__((stdcall))
#define ALIGN(n) __attribute__((aligned(n)))
#include <stdint.h>
#endif
#if defined(__MINGW32__) || defined(__MINGW64__)
#define COMPILER_MINGW
#endif
#if defined(__PATHCC__)
#define COMPILER_PATHCC
#endif
#define OPTIONAL_INLINE
#if defined(OPTIONAL_INLINE)
#undef OPTIONAL_INLINE
#define OPTIONAL_INLINE INLINE
#else
#define OPTIONAL_INLINE
#endif
#define CRYPTO_FN NOINLINE STDCALL
/* determine cpu */
#if defined(__amd64__) || defined(__amd64) || defined(__x86_64__ ) || defined(_M_X64)
#define CPU_X86_64
#elif defined(__i586__) || defined(__i686__) || (defined(_M_IX86) && (_M_IX86 >= 500))
#define CPU_X86 500
#elif defined(__i486__) || (defined(_M_IX86) && (_M_IX86 >= 400))
#define CPU_X86 400
#elif defined(__i386__) || (defined(_M_IX86) && (_M_IX86 >= 300)) || defined(__X86__) || defined(_X86_) || defined(__I86__)
#define CPU_X86 300
#elif defined(__ia64__) || defined(_IA64) || defined(__IA64__) || defined(_M_IA64) || defined(__ia64)
#define CPU_IA64
#endif
#if defined(__sparc__) || defined(__sparc) || defined(__sparcv9)
#define CPU_SPARC
#if defined(__sparcv9)
#define CPU_SPARC64
#endif
#endif
#if defined(CPU_X86_64) || defined(CPU_IA64) || defined(CPU_SPARC64) || defined(__64BIT__) || defined(__LP64__) || defined(_LP64) || (defined(_MIPS_SZLONG) && (_MIPS_SZLONG == 64))
#define CPU_64BITS
#undef FASTCALL
#define FASTCALL
#undef CDECL
#define CDECL
#undef STDCALL
#define STDCALL
#endif
#if defined(powerpc) || defined(__PPC__) || defined(__ppc__) || defined(_ARCH_PPC) || defined(__powerpc__) || defined(__powerpc) || defined(POWERPC) || defined(_M_PPC)
#define CPU_PPC
#if defined(_ARCH_PWR7)
#define CPU_POWER7
#elif defined(__64BIT__)
#define CPU_PPC64
#else
#define CPU_PPC32
#endif
#endif
#if defined(__hppa__) || defined(__hppa)
#define CPU_HPPA
#endif
#if defined(__alpha__) || defined(__alpha) || defined(_M_ALPHA)
#define CPU_ALPHA
#endif
/* endian */
#if ((defined(__BYTE_ORDER) && defined(__LITTLE_ENDIAN) && (__BYTE_ORDER == __LITTLE_ENDIAN)) || \
(defined(BYTE_ORDER) && defined(LITTLE_ENDIAN) && (BYTE_ORDER == LITTLE_ENDIAN)) || \
(defined(CPU_X86) || defined(CPU_X86_64)) || \
(defined(vax) || defined(MIPSEL) || defined(_MIPSEL)))
#define CPU_LE
#elif ((defined(__BYTE_ORDER) && defined(__BIG_ENDIAN) && (__BYTE_ORDER == __BIG_ENDIAN)) || \
(defined(BYTE_ORDER) && defined(BIG_ENDIAN) && (BYTE_ORDER == BIG_ENDIAN)) || \
(defined(CPU_SPARC) || defined(CPU_PPC) || defined(mc68000) || defined(sel)) || defined(_MIPSEB))
#define CPU_BE
#else
/* unknown endian! */
#endif
#define U8TO32_BE(p) \
(((uint32_t)((p)[0]) << 24) | ((uint32_t)((p)[1]) << 16) | \
((uint32_t)((p)[2]) << 8) | ((uint32_t)((p)[3]) ))
#define U8TO32_LE(p) \
(((uint32_t)((p)[0]) ) | ((uint32_t)((p)[1]) << 8) | \
((uint32_t)((p)[2]) << 16) | ((uint32_t)((p)[3]) << 24))
#define U32TO8_BE(p, v) \
(p)[0] = (uint8_t)((v) >> 24); (p)[1] = (uint8_t)((v) >> 16); \
(p)[2] = (uint8_t)((v) >> 8); (p)[3] = (uint8_t)((v) );
#define U32TO8_LE(p, v) \
(p)[0] = (uint8_t)((v) ); (p)[1] = (uint8_t)((v) >> 8); \
(p)[2] = (uint8_t)((v) >> 16); (p)[3] = (uint8_t)((v) >> 24);
#define U8TO64_BE(p) \
(((uint64_t)U8TO32_BE(p) << 32) | (uint64_t)U8TO32_BE((p) + 4))
#define U8TO64_LE(p) \
(((uint64_t)U8TO32_LE(p)) | ((uint64_t)U8TO32_LE((p) + 4) << 32))
#define U64TO8_BE(p, v) \
U32TO8_BE((p), (uint32_t)((v) >> 32)); \
U32TO8_BE((p) + 4, (uint32_t)((v) ));
#define U64TO8_LE(p, v) \
U32TO8_LE((p), (uint32_t)((v) )); \
U32TO8_LE((p) + 4, (uint32_t)((v) >> 32));
#define U32_SWAP(v) { \
(v) = (((v) << 8) & 0xFF00FF00 ) | (((v) >> 8) & 0xFF00FF ); \
(v) = ((v) << 16) | ((v) >> 16); \
}
#define U64_SWAP(v) { \
(v) = (((v) << 8) & 0xFF00FF00FF00FF00ull ) | (((v) >> 8) & 0x00FF00FF00FF00FFull ); \
(v) = (((v) << 16) & 0xFFFF0000FFFF0000ull ) | (((v) >> 16) & 0x0000FFFF0000FFFFull ); \
(v) = ((v) << 32) | ((v) >> 32); \
}
static int
scrypt_verify(const uint8_t *x, const uint8_t *y, size_t len) {
uint32_t differentbits = 0;
while (len--)
differentbits |= (*x++ ^ *y++);
return (1 & ((differentbits - 1) >> 8));
}
static void
scrypt_ensure_zero(void *p, size_t len) {
#if ((defined(CPU_X86) || defined(CPU_X86_64)) && defined(COMPILER_MSVC))
__stosb((unsigned char *)p, 0, len);
#elif (defined(CPU_X86) && defined(COMPILER_GCC))
__asm__ __volatile__(
"pushl %%edi;\n"
"pushl %%ecx;\n"
"rep stosb;\n"
"popl %%ecx;\n"
"popl %%edi;\n"
:: "a"(0), "D"(p), "c"(len) : "cc", "memory"
);
#elif (defined(CPU_X86_64) && defined(COMPILER_GCC))
__asm__ __volatile__(
"pushq %%rdi;\n"
"pushq %%rcx;\n"
"rep stosb;\n"
"popq %%rcx;\n"
"popq %%rdi;\n"
:: "a"(0), "D"(p), "c"(len) : "cc", "memory"
);
#else
volatile uint8_t *b = (volatile uint8_t *)p;
size_t i;
for (i = 0; i < len; i++)
b[i] = 0;
#endif
}
#include "scrypt-jane-portable-x86.h"
#if !defined(asm_calling_convention)
#define asm_calling_convention
#endif

View File

@@ -0,0 +1,74 @@
#if !defined(SCRYPT_CHOOSE_COMPILETIME)
/* function type returned by scrypt_getROMix, used with cpu detection */
typedef void (FASTCALL *scrypt_ROMixfn)(scrypt_mix_word_t *X/*[chunkWords]*/, scrypt_mix_word_t *Y/*[chunkWords]*/, scrypt_mix_word_t *V/*[chunkWords * N]*/, uint32_t N, uint32_t r);
#endif
/* romix pre/post nop function */
static void asm_calling_convention
scrypt_romix_nop(scrypt_mix_word_t *blocks, size_t nblocks) {
(void)blocks; (void)nblocks;
}
/* romix pre/post endian conversion function */
static void asm_calling_convention
scrypt_romix_convert_endian(scrypt_mix_word_t *blocks, size_t nblocks) {
#if !defined(CPU_LE)
static const union { uint8_t b[2]; uint16_t w; } endian_test = {{1,0}};
size_t i;
if (endian_test.w == 0x100) {
nblocks *= SCRYPT_BLOCK_WORDS;
for (i = 0; i < nblocks; i++) {
SCRYPT_WORD_ENDIAN_SWAP(blocks[i]);
}
}
#else
(void)blocks; (void)nblocks;
#endif
}
/* chunkmix test function */
typedef void (asm_calling_convention *chunkmixfn)(scrypt_mix_word_t *Bout/*[chunkWords]*/, scrypt_mix_word_t *Bin/*[chunkWords]*/, scrypt_mix_word_t *Bxor/*[chunkWords]*/, uint32_t r);
typedef void (asm_calling_convention *blockfixfn)(scrypt_mix_word_t *blocks, size_t nblocks);
static int
scrypt_test_mix_instance(chunkmixfn mixfn, blockfixfn prefn, blockfixfn postfn, const uint8_t expected[16]) {
/* r = 2, (2 * r) = 4 blocks in a chunk, 4 * SCRYPT_BLOCK_WORDS total */
const uint32_t r = 2, blocks = 2 * r, words = blocks * SCRYPT_BLOCK_WORDS;
#if (defined(X86ASM_AVX2) || defined(X86_64ASM_AVX2) || defined(X86_INTRINSIC_AVX2))
scrypt_mix_word_t ALIGN(32) chunk[2][4 * SCRYPT_BLOCK_WORDS], v;
#else
scrypt_mix_word_t ALIGN(16) chunk[2][4 * SCRYPT_BLOCK_WORDS], v;
#endif
uint8_t final[16];
size_t i;
for (i = 0; i < words; i++) {
v = (scrypt_mix_word_t)i;
v = (v << 8) | v;
v = (v << 16) | v;
chunk[0][i] = v;
}
prefn(chunk[0], blocks);
mixfn(chunk[1], chunk[0], NULL, r);
postfn(chunk[1], blocks);
/* grab the last 16 bytes of the final block */
for (i = 0; i < 16; i += sizeof(scrypt_mix_word_t)) {
SCRYPT_WORDTO8_LE(final + i, chunk[1][words - (16 / sizeof(scrypt_mix_word_t)) + (i / sizeof(scrypt_mix_word_t))]);
}
return scrypt_verify(expected, final, 16);
}
/* returns a pointer to item i, where item is len scrypt_mix_word_t's long */
static scrypt_mix_word_t *
scrypt_item(scrypt_mix_word_t *base, scrypt_mix_word_t i, scrypt_mix_word_t len) {
return base + (i * len);
}
/* returns a pointer to block i */
static scrypt_mix_word_t *
scrypt_block(scrypt_mix_word_t *base, scrypt_mix_word_t i) {
return base + (i * SCRYPT_BLOCK_WORDS);
}

View File

@@ -0,0 +1,122 @@
#if !defined(SCRYPT_CHOOSE_COMPILETIME) || !defined(SCRYPT_HAVE_ROMIX)
#if defined(SCRYPT_CHOOSE_COMPILETIME)
#undef SCRYPT_ROMIX_FN
#define SCRYPT_ROMIX_FN scrypt_ROMix
#endif
#undef SCRYPT_HAVE_ROMIX
#define SCRYPT_HAVE_ROMIX
#if !defined(SCRYPT_CHUNKMIX_FN)
#define SCRYPT_CHUNKMIX_FN scrypt_ChunkMix_basic
/*
Bout = ChunkMix(Bin)
2*r: number of blocks in the chunk
*/
static void asm_calling_convention
SCRYPT_CHUNKMIX_FN(scrypt_mix_word_t *Bout/*[chunkWords]*/, scrypt_mix_word_t *Bin/*[chunkWords]*/, scrypt_mix_word_t *Bxor/*[chunkWords]*/, uint32_t r) {
#if (defined(X86ASM_AVX2) || defined(X86_64ASM_AVX2) || defined(X86_INTRINSIC_AVX2))
scrypt_mix_word_t ALIGN(32) X[SCRYPT_BLOCK_WORDS], *block;
#else
scrypt_mix_word_t ALIGN(16) X[SCRYPT_BLOCK_WORDS], *block;
#endif
uint32_t i, j, blocksPerChunk = /*r * 2*/2, half = 0;
/* 1: X = B_{2r - 1} */
block = scrypt_block(Bin, blocksPerChunk - 1);
for (i = 0; i < SCRYPT_BLOCK_WORDS; i++)
X[i] = block[i];
if (Bxor) {
block = scrypt_block(Bxor, blocksPerChunk - 1);
for (i = 0; i < SCRYPT_BLOCK_WORDS; i++)
X[i] ^= block[i];
}
/* 2: for i = 0 to 2r - 1 do */
for (i = 0; i < blocksPerChunk; i++, half ^= /*r*/1) {
/* 3: X = H(X ^ B_i) */
block = scrypt_block(Bin, i);
for (j = 0; j < SCRYPT_BLOCK_WORDS; j++)
X[j] ^= block[j];
if (Bxor) {
block = scrypt_block(Bxor, i);
for (j = 0; j < SCRYPT_BLOCK_WORDS; j++)
X[j] ^= block[j];
}
SCRYPT_MIX_FN(X);
/* 4: Y_i = X */
/* 6: B'[0..r-1] = Y_even */
/* 6: B'[r..2r-1] = Y_odd */
block = scrypt_block(Bout, (i / 2) + half);
for (j = 0; j < SCRYPT_BLOCK_WORDS; j++)
block[j] = X[j];
}
}
#endif
/*
X = ROMix(X)
X: chunk to mix
Y: scratch chunk
N: number of rounds
V[N]: array of chunks to randomly index in to
2*r: number of blocks in a chunk
*/
static void NOINLINE FASTCALL
SCRYPT_ROMIX_FN(scrypt_mix_word_t *X/*[chunkWords]*/, scrypt_mix_word_t *Y/*[chunkWords]*/, scrypt_mix_word_t *V/*[N * chunkWords]*/, uint32_t N, uint32_t r) {
uint32_t i, j, chunkWords = (uint32_t)(SCRYPT_BLOCK_WORDS * 2);
scrypt_mix_word_t *block = V;
SCRYPT_ROMIX_TANGLE_FN(X, 2);
/* 1: X = B */
/* implicit */
/* 2: for i = 0 to N - 1 do */
memcpy(block, X, chunkWords * sizeof(scrypt_mix_word_t));
for (i = 0; i < /*N - 1*/511; i++, block += chunkWords) {
/* 3: V_i = X */
/* 4: X = H(X) */
SCRYPT_CHUNKMIX_FN(block + chunkWords, block, NULL, /*r*/1);
}
SCRYPT_CHUNKMIX_FN(X, block, NULL, 1);
/* 6: for i = 0 to N - 1 do */
for (i = 0; i < /*N*/512; i += 2) {
/* 7: j = Integerify(X) % N */
j = X[chunkWords - SCRYPT_BLOCK_WORDS] & /*(N - 1)*/511;
/* 8: X = H(Y ^ V_j) */
SCRYPT_CHUNKMIX_FN(Y, X, scrypt_item(V, j, chunkWords), 1);
/* 7: j = Integerify(Y) % N */
j = Y[chunkWords - SCRYPT_BLOCK_WORDS] & /*(N - 1)*/511;
/* 8: X = H(Y ^ V_j) */
SCRYPT_CHUNKMIX_FN(X, Y, scrypt_item(V, j, chunkWords), 1);
}
/* 10: B' = X */
/* implicit */
SCRYPT_ROMIX_UNTANGLE_FN(X, 2);
}
#endif /* !defined(SCRYPT_CHOOSE_COMPILETIME) || !defined(SCRYPT_HAVE_ROMIX) */
#undef SCRYPT_CHUNKMIX_FN
#undef SCRYPT_ROMIX_FN
#undef SCRYPT_MIX_FN
#undef SCRYPT_ROMIX_TANGLE_FN
#undef SCRYPT_ROMIX_UNTANGLE_FN

View File

@@ -0,0 +1,23 @@
#if defined(SCRYPT_SALSA64)
#include "scrypt-jane-salsa64.h"
#else
#define SCRYPT_MIX_BASE "ERROR"
typedef uint32_t scrypt_mix_word_t;
#define SCRYPT_WORDTO8_LE U32TO8_LE
#define SCRYPT_WORD_ENDIAN_SWAP U32_SWAP
#define SCRYPT_BLOCK_BYTES 64
#define SCRYPT_BLOCK_WORDS (SCRYPT_BLOCK_BYTES / sizeof(scrypt_mix_word_t))
#if !defined(SCRYPT_CHOOSE_COMPILETIME)
static void FASTCALL scrypt_ROMix_error(scrypt_mix_word_t *X/*[chunkWords]*/, scrypt_mix_word_t *Y/*[chunkWords]*/, scrypt_mix_word_t *V/*[chunkWords * N]*/, uint32_t N, uint32_t r) {}
static scrypt_ROMixfn scrypt_getROMix(void) { return scrypt_ROMix_error; }
#else
static void FASTCALL scrypt_ROMix(scrypt_mix_word_t *X, scrypt_mix_word_t *Y, scrypt_mix_word_t *V, uint32_t N, uint32_t r) {}
#endif
static int scrypt_test_mix(void) { return 0; }
#error must define a mix function!
#endif
#if !defined(SCRYPT_CHOOSE_COMPILETIME)
#undef SCRYPT_MIX
#define SCRYPT_MIX SCRYPT_MIX_BASE
#endif

View File

@@ -0,0 +1,183 @@
#define SCRYPT_MIX_BASE "Salsa64/8"
typedef uint64_t scrypt_mix_word_t;
#define SCRYPT_WORDTO8_LE U64TO8_LE
#define SCRYPT_WORD_ENDIAN_SWAP U64_SWAP
#define SCRYPT_BLOCK_BYTES 128
#define SCRYPT_BLOCK_WORDS (SCRYPT_BLOCK_BYTES / sizeof(scrypt_mix_word_t))
/* must have these here in case block bytes is ever != 64 */
#include "scrypt-jane-romix-basic.h"
#include "scrypt-jane-mix_salsa64-avx2.h"
#include "scrypt-jane-mix_salsa64-xop.h"
#include "scrypt-jane-mix_salsa64-avx.h"
#include "scrypt-jane-mix_salsa64-ssse3.h"
#include "scrypt-jane-mix_salsa64-sse2.h"
#include "scrypt-jane-mix_salsa64.h"
#if defined(SCRYPT_SALSA64_AVX2)
#define SCRYPT_CHUNKMIX_FN scrypt_ChunkMix_avx2
#define SCRYPT_ROMIX_FN scrypt_ROMix_avx2
#define SCRYPT_ROMIX_TANGLE_FN salsa64_core_tangle_sse2
#define SCRYPT_ROMIX_UNTANGLE_FN salsa64_core_tangle_sse2
#include "scrypt-jane-romix-template.h"
#endif
#if defined(SCRYPT_SALSA64_XOP)
#define SCRYPT_CHUNKMIX_FN scrypt_ChunkMix_xop
#define SCRYPT_ROMIX_FN scrypt_ROMix_xop
#define SCRYPT_ROMIX_TANGLE_FN salsa64_core_tangle_sse2
#define SCRYPT_ROMIX_UNTANGLE_FN salsa64_core_tangle_sse2
#include "scrypt-jane-romix-template.h"
#endif
#if defined(SCRYPT_SALSA64_AVX)
#define SCRYPT_CHUNKMIX_FN scrypt_ChunkMix_avx
#define SCRYPT_ROMIX_FN scrypt_ROMix_avx
#define SCRYPT_ROMIX_TANGLE_FN salsa64_core_tangle_sse2
#define SCRYPT_ROMIX_UNTANGLE_FN salsa64_core_tangle_sse2
#include "scrypt-jane-romix-template.h"
#endif
#if defined(SCRYPT_SALSA64_SSSE3)
#define SCRYPT_CHUNKMIX_FN scrypt_ChunkMix_ssse3
#define SCRYPT_ROMIX_FN scrypt_ROMix_ssse3
#define SCRYPT_ROMIX_TANGLE_FN salsa64_core_tangle_sse2
#define SCRYPT_ROMIX_UNTANGLE_FN salsa64_core_tangle_sse2
#include "scrypt-jane-romix-template.h"
#endif
#if defined(SCRYPT_SALSA64_SSE2)
#define SCRYPT_CHUNKMIX_FN scrypt_ChunkMix_sse2
#define SCRYPT_ROMIX_FN scrypt_ROMix_sse2
#define SCRYPT_ROMIX_TANGLE_FN salsa64_core_tangle_sse2
#define SCRYPT_ROMIX_UNTANGLE_FN salsa64_core_tangle_sse2
#include "scrypt-jane-romix-template.h"
#endif
/* cpu agnostic */
#define SCRYPT_ROMIX_FN scrypt_ROMix_basic
#define SCRYPT_MIX_FN salsa64_core_basic
#define SCRYPT_ROMIX_TANGLE_FN scrypt_romix_convert_endian
#define SCRYPT_ROMIX_UNTANGLE_FN scrypt_romix_convert_endian
#include "scrypt-jane-romix-template.h"
#if !defined(SCRYPT_CHOOSE_COMPILETIME)
static scrypt_ROMixfn
scrypt_getROMix(void) {
size_t cpuflags = detect_cpu();
#if defined(SCRYPT_SALSA64_AVX2)
if (cpuflags & cpu_avx2)
return scrypt_ROMix_avx2;
else
#endif
#if defined(SCRYPT_SALSA64_XOP)
if (cpuflags & cpu_xop)
return scrypt_ROMix_xop;
else
#endif
#if defined(SCRYPT_SALSA64_AVX)
if (cpuflags & cpu_avx)
return scrypt_ROMix_avx;
else
#endif
#if defined(SCRYPT_SALSA64_SSSE3)
if (cpuflags & cpu_ssse3)
return scrypt_ROMix_ssse3;
else
#endif
#if defined(SCRYPT_SALSA64_SSE2)
if (cpuflags & cpu_sse2)
return scrypt_ROMix_sse2;
else
#endif
return scrypt_ROMix_basic;
}
#endif
#if defined(SCRYPT_TEST_SPEED)
static size_t
available_implementations(void) {
size_t cpuflags = detect_cpu();
size_t flags = 0;
#if defined(SCRYPT_SALSA64_AVX2)
if (cpuflags & cpu_avx2)
flags |= cpu_avx2;
#endif
#if defined(SCRYPT_SALSA64_XOP)
if (cpuflags & cpu_xop)
flags |= cpu_xop;
#endif
#if defined(SCRYPT_SALSA64_AVX)
if (cpuflags & cpu_avx)
flags |= cpu_avx;
#endif
#if defined(SCRYPT_SALSA64_SSSE3)
if (cpuflags & cpu_ssse3)
flags |= cpu_ssse3;
#endif
#if defined(SCRYPT_SALSA64_SSE2)
if (cpuflags & cpu_sse2)
flags |= cpu_sse2;
#endif
return flags;
}
#endif
static int
scrypt_test_mix(void) {
static const uint8_t expected[16] = {
0xf8,0x92,0x9b,0xf8,0xcc,0x1d,0xce,0x2e,0x13,0x82,0xac,0x96,0xb2,0x6c,0xee,0x2c,
};
int ret = 1;
size_t cpuflags = detect_cpu();
#if defined(SCRYPT_SALSA64_AVX2)
if (cpuflags & cpu_avx2)
ret &= scrypt_test_mix_instance(scrypt_ChunkMix_avx2, salsa64_core_tangle_sse2, salsa64_core_tangle_sse2, expected);
#endif
#if defined(SCRYPT_SALSA64_XOP)
if (cpuflags & cpu_xop)
ret &= scrypt_test_mix_instance(scrypt_ChunkMix_xop, salsa64_core_tangle_sse2, salsa64_core_tangle_sse2, expected);
#endif
#if defined(SCRYPT_SALSA64_AVX)
if (cpuflags & cpu_avx)
ret &= scrypt_test_mix_instance(scrypt_ChunkMix_avx, salsa64_core_tangle_sse2, salsa64_core_tangle_sse2, expected);
#endif
#if defined(SCRYPT_SALSA64_SSSE3)
if (cpuflags & cpu_ssse3)
ret &= scrypt_test_mix_instance(scrypt_ChunkMix_ssse3, salsa64_core_tangle_sse2, salsa64_core_tangle_sse2, expected);
#endif
#if defined(SCRYPT_SALSA64_SSE2)
if (cpuflags & cpu_sse2)
ret &= scrypt_test_mix_instance(scrypt_ChunkMix_sse2, salsa64_core_tangle_sse2, salsa64_core_tangle_sse2, expected);
#endif
#if defined(SCRYPT_SALSA64_BASIC)
ret &= scrypt_test_mix_instance(scrypt_ChunkMix_basic, scrypt_romix_convert_endian, scrypt_romix_convert_endian, expected);
#endif
return ret;
}

View File

@@ -0,0 +1,28 @@
typedef struct scrypt_test_setting_t {
const char *pw, *salt;
uint8_t Nfactor, rfactor, pfactor;
} scrypt_test_setting;
static const scrypt_test_setting post_settings[] = {
{"", "", 3, 0, 0},
{"password", "NaCl", 9, 3, 4},
{0, 0, 0, 0, 0}
};
#if defined(SCRYPT_SKEIN512)
#if defined(SCRYPT_SALSA64)
static const uint8_t post_vectors[][64] = {
{0xd2,0xad,0x32,0x05,0xee,0x80,0xe3,0x44,0x70,0xc6,0x34,0xde,0x05,0xb6,0xcf,0x60,
0x89,0x98,0x70,0xc0,0xb8,0xf5,0x54,0xf1,0xa6,0xb2,0xc8,0x76,0x34,0xec,0xc4,0x59,
0x8e,0x64,0x42,0xd0,0xa9,0xed,0xe7,0x19,0xb2,0x8a,0x11,0xc6,0xa6,0xbf,0xa7,0xa9,
0x4e,0x44,0x32,0x7e,0x12,0x91,0x9d,0xfe,0x52,0x48,0xa8,0x27,0xb3,0xfc,0xb1,0x89},
{0xd6,0x67,0xd2,0x3e,0x30,0x1e,0x9d,0xe2,0x55,0x68,0x17,0x3d,0x2b,0x75,0x5a,0xe5,
0x04,0xfb,0x3d,0x0e,0x86,0xe0,0xaa,0x1d,0xd4,0x72,0xda,0xb0,0x79,0x41,0xb7,0x99,
0x68,0xe5,0xd9,0x55,0x79,0x7d,0xc3,0xd1,0xa6,0x56,0xc1,0xbe,0x0b,0x6c,0x62,0x23,
0x66,0x67,0x91,0x47,0x99,0x13,0x6b,0xe3,0xda,0x59,0x55,0x18,0x67,0x8f,0x2e,0x3b}
};
#endif
#else
static const uint8_t post_vectors[][64] = {{0}};
#endif

92
algo/argon2/argon2a.c Normal file
View File

@@ -0,0 +1,92 @@
#include "miner.h"
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <stdio.h>
#include <openssl/sha.h>
#include "ar2/argon2.h"
#include "ar2/cores.h"
#include "ar2/ar2-scrypt-jane.h"
#include "algo-gate-api.h"
#define T_COSTS 2
#define M_COSTS 16
#define MASK 8
#define ZERO 0
inline void argon_call(void *out, void *in, void *salt, int type)
{
argon2_context context;
context.out = (uint8_t *)out;
context.pwd = (uint8_t *)in;
context.salt = (uint8_t*)salt;
context.pwdlen = 0;
context.allocate_cbk = NULL;
context.free_cbk = NULL;
argon2_core(&context, type);
}
void argon2hash(void *output, const void *input)
{
uint32_t _ALIGN(64) hashA[8], hashB[8];
my_scrypt((const unsigned char *)input, 80,
(const unsigned char *)input, 80,
(unsigned char *)hashA);
argon_call(hashB, hashA, hashA, (hashA[0] & MASK) == ZERO);
my_scrypt((const unsigned char *)hashB, 32,
(const unsigned char *)hashB, 32,
(unsigned char *)output);
}
int scanhash_argon2(int thr_id, struct work* work, uint32_t max_nonce, uint64_t *hashes_done)
{
uint32_t _ALIGN(64) endiandata[20];
uint32_t _ALIGN(64) hash[8];
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
const uint32_t first_nonce = pdata[19];
const uint32_t Htarg = ptarget[7];
uint32_t nonce = first_nonce;
swab32_array( endiandata, pdata, 20 );
do {
be32enc(&endiandata[19], nonce);
argon2hash(hash, endiandata);
if (hash[7] <= Htarg && fulltest(hash, ptarget)) {
pdata[19] = nonce;
*hashes_done = pdata[19] - first_nonce;
work_set_target_ratio(work, hash);
return 1;
}
nonce++;
} while (nonce < max_nonce && !work_restart[thr_id].restart);
pdata[19] = nonce;
*hashes_done = pdata[19] - first_nonce + 1;
return 0;
}
int64_t argon2_get_max64 ()
{
return 0x1ffLL;
}
bool register_argon2_algo( algo_gate_t* gate )
{
gate->optimizations = SSE2_OPT | AES_OPT | AVX_OPT | AVX2_OPT;
gate->scanhash = (void*)&scanhash_argon2;
gate->hash = (void*)&argon2hash;
gate->gen_merkle_root = (void*)&SHA256_gen_merkle_root;
gate->set_target = (void*)&scrypt_set_target;
gate->get_max64 = (void*)&argon2_get_max64;
return true;
};

88
algo/axiom.c Normal file
View File

@@ -0,0 +1,88 @@
#include "miner.h"
#include "algo-gate-api.h"
#include <string.h>
#include <stdint.h>
#include "algo/shabal/sph_shabal.h"
static __thread uint32_t _ALIGN(128) M[65536][8];
void axiomhash(void *output, const void *input)
{
sph_shabal256_context ctx;
const int N = 65536;
sph_shabal256_init(&ctx);
sph_shabal256(&ctx, input, 80);
sph_shabal256_close(&ctx, M[0]);
for(int i = 1; i < N; i++) {
sph_shabal256_init(&ctx);
sph_shabal256(&ctx, M[i-1], 32);
sph_shabal256_close(&ctx, M[i]);
}
for(int b = 0; b < N; b++)
{
const int p = b > 0 ? b - 1 : 0xFFFF;
const int q = M[p][0] % 0xFFFF;
const int j = (b + q) % N;
sph_shabal256_init(&ctx);
#if 0
sph_shabal256(&ctx, M[p], 32);
sph_shabal256(&ctx, M[j], 32);
#else
uint8_t _ALIGN(128) hash[64];
memcpy(hash, M[p], 32);
memcpy(&hash[32], M[j], 32);
sph_shabal256(&ctx, hash, 64);
#endif
sph_shabal256_close(&ctx, M[b]);
}
memcpy(output, M[N-1], 32);
}
int scanhash_axiom(int thr_id, struct work *work,
uint32_t max_nonce, uint64_t *hashes_done)
{
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
uint32_t _ALIGN(128) hash64[8];
uint32_t _ALIGN(128) endiandata[20];
const uint32_t Htarg = ptarget[7];
const uint32_t first_nonce = pdata[19];
uint32_t n = first_nonce;
for (int k = 0; k < 19; k++)
be32enc(&endiandata[k], pdata[k]);
do {
be32enc(&endiandata[19], n);
axiomhash(hash64, endiandata);
if (hash64[7] < Htarg && fulltest(hash64, ptarget)) {
*hashes_done = n - first_nonce + 1;
pdata[19] = n;
return true;
}
n++;
} while (n < max_nonce && !work_restart[thr_id].restart);
*hashes_done = n - first_nonce + 1;
pdata[19] = n;
return 0;
}
bool register_axiom_algo( algo_gate_t* gate )
{
gate->scanhash = (void*)&scanhash_axiom;
gate->hash = (void*)&axiomhash;
gate->hash_alt = (void*)&axiomhash;
gate->get_max64 = (void*)&get_max64_0x40LL;
return true;
}

0
algo/blake/.dirstamp Normal file
View File

108
algo/blake/blake.c Normal file
View File

@@ -0,0 +1,108 @@
#include "miner.h"
#include "algo-gate-api.h"
#include "sph_blake.h"
#include <string.h>
#include <stdint.h>
#include <memory.h>
/* Move init out of loop, so init once externally,
* and then use one single memcpy */
static __thread sph_blake256_context blake_mid;
static __thread bool ctx_midstate_done = false;
static void init_blake_hash(void)
{
sph_blake256_init(&blake_mid);
ctx_midstate_done = true;
}
void blakehash(void *state, const void *input)
{
sph_blake256_context ctx;
uint8_t hash[64];
uint8_t *ending = (uint8_t*) input;
ending += 64;
// do one memcopy to get a fresh context
if (!ctx_midstate_done) {
init_blake_hash();
sph_blake256(&blake_mid, input, 64);
}
memcpy(&ctx, &blake_mid, sizeof(blake_mid));
sph_blake256(&ctx, ending, 16);
sph_blake256_close(&ctx, hash);
memcpy(state, hash, 32);
}
int scanhash_blake( int thr_id, struct work *work, uint32_t max_nonce,
uint64_t *hashes_done )
{
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
const uint32_t first_nonce = pdata[19];
uint32_t HTarget = ptarget[7];
uint32_t _ALIGN(32) hash64[8];
uint32_t _ALIGN(32) endiandata[20];
uint32_t n = first_nonce;
ctx_midstate_done = false;
if (opt_benchmark)
HTarget = 0x7f;
// we need big endian data...
swab32_array( endiandata, pdata, 20 );
#ifdef DEBUG_ALGO
applog(LOG_DEBUG,"[%d] Target=%08x %08x", thr_id, ptarget[6], ptarget[7]);
#endif
do {
be32enc(&endiandata[19], n);
blakehash(hash64, endiandata);
#ifndef DEBUG_ALGO
if (hash64[7] <= HTarget && fulltest(hash64, ptarget)) {
*hashes_done = n - first_nonce + 1;
return true;
}
#else
if (!(n % 0x1000) && !thr_id) printf(".");
if (hash64[7] == 0) {
printf("[%d]",thr_id);
if (fulltest(hash64, ptarget)) {
*hashes_done = n - first_nonce + 1;
return true;
}
}
#endif
n++; pdata[19] = n;
} while (n < max_nonce && !work_restart[thr_id].restart);
*hashes_done = n - first_nonce + 1;
pdata[19] = n;
return 0;
}
// changed to get_max64_0x3fffffLL in cpuminer-multi-decred
int64_t blake_get_max64 ()
{
return 0x7ffffLL;
}
bool register_blake_algo( algo_gate_t* gate )
{
gate->scanhash = (void*)&scanhash_blake;
gate->hash = (void*)&blakehash;
gate->hash_alt = (void*)&blakehash;
gate->get_max64 = (void*)&blake_get_max64;
return true;
}

85
algo/blake/blake2.c Normal file
View File

@@ -0,0 +1,85 @@
#include "miner.h"
#include "algo-gate-api.h"
#include <string.h>
#include <stdint.h>
#include "crypto/blake2s.h"
static __thread blake2s_state s_midstate;
static __thread blake2s_state s_ctx;
#define MIDLEN 76
void blake2s_hash(void *output, const void *input)
{
unsigned char _ALIGN(64) hash[BLAKE2S_OUTBYTES];
blake2s_state blake2_ctx;
blake2s_init(&blake2_ctx, BLAKE2S_OUTBYTES);
blake2s_update(&blake2_ctx, input, 80);
blake2s_final(&blake2_ctx, hash, BLAKE2S_OUTBYTES);
memcpy(output, hash, 32);
}
static void blake2s_hash_end(uint32_t *output, const uint32_t *input)
{
s_ctx.buflen = MIDLEN;
memcpy(&s_ctx, &s_midstate, 32 + 16 + MIDLEN);
blake2s_update(&s_ctx, (uint8_t*) &input[MIDLEN/4], 80 - MIDLEN);
blake2s_final(&s_ctx, (uint8_t*) output, BLAKE2S_OUTBYTES);
}
int scanhash_blake2s(int thr_id, struct work *work,
uint32_t max_nonce, uint64_t *hashes_done)
{
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
uint32_t _ALIGN(64) hash64[8];
uint32_t _ALIGN(64) endiandata[20];
const uint32_t Htarg = ptarget[7];
const uint32_t first_nonce = pdata[19];
uint32_t n = first_nonce;
swab32_array( endiandata, pdata, 20 );
// midstate
blake2s_init(&s_midstate, BLAKE2S_OUTBYTES);
blake2s_update(&s_midstate, (uint8_t*) endiandata, MIDLEN);
memcpy(&s_ctx, &s_midstate, sizeof(blake2s_state));
do {
be32enc(&endiandata[19], n);
blake2s_hash_end(hash64, endiandata);
if (hash64[7] < Htarg && fulltest(hash64, ptarget)) {
*hashes_done = n - first_nonce + 1;
pdata[19] = n;
return true;
}
n++;
} while (n < max_nonce && !work_restart[thr_id].restart);
*hashes_done = n - first_nonce + 1;
pdata[19] = n;
return 0;
}
// changed to get_max64_0x3fffffLL in cpuminer-multi-decred
int64_t blake2s_get_max64 ()
{
return 0x7ffffLL;
}
bool register_blake2s_algo( algo_gate_t* gate )
{
gate->scanhash = (void*)&scanhash_blake2s;
gate->hash = (void*)&blake2s_hash;
gate->get_max64 = (void*)&blake2s_get_max64;
return true;
};

129
algo/blake/blakecoin.c Normal file
View File

@@ -0,0 +1,129 @@
#include "miner.h"
#include "algo-gate-api.h"
#define BLAKE32_ROUNDS 8
#include "sph_blake.h"
void blakecoin_init(void *cc);
void blakecoin(void *cc, const void *data, size_t len);
void blakecoin_close(void *cc, void *dst);
#include <string.h>
#include <stdint.h>
#include <memory.h>
#include <openssl/sha.h>
/* Move init out of loop, so init once externally,
* and then use one single memcpy */
static sph_blake256_context blake_mid;
static bool ctx_midstate_done = false;
static void init_blake_hash(void)
{
blakecoin_init(&blake_mid);
ctx_midstate_done = true;
}
void blakecoinhash(void *state, const void *input)
{
sph_blake256_context ctx;
uint8_t hash[64];
uint8_t *ending = (uint8_t*) input;
ending += 64;
// do one memcopy to get a fresh context
if (!ctx_midstate_done) {
init_blake_hash();
blakecoin(&blake_mid, input, 64);
}
memcpy(&ctx, &blake_mid, sizeof(blake_mid));
blakecoin(&ctx, ending, 16);
blakecoin_close(&ctx, hash);
memcpy(state, hash, 32);
}
int scanhash_blakecoin(int thr_id, struct work *work, uint32_t max_nonce,
uint64_t *hashes_done)
{
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
const uint32_t first_nonce = pdata[19];
uint32_t HTarget = ptarget[7];
uint32_t _ALIGN(32) hash64[8];
uint32_t _ALIGN(32) endiandata[20];
uint32_t n = first_nonce;
ctx_midstate_done = false;
if (opt_benchmark)
HTarget = 0x7f;
// we need big endian data...
// be32enc_array( endiandata, pdata, 19 );
for (int kk=0; kk < 19; kk++)
be32enc(&endiandata[kk], ((uint32_t*)pdata)[kk]);
#ifdef DEBUG_ALGO
applog(LOG_DEBUG,"[%d] Target=%08x %08x", thr_id, ptarget[6], ptarget[7]);
#endif
do {
be32enc(&endiandata[19], n);
blakecoinhash(hash64, endiandata);
#ifndef DEBUG_ALGO
if (hash64[7] <= HTarget && fulltest(hash64, ptarget)) {
*hashes_done = n - first_nonce + 1;
return true;
}
#else
if (!(n % 0x1000) && !thr_id) printf(".");
if (hash64[7] == 0) {
printf("[%d]",thr_id);
if (fulltest(hash64, ptarget)) {
*hashes_done = n - first_nonce + 1;
return true;
}
}
#endif
n++; pdata[19] = n;
} while (n < max_nonce && !work_restart[thr_id].restart);
*hashes_done = n - first_nonce + 1;
pdata[19] = n;
return 0;
}
void blakecoin_gen_merkle_root ( char* merkle_root, struct stratum_ctx* sctx )
{
SHA256( sctx->job.coinbase, (int)sctx->job.coinbase_size, merkle_root );
}
// changed to get_max64_0x3fffffLL in cpuminer-multi-decred
int64_t blakecoin_get_max64 ()
{
return 0x7ffffLL;
}
// vanilla uses default gen merkle root, otherwise identical to blakecoin
bool register_vanilla_algo( algo_gate_t* gate )
{
gate->scanhash = (void*)&scanhash_blakecoin;
gate->hash = (void*)&blakecoinhash;
gate->hash_alt = (void*)&blakecoinhash;
gate->get_max64 = (void*)&blakecoin_get_max64;
return true;
}
bool register_blakecoin_algo( algo_gate_t* gate )
{
register_vanilla_algo( gate );
gate->gen_merkle_root = (void*)&SHA256_gen_merkle_root;
return true;
}

248
algo/blake/decred.c Normal file
View File

@@ -0,0 +1,248 @@
#include "miner.h"
#include "algo-gate-api.h"
#include "sph_blake.h"
#include <string.h>
#include <stdint.h>
#include <memory.h>
#ifndef min
#define min(a,b) (a>b ? b : a)
#endif
#ifndef max
#define max(a,b) (a<b ? b : a)
#endif
#define DECRED_NBITS_INDEX 29
#define DECRED_NTIME_INDEX 34
#define DECRED_NONCE_INDEX 35
#define DECRED_XNONCE_INDEX 36
#define DECRED_DATA_SIZE 192
#define DECRED_WORK_COMPARE_SIZE 140
static __thread sph_blake256_context blake_mid;
static __thread bool ctx_midstate_done = false;
void decred_hash(void *state, const void *input)
{
#define MIDSTATE_LEN 128
sph_blake256_context ctx;
uint8_t *ending = (uint8_t*) input;
ending += MIDSTATE_LEN;
if (!ctx_midstate_done) {
sph_blake256_init(&blake_mid);
sph_blake256(&blake_mid, input, MIDSTATE_LEN);
ctx_midstate_done = true;
}
memcpy(&ctx, &blake_mid, sizeof(blake_mid));
sph_blake256(&ctx, ending, (180 - MIDSTATE_LEN));
sph_blake256_close(&ctx, state);
}
void decred_hash_simple(void *state, const void *input)
{
sph_blake256_context ctx;
sph_blake256_init(&ctx);
sph_blake256(&ctx, input, 180);
sph_blake256_close(&ctx, state);
}
int scanhash_decred(int thr_id, struct work *work, uint32_t max_nonce, uint64_t *hashes_done)
{
uint32_t _ALIGN(128) endiandata[48];
uint32_t _ALIGN(128) hash32[8];
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
#define DCR_NONCE_OFT32 35
const uint32_t first_nonce = pdata[DCR_NONCE_OFT32];
const uint32_t HTarget = opt_benchmark ? 0x7f : ptarget[7];
uint32_t n = first_nonce;
ctx_midstate_done = false;
#if 1
memcpy(endiandata, pdata, 180);
#else
for (int k=0; k < (180/4); k++)
be32enc(&endiandata[k], pdata[k]);
#endif
#ifdef DEBUG_ALGO
if (!thr_id) applog(LOG_DEBUG,"[%d] Target=%08x %08x", thr_id, ptarget[6], ptarget[7]);
#endif
do {
//be32enc(&endiandata[DCR_NONCE_OFT32], n);
endiandata[DCR_NONCE_OFT32] = n;
decred_hash(hash32, endiandata);
if (hash32[7] <= HTarget && fulltest(hash32, ptarget)) {
work_set_target_ratio(work, hash32);
*hashes_done = n - first_nonce + 1;
#ifdef DEBUG_ALGO
applog(LOG_BLUE, "Nonce : %08x %08x", n, swab32(n));
applog_hash(ptarget);
applog_compare_hash(hash32, ptarget);
#endif
pdata[DCR_NONCE_OFT32] = n;
return 1;
}
n++;
} while (n < max_nonce && !work_restart[thr_id].restart);
*hashes_done = n - first_nonce + 1;
pdata[DCR_NONCE_OFT32] = n;
return 0;
}
uint32_t *decred_get_nonceptr( uint32_t *work_data )
{
return &work_data[ DECRED_NONCE_INDEX ];
}
// does decred need a custom stratum_get_g_work to fix nicehash
// bad extranonce2 size?
//
// does decred need a custom init_nonce?
// does it need to increment nonce, seems not because gen_work_now always
// returns true
void decred_calc_network_diff( struct work* work )
{
// sample for diff 43.281 : 1c05ea29
// todo: endian reversed on longpoll could be zr5 specific...
uint32_t nbits = work->data[ DECRED_NBITS_INDEX ];
uint32_t bits = ( nbits & 0xffffff );
int16_t shift = ( swab32(nbits) & 0xff ); // 0x1c = 28
int m;
net_diff = (double)0x0000ffff / (double)bits;
for ( m = shift; m < 29; m++ )
net_diff *= 256.0;
for ( m = 29; m < shift; m++ )
net_diff /= 256.0;
if ( shift == 28 )
net_diff *= 256.0; // testnet
if ( opt_debug_diff )
applog( LOG_DEBUG, "net diff: %f -> shift %u, bits %08x", net_diff,
shift, bits);
}
void decred_decode_extradata( struct work* work, uint64_t* net_blocks )
{
// some random extradata to make the work unique
work->data[ DECRED_XNONCE_INDEX ] = (rand()*4);
work->height = work->data[32];
if (!have_longpoll && work->height > *net_blocks + 1)
{
char netinfo[64] = { 0 };
if (opt_showdiff && net_diff > 0.)
{
if (net_diff != work->targetdiff)
sprintf(netinfo, ", diff %.3f, target %.1f", net_diff,
work->targetdiff);
else
sprintf(netinfo, ", diff %.3f", net_diff);
}
applog(LOG_BLUE, "%s block %d%s", algo_names[opt_algo], work->height,
netinfo);
*net_blocks = work->height - 1;
}
}
void decred_be_build_stratum_request( char *req, struct work *work,
struct stratum_ctx *sctx )
{
unsigned char *xnonce2str;
uint32_t ntime, nonce;
char ntimestr[9], noncestr[9];
be32enc( &ntime, work->data[ DECRED_NTIME_INDEX ] );
be32enc( &nonce, work->data[ DECRED_NONCE_INDEX ] );
bin2hex( ntimestr, (char*)(&ntime), sizeof(uint32_t) );
bin2hex( noncestr, (char*)(&nonce), sizeof(uint32_t) );
xnonce2str = abin2hex( (char*)( &work->data[ DECRED_XNONCE_INDEX ] ),
sctx->xnonce1_size );
snprintf( req, JSON_BUF_LEN,
"{\"method\": \"mining.submit\", \"params\": [\"%s\", \"%s\", \"%s\", \"%s\", \"%s\"], \"id\":4}",
rpc_user, work->job_id, xnonce2str, ntimestr, noncestr );
free(xnonce2str);
}
// data shared between gen_merkle_root and build_extraheader.
uint32_t decred_extraheader[32] = { 0 };
int decred_headersize = 0;
void decred_gen_merkle_root( char* merkle_root, struct stratum_ctx* sctx )
{
// getwork over stratum, getwork merkle + header passed in coinb1
memcpy(merkle_root, sctx->job.coinbase, 32);
decred_headersize = min((int)sctx->job.coinbase_size - 32,
sizeof(decred_extraheader) );
memcpy( decred_extraheader, &sctx->job.coinbase[32], decred_headersize);
}
void decred_build_extraheader( struct work* work, struct stratum_ctx* sctx )
{
uint32_t* extradata = (uint32_t*) sctx->xnonce1;
int i;
for ( i = 0; i < 8; i++ ) // prevhash
work->data[1 + i] = swab32( work->data[1 + i] );
for ( i = 0; i < 8; i++ ) // merkle
work->data[9 + i] = swab32( work->data[9 + i] );
for ( i = 0; i < decred_headersize/4; i++ ) // header
work->data[17 + i] = decred_extraheader[i];
// extradata
for ( i = 0; i < sctx->xnonce1_size/4; i++ )
work->data[ DECRED_XNONCE_INDEX + i ] = extradata[i];
for ( i = DECRED_XNONCE_INDEX + sctx->xnonce1_size/4; i < 45; i++ )
work->data[i] = 0;
work->data[37] = (rand()*4) << 8;
sctx->bloc_height = work->data[32];
//applog_hex(work->data, 180);
//applog_hex(&work->data[36], 36);
}
bool decred_prevent_dupes( struct work* work, struct stratum_ctx* stratum,
int thr_id )
{
if ( have_stratum && strcmp(stratum->job.job_id, work->job_id) )
// need to regen g_work..
return true;
// extradata: prevent duplicates
work->data[ DECRED_XNONCE_INDEX ] += 1;
work->data[ DECRED_XNONCE_INDEX + 1 ] |= thr_id;
return false;
}
bool register_decred_algo( algo_gate_t* gate )
{
gate->optimizations = SSE2_OPT;
gate->scanhash = (void*)&scanhash_decred;
gate->hash = (void*)&decred_hash;
gate->hash_alt = (void*)&decred_hash;
gate->get_nonceptr = (void*)&decred_get_nonceptr;
gate->get_max64 = (void*)&get_max64_0x3fffffLL;
gate->display_extra_data = (void*)&decred_decode_extradata;
gate->build_stratum_request = (void*)&decred_be_build_stratum_request;
gate->gen_merkle_root = (void*)&decred_gen_merkle_root;
gate->build_extraheader = (void*)&decred_build_extraheader;
gate->prevent_dupes = (void*)&decred_prevent_dupes;
gate->nbits_index = DECRED_NBITS_INDEX;
gate->ntime_index = DECRED_NTIME_INDEX;
gate->nonce_index = DECRED_NONCE_INDEX;
gate->work_data_size = DECRED_DATA_SIZE;
gate->work_cmp_size = DECRED_WORK_COMPARE_SIZE;
allow_mininginfo = false;
have_gbt = false;
return true;
}

531
algo/blake/mod_blakecoin.c Normal file
View File

@@ -0,0 +1,531 @@
/* $Id: blake.c 252 2011-06-07 17:55:14Z tp $ */
/*
* BLAKECOIN implementation. (Stripped to 256 bits only)
*
* ==========================(LICENSE BEGIN)============================
*
* Copyright (c) 2007-2010 Projet RNRT SAPHIR
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* ===========================(LICENSE END)=============================
*
* @author Thomas Pornin <thomas.pornin@cryptolog.com>
* @author Tanguy Pruvot (cpuminer implementation)
*/
#include <stddef.h>
#include <string.h>
#include <limits.h>
#include "sph_blake.h"
#ifdef __cplusplus
extern "C"{
#endif
#ifdef _MSC_VER
#pragma warning (disable: 4146)
#endif
static const sph_u32 IV256[8] = {
SPH_C32(0x6A09E667), SPH_C32(0xBB67AE85),
SPH_C32(0x3C6EF372), SPH_C32(0xA54FF53A),
SPH_C32(0x510E527F), SPH_C32(0x9B05688C),
SPH_C32(0x1F83D9AB), SPH_C32(0x5BE0CD19)
};
#define Z00 0
#define Z01 1
#define Z02 2
#define Z03 3
#define Z04 4
#define Z05 5
#define Z06 6
#define Z07 7
#define Z08 8
#define Z09 9
#define Z0A A
#define Z0B B
#define Z0C C
#define Z0D D
#define Z0E E
#define Z0F F
#define Z10 E
#define Z11 A
#define Z12 4
#define Z13 8
#define Z14 9
#define Z15 F
#define Z16 D
#define Z17 6
#define Z18 1
#define Z19 C
#define Z1A 0
#define Z1B 2
#define Z1C B
#define Z1D 7
#define Z1E 5
#define Z1F 3
#define Z20 B
#define Z21 8
#define Z22 C
#define Z23 0
#define Z24 5
#define Z25 2
#define Z26 F
#define Z27 D
#define Z28 A
#define Z29 E
#define Z2A 3
#define Z2B 6
#define Z2C 7
#define Z2D 1
#define Z2E 9
#define Z2F 4
#define Z30 7
#define Z31 9
#define Z32 3
#define Z33 1
#define Z34 D
#define Z35 C
#define Z36 B
#define Z37 E
#define Z38 2
#define Z39 6
#define Z3A 5
#define Z3B A
#define Z3C 4
#define Z3D 0
#define Z3E F
#define Z3F 8
#define Z40 9
#define Z41 0
#define Z42 5
#define Z43 7
#define Z44 2
#define Z45 4
#define Z46 A
#define Z47 F
#define Z48 E
#define Z49 1
#define Z4A B
#define Z4B C
#define Z4C 6
#define Z4D 8
#define Z4E 3
#define Z4F D
#define Z50 2
#define Z51 C
#define Z52 6
#define Z53 A
#define Z54 0
#define Z55 B
#define Z56 8
#define Z57 3
#define Z58 4
#define Z59 D
#define Z5A 7
#define Z5B 5
#define Z5C F
#define Z5D E
#define Z5E 1
#define Z5F 9
#define Z60 C
#define Z61 5
#define Z62 1
#define Z63 F
#define Z64 E
#define Z65 D
#define Z66 4
#define Z67 A
#define Z68 0
#define Z69 7
#define Z6A 6
#define Z6B 3
#define Z6C 9
#define Z6D 2
#define Z6E 8
#define Z6F B
#define Z70 D
#define Z71 B
#define Z72 7
#define Z73 E
#define Z74 C
#define Z75 1
#define Z76 3
#define Z77 9
#define Z78 5
#define Z79 0
#define Z7A F
#define Z7B 4
#define Z7C 8
#define Z7D 6
#define Z7E 2
#define Z7F A
#define Z80 6
#define Z81 F
#define Z82 E
#define Z83 9
#define Z84 B
#define Z85 3
#define Z86 0
#define Z87 8
#define Z88 C
#define Z89 2
#define Z8A D
#define Z8B 7
#define Z8C 1
#define Z8D 4
#define Z8E A
#define Z8F 5
#define Z90 A
#define Z91 2
#define Z92 8
#define Z93 4
#define Z94 7
#define Z95 6
#define Z96 1
#define Z97 5
#define Z98 F
#define Z99 B
#define Z9A 9
#define Z9B E
#define Z9C 3
#define Z9D C
#define Z9E D
#define Z9F 0
#define Mx(r, i) Mx_(Z ## r ## i)
#define Mx_(n) Mx__(n)
#define Mx__(n) M ## n
#define CSx(r, i) CSx_(Z ## r ## i)
#define CSx_(n) CSx__(n)
#define CSx__(n) CS ## n
#define CS0 SPH_C32(0x243F6A88)
#define CS1 SPH_C32(0x85A308D3)
#define CS2 SPH_C32(0x13198A2E)
#define CS3 SPH_C32(0x03707344)
#define CS4 SPH_C32(0xA4093822)
#define CS5 SPH_C32(0x299F31D0)
#define CS6 SPH_C32(0x082EFA98)
#define CS7 SPH_C32(0xEC4E6C89)
#define CS8 SPH_C32(0x452821E6)
#define CS9 SPH_C32(0x38D01377)
#define CSA SPH_C32(0xBE5466CF)
#define CSB SPH_C32(0x34E90C6C)
#define CSC SPH_C32(0xC0AC29B7)
#define CSD SPH_C32(0xC97C50DD)
#define CSE SPH_C32(0x3F84D5B5)
#define CSF SPH_C32(0xB5470917)
#if SPH_64
#define CBx(r, i) CBx_(Z ## r ## i)
#define CBx_(n) CBx__(n)
#define CBx__(n) CB ## n
#define CB0 SPH_C64(0x243F6A8885A308D3)
#define CB1 SPH_C64(0x13198A2E03707344)
#define CB2 SPH_C64(0xA4093822299F31D0)
#define CB3 SPH_C64(0x082EFA98EC4E6C89)
#define CB4 SPH_C64(0x452821E638D01377)
#define CB5 SPH_C64(0xBE5466CF34E90C6C)
#define CB6 SPH_C64(0xC0AC29B7C97C50DD)
#define CB7 SPH_C64(0x3F84D5B5B5470917)
#define CB8 SPH_C64(0x9216D5D98979FB1B)
#define CB9 SPH_C64(0xD1310BA698DFB5AC)
#define CBA SPH_C64(0x2FFD72DBD01ADFB7)
#define CBB SPH_C64(0xB8E1AFED6A267E96)
#define CBC SPH_C64(0xBA7C9045F12C7F99)
#define CBD SPH_C64(0x24A19947B3916CF7)
#define CBE SPH_C64(0x0801F2E2858EFC16)
#define CBF SPH_C64(0x636920D871574E69)
#endif
#define GS(m0, m1, c0, c1, a, b, c, d) do { \
a = SPH_T32(a + b + (m0 ^ c1)); \
d = SPH_ROTR32(d ^ a, 16); \
c = SPH_T32(c + d); \
b = SPH_ROTR32(b ^ c, 12); \
a = SPH_T32(a + b + (m1 ^ c0)); \
d = SPH_ROTR32(d ^ a, 8); \
c = SPH_T32(c + d); \
b = SPH_ROTR32(b ^ c, 7); \
} while (0)
#define ROUND_S(r) do { \
GS(Mx(r, 0), Mx(r, 1), CSx(r, 0), CSx(r, 1), V0, V4, V8, VC); \
GS(Mx(r, 2), Mx(r, 3), CSx(r, 2), CSx(r, 3), V1, V5, V9, VD); \
GS(Mx(r, 4), Mx(r, 5), CSx(r, 4), CSx(r, 5), V2, V6, VA, VE); \
GS(Mx(r, 6), Mx(r, 7), CSx(r, 6), CSx(r, 7), V3, V7, VB, VF); \
GS(Mx(r, 8), Mx(r, 9), CSx(r, 8), CSx(r, 9), V0, V5, VA, VF); \
GS(Mx(r, A), Mx(r, B), CSx(r, A), CSx(r, B), V1, V6, VB, VC); \
GS(Mx(r, C), Mx(r, D), CSx(r, C), CSx(r, D), V2, V7, V8, VD); \
GS(Mx(r, E), Mx(r, F), CSx(r, E), CSx(r, F), V3, V4, V9, VE); \
} while (0)
#define DECL_STATE32 \
sph_u32 H0, H1, H2, H3, H4, H5, H6, H7; \
sph_u32 S0, S1, S2, S3, T0, T1;
#define READ_STATE32(state) do { \
H0 = (state)->H[0]; \
H1 = (state)->H[1]; \
H2 = (state)->H[2]; \
H3 = (state)->H[3]; \
H4 = (state)->H[4]; \
H5 = (state)->H[5]; \
H6 = (state)->H[6]; \
H7 = (state)->H[7]; \
S0 = (state)->S[0]; \
S1 = (state)->S[1]; \
S2 = (state)->S[2]; \
S3 = (state)->S[3]; \
T0 = (state)->T0; \
T1 = (state)->T1; \
} while (0)
#define WRITE_STATE32(state) do { \
(state)->H[0] = H0; \
(state)->H[1] = H1; \
(state)->H[2] = H2; \
(state)->H[3] = H3; \
(state)->H[4] = H4; \
(state)->H[5] = H5; \
(state)->H[6] = H6; \
(state)->H[7] = H7; \
(state)->S[0] = S0; \
(state)->S[1] = S1; \
(state)->S[2] = S2; \
(state)->S[3] = S3; \
(state)->T0 = T0; \
(state)->T1 = T1; \
} while (0)
#define BLAKE32_ROUNDS 8
#define COMPRESS32 do { \
sph_u32 M0, M1, M2, M3, M4, M5, M6, M7; \
sph_u32 M8, M9, MA, MB, MC, MD, ME, MF; \
sph_u32 V0, V1, V2, V3, V4, V5, V6, V7; \
sph_u32 V8, V9, VA, VB, VC, VD, VE, VF; \
V0 = H0; \
V1 = H1; \
V2 = H2; \
V3 = H3; \
V4 = H4; \
V5 = H5; \
V6 = H6; \
V7 = H7; \
V8 = S0 ^ CS0; \
V9 = S1 ^ CS1; \
VA = S2 ^ CS2; \
VB = S3 ^ CS3; \
VC = T0 ^ CS4; \
VD = T0 ^ CS5; \
VE = T1 ^ CS6; \
VF = T1 ^ CS7; \
M0 = sph_dec32be_aligned(buf + 0); \
M1 = sph_dec32be_aligned(buf + 4); \
M2 = sph_dec32be_aligned(buf + 8); \
M3 = sph_dec32be_aligned(buf + 12); \
M4 = sph_dec32be_aligned(buf + 16); \
M5 = sph_dec32be_aligned(buf + 20); \
M6 = sph_dec32be_aligned(buf + 24); \
M7 = sph_dec32be_aligned(buf + 28); \
M8 = sph_dec32be_aligned(buf + 32); \
M9 = sph_dec32be_aligned(buf + 36); \
MA = sph_dec32be_aligned(buf + 40); \
MB = sph_dec32be_aligned(buf + 44); \
MC = sph_dec32be_aligned(buf + 48); \
MD = sph_dec32be_aligned(buf + 52); \
ME = sph_dec32be_aligned(buf + 56); \
MF = sph_dec32be_aligned(buf + 60); \
ROUND_S(0); \
ROUND_S(1); \
ROUND_S(2); \
ROUND_S(3); \
ROUND_S(4); \
ROUND_S(5); \
ROUND_S(6); \
ROUND_S(7); \
if (BLAKE32_ROUNDS == 14) { \
ROUND_S(8); \
ROUND_S(9); \
ROUND_S(0); \
ROUND_S(1); \
ROUND_S(2); \
ROUND_S(3); \
} \
H0 ^= S0 ^ V0 ^ V8; \
H1 ^= S1 ^ V1 ^ V9; \
H2 ^= S2 ^ V2 ^ VA; \
H3 ^= S3 ^ V3 ^ VB; \
H4 ^= S0 ^ V4 ^ VC; \
H5 ^= S1 ^ V5 ^ VD; \
H6 ^= S2 ^ V6 ^ VE; \
H7 ^= S3 ^ V7 ^ VF; \
} while (0)
static const sph_u32 salt_zero_small[4] = { 0, 0, 0, 0 };
static void
blake32_init(sph_blake_small_context *sc,
const sph_u32 *iv, const sph_u32 *salt)
{
memcpy(sc->H, iv, 8 * sizeof(sph_u32));
memcpy(sc->S, salt, 4 * sizeof(sph_u32));
sc->T0 = sc->T1 = 0;
sc->ptr = 0;
}
static void
blake32(sph_blake_small_context *sc, const void *data, size_t len)
{
unsigned char *buf;
size_t ptr;
DECL_STATE32
buf = sc->buf;
ptr = sc->ptr;
if (len < (sizeof sc->buf) - ptr) {
memcpy(buf + ptr, data, len);
ptr += len;
sc->ptr = ptr;
return;
}
READ_STATE32(sc);
while (len > 0) {
size_t clen;
clen = (sizeof sc->buf) - ptr;
if (clen > len)
clen = len;
memcpy(buf + ptr, data, clen);
ptr += clen;
data = (const unsigned char *)data + clen;
len -= clen;
if (ptr == sizeof sc->buf) {
if ((T0 = SPH_T32(T0 + 512)) < 512)
T1 = SPH_T32(T1 + 1);
COMPRESS32;
ptr = 0;
}
}
WRITE_STATE32(sc);
sc->ptr = ptr;
}
static void
blake32_close(sph_blake_small_context *sc,
unsigned ub, unsigned n, void *dst, size_t out_size_w32)
{
union {
unsigned char buf[64];
sph_u32 dummy;
} u;
size_t ptr, k;
unsigned bit_len;
unsigned z;
sph_u32 th, tl;
unsigned char *out;
ptr = sc->ptr;
bit_len = ((unsigned)ptr << 3) + n;
z = 0x80 >> n;
u.buf[ptr] = ((ub & -z) | z) & 0xFF;
tl = sc->T0 + bit_len;
th = sc->T1;
if (ptr == 0 && n == 0) {
sc->T0 = SPH_C32(0xFFFFFE00);
sc->T1 = SPH_C32(0xFFFFFFFF);
} else if (sc->T0 == 0) {
sc->T0 = SPH_C32(0xFFFFFE00) + bit_len;
sc->T1 = SPH_T32(sc->T1 - 1);
} else {
sc->T0 -= 512 - bit_len;
}
if (bit_len <= 446) {
memset(u.buf + ptr + 1, 0, 55 - ptr);
if (out_size_w32 == 8)
u.buf[55] |= 1;
sph_enc32be_aligned(u.buf + 56, th);
sph_enc32be_aligned(u.buf + 60, tl);
blake32(sc, u.buf + ptr, 64 - ptr);
} else {
memset(u.buf + ptr + 1, 0, 63 - ptr);
blake32(sc, u.buf + ptr, 64 - ptr);
sc->T0 = SPH_C32(0xFFFFFE00);
sc->T1 = SPH_C32(0xFFFFFFFF);
memset(u.buf, 0, 56);
if (out_size_w32 == 8)
u.buf[55] = 1;
sph_enc32be_aligned(u.buf + 56, th);
sph_enc32be_aligned(u.buf + 60, tl);
blake32(sc, u.buf, 64);
}
out = dst;
for (k = 0; k < out_size_w32; k ++)
sph_enc32be(out + (k << 2), sc->H[k]);
}
void
blakecoin_init(void *cc)
{
blake32_init(cc, IV256, salt_zero_small);
}
void
blakecoin(void *cc, const void *data, size_t len)
{
blake32(cc, data, len);
}
static void
blakecoin_addbits_and_close(void *cc, unsigned ub, unsigned n, void *dst)
{
blake32_close(cc, ub, n, dst, 8);
blakecoin_init(cc);
}
void
blakecoin_close(void *cc, void *dst)
{
blakecoin_addbits_and_close(cc, 0, 0, dst);
}
#ifdef __cplusplus
}
#endif

121
algo/blake/pentablake.c Normal file
View File

@@ -0,0 +1,121 @@
#include "miner.h"
#include "algo-gate-api.h"
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <stdio.h>
#include "sph_blake.h"
//#define DEBUG_ALGO
extern void pentablakehash(void *output, const void *input)
{
unsigned char _ALIGN(32) hash[128];
// same as uint32_t hashA[16], hashB[16];
#define hashB hash+64
sph_blake512_context ctx_blake;
sph_blake512_init(&ctx_blake);
sph_blake512(&ctx_blake, input, 80);
sph_blake512_close(&ctx_blake, hash);
sph_blake512_init(&ctx_blake);
sph_blake512(&ctx_blake, hash, 64);
sph_blake512_close(&ctx_blake, hashB);
sph_blake512_init(&ctx_blake);
sph_blake512(&ctx_blake, hashB, 64);
sph_blake512_close(&ctx_blake, hash);
sph_blake512_init(&ctx_blake);
sph_blake512(&ctx_blake, hash, 64);
sph_blake512_close(&ctx_blake, hashB);
sph_blake512_init(&ctx_blake);
sph_blake512(&ctx_blake, hashB, 64);
sph_blake512_close(&ctx_blake, hash);
memcpy(output, hash, 32);
}
int scanhash_pentablake(int thr_id, struct work *work, uint32_t max_nonce,
uint64_t *hashes_done)
{
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
uint32_t n = pdata[19] - 1;
const uint32_t first_nonce = pdata[19];
const uint32_t Htarg = ptarget[7];
uint32_t _ALIGN(32) hash64[8];
uint32_t _ALIGN(32) endiandata[32];
uint64_t htmax[] = {
0,
0xF,
0xFF,
0xFFF,
0xFFFF,
0x10000000
};
uint32_t masks[] = {
0xFFFFFFFF,
0xFFFFFFF0,
0xFFFFFF00,
0xFFFFF000,
0xFFFF0000,
0
};
// we need bigendian data...
swab32_array( endiandata, pdata, 20 );
#ifdef DEBUG_ALGO
if (Htarg != 0)
printf("[%d] Htarg=%X\n", thr_id, Htarg);
#endif
for (int m=0; m < 6; m++) {
if (Htarg <= htmax[m]) {
uint32_t mask = masks[m];
do {
pdata[19] = ++n;
be32enc(&endiandata[19], n);
pentablakehash(hash64, endiandata);
#ifndef DEBUG_ALGO
if ((!(hash64[7] & mask)) && fulltest(hash64, ptarget)) {
*hashes_done = n - first_nonce + 1;
return true;
}
#else
if (!(n % 0x1000) && !thr_id) printf(".");
if (!(hash64[7] & mask)) {
printf("[%d]",thr_id);
if (fulltest(hash64, ptarget)) {
*hashes_done = n - first_nonce + 1;
return true;
}
}
#endif
} while (n < max_nonce && !work_restart[thr_id].restart);
// see blake.c if else to understand the loop on htmax => mask
break;
}
}
*hashes_done = n - first_nonce + 1;
pdata[19] = n;
return 0;
}
bool register_pentablake_algo( algo_gate_t* gate )
{
gate->scanhash = (void*)&scanhash_pentablake;
gate->hash = (void*)&pentablakehash;
gate->get_max64 = (void*)&get_max64_0x3ffff;
return true;
};

1127
algo/blake/sph_blake.c Normal file

File diff suppressed because it is too large Load Diff

327
algo/blake/sph_blake.h Normal file
View File

@@ -0,0 +1,327 @@
/* $Id: sph_blake.h 252 2011-06-07 17:55:14Z tp $ */
/**
* BLAKE interface. BLAKE is a family of functions which differ by their
* output size; this implementation defines BLAKE for output sizes 224,
* 256, 384 and 512 bits. This implementation conforms to the "third
* round" specification.
*
* ==========================(LICENSE BEGIN)============================
*
* Copyright (c) 2007-2010 Projet RNRT SAPHIR
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* ===========================(LICENSE END)=============================
*
* @file sph_blake.h
* @author Thomas Pornin <thomas.pornin@cryptolog.com>
*/
#ifndef SPH_BLAKE_H__
#define SPH_BLAKE_H__
#ifdef __cplusplus
extern "C"{
#endif
#include <stddef.h>
#include "algo/sha3/sph_types.h"
/**
* Output size (in bits) for BLAKE-224.
*/
#define SPH_SIZE_blake224 224
/**
* Output size (in bits) for BLAKE-256.
*/
#define SPH_SIZE_blake256 256
#if SPH_64
/**
* Output size (in bits) for BLAKE-384.
*/
#define SPH_SIZE_blake384 384
/**
* Output size (in bits) for BLAKE-512.
*/
#define SPH_SIZE_blake512 512
#endif
/**
* This structure is a context for BLAKE-224 and BLAKE-256 computations:
* it contains the intermediate values and some data from the last
* entered block. Once a BLAKE computation has been performed, the
* context can be reused for another computation.
*
* The contents of this structure are private. A running BLAKE
* computation can be cloned by copying the context (e.g. with a simple
* <code>memcpy()</code>).
*/
typedef struct {
#ifndef DOXYGEN_IGNORE
unsigned char buf[64]; /* first field, for alignment */
size_t ptr;
sph_u32 H[8];
sph_u32 S[4];
sph_u32 T0, T1;
#endif
} sph_blake_small_context;
/**
* This structure is a context for BLAKE-224 computations. It is
* identical to the common <code>sph_blake_small_context</code>.
*/
typedef sph_blake_small_context sph_blake224_context;
/**
* This structure is a context for BLAKE-256 computations. It is
* identical to the common <code>sph_blake_small_context</code>.
*/
typedef sph_blake_small_context sph_blake256_context;
#if SPH_64
/**
* This structure is a context for BLAKE-384 and BLAKE-512 computations:
* it contains the intermediate values and some data from the last
* entered block. Once a BLAKE computation has been performed, the
* context can be reused for another computation.
*
* The contents of this structure are private. A running BLAKE
* computation can be cloned by copying the context (e.g. with a simple
* <code>memcpy()</code>).
*/
typedef struct {
#ifndef DOXYGEN_IGNORE
unsigned char buf[128]; /* first field, for alignment */
size_t ptr;
sph_u64 H[8];
sph_u64 S[4];
sph_u64 T0, T1;
#endif
} sph_blake_big_context;
/**
* This structure is a context for BLAKE-384 computations. It is
* identical to the common <code>sph_blake_small_context</code>.
*/
typedef sph_blake_big_context sph_blake384_context;
/**
* This structure is a context for BLAKE-512 computations. It is
* identical to the common <code>sph_blake_small_context</code>.
*/
typedef sph_blake_big_context sph_blake512_context;
#endif
/**
* Initialize a BLAKE-224 context. This process performs no memory allocation.
*
* @param cc the BLAKE-224 context (pointer to a
* <code>sph_blake224_context</code>)
*/
void sph_blake224_init(void *cc);
/**
* Process some data bytes. It is acceptable that <code>len</code> is zero
* (in which case this function does nothing).
*
* @param cc the BLAKE-224 context
* @param data the input data
* @param len the input data length (in bytes)
*/
void sph_blake224(void *cc, const void *data, size_t len);
/**
* Terminate the current BLAKE-224 computation and output the result into
* the provided buffer. The destination buffer must be wide enough to
* accomodate the result (28 bytes). The context is automatically
* reinitialized.
*
* @param cc the BLAKE-224 context
* @param dst the destination buffer
*/
void sph_blake224_close(void *cc, void *dst);
/**
* Add a few additional bits (0 to 7) to the current computation, then
* terminate it and output the result in the provided buffer, which must
* be wide enough to accomodate the result (28 bytes). If bit number i
* in <code>ub</code> has value 2^i, then the extra bits are those
* numbered 7 downto 8-n (this is the big-endian convention at the byte
* level). The context is automatically reinitialized.
*
* @param cc the BLAKE-224 context
* @param ub the extra bits
* @param n the number of extra bits (0 to 7)
* @param dst the destination buffer
*/
void sph_blake224_addbits_and_close(
void *cc, unsigned ub, unsigned n, void *dst);
/**
* Initialize a BLAKE-256 context. This process performs no memory allocation.
*
* @param cc the BLAKE-256 context (pointer to a
* <code>sph_blake256_context</code>)
*/
void sph_blake256_init(void *cc);
/**
* Process some data bytes. It is acceptable that <code>len</code> is zero
* (in which case this function does nothing).
*
* @param cc the BLAKE-256 context
* @param data the input data
* @param len the input data length (in bytes)
*/
void sph_blake256(void *cc, const void *data, size_t len);
/**
* Terminate the current BLAKE-256 computation and output the result into
* the provided buffer. The destination buffer must be wide enough to
* accomodate the result (32 bytes). The context is automatically
* reinitialized.
*
* @param cc the BLAKE-256 context
* @param dst the destination buffer
*/
void sph_blake256_close(void *cc, void *dst);
/**
* Add a few additional bits (0 to 7) to the current computation, then
* terminate it and output the result in the provided buffer, which must
* be wide enough to accomodate the result (32 bytes). If bit number i
* in <code>ub</code> has value 2^i, then the extra bits are those
* numbered 7 downto 8-n (this is the big-endian convention at the byte
* level). The context is automatically reinitialized.
*
* @param cc the BLAKE-256 context
* @param ub the extra bits
* @param n the number of extra bits (0 to 7)
* @param dst the destination buffer
*/
void sph_blake256_addbits_and_close(
void *cc, unsigned ub, unsigned n, void *dst);
#if SPH_64
/**
* Initialize a BLAKE-384 context. This process performs no memory allocation.
*
* @param cc the BLAKE-384 context (pointer to a
* <code>sph_blake384_context</code>)
*/
void sph_blake384_init(void *cc);
/**
* Process some data bytes. It is acceptable that <code>len</code> is zero
* (in which case this function does nothing).
*
* @param cc the BLAKE-384 context
* @param data the input data
* @param len the input data length (in bytes)
*/
void sph_blake384(void *cc, const void *data, size_t len);
/**
* Terminate the current BLAKE-384 computation and output the result into
* the provided buffer. The destination buffer must be wide enough to
* accomodate the result (48 bytes). The context is automatically
* reinitialized.
*
* @param cc the BLAKE-384 context
* @param dst the destination buffer
*/
void sph_blake384_close(void *cc, void *dst);
/**
* Add a few additional bits (0 to 7) to the current computation, then
* terminate it and output the result in the provided buffer, which must
* be wide enough to accomodate the result (48 bytes). If bit number i
* in <code>ub</code> has value 2^i, then the extra bits are those
* numbered 7 downto 8-n (this is the big-endian convention at the byte
* level). The context is automatically reinitialized.
*
* @param cc the BLAKE-384 context
* @param ub the extra bits
* @param n the number of extra bits (0 to 7)
* @param dst the destination buffer
*/
void sph_blake384_addbits_and_close(
void *cc, unsigned ub, unsigned n, void *dst);
/**
* Initialize a BLAKE-512 context. This process performs no memory allocation.
*
* @param cc the BLAKE-512 context (pointer to a
* <code>sph_blake512_context</code>)
*/
void sph_blake512_init(void *cc);
/**
* Process some data bytes. It is acceptable that <code>len</code> is zero
* (in which case this function does nothing).
*
* @param cc the BLAKE-512 context
* @param data the input data
* @param len the input data length (in bytes)
*/
void sph_blake512(void *cc, const void *data, size_t len);
/**
* Terminate the current BLAKE-512 computation and output the result into
* the provided buffer. The destination buffer must be wide enough to
* accomodate the result (64 bytes). The context is automatically
* reinitialized.
*
* @param cc the BLAKE-512 context
* @param dst the destination buffer
*/
void sph_blake512_close(void *cc, void *dst);
/**
* Add a few additional bits (0 to 7) to the current computation, then
* terminate it and output the result in the provided buffer, which must
* be wide enough to accomodate the result (64 bytes). If bit number i
* in <code>ub</code> has value 2^i, then the extra bits are those
* numbered 7 downto 8-n (this is the big-endian convention at the byte
* level). The context is automatically reinitialized.
*
* @param cc the BLAKE-512 context
* @param ub the extra bits
* @param n the number of extra bits (0 to 7)
* @param dst the destination buffer
*/
void sph_blake512_addbits_and_close(
void *cc, unsigned ub, unsigned n, void *dst);
#endif
#ifdef __cplusplus
}
#endif
#endif

477
algo/blake/sse2/blake.c Normal file
View File

@@ -0,0 +1,477 @@
/* $Id: blake.c 252 2011-06-07 17:55:14Z tp $ */
/*
* BLAKE implementation.
*
* ==========================(LICENSE BEGIN)============================
*
* Copyright (c) 2007-2010 Projet RNRT SAPHIR
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* ===========================(LICENSE END)=============================
*
* @author Thomas Pornin <thomas.pornin@cryptolog.com>
*/
#include <stddef.h>
#include <string.h>
#include <limits.h>
#include "../sph_blake.h"
#ifdef __cplusplus
extern "C"{
#endif
#ifdef _MSC_VER
#pragma warning (disable: 4146)
#endif
static const sph_u64 blkIV512[8] = {
SPH_C64(0x6A09E667F3BCC908), SPH_C64(0xBB67AE8584CAA73B),
SPH_C64(0x3C6EF372FE94F82B), SPH_C64(0xA54FF53A5F1D36F1),
SPH_C64(0x510E527FADE682D1), SPH_C64(0x9B05688C2B3E6C1F),
SPH_C64(0x1F83D9ABFB41BD6B), SPH_C64(0x5BE0CD19137E2179)
};
#define Z00 0
#define Z01 1
#define Z02 2
#define Z03 3
#define Z04 4
#define Z05 5
#define Z06 6
#define Z07 7
#define Z08 8
#define Z09 9
#define Z0A A
#define Z0B B
#define Z0C C
#define Z0D D
#define Z0E E
#define Z0F F
#define Z10 E
#define Z11 A
#define Z12 4
#define Z13 8
#define Z14 9
#define Z15 F
#define Z16 D
#define Z17 6
#define Z18 1
#define Z19 C
#define Z1A 0
#define Z1B 2
#define Z1C B
#define Z1D 7
#define Z1E 5
#define Z1F 3
#define Z20 B
#define Z21 8
#define Z22 C
#define Z23 0
#define Z24 5
#define Z25 2
#define Z26 F
#define Z27 D
#define Z28 A
#define Z29 E
#define Z2A 3
#define Z2B 6
#define Z2C 7
#define Z2D 1
#define Z2E 9
#define Z2F 4
#define Z30 7
#define Z31 9
#define Z32 3
#define Z33 1
#define Z34 D
#define Z35 C
#define Z36 B
#define Z37 E
#define Z38 2
#define Z39 6
#define Z3A 5
#define Z3B A
#define Z3C 4
#define Z3D 0
#define Z3E F
#define Z3F 8
#define Z40 9
#define Z41 0
#define Z42 5
#define Z43 7
#define Z44 2
#define Z45 4
#define Z46 A
#define Z47 F
#define Z48 E
#define Z49 1
#define Z4A B
#define Z4B C
#define Z4C 6
#define Z4D 8
#define Z4E 3
#define Z4F D
#define Z50 2
#define Z51 C
#define Z52 6
#define Z53 A
#define Z54 0
#define Z55 B
#define Z56 8
#define Z57 3
#define Z58 4
#define Z59 D
#define Z5A 7
#define Z5B 5
#define Z5C F
#define Z5D E
#define Z5E 1
#define Z5F 9
#define Z60 C
#define Z61 5
#define Z62 1
#define Z63 F
#define Z64 E
#define Z65 D
#define Z66 4
#define Z67 A
#define Z68 0
#define Z69 7
#define Z6A 6
#define Z6B 3
#define Z6C 9
#define Z6D 2
#define Z6E 8
#define Z6F B
#define Z70 D
#define Z71 B
#define Z72 7
#define Z73 E
#define Z74 C
#define Z75 1
#define Z76 3
#define Z77 9
#define Z78 5
#define Z79 0
#define Z7A F
#define Z7B 4
#define Z7C 8
#define Z7D 6
#define Z7E 2
#define Z7F A
#define Z80 6
#define Z81 F
#define Z82 E
#define Z83 9
#define Z84 B
#define Z85 3
#define Z86 0
#define Z87 8
#define Z88 C
#define Z89 2
#define Z8A D
#define Z8B 7
#define Z8C 1
#define Z8D 4
#define Z8E A
#define Z8F 5
#define Z90 A
#define Z91 2
#define Z92 8
#define Z93 4
#define Z94 7
#define Z95 6
#define Z96 1
#define Z97 5
#define Z98 F
#define Z99 B
#define Z9A 9
#define Z9B E
#define Z9C 3
#define Z9D C
#define Z9E D
#define Z9F 0
#define Mx(r, i) Mx_(Z ## r ## i)
#define Mx_(n) Mx__(n)
#define Mx__(n) M ## n
#define CSx(r, i) CSx_(Z ## r ## i)
#define CSx_(n) CSx__(n)
#define CSx__(n) CS ## n
#define CS0 SPH_C32(0x243F6A88)
#define CS1 SPH_C32(0x85A308D3)
#define CS2 SPH_C32(0x13198A2E)
#define CS3 SPH_C32(0x03707344)
#define CS4 SPH_C32(0xA4093822)
#define CS5 SPH_C32(0x299F31D0)
#define CS6 SPH_C32(0x082EFA98)
#define CS7 SPH_C32(0xEC4E6C89)
#define CS8 SPH_C32(0x452821E6)
#define CS9 SPH_C32(0x38D01377)
#define CSA SPH_C32(0xBE5466CF)
#define CSB SPH_C32(0x34E90C6C)
#define CSC SPH_C32(0xC0AC29B7)
#define CSD SPH_C32(0xC97C50DD)
#define CSE SPH_C32(0x3F84D5B5)
#define CSF SPH_C32(0xB5470917)
#define CBx(r, i) CBx_(Z ## r ## i)
#define CBx_(n) CBx__(n)
#define CBx__(n) CB ## n
#define CB0 SPH_C64(0x243F6A8885A308D3)
#define CB1 SPH_C64(0x13198A2E03707344)
#define CB2 SPH_C64(0xA4093822299F31D0)
#define CB3 SPH_C64(0x082EFA98EC4E6C89)
#define CB4 SPH_C64(0x452821E638D01377)
#define CB5 SPH_C64(0xBE5466CF34E90C6C)
#define CB6 SPH_C64(0xC0AC29B7C97C50DD)
#define CB7 SPH_C64(0x3F84D5B5B5470917)
#define CB8 SPH_C64(0x9216D5D98979FB1B)
#define CB9 SPH_C64(0xD1310BA698DFB5AC)
#define CBA SPH_C64(0x2FFD72DBD01ADFB7)
#define CBB SPH_C64(0xB8E1AFED6A267E96)
#define CBC SPH_C64(0xBA7C9045F12C7F99)
#define CBD SPH_C64(0x24A19947B3916CF7)
#define CBE SPH_C64(0x0801F2E2858EFC16)
#define CBF SPH_C64(0x636920D871574E69)
#define GS(m0, m1, c0, c1, a, b, c, d) do { \
a = SPH_T32(a + b + (m0 ^ c1)); \
d = SPH_ROTR32(d ^ a, 16); \
c = SPH_T32(c + d); \
b = SPH_ROTR32(b ^ c, 12); \
a = SPH_T32(a + b + (m1 ^ c0)); \
d = SPH_ROTR32(d ^ a, 8); \
c = SPH_T32(c + d); \
b = SPH_ROTR32(b ^ c, 7); \
} while (0)
#define ROUND_S(r) do { \
GS(Mx(r, 0), Mx(r, 1), CSx(r, 0), CSx(r, 1), V0, V4, V8, VC); \
GS(Mx(r, 2), Mx(r, 3), CSx(r, 2), CSx(r, 3), V1, V5, V9, VD); \
GS(Mx(r, 4), Mx(r, 5), CSx(r, 4), CSx(r, 5), V2, V6, VA, VE); \
GS(Mx(r, 6), Mx(r, 7), CSx(r, 6), CSx(r, 7), V3, V7, VB, VF); \
GS(Mx(r, 8), Mx(r, 9), CSx(r, 8), CSx(r, 9), V0, V5, VA, VF); \
GS(Mx(r, A), Mx(r, B), CSx(r, A), CSx(r, B), V1, V6, VB, VC); \
GS(Mx(r, C), Mx(r, D), CSx(r, C), CSx(r, D), V2, V7, V8, VD); \
GS(Mx(r, E), Mx(r, F), CSx(r, E), CSx(r, F), V3, V4, V9, VE); \
} while (0)
#define GB(m0, m1, c0, c1, a, b, c, d) do { \
a = SPH_T64(a + b + (m0 ^ c1)); \
d = SPH_ROTR64(d ^ a, 32); \
c = SPH_T64(c + d); \
b = SPH_ROTR64(b ^ c, 25); \
a = SPH_T64(a + b + (m1 ^ c0)); \
d = SPH_ROTR64(d ^ a, 16); \
c = SPH_T64(c + d); \
b = SPH_ROTR64(b ^ c, 11); \
} while (0)
#define ROUND_B(r) do { \
GB(Mx(r, 0), Mx(r, 1), CBx(r, 0), CBx(r, 1), V0, V4, V8, VC); \
GB(Mx(r, 2), Mx(r, 3), CBx(r, 2), CBx(r, 3), V1, V5, V9, VD); \
GB(Mx(r, 4), Mx(r, 5), CBx(r, 4), CBx(r, 5), V2, V6, VA, VE); \
GB(Mx(r, 6), Mx(r, 7), CBx(r, 6), CBx(r, 7), V3, V7, VB, VF); \
GB(Mx(r, 8), Mx(r, 9), CBx(r, 8), CBx(r, 9), V0, V5, VA, VF); \
GB(Mx(r, A), Mx(r, B), CBx(r, A), CBx(r, B), V1, V6, VB, VC); \
GB(Mx(r, C), Mx(r, D), CBx(r, C), CBx(r, D), V2, V7, V8, VD); \
GB(Mx(r, E), Mx(r, F), CBx(r, E), CBx(r, F), V3, V4, V9, VE); \
} while (0)
#define COMPRESS64 do { \
int r; \
int b=0; \
sph_u64 M0, M1, M2, M3, M4, M5, M6, M7; \
sph_u64 M8, M9, MA, MB, MC, MD, ME, MF; \
sph_u64 V0, V1, V2, V3, V4, V5, V6, V7; \
sph_u64 V8, V9, VA, VB, VC, VD, VE, VF; \
V0 = blkH0, \
V1 = blkH1, \
V2 = blkH2, \
V3 = blkH3, \
V4 = blkH4, \
V5 = blkH5, \
V6 = blkH6, \
V7 = blkH7; \
V8 = blkS0 ^ CB0, \
V9 = blkS1 ^ CB1, \
VA = blkS2 ^ CB2, \
VB = blkS3 ^ CB3, \
VC = hashctA ^ CB4, \
VD = hashctA ^ CB5, \
VE = hashctB ^ CB6, \
VF = hashctB ^ CB7; \
M0 = sph_dec64be_aligned(buf + 0), \
M1 = sph_dec64be_aligned(buf + 8), \
M2 = sph_dec64be_aligned(buf + 16), \
M3 = sph_dec64be_aligned(buf + 24), \
M4 = sph_dec64be_aligned(buf + 32), \
M5 = sph_dec64be_aligned(buf + 40), \
M6 = sph_dec64be_aligned(buf + 48), \
M7 = sph_dec64be_aligned(buf + 56), \
M8 = sph_dec64be_aligned(buf + 64), \
M9 = sph_dec64be_aligned(buf + 72), \
MA = sph_dec64be_aligned(buf + 80), \
MB = sph_dec64be_aligned(buf + 88), \
MC = sph_dec64be_aligned(buf + 96), \
MD = sph_dec64be_aligned(buf + 104), \
ME = sph_dec64be_aligned(buf + 112), \
MF = sph_dec64be_aligned(buf + 120); \
/* loop once and a half */ \
/* save some space */ \
for (;;) { \
ROUND_B(0); \
ROUND_B(1); \
ROUND_B(2); \
ROUND_B(3); \
ROUND_B(4); \
ROUND_B(5); \
if (b) break; \
b = 1; \
ROUND_B(6); \
ROUND_B(7); \
ROUND_B(8); \
ROUND_B(9); \
}; \
blkH0 ^= blkS0 ^ V0 ^ V8, \
blkH1 ^= blkS1 ^ V1 ^ V9, \
blkH2 ^= blkS2 ^ V2 ^ VA, \
blkH3 ^= blkS3 ^ V3 ^ VB, \
blkH4 ^= blkS0 ^ V4 ^ VC, \
blkH5 ^= blkS1 ^ V5 ^ VD, \
blkH6 ^= blkS2 ^ V6 ^ VE, \
blkH7 ^= blkS3 ^ V7 ^ VF; \
} while (0)
/*
*/
#define DECL_BLK \
sph_u64 blkH0; \
sph_u64 blkH1; \
sph_u64 blkH2; \
sph_u64 blkH3; \
sph_u64 blkH4; \
sph_u64 blkH5; \
sph_u64 blkH6; \
sph_u64 blkH7; \
sph_u64 blkS0; \
sph_u64 blkS1; \
sph_u64 blkS2; \
sph_u64 blkS3; \
/* load initial constants */
#define BLK_I \
do { \
blkH0 = SPH_C64(0x6A09E667F3BCC908); \
blkH1 = SPH_C64(0xBB67AE8584CAA73B); \
blkH2 = SPH_C64(0x3C6EF372FE94F82B); \
blkH3 = SPH_C64(0xA54FF53A5F1D36F1); \
blkH4 = SPH_C64(0x510E527FADE682D1); \
blkH5 = SPH_C64(0x9B05688C2B3E6C1F); \
blkH6 = SPH_C64(0x1F83D9ABFB41BD6B); \
blkH7 = SPH_C64(0x5BE0CD19137E2179); \
blkS0 = 0; \
blkS1 = 0; \
blkS2 = 0; \
blkS3 = 0; \
hashctB = SPH_T64(0- 1); \
} while (0)
/* copy in 80 for initial hash */
#define BLK_W \
do { \
memcpy(hashbuf, input, 80); \
hashctA = SPH_C64(0xFFFFFFFFFFFFFC00) + 80*8; \
hashptr = 80; \
} while (0)
/* copy in 64 for looped hash */
#define BLK_U \
do { \
memcpy(hashbuf, hash , 64); \
hashctA = SPH_C64(0xFFFFFFFFFFFFFC00) + 64*8; \
hashptr = 64; \
} while (0)
/* blake compress function */
/* hash = blake512(loaded) */
#define BLK_C \
do { \
\
union { \
unsigned char buf[128]; \
sph_u64 dummy; \
} u; \
size_t ptr; \
unsigned bit_len; \
\
ptr = hashptr; \
bit_len = ((unsigned)ptr << 3) + 0; \
u.buf[ptr] = ((0 & -(0x80)) | (0x80)) & 0xFF; \
memset(u.buf + ptr + 1, 0, 111 - ptr); \
u.buf[111] |= 1; \
sph_enc64be_aligned(u.buf + 112, 0); \
sph_enc64be_aligned(u.buf + 120, bit_len); \
do { \
const void *data = u.buf + ptr; \
unsigned char *buf; \
buf = hashbuf; \
size_t clen; \
clen = (sizeof(char)*128) - hashptr; \
memcpy(buf + hashptr, data, clen); \
hashctA = SPH_T64(hashctA + 1024); \
hashctB = SPH_T64(hashctB + 1); \
COMPRESS64; \
} while (0); \
/* end blake64(sc, u.buf + ptr, 128 - ptr); */ \
sph_enc64be((unsigned char*)(hash) + (0 << 3), blkH0), \
sph_enc64be((unsigned char*)(hash) + (1 << 3), blkH1); \
sph_enc64be((unsigned char*)(hash) + (2 << 3), blkH2), \
sph_enc64be((unsigned char*)(hash) + (3 << 3), blkH3); \
sph_enc64be((unsigned char*)(hash) + (4 << 3), blkH4), \
sph_enc64be((unsigned char*)(hash) + (5 << 3), blkH5); \
sph_enc64be((unsigned char*)(hash) + (6 << 3), blkH6), \
sph_enc64be((unsigned char*)(hash) + (7 << 3), blkH7); \
} while (0)
#ifdef __cplusplus
}
#endif

View File

@@ -0,0 +1,2 @@
#define CRYPTO_BYTES 64

View File

@@ -0,0 +1,2 @@
amd64
x86

View File

@@ -0,0 +1,8 @@
#ifndef __BLAKE512_CONFIG_H__
#define __BLAKE512_CONFIG_H__
#define AVOID_BRANCHING 1
//#define HAVE_XOP 1
#endif

View File

@@ -0,0 +1,287 @@
#include "hash.h"
/*
#ifndef NOT_SUPERCOP
#include "crypto_hash.h"
#include "crypto_uint64.h"
#include "crypto_uint32.h"
#include "crypto_uint8.h"
typedef crypto_uint64 u64;
typedef crypto_uint32 u32;
typedef crypto_uint8 u8;
#else
typedef unsigned long long u64;
typedef unsigned int u32;
typedef unsigned char u8;
#endif
*/
#define U8TO32(p) \
(((u32)((p)[0]) << 24) | ((u32)((p)[1]) << 16) | \
((u32)((p)[2]) << 8) | ((u32)((p)[3]) ))
#define U8TO64(p) \
(((u64)U8TO32(p) << 32) | (u64)U8TO32((p) + 4))
#define U32TO8(p, v) \
(p)[0] = (u8)((v) >> 24); (p)[1] = (u8)((v) >> 16); \
(p)[2] = (u8)((v) >> 8); (p)[3] = (u8)((v) );
#define U64TO8(p, v) \
U32TO8((p), (u32)((v) >> 32)); \
U32TO8((p) + 4, (u32)((v) ));
/*
typedef struct
{
__m128i h[4];
u64 s[4], t[2];
u32 buflen, nullt;
u8 buf[128];
} state __attribute__ ((aligned (64)));
*/
static const u8 padding[129] =
{
0x80,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
};
static inline int blake512_compress( hashState_blake * state, const u8 * datablock )
{
__m128i row1l,row1h;
__m128i row2l,row2h;
__m128i row3l,row3h;
__m128i row4l,row4h;
const __m128i r16 = _mm_setr_epi8(2,3,4,5,6,7,0,1,10,11,12,13,14,15,8,9);
const __m128i u8to64 = _mm_set_epi8(8, 9, 10, 11, 12, 13, 14, 15, 0, 1, 2, 3, 4, 5, 6, 7);
__m128i m0, m1, m2, m3, m4, m5, m6, m7;
__m128i t0, t1, t2, t3, t4, t5, t6, t7;
__m128i b0, b1, b2, b3;
m0 = _mm_loadu_si128((__m128i*)(datablock + 0));
m1 = _mm_loadu_si128((__m128i*)(datablock + 16));
m2 = _mm_loadu_si128((__m128i*)(datablock + 32));
m3 = _mm_loadu_si128((__m128i*)(datablock + 48));
m4 = _mm_loadu_si128((__m128i*)(datablock + 64));
m5 = _mm_loadu_si128((__m128i*)(datablock + 80));
m6 = _mm_loadu_si128((__m128i*)(datablock + 96));
m7 = _mm_loadu_si128((__m128i*)(datablock + 112));
m0 = BSWAP64(m0);
m1 = BSWAP64(m1);
m2 = BSWAP64(m2);
m3 = BSWAP64(m3);
m4 = BSWAP64(m4);
m5 = BSWAP64(m5);
m6 = BSWAP64(m6);
m7 = BSWAP64(m7);
row1l = state->h[0];
row1h = state->h[1];
row2l = state->h[2];
row2h = state->h[3];
row3l = _mm_set_epi64x(0x13198A2E03707344ULL, 0x243F6A8885A308D3ULL);
row3h = _mm_set_epi64x(0x082EFA98EC4E6C89ULL, 0xA4093822299F31D0ULL);
row4l = _mm_set_epi64x(0xBE5466CF34E90C6CULL, 0x452821E638D01377ULL);
row4h = _mm_set_epi64x(0x3F84D5B5B5470917ULL, 0xC0AC29B7C97C50DDULL);
#ifdef AVOID_BRANCHING
do
{
const __m128i mask = _mm_cmpeq_epi32(_mm_setzero_si128(), _mm_set1_epi32(state->nullt));
const __m128i xor1 = _mm_and_si128(_mm_set1_epi64x(state->t[0]), mask);
const __m128i xor2 = _mm_and_si128(_mm_set1_epi64x(state->t[1]), mask);
row4l = _mm_xor_si128(row4l, xor1);
row4h = _mm_xor_si128(row4h, xor2);
} while(0);
#else
if(!state->nullt)
{
row4l = _mm_xor_si128(row4l, _mm_set1_epi64x(state->t[0]));
row4h = _mm_xor_si128(row4h, _mm_set1_epi64x(state->t[1]));
}
#endif
ROUND( 0);
ROUND( 1);
ROUND( 2);
ROUND( 3);
ROUND( 4);
ROUND( 5);
ROUND( 6);
ROUND( 7);
ROUND( 8);
ROUND( 9);
ROUND(10);
ROUND(11);
ROUND(12);
ROUND(13);
ROUND(14);
ROUND(15);
row1l = _mm_xor_si128(row3l,row1l);
row1h = _mm_xor_si128(row3h,row1h);
state->h[0] = _mm_xor_si128(row1l, state->h[0]);
state->h[1] = _mm_xor_si128(row1h, state->h[1]);
row2l = _mm_xor_si128(row4l,row2l);
row2h = _mm_xor_si128(row4h,row2h);
state->h[2] = _mm_xor_si128(row2l, state->h[2]);
state->h[3] = _mm_xor_si128(row2h, state->h[3]);
return 0;
}
static inline void blake512_init( hashState_blake * S, u64 databitlen )
{
memset(S, 0, sizeof(hashState_blake));
S->h[0] = _mm_set_epi64x(0xBB67AE8584CAA73BULL, 0x6A09E667F3BCC908ULL);
S->h[1] = _mm_set_epi64x(0xA54FF53A5F1D36F1ULL, 0x3C6EF372FE94F82BULL);
S->h[2] = _mm_set_epi64x(0x9B05688C2B3E6C1FULL, 0x510E527FADE682D1ULL);
S->h[3] = _mm_set_epi64x(0x5BE0CD19137E2179ULL, 0x1F83D9ABFB41BD6BULL);
S->buflen = databitlen;
}
static void blake512_update( hashState_blake * S, const u8 * data, u64 datalen )
{
int left = (S->buflen >> 3);
int fill = 128 - left;
if( left && ( ((datalen >> 3) & 0x7F) >= fill ) ) {
memcpy( (void *) (S->buf + left), (void *) data, fill );
S->t[0] += 1024;
blake512_compress( S, S->buf );
data += fill;
datalen -= (fill << 3);
left = 0;
}
while( datalen >= 1024 ) {
S->t[0] += 1024;
blake512_compress( S, data );
data += 128;
datalen -= 1024;
}
if( datalen > 0 ) {
memcpy( (void *) (S->buf + left), (void *) data, ( datalen>>3 ) & 0x7F );
S->buflen = (left<<3) + datalen;
}
else S->buflen=0;
}
static inline void blake512_final( hashState_blake * S, u8 * digest )
{
u8 msglen[16], zo=0x01,oo=0x81;
u64 lo=S->t[0] + S->buflen, hi = S->t[1];
if ( lo < S->buflen ) hi++;
U64TO8( msglen + 0, hi );
U64TO8( msglen + 8, lo );
if ( S->buflen == 888 ) /* one padding byte */
{
S->t[0] -= 8;
blake512_update( S, &oo, 8 );
}
else
{
if ( S->buflen < 888 ) /* enough space to fill the block */
{
if ( S->buflen == 0 ) S->nullt=1;
S->t[0] -= 888 - S->buflen;
blake512_update( S, padding, 888 - S->buflen );
}
else /* NOT enough space, need 2 compressions */
{
S->t[0] -= 1024 - S->buflen;
blake512_update( S, padding, 1024 - S->buflen );
S->t[0] -= 888;
blake512_update( S, padding+1, 888 );
S->nullt = 1;
}
blake512_update( S, &zo, 8 );
S->t[0] -= 8;
}
S->t[0] -= 128;
blake512_update( S, msglen, 128 );
do
{
const __m128i u8to64 = _mm_set_epi8(8, 9, 10, 11, 12, 13, 14, 15, 0, 1, 2, 3, 4, 5, 6, 7);
_mm_storeu_si128((__m128i*)(digest + 0), BSWAP64(S->h[0]));
_mm_storeu_si128((__m128i*)(digest + 16), BSWAP64(S->h[1]));
_mm_storeu_si128((__m128i*)(digest + 32), BSWAP64(S->h[2]));
_mm_storeu_si128((__m128i*)(digest + 48), BSWAP64(S->h[3]));
} while(0);
}
/*
int crypto_hash( unsigned char *out, const unsigned char *in, unsigned long long inlen )
{
hashState_blake S;
blake512_init( &S );
blake512_update( &S, in, inlen*8 );
blake512_final( &S, out );
return 0;
}
*/
/*
#ifdef NOT_SUPERCOP
int main()
{
int i, v;
u8 data[144], digest[64];
u8 test1[]= {0x97, 0x96, 0x15, 0x87, 0xF6, 0xD9, 0x70, 0xFA, 0xBA, 0x6D, 0x24, 0x78, 0x04, 0x5D, 0xE6, 0xD1,
0xFA, 0xBD, 0x09, 0xB6, 0x1A, 0xE5, 0x09, 0x32, 0x05, 0x4D, 0x52, 0xBC, 0x29, 0xD3, 0x1B, 0xE4,
0xFF, 0x91, 0x02, 0xB9, 0xF6, 0x9E, 0x2B, 0xBD, 0xB8, 0x3B, 0xE1, 0x3D, 0x4B, 0x9C, 0x06, 0x09,
0x1E, 0x5F, 0xA0, 0xB4, 0x8B, 0xD0, 0x81, 0xB6, 0x34, 0x05, 0x8B, 0xE0, 0xEC, 0x49, 0xBE, 0xB3};
u8 test2[]= {0x31, 0x37, 0x17, 0xD6, 0x08, 0xE9, 0xCF, 0x75, 0x8D, 0xCB, 0x1E, 0xB0, 0xF0, 0xC3, 0xCF, 0x9F,
0xC1, 0x50, 0xB2, 0xD5, 0x00, 0xFB, 0x33, 0xF5, 0x1C, 0x52, 0xAF, 0xC9, 0x9D, 0x35, 0x8A, 0x2F,
0x13, 0x74, 0xB8, 0xA3, 0x8B, 0xBA, 0x79, 0x74, 0xE7, 0xF6, 0xEF, 0x79, 0xCA, 0xB1, 0x6F, 0x22,
0xCE, 0x1E, 0x64, 0x9D, 0x6E, 0x01, 0xAD, 0x95, 0x89, 0xC2, 0x13, 0x04, 0x5D, 0x54, 0x5D, 0xDE};
for(i=0; i<144; ++i) data[i]=0;
crypto_hash( digest, data, 1 );
v=0;
for(i=0; i<64; ++i) {
printf("%02X", digest[i]);
if ( digest[i] != test1[i]) v=1;
}
if (v) printf("\nerror\n");
else printf("\nok\n");
for(i=0; i<144; ++i) data[i]=0;
crypto_hash( digest, data, 144 );
v=0;
for(i=0; i<64; ++i) {
printf("%02X", digest[i]);
if ( digest[i] != test2[i]) v=1;
}
if (v) printf("\nerror\n");
else printf("\nok\n");
return 0;
}
#endif
*/

View File

@@ -0,0 +1,74 @@
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <x86intrin.h>
#include "config.h"
#include "rounds.h"
/*
#ifndef NOT_SUPERCOP
#include "crypto_hash.h"
#include "crypto_uint64.h"
#include "crypto_uint32.h"
#include "crypto_uint8.h"
typedef crypto_uint64 u64;
typedef crypto_uint32 u32;
typedef crypto_uint8 u8;
#else
*/
typedef unsigned long long u64;
typedef unsigned int u32;
typedef unsigned char u8;
typedef struct
{
__m128i h[4];
u64 s[4], t[2];
u32 buflen, nullt;
u8 buf[128];
} hashState_blake __attribute__ ((aligned (64)));
/*
#endif
#define U8TO32(p) \
(((u32)((p)[0]) << 24) | ((u32)((p)[1]) << 16) | \
((u32)((p)[2]) << 8) | ((u32)((p)[3]) ))
#define U8TO64(p) \
(((u64)U8TO32(p) << 32) | (u64)U8TO32((p) + 4))
#define U32TO8(p, v) \
(p)[0] = (u8)((v) >> 24); (p)[1] = (u8)((v) >> 16); \
(p)[2] = (u8)((v) >> 8); (p)[3] = (u8)((v) );
#define U64TO8(p, v) \
U32TO8((p), (u32)((v) >> 32)); \
U32TO8((p) + 4, (u32)((v) ));
*/
/*
static const u8 padding[129] =
{
0x80,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
};
*/
static inline void blake512_init( hashState_blake * S, u64 datalen );
static void blake512_update( hashState_blake * S, const u8 * data, u64 datalen ) ;
static inline void blake512_final( hashState_blake * S, u8 * digest ) ;
int crypto_hash( unsigned char *out, const unsigned char *in, unsigned long long inlen ) ;

View File

@@ -0,0 +1,2 @@
Jean-Philippe Aumasson
Samuel Neves

View File

@@ -0,0 +1,871 @@
#ifndef __BLAKE512_ROUNDS_H__
#define __BLAKE512_ROUNDS_H__
#ifndef HAVE_XOP
#define BSWAP64(x) _mm_shuffle_epi8((x), u8to64)
#define _mm_roti_epi64(x, c) \
(-(c) == 32) ? _mm_shuffle_epi32((x), _MM_SHUFFLE(2,3,0,1)) \
: (-(c) == 16) ? _mm_shuffle_epi8((x), r16) \
: _mm_xor_si128(_mm_srli_epi64((x), -(c)), _mm_slli_epi64((x), 64-(-c)))
#else
#define BSWAP64(x) _mm_perm_epi8((x),(x),u8to64)
#endif
#define LOAD_MSG_0_1(b0, b1) \
do \
{ \
t0 = _mm_unpacklo_epi64(m0, m1); \
t1 = _mm_set_epi64x(0x82EFA98EC4E6C89ULL, 0x13198A2E03707344ULL); \
b0 = _mm_xor_si128(t0, t1); \
t2 = _mm_unpacklo_epi64(m2, m3); \
t3 = _mm_set_epi64x(0x3F84D5B5B5470917ULL, 0xBE5466CF34E90C6CULL); \
b1 = _mm_xor_si128(t2, t3); \
} while(0)
#define LOAD_MSG_0_2(b0, b1) \
do \
{ \
t0 = _mm_unpackhi_epi64(m0, m1); \
t1 = _mm_set_epi64x(0xA4093822299F31D0ULL, 0x243F6A8885A308D3ULL); \
b0 = _mm_xor_si128(t0, t1); \
t2 = _mm_unpackhi_epi64(m2, m3); \
t3 = _mm_set_epi64x(0xC0AC29B7C97C50DDULL, 0x452821E638D01377ULL); \
b1 = _mm_xor_si128(t2, t3); \
} while(0)
#define LOAD_MSG_0_3(b0, b1) \
do \
{ \
t0 = _mm_unpacklo_epi64(m4, m5); \
t1 = _mm_set_epi64x(0xB8E1AFED6A267E96ULL, 0xD1310BA698DFB5ACULL); \
b0 = _mm_xor_si128(t0, t1); \
t2 = _mm_unpacklo_epi64(m6, m7); \
t3 = _mm_set_epi64x(0x636920D871574E69ULL, 0x24A19947B3916CF7ULL); \
b1 = _mm_xor_si128(t2, t3); \
} while(0)
#define LOAD_MSG_0_4(b0, b1) \
do \
{ \
t0 = _mm_unpackhi_epi64(m4, m5); \
t1 = _mm_set_epi64x(0x2FFD72DBD01ADFB7ULL, 0x9216D5D98979FB1BULL); \
b0 = _mm_xor_si128(t0, t1); \
t2 = _mm_unpackhi_epi64(m6, m7); \
t3 = _mm_set_epi64x(0x801F2E2858EFC16ULL, 0xBA7C9045F12C7F99ULL); \
b1 = _mm_xor_si128(t2, t3); \
} while(0)
#define LOAD_MSG_1_1(b0, b1) \
do \
{ \
t0 = _mm_unpacklo_epi64(m7, m2); \
t1 = _mm_set_epi64x(0x9216D5D98979FB1BULL, 0x2FFD72DBD01ADFB7ULL); \
b0 = _mm_xor_si128(t0, t1); \
t2 = _mm_unpackhi_epi64(m4, m6); \
t3 = _mm_set_epi64x(0xC0AC29B7C97C50DDULL, 0x636920D871574E69ULL); \
b1 = _mm_xor_si128(t2, t3); \
} while(0)
#define LOAD_MSG_1_2(b0, b1) \
do \
{ \
t0 = _mm_unpacklo_epi64(m5, m4); \
t1 = _mm_set_epi64x(0x452821E638D01377ULL, 0x801F2E2858EFC16ULL); \
b0 = _mm_xor_si128(t0, t1); \
t2 = _mm_alignr_epi8(m3, m7, 8); \
t3 = _mm_set_epi64x(0x24A19947B3916CF7ULL, 0xD1310BA698DFB5ACULL); \
b1 = _mm_xor_si128(t2, t3); \
} while(0)
#define LOAD_MSG_1_3(b0, b1) \
do \
{ \
t0 = _mm_shuffle_epi32(m0, _MM_SHUFFLE(1,0,3,2)); \
t1 = _mm_set_epi64x(0xA4093822299F31D0ULL, 0xBA7C9045F12C7F99ULL); \
b0 = _mm_xor_si128(t0, t1); \
t2 = _mm_unpackhi_epi64(m5, m2); \
t3 = _mm_set_epi64x(0x82EFA98EC4E6C89ULL, 0x3F84D5B5B5470917ULL); \
b1 = _mm_xor_si128(t2, t3); \
} while(0)
#define LOAD_MSG_1_4(b0, b1) \
do \
{ \
t0 = _mm_unpacklo_epi64(m6, m1); \
t1 = _mm_set_epi64x(0x243F6A8885A308D3ULL, 0x13198A2E03707344ULL); \
b0 = _mm_xor_si128(t0, t1); \
t2 = _mm_unpackhi_epi64(m3, m1); \
t3 = _mm_set_epi64x(0xBE5466CF34E90C6CULL, 0xB8E1AFED6A267E96ULL); \
b1 = _mm_xor_si128(t2, t3); \
} while(0)
#define LOAD_MSG_2_1(b0, b1) \
do \
{ \
t0 = _mm_alignr_epi8(m6, m5, 8); \
t1 = _mm_set_epi64x(0x243F6A8885A308D3ULL, 0x9216D5D98979FB1BULL); \
b0 = _mm_xor_si128(t0, t1); \
t2 = _mm_unpackhi_epi64(m2, m7); \
t3 = _mm_set_epi64x(0x24A19947B3916CF7ULL, 0xA4093822299F31D0ULL); \
b1 = _mm_xor_si128(t2, t3); \
} while(0)
#define LOAD_MSG_2_2(b0, b1) \
do \
{ \
t0 = _mm_unpacklo_epi64(m4, m0); \
t1 = _mm_set_epi64x(0xBA7C9045F12C7F99ULL, 0xB8E1AFED6A267E96ULL); \
b0 = _mm_xor_si128(t0, t1); \
t2 = _mm_blend_epi16(m1, m6, 0xF0); \
t3 = _mm_set_epi64x(0x636920D871574E69ULL, 0xBE5466CF34E90C6CULL); \
b1 = _mm_xor_si128(t2, t3); \
} while(0)
#define LOAD_MSG_2_3(b0, b1) \
do \
{ \
t0 = _mm_blend_epi16(m5, m1, 0xF0); \
t1 = _mm_set_epi64x(0xC0AC29B7C97C50DDULL, 0x801F2E2858EFC16ULL); \
b0 = _mm_xor_si128(t0, t1); \
t2 = _mm_unpackhi_epi64(m3, m4); \
t3 = _mm_set_epi64x(0x452821E638D01377ULL, 0x13198A2E03707344ULL); \
b1 = _mm_xor_si128(t2, t3); \
} while(0)
#define LOAD_MSG_2_4(b0, b1) \
do \
{ \
t0 = _mm_unpacklo_epi64(m7, m3); \
t1 = _mm_set_epi64x(0x82EFA98EC4E6C89ULL, 0x2FFD72DBD01ADFB7ULL); \
b0 = _mm_xor_si128(t0, t1); \
t2 = _mm_alignr_epi8(m2, m0, 8); \
t3 = _mm_set_epi64x(0xD1310BA698DFB5ACULL, 0x3F84D5B5B5470917ULL); \
b1 = _mm_xor_si128(t2, t3); \
} while(0)
#define LOAD_MSG_3_1(b0, b1) \
do \
{ \
t0 = _mm_unpackhi_epi64(m3, m1); \
t1 = _mm_set_epi64x(0x13198A2E03707344ULL, 0xD1310BA698DFB5ACULL); \
b0 = _mm_xor_si128(t0, t1); \
t2 = _mm_unpackhi_epi64(m6, m5); \
t3 = _mm_set_epi64x(0x801F2E2858EFC16ULL, 0xBA7C9045F12C7F99ULL); \
b1 = _mm_xor_si128(t2, t3); \
} while(0)
#define LOAD_MSG_3_2(b0, b1) \
do \
{ \
t0 = _mm_unpackhi_epi64(m4, m0); \
t1 = _mm_set_epi64x(0x82EFA98EC4E6C89ULL, 0x3F84D5B5B5470917ULL); \
b0 = _mm_xor_si128(t0, t1); \
t2 = _mm_unpacklo_epi64(m6, m7); \
t3 = _mm_set_epi64x(0xB8E1AFED6A267E96ULL, 0x24A19947B3916CF7ULL); \
b1 = _mm_xor_si128(t2, t3); \
} while(0)
#define LOAD_MSG_3_3(b0, b1) \
do \
{ \
t0 = _mm_blend_epi16(m1, m2, 0xF0); \
t1 = _mm_set_epi64x(0x2FFD72DBD01ADFB7ULL, 0xC0AC29B7C97C50DDULL); \
b0 = _mm_xor_si128(t0, t1); \
t2 = _mm_blend_epi16(m2, m7, 0xF0); \
t3 = _mm_set_epi64x(0x9216D5D98979FB1BULL, 0x243F6A8885A308D3ULL); \
b1 = _mm_xor_si128(t2, t3); \
} while(0)
#define LOAD_MSG_3_4(b0, b1) \
do \
{ \
t0 = _mm_unpacklo_epi64(m3, m5); \
t1 = _mm_set_epi64x(0xBE5466CF34E90C6CULL, 0xA4093822299F31D0ULL); \
b0 = _mm_xor_si128(t0, t1); \
t2 = _mm_unpacklo_epi64(m0, m4); \
t3 = _mm_set_epi64x(0x636920D871574E69ULL, 0x452821E638D01377ULL); \
b1 = _mm_xor_si128(t2, t3); \
} while(0)
#define LOAD_MSG_4_1(b0, b1) \
do \
{ \
t0 = _mm_unpackhi_epi64(m4, m2); \
t1 = _mm_set_epi64x(0x3F84D5B5B5470917ULL, 0x243F6A8885A308D3ULL); \
b0 = _mm_xor_si128(t0, t1); \
t2 = _mm_unpacklo_epi64(m1, m5); \
t3 = _mm_set_epi64x(0x636920D871574E69ULL, 0x452821E638D01377ULL); \
b1 = _mm_xor_si128(t2, t3); \
} while(0)
#define LOAD_MSG_4_2(b0, b1) \
do \
{ \
t0 = _mm_blend_epi16(m0, m3, 0xF0); \
t1 = _mm_set_epi64x(0xBE5466CF34E90C6CULL, 0xD1310BA698DFB5ACULL); \
b0 = _mm_xor_si128(t0, t1); \
t2 = _mm_blend_epi16(m2, m7, 0xF0); \
t3 = _mm_set_epi64x(0x2FFD72DBD01ADFB7ULL, 0xA4093822299F31D0ULL); \
b1 = _mm_xor_si128(t2, t3); \
} while(0)
#define LOAD_MSG_4_3(b0, b1) \
do \
{ \
t0 = _mm_blend_epi16(m7, m5, 0xF0); \
t1 = _mm_set_epi64x(0xBA7C9045F12C7F99ULL, 0x13198A2E03707344ULL); \
b0 = _mm_xor_si128(t0, t1); \
t2 = _mm_blend_epi16(m3, m1, 0xF0); \
t3 = _mm_set_epi64x(0x24A19947B3916CF7ULL, 0x9216D5D98979FB1BULL); \
b1 = _mm_xor_si128(t2, t3); \
} while(0)
#define LOAD_MSG_4_4(b0, b1) \
do \
{ \
t0 = _mm_alignr_epi8(m6, m0, 8); \
t1 = _mm_set_epi64x(0xB8E1AFED6A267E96ULL, 0x801F2E2858EFC16ULL); \
b0 = _mm_xor_si128(t0, t1); \
t2 = _mm_blend_epi16(m4, m6, 0xF0); \
t3 = _mm_set_epi64x(0x82EFA98EC4E6C89ULL, 0xC0AC29B7C97C50DDULL); \
b1 = _mm_xor_si128(t2, t3); \
} while(0)
#define LOAD_MSG_5_1(b0, b1) \
do \
{ \
t0 = _mm_unpacklo_epi64(m1, m3); \
t1 = _mm_set_epi64x(0x2FFD72DBD01ADFB7ULL, 0xBA7C9045F12C7F99ULL); \
b0 = _mm_xor_si128(t0, t1); \
t2 = _mm_unpacklo_epi64(m0, m4); \
t3 = _mm_set_epi64x(0x82EFA98EC4E6C89ULL, 0xB8E1AFED6A267E96ULL); \
b1 = _mm_xor_si128(t2, t3); \
} while(0)
#define LOAD_MSG_5_2(b0, b1) \
do \
{ \
t0 = _mm_unpacklo_epi64(m6, m5); \
t1 = _mm_set_epi64x(0xC0AC29B7C97C50DDULL, 0xA4093822299F31D0ULL); \
b0 = _mm_xor_si128(t0, t1); \
t2 = _mm_unpackhi_epi64(m5, m1); \
t3 = _mm_set_epi64x(0x9216D5D98979FB1BULL, 0x243F6A8885A308D3ULL); \
b1 = _mm_xor_si128(t2, t3); \
} while(0)
#define LOAD_MSG_5_3(b0, b1) \
do \
{ \
t0 = _mm_blend_epi16(m2, m3, 0xF0); \
t1 = _mm_set_epi64x(0xBE5466CF34E90C6CULL, 0x24A19947B3916CF7ULL); \
b0 = _mm_xor_si128(t0, t1); \
t2 = _mm_unpackhi_epi64(m7, m0); \
t3 = _mm_set_epi64x(0xD1310BA698DFB5ACULL, 0x801F2E2858EFC16ULL); \
b1 = _mm_xor_si128(t2, t3); \
} while(0)
#define LOAD_MSG_5_4(b0, b1) \
do \
{ \
t0 = _mm_unpackhi_epi64(m6, m2); \
t1 = _mm_set_epi64x(0x3F84D5B5B5470917ULL, 0x452821E638D01377ULL); \
b0 = _mm_xor_si128(t0, t1); \
t2 = _mm_blend_epi16(m7, m4, 0xF0); \
t3 = _mm_set_epi64x(0x13198A2E03707344ULL, 0x636920D871574E69ULL); \
b1 = _mm_xor_si128(t2, t3); \
} while(0)
#define LOAD_MSG_6_1(b0, b1) \
do \
{ \
t0 = _mm_blend_epi16(m6, m0, 0xF0); \
t1 = _mm_set_epi64x(0x636920D871574E69ULL, 0xBE5466CF34E90C6CULL); \
b0 = _mm_xor_si128(t0, t1); \
t2 = _mm_unpacklo_epi64(m7, m2); \
t3 = _mm_set_epi64x(0x2FFD72DBD01ADFB7ULL, 0x24A19947B3916CF7ULL); \
b1 = _mm_xor_si128(t2, t3); \
} while(0)
#define LOAD_MSG_6_2(b0, b1) \
do \
{ \
t0 = _mm_unpackhi_epi64(m2, m7); \
t1 = _mm_set_epi64x(0x13198A2E03707344ULL, 0xBA7C9045F12C7F99ULL); \
b0 = _mm_xor_si128(t0, t1); \
t2 = _mm_alignr_epi8(m5, m6, 8); \
t3 = _mm_set_epi64x(0x452821E638D01377ULL, 0x801F2E2858EFC16ULL); \
b1 = _mm_xor_si128(t2, t3); \
} while(0)
#define LOAD_MSG_6_3(b0, b1) \
do \
{ \
t0 = _mm_unpacklo_epi64(m0, m3); \
t1 = _mm_set_epi64x(0x82EFA98EC4E6C89ULL, 0x3F84D5B5B5470917ULL); \
b0 = _mm_xor_si128(t0, t1); \
t2 = _mm_shuffle_epi32(m4, _MM_SHUFFLE(1,0,3,2)); \
t3 = _mm_set_epi64x(0xB8E1AFED6A267E96ULL, 0xA4093822299F31D0ULL); \
b1 = _mm_xor_si128(t2, t3); \
} while(0)
#define LOAD_MSG_6_4(b0, b1) \
do \
{ \
t0 = _mm_unpackhi_epi64(m3, m1); \
t1 = _mm_set_epi64x(0xC0AC29B7C97C50DDULL, 0x243F6A8885A308D3ULL); \
b0 = _mm_xor_si128(t0, t1); \
t2 = _mm_blend_epi16(m1, m5, 0xF0); \
t3 = _mm_set_epi64x(0x9216D5D98979FB1BULL, 0xD1310BA698DFB5ACULL); \
b1 = _mm_xor_si128(t2, t3); \
} while(0)
#define LOAD_MSG_7_1(b0, b1) \
do \
{ \
t0 = _mm_unpackhi_epi64(m6, m3); \
t1 = _mm_set_epi64x(0x801F2E2858EFC16ULL, 0xB8E1AFED6A267E96ULL); \
b0 = _mm_xor_si128(t0, t1); \
t2 = _mm_blend_epi16(m6, m1, 0xF0); \
t3 = _mm_set_epi64x(0xD1310BA698DFB5ACULL, 0x13198A2E03707344ULL); \
b1 = _mm_xor_si128(t2, t3); \
} while(0)
#define LOAD_MSG_7_2(b0, b1) \
do \
{ \
t0 = _mm_alignr_epi8(m7, m5, 8); \
t1 = _mm_set_epi64x(0x3F84D5B5B5470917ULL, 0x24A19947B3916CF7ULL); \
b0 = _mm_xor_si128(t0, t1); \
t2 = _mm_unpackhi_epi64(m0, m4); \
t3 = _mm_set_epi64x(0x82EFA98EC4E6C89ULL, 0xBA7C9045F12C7F99ULL); \
b1 = _mm_xor_si128(t2, t3); \
} while(0)
#define LOAD_MSG_7_3(b0, b1) \
do \
{ \
t0 = _mm_unpackhi_epi64(m2, m7); \
t1 = _mm_set_epi64x(0x452821E638D01377ULL, 0x243F6A8885A308D3ULL); \
b0 = _mm_xor_si128(t0, t1); \
t2 = _mm_unpacklo_epi64(m4, m1); \
t3 = _mm_set_epi64x(0x2FFD72DBD01ADFB7ULL, 0xC0AC29B7C97C50DDULL); \
b1 = _mm_xor_si128(t2, t3); \
} while(0)
#define LOAD_MSG_7_4(b0, b1) \
do \
{ \
t0 = _mm_unpacklo_epi64(m0, m2); \
t1 = _mm_set_epi64x(0x636920D871574E69ULL, 0xBE5466CF34E90C6CULL); \
b0 = _mm_xor_si128(t0, t1); \
t2 = _mm_unpacklo_epi64(m3, m5); \
t3 = _mm_set_epi64x(0xA4093822299F31D0ULL, 0x9216D5D98979FB1BULL); \
b1 = _mm_xor_si128(t2, t3); \
} while(0)
#define LOAD_MSG_8_1(b0, b1) \
do \
{ \
t0 = _mm_unpacklo_epi64(m3, m7); \
t1 = _mm_set_epi64x(0xD1310BA698DFB5ACULL, 0x636920D871574E69ULL); \
b0 = _mm_xor_si128(t0, t1); \
t2 = _mm_alignr_epi8(m0, m5, 8); \
t3 = _mm_set_epi64x(0x9216D5D98979FB1BULL, 0x82EFA98EC4E6C89ULL); \
b1 = _mm_xor_si128(t2, t3); \
} while(0)
#define LOAD_MSG_8_2(b0, b1) \
do \
{ \
t0 = _mm_unpackhi_epi64(m7, m4); \
t1 = _mm_set_epi64x(0x801F2E2858EFC16ULL, 0xC0AC29B7C97C50DDULL); \
b0 = _mm_xor_si128(t0, t1); \
t2 = _mm_alignr_epi8(m4, m1, 8); \
t3 = _mm_set_epi64x(0x243F6A8885A308D3ULL, 0xB8E1AFED6A267E96ULL); \
b1 = _mm_xor_si128(t2, t3); \
} while(0)
#define LOAD_MSG_8_3(b0, b1) \
do \
{ \
t0 = m6; \
t1 = _mm_set_epi64x(0x3F84D5B5B5470917ULL, 0xA4093822299F31D0ULL); \
b0 = _mm_xor_si128(t0, t1); \
t2 = _mm_alignr_epi8(m5, m0, 8); \
t3 = _mm_set_epi64x(0xBE5466CF34E90C6CULL, 0x452821E638D01377ULL); \
b1 = _mm_xor_si128(t2, t3); \
} while(0)
#define LOAD_MSG_8_4(b0, b1) \
do \
{ \
t0 = _mm_blend_epi16(m1, m3, 0xF0); \
t1 = _mm_set_epi64x(0x24A19947B3916CF7ULL, 0xBA7C9045F12C7F99ULL); \
b0 = _mm_xor_si128(t0, t1); \
t2 = m2; \
t3 = _mm_set_epi64x(0x2FFD72DBD01ADFB7ULL, 0x13198A2E03707344ULL); \
b1 = _mm_xor_si128(t2, t3); \
} while(0)
#define LOAD_MSG_9_1(b0, b1) \
do \
{ \
t0 = _mm_unpacklo_epi64(m5, m4); \
t1 = _mm_set_epi64x(0x452821E638D01377ULL, 0xA4093822299F31D0ULL); \
b0 = _mm_xor_si128(t0, t1); \
t2 = _mm_unpackhi_epi64(m3, m0); \
t3 = _mm_set_epi64x(0xBE5466CF34E90C6CULL, 0xC0AC29B7C97C50DDULL); \
b1 = _mm_xor_si128(t2, t3); \
} while(0)
#define LOAD_MSG_9_2(b0, b1) \
do \
{ \
t0 = _mm_unpacklo_epi64(m1, m2); \
t1 = _mm_set_epi64x(0x9216D5D98979FB1BULL, 0x2FFD72DBD01ADFB7ULL); \
b0 = _mm_xor_si128(t0, t1); \
t2 = _mm_blend_epi16(m3, m2, 0xF0); \
t3 = _mm_set_epi64x(0x13198A2E03707344ULL, 0x3F84D5B5B5470917ULL); \
b1 = _mm_xor_si128(t2, t3); \
} while(0)
#define LOAD_MSG_9_3(b0, b1) \
do \
{ \
t0 = _mm_unpackhi_epi64(m7, m4); \
t1 = _mm_set_epi64x(0x801F2E2858EFC16ULL, 0xB8E1AFED6A267E96ULL); \
b0 = _mm_xor_si128(t0, t1); \
t2 = _mm_unpackhi_epi64(m1, m6); \
t3 = _mm_set_epi64x(0x243F6A8885A308D3ULL, 0xBA7C9045F12C7F99ULL); \
b1 = _mm_xor_si128(t2, t3); \
} while(0)
#define LOAD_MSG_9_4(b0, b1) \
do \
{ \
t0 = _mm_alignr_epi8(m7, m5, 8); \
t1 = _mm_set_epi64x(0xD1310BA698DFB5ACULL, 0x636920D871574E69ULL); \
b0 = _mm_xor_si128(t0, t1); \
t2 = _mm_unpacklo_epi64(m6, m0); \
t3 = _mm_set_epi64x(0x24A19947B3916CF7ULL, 0x82EFA98EC4E6C89ULL); \
b1 = _mm_xor_si128(t2, t3); \
} while(0)
#define LOAD_MSG_10_1(b0, b1) \
do \
{ \
t0 = _mm_unpacklo_epi64(m0, m1); \
t1 = _mm_set_epi64x(0x82EFA98EC4E6C89ULL, 0x13198A2E03707344ULL); \
b0 = _mm_xor_si128(t0, t1); \
t2 = _mm_unpacklo_epi64(m2, m3); \
t3 = _mm_set_epi64x(0x3F84D5B5B5470917ULL, 0xBE5466CF34E90C6CULL); \
b1 = _mm_xor_si128(t2, t3); \
} while(0)
#define LOAD_MSG_10_2(b0, b1) \
do \
{ \
t0 = _mm_unpackhi_epi64(m0, m1); \
t1 = _mm_set_epi64x(0xA4093822299F31D0ULL, 0x243F6A8885A308D3ULL); \
b0 = _mm_xor_si128(t0, t1); \
t2 = _mm_unpackhi_epi64(m2, m3); \
t3 = _mm_set_epi64x(0xC0AC29B7C97C50DDULL, 0x452821E638D01377ULL); \
b1 = _mm_xor_si128(t2, t3); \
} while(0)
#define LOAD_MSG_10_3(b0, b1) \
do \
{ \
t0 = _mm_unpacklo_epi64(m4, m5); \
t1 = _mm_set_epi64x(0xB8E1AFED6A267E96ULL, 0xD1310BA698DFB5ACULL); \
b0 = _mm_xor_si128(t0, t1); \
t2 = _mm_unpacklo_epi64(m6, m7); \
t3 = _mm_set_epi64x(0x636920D871574E69ULL, 0x24A19947B3916CF7ULL); \
b1 = _mm_xor_si128(t2, t3); \
} while(0)
#define LOAD_MSG_10_4(b0, b1) \
do \
{ \
t0 = _mm_unpackhi_epi64(m4, m5); \
t1 = _mm_set_epi64x(0x2FFD72DBD01ADFB7ULL, 0x9216D5D98979FB1BULL); \
b0 = _mm_xor_si128(t0, t1); \
t2 = _mm_unpackhi_epi64(m6, m7); \
t3 = _mm_set_epi64x(0x801F2E2858EFC16ULL, 0xBA7C9045F12C7F99ULL); \
b1 = _mm_xor_si128(t2, t3); \
} while(0)
#define LOAD_MSG_11_1(b0, b1) \
do \
{ \
t0 = _mm_unpacklo_epi64(m7, m2); \
t1 = _mm_set_epi64x(0x9216D5D98979FB1BULL, 0x2FFD72DBD01ADFB7ULL); \
b0 = _mm_xor_si128(t0, t1); \
t2 = _mm_unpackhi_epi64(m4, m6); \
t3 = _mm_set_epi64x(0xC0AC29B7C97C50DDULL, 0x636920D871574E69ULL); \
b1 = _mm_xor_si128(t2, t3); \
} while(0)
#define LOAD_MSG_11_2(b0, b1) \
do \
{ \
t0 = _mm_unpacklo_epi64(m5, m4); \
t1 = _mm_set_epi64x(0x452821E638D01377ULL, 0x801F2E2858EFC16ULL); \
b0 = _mm_xor_si128(t0, t1); \
t2 = _mm_alignr_epi8(m3, m7, 8); \
t3 = _mm_set_epi64x(0x24A19947B3916CF7ULL, 0xD1310BA698DFB5ACULL); \
b1 = _mm_xor_si128(t2, t3); \
} while(0)
#define LOAD_MSG_11_3(b0, b1) \
do \
{ \
t0 = _mm_shuffle_epi32(m0, _MM_SHUFFLE(1,0,3,2)); \
t1 = _mm_set_epi64x(0xA4093822299F31D0ULL, 0xBA7C9045F12C7F99ULL); \
b0 = _mm_xor_si128(t0, t1); \
t2 = _mm_unpackhi_epi64(m5, m2); \
t3 = _mm_set_epi64x(0x82EFA98EC4E6C89ULL, 0x3F84D5B5B5470917ULL); \
b1 = _mm_xor_si128(t2, t3); \
} while(0)
#define LOAD_MSG_11_4(b0, b1) \
do \
{ \
t0 = _mm_unpacklo_epi64(m6, m1); \
t1 = _mm_set_epi64x(0x243F6A8885A308D3ULL, 0x13198A2E03707344ULL); \
b0 = _mm_xor_si128(t0, t1); \
t2 = _mm_unpackhi_epi64(m3, m1); \
t3 = _mm_set_epi64x(0xBE5466CF34E90C6CULL, 0xB8E1AFED6A267E96ULL); \
b1 = _mm_xor_si128(t2, t3); \
} while(0)
#define LOAD_MSG_12_1(b0, b1) \
do \
{ \
t0 = _mm_alignr_epi8(m6, m5, 8); \
t1 = _mm_set_epi64x(0x243F6A8885A308D3ULL, 0x9216D5D98979FB1BULL); \
b0 = _mm_xor_si128(t0, t1); \
t2 = _mm_unpackhi_epi64(m2, m7); \
t3 = _mm_set_epi64x(0x24A19947B3916CF7ULL, 0xA4093822299F31D0ULL); \
b1 = _mm_xor_si128(t2, t3); \
} while(0)
#define LOAD_MSG_12_2(b0, b1) \
do \
{ \
t0 = _mm_unpacklo_epi64(m4, m0); \
t1 = _mm_set_epi64x(0xBA7C9045F12C7F99ULL, 0xB8E1AFED6A267E96ULL); \
b0 = _mm_xor_si128(t0, t1); \
t2 = _mm_blend_epi16(m1, m6, 0xF0); \
t3 = _mm_set_epi64x(0x636920D871574E69ULL, 0xBE5466CF34E90C6CULL); \
b1 = _mm_xor_si128(t2, t3); \
} while(0)
#define LOAD_MSG_12_3(b0, b1) \
do \
{ \
t0 = _mm_blend_epi16(m5, m1, 0xF0); \
t1 = _mm_set_epi64x(0xC0AC29B7C97C50DDULL, 0x801F2E2858EFC16ULL); \
b0 = _mm_xor_si128(t0, t1); \
t2 = _mm_unpackhi_epi64(m3, m4); \
t3 = _mm_set_epi64x(0x452821E638D01377ULL, 0x13198A2E03707344ULL); \
b1 = _mm_xor_si128(t2, t3); \
} while(0)
#define LOAD_MSG_12_4(b0, b1) \
do \
{ \
t0 = _mm_unpacklo_epi64(m7, m3); \
t1 = _mm_set_epi64x(0x82EFA98EC4E6C89ULL, 0x2FFD72DBD01ADFB7ULL); \
b0 = _mm_xor_si128(t0, t1); \
t2 = _mm_alignr_epi8(m2, m0, 8); \
t3 = _mm_set_epi64x(0xD1310BA698DFB5ACULL, 0x3F84D5B5B5470917ULL); \
b1 = _mm_xor_si128(t2, t3); \
} while(0)
#define LOAD_MSG_13_1(b0, b1) \
do \
{ \
t0 = _mm_unpackhi_epi64(m3, m1); \
t1 = _mm_set_epi64x(0x13198A2E03707344ULL, 0xD1310BA698DFB5ACULL); \
b0 = _mm_xor_si128(t0, t1); \
t2 = _mm_unpackhi_epi64(m6, m5); \
t3 = _mm_set_epi64x(0x801F2E2858EFC16ULL, 0xBA7C9045F12C7F99ULL); \
b1 = _mm_xor_si128(t2, t3); \
} while(0)
#define LOAD_MSG_13_2(b0, b1) \
do \
{ \
t0 = _mm_unpackhi_epi64(m4, m0); \
t1 = _mm_set_epi64x(0x82EFA98EC4E6C89ULL, 0x3F84D5B5B5470917ULL); \
b0 = _mm_xor_si128(t0, t1); \
t2 = _mm_unpacklo_epi64(m6, m7); \
t3 = _mm_set_epi64x(0xB8E1AFED6A267E96ULL, 0x24A19947B3916CF7ULL); \
b1 = _mm_xor_si128(t2, t3); \
} while(0)
#define LOAD_MSG_13_3(b0, b1) \
do \
{ \
t0 = _mm_blend_epi16(m1, m2, 0xF0); \
t1 = _mm_set_epi64x(0x2FFD72DBD01ADFB7ULL, 0xC0AC29B7C97C50DDULL); \
b0 = _mm_xor_si128(t0, t1); \
t2 = _mm_blend_epi16(m2, m7, 0xF0); \
t3 = _mm_set_epi64x(0x9216D5D98979FB1BULL, 0x243F6A8885A308D3ULL); \
b1 = _mm_xor_si128(t2, t3); \
} while(0)
#define LOAD_MSG_13_4(b0, b1) \
do \
{ \
t0 = _mm_unpacklo_epi64(m3, m5); \
t1 = _mm_set_epi64x(0xBE5466CF34E90C6CULL, 0xA4093822299F31D0ULL); \
b0 = _mm_xor_si128(t0, t1); \
t2 = _mm_unpacklo_epi64(m0, m4); \
t3 = _mm_set_epi64x(0x636920D871574E69ULL, 0x452821E638D01377ULL); \
b1 = _mm_xor_si128(t2, t3); \
} while(0)
#define LOAD_MSG_14_1(b0, b1) \
do \
{ \
t0 = _mm_unpackhi_epi64(m4, m2); \
t1 = _mm_set_epi64x(0x3F84D5B5B5470917ULL, 0x243F6A8885A308D3ULL); \
b0 = _mm_xor_si128(t0, t1); \
t2 = _mm_unpacklo_epi64(m1, m5); \
t3 = _mm_set_epi64x(0x636920D871574E69ULL, 0x452821E638D01377ULL); \
b1 = _mm_xor_si128(t2, t3); \
} while(0)
#define LOAD_MSG_14_2(b0, b1) \
do \
{ \
t0 = _mm_blend_epi16(m0, m3, 0xF0); \
t1 = _mm_set_epi64x(0xBE5466CF34E90C6CULL, 0xD1310BA698DFB5ACULL); \
b0 = _mm_xor_si128(t0, t1); \
t2 = _mm_blend_epi16(m2, m7, 0xF0); \
t3 = _mm_set_epi64x(0x2FFD72DBD01ADFB7ULL, 0xA4093822299F31D0ULL); \
b1 = _mm_xor_si128(t2, t3); \
} while(0)
#define LOAD_MSG_14_3(b0, b1) \
do \
{ \
t0 = _mm_blend_epi16(m7, m5, 0xF0); \
t1 = _mm_set_epi64x(0xBA7C9045F12C7F99ULL, 0x13198A2E03707344ULL); \
b0 = _mm_xor_si128(t0, t1); \
t2 = _mm_blend_epi16(m3, m1, 0xF0); \
t3 = _mm_set_epi64x(0x24A19947B3916CF7ULL, 0x9216D5D98979FB1BULL); \
b1 = _mm_xor_si128(t2, t3); \
} while(0)
#define LOAD_MSG_14_4(b0, b1) \
do \
{ \
t0 = _mm_alignr_epi8(m6, m0, 8); \
t1 = _mm_set_epi64x(0xB8E1AFED6A267E96ULL, 0x801F2E2858EFC16ULL); \
b0 = _mm_xor_si128(t0, t1); \
t2 = _mm_blend_epi16(m4, m6, 0xF0); \
t3 = _mm_set_epi64x(0x82EFA98EC4E6C89ULL, 0xC0AC29B7C97C50DDULL); \
b1 = _mm_xor_si128(t2, t3); \
} while(0)
#define LOAD_MSG_15_1(b0, b1) \
do \
{ \
t0 = _mm_unpacklo_epi64(m1, m3); \
t1 = _mm_set_epi64x(0x2FFD72DBD01ADFB7ULL, 0xBA7C9045F12C7F99ULL); \
b0 = _mm_xor_si128(t0, t1); \
t2 = _mm_unpacklo_epi64(m0, m4); \
t3 = _mm_set_epi64x(0x82EFA98EC4E6C89ULL, 0xB8E1AFED6A267E96ULL); \
b1 = _mm_xor_si128(t2, t3); \
} while(0)
#define LOAD_MSG_15_2(b0, b1) \
do \
{ \
t0 = _mm_unpacklo_epi64(m6, m5); \
t1 = _mm_set_epi64x(0xC0AC29B7C97C50DDULL, 0xA4093822299F31D0ULL); \
b0 = _mm_xor_si128(t0, t1); \
t2 = _mm_unpackhi_epi64(m5, m1); \
t3 = _mm_set_epi64x(0x9216D5D98979FB1BULL, 0x243F6A8885A308D3ULL); \
b1 = _mm_xor_si128(t2, t3); \
} while(0)
#define LOAD_MSG_15_3(b0, b1) \
do \
{ \
t0 = _mm_blend_epi16(m2, m3, 0xF0); \
t1 = _mm_set_epi64x(0xBE5466CF34E90C6CULL, 0x24A19947B3916CF7ULL); \
b0 = _mm_xor_si128(t0, t1); \
t2 = _mm_unpackhi_epi64(m7, m0); \
t3 = _mm_set_epi64x(0xD1310BA698DFB5ACULL, 0x801F2E2858EFC16ULL); \
b1 = _mm_xor_si128(t2, t3); \
} while(0)
#define LOAD_MSG_15_4(b0, b1) \
do \
{ \
t0 = _mm_unpackhi_epi64(m6, m2); \
t1 = _mm_set_epi64x(0x3F84D5B5B5470917ULL, 0x452821E638D01377ULL); \
b0 = _mm_xor_si128(t0, t1); \
t2 = _mm_blend_epi16(m7, m4, 0xF0); \
t3 = _mm_set_epi64x(0x13198A2E03707344ULL, 0x636920D871574E69ULL); \
b1 = _mm_xor_si128(t2, t3); \
} while(0)
#define G1(row1l,row2l,row3l,row4l,row1h,row2h,row3h,row4h,b0,b1) \
row1l = _mm_add_epi64(_mm_add_epi64(row1l, b0), row2l); \
row1h = _mm_add_epi64(_mm_add_epi64(row1h, b1), row2h); \
\
row4l = _mm_xor_si128(row4l, row1l); \
row4h = _mm_xor_si128(row4h, row1h); \
\
row4l = _mm_roti_epi64(row4l, -32); \
row4h = _mm_roti_epi64(row4h, -32); \
\
row3l = _mm_add_epi64(row3l, row4l); \
row3h = _mm_add_epi64(row3h, row4h); \
\
row2l = _mm_xor_si128(row2l, row3l); \
row2h = _mm_xor_si128(row2h, row3h); \
\
row2l = _mm_roti_epi64(row2l, -25); \
row2h = _mm_roti_epi64(row2h, -25); \
#define G2(row1l,row2l,row3l,row4l,row1h,row2h,row3h,row4h,b0,b1) \
row1l = _mm_add_epi64(_mm_add_epi64(row1l, b0), row2l); \
row1h = _mm_add_epi64(_mm_add_epi64(row1h, b1), row2h); \
\
row4l = _mm_xor_si128(row4l, row1l); \
row4h = _mm_xor_si128(row4h, row1h); \
\
row4l = _mm_roti_epi64(row4l, -16); \
row4h = _mm_roti_epi64(row4h, -16); \
\
row3l = _mm_add_epi64(row3l, row4l); \
row3h = _mm_add_epi64(row3h, row4h); \
\
row2l = _mm_xor_si128(row2l, row3l); \
row2h = _mm_xor_si128(row2h, row3h); \
\
row2l = _mm_roti_epi64(row2l, -11); \
row2h = _mm_roti_epi64(row2h, -11); \
#define DIAGONALIZE(row1l,row2l,row3l,row4l,row1h,row2h,row3h,row4h) \
t0 = _mm_alignr_epi8(row2h, row2l, 8); \
t1 = _mm_alignr_epi8(row2l, row2h, 8); \
row2l = t0; \
row2h = t1; \
\
t0 = row3l; \
row3l = row3h; \
row3h = t0; \
\
t0 = _mm_alignr_epi8(row4h, row4l, 8); \
t1 = _mm_alignr_epi8(row4l, row4h, 8); \
row4l = t1; \
row4h = t0;
#define UNDIAGONALIZE(row1l,row2l,row3l,row4l,row1h,row2h,row3h,row4h) \
t0 = _mm_alignr_epi8(row2l, row2h, 8); \
t1 = _mm_alignr_epi8(row2h, row2l, 8); \
row2l = t0; \
row2h = t1; \
\
t0 = row3l; \
row3l = row3h; \
row3h = t0; \
\
t0 = _mm_alignr_epi8(row4l, row4h, 8); \
t1 = _mm_alignr_epi8(row4h, row4l, 8); \
row4l = t1; \
row4h = t0;
#define ROUND(r) \
LOAD_MSG_ ##r ##_1(b0, b1); \
G1(row1l,row2l,row3l,row4l,row1h,row2h,row3h,row4h,b0,b1); \
LOAD_MSG_ ##r ##_2(b0, b1); \
G2(row1l,row2l,row3l,row4l,row1h,row2h,row3h,row4h,b0,b1); \
DIAGONALIZE(row1l,row2l,row3l,row4l,row1h,row2h,row3h,row4h); \
LOAD_MSG_ ##r ##_3(b0, b1); \
G1(row1l,row2l,row3l,row4l,row1h,row2h,row3h,row4h,b0,b1); \
LOAD_MSG_ ##r ##_4(b0, b1); \
G2(row1l,row2l,row3l,row4l,row1h,row2h,row3h,row4h,b0,b1); \
UNDIAGONALIZE(row1l,row2l,row3l,row4l,row1h,row2h,row3h,row4h);
#endif

0
algo/bmw/.dirstamp Normal file
View File

66
algo/bmw/bmw256.c Normal file
View File

@@ -0,0 +1,66 @@
#include "miner.h"
#include "algo-gate-api.h"
#include <string.h>
#include <stdint.h>
#include "sph_bmw.h"
void bmwhash(void *output, const void *input)
{
/*
uint32_t hash[16];
sph_bmw256_context ctx;
sph_bmw256_init(&ctx);
sph_bmw256(&ctx, input, 80);
sph_bmw256_close(&ctx, hash);
memcpy(output, hash, 32);
*/
}
int scanhash_bmw(int thr_id, struct work *work,
uint32_t max_nonce, uint64_t *hashes_done)
{
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
uint32_t _ALIGN(64) hash64[8];
uint32_t _ALIGN(64) endiandata[20];
const uint32_t Htarg = ptarget[7];
const uint32_t first_nonce = pdata[19];
uint32_t n = first_nonce;
for (int k = 0; k < 19; k++)
be32enc(&endiandata[k], pdata[k]);
do {
be32enc(&endiandata[19], n);
bmwhash(hash64, endiandata);
if (hash64[7] < Htarg && fulltest(hash64, ptarget)) {
*hashes_done = n - first_nonce + 1;
pdata[19] = n;
return true;
}
n++;
} while (n < max_nonce && !work_restart[thr_id].restart);
*hashes_done = n - first_nonce + 1;
pdata[19] = n;
return 0;
}
bool register_bmw256_algo( algo_gate_t* gate )
{
algo_not_implemented();
return false;
// gate->scanhash = (void*)&scanhash_bmw;
// gate->hash = (void*)&bmwhash;
return true;
};

965
algo/bmw/sph_bmw.c Normal file
View File

@@ -0,0 +1,965 @@
/* $Id: bmw.c 227 2010-06-16 17:28:38Z tp $ */
/*
* BMW implementation.
*
* ==========================(LICENSE BEGIN)============================
*
* Copyright (c) 2007-2010 Projet RNRT SAPHIR
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* ===========================(LICENSE END)=============================
*
* @author Thomas Pornin <thomas.pornin@cryptolog.com>
*/
#include <stddef.h>
#include <string.h>
#include <limits.h>
#ifdef __cplusplus
extern "C"{
#endif
#include "sph_bmw.h"
#if SPH_SMALL_FOOTPRINT && !defined SPH_SMALL_FOOTPRINT_BMW
#define SPH_SMALL_FOOTPRINT_BMW 1
#endif
#ifdef _MSC_VER
#pragma warning (disable: 4146)
#endif
static const sph_u32 IV224[] = {
SPH_C32(0x00010203), SPH_C32(0x04050607),
SPH_C32(0x08090A0B), SPH_C32(0x0C0D0E0F),
SPH_C32(0x10111213), SPH_C32(0x14151617),
SPH_C32(0x18191A1B), SPH_C32(0x1C1D1E1F),
SPH_C32(0x20212223), SPH_C32(0x24252627),
SPH_C32(0x28292A2B), SPH_C32(0x2C2D2E2F),
SPH_C32(0x30313233), SPH_C32(0x34353637),
SPH_C32(0x38393A3B), SPH_C32(0x3C3D3E3F)
};
static const sph_u32 IV256[] = {
SPH_C32(0x40414243), SPH_C32(0x44454647),
SPH_C32(0x48494A4B), SPH_C32(0x4C4D4E4F),
SPH_C32(0x50515253), SPH_C32(0x54555657),
SPH_C32(0x58595A5B), SPH_C32(0x5C5D5E5F),
SPH_C32(0x60616263), SPH_C32(0x64656667),
SPH_C32(0x68696A6B), SPH_C32(0x6C6D6E6F),
SPH_C32(0x70717273), SPH_C32(0x74757677),
SPH_C32(0x78797A7B), SPH_C32(0x7C7D7E7F)
};
#if SPH_64
static const sph_u64 IV384[] = {
SPH_C64(0x0001020304050607), SPH_C64(0x08090A0B0C0D0E0F),
SPH_C64(0x1011121314151617), SPH_C64(0x18191A1B1C1D1E1F),
SPH_C64(0x2021222324252627), SPH_C64(0x28292A2B2C2D2E2F),
SPH_C64(0x3031323334353637), SPH_C64(0x38393A3B3C3D3E3F),
SPH_C64(0x4041424344454647), SPH_C64(0x48494A4B4C4D4E4F),
SPH_C64(0x5051525354555657), SPH_C64(0x58595A5B5C5D5E5F),
SPH_C64(0x6061626364656667), SPH_C64(0x68696A6B6C6D6E6F),
SPH_C64(0x7071727374757677), SPH_C64(0x78797A7B7C7D7E7F)
};
static const sph_u64 IV512[] = {
SPH_C64(0x8081828384858687), SPH_C64(0x88898A8B8C8D8E8F),
SPH_C64(0x9091929394959697), SPH_C64(0x98999A9B9C9D9E9F),
SPH_C64(0xA0A1A2A3A4A5A6A7), SPH_C64(0xA8A9AAABACADAEAF),
SPH_C64(0xB0B1B2B3B4B5B6B7), SPH_C64(0xB8B9BABBBCBDBEBF),
SPH_C64(0xC0C1C2C3C4C5C6C7), SPH_C64(0xC8C9CACBCCCDCECF),
SPH_C64(0xD0D1D2D3D4D5D6D7), SPH_C64(0xD8D9DADBDCDDDEDF),
SPH_C64(0xE0E1E2E3E4E5E6E7), SPH_C64(0xE8E9EAEBECEDEEEF),
SPH_C64(0xF0F1F2F3F4F5F6F7), SPH_C64(0xF8F9FAFBFCFDFEFF)
};
#endif
#define XCAT(x, y) XCAT_(x, y)
#define XCAT_(x, y) x ## y
#define LPAR (
#define I16_16 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
#define I16_17 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16
#define I16_18 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17
#define I16_19 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18
#define I16_20 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19
#define I16_21 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20
#define I16_22 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21
#define I16_23 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22
#define I16_24 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23
#define I16_25 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24
#define I16_26 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
#define I16_27 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26
#define I16_28 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27
#define I16_29 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28
#define I16_30 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29
#define I16_31 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30
#define M16_16 0, 1, 3, 4, 7, 10, 11
#define M16_17 1, 2, 4, 5, 8, 11, 12
#define M16_18 2, 3, 5, 6, 9, 12, 13
#define M16_19 3, 4, 6, 7, 10, 13, 14
#define M16_20 4, 5, 7, 8, 11, 14, 15
#define M16_21 5, 6, 8, 9, 12, 15, 16
#define M16_22 6, 7, 9, 10, 13, 0, 1
#define M16_23 7, 8, 10, 11, 14, 1, 2
#define M16_24 8, 9, 11, 12, 15, 2, 3
#define M16_25 9, 10, 12, 13, 0, 3, 4
#define M16_26 10, 11, 13, 14, 1, 4, 5
#define M16_27 11, 12, 14, 15, 2, 5, 6
#define M16_28 12, 13, 15, 16, 3, 6, 7
#define M16_29 13, 14, 0, 1, 4, 7, 8
#define M16_30 14, 15, 1, 2, 5, 8, 9
#define M16_31 15, 16, 2, 3, 6, 9, 10
#define ss0(x) (((x) >> 1) ^ SPH_T32((x) << 3) \
^ SPH_ROTL32(x, 4) ^ SPH_ROTL32(x, 19))
#define ss1(x) (((x) >> 1) ^ SPH_T32((x) << 2) \
^ SPH_ROTL32(x, 8) ^ SPH_ROTL32(x, 23))
#define ss2(x) (((x) >> 2) ^ SPH_T32((x) << 1) \
^ SPH_ROTL32(x, 12) ^ SPH_ROTL32(x, 25))
#define ss3(x) (((x) >> 2) ^ SPH_T32((x) << 2) \
^ SPH_ROTL32(x, 15) ^ SPH_ROTL32(x, 29))
#define ss4(x) (((x) >> 1) ^ (x))
#define ss5(x) (((x) >> 2) ^ (x))
#define rs1(x) SPH_ROTL32(x, 3)
#define rs2(x) SPH_ROTL32(x, 7)
#define rs3(x) SPH_ROTL32(x, 13)
#define rs4(x) SPH_ROTL32(x, 16)
#define rs5(x) SPH_ROTL32(x, 19)
#define rs6(x) SPH_ROTL32(x, 23)
#define rs7(x) SPH_ROTL32(x, 27)
#define Ks(j) SPH_T32((sph_u32)(j) * SPH_C32(0x05555555))
#define add_elt_s(mf, hf, j0m, j1m, j3m, j4m, j7m, j10m, j11m, j16) \
(SPH_T32(SPH_ROTL32(mf(j0m), j1m) + SPH_ROTL32(mf(j3m), j4m) \
- SPH_ROTL32(mf(j10m), j11m) + Ks(j16)) ^ hf(j7m))
#define expand1s_inner(qf, mf, hf, i16, \
i0, i1, i2, i3, i4, i5, i6, i7, i8, \
i9, i10, i11, i12, i13, i14, i15, \
i0m, i1m, i3m, i4m, i7m, i10m, i11m) \
SPH_T32(ss1(qf(i0)) + ss2(qf(i1)) + ss3(qf(i2)) + ss0(qf(i3)) \
+ ss1(qf(i4)) + ss2(qf(i5)) + ss3(qf(i6)) + ss0(qf(i7)) \
+ ss1(qf(i8)) + ss2(qf(i9)) + ss3(qf(i10)) + ss0(qf(i11)) \
+ ss1(qf(i12)) + ss2(qf(i13)) + ss3(qf(i14)) + ss0(qf(i15)) \
+ add_elt_s(mf, hf, i0m, i1m, i3m, i4m, i7m, i10m, i11m, i16))
#define expand1s(qf, mf, hf, i16) \
expand1s_(qf, mf, hf, i16, I16_ ## i16, M16_ ## i16)
#define expand1s_(qf, mf, hf, i16, ix, iy) \
expand1s_inner LPAR qf, mf, hf, i16, ix, iy)
#define expand2s_inner(qf, mf, hf, i16, \
i0, i1, i2, i3, i4, i5, i6, i7, i8, \
i9, i10, i11, i12, i13, i14, i15, \
i0m, i1m, i3m, i4m, i7m, i10m, i11m) \
SPH_T32(qf(i0) + rs1(qf(i1)) + qf(i2) + rs2(qf(i3)) \
+ qf(i4) + rs3(qf(i5)) + qf(i6) + rs4(qf(i7)) \
+ qf(i8) + rs5(qf(i9)) + qf(i10) + rs6(qf(i11)) \
+ qf(i12) + rs7(qf(i13)) + ss4(qf(i14)) + ss5(qf(i15)) \
+ add_elt_s(mf, hf, i0m, i1m, i3m, i4m, i7m, i10m, i11m, i16))
#define expand2s(qf, mf, hf, i16) \
expand2s_(qf, mf, hf, i16, I16_ ## i16, M16_ ## i16)
#define expand2s_(qf, mf, hf, i16, ix, iy) \
expand2s_inner LPAR qf, mf, hf, i16, ix, iy)
#if SPH_64
#define sb0(x) (((x) >> 1) ^ SPH_T64((x) << 3) \
^ SPH_ROTL64(x, 4) ^ SPH_ROTL64(x, 37))
#define sb1(x) (((x) >> 1) ^ SPH_T64((x) << 2) \
^ SPH_ROTL64(x, 13) ^ SPH_ROTL64(x, 43))
#define sb2(x) (((x) >> 2) ^ SPH_T64((x) << 1) \
^ SPH_ROTL64(x, 19) ^ SPH_ROTL64(x, 53))
#define sb3(x) (((x) >> 2) ^ SPH_T64((x) << 2) \
^ SPH_ROTL64(x, 28) ^ SPH_ROTL64(x, 59))
#define sb4(x) (((x) >> 1) ^ (x))
#define sb5(x) (((x) >> 2) ^ (x))
#define rb1(x) SPH_ROTL64(x, 5)
#define rb2(x) SPH_ROTL64(x, 11)
#define rb3(x) SPH_ROTL64(x, 27)
#define rb4(x) SPH_ROTL64(x, 32)
#define rb5(x) SPH_ROTL64(x, 37)
#define rb6(x) SPH_ROTL64(x, 43)
#define rb7(x) SPH_ROTL64(x, 53)
#define Kb(j) SPH_T64((sph_u64)(j) * SPH_C64(0x0555555555555555))
#if SPH_SMALL_FOOTPRINT_BMW
static const sph_u64 Kb_tab[] = {
Kb(16), Kb(17), Kb(18), Kb(19), Kb(20), Kb(21), Kb(22), Kb(23),
Kb(24), Kb(25), Kb(26), Kb(27), Kb(28), Kb(29), Kb(30), Kb(31)
};
#define rol_off(mf, j, off) \
SPH_ROTL64(mf(((j) + (off)) & 15), (((j) + (off)) & 15) + 1)
#define add_elt_b(mf, hf, j) \
(SPH_T64(rol_off(mf, j, 0) + rol_off(mf, j, 3) \
- rol_off(mf, j, 10) + Kb_tab[j]) ^ hf(((j) + 7) & 15))
#define expand1b(qf, mf, hf, i) \
SPH_T64(sb1(qf((i) - 16)) + sb2(qf((i) - 15)) \
+ sb3(qf((i) - 14)) + sb0(qf((i) - 13)) \
+ sb1(qf((i) - 12)) + sb2(qf((i) - 11)) \
+ sb3(qf((i) - 10)) + sb0(qf((i) - 9)) \
+ sb1(qf((i) - 8)) + sb2(qf((i) - 7)) \
+ sb3(qf((i) - 6)) + sb0(qf((i) - 5)) \
+ sb1(qf((i) - 4)) + sb2(qf((i) - 3)) \
+ sb3(qf((i) - 2)) + sb0(qf((i) - 1)) \
+ add_elt_b(mf, hf, (i) - 16))
#define expand2b(qf, mf, hf, i) \
SPH_T64(qf((i) - 16) + rb1(qf((i) - 15)) \
+ qf((i) - 14) + rb2(qf((i) - 13)) \
+ qf((i) - 12) + rb3(qf((i) - 11)) \
+ qf((i) - 10) + rb4(qf((i) - 9)) \
+ qf((i) - 8) + rb5(qf((i) - 7)) \
+ qf((i) - 6) + rb6(qf((i) - 5)) \
+ qf((i) - 4) + rb7(qf((i) - 3)) \
+ sb4(qf((i) - 2)) + sb5(qf((i) - 1)) \
+ add_elt_b(mf, hf, (i) - 16))
#else
#define add_elt_b(mf, hf, j0m, j1m, j3m, j4m, j7m, j10m, j11m, j16) \
(SPH_T64(SPH_ROTL64(mf(j0m), j1m) + SPH_ROTL64(mf(j3m), j4m) \
- SPH_ROTL64(mf(j10m), j11m) + Kb(j16)) ^ hf(j7m))
#define expand1b_inner(qf, mf, hf, i16, \
i0, i1, i2, i3, i4, i5, i6, i7, i8, \
i9, i10, i11, i12, i13, i14, i15, \
i0m, i1m, i3m, i4m, i7m, i10m, i11m) \
SPH_T64(sb1(qf(i0)) + sb2(qf(i1)) + sb3(qf(i2)) + sb0(qf(i3)) \
+ sb1(qf(i4)) + sb2(qf(i5)) + sb3(qf(i6)) + sb0(qf(i7)) \
+ sb1(qf(i8)) + sb2(qf(i9)) + sb3(qf(i10)) + sb0(qf(i11)) \
+ sb1(qf(i12)) + sb2(qf(i13)) + sb3(qf(i14)) + sb0(qf(i15)) \
+ add_elt_b(mf, hf, i0m, i1m, i3m, i4m, i7m, i10m, i11m, i16))
#define expand1b(qf, mf, hf, i16) \
expand1b_(qf, mf, hf, i16, I16_ ## i16, M16_ ## i16)
#define expand1b_(qf, mf, hf, i16, ix, iy) \
expand1b_inner LPAR qf, mf, hf, i16, ix, iy)
#define expand2b_inner(qf, mf, hf, i16, \
i0, i1, i2, i3, i4, i5, i6, i7, i8, \
i9, i10, i11, i12, i13, i14, i15, \
i0m, i1m, i3m, i4m, i7m, i10m, i11m) \
SPH_T64(qf(i0) + rb1(qf(i1)) + qf(i2) + rb2(qf(i3)) \
+ qf(i4) + rb3(qf(i5)) + qf(i6) + rb4(qf(i7)) \
+ qf(i8) + rb5(qf(i9)) + qf(i10) + rb6(qf(i11)) \
+ qf(i12) + rb7(qf(i13)) + sb4(qf(i14)) + sb5(qf(i15)) \
+ add_elt_b(mf, hf, i0m, i1m, i3m, i4m, i7m, i10m, i11m, i16))
#define expand2b(qf, mf, hf, i16) \
expand2b_(qf, mf, hf, i16, I16_ ## i16, M16_ ## i16)
#define expand2b_(qf, mf, hf, i16, ix, iy) \
expand2b_inner LPAR qf, mf, hf, i16, ix, iy)
#endif
#endif
#define MAKE_W(tt, i0, op01, i1, op12, i2, op23, i3, op34, i4) \
tt((M(i0) ^ H(i0)) op01 (M(i1) ^ H(i1)) op12 (M(i2) ^ H(i2)) \
op23 (M(i3) ^ H(i3)) op34 (M(i4) ^ H(i4)))
#define Ws0 MAKE_W(SPH_T32, 5, -, 7, +, 10, +, 13, +, 14)
#define Ws1 MAKE_W(SPH_T32, 6, -, 8, +, 11, +, 14, -, 15)
#define Ws2 MAKE_W(SPH_T32, 0, +, 7, +, 9, -, 12, +, 15)
#define Ws3 MAKE_W(SPH_T32, 0, -, 1, +, 8, -, 10, +, 13)
#define Ws4 MAKE_W(SPH_T32, 1, +, 2, +, 9, -, 11, -, 14)
#define Ws5 MAKE_W(SPH_T32, 3, -, 2, +, 10, -, 12, +, 15)
#define Ws6 MAKE_W(SPH_T32, 4, -, 0, -, 3, -, 11, +, 13)
#define Ws7 MAKE_W(SPH_T32, 1, -, 4, -, 5, -, 12, -, 14)
#define Ws8 MAKE_W(SPH_T32, 2, -, 5, -, 6, +, 13, -, 15)
#define Ws9 MAKE_W(SPH_T32, 0, -, 3, +, 6, -, 7, +, 14)
#define Ws10 MAKE_W(SPH_T32, 8, -, 1, -, 4, -, 7, +, 15)
#define Ws11 MAKE_W(SPH_T32, 8, -, 0, -, 2, -, 5, +, 9)
#define Ws12 MAKE_W(SPH_T32, 1, +, 3, -, 6, -, 9, +, 10)
#define Ws13 MAKE_W(SPH_T32, 2, +, 4, +, 7, +, 10, +, 11)
#define Ws14 MAKE_W(SPH_T32, 3, -, 5, +, 8, -, 11, -, 12)
#define Ws15 MAKE_W(SPH_T32, 12, -, 4, -, 6, -, 9, +, 13)
#if SPH_SMALL_FOOTPRINT_BMW
#define MAKE_Qas do { \
unsigned u; \
sph_u32 Ws[16]; \
Ws[ 0] = Ws0; \
Ws[ 1] = Ws1; \
Ws[ 2] = Ws2; \
Ws[ 3] = Ws3; \
Ws[ 4] = Ws4; \
Ws[ 5] = Ws5; \
Ws[ 6] = Ws6; \
Ws[ 7] = Ws7; \
Ws[ 8] = Ws8; \
Ws[ 9] = Ws9; \
Ws[10] = Ws10; \
Ws[11] = Ws11; \
Ws[12] = Ws12; \
Ws[13] = Ws13; \
Ws[14] = Ws14; \
Ws[15] = Ws15; \
for (u = 0; u < 15; u += 5) { \
qt[u + 0] = SPH_T32(ss0(Ws[u + 0]) + H(u + 1)); \
qt[u + 1] = SPH_T32(ss1(Ws[u + 1]) + H(u + 2)); \
qt[u + 2] = SPH_T32(ss2(Ws[u + 2]) + H(u + 3)); \
qt[u + 3] = SPH_T32(ss3(Ws[u + 3]) + H(u + 4)); \
qt[u + 4] = SPH_T32(ss4(Ws[u + 4]) + H(u + 5)); \
} \
qt[15] = SPH_T32(ss0(Ws[15]) + H(0)); \
} while (0)
#define MAKE_Qbs do { \
qt[16] = expand1s(Qs, M, H, 16); \
qt[17] = expand1s(Qs, M, H, 17); \
qt[18] = expand2s(Qs, M, H, 18); \
qt[19] = expand2s(Qs, M, H, 19); \
qt[20] = expand2s(Qs, M, H, 20); \
qt[21] = expand2s(Qs, M, H, 21); \
qt[22] = expand2s(Qs, M, H, 22); \
qt[23] = expand2s(Qs, M, H, 23); \
qt[24] = expand2s(Qs, M, H, 24); \
qt[25] = expand2s(Qs, M, H, 25); \
qt[26] = expand2s(Qs, M, H, 26); \
qt[27] = expand2s(Qs, M, H, 27); \
qt[28] = expand2s(Qs, M, H, 28); \
qt[29] = expand2s(Qs, M, H, 29); \
qt[30] = expand2s(Qs, M, H, 30); \
qt[31] = expand2s(Qs, M, H, 31); \
} while (0)
#else
#define MAKE_Qas do { \
qt[ 0] = SPH_T32(ss0(Ws0 ) + H( 1)); \
qt[ 1] = SPH_T32(ss1(Ws1 ) + H( 2)); \
qt[ 2] = SPH_T32(ss2(Ws2 ) + H( 3)); \
qt[ 3] = SPH_T32(ss3(Ws3 ) + H( 4)); \
qt[ 4] = SPH_T32(ss4(Ws4 ) + H( 5)); \
qt[ 5] = SPH_T32(ss0(Ws5 ) + H( 6)); \
qt[ 6] = SPH_T32(ss1(Ws6 ) + H( 7)); \
qt[ 7] = SPH_T32(ss2(Ws7 ) + H( 8)); \
qt[ 8] = SPH_T32(ss3(Ws8 ) + H( 9)); \
qt[ 9] = SPH_T32(ss4(Ws9 ) + H(10)); \
qt[10] = SPH_T32(ss0(Ws10) + H(11)); \
qt[11] = SPH_T32(ss1(Ws11) + H(12)); \
qt[12] = SPH_T32(ss2(Ws12) + H(13)); \
qt[13] = SPH_T32(ss3(Ws13) + H(14)); \
qt[14] = SPH_T32(ss4(Ws14) + H(15)); \
qt[15] = SPH_T32(ss0(Ws15) + H( 0)); \
} while (0)
#define MAKE_Qbs do { \
qt[16] = expand1s(Qs, M, H, 16); \
qt[17] = expand1s(Qs, M, H, 17); \
qt[18] = expand2s(Qs, M, H, 18); \
qt[19] = expand2s(Qs, M, H, 19); \
qt[20] = expand2s(Qs, M, H, 20); \
qt[21] = expand2s(Qs, M, H, 21); \
qt[22] = expand2s(Qs, M, H, 22); \
qt[23] = expand2s(Qs, M, H, 23); \
qt[24] = expand2s(Qs, M, H, 24); \
qt[25] = expand2s(Qs, M, H, 25); \
qt[26] = expand2s(Qs, M, H, 26); \
qt[27] = expand2s(Qs, M, H, 27); \
qt[28] = expand2s(Qs, M, H, 28); \
qt[29] = expand2s(Qs, M, H, 29); \
qt[30] = expand2s(Qs, M, H, 30); \
qt[31] = expand2s(Qs, M, H, 31); \
} while (0)
#endif
#define MAKE_Qs do { \
MAKE_Qas; \
MAKE_Qbs; \
} while (0)
#define Qs(j) (qt[j])
#if SPH_64
#define Wb0 MAKE_W(SPH_T64, 5, -, 7, +, 10, +, 13, +, 14)
#define Wb1 MAKE_W(SPH_T64, 6, -, 8, +, 11, +, 14, -, 15)
#define Wb2 MAKE_W(SPH_T64, 0, +, 7, +, 9, -, 12, +, 15)
#define Wb3 MAKE_W(SPH_T64, 0, -, 1, +, 8, -, 10, +, 13)
#define Wb4 MAKE_W(SPH_T64, 1, +, 2, +, 9, -, 11, -, 14)
#define Wb5 MAKE_W(SPH_T64, 3, -, 2, +, 10, -, 12, +, 15)
#define Wb6 MAKE_W(SPH_T64, 4, -, 0, -, 3, -, 11, +, 13)
#define Wb7 MAKE_W(SPH_T64, 1, -, 4, -, 5, -, 12, -, 14)
#define Wb8 MAKE_W(SPH_T64, 2, -, 5, -, 6, +, 13, -, 15)
#define Wb9 MAKE_W(SPH_T64, 0, -, 3, +, 6, -, 7, +, 14)
#define Wb10 MAKE_W(SPH_T64, 8, -, 1, -, 4, -, 7, +, 15)
#define Wb11 MAKE_W(SPH_T64, 8, -, 0, -, 2, -, 5, +, 9)
#define Wb12 MAKE_W(SPH_T64, 1, +, 3, -, 6, -, 9, +, 10)
#define Wb13 MAKE_W(SPH_T64, 2, +, 4, +, 7, +, 10, +, 11)
#define Wb14 MAKE_W(SPH_T64, 3, -, 5, +, 8, -, 11, -, 12)
#define Wb15 MAKE_W(SPH_T64, 12, -, 4, -, 6, -, 9, +, 13)
#if SPH_SMALL_FOOTPRINT_BMW
#define MAKE_Qab do { \
unsigned u; \
sph_u64 Wb[16]; \
Wb[ 0] = Wb0; \
Wb[ 1] = Wb1; \
Wb[ 2] = Wb2; \
Wb[ 3] = Wb3; \
Wb[ 4] = Wb4; \
Wb[ 5] = Wb5; \
Wb[ 6] = Wb6; \
Wb[ 7] = Wb7; \
Wb[ 8] = Wb8; \
Wb[ 9] = Wb9; \
Wb[10] = Wb10; \
Wb[11] = Wb11; \
Wb[12] = Wb12; \
Wb[13] = Wb13; \
Wb[14] = Wb14; \
Wb[15] = Wb15; \
for (u = 0; u < 15; u += 5) { \
qt[u + 0] = SPH_T64(sb0(Wb[u + 0]) + H(u + 1)); \
qt[u + 1] = SPH_T64(sb1(Wb[u + 1]) + H(u + 2)); \
qt[u + 2] = SPH_T64(sb2(Wb[u + 2]) + H(u + 3)); \
qt[u + 3] = SPH_T64(sb3(Wb[u + 3]) + H(u + 4)); \
qt[u + 4] = SPH_T64(sb4(Wb[u + 4]) + H(u + 5)); \
} \
qt[15] = SPH_T64(sb0(Wb[15]) + H(0)); \
} while (0)
#define MAKE_Qbb do { \
unsigned u; \
for (u = 16; u < 18; u ++) \
qt[u] = expand1b(Qb, M, H, u); \
for (u = 18; u < 32; u ++) \
qt[u] = expand2b(Qb, M, H, u); \
} while (0)
#else
#define MAKE_Qab do { \
qt[ 0] = SPH_T64(sb0(Wb0 ) + H( 1)); \
qt[ 1] = SPH_T64(sb1(Wb1 ) + H( 2)); \
qt[ 2] = SPH_T64(sb2(Wb2 ) + H( 3)); \
qt[ 3] = SPH_T64(sb3(Wb3 ) + H( 4)); \
qt[ 4] = SPH_T64(sb4(Wb4 ) + H( 5)); \
qt[ 5] = SPH_T64(sb0(Wb5 ) + H( 6)); \
qt[ 6] = SPH_T64(sb1(Wb6 ) + H( 7)); \
qt[ 7] = SPH_T64(sb2(Wb7 ) + H( 8)); \
qt[ 8] = SPH_T64(sb3(Wb8 ) + H( 9)); \
qt[ 9] = SPH_T64(sb4(Wb9 ) + H(10)); \
qt[10] = SPH_T64(sb0(Wb10) + H(11)); \
qt[11] = SPH_T64(sb1(Wb11) + H(12)); \
qt[12] = SPH_T64(sb2(Wb12) + H(13)); \
qt[13] = SPH_T64(sb3(Wb13) + H(14)); \
qt[14] = SPH_T64(sb4(Wb14) + H(15)); \
qt[15] = SPH_T64(sb0(Wb15) + H( 0)); \
} while (0)
#define MAKE_Qbb do { \
qt[16] = expand1b(Qb, M, H, 16); \
qt[17] = expand1b(Qb, M, H, 17); \
qt[18] = expand2b(Qb, M, H, 18); \
qt[19] = expand2b(Qb, M, H, 19); \
qt[20] = expand2b(Qb, M, H, 20); \
qt[21] = expand2b(Qb, M, H, 21); \
qt[22] = expand2b(Qb, M, H, 22); \
qt[23] = expand2b(Qb, M, H, 23); \
qt[24] = expand2b(Qb, M, H, 24); \
qt[25] = expand2b(Qb, M, H, 25); \
qt[26] = expand2b(Qb, M, H, 26); \
qt[27] = expand2b(Qb, M, H, 27); \
qt[28] = expand2b(Qb, M, H, 28); \
qt[29] = expand2b(Qb, M, H, 29); \
qt[30] = expand2b(Qb, M, H, 30); \
qt[31] = expand2b(Qb, M, H, 31); \
} while (0)
#endif
#define MAKE_Qb do { \
MAKE_Qab; \
MAKE_Qbb; \
} while (0)
#define Qb(j) (qt[j])
#endif
#define FOLD(type, mkQ, tt, rol, mf, qf, dhf) do { \
type qt[32], xl, xh; \
mkQ; \
xl = qf(16) ^ qf(17) ^ qf(18) ^ qf(19) \
^ qf(20) ^ qf(21) ^ qf(22) ^ qf(23); \
xh = xl ^ qf(24) ^ qf(25) ^ qf(26) ^ qf(27) \
^ qf(28) ^ qf(29) ^ qf(30) ^ qf(31); \
dhf( 0) = tt(((xh << 5) ^ (qf(16) >> 5) ^ mf( 0)) \
+ (xl ^ qf(24) ^ qf( 0))); \
dhf( 1) = tt(((xh >> 7) ^ (qf(17) << 8) ^ mf( 1)) \
+ (xl ^ qf(25) ^ qf( 1))); \
dhf( 2) = tt(((xh >> 5) ^ (qf(18) << 5) ^ mf( 2)) \
+ (xl ^ qf(26) ^ qf( 2))); \
dhf( 3) = tt(((xh >> 1) ^ (qf(19) << 5) ^ mf( 3)) \
+ (xl ^ qf(27) ^ qf( 3))); \
dhf( 4) = tt(((xh >> 3) ^ (qf(20) << 0) ^ mf( 4)) \
+ (xl ^ qf(28) ^ qf( 4))); \
dhf( 5) = tt(((xh << 6) ^ (qf(21) >> 6) ^ mf( 5)) \
+ (xl ^ qf(29) ^ qf( 5))); \
dhf( 6) = tt(((xh >> 4) ^ (qf(22) << 6) ^ mf( 6)) \
+ (xl ^ qf(30) ^ qf( 6))); \
dhf( 7) = tt(((xh >> 11) ^ (qf(23) << 2) ^ mf( 7)) \
+ (xl ^ qf(31) ^ qf( 7))); \
dhf( 8) = tt(rol(dhf(4), 9) + (xh ^ qf(24) ^ mf( 8)) \
+ ((xl << 8) ^ qf(23) ^ qf( 8))); \
dhf( 9) = tt(rol(dhf(5), 10) + (xh ^ qf(25) ^ mf( 9)) \
+ ((xl >> 6) ^ qf(16) ^ qf( 9))); \
dhf(10) = tt(rol(dhf(6), 11) + (xh ^ qf(26) ^ mf(10)) \
+ ((xl << 6) ^ qf(17) ^ qf(10))); \
dhf(11) = tt(rol(dhf(7), 12) + (xh ^ qf(27) ^ mf(11)) \
+ ((xl << 4) ^ qf(18) ^ qf(11))); \
dhf(12) = tt(rol(dhf(0), 13) + (xh ^ qf(28) ^ mf(12)) \
+ ((xl >> 3) ^ qf(19) ^ qf(12))); \
dhf(13) = tt(rol(dhf(1), 14) + (xh ^ qf(29) ^ mf(13)) \
+ ((xl >> 4) ^ qf(20) ^ qf(13))); \
dhf(14) = tt(rol(dhf(2), 15) + (xh ^ qf(30) ^ mf(14)) \
+ ((xl >> 7) ^ qf(21) ^ qf(14))); \
dhf(15) = tt(rol(dhf(3), 16) + (xh ^ qf(31) ^ mf(15)) \
+ ((xl >> 2) ^ qf(22) ^ qf(15))); \
} while (0)
#define FOLDs FOLD(sph_u32, MAKE_Qs, SPH_T32, SPH_ROTL32, M, Qs, dH)
#if SPH_64
#define FOLDb FOLD(sph_u64, MAKE_Qb, SPH_T64, SPH_ROTL64, M, Qb, dH)
#endif
static void
compress_small(const unsigned char *data, const sph_u32 h[16], sph_u32 dh[16])
{
#if SPH_LITTLE_FAST
#define M(x) sph_dec32le_aligned(data + 4 * (x))
#else
sph_u32 mv[16];
mv[ 0] = sph_dec32le_aligned(data + 0);
mv[ 1] = sph_dec32le_aligned(data + 4);
mv[ 2] = sph_dec32le_aligned(data + 8);
mv[ 3] = sph_dec32le_aligned(data + 12);
mv[ 4] = sph_dec32le_aligned(data + 16);
mv[ 5] = sph_dec32le_aligned(data + 20);
mv[ 6] = sph_dec32le_aligned(data + 24);
mv[ 7] = sph_dec32le_aligned(data + 28);
mv[ 8] = sph_dec32le_aligned(data + 32);
mv[ 9] = sph_dec32le_aligned(data + 36);
mv[10] = sph_dec32le_aligned(data + 40);
mv[11] = sph_dec32le_aligned(data + 44);
mv[12] = sph_dec32le_aligned(data + 48);
mv[13] = sph_dec32le_aligned(data + 52);
mv[14] = sph_dec32le_aligned(data + 56);
mv[15] = sph_dec32le_aligned(data + 60);
#define M(x) (mv[x])
#endif
#define H(x) (h[x])
#define dH(x) (dh[x])
FOLDs;
#undef M
#undef H
#undef dH
}
static const sph_u32 final_s[16] = {
SPH_C32(0xaaaaaaa0), SPH_C32(0xaaaaaaa1), SPH_C32(0xaaaaaaa2),
SPH_C32(0xaaaaaaa3), SPH_C32(0xaaaaaaa4), SPH_C32(0xaaaaaaa5),
SPH_C32(0xaaaaaaa6), SPH_C32(0xaaaaaaa7), SPH_C32(0xaaaaaaa8),
SPH_C32(0xaaaaaaa9), SPH_C32(0xaaaaaaaa), SPH_C32(0xaaaaaaab),
SPH_C32(0xaaaaaaac), SPH_C32(0xaaaaaaad), SPH_C32(0xaaaaaaae),
SPH_C32(0xaaaaaaaf)
};
static void
bmw32_init(sph_bmw_small_context *sc, const sph_u32 *iv)
{
memcpy(sc->H, iv, sizeof sc->H);
sc->ptr = 0;
#if SPH_64
sc->bit_count = 0;
#else
sc->bit_count_high = 0;
sc->bit_count_low = 0;
#endif
}
static void
bmw32(sph_bmw_small_context *sc, const void *data, size_t len)
{
unsigned char *buf;
size_t ptr;
sph_u32 htmp[16];
sph_u32 *h1, *h2;
#if !SPH_64
sph_u32 tmp;
#endif
#if SPH_64
sc->bit_count += (sph_u64)len << 3;
#else
tmp = sc->bit_count_low;
sc->bit_count_low = SPH_T32(tmp + ((sph_u32)len << 3));
if (sc->bit_count_low < tmp)
sc->bit_count_high ++;
sc->bit_count_high += len >> 29;
#endif
buf = sc->buf;
ptr = sc->ptr;
h1 = sc->H;
h2 = htmp;
while (len > 0) {
size_t clen;
clen = (sizeof sc->buf) - ptr;
if (clen > len)
clen = len;
memcpy(buf + ptr, data, clen);
data = (const unsigned char *)data + clen;
len -= clen;
ptr += clen;
if (ptr == sizeof sc->buf) {
sph_u32 *ht;
compress_small(buf, h1, h2);
ht = h1;
h1 = h2;
h2 = ht;
ptr = 0;
}
}
sc->ptr = ptr;
if (h1 != sc->H)
memcpy(sc->H, h1, sizeof sc->H);
}
static void
bmw32_close(sph_bmw_small_context *sc, unsigned ub, unsigned n,
void *dst, size_t out_size_w32)
{
unsigned char *buf, *out;
size_t ptr, u, v;
unsigned z;
sph_u32 h1[16], h2[16], *h;
buf = sc->buf;
ptr = sc->ptr;
z = 0x80 >> n;
buf[ptr ++] = ((ub & -z) | z) & 0xFF;
h = sc->H;
if (ptr > (sizeof sc->buf) - 8) {
memset(buf + ptr, 0, (sizeof sc->buf) - ptr);
compress_small(buf, h, h1);
ptr = 0;
h = h1;
}
memset(buf + ptr, 0, (sizeof sc->buf) - 8 - ptr);
#if SPH_64
sph_enc64le_aligned(buf + (sizeof sc->buf) - 8,
SPH_T64(sc->bit_count + n));
#else
sph_enc32le_aligned(buf + (sizeof sc->buf) - 8,
sc->bit_count_low + n);
sph_enc32le_aligned(buf + (sizeof sc->buf) - 4,
SPH_T32(sc->bit_count_high));
#endif
compress_small(buf, h, h2);
for (u = 0; u < 16; u ++)
sph_enc32le_aligned(buf + 4 * u, h2[u]);
compress_small(buf, final_s, h1);
out = dst;
for (u = 0, v = 16 - out_size_w32; u < out_size_w32; u ++, v ++)
sph_enc32le(out + 4 * u, h1[v]);
}
#if SPH_64
static void
compress_big(const unsigned char *data, const sph_u64 h[16], sph_u64 dh[16])
{
#if SPH_LITTLE_FAST
#define M(x) sph_dec64le_aligned(data + 8 * (x))
#else
sph_u64 mv[16];
mv[ 0] = sph_dec64le_aligned(data + 0);
mv[ 1] = sph_dec64le_aligned(data + 8);
mv[ 2] = sph_dec64le_aligned(data + 16);
mv[ 3] = sph_dec64le_aligned(data + 24);
mv[ 4] = sph_dec64le_aligned(data + 32);
mv[ 5] = sph_dec64le_aligned(data + 40);
mv[ 6] = sph_dec64le_aligned(data + 48);
mv[ 7] = sph_dec64le_aligned(data + 56);
mv[ 8] = sph_dec64le_aligned(data + 64);
mv[ 9] = sph_dec64le_aligned(data + 72);
mv[10] = sph_dec64le_aligned(data + 80);
mv[11] = sph_dec64le_aligned(data + 88);
mv[12] = sph_dec64le_aligned(data + 96);
mv[13] = sph_dec64le_aligned(data + 104);
mv[14] = sph_dec64le_aligned(data + 112);
mv[15] = sph_dec64le_aligned(data + 120);
#define M(x) (mv[x])
#endif
#define H(x) (h[x])
#define dH(x) (dh[x])
FOLDb;
#undef M
#undef H
#undef dH
}
static const sph_u64 final_b[16] = {
SPH_C64(0xaaaaaaaaaaaaaaa0), SPH_C64(0xaaaaaaaaaaaaaaa1),
SPH_C64(0xaaaaaaaaaaaaaaa2), SPH_C64(0xaaaaaaaaaaaaaaa3),
SPH_C64(0xaaaaaaaaaaaaaaa4), SPH_C64(0xaaaaaaaaaaaaaaa5),
SPH_C64(0xaaaaaaaaaaaaaaa6), SPH_C64(0xaaaaaaaaaaaaaaa7),
SPH_C64(0xaaaaaaaaaaaaaaa8), SPH_C64(0xaaaaaaaaaaaaaaa9),
SPH_C64(0xaaaaaaaaaaaaaaaa), SPH_C64(0xaaaaaaaaaaaaaaab),
SPH_C64(0xaaaaaaaaaaaaaaac), SPH_C64(0xaaaaaaaaaaaaaaad),
SPH_C64(0xaaaaaaaaaaaaaaae), SPH_C64(0xaaaaaaaaaaaaaaaf)
};
static void
bmw64_init(sph_bmw_big_context *sc, const sph_u64 *iv)
{
memcpy(sc->H, iv, sizeof sc->H);
sc->ptr = 0;
sc->bit_count = 0;
}
static void
bmw64(sph_bmw_big_context *sc, const void *data, size_t len)
{
unsigned char *buf;
size_t ptr;
sph_u64 htmp[16];
sph_u64 *h1, *h2;
sc->bit_count += (sph_u64)len << 3;
buf = sc->buf;
ptr = sc->ptr;
h1 = sc->H;
h2 = htmp;
while (len > 0) {
size_t clen;
clen = (sizeof sc->buf) - ptr;
if (clen > len)
clen = len;
memcpy(buf + ptr, data, clen);
data = (const unsigned char *)data + clen;
len -= clen;
ptr += clen;
if (ptr == sizeof sc->buf) {
sph_u64 *ht;
compress_big(buf, h1, h2);
ht = h1;
h1 = h2;
h2 = ht;
ptr = 0;
}
}
sc->ptr = ptr;
if (h1 != sc->H)
memcpy(sc->H, h1, sizeof sc->H);
}
static void
bmw64_close(sph_bmw_big_context *sc, unsigned ub, unsigned n,
void *dst, size_t out_size_w64)
{
unsigned char *buf, *out;
size_t ptr, u, v;
unsigned z;
sph_u64 h1[16], h2[16], *h;
buf = sc->buf;
ptr = sc->ptr;
z = 0x80 >> n;
buf[ptr ++] = ((ub & -z) | z) & 0xFF;
h = sc->H;
if (ptr > (sizeof sc->buf) - 8) {
memset(buf + ptr, 0, (sizeof sc->buf) - ptr);
compress_big(buf, h, h1);
ptr = 0;
h = h1;
}
memset(buf + ptr, 0, (sizeof sc->buf) - 8 - ptr);
sph_enc64le_aligned(buf + (sizeof sc->buf) - 8,
SPH_T64(sc->bit_count + n));
compress_big(buf, h, h2);
for (u = 0; u < 16; u ++)
sph_enc64le_aligned(buf + 8 * u, h2[u]);
compress_big(buf, final_b, h1);
out = dst;
for (u = 0, v = 16 - out_size_w64; u < out_size_w64; u ++, v ++)
sph_enc64le(out + 8 * u, h1[v]);
}
#endif
/* see sph_bmw.h */
void
sph_bmw224_init(void *cc)
{
bmw32_init(cc, IV224);
}
/* see sph_bmw.h */
void
sph_bmw224(void *cc, const void *data, size_t len)
{
bmw32(cc, data, len);
}
/* see sph_bmw.h */
void
sph_bmw224_close(void *cc, void *dst)
{
sph_bmw224_addbits_and_close(cc, 0, 0, dst);
}
/* see sph_bmw.h */
void
sph_bmw224_addbits_and_close(void *cc, unsigned ub, unsigned n, void *dst)
{
bmw32_close(cc, ub, n, dst, 7);
// sph_bmw224_init(cc);
}
/* see sph_bmw.h */
void
sph_bmw256_init(void *cc)
{
bmw32_init(cc, IV256);
}
/* see sph_bmw.h */
void
sph_bmw256(void *cc, const void *data, size_t len)
{
bmw32(cc, data, len);
}
/* see sph_bmw.h */
void
sph_bmw256_close(void *cc, void *dst)
{
sph_bmw256_addbits_and_close(cc, 0, 0, dst);
}
/* see sph_bmw.h */
void
sph_bmw256_addbits_and_close(void *cc, unsigned ub, unsigned n, void *dst)
{
bmw32_close(cc, ub, n, dst, 8);
// sph_bmw256_init(cc);
}
#if SPH_64
/* see sph_bmw.h */
void
sph_bmw384_init(void *cc)
{
bmw64_init(cc, IV384);
}
/* see sph_bmw.h */
void
sph_bmw384(void *cc, const void *data, size_t len)
{
bmw64(cc, data, len);
}
/* see sph_bmw.h */
void
sph_bmw384_close(void *cc, void *dst)
{
sph_bmw384_addbits_and_close(cc, 0, 0, dst);
}
/* see sph_bmw.h */
void
sph_bmw384_addbits_and_close(void *cc, unsigned ub, unsigned n, void *dst)
{
bmw64_close(cc, ub, n, dst, 6);
// sph_bmw384_init(cc);
}
/* see sph_bmw.h */
void
sph_bmw512_init(void *cc)
{
bmw64_init(cc, IV512);
}
/* see sph_bmw.h */
void
sph_bmw512(void *cc, const void *data, size_t len)
{
bmw64(cc, data, len);
}
/* see sph_bmw.h */
void
sph_bmw512_close(void *cc, void *dst)
{
sph_bmw512_addbits_and_close(cc, 0, 0, dst);
}
/* see sph_bmw.h */
void
sph_bmw512_addbits_and_close(void *cc, unsigned ub, unsigned n, void *dst)
{
bmw64_close(cc, ub, n, dst, 8);
// sph_bmw512_init(cc);
}
#endif
#ifdef __cplusplus
}
#endif

328
algo/bmw/sph_bmw.h Normal file
View File

@@ -0,0 +1,328 @@
/* $Id: sph_bmw.h 216 2010-06-08 09:46:57Z tp $ */
/**
* BMW interface. BMW (aka "Blue Midnight Wish") is a family of
* functions which differ by their output size; this implementation
* defines BMW for output sizes 224, 256, 384 and 512 bits.
*
* ==========================(LICENSE BEGIN)============================
*
* Copyright (c) 2007-2010 Projet RNRT SAPHIR
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* ===========================(LICENSE END)=============================
*
* @file sph_bmw.h
* @author Thomas Pornin <thomas.pornin@cryptolog.com>
*/
#ifndef SPH_BMW_H__
#define SPH_BMW_H__
#ifdef __cplusplus
extern "C"{
#endif
#include <stddef.h>
#include "algo/sha3/sph_types.h"
/**
* Output size (in bits) for BMW-224.
*/
#define SPH_SIZE_bmw224 224
/**
* Output size (in bits) for BMW-256.
*/
#define SPH_SIZE_bmw256 256
#if SPH_64
/**
* Output size (in bits) for BMW-384.
*/
#define SPH_SIZE_bmw384 384
/**
* Output size (in bits) for BMW-512.
*/
#define SPH_SIZE_bmw512 512
#endif
/**
* This structure is a context for BMW-224 and BMW-256 computations:
* it contains the intermediate values and some data from the last
* entered block. Once a BMW computation has been performed, the
* context can be reused for another computation.
*
* The contents of this structure are private. A running BMW
* computation can be cloned by copying the context (e.g. with a simple
* <code>memcpy()</code>).
*/
typedef struct {
#ifndef DOXYGEN_IGNORE
unsigned char buf[64]; /* first field, for alignment */
size_t ptr;
sph_u32 H[16];
#if SPH_64
sph_u64 bit_count;
#else
sph_u32 bit_count_high, bit_count_low;
#endif
#endif
} sph_bmw_small_context;
/**
* This structure is a context for BMW-224 computations. It is
* identical to the common <code>sph_bmw_small_context</code>.
*/
typedef sph_bmw_small_context sph_bmw224_context;
/**
* This structure is a context for BMW-256 computations. It is
* identical to the common <code>sph_bmw_small_context</code>.
*/
typedef sph_bmw_small_context sph_bmw256_context;
#if SPH_64
/**
* This structure is a context for BMW-384 and BMW-512 computations:
* it contains the intermediate values and some data from the last
* entered block. Once a BMW computation has been performed, the
* context can be reused for another computation.
*
* The contents of this structure are private. A running BMW
* computation can be cloned by copying the context (e.g. with a simple
* <code>memcpy()</code>).
*/
typedef struct {
#ifndef DOXYGEN_IGNORE
unsigned char buf[128]; /* first field, for alignment */
size_t ptr;
sph_u64 H[16];
sph_u64 bit_count;
#endif
} sph_bmw_big_context;
/**
* This structure is a context for BMW-384 computations. It is
* identical to the common <code>sph_bmw_small_context</code>.
*/
typedef sph_bmw_big_context sph_bmw384_context;
/**
* This structure is a context for BMW-512 computations. It is
* identical to the common <code>sph_bmw_small_context</code>.
*/
typedef sph_bmw_big_context sph_bmw512_context;
#endif
/**
* Initialize a BMW-224 context. This process performs no memory allocation.
*
* @param cc the BMW-224 context (pointer to a
* <code>sph_bmw224_context</code>)
*/
void sph_bmw224_init(void *cc);
/**
* Process some data bytes. It is acceptable that <code>len</code> is zero
* (in which case this function does nothing).
*
* @param cc the BMW-224 context
* @param data the input data
* @param len the input data length (in bytes)
*/
void sph_bmw224(void *cc, const void *data, size_t len);
/**
* Terminate the current BMW-224 computation and output the result into
* the provided buffer. The destination buffer must be wide enough to
* accomodate the result (28 bytes). The context is automatically
* reinitialized.
*
* @param cc the BMW-224 context
* @param dst the destination buffer
*/
void sph_bmw224_close(void *cc, void *dst);
/**
* Add a few additional bits (0 to 7) to the current computation, then
* terminate it and output the result in the provided buffer, which must
* be wide enough to accomodate the result (28 bytes). If bit number i
* in <code>ub</code> has value 2^i, then the extra bits are those
* numbered 7 downto 8-n (this is the big-endian convention at the byte
* level). The context is automatically reinitialized.
*
* @param cc the BMW-224 context
* @param ub the extra bits
* @param n the number of extra bits (0 to 7)
* @param dst the destination buffer
*/
void sph_bmw224_addbits_and_close(
void *cc, unsigned ub, unsigned n, void *dst);
/**
* Initialize a BMW-256 context. This process performs no memory allocation.
*
* @param cc the BMW-256 context (pointer to a
* <code>sph_bmw256_context</code>)
*/
void sph_bmw256_init(void *cc);
/**
* Process some data bytes. It is acceptable that <code>len</code> is zero
* (in which case this function does nothing).
*
* @param cc the BMW-256 context
* @param data the input data
* @param len the input data length (in bytes)
*/
void sph_bmw256(void *cc, const void *data, size_t len);
/**
* Terminate the current BMW-256 computation and output the result into
* the provided buffer. The destination buffer must be wide enough to
* accomodate the result (32 bytes). The context is automatically
* reinitialized.
*
* @param cc the BMW-256 context
* @param dst the destination buffer
*/
void sph_bmw256_close(void *cc, void *dst);
/**
* Add a few additional bits (0 to 7) to the current computation, then
* terminate it and output the result in the provided buffer, which must
* be wide enough to accomodate the result (32 bytes). If bit number i
* in <code>ub</code> has value 2^i, then the extra bits are those
* numbered 7 downto 8-n (this is the big-endian convention at the byte
* level). The context is automatically reinitialized.
*
* @param cc the BMW-256 context
* @param ub the extra bits
* @param n the number of extra bits (0 to 7)
* @param dst the destination buffer
*/
void sph_bmw256_addbits_and_close(
void *cc, unsigned ub, unsigned n, void *dst);
#if SPH_64
/**
* Initialize a BMW-384 context. This process performs no memory allocation.
*
* @param cc the BMW-384 context (pointer to a
* <code>sph_bmw384_context</code>)
*/
void sph_bmw384_init(void *cc);
/**
* Process some data bytes. It is acceptable that <code>len</code> is zero
* (in which case this function does nothing).
*
* @param cc the BMW-384 context
* @param data the input data
* @param len the input data length (in bytes)
*/
void sph_bmw384(void *cc, const void *data, size_t len);
/**
* Terminate the current BMW-384 computation and output the result into
* the provided buffer. The destination buffer must be wide enough to
* accomodate the result (48 bytes). The context is automatically
* reinitialized.
*
* @param cc the BMW-384 context
* @param dst the destination buffer
*/
void sph_bmw384_close(void *cc, void *dst);
/**
* Add a few additional bits (0 to 7) to the current computation, then
* terminate it and output the result in the provided buffer, which must
* be wide enough to accomodate the result (48 bytes). If bit number i
* in <code>ub</code> has value 2^i, then the extra bits are those
* numbered 7 downto 8-n (this is the big-endian convention at the byte
* level). The context is automatically reinitialized.
*
* @param cc the BMW-384 context
* @param ub the extra bits
* @param n the number of extra bits (0 to 7)
* @param dst the destination buffer
*/
void sph_bmw384_addbits_and_close(
void *cc, unsigned ub, unsigned n, void *dst);
/**
* Initialize a BMW-512 context. This process performs no memory allocation.
*
* @param cc the BMW-512 context (pointer to a
* <code>sph_bmw512_context</code>)
*/
void sph_bmw512_init(void *cc);
/**
* Process some data bytes. It is acceptable that <code>len</code> is zero
* (in which case this function does nothing).
*
* @param cc the BMW-512 context
* @param data the input data
* @param len the input data length (in bytes)
*/
void sph_bmw512(void *cc, const void *data, size_t len);
/**
* Terminate the current BMW-512 computation and output the result into
* the provided buffer. The destination buffer must be wide enough to
* accomodate the result (64 bytes). The context is automatically
* reinitialized.
*
* @param cc the BMW-512 context
* @param dst the destination buffer
*/
void sph_bmw512_close(void *cc, void *dst);
/**
* Add a few additional bits (0 to 7) to the current computation, then
* terminate it and output the result in the provided buffer, which must
* be wide enough to accomodate the result (64 bytes). If bit number i
* in <code>ub</code> has value 2^i, then the extra bits are those
* numbered 7 downto 8-n (this is the big-endian convention at the byte
* level). The context is automatically reinitialized.
*
* @param cc the BMW-512 context
* @param ub the extra bits
* @param n the number of extra bits (0 to 7)
* @param dst the destination buffer
*/
void sph_bmw512_addbits_and_close(
void *cc, unsigned ub, unsigned n, void *dst);
#endif
#ifdef __cplusplus
}
#endif
#endif

517
algo/bmw/sse2/bmw.c Normal file
View File

@@ -0,0 +1,517 @@
/* $Id: bmw.c 227 2010-06-16 17:28:38Z tp $ */
/*
* BMW implementation.
*
* ==========================(LICENSE BEGIN)============================
*
* Copyright (c) 2007-2010 Projet RNRT SAPHIR
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* ===========================(LICENSE END)=============================
*
* @author Thomas Pornin <thomas.pornin@cryptolog.com>
*/
#include <stddef.h>
#include <string.h>
#include <limits.h>
#ifdef __cplusplus
extern "C"{
#endif
#include "../sph_bmw.h"
#ifdef _MSC_VER
#pragma warning (disable: 4146)
#endif
static const sph_u64 bmwIV512[] = {
SPH_C64(0x8081828384858687), SPH_C64(0x88898A8B8C8D8E8F),
SPH_C64(0x9091929394959697), SPH_C64(0x98999A9B9C9D9E9F),
SPH_C64(0xA0A1A2A3A4A5A6A7), SPH_C64(0xA8A9AAABACADAEAF),
SPH_C64(0xB0B1B2B3B4B5B6B7), SPH_C64(0xB8B9BABBBCBDBEBF),
SPH_C64(0xC0C1C2C3C4C5C6C7), SPH_C64(0xC8C9CACBCCCDCECF),
SPH_C64(0xD0D1D2D3D4D5D6D7), SPH_C64(0xD8D9DADBDCDDDEDF),
SPH_C64(0xE0E1E2E3E4E5E6E7), SPH_C64(0xE8E9EAEBECEDEEEF),
SPH_C64(0xF0F1F2F3F4F5F6F7), SPH_C64(0xF8F9FAFBFCFDFEFF)
};
#define XCAT(x, y) XCAT_(x, y)
#define XCAT_(x, y) x ## y
#define LPAR (
#define I16_16 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
#define I16_17 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16
#define I16_18 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17
#define I16_19 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18
#define I16_20 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19
#define I16_21 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20
#define I16_22 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21
#define I16_23 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22
#define I16_24 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23
#define I16_25 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24
#define I16_26 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
#define I16_27 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26
#define I16_28 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27
#define I16_29 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28
#define I16_30 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29
#define I16_31 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30
#define M16_16 0, 1, 3, 4, 7, 10, 11
#define M16_17 1, 2, 4, 5, 8, 11, 12
#define M16_18 2, 3, 5, 6, 9, 12, 13
#define M16_19 3, 4, 6, 7, 10, 13, 14
#define M16_20 4, 5, 7, 8, 11, 14, 15
#define M16_21 5, 6, 8, 9, 12, 15, 16
#define M16_22 6, 7, 9, 10, 13, 0, 1
#define M16_23 7, 8, 10, 11, 14, 1, 2
#define M16_24 8, 9, 11, 12, 15, 2, 3
#define M16_25 9, 10, 12, 13, 0, 3, 4
#define M16_26 10, 11, 13, 14, 1, 4, 5
#define M16_27 11, 12, 14, 15, 2, 5, 6
#define M16_28 12, 13, 15, 16, 3, 6, 7
#define M16_29 13, 14, 0, 1, 4, 7, 8
#define M16_30 14, 15, 1, 2, 5, 8, 9
#define M16_31 15, 16, 2, 3, 6, 9, 10
#define ss0(x) (((x) >> 1) ^ SPH_T32((x) << 3) \
^ SPH_ROTL32(x, 4) ^ SPH_ROTL32(x, 19))
#define ss1(x) (((x) >> 1) ^ SPH_T32((x) << 2) \
^ SPH_ROTL32(x, 8) ^ SPH_ROTL32(x, 23))
#define ss2(x) (((x) >> 2) ^ SPH_T32((x) << 1) \
^ SPH_ROTL32(x, 12) ^ SPH_ROTL32(x, 25))
#define ss3(x) (((x) >> 2) ^ SPH_T32((x) << 2) \
^ SPH_ROTL32(x, 15) ^ SPH_ROTL32(x, 29))
#define ss4(x) (((x) >> 1) ^ (x))
#define ss5(x) (((x) >> 2) ^ (x))
#define rs1(x) SPH_ROTL32(x, 3)
#define rs2(x) SPH_ROTL32(x, 7)
#define rs3(x) SPH_ROTL32(x, 13)
#define rs4(x) SPH_ROTL32(x, 16)
#define rs5(x) SPH_ROTL32(x, 19)
#define rs6(x) SPH_ROTL32(x, 23)
#define rs7(x) SPH_ROTL32(x, 27)
#define Ks(j) SPH_T32((sph_u32)(j) * SPH_C32(0x05555555))
#define add_elt_s(mf, hf, j0m, j1m, j3m, j4m, j7m, j10m, j11m, j16) \
(SPH_T32(SPH_ROTL32(mf(j0m), j1m) + SPH_ROTL32(mf(j3m), j4m) \
- SPH_ROTL32(mf(j10m), j11m) + Ks(j16)) ^ hf(j7m))
#define expand1s_inner(qf, mf, hf, i16, \
i0, i1, i2, i3, i4, i5, i6, i7, i8, \
i9, i10, i11, i12, i13, i14, i15, \
i0m, i1m, i3m, i4m, i7m, i10m, i11m) \
SPH_T32(ss1(qf(i0)) + ss2(qf(i1)) + ss3(qf(i2)) + ss0(qf(i3)) \
+ ss1(qf(i4)) + ss2(qf(i5)) + ss3(qf(i6)) + ss0(qf(i7)) \
+ ss1(qf(i8)) + ss2(qf(i9)) + ss3(qf(i10)) + ss0(qf(i11)) \
+ ss1(qf(i12)) + ss2(qf(i13)) + ss3(qf(i14)) + ss0(qf(i15)) \
+ add_elt_s(mf, hf, i0m, i1m, i3m, i4m, i7m, i10m, i11m, i16))
#define expand1s(qf, mf, hf, i16) \
expand1s_(qf, mf, hf, i16, I16_ ## i16, M16_ ## i16)
#define expand1s_(qf, mf, hf, i16, ix, iy) \
expand1s_inner LPAR qf, mf, hf, i16, ix, iy)
#define expand2s_inner(qf, mf, hf, i16, \
i0, i1, i2, i3, i4, i5, i6, i7, i8, \
i9, i10, i11, i12, i13, i14, i15, \
i0m, i1m, i3m, i4m, i7m, i10m, i11m) \
SPH_T32(qf(i0) + rs1(qf(i1)) + qf(i2) + rs2(qf(i3)) \
+ qf(i4) + rs3(qf(i5)) + qf(i6) + rs4(qf(i7)) \
+ qf(i8) + rs5(qf(i9)) + qf(i10) + rs6(qf(i11)) \
+ qf(i12) + rs7(qf(i13)) + ss4(qf(i14)) + ss5(qf(i15)) \
+ add_elt_s(mf, hf, i0m, i1m, i3m, i4m, i7m, i10m, i11m, i16))
#define expand2s(qf, mf, hf, i16) \
expand2s_(qf, mf, hf, i16, I16_ ## i16, M16_ ## i16)
#define expand2s_(qf, mf, hf, i16, ix, iy) \
expand2s_inner LPAR qf, mf, hf, i16, ix, iy)
#if SPH_64
#define sb0(x) (((x) >> 1) ^ SPH_T64((x) << 3) \
^ SPH_ROTL64(x, 4) ^ SPH_ROTL64(x, 37))
#define sb1(x) (((x) >> 1) ^ SPH_T64((x) << 2) \
^ SPH_ROTL64(x, 13) ^ SPH_ROTL64(x, 43))
#define sb2(x) (((x) >> 2) ^ SPH_T64((x) << 1) \
^ SPH_ROTL64(x, 19) ^ SPH_ROTL64(x, 53))
#define sb3(x) (((x) >> 2) ^ SPH_T64((x) << 2) \
^ SPH_ROTL64(x, 28) ^ SPH_ROTL64(x, 59))
#define sb4(x) (((x) >> 1) ^ (x))
#define sb5(x) (((x) >> 2) ^ (x))
#define rb1(x) SPH_ROTL64(x, 5)
#define rb2(x) SPH_ROTL64(x, 11)
#define rb3(x) SPH_ROTL64(x, 27)
#define rb4(x) SPH_ROTL64(x, 32)
#define rb5(x) SPH_ROTL64(x, 37)
#define rb6(x) SPH_ROTL64(x, 43)
#define rb7(x) SPH_ROTL64(x, 53)
#define Kb(j) SPH_T64((sph_u64)(j) * SPH_C64(0x0555555555555555))
#if 0
static const sph_u64 Kb_tab[] = {
Kb(16), Kb(17), Kb(18), Kb(19), Kb(20), Kb(21), Kb(22), Kb(23),
Kb(24), Kb(25), Kb(26), Kb(27), Kb(28), Kb(29), Kb(30), Kb(31)
};
#define rol_off(mf, j, off) \
SPH_ROTL64(mf(((j) + (off)) & 15), (((j) + (off)) & 15) + 1)
#define add_elt_b(mf, hf, j) \
(SPH_T64(rol_off(mf, j, 0) + rol_off(mf, j, 3) \
- rol_off(mf, j, 10) + Kb_tab[j]) ^ hf(((j) + 7) & 15))
#define expand1b(qf, mf, hf, i) \
SPH_T64(sb1(qf((i) - 16)) + sb2(qf((i) - 15)) \
+ sb3(qf((i) - 14)) + sb0(qf((i) - 13)) \
+ sb1(qf((i) - 12)) + sb2(qf((i) - 11)) \
+ sb3(qf((i) - 10)) + sb0(qf((i) - 9)) \
+ sb1(qf((i) - 8)) + sb2(qf((i) - 7)) \
+ sb3(qf((i) - 6)) + sb0(qf((i) - 5)) \
+ sb1(qf((i) - 4)) + sb2(qf((i) - 3)) \
+ sb3(qf((i) - 2)) + sb0(qf((i) - 1)) \
+ add_elt_b(mf, hf, (i) - 16))
#define expand2b(qf, mf, hf, i) \
SPH_T64(qf((i) - 16) + rb1(qf((i) - 15)) \
+ qf((i) - 14) + rb2(qf((i) - 13)) \
+ qf((i) - 12) + rb3(qf((i) - 11)) \
+ qf((i) - 10) + rb4(qf((i) - 9)) \
+ qf((i) - 8) + rb5(qf((i) - 7)) \
+ qf((i) - 6) + rb6(qf((i) - 5)) \
+ qf((i) - 4) + rb7(qf((i) - 3)) \
+ sb4(qf((i) - 2)) + sb5(qf((i) - 1)) \
+ add_elt_b(mf, hf, (i) - 16))
#else
#define add_elt_b(mf, hf, j0m, j1m, j3m, j4m, j7m, j10m, j11m, j16) \
(SPH_T64(SPH_ROTL64(mf(j0m), j1m) + SPH_ROTL64(mf(j3m), j4m) \
- SPH_ROTL64(mf(j10m), j11m) + Kb(j16)) ^ hf(j7m))
#define expand1b_inner(qf, mf, hf, i16, \
i0, i1, i2, i3, i4, i5, i6, i7, i8, \
i9, i10, i11, i12, i13, i14, i15, \
i0m, i1m, i3m, i4m, i7m, i10m, i11m) \
SPH_T64(sb1(qf(i0)) + sb2(qf(i1)) + sb3(qf(i2)) + sb0(qf(i3)) \
+ sb1(qf(i4)) + sb2(qf(i5)) + sb3(qf(i6)) + sb0(qf(i7)) \
+ sb1(qf(i8)) + sb2(qf(i9)) + sb3(qf(i10)) + sb0(qf(i11)) \
+ sb1(qf(i12)) + sb2(qf(i13)) + sb3(qf(i14)) + sb0(qf(i15)) \
+ add_elt_b(mf, hf, i0m, i1m, i3m, i4m, i7m, i10m, i11m, i16))
#define expand1b(qf, mf, hf, i16) \
expand1b_(qf, mf, hf, i16, I16_ ## i16, M16_ ## i16)
#define expand1b_(qf, mf, hf, i16, ix, iy) \
expand1b_inner LPAR qf, mf, hf, i16, ix, iy)
#define expand2b_inner(qf, mf, hf, i16, \
i0, i1, i2, i3, i4, i5, i6, i7, i8, \
i9, i10, i11, i12, i13, i14, i15, \
i0m, i1m, i3m, i4m, i7m, i10m, i11m) \
SPH_T64(qf(i0) + rb1(qf(i1)) + qf(i2) + rb2(qf(i3)) \
+ qf(i4) + rb3(qf(i5)) + qf(i6) + rb4(qf(i7)) \
+ qf(i8) + rb5(qf(i9)) + qf(i10) + rb6(qf(i11)) \
+ qf(i12) + rb7(qf(i13)) + sb4(qf(i14)) + sb5(qf(i15)) \
+ add_elt_b(mf, hf, i0m, i1m, i3m, i4m, i7m, i10m, i11m, i16))
#define expand2b(qf, mf, hf, i16) \
expand2b_(qf, mf, hf, i16, I16_ ## i16, M16_ ## i16)
#define expand2b_(qf, mf, hf, i16, ix, iy) \
expand2b_inner LPAR qf, mf, hf, i16, ix, iy)
#endif
#endif
#define MAKE_W(tt, i0, op01, i1, op12, i2, op23, i3, op34, i4) \
tt((M(i0) ^ H(i0)) op01 (M(i1) ^ H(i1)) op12 (M(i2) ^ H(i2)) \
op23 (M(i3) ^ H(i3)) op34 (M(i4) ^ H(i4)))
#define Ws0 MAKE_W(SPH_T32, 5, -, 7, +, 10, +, 13, +, 14)
#define Ws1 MAKE_W(SPH_T32, 6, -, 8, +, 11, +, 14, -, 15)
#define Ws2 MAKE_W(SPH_T32, 0, +, 7, +, 9, -, 12, +, 15)
#define Ws3 MAKE_W(SPH_T32, 0, -, 1, +, 8, -, 10, +, 13)
#define Ws4 MAKE_W(SPH_T32, 1, +, 2, +, 9, -, 11, -, 14)
#define Ws5 MAKE_W(SPH_T32, 3, -, 2, +, 10, -, 12, +, 15)
#define Ws6 MAKE_W(SPH_T32, 4, -, 0, -, 3, -, 11, +, 13)
#define Ws7 MAKE_W(SPH_T32, 1, -, 4, -, 5, -, 12, -, 14)
#define Ws8 MAKE_W(SPH_T32, 2, -, 5, -, 6, +, 13, -, 15)
#define Ws9 MAKE_W(SPH_T32, 0, -, 3, +, 6, -, 7, +, 14)
#define Ws10 MAKE_W(SPH_T32, 8, -, 1, -, 4, -, 7, +, 15)
#define Ws11 MAKE_W(SPH_T32, 8, -, 0, -, 2, -, 5, +, 9)
#define Ws12 MAKE_W(SPH_T32, 1, +, 3, -, 6, -, 9, +, 10)
#define Ws13 MAKE_W(SPH_T32, 2, +, 4, +, 7, +, 10, +, 11)
#define Ws14 MAKE_W(SPH_T32, 3, -, 5, +, 8, -, 11, -, 12)
#define Ws15 MAKE_W(SPH_T32, 12, -, 4, -, 6, -, 9, +, 13)
#define MAKE_Qas do { \
qt[ 0] = SPH_T32(ss0(Ws0 ) + H( 1)); \
qt[ 1] = SPH_T32(ss1(Ws1 ) + H( 2)); \
qt[ 2] = SPH_T32(ss2(Ws2 ) + H( 3)); \
qt[ 3] = SPH_T32(ss3(Ws3 ) + H( 4)); \
qt[ 4] = SPH_T32(ss4(Ws4 ) + H( 5)); \
qt[ 5] = SPH_T32(ss0(Ws5 ) + H( 6)); \
qt[ 6] = SPH_T32(ss1(Ws6 ) + H( 7)); \
qt[ 7] = SPH_T32(ss2(Ws7 ) + H( 8)); \
qt[ 8] = SPH_T32(ss3(Ws8 ) + H( 9)); \
qt[ 9] = SPH_T32(ss4(Ws9 ) + H(10)); \
qt[10] = SPH_T32(ss0(Ws10) + H(11)); \
qt[11] = SPH_T32(ss1(Ws11) + H(12)); \
qt[12] = SPH_T32(ss2(Ws12) + H(13)); \
qt[13] = SPH_T32(ss3(Ws13) + H(14)); \
qt[14] = SPH_T32(ss4(Ws14) + H(15)); \
qt[15] = SPH_T32(ss0(Ws15) + H( 0)); \
} while (0)
#define MAKE_Qbs do { \
qt[16] = expand1s(Qs, M, H, 16); \
qt[17] = expand1s(Qs, M, H, 17); \
qt[18] = expand2s(Qs, M, H, 18); \
qt[19] = expand2s(Qs, M, H, 19); \
qt[20] = expand2s(Qs, M, H, 20); \
qt[21] = expand2s(Qs, M, H, 21); \
qt[22] = expand2s(Qs, M, H, 22); \
qt[23] = expand2s(Qs, M, H, 23); \
qt[24] = expand2s(Qs, M, H, 24); \
qt[25] = expand2s(Qs, M, H, 25); \
qt[26] = expand2s(Qs, M, H, 26); \
qt[27] = expand2s(Qs, M, H, 27); \
qt[28] = expand2s(Qs, M, H, 28); \
qt[29] = expand2s(Qs, M, H, 29); \
qt[30] = expand2s(Qs, M, H, 30); \
qt[31] = expand2s(Qs, M, H, 31); \
} while (0)
#define MAKE_Qs do { \
MAKE_Qas; \
MAKE_Qbs; \
} while (0)
#define Qs(j) (qt[j])
#define Wb0 MAKE_W(SPH_T64, 5, -, 7, +, 10, +, 13, +, 14)
#define Wb1 MAKE_W(SPH_T64, 6, -, 8, +, 11, +, 14, -, 15)
#define Wb2 MAKE_W(SPH_T64, 0, +, 7, +, 9, -, 12, +, 15)
#define Wb3 MAKE_W(SPH_T64, 0, -, 1, +, 8, -, 10, +, 13)
#define Wb4 MAKE_W(SPH_T64, 1, +, 2, +, 9, -, 11, -, 14)
#define Wb5 MAKE_W(SPH_T64, 3, -, 2, +, 10, -, 12, +, 15)
#define Wb6 MAKE_W(SPH_T64, 4, -, 0, -, 3, -, 11, +, 13)
#define Wb7 MAKE_W(SPH_T64, 1, -, 4, -, 5, -, 12, -, 14)
#define Wb8 MAKE_W(SPH_T64, 2, -, 5, -, 6, +, 13, -, 15)
#define Wb9 MAKE_W(SPH_T64, 0, -, 3, +, 6, -, 7, +, 14)
#define Wb10 MAKE_W(SPH_T64, 8, -, 1, -, 4, -, 7, +, 15)
#define Wb11 MAKE_W(SPH_T64, 8, -, 0, -, 2, -, 5, +, 9)
#define Wb12 MAKE_W(SPH_T64, 1, +, 3, -, 6, -, 9, +, 10)
#define Wb13 MAKE_W(SPH_T64, 2, +, 4, +, 7, +, 10, +, 11)
#define Wb14 MAKE_W(SPH_T64, 3, -, 5, +, 8, -, 11, -, 12)
#define Wb15 MAKE_W(SPH_T64, 12, -, 4, -, 6, -, 9, +, 13)
#define MAKE_Qab do { \
qt[ 0] = SPH_T64(sb0(Wb0 ) + H( 1)); \
qt[ 1] = SPH_T64(sb1(Wb1 ) + H( 2)); \
qt[ 2] = SPH_T64(sb2(Wb2 ) + H( 3)); \
qt[ 3] = SPH_T64(sb3(Wb3 ) + H( 4)); \
qt[ 4] = SPH_T64(sb4(Wb4 ) + H( 5)); \
qt[ 5] = SPH_T64(sb0(Wb5 ) + H( 6)); \
qt[ 6] = SPH_T64(sb1(Wb6 ) + H( 7)); \
qt[ 7] = SPH_T64(sb2(Wb7 ) + H( 8)); \
qt[ 8] = SPH_T64(sb3(Wb8 ) + H( 9)); \
qt[ 9] = SPH_T64(sb4(Wb9 ) + H(10)); \
qt[10] = SPH_T64(sb0(Wb10) + H(11)); \
qt[11] = SPH_T64(sb1(Wb11) + H(12)); \
qt[12] = SPH_T64(sb2(Wb12) + H(13)); \
qt[13] = SPH_T64(sb3(Wb13) + H(14)); \
qt[14] = SPH_T64(sb4(Wb14) + H(15)); \
qt[15] = SPH_T64(sb0(Wb15) + H( 0)); \
} while (0)
#define MAKE_Qbb do { \
qt[16] = expand1b(Qb, M, H, 16); \
qt[17] = expand1b(Qb, M, H, 17); \
qt[18] = expand2b(Qb, M, H, 18); \
qt[19] = expand2b(Qb, M, H, 19); \
qt[20] = expand2b(Qb, M, H, 20); \
qt[21] = expand2b(Qb, M, H, 21); \
qt[22] = expand2b(Qb, M, H, 22); \
qt[23] = expand2b(Qb, M, H, 23); \
qt[24] = expand2b(Qb, M, H, 24); \
qt[25] = expand2b(Qb, M, H, 25); \
qt[26] = expand2b(Qb, M, H, 26); \
qt[27] = expand2b(Qb, M, H, 27); \
qt[28] = expand2b(Qb, M, H, 28); \
qt[29] = expand2b(Qb, M, H, 29); \
qt[30] = expand2b(Qb, M, H, 30); \
qt[31] = expand2b(Qb, M, H, 31); \
} while (0)
#define MAKE_Qb do { \
MAKE_Qab; \
MAKE_Qbb; \
} while (0)
#define Qb(j) (qt[j])
#define FOLD(type, mkQ, tt, rol, mf, qf, dhf) do { \
type qt[32], xl, xh; \
mkQ; \
xl = qf(16) ^ qf(17) ^ qf(18) ^ qf(19) \
^ qf(20) ^ qf(21) ^ qf(22) ^ qf(23); \
xh = xl ^ qf(24) ^ qf(25) ^ qf(26) ^ qf(27) \
^ qf(28) ^ qf(29) ^ qf(30) ^ qf(31); \
dhf( 0) = tt(((xh << 5) ^ (qf(16) >> 5) ^ mf( 0)) \
+ (xl ^ qf(24) ^ qf( 0))); \
dhf( 1) = tt(((xh >> 7) ^ (qf(17) << 8) ^ mf( 1)) \
+ (xl ^ qf(25) ^ qf( 1))); \
dhf( 2) = tt(((xh >> 5) ^ (qf(18) << 5) ^ mf( 2)) \
+ (xl ^ qf(26) ^ qf( 2))); \
dhf( 3) = tt(((xh >> 1) ^ (qf(19) << 5) ^ mf( 3)) \
+ (xl ^ qf(27) ^ qf( 3))); \
dhf( 4) = tt(((xh >> 3) ^ (qf(20) << 0) ^ mf( 4)) \
+ (xl ^ qf(28) ^ qf( 4))); \
dhf( 5) = tt(((xh << 6) ^ (qf(21) >> 6) ^ mf( 5)) \
+ (xl ^ qf(29) ^ qf( 5))); \
dhf( 6) = tt(((xh >> 4) ^ (qf(22) << 6) ^ mf( 6)) \
+ (xl ^ qf(30) ^ qf( 6))); \
dhf( 7) = tt(((xh >> 11) ^ (qf(23) << 2) ^ mf( 7)) \
+ (xl ^ qf(31) ^ qf( 7))); \
dhf( 8) = tt(rol(dhf(4), 9) + (xh ^ qf(24) ^ mf( 8)) \
+ ((xl << 8) ^ qf(23) ^ qf( 8))); \
dhf( 9) = tt(rol(dhf(5), 10) + (xh ^ qf(25) ^ mf( 9)) \
+ ((xl >> 6) ^ qf(16) ^ qf( 9))); \
dhf(10) = tt(rol(dhf(6), 11) + (xh ^ qf(26) ^ mf(10)) \
+ ((xl << 6) ^ qf(17) ^ qf(10))); \
dhf(11) = tt(rol(dhf(7), 12) + (xh ^ qf(27) ^ mf(11)) \
+ ((xl << 4) ^ qf(18) ^ qf(11))); \
dhf(12) = tt(rol(dhf(0), 13) + (xh ^ qf(28) ^ mf(12)) \
+ ((xl >> 3) ^ qf(19) ^ qf(12))); \
dhf(13) = tt(rol(dhf(1), 14) + (xh ^ qf(29) ^ mf(13)) \
+ ((xl >> 4) ^ qf(20) ^ qf(13))); \
dhf(14) = tt(rol(dhf(2), 15) + (xh ^ qf(30) ^ mf(14)) \
+ ((xl >> 7) ^ qf(21) ^ qf(14))); \
dhf(15) = tt(rol(dhf(3), 16) + (xh ^ qf(31) ^ mf(15)) \
+ ((xl >> 2) ^ qf(22) ^ qf(15))); \
} while (0)
#define FOLDs FOLD(sph_u32, MAKE_Qs, SPH_T32, SPH_ROTL32, M, Qs, dH)
#define FOLDb FOLD(sph_u64, MAKE_Qb, SPH_T64, SPH_ROTL64, M, Qb, dH)
#define DECL_BMW \
sph_u64 bmwH[16]; \
/* load initial constants */
#define BMW_I \
do { \
memcpy(bmwH, bmwIV512, sizeof bmwH); \
hashptr = 0; \
hashctA = 0; \
} while (0)
/* load hash for loop */
#define BMW_U \
do { \
const void *data = hash; \
size_t len = 64; \
unsigned char *buf; \
\
hashctA += (sph_u64)len << 3; \
buf = hashbuf; \
memcpy(buf, data, 64); \
hashptr = 64; \
} while (0)
/* bmw512 hash loaded */
/* hash = blake512(loaded) */
#define BMW_C \
do { \
void *dst = hash; \
size_t out_size_w64 = 8; \
unsigned char *data; \
sph_u64 *dh; \
unsigned char *out; \
size_t ptr, u, v; \
unsigned z; \
sph_u64 h1[16], h2[16], *h; \
data = hashbuf; \
ptr = hashptr; \
z = 0x80 >> 0; \
data[ptr ++] = ((0 & -z) | z) & 0xFF; \
memset(data + ptr, 0, (sizeof(char)*128) - 8 - ptr); \
sph_enc64le_aligned(data + (sizeof(char)*128) - 8, \
SPH_T64(hashctA + 0)); \
/* for break loop */ \
/* one copy of inline FOLD */ \
/* FOLD uses, */ \
/* uint64 *h, data */ \
/* uint64 dh, state */ \
h = bmwH; \
dh = h2; \
for (;;) { \
FOLDb; \
/* dh gets changed for 2nd run */ \
if (dh == h1) break; \
for (u = 0; u < 16; u ++) \
sph_enc64le_aligned(data + 8 * u, h2[u]); \
dh = h1; \
h = final_b; \
} \
/* end wrapped for break loop */ \
out = dst; \
for (u = 0, v = 16 - out_size_w64; u < out_size_w64; u ++, v ++) \
sph_enc64le(out + 8 * u, h1[v]); \
} while (0)
static void
compress_big(const unsigned char *data, const sph_u64 h[16], sph_u64 dh[16])
{
#define M(x) sph_dec64le_aligned(data + 8 * (x))
#define H(x) (h[x])
#define dH(x) (dh[x])
FOLDb;
#undef M
#undef H
#undef dH
}
static const sph_u64 final_b[16] = {
SPH_C64(0xaaaaaaaaaaaaaaa0), SPH_C64(0xaaaaaaaaaaaaaaa1),
SPH_C64(0xaaaaaaaaaaaaaaa2), SPH_C64(0xaaaaaaaaaaaaaaa3),
SPH_C64(0xaaaaaaaaaaaaaaa4), SPH_C64(0xaaaaaaaaaaaaaaa5),
SPH_C64(0xaaaaaaaaaaaaaaa6), SPH_C64(0xaaaaaaaaaaaaaaa7),
SPH_C64(0xaaaaaaaaaaaaaaa8), SPH_C64(0xaaaaaaaaaaaaaaa9),
SPH_C64(0xaaaaaaaaaaaaaaaa), SPH_C64(0xaaaaaaaaaaaaaaab),
SPH_C64(0xaaaaaaaaaaaaaaac), SPH_C64(0xaaaaaaaaaaaaaaad),
SPH_C64(0xaaaaaaaaaaaaaaae), SPH_C64(0xaaaaaaaaaaaaaaaf)
};
#ifdef __cplusplus
}
#endif

525
algo/bmw/sse2/bmw.c.new Normal file
View File

@@ -0,0 +1,525 @@
/* $Id: bmw.c 227 2010-06-16 17:28:38Z tp $ */
/*
* BMW implementation.
*
* ==========================(LICENSE BEGIN)============================
*
* Copyright (c) 2007-2010 Projet RNRT SAPHIR
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* ===========================(LICENSE END)=============================
*
* @author Thomas Pornin <thomas.pornin@cryptolog.com>
*/
#include <stddef.h>
#include <string.h>
#include <limits.h>
#ifdef __cplusplus
extern "C"{
#endif
#include "../sph_bmw.h"
#ifdef _MSC_VER
#pragma warning (disable: 4146)
#endif
static const sph_u64 bmwIV512[] = {
SPH_C64(0x8081828384858687), SPH_C64(0x88898A8B8C8D8E8F),
SPH_C64(0x9091929394959697), SPH_C64(0x98999A9B9C9D9E9F),
SPH_C64(0xA0A1A2A3A4A5A6A7), SPH_C64(0xA8A9AAABACADAEAF),
SPH_C64(0xB0B1B2B3B4B5B6B7), SPH_C64(0xB8B9BABBBCBDBEBF),
SPH_C64(0xC0C1C2C3C4C5C6C7), SPH_C64(0xC8C9CACBCCCDCECF),
SPH_C64(0xD0D1D2D3D4D5D6D7), SPH_C64(0xD8D9DADBDCDDDEDF),
SPH_C64(0xE0E1E2E3E4E5E6E7), SPH_C64(0xE8E9EAEBECEDEEEF),
SPH_C64(0xF0F1F2F3F4F5F6F7), SPH_C64(0xF8F9FAFBFCFDFEFF)
};
#define XCAT(x, y) XCAT_(x, y)
#define XCAT_(x, y) x ## y
#define LPAR (
#define I16_16 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
#define I16_17 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16
#define I16_18 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17
#define I16_19 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18
#define I16_20 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19
#define I16_21 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20
#define I16_22 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21
#define I16_23 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22
#define I16_24 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23
#define I16_25 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24
#define I16_26 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
#define I16_27 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26
#define I16_28 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27
#define I16_29 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28
#define I16_30 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29
#define I16_31 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30
#define M16_16 0, 1, 3, 4, 7, 10, 11
#define M16_17 1, 2, 4, 5, 8, 11, 12
#define M16_18 2, 3, 5, 6, 9, 12, 13
#define M16_19 3, 4, 6, 7, 10, 13, 14
#define M16_20 4, 5, 7, 8, 11, 14, 15
#define M16_21 5, 6, 8, 9, 12, 15, 16
#define M16_22 6, 7, 9, 10, 13, 0, 1
#define M16_23 7, 8, 10, 11, 14, 1, 2
#define M16_24 8, 9, 11, 12, 15, 2, 3
#define M16_25 9, 10, 12, 13, 0, 3, 4
#define M16_26 10, 11, 13, 14, 1, 4, 5
#define M16_27 11, 12, 14, 15, 2, 5, 6
#define M16_28 12, 13, 15, 16, 3, 6, 7
#define M16_29 13, 14, 0, 1, 4, 7, 8
#define M16_30 14, 15, 1, 2, 5, 8, 9
#define M16_31 15, 16, 2, 3, 6, 9, 10
#define ss0(x) (((x) >> 1) ^ SPH_T32((x) << 3) \
^ SPH_ROTL32(x, 4) ^ SPH_ROTL32(x, 19))
#define ss1(x) (((x) >> 1) ^ SPH_T32((x) << 2) \
^ SPH_ROTL32(x, 8) ^ SPH_ROTL32(x, 23))
#define ss2(x) (((x) >> 2) ^ SPH_T32((x) << 1) \
^ SPH_ROTL32(x, 12) ^ SPH_ROTL32(x, 25))
#define ss3(x) (((x) >> 2) ^ SPH_T32((x) << 2) \
^ SPH_ROTL32(x, 15) ^ SPH_ROTL32(x, 29))
#define ss4(x) (((x) >> 1) ^ (x))
#define ss5(x) (((x) >> 2) ^ (x))
#define rs1(x) SPH_ROTL32(x, 3)
#define rs2(x) SPH_ROTL32(x, 7)
#define rs3(x) SPH_ROTL32(x, 13)
#define rs4(x) SPH_ROTL32(x, 16)
#define rs5(x) SPH_ROTL32(x, 19)
#define rs6(x) SPH_ROTL32(x, 23)
#define rs7(x) SPH_ROTL32(x, 27)
#define Ks(j) SPH_T32((sph_u32)(j) * SPH_C32(0x05555555))
#define add_elt_s(mf, hf, j0m, j1m, j3m, j4m, j7m, j10m, j11m, j16) \
(SPH_T32(SPH_ROTL32(mf(j0m), j1m) + SPH_ROTL32(mf(j3m), j4m) \
- SPH_ROTL32(mf(j10m), j11m) + Ks(j16)) ^ hf(j7m))
#define expand1s_inner(qf, mf, hf, i16, \
i0, i1, i2, i3, i4, i5, i6, i7, i8, \
i9, i10, i11, i12, i13, i14, i15, \
i0m, i1m, i3m, i4m, i7m, i10m, i11m) \
SPH_T32(ss1(qf(i0)) + ss2(qf(i1)) + ss3(qf(i2)) + ss0(qf(i3)) \
+ ss1(qf(i4)) + ss2(qf(i5)) + ss3(qf(i6)) + ss0(qf(i7)) \
+ ss1(qf(i8)) + ss2(qf(i9)) + ss3(qf(i10)) + ss0(qf(i11)) \
+ ss1(qf(i12)) + ss2(qf(i13)) + ss3(qf(i14)) + ss0(qf(i15)) \
+ add_elt_s(mf, hf, i0m, i1m, i3m, i4m, i7m, i10m, i11m, i16))
#define expand1s(qf, mf, hf, i16) \
expand1s_(qf, mf, hf, i16, I16_ ## i16, M16_ ## i16)
#define expand1s_(qf, mf, hf, i16, ix, iy) \
expand1s_inner LPAR qf, mf, hf, i16, ix, iy)
#define expand2s_inner(qf, mf, hf, i16, \
i0, i1, i2, i3, i4, i5, i6, i7, i8, \
i9, i10, i11, i12, i13, i14, i15, \
i0m, i1m, i3m, i4m, i7m, i10m, i11m) \
SPH_T32(qf(i0) + rs1(qf(i1)) + qf(i2) + rs2(qf(i3)) \
+ qf(i4) + rs3(qf(i5)) + qf(i6) + rs4(qf(i7)) \
+ qf(i8) + rs5(qf(i9)) + qf(i10) + rs6(qf(i11)) \
+ qf(i12) + rs7(qf(i13)) + ss4(qf(i14)) + ss5(qf(i15)) \
+ add_elt_s(mf, hf, i0m, i1m, i3m, i4m, i7m, i10m, i11m, i16))
#define expand2s(qf, mf, hf, i16) \
expand2s_(qf, mf, hf, i16, I16_ ## i16, M16_ ## i16)
#define expand2s_(qf, mf, hf, i16, ix, iy) \
expand2s_inner LPAR qf, mf, hf, i16, ix, iy)
#if SPH_64
#define sb0(x) (((x) >> 1) ^ SPH_T64((x) << 3) \
^ SPH_ROTL64(x, 4) ^ SPH_ROTL64(x, 37))
#define sb1(x) (((x) >> 1) ^ SPH_T64((x) << 2) \
^ SPH_ROTL64(x, 13) ^ SPH_ROTL64(x, 43))
#define sb2(x) (((x) >> 2) ^ SPH_T64((x) << 1) \
^ SPH_ROTL64(x, 19) ^ SPH_ROTL64(x, 53))
#define sb3(x) (((x) >> 2) ^ SPH_T64((x) << 2) \
^ SPH_ROTL64(x, 28) ^ SPH_ROTL64(x, 59))
#define sb4(x) (((x) >> 1) ^ (x))
#define sb5(x) (((x) >> 2) ^ (x))
#define rb1(x) SPH_ROTL64(x, 5)
#define rb2(x) SPH_ROTL64(x, 11)
#define rb3(x) SPH_ROTL64(x, 27)
#define rb4(x) SPH_ROTL64(x, 32)
#define rb5(x) SPH_ROTL64(x, 37)
#define rb6(x) SPH_ROTL64(x, 43)
#define rb7(x) SPH_ROTL64(x, 53)
#define Kb(j) SPH_T64((sph_u64)(j) * SPH_C64(0x0555555555555555))
#if 0
static const sph_u64 Kb_tab[] = {
Kb(16), Kb(17), Kb(18), Kb(19), Kb(20), Kb(21), Kb(22), Kb(23),
Kb(24), Kb(25), Kb(26), Kb(27), Kb(28), Kb(29), Kb(30), Kb(31)
};
#define rol_off(mf, j, off) \
SPH_ROTL64(mf(((j) + (off)) & 15), (((j) + (off)) & 15) + 1)
#define add_elt_b(mf, hf, j) \
(SPH_T64(rol_off(mf, j, 0) + rol_off(mf, j, 3) \
- rol_off(mf, j, 10) + Kb_tab[j]) ^ hf(((j) + 7) & 15))
#define expand1b(qf, mf, hf, i) \
SPH_T64(sb1(qf((i) - 16)) + sb2(qf((i) - 15)) \
+ sb3(qf((i) - 14)) + sb0(qf((i) - 13)) \
+ sb1(qf((i) - 12)) + sb2(qf((i) - 11)) \
+ sb3(qf((i) - 10)) + sb0(qf((i) - 9)) \
+ sb1(qf((i) - 8)) + sb2(qf((i) - 7)) \
+ sb3(qf((i) - 6)) + sb0(qf((i) - 5)) \
+ sb1(qf((i) - 4)) + sb2(qf((i) - 3)) \
+ sb3(qf((i) - 2)) + sb0(qf((i) - 1)) \
+ add_elt_b(mf, hf, (i) - 16))
#define expand2b(qf, mf, hf, i) \
SPH_T64(qf((i) - 16) + rb1(qf((i) - 15)) \
+ qf((i) - 14) + rb2(qf((i) - 13)) \
+ qf((i) - 12) + rb3(qf((i) - 11)) \
+ qf((i) - 10) + rb4(qf((i) - 9)) \
+ qf((i) - 8) + rb5(qf((i) - 7)) \
+ qf((i) - 6) + rb6(qf((i) - 5)) \
+ qf((i) - 4) + rb7(qf((i) - 3)) \
+ sb4(qf((i) - 2)) + sb5(qf((i) - 1)) \
+ add_elt_b(mf, hf, (i) - 16))
#else
#define add_elt_b(mf, hf, j0m, j1m, j3m, j4m, j7m, j10m, j11m, j16) \
(SPH_T64(SPH_ROTL64(mf(j0m), j1m) + SPH_ROTL64(mf(j3m), j4m) \
- SPH_ROTL64(mf(j10m), j11m) + Kb(j16)) ^ hf(j7m))
#define expand1b_inner(qf, mf, hf, i16, \
i0, i1, i2, i3, i4, i5, i6, i7, i8, \
i9, i10, i11, i12, i13, i14, i15, \
i0m, i1m, i3m, i4m, i7m, i10m, i11m) \
SPH_T64(sb1(qf(i0)) + sb2(qf(i1)) + sb3(qf(i2)) + sb0(qf(i3)) \
+ sb1(qf(i4)) + sb2(qf(i5)) + sb3(qf(i6)) + sb0(qf(i7)) \
+ sb1(qf(i8)) + sb2(qf(i9)) + sb3(qf(i10)) + sb0(qf(i11)) \
+ sb1(qf(i12)) + sb2(qf(i13)) + sb3(qf(i14)) + sb0(qf(i15)) \
+ add_elt_b(mf, hf, i0m, i1m, i3m, i4m, i7m, i10m, i11m, i16))
#define expand1b(qf, mf, hf, i16) \
expand1b_(qf, mf, hf, i16, I16_ ## i16, M16_ ## i16)
#define expand1b_(qf, mf, hf, i16, ix, iy) \
expand1b_inner LPAR qf, mf, hf, i16, ix, iy)
#define expand2b_inner(qf, mf, hf, i16, \
i0, i1, i2, i3, i4, i5, i6, i7, i8, \
i9, i10, i11, i12, i13, i14, i15, \
i0m, i1m, i3m, i4m, i7m, i10m, i11m) \
SPH_T64(qf(i0) + rb1(qf(i1)) + qf(i2) + rb2(qf(i3)) \
+ qf(i4) + rb3(qf(i5)) + qf(i6) + rb4(qf(i7)) \
+ qf(i8) + rb5(qf(i9)) + qf(i10) + rb6(qf(i11)) \
+ qf(i12) + rb7(qf(i13)) + sb4(qf(i14)) + sb5(qf(i15)) \
+ add_elt_b(mf, hf, i0m, i1m, i3m, i4m, i7m, i10m, i11m, i16))
#define expand2b(qf, mf, hf, i16) \
expand2b_(qf, mf, hf, i16, I16_ ## i16, M16_ ## i16)
#define expand2b_(qf, mf, hf, i16, ix, iy) \
expand2b_inner LPAR qf, mf, hf, i16, ix, iy)
#endif
#endif
#define MAKE_W(tt, i0, op01, i1, op12, i2, op23, i3, op34, i4) \
tt((M(i0) ^ H(i0)) op01 (M(i1) ^ H(i1)) op12 (M(i2) ^ H(i2)) \
op23 (M(i3) ^ H(i3)) op34 (M(i4) ^ H(i4)))
#define Ws0 MAKE_W(SPH_T32, 5, -, 7, +, 10, +, 13, +, 14)
#define Ws1 MAKE_W(SPH_T32, 6, -, 8, +, 11, +, 14, -, 15)
#define Ws2 MAKE_W(SPH_T32, 0, +, 7, +, 9, -, 12, +, 15)
#define Ws3 MAKE_W(SPH_T32, 0, -, 1, +, 8, -, 10, +, 13)
#define Ws4 MAKE_W(SPH_T32, 1, +, 2, +, 9, -, 11, -, 14)
#define Ws5 MAKE_W(SPH_T32, 3, -, 2, +, 10, -, 12, +, 15)
#define Ws6 MAKE_W(SPH_T32, 4, -, 0, -, 3, -, 11, +, 13)
#define Ws7 MAKE_W(SPH_T32, 1, -, 4, -, 5, -, 12, -, 14)
#define Ws8 MAKE_W(SPH_T32, 2, -, 5, -, 6, +, 13, -, 15)
#define Ws9 MAKE_W(SPH_T32, 0, -, 3, +, 6, -, 7, +, 14)
#define Ws10 MAKE_W(SPH_T32, 8, -, 1, -, 4, -, 7, +, 15)
#define Ws11 MAKE_W(SPH_T32, 8, -, 0, -, 2, -, 5, +, 9)
#define Ws12 MAKE_W(SPH_T32, 1, +, 3, -, 6, -, 9, +, 10)
#define Ws13 MAKE_W(SPH_T32, 2, +, 4, +, 7, +, 10, +, 11)
#define Ws14 MAKE_W(SPH_T32, 3, -, 5, +, 8, -, 11, -, 12)
#define Ws15 MAKE_W(SPH_T32, 12, -, 4, -, 6, -, 9, +, 13)
#define MAKE_Qas do { \
qt[ 0] = SPH_T32(ss0(Ws0 ) + H( 1)); \
qt[ 1] = SPH_T32(ss1(Ws1 ) + H( 2)); \
qt[ 2] = SPH_T32(ss2(Ws2 ) + H( 3)); \
qt[ 3] = SPH_T32(ss3(Ws3 ) + H( 4)); \
qt[ 4] = SPH_T32(ss4(Ws4 ) + H( 5)); \
qt[ 5] = SPH_T32(ss0(Ws5 ) + H( 6)); \
qt[ 6] = SPH_T32(ss1(Ws6 ) + H( 7)); \
qt[ 7] = SPH_T32(ss2(Ws7 ) + H( 8)); \
qt[ 8] = SPH_T32(ss3(Ws8 ) + H( 9)); \
qt[ 9] = SPH_T32(ss4(Ws9 ) + H(10)); \
qt[10] = SPH_T32(ss0(Ws10) + H(11)); \
qt[11] = SPH_T32(ss1(Ws11) + H(12)); \
qt[12] = SPH_T32(ss2(Ws12) + H(13)); \
qt[13] = SPH_T32(ss3(Ws13) + H(14)); \
qt[14] = SPH_T32(ss4(Ws14) + H(15)); \
qt[15] = SPH_T32(ss0(Ws15) + H( 0)); \
} while (0)
#define MAKE_Qbs do { \
qt[16] = expand1s(Qs, M, H, 16); \
qt[17] = expand1s(Qs, M, H, 17); \
qt[18] = expand2s(Qs, M, H, 18); \
qt[19] = expand2s(Qs, M, H, 19); \
qt[20] = expand2s(Qs, M, H, 20); \
qt[21] = expand2s(Qs, M, H, 21); \
qt[22] = expand2s(Qs, M, H, 22); \
qt[23] = expand2s(Qs, M, H, 23); \
qt[24] = expand2s(Qs, M, H, 24); \
qt[25] = expand2s(Qs, M, H, 25); \
qt[26] = expand2s(Qs, M, H, 26); \
qt[27] = expand2s(Qs, M, H, 27); \
qt[28] = expand2s(Qs, M, H, 28); \
qt[29] = expand2s(Qs, M, H, 29); \
qt[30] = expand2s(Qs, M, H, 30); \
qt[31] = expand2s(Qs, M, H, 31); \
} while (0)
#define MAKE_Qs do { \
MAKE_Qas; \
MAKE_Qbs; \
} while (0)
#define Qs(j) (qt[j])
#define Wb0 MAKE_W(SPH_T64, 5, -, 7, +, 10, +, 13, +, 14)
#define Wb1 MAKE_W(SPH_T64, 6, -, 8, +, 11, +, 14, -, 15)
#define Wb2 MAKE_W(SPH_T64, 0, +, 7, +, 9, -, 12, +, 15)
#define Wb3 MAKE_W(SPH_T64, 0, -, 1, +, 8, -, 10, +, 13)
#define Wb4 MAKE_W(SPH_T64, 1, +, 2, +, 9, -, 11, -, 14)
#define Wb5 MAKE_W(SPH_T64, 3, -, 2, +, 10, -, 12, +, 15)
#define Wb6 MAKE_W(SPH_T64, 4, -, 0, -, 3, -, 11, +, 13)
#define Wb7 MAKE_W(SPH_T64, 1, -, 4, -, 5, -, 12, -, 14)
#define Wb8 MAKE_W(SPH_T64, 2, -, 5, -, 6, +, 13, -, 15)
#define Wb9 MAKE_W(SPH_T64, 0, -, 3, +, 6, -, 7, +, 14)
#define Wb10 MAKE_W(SPH_T64, 8, -, 1, -, 4, -, 7, +, 15)
#define Wb11 MAKE_W(SPH_T64, 8, -, 0, -, 2, -, 5, +, 9)
#define Wb12 MAKE_W(SPH_T64, 1, +, 3, -, 6, -, 9, +, 10)
#define Wb13 MAKE_W(SPH_T64, 2, +, 4, +, 7, +, 10, +, 11)
#define Wb14 MAKE_W(SPH_T64, 3, -, 5, +, 8, -, 11, -, 12)
#define Wb15 MAKE_W(SPH_T64, 12, -, 4, -, 6, -, 9, +, 13)
#define MAKE_Qab do { \
qt[ 0] = SPH_T64(sb0(Wb0 ) + H( 1)); \
qt[ 1] = SPH_T64(sb1(Wb1 ) + H( 2)); \
qt[ 2] = SPH_T64(sb2(Wb2 ) + H( 3)); \
qt[ 3] = SPH_T64(sb3(Wb3 ) + H( 4)); \
qt[ 4] = SPH_T64(sb4(Wb4 ) + H( 5)); \
qt[ 5] = SPH_T64(sb0(Wb5 ) + H( 6)); \
qt[ 6] = SPH_T64(sb1(Wb6 ) + H( 7)); \
qt[ 7] = SPH_T64(sb2(Wb7 ) + H( 8)); \
qt[ 8] = SPH_T64(sb3(Wb8 ) + H( 9)); \
qt[ 9] = SPH_T64(sb4(Wb9 ) + H(10)); \
qt[10] = SPH_T64(sb0(Wb10) + H(11)); \
qt[11] = SPH_T64(sb1(Wb11) + H(12)); \
qt[12] = SPH_T64(sb2(Wb12) + H(13)); \
qt[13] = SPH_T64(sb3(Wb13) + H(14)); \
qt[14] = SPH_T64(sb4(Wb14) + H(15)); \
qt[15] = SPH_T64(sb0(Wb15) + H( 0)); \
} while (0)
#define MAKE_Qbb do { \
qt[16] = expand1b(Qb, M, H, 16); \
qt[17] = expand1b(Qb, M, H, 17); \
qt[18] = expand2b(Qb, M, H, 18); \
qt[19] = expand2b(Qb, M, H, 19); \
qt[20] = expand2b(Qb, M, H, 20); \
qt[21] = expand2b(Qb, M, H, 21); \
qt[22] = expand2b(Qb, M, H, 22); \
qt[23] = expand2b(Qb, M, H, 23); \
qt[24] = expand2b(Qb, M, H, 24); \
qt[25] = expand2b(Qb, M, H, 25); \
qt[26] = expand2b(Qb, M, H, 26); \
qt[27] = expand2b(Qb, M, H, 27); \
qt[28] = expand2b(Qb, M, H, 28); \
qt[29] = expand2b(Qb, M, H, 29); \
qt[30] = expand2b(Qb, M, H, 30); \
qt[31] = expand2b(Qb, M, H, 31); \
} while (0)
#define MAKE_Qb do { \
MAKE_Qab; \
MAKE_Qbb; \
} while (0)
#define Qb(j) (qt[j])
#define FOLD(type, mkQ, tt, rol, mf, qf, dhf) do { \
type qt[32], xl, xh; \
mkQ; \
xl = qf(16) ^ qf(17) ^ qf(18) ^ qf(19) \
^ qf(20) ^ qf(21) ^ qf(22) ^ qf(23); \
xh = xl ^ qf(24) ^ qf(25) ^ qf(26) ^ qf(27) \
^ qf(28) ^ qf(29) ^ qf(30) ^ qf(31); \
dhf( 0) = tt(((xh << 5) ^ (qf(16) >> 5) ^ mf( 0)) \
+ (xl ^ qf(24) ^ qf( 0))); \
dhf( 1) = tt(((xh >> 7) ^ (qf(17) << 8) ^ mf( 1)) \
+ (xl ^ qf(25) ^ qf( 1))); \
dhf( 2) = tt(((xh >> 5) ^ (qf(18) << 5) ^ mf( 2)) \
+ (xl ^ qf(26) ^ qf( 2))); \
dhf( 3) = tt(((xh >> 1) ^ (qf(19) << 5) ^ mf( 3)) \
+ (xl ^ qf(27) ^ qf( 3))); \
dhf( 4) = tt(((xh >> 3) ^ (qf(20) << 0) ^ mf( 4)) \
+ (xl ^ qf(28) ^ qf( 4))); \
dhf( 5) = tt(((xh << 6) ^ (qf(21) >> 6) ^ mf( 5)) \
+ (xl ^ qf(29) ^ qf( 5))); \
dhf( 6) = tt(((xh >> 4) ^ (qf(22) << 6) ^ mf( 6)) \
+ (xl ^ qf(30) ^ qf( 6))); \
dhf( 7) = tt(((xh >> 11) ^ (qf(23) << 2) ^ mf( 7)) \
+ (xl ^ qf(31) ^ qf( 7))); \
dhf( 8) = tt(rol(dhf(4), 9) + (xh ^ qf(24) ^ mf( 8)) \
+ ((xl << 8) ^ qf(23) ^ qf( 8))); \
dhf( 9) = tt(rol(dhf(5), 10) + (xh ^ qf(25) ^ mf( 9)) \
+ ((xl >> 6) ^ qf(16) ^ qf( 9))); \
dhf(10) = tt(rol(dhf(6), 11) + (xh ^ qf(26) ^ mf(10)) \
+ ((xl << 6) ^ qf(17) ^ qf(10))); \
dhf(11) = tt(rol(dhf(7), 12) + (xh ^ qf(27) ^ mf(11)) \
+ ((xl << 4) ^ qf(18) ^ qf(11))); \
dhf(12) = tt(rol(dhf(0), 13) + (xh ^ qf(28) ^ mf(12)) \
+ ((xl >> 3) ^ qf(19) ^ qf(12))); \
dhf(13) = tt(rol(dhf(1), 14) + (xh ^ qf(29) ^ mf(13)) \
+ ((xl >> 4) ^ qf(20) ^ qf(13))); \
dhf(14) = tt(rol(dhf(2), 15) + (xh ^ qf(30) ^ mf(14)) \
+ ((xl >> 7) ^ qf(21) ^ qf(14))); \
dhf(15) = tt(rol(dhf(3), 16) + (xh ^ qf(31) ^ mf(15)) \
+ ((xl >> 2) ^ qf(22) ^ qf(15))); \
} while (0)
#define FOLDs FOLD(sph_u32, MAKE_Qs, SPH_T32, SPH_ROTL32, M, Qs, dH)
#define FOLDb FOLD(sph_u64, MAKE_Qb, SPH_T64, SPH_ROTL64, M, Qb, dH)
#define DECL_BMW \
sph_u64 bmwH[16]; \
/* load initial constants */
#define BMW_I \
do { \
memcpy(bmwH, bmwIV512, sizeof bmwH); \
hashptr = 0; \
hashctA = 0; \
} while (0)
/* load hash for loop */
#define BMW_U \
do { \
const void *data = hash; \
size_t len = 64; \
unsigned char *buf; \
\
hashctA += (sph_u64)len << 3; \
buf = hashbuf; \
memcpy(buf, data, 64); \
hashptr = 64; \
} while (0)
/* bmw512 hash loaded */
/* hash = blake512(loaded) */
#define BMW_C \
do { \
void *dst = hash; \
size_t out_size_w64 = 8; \
unsigned char *data; \
sph_u64 *dh; \
unsigned char *out; \
size_t ptr, u, v; \
unsigned z; \
sph_u64 h1[16], h2[16], *h; \
data = hashbuf; \
ptr = hashptr; \
z = 0x80 >> 0; \
data[ptr ++] = ((0 & -z) | z) & 0xFF; \
memset(data + ptr, 0, (sizeof(char)*128) - 8 - ptr); \
sph_enc64le_aligned(data + (sizeof(char)*128) - 8, \
SPH_T64(hashctA + 0)); \
/* for break loop */ \
/* one copy of inline FOLD */ \
/* FOLD uses, */ \
/* uint64 *h, data */ \
/* uint64 dh, state */ \
h = bmwH; \
dh = h2; \
for (;;) { \
FOLDb; \
/* dh gets changed for 2nd run */ \
if (dh == h1) break; \
for (u = 0; u < 16; u ++) \
sph_enc64le_aligned(data + 8 * u, h2[u]); \
dh = h1; \
h = final_b; \
} \
/* end wrapped for break loop */ \
out = dst; \
sph_enc64le(out, h1[8]); \
sph_enc64le(out + 8, h1[9]); \
sph_enc64le(out + 16, h1[10]); \
sph_enc64le(out + 24, h1[11]); \
sph_enc64le(out + 32, h1[12]); \
sph_enc64le(out + 40, h1[13]); \
sph_enc64le(out + 48, h1[14]); \
sph_enc64le(out + 56, h1[15]); \
/* for (u = 0, v = 16 - out_size_w64; u < out_size_w64; u ++, v ++)*/ \
/* sph_enc64le(out + 8 * u, h1[v]);*/ \
} while (0)
static void
compress_big(const unsigned char *data, const sph_u64 h[16], sph_u64 dh[16])
{
#define M(x) sph_dec64le_aligned(data + 8 * (x))
#define H(x) (h[x])
#define dH(x) (dh[x])
FOLDb;
#undef M
#undef H
#undef dH
}
static const sph_u64 final_b[16] = {
SPH_C64(0xaaaaaaaaaaaaaaa0), SPH_C64(0xaaaaaaaaaaaaaaa1),
SPH_C64(0xaaaaaaaaaaaaaaa2), SPH_C64(0xaaaaaaaaaaaaaaa3),
SPH_C64(0xaaaaaaaaaaaaaaa4), SPH_C64(0xaaaaaaaaaaaaaaa5),
SPH_C64(0xaaaaaaaaaaaaaaa6), SPH_C64(0xaaaaaaaaaaaaaaa7),
SPH_C64(0xaaaaaaaaaaaaaaa8), SPH_C64(0xaaaaaaaaaaaaaaa9),
SPH_C64(0xaaaaaaaaaaaaaaaa), SPH_C64(0xaaaaaaaaaaaaaaab),
SPH_C64(0xaaaaaaaaaaaaaaac), SPH_C64(0xaaaaaaaaaaaaaaad),
SPH_C64(0xaaaaaaaaaaaaaaae), SPH_C64(0xaaaaaaaaaaaaaaaf)
};
#ifdef __cplusplus
}
#endif

61
algo/bmw/sse2/sph_bmw.h Normal file
View File

@@ -0,0 +1,61 @@
/* $Id: sph_bmw.h 216 2010-06-08 09:46:57Z tp $ */
/**
* BMW interface. BMW (aka "Blue Midnight Wish") is a family of
* functions which differ by their output size; this implementation
* defines BMW for output sizes 224, 256, 384 and 512 bits.
*
* ==========================(LICENSE BEGIN)============================
*
* Copyright (c) 2007-2010 Projet RNRT SAPHIR
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* ===========================(LICENSE END)=============================
*
* @file sph_bmw.h
* @author Thomas Pornin <thomas.pornin@cryptolog.com>
*/
#ifndef SPH_BMW_H__
#define SPH_BMW_H__
#ifdef __cplusplus
extern "C"{
#endif
#include <stddef.h>
#include "sph_types.h"
#define SPH_SIZE_bmw512 512
typedef struct {
#ifndef DOXYGEN_IGNORE
sph_u64 bmwH[16];
#endif
} sph_bmw_big_context;
typedef sph_bmw_big_context sph_bmw512_context;
#ifdef __cplusplus
}
#endif
#endif

View File

View File

@@ -0,0 +1,365 @@
// Copyright (c) 2012-2013 The Cryptonote developers
// Distributed under the MIT/X11 software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include "miner.h"
#include "algo-gate-api.h"
#if defined(__arm__) || defined(_MSC_VER)
#ifndef NOASM
#define NOASM
#endif
#endif
#include "crypto/oaes_lib.h"
#include "crypto/c_keccak.h"
#include "crypto/c_groestl.h"
#include "crypto/c_blake256.h"
#include "crypto/c_jh.h"
#include "crypto/c_skein.h"
#include "crypto/int-util.h"
#include "crypto/hash-ops.h"
#if USE_INT128
#if __GNUC__ == 4 && __GNUC_MINOR__ >= 4 && __GNUC_MINOR__ < 6
typedef unsigned int uint128_t __attribute__ ((__mode__ (TI)));
#elif defined (_MSC_VER)
/* only for mingw64 on windows */
#undef USE_INT128
#define USE_INT128 (0)
#else
typedef __uint128_t uint128_t;
#endif
#endif
#define LITE 1
#if LITE /* cryptonight-light */
#define MEMORY (1 << 20)
#define ITER (1 << 19)
#else
#define MEMORY (1 << 21) /* 2 MiB */
#define ITER (1 << 20)
#endif
#define AES_BLOCK_SIZE 16
#define AES_KEY_SIZE 32 /*16*/
#define INIT_SIZE_BLK 8
#define INIT_SIZE_BYTE (INIT_SIZE_BLK * AES_BLOCK_SIZE)
#pragma pack(push, 1)
union cn_slow_hash_state {
union hash_state hs;
struct {
uint8_t k[64];
uint8_t init[INIT_SIZE_BYTE];
};
};
#pragma pack(pop)
static void do_blake_hash(const void* input, size_t len, char* output) {
blake256_hash((uint8_t*)output, input, len);
}
static void do_groestl_hash(const void* input, size_t len, char* output) {
groestl(input, len * 8, (uint8_t*)output);
}
static void do_jh_hash(const void* input, size_t len, char* output) {
int r = jh_hash(HASH_SIZE * 8, input, 8 * len, (uint8_t*)output);
assert(likely(SUCCESS == r));
}
static void do_skein_hash(const void* input, size_t len, char* output) {
int r = skein_hash(8 * HASH_SIZE, input, 8 * len, (uint8_t*)output);
assert(likely(SKEIN_SUCCESS == r));
}
extern int aesb_single_round(const uint8_t *in, uint8_t*out, const uint8_t *expandedKey);
extern int aesb_pseudo_round_mut(uint8_t *val, uint8_t *expandedKey);
#if !defined(_MSC_VER) && !defined(NOASM)
extern int fast_aesb_single_round(const uint8_t *in, uint8_t*out, const uint8_t *expandedKey);
extern int fast_aesb_pseudo_round_mut(uint8_t *val, uint8_t *expandedKey);
#else
#define fast_aesb_single_round aesb_single_round
#define fast_aesb_pseudo_round_mut aesb_pseudo_round_mut
#endif
#if defined(NOASM) || !defined(__x86_64__)
static uint64_t mul128(uint64_t multiplier, uint64_t multiplicand, uint64_t* product_hi) {
// multiplier = ab = a * 2^32 + b
// multiplicand = cd = c * 2^32 + d
// ab * cd = a * c * 2^64 + (a * d + b * c) * 2^32 + b * d
uint64_t a = hi_dword(multiplier);
uint64_t b = lo_dword(multiplier);
uint64_t c = hi_dword(multiplicand);
uint64_t d = lo_dword(multiplicand);
uint64_t ac = a * c;
uint64_t ad = a * d;
uint64_t bc = b * c;
uint64_t bd = b * d;
uint64_t adbc = ad + bc;
uint64_t adbc_carry = adbc < ad ? 1 : 0;
// multiplier * multiplicand = product_hi * 2^64 + product_lo
uint64_t product_lo = bd + (adbc << 32);
uint64_t product_lo_carry = product_lo < bd ? 1 : 0;
*product_hi = ac + (adbc >> 32) + (adbc_carry << 32) + product_lo_carry;
assert(ac <= *product_hi);
return product_lo;
}
#else
extern uint64_t mul128(uint64_t multiplier, uint64_t multiplicand, uint64_t* product_hi);
#endif
static void (* const extra_hashes[4])(const void *, size_t, char *) = {
do_blake_hash, do_groestl_hash, do_jh_hash, do_skein_hash
};
static inline size_t e2i(const uint8_t* a) {
#if !LITE
return ((uint32_t *)a)[0] & 0x1FFFF0;
#else
return ((uint32_t *)a)[0] & 0xFFFF0;
#endif
}
static inline void mul_sum_xor_dst(const uint8_t* a, uint8_t* c, uint8_t* dst) {
uint64_t hi, lo = mul128(((uint64_t*) a)[0], ((uint64_t*) dst)[0], &hi) + ((uint64_t*) c)[1];
hi += ((uint64_t*) c)[0];
((uint64_t*) c)[0] = ((uint64_t*) dst)[0] ^ hi;
((uint64_t*) c)[1] = ((uint64_t*) dst)[1] ^ lo;
((uint64_t*) dst)[0] = hi;
((uint64_t*) dst)[1] = lo;
}
static inline void xor_blocks(uint8_t* a, const uint8_t* b) {
#if USE_INT128
*((uint128_t*) a) ^= *((uint128_t*) b);
#else
((uint64_t*) a)[0] ^= ((uint64_t*) b)[0];
((uint64_t*) a)[1] ^= ((uint64_t*) b)[1];
#endif
}
static inline void xor_blocks_dst(const uint8_t* a, const uint8_t* b, uint8_t* dst) {
#if USE_INT128
*((uint128_t*) dst) = *((uint128_t*) a) ^ *((uint128_t*) b);
#else
((uint64_t*) dst)[0] = ((uint64_t*) a)[0] ^ ((uint64_t*) b)[0];
((uint64_t*) dst)[1] = ((uint64_t*) a)[1] ^ ((uint64_t*) b)[1];
#endif
}
struct cryptonight_ctx {
uint8_t _ALIGN(16) long_state[MEMORY];
union cn_slow_hash_state state;
uint8_t _ALIGN(16) text[INIT_SIZE_BYTE];
uint8_t _ALIGN(16) a[AES_BLOCK_SIZE];
uint8_t _ALIGN(16) b[AES_BLOCK_SIZE];
uint8_t _ALIGN(16) c[AES_BLOCK_SIZE];
oaes_ctx* aes_ctx;
};
static void cryptolight_hash_ctx(void* output, const void* input, int len, struct cryptonight_ctx* ctx)
{
len = 76;
hash_process(&ctx->state.hs, (const uint8_t*) input, len);
ctx->aes_ctx = (oaes_ctx*) oaes_alloc();
size_t i, j;
memcpy(ctx->text, ctx->state.init, INIT_SIZE_BYTE);
oaes_key_import_data(ctx->aes_ctx, ctx->state.hs.b, AES_KEY_SIZE);
for (i = 0; likely(i < MEMORY); i += INIT_SIZE_BYTE) {
aesb_pseudo_round_mut(&ctx->text[AES_BLOCK_SIZE * 0], ctx->aes_ctx->key->exp_data);
aesb_pseudo_round_mut(&ctx->text[AES_BLOCK_SIZE * 1], ctx->aes_ctx->key->exp_data);
aesb_pseudo_round_mut(&ctx->text[AES_BLOCK_SIZE * 2], ctx->aes_ctx->key->exp_data);
aesb_pseudo_round_mut(&ctx->text[AES_BLOCK_SIZE * 3], ctx->aes_ctx->key->exp_data);
aesb_pseudo_round_mut(&ctx->text[AES_BLOCK_SIZE * 4], ctx->aes_ctx->key->exp_data);
aesb_pseudo_round_mut(&ctx->text[AES_BLOCK_SIZE * 5], ctx->aes_ctx->key->exp_data);
aesb_pseudo_round_mut(&ctx->text[AES_BLOCK_SIZE * 6], ctx->aes_ctx->key->exp_data);
aesb_pseudo_round_mut(&ctx->text[AES_BLOCK_SIZE * 7], ctx->aes_ctx->key->exp_data);
memcpy(&ctx->long_state[i], ctx->text, INIT_SIZE_BYTE);
}
xor_blocks_dst(&ctx->state.k[0], &ctx->state.k[32], ctx->a);
xor_blocks_dst(&ctx->state.k[16], &ctx->state.k[48], ctx->b);
for (i = 0; likely(i < ITER / 4); ++i) {
/* Dependency chain: address -> read value ------+
* written value <-+ hard function (AES or MUL) <+
* next address <-+
*/
/* Iteration 1 */
j = e2i(ctx->a);
aesb_single_round(&ctx->long_state[j], ctx->c, ctx->a);
xor_blocks_dst(ctx->c, ctx->b, &ctx->long_state[j]);
/* Iteration 2 */
mul_sum_xor_dst(ctx->c, ctx->a, &ctx->long_state[e2i(ctx->c)]);
/* Iteration 3 */
j = e2i(ctx->a);
aesb_single_round(&ctx->long_state[j], ctx->b, ctx->a);
xor_blocks_dst(ctx->b, ctx->c, &ctx->long_state[j]);
/* Iteration 4 */
mul_sum_xor_dst(ctx->b, ctx->a, &ctx->long_state[e2i(ctx->b)]);
}
memcpy(ctx->text, ctx->state.init, INIT_SIZE_BYTE);
oaes_key_import_data(ctx->aes_ctx, &ctx->state.hs.b[32], AES_KEY_SIZE);
for (i = 0; likely(i < MEMORY); i += INIT_SIZE_BYTE) {
xor_blocks(&ctx->text[0 * AES_BLOCK_SIZE], &ctx->long_state[i + 0 * AES_BLOCK_SIZE]);
aesb_pseudo_round_mut(&ctx->text[0 * AES_BLOCK_SIZE], ctx->aes_ctx->key->exp_data);
xor_blocks(&ctx->text[1 * AES_BLOCK_SIZE], &ctx->long_state[i + 1 * AES_BLOCK_SIZE]);
aesb_pseudo_round_mut(&ctx->text[1 * AES_BLOCK_SIZE], ctx->aes_ctx->key->exp_data);
xor_blocks(&ctx->text[2 * AES_BLOCK_SIZE], &ctx->long_state[i + 2 * AES_BLOCK_SIZE]);
aesb_pseudo_round_mut(&ctx->text[2 * AES_BLOCK_SIZE], ctx->aes_ctx->key->exp_data);
xor_blocks(&ctx->text[3 * AES_BLOCK_SIZE], &ctx->long_state[i + 3 * AES_BLOCK_SIZE]);
aesb_pseudo_round_mut(&ctx->text[3 * AES_BLOCK_SIZE], ctx->aes_ctx->key->exp_data);
xor_blocks(&ctx->text[4 * AES_BLOCK_SIZE], &ctx->long_state[i + 4 * AES_BLOCK_SIZE]);
aesb_pseudo_round_mut(&ctx->text[4 * AES_BLOCK_SIZE], ctx->aes_ctx->key->exp_data);
xor_blocks(&ctx->text[5 * AES_BLOCK_SIZE], &ctx->long_state[i + 5 * AES_BLOCK_SIZE]);
aesb_pseudo_round_mut(&ctx->text[5 * AES_BLOCK_SIZE], ctx->aes_ctx->key->exp_data);
xor_blocks(&ctx->text[6 * AES_BLOCK_SIZE], &ctx->long_state[i + 6 * AES_BLOCK_SIZE]);
aesb_pseudo_round_mut(&ctx->text[6 * AES_BLOCK_SIZE], ctx->aes_ctx->key->exp_data);
xor_blocks(&ctx->text[7 * AES_BLOCK_SIZE], &ctx->long_state[i + 7 * AES_BLOCK_SIZE]);
aesb_pseudo_round_mut(&ctx->text[7 * AES_BLOCK_SIZE], ctx->aes_ctx->key->exp_data);
}
memcpy(ctx->state.init, ctx->text, INIT_SIZE_BYTE);
hash_permutation(&ctx->state.hs);
/*memcpy(hash, &state, 32);*/
extra_hashes[ctx->state.hs.b[0] & 3](&ctx->state, 200, output);
oaes_free((OAES_CTX **) &ctx->aes_ctx);
}
void cryptolight_hash(void* output, const void* input, int len) {
struct cryptonight_ctx *ctx = (struct cryptonight_ctx*)malloc(sizeof(struct cryptonight_ctx));
cryptolight_hash_ctx(output, input, len, ctx);
free(ctx);
}
static void cryptolight_hash_ctx_aes_ni(void* output, const void* input,
int len, struct cryptonight_ctx* ctx)
{
hash_process(&ctx->state.hs, (const uint8_t*)input, len);
ctx->aes_ctx = (oaes_ctx*) oaes_alloc();
size_t i, j;
memcpy(ctx->text, ctx->state.init, INIT_SIZE_BYTE);
oaes_key_import_data(ctx->aes_ctx, ctx->state.hs.b, AES_KEY_SIZE);
for (i = 0; likely(i < MEMORY); i += INIT_SIZE_BYTE) {
fast_aesb_pseudo_round_mut(&ctx->text[AES_BLOCK_SIZE * 0], ctx->aes_ctx->key->exp_data);
fast_aesb_pseudo_round_mut(&ctx->text[AES_BLOCK_SIZE * 1], ctx->aes_ctx->key->exp_data);
fast_aesb_pseudo_round_mut(&ctx->text[AES_BLOCK_SIZE * 2], ctx->aes_ctx->key->exp_data);
fast_aesb_pseudo_round_mut(&ctx->text[AES_BLOCK_SIZE * 3], ctx->aes_ctx->key->exp_data);
fast_aesb_pseudo_round_mut(&ctx->text[AES_BLOCK_SIZE * 4], ctx->aes_ctx->key->exp_data);
fast_aesb_pseudo_round_mut(&ctx->text[AES_BLOCK_SIZE * 5], ctx->aes_ctx->key->exp_data);
fast_aesb_pseudo_round_mut(&ctx->text[AES_BLOCK_SIZE * 6], ctx->aes_ctx->key->exp_data);
fast_aesb_pseudo_round_mut(&ctx->text[AES_BLOCK_SIZE * 7], ctx->aes_ctx->key->exp_data);
memcpy(&ctx->long_state[i], ctx->text, INIT_SIZE_BYTE);
}
xor_blocks_dst(&ctx->state.k[0], &ctx->state.k[32], ctx->a);
xor_blocks_dst(&ctx->state.k[16], &ctx->state.k[48], ctx->b);
for (i = 0; likely(i < ITER / 4); ++i) {
/* Dependency chain: address -> read value ------+
* written value <-+ hard function (AES or MUL) <+
* next address <-+
*/
/* Iteration 1 */
j = e2i(ctx->a);
fast_aesb_single_round(&ctx->long_state[j], ctx->c, ctx->a);
xor_blocks_dst(ctx->c, ctx->b, &ctx->long_state[j]);
/* Iteration 2 */
mul_sum_xor_dst(ctx->c, ctx->a, &ctx->long_state[e2i(ctx->c)]);
/* Iteration 3 */
j = e2i(ctx->a);
fast_aesb_single_round(&ctx->long_state[j], ctx->b, ctx->a);
xor_blocks_dst(ctx->b, ctx->c, &ctx->long_state[j]);
/* Iteration 4 */
mul_sum_xor_dst(ctx->b, ctx->a, &ctx->long_state[e2i(ctx->b)]);
}
memcpy(ctx->text, ctx->state.init, INIT_SIZE_BYTE);
oaes_key_import_data(ctx->aes_ctx, &ctx->state.hs.b[32], AES_KEY_SIZE);
for (i = 0; likely(i < MEMORY); i += INIT_SIZE_BYTE) {
xor_blocks(&ctx->text[0 * AES_BLOCK_SIZE], &ctx->long_state[i + 0 * AES_BLOCK_SIZE]);
fast_aesb_pseudo_round_mut(&ctx->text[0 * AES_BLOCK_SIZE], ctx->aes_ctx->key->exp_data);
xor_blocks(&ctx->text[1 * AES_BLOCK_SIZE], &ctx->long_state[i + 1 * AES_BLOCK_SIZE]);
fast_aesb_pseudo_round_mut(&ctx->text[1 * AES_BLOCK_SIZE], ctx->aes_ctx->key->exp_data);
xor_blocks(&ctx->text[2 * AES_BLOCK_SIZE], &ctx->long_state[i + 2 * AES_BLOCK_SIZE]);
fast_aesb_pseudo_round_mut(&ctx->text[2 * AES_BLOCK_SIZE], ctx->aes_ctx->key->exp_data);
xor_blocks(&ctx->text[3 * AES_BLOCK_SIZE], &ctx->long_state[i + 3 * AES_BLOCK_SIZE]);
fast_aesb_pseudo_round_mut(&ctx->text[3 * AES_BLOCK_SIZE], ctx->aes_ctx->key->exp_data);
xor_blocks(&ctx->text[4 * AES_BLOCK_SIZE], &ctx->long_state[i + 4 * AES_BLOCK_SIZE]);
fast_aesb_pseudo_round_mut(&ctx->text[4 * AES_BLOCK_SIZE], ctx->aes_ctx->key->exp_data);
xor_blocks(&ctx->text[5 * AES_BLOCK_SIZE], &ctx->long_state[i + 5 * AES_BLOCK_SIZE]);
fast_aesb_pseudo_round_mut(&ctx->text[5 * AES_BLOCK_SIZE], ctx->aes_ctx->key->exp_data);
xor_blocks(&ctx->text[6 * AES_BLOCK_SIZE], &ctx->long_state[i + 6 * AES_BLOCK_SIZE]);
fast_aesb_pseudo_round_mut(&ctx->text[6 * AES_BLOCK_SIZE], ctx->aes_ctx->key->exp_data);
xor_blocks(&ctx->text[7 * AES_BLOCK_SIZE], &ctx->long_state[i + 7 * AES_BLOCK_SIZE]);
fast_aesb_pseudo_round_mut(&ctx->text[7 * AES_BLOCK_SIZE], ctx->aes_ctx->key->exp_data);
}
memcpy(ctx->state.init, ctx->text, INIT_SIZE_BYTE);
hash_permutation(&ctx->state.hs);
/*memcpy(hash, &state, 32);*/
extra_hashes[ctx->state.hs.b[0] & 3](&ctx->state, 200, output);
oaes_free((OAES_CTX **) &ctx->aes_ctx);
}
int scanhash_cryptolight(int thr_id, struct work *work,
uint32_t max_nonce, uint64_t *hashes_done)
{
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
uint32_t *nonceptr = (uint32_t*) (((char*)pdata) + 39);
uint32_t n = *nonceptr - 1;
const uint32_t first_nonce = n + 1;
//const uint32_t Htarg = ptarget[7];
uint32_t _ALIGN(32) hash[HASH_SIZE / 4];
struct cryptonight_ctx *ctx = (struct cryptonight_ctx*)malloc(sizeof(struct cryptonight_ctx));
#ifndef NO_AES_NI
do {
*nonceptr = ++n;
cryptolight_hash_ctx_aes_ni(hash, pdata, 76, ctx);
if (unlikely(hash[7] < ptarget[7])) {
*hashes_done = n - first_nonce + 1;
free(ctx);
return true;
}
} while (likely((n <= max_nonce && !work_restart[thr_id].restart)));
#else
do {
*nonceptr = ++n;
cryptolight_hash_ctx(hash, pdata, 76, ctx);
if (unlikely(hash[7] < ptarget[7])) {
*hashes_done = n - first_nonce + 1;
free(ctx);
return true;
}
} while (likely((n <= max_nonce && !work_restart[thr_id].restart)));
#endif
free(ctx);
*hashes_done = n - first_nonce + 1;
return 0;
}
bool register_cryptolight_algo( algo_gate_t* gate )
{
register_json_rpc2( gate );
gate->optimizations = SSE2_OPT | AES_OPT;
gate->scanhash = (void*)&scanhash_cryptolight;
gate->hash = (void*)&cryptolight_hash;
gate->hash_suw = (void*)&cryptolight_hash;
gate->get_max64 = (void*)&get_max64_0x40LL;
return true;
};

View File

@@ -0,0 +1,244 @@
#include <x86intrin.h>
#include <memory.h>
#include "cryptonight.h"
#include "miner.h"
#include "crypto/c_keccak.h"
void aesni_parallel_noxor(uint8_t *long_state, uint8_t *text, uint8_t *ExpandedKey);
void aesni_parallel_xor(uint8_t *text, uint8_t *ExpandedKey, uint8_t *long_state);
void that_fucking_loop(uint8_t a[16], uint8_t b[16], uint8_t *long_state);
static inline void ExpandAESKey256_sub1(__m128i *tmp1, __m128i *tmp2)
{
__m128i tmp4;
*tmp2 = _mm_shuffle_epi32(*tmp2, 0xFF);
tmp4 = _mm_slli_si128(*tmp1, 0x04);
*tmp1 = _mm_xor_si128(*tmp1, tmp4);
tmp4 = _mm_slli_si128(tmp4, 0x04);
*tmp1 = _mm_xor_si128(*tmp1, tmp4);
tmp4 = _mm_slli_si128(tmp4, 0x04);
*tmp1 = _mm_xor_si128(*tmp1, tmp4);
*tmp1 = _mm_xor_si128(*tmp1, *tmp2);
}
static inline void ExpandAESKey256_sub2(__m128i *tmp1, __m128i *tmp3)
{
#ifndef NO_AES_NI
__m128i tmp2, tmp4;
tmp4 = _mm_aeskeygenassist_si128(*tmp1, 0x00);
tmp2 = _mm_shuffle_epi32(tmp4, 0xAA);
tmp4 = _mm_slli_si128(*tmp3, 0x04);
*tmp3 = _mm_xor_si128(*tmp3, tmp4);
tmp4 = _mm_slli_si128(tmp4, 0x04);
*tmp3 = _mm_xor_si128(*tmp3, tmp4);
tmp4 = _mm_slli_si128(tmp4, 0x04);
*tmp3 = _mm_xor_si128(*tmp3, tmp4);
*tmp3 = _mm_xor_si128(*tmp3, tmp2);
#endif
}
// Special thanks to Intel for helping me
// with ExpandAESKey256() and its subroutines
static inline void ExpandAESKey256(char *keybuf)
{
#ifndef NO_AES_NI
__m128i tmp1, tmp2, tmp3, *keys;
keys = (__m128i *)keybuf;
tmp1 = _mm_load_si128((__m128i *)keybuf);
tmp3 = _mm_load_si128((__m128i *)(keybuf+0x10));
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x01);
ExpandAESKey256_sub1(&tmp1, &tmp2);
keys[2] = tmp1;
ExpandAESKey256_sub2(&tmp1, &tmp3);
keys[3] = tmp3;
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x02);
ExpandAESKey256_sub1(&tmp1, &tmp2);
keys[4] = tmp1;
ExpandAESKey256_sub2(&tmp1, &tmp3);
keys[5] = tmp3;
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x04);
ExpandAESKey256_sub1(&tmp1, &tmp2);
keys[6] = tmp1;
ExpandAESKey256_sub2(&tmp1, &tmp3);
keys[7] = tmp3;
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x08);
ExpandAESKey256_sub1(&tmp1, &tmp2);
keys[8] = tmp1;
ExpandAESKey256_sub2(&tmp1, &tmp3);
keys[9] = tmp3;
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x10);
ExpandAESKey256_sub1(&tmp1, &tmp2);
keys[10] = tmp1;
ExpandAESKey256_sub2(&tmp1, &tmp3);
keys[11] = tmp3;
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x20);
ExpandAESKey256_sub1(&tmp1, &tmp2);
keys[12] = tmp1;
ExpandAESKey256_sub2(&tmp1, &tmp3);
keys[13] = tmp3;
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x40);
ExpandAESKey256_sub1(&tmp1, &tmp2);
keys[14] = tmp1;
#endif
}
typedef struct
{
uint8_t long_state[MEMORY] __attribute((aligned(16)));
union cn_slow_hash_state state;
uint8_t text[INIT_SIZE_BYTE] __attribute((aligned(16)));
uint64_t a[AES_BLOCK_SIZE >> 3] __attribute__((aligned(16)));
uint64_t b[AES_BLOCK_SIZE >> 3] __attribute__((aligned(16)));
uint8_t c[AES_BLOCK_SIZE] __attribute__((aligned(16)));
// oaes_ctx* aes_ctx;
} cryptonight_ctx;
static __thread cryptonight_ctx ctx;
void cryptonight_hash_aes( void *restrict output, const void *input, int len )
{
#ifndef NO_AES_NI
keccak( (const uint8_t*)input, 76, (char*)&ctx.state.hs.b, 200 );
uint8_t ExpandedKey[256];
size_t i, j;
memcpy(ctx.text, ctx.state.init, INIT_SIZE_BYTE);
memcpy(ExpandedKey, ctx.state.hs.b, AES_KEY_SIZE);
ExpandAESKey256(ExpandedKey);
__m128i *longoutput, *expkey, *xmminput;
longoutput = (__m128i *)ctx.long_state;
expkey = (__m128i *)ExpandedKey;
xmminput = (__m128i *)ctx.text;
//for (i = 0; likely(i < MEMORY); i += INIT_SIZE_BYTE)
// aesni_parallel_noxor(&ctx->long_state[i], ctx->text, ExpandedKey);
for (i = 0; likely(i < MEMORY); i += INIT_SIZE_BYTE)
{
for(j = 0; j < 10; j++)
{
xmminput[0] = _mm_aesenc_si128(xmminput[0], expkey[j]);
xmminput[1] = _mm_aesenc_si128(xmminput[1], expkey[j]);
xmminput[2] = _mm_aesenc_si128(xmminput[2], expkey[j]);
xmminput[3] = _mm_aesenc_si128(xmminput[3], expkey[j]);
xmminput[4] = _mm_aesenc_si128(xmminput[4], expkey[j]);
xmminput[5] = _mm_aesenc_si128(xmminput[5], expkey[j]);
xmminput[6] = _mm_aesenc_si128(xmminput[6], expkey[j]);
xmminput[7] = _mm_aesenc_si128(xmminput[7], expkey[j]);
}
_mm_store_si128(&(longoutput[(i >> 4)]), xmminput[0]);
_mm_store_si128(&(longoutput[(i >> 4) + 1]), xmminput[1]);
_mm_store_si128(&(longoutput[(i >> 4) + 2]), xmminput[2]);
_mm_store_si128(&(longoutput[(i >> 4) + 3]), xmminput[3]);
_mm_store_si128(&(longoutput[(i >> 4) + 4]), xmminput[4]);
_mm_store_si128(&(longoutput[(i >> 4) + 5]), xmminput[5]);
_mm_store_si128(&(longoutput[(i >> 4) + 6]), xmminput[6]);
_mm_store_si128(&(longoutput[(i >> 4) + 7]), xmminput[7]);
}
ctx.a[0] = ((uint64_t *)ctx.state.k)[0] ^ ((uint64_t *)ctx.state.k)[4];
ctx.b[0] = ((uint64_t *)ctx.state.k)[2] ^ ((uint64_t *)ctx.state.k)[6];
ctx.a[1] = ((uint64_t *)ctx.state.k)[1] ^ ((uint64_t *)ctx.state.k)[5];
ctx.b[1] = ((uint64_t *)ctx.state.k)[3] ^ ((uint64_t *)ctx.state.k)[7];
// for (i = 0; i < 2; i++)
// {
// ctx.a[i] = ((uint64_t *)ctx.state.k)[i] ^ ((uint64_t *)ctx.state.k)[i+4];
// ctx.b[i] = ((uint64_t *)ctx.state.k)[i+2] ^ ((uint64_t *)ctx.state.k)[i+6];
// }
__m128i b_x = _mm_load_si128((__m128i *)ctx.b);
uint64_t a[2] __attribute((aligned(16))), b[2] __attribute((aligned(16)));
a[0] = ctx.a[0];
a[1] = ctx.a[1];
for(i = 0; __builtin_expect(i < 0x80000, 1); i++)
{
__m128i c_x = _mm_load_si128((__m128i *)&ctx.long_state[a[0] & 0x1FFFF0]);
__m128i a_x = _mm_load_si128((__m128i *)a);
uint64_t c[2];
c_x = _mm_aesenc_si128(c_x, a_x);
_mm_store_si128((__m128i *)c, c_x);
__builtin_prefetch(&ctx.long_state[c[0] & 0x1FFFF0], 0, 1);
b_x = _mm_xor_si128(b_x, c_x);
_mm_store_si128((__m128i *)&ctx.long_state[a[0] & 0x1FFFF0], b_x);
uint64_t *nextblock = (uint64_t *)&ctx.long_state[c[0] & 0x1FFFF0];
uint64_t b[2];
b[0] = nextblock[0];
b[1] = nextblock[1];
{
uint64_t hi, lo;
// hi,lo = 64bit x 64bit multiply of c[0] and b[0]
__asm__("mulq %3\n\t"
: "=d" (hi),
"=a" (lo)
: "%a" (c[0]),
"rm" (b[0])
: "cc" );
a[0] += hi;
a[1] += lo;
}
uint64_t *dst = (uint64_t*)&ctx.long_state[c[0] & 0x1FFFF0];
dst[0] = a[0];
dst[1] = a[1];
a[0] ^= b[0];
a[1] ^= b[1];
b_x = c_x;
__builtin_prefetch(&ctx.long_state[a[0] & 0x1FFFF0], 0, 3);
}
memcpy(ctx.text, ctx.state.init, INIT_SIZE_BYTE);
memcpy(ExpandedKey, &ctx.state.hs.b[32], AES_KEY_SIZE);
ExpandAESKey256(ExpandedKey);
//for (i = 0; likely(i < MEMORY); i += INIT_SIZE_BYTE)
// aesni_parallel_xor(&ctx->text, ExpandedKey, &ctx->long_state[i]);
for (i = 0; __builtin_expect(i < MEMORY, 1); i += INIT_SIZE_BYTE)
{
xmminput[0] = _mm_xor_si128(longoutput[(i >> 4)], xmminput[0]);
xmminput[1] = _mm_xor_si128(longoutput[(i >> 4) + 1], xmminput[1]);
xmminput[2] = _mm_xor_si128(longoutput[(i >> 4) + 2], xmminput[2]);
xmminput[3] = _mm_xor_si128(longoutput[(i >> 4) + 3], xmminput[3]);
xmminput[4] = _mm_xor_si128(longoutput[(i >> 4) + 4], xmminput[4]);
xmminput[5] = _mm_xor_si128(longoutput[(i >> 4) + 5], xmminput[5]);
xmminput[6] = _mm_xor_si128(longoutput[(i >> 4) + 6], xmminput[6]);
xmminput[7] = _mm_xor_si128(longoutput[(i >> 4) + 7], xmminput[7]);
for(j = 0; j < 10; j++)
{
xmminput[0] = _mm_aesenc_si128(xmminput[0], expkey[j]);
xmminput[1] = _mm_aesenc_si128(xmminput[1], expkey[j]);
xmminput[2] = _mm_aesenc_si128(xmminput[2], expkey[j]);
xmminput[3] = _mm_aesenc_si128(xmminput[3], expkey[j]);
xmminput[4] = _mm_aesenc_si128(xmminput[4], expkey[j]);
xmminput[5] = _mm_aesenc_si128(xmminput[5], expkey[j]);
xmminput[6] = _mm_aesenc_si128(xmminput[6], expkey[j]);
xmminput[7] = _mm_aesenc_si128(xmminput[7], expkey[j]);
}
}
memcpy(ctx.state.init, ctx.text, INIT_SIZE_BYTE);
keccakf( (uint64_t*)&ctx.state.hs.w, 24 );
extra_hashes[ctx.state.hs.b[0] & 3](&ctx.state, 200, output);
#endif
}

View File

@@ -0,0 +1,110 @@
// Copyright (c) 2012-2013 The Cryptonote developers
// Distributed under the MIT/X11 software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
// Modified for CPUminer by Lucas Jones
#include "cpuminer-config.h"
//#include "miner.h"
#include "algo-gate-api.h"
#ifndef NO_AES_NI
#include "algo/groestl/aes_ni/hash-groestl256.h"
#endif
#include "crypto/c_groestl.h"
#include "crypto/c_blake256.h"
#include "crypto/c_jh.h"
#include "crypto/c_skein.h"
#include "cryptonight.h"
/*
#if defined __unix__ && (!defined __APPLE__)
#include <sys/mman.h>
#elif defined _WIN32
#include <windows.h>
#endif
*/
void do_blake_hash(const void* input, size_t len, char* output) {
blake256_hash((uint8_t*)output, input, len);
}
void do_groestl_hash(const void* input, size_t len, char* output) {
#ifdef NO_AES_NI
groestl(input, len * 8, (uint8_t*)output);
#else
hashState_groestl256 ctx;
init_groestl256( &ctx );
update_groestl256( &ctx, input, len * 8 );
final_groestl256( &ctx, output );
#endif
}
void do_jh_hash(const void* input, size_t len, char* output) {
jh_hash(32 * 8, input, 8 * len, (uint8_t*)output);
}
void do_skein_hash(const void* input, size_t len, char* output) {
skein_hash(8 * 32, input, 8 * len, (uint8_t*)output);
}
void (* const extra_hashes[4])( const void *, size_t, char *) =
{ do_blake_hash, do_groestl_hash, do_jh_hash, do_skein_hash };
void cryptonight_hash( void *restrict output, const void *input, int len )
{
#ifdef NO_AES_NI
cryptonight_hash_ctx ( output, input, len );
#else
cryptonight_hash_aes( output, input, len );
#endif
}
void cryptonight_hash_suw( void *restrict output, const void *input )
{
#ifdef NO_AES_NI
cryptonight_hash_ctx ( output, input, 76 );
#else
cryptonight_hash_aes( output, input, 76 );
#endif
}
int scanhash_cryptonight( int thr_id, struct work *work, uint32_t max_nonce,
uint64_t *hashes_done )
{
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
uint32_t *nonceptr = (uint32_t*) (((char*)pdata) + 39);
uint32_t n = *nonceptr - 1;
const uint32_t first_nonce = n + 1;
const uint32_t Htarg = ptarget[7];
uint32_t hash[32 / 4] __attribute__((aligned(32)));
do
{
*nonceptr = ++n;
cryptonight_hash( hash, pdata, 76 );
if (unlikely( hash[7] < Htarg ))
{
*hashes_done = n - first_nonce + 1;
return true;
}
} while (likely((n <= max_nonce && !work_restart[thr_id].restart)));
*hashes_done = n - first_nonce + 1;
return 0;
}
bool register_cryptonight_algo( algo_gate_t* gate )
{
register_json_rpc2( gate );
gate->optimizations = SSE2_OPT | AES_OPT;
gate->scanhash = (void*)&scanhash_cryptonight;
gate->hash = (void*)&cryptonight_hash;
gate->hash_suw = (void*)&cryptonight_hash_suw;
gate->get_max64 = (void*)&get_max64_0x40LL;
return true;
};

View File

@@ -0,0 +1,242 @@
// Copyright (c) 2012-2013 The Cryptonote developers
// Distributed under the MIT/X11 software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
// Modified for CPUminer by Lucas Jones
#include "miner.h"
#if defined(__arm__) || defined(_MSC_VER)
#ifndef NOASM
#define NOASM
#endif
#endif
#include "crypto/oaes_lib.h"
#include "crypto/c_keccak.h"
#include "crypto/c_groestl.h"
#include "crypto/c_blake256.h"
#include "crypto/c_jh.h"
#include "crypto/c_skein.h"
#include "crypto/int-util.h"
#include "crypto/hash-ops.h"
//#include "cryptonight.h"
#if USE_INT128
#if __GNUC__ == 4 && __GNUC_MINOR__ >= 4 && __GNUC_MINOR__ < 6
typedef unsigned int uint128_t __attribute__ ((__mode__ (TI)));
#elif defined (_MSC_VER)
/* only for mingw64 on windows */
#undef USE_INT128
#define USE_INT128 (0)
#else
typedef __uint128_t uint128_t;
#endif
#endif
#define LITE 0
#if LITE /* cryptonight-light */
#define MEMORY (1 << 20)
#define ITER (1 << 19)
#else
#define MEMORY (1 << 21) /* 2 MiB */
#define ITER (1 << 20)
#endif
#define AES_BLOCK_SIZE 16
#define AES_KEY_SIZE 32 /*16*/
#define INIT_SIZE_BLK 8
#define INIT_SIZE_BYTE (INIT_SIZE_BLK * AES_BLOCK_SIZE)
#pragma pack(push, 1)
union cn_slow_hash_state {
union hash_state hs;
struct {
uint8_t k[64];
uint8_t init[INIT_SIZE_BYTE];
};
};
#pragma pack(pop)
static void do_blake_hash(const void* input, size_t len, char* output) {
blake256_hash((uint8_t*)output, input, len);
}
static void do_groestl_hash(const void* input, size_t len, char* output) {
groestl(input, len * 8, (uint8_t*)output);
}
static void do_jh_hash(const void* input, size_t len, char* output) {
int r = jh_hash(HASH_SIZE * 8, input, 8 * len, (uint8_t*)output);
assert(likely(SUCCESS == r));
}
static void do_skein_hash(const void* input, size_t len, char* output) {
int r = skein_hash(8 * HASH_SIZE, input, 8 * len, (uint8_t*)output);
assert(likely(SKEIN_SUCCESS == r));
}
extern int aesb_single_round(const uint8_t *in, uint8_t*out, const uint8_t *expandedKey);
extern int aesb_pseudo_round_mut(uint8_t *val, uint8_t *expandedKey);
#if !defined(_MSC_VER) && !defined(NOASM)
extern int fast_aesb_single_round(const uint8_t *in, uint8_t*out, const uint8_t *expandedKey);
extern int fast_aesb_pseudo_round_mut(uint8_t *val, uint8_t *expandedKey);
#else
#define fast_aesb_single_round aesb_single_round
#define fast_aesb_pseudo_round_mut aesb_pseudo_round_mut
#endif
#if defined(NOASM) || !defined(__x86_64__)
static uint64_t mul128(uint64_t multiplier, uint64_t multiplicand, uint64_t* product_hi) {
// multiplier = ab = a * 2^32 + b
// multiplicand = cd = c * 2^32 + d
// ab * cd = a * c * 2^64 + (a * d + b * c) * 2^32 + b * d
uint64_t a = hi_dword(multiplier);
uint64_t b = lo_dword(multiplier);
uint64_t c = hi_dword(multiplicand);
uint64_t d = lo_dword(multiplicand);
uint64_t ac = a * c;
uint64_t ad = a * d;
uint64_t bc = b * c;
uint64_t bd = b * d;
uint64_t adbc = ad + bc;
uint64_t adbc_carry = adbc < ad ? 1 : 0;
// multiplier * multiplicand = product_hi * 2^64 + product_lo
uint64_t product_lo = bd + (adbc << 32);
uint64_t product_lo_carry = product_lo < bd ? 1 : 0;
*product_hi = ac + (adbc >> 32) + (adbc_carry << 32) + product_lo_carry;
assert(ac <= *product_hi);
return product_lo;
}
#else
extern uint64_t mul128(uint64_t multiplier, uint64_t multiplicand, uint64_t* product_hi);
#endif
static void (* const extra_hashes[4])(const void *, size_t, char *) = {
do_blake_hash, do_groestl_hash, do_jh_hash, do_skein_hash
};
static inline size_t e2i(const uint8_t* a) {
#if !LITE
return ((uint32_t *)a)[0] & 0x1FFFF0;
#else
return ((uint32_t *)a)[0] & 0xFFFF0;
#endif
}
static inline void mul_sum_xor_dst(const uint8_t* a, uint8_t* c, uint8_t* dst) {
uint64_t hi, lo = mul128(((uint64_t*) a)[0], ((uint64_t*) dst)[0], &hi) + ((uint64_t*) c)[1];
hi += ((uint64_t*) c)[0];
((uint64_t*) c)[0] = ((uint64_t*) dst)[0] ^ hi;
((uint64_t*) c)[1] = ((uint64_t*) dst)[1] ^ lo;
((uint64_t*) dst)[0] = hi;
((uint64_t*) dst)[1] = lo;
}
static inline void xor_blocks(uint8_t* a, const uint8_t* b) {
#if USE_INT128
*((uint128_t*) a) ^= *((uint128_t*) b);
#else
((uint64_t*) a)[0] ^= ((uint64_t*) b)[0];
((uint64_t*) a)[1] ^= ((uint64_t*) b)[1];
#endif
}
static inline void xor_blocks_dst(const uint8_t* a, const uint8_t* b, uint8_t* dst) {
#if USE_INT128
*((uint128_t*) dst) = *((uint128_t*) a) ^ *((uint128_t*) b);
#else
((uint64_t*) dst)[0] = ((uint64_t*) a)[0] ^ ((uint64_t*) b)[0];
((uint64_t*) dst)[1] = ((uint64_t*) a)[1] ^ ((uint64_t*) b)[1];
#endif
}
typedef struct {
uint8_t _ALIGN(16) long_state[MEMORY];
union cn_slow_hash_state state;
uint8_t _ALIGN(16) text[INIT_SIZE_BYTE];
uint8_t _ALIGN(16) a[AES_BLOCK_SIZE];
uint8_t _ALIGN(16) b[AES_BLOCK_SIZE];
uint8_t _ALIGN(16) c[AES_BLOCK_SIZE];
oaes_ctx* aes_ctx;
} cryptonight_ctx;
static __thread cryptonight_ctx ctx;
void cryptonight_hash_ctx(void* output, const void* input, int len)
{
hash_process(&ctx.state.hs, (const uint8_t*) input, len);
ctx.aes_ctx = (oaes_ctx*) oaes_alloc();
size_t i, j;
memcpy(ctx.text, ctx.state.init, INIT_SIZE_BYTE);
oaes_key_import_data(ctx.aes_ctx, ctx.state.hs.b, AES_KEY_SIZE);
for (i = 0; likely(i < MEMORY); i += INIT_SIZE_BYTE) {
aesb_pseudo_round_mut(&ctx.text[AES_BLOCK_SIZE * 0], ctx.aes_ctx->key->exp_data);
aesb_pseudo_round_mut(&ctx.text[AES_BLOCK_SIZE * 1], ctx.aes_ctx->key->exp_data);
aesb_pseudo_round_mut(&ctx.text[AES_BLOCK_SIZE * 2], ctx.aes_ctx->key->exp_data);
aesb_pseudo_round_mut(&ctx.text[AES_BLOCK_SIZE * 3], ctx.aes_ctx->key->exp_data);
aesb_pseudo_round_mut(&ctx.text[AES_BLOCK_SIZE * 4], ctx.aes_ctx->key->exp_data);
aesb_pseudo_round_mut(&ctx.text[AES_BLOCK_SIZE * 5], ctx.aes_ctx->key->exp_data);
aesb_pseudo_round_mut(&ctx.text[AES_BLOCK_SIZE * 6], ctx.aes_ctx->key->exp_data);
aesb_pseudo_round_mut(&ctx.text[AES_BLOCK_SIZE * 7], ctx.aes_ctx->key->exp_data);
memcpy(&ctx.long_state[i], ctx.text, INIT_SIZE_BYTE);
}
xor_blocks_dst(&ctx.state.k[0], &ctx.state.k[32], ctx.a);
xor_blocks_dst(&ctx.state.k[16], &ctx.state.k[48], ctx.b);
for (i = 0; likely(i < ITER / 4); ++i) {
/* Dependency chain: address -> read value ------+
* written value <-+ hard function (AES or MUL) <+
* next address <-+
*/
/* Iteration 1 */
j = e2i(ctx.a);
aesb_single_round(&ctx.long_state[j], ctx.c, ctx.a);
xor_blocks_dst(ctx.c, ctx.b, &ctx.long_state[j]);
/* Iteration 2 */
mul_sum_xor_dst(ctx.c, ctx.a, &ctx.long_state[e2i(ctx.c)]);
/* Iteration 3 */
j = e2i(ctx.a);
aesb_single_round(&ctx.long_state[j], ctx.b, ctx.a);
xor_blocks_dst(ctx.b, ctx.c, &ctx.long_state[j]);
/* Iteration 4 */
mul_sum_xor_dst(ctx.b, ctx.a, &ctx.long_state[e2i(ctx.b)]);
}
memcpy(ctx.text, ctx.state.init, INIT_SIZE_BYTE);
oaes_key_import_data(ctx.aes_ctx, &ctx.state.hs.b[32], AES_KEY_SIZE);
for (i = 0; likely(i < MEMORY); i += INIT_SIZE_BYTE) {
xor_blocks(&ctx.text[0 * AES_BLOCK_SIZE], &ctx.long_state[i + 0 * AES_BLOCK_SIZE]);
aesb_pseudo_round_mut(&ctx.text[0 * AES_BLOCK_SIZE], ctx.aes_ctx->key->exp_data);
xor_blocks(&ctx.text[1 * AES_BLOCK_SIZE], &ctx.long_state[i + 1 * AES_BLOCK_SIZE]);
aesb_pseudo_round_mut(&ctx.text[1 * AES_BLOCK_SIZE], ctx.aes_ctx->key->exp_data);
xor_blocks(&ctx.text[2 * AES_BLOCK_SIZE], &ctx.long_state[i + 2 * AES_BLOCK_SIZE]);
aesb_pseudo_round_mut(&ctx.text[2 * AES_BLOCK_SIZE], ctx.aes_ctx->key->exp_data);
xor_blocks(&ctx.text[3 * AES_BLOCK_SIZE], &ctx.long_state[i + 3 * AES_BLOCK_SIZE]);
aesb_pseudo_round_mut(&ctx.text[3 * AES_BLOCK_SIZE], ctx.aes_ctx->key->exp_data);
xor_blocks(&ctx.text[4 * AES_BLOCK_SIZE], &ctx.long_state[i + 4 * AES_BLOCK_SIZE]);
aesb_pseudo_round_mut(&ctx.text[4 * AES_BLOCK_SIZE], ctx.aes_ctx->key->exp_data);
xor_blocks(&ctx.text[5 * AES_BLOCK_SIZE], &ctx.long_state[i + 5 * AES_BLOCK_SIZE]);
aesb_pseudo_round_mut(&ctx.text[5 * AES_BLOCK_SIZE], ctx.aes_ctx->key->exp_data);
xor_blocks(&ctx.text[6 * AES_BLOCK_SIZE], &ctx.long_state[i + 6 * AES_BLOCK_SIZE]);
aesb_pseudo_round_mut(&ctx.text[6 * AES_BLOCK_SIZE], ctx.aes_ctx->key->exp_data);
xor_blocks(&ctx.text[7 * AES_BLOCK_SIZE], &ctx.long_state[i + 7 * AES_BLOCK_SIZE]);
aesb_pseudo_round_mut(&ctx.text[7 * AES_BLOCK_SIZE], ctx.aes_ctx->key->exp_data);
}
memcpy(ctx.state.init, ctx.text, INIT_SIZE_BYTE);
hash_permutation(&ctx.state.hs);
/*memcpy(hash, &state, 32);*/
extra_hashes[ctx.state.hs.b[0] & 3](&ctx.state, 200, output);
oaes_free((OAES_CTX **) &ctx.aes_ctx);
}

View File

@@ -0,0 +1,47 @@
#ifndef __CRYPTONIGHT_H_INCLUDED
#define __CRYPTONIGHT_H_INCLUDED
#include <stddef.h>
#include "crypto/oaes_lib.h"
#include "miner.h"
#define MEMORY (1 << 21) /* 2 MiB */
#define ITER (1 << 20)
#define AES_BLOCK_SIZE 16
#define AES_KEY_SIZE 32 /*16*/
#define INIT_SIZE_BLK 8
#define INIT_SIZE_BYTE (INIT_SIZE_BLK * AES_BLOCK_SIZE) // 128
#pragma pack(push, 1)
union hash_state {
uint8_t b[200];
uint64_t w[25];
};
#pragma pack(pop)
#pragma pack(push, 1)
union cn_slow_hash_state {
union hash_state hs;
struct {
uint8_t k[64];
uint8_t init[INIT_SIZE_BYTE];
};
};
#pragma pack(pop)
void do_blake_hash(const void* input, size_t len, char* output);
void do_groestl_hash(const void* input, size_t len, char* output);
void do_jh_hash(const void* input, size_t len, char* output);
void do_skein_hash(const void* input, size_t len, char* output);
void cryptonight_hash_ctx(void* output, const void* input, int len);
void keccakf(uint64_t st[25], int rounds);
extern void (* const extra_hashes[4])(const void *, size_t, char *);
int scanhash_cryptonight( int thr_id, struct work *work, uint32_t max_nonce,
uint64_t *hashes_done );
void cryptonight_hash_aes( void *restrict output, const void *input, int len );
#endif

0
algo/cubehash/.dirstamp Normal file
View File

View File

@@ -0,0 +1,723 @@
/* $Id: cubehash.c 227 2010-06-16 17:28:38Z tp $ */
/*
* CubeHash implementation.
*
* ==========================(LICENSE BEGIN)============================
*
* Copyright (c) 2007-2010 Projet RNRT SAPHIR
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* ===========================(LICENSE END)=============================
*
* @author Thomas Pornin <thomas.pornin@cryptolog.com>
*/
#include <stddef.h>
#include <string.h>
#include <limits.h>
#include "sph_cubehash.h"
#ifdef __cplusplus
extern "C"{
#endif
#if SPH_SMALL_FOOTPRINT && !defined SPH_SMALL_FOOTPRINT_CUBEHASH
#define SPH_SMALL_FOOTPRINT_CUBEHASH 1
#endif
/*
* Some tests were conducted on an Intel Core2 Q6600 (32-bit and 64-bit
* mode), a PowerPC G3, and a MIPS-compatible CPU (Broadcom BCM3302).
* It appears that the optimal settings are:
* -- full unroll, no state copy on the "big" systems (x86, PowerPC)
* -- unroll to 4 or 8, state copy on the "small" system (MIPS)
*/
#if SPH_SMALL_FOOTPRINT_CUBEHASH
#if !defined SPH_CUBEHASH_UNROLL
#define SPH_CUBEHASH_UNROLL 4
#endif
#if !defined SPH_CUBEHASH_NOCOPY
#define SPH_CUBEHASH_NOCOPY 1
#endif
#else
#if !defined SPH_CUBEHASH_UNROLL
#define SPH_CUBEHASH_UNROLL 0
#endif
#if !defined SPH_CUBEHASH_NOCOPY
#define SPH_CUBEHASH_NOCOPY 0
#endif
#endif
#ifdef _MSC_VER
#pragma warning (disable: 4146)
#endif
static const sph_u32 IV224[] = {
SPH_C32(0xB0FC8217), SPH_C32(0x1BEE1A90), SPH_C32(0x829E1A22),
SPH_C32(0x6362C342), SPH_C32(0x24D91C30), SPH_C32(0x03A7AA24),
SPH_C32(0xA63721C8), SPH_C32(0x85B0E2EF), SPH_C32(0xF35D13F3),
SPH_C32(0x41DA807D), SPH_C32(0x21A70CA6), SPH_C32(0x1F4E9774),
SPH_C32(0xB3E1C932), SPH_C32(0xEB0A79A8), SPH_C32(0xCDDAAA66),
SPH_C32(0xE2F6ECAA), SPH_C32(0x0A713362), SPH_C32(0xAA3080E0),
SPH_C32(0xD8F23A32), SPH_C32(0xCEF15E28), SPH_C32(0xDB086314),
SPH_C32(0x7F709DF7), SPH_C32(0xACD228A4), SPH_C32(0x704D6ECE),
SPH_C32(0xAA3EC95F), SPH_C32(0xE387C214), SPH_C32(0x3A6445FF),
SPH_C32(0x9CAB81C3), SPH_C32(0xC73D4B98), SPH_C32(0xD277AEBE),
SPH_C32(0xFD20151C), SPH_C32(0x00CB573E)
};
static const sph_u32 IV256[] = {
SPH_C32(0xEA2BD4B4), SPH_C32(0xCCD6F29F), SPH_C32(0x63117E71),
SPH_C32(0x35481EAE), SPH_C32(0x22512D5B), SPH_C32(0xE5D94E63),
SPH_C32(0x7E624131), SPH_C32(0xF4CC12BE), SPH_C32(0xC2D0B696),
SPH_C32(0x42AF2070), SPH_C32(0xD0720C35), SPH_C32(0x3361DA8C),
SPH_C32(0x28CCECA4), SPH_C32(0x8EF8AD83), SPH_C32(0x4680AC00),
SPH_C32(0x40E5FBAB), SPH_C32(0xD89041C3), SPH_C32(0x6107FBD5),
SPH_C32(0x6C859D41), SPH_C32(0xF0B26679), SPH_C32(0x09392549),
SPH_C32(0x5FA25603), SPH_C32(0x65C892FD), SPH_C32(0x93CB6285),
SPH_C32(0x2AF2B5AE), SPH_C32(0x9E4B4E60), SPH_C32(0x774ABFDD),
SPH_C32(0x85254725), SPH_C32(0x15815AEB), SPH_C32(0x4AB6AAD6),
SPH_C32(0x9CDAF8AF), SPH_C32(0xD6032C0A)
};
static const sph_u32 IV384[] = {
SPH_C32(0xE623087E), SPH_C32(0x04C00C87), SPH_C32(0x5EF46453),
SPH_C32(0x69524B13), SPH_C32(0x1A05C7A9), SPH_C32(0x3528DF88),
SPH_C32(0x6BDD01B5), SPH_C32(0x5057B792), SPH_C32(0x6AA7A922),
SPH_C32(0x649C7EEE), SPH_C32(0xF426309F), SPH_C32(0xCB629052),
SPH_C32(0xFC8E20ED), SPH_C32(0xB3482BAB), SPH_C32(0xF89E5E7E),
SPH_C32(0xD83D4DE4), SPH_C32(0x44BFC10D), SPH_C32(0x5FC1E63D),
SPH_C32(0x2104E6CB), SPH_C32(0x17958F7F), SPH_C32(0xDBEAEF70),
SPH_C32(0xB4B97E1E), SPH_C32(0x32C195F6), SPH_C32(0x6184A8E4),
SPH_C32(0x796C2543), SPH_C32(0x23DE176D), SPH_C32(0xD33BBAEC),
SPH_C32(0x0C12E5D2), SPH_C32(0x4EB95A7B), SPH_C32(0x2D18BA01),
SPH_C32(0x04EE475F), SPH_C32(0x1FC5F22E)
};
static const sph_u32 IV512[] = {
SPH_C32(0x2AEA2A61), SPH_C32(0x50F494D4), SPH_C32(0x2D538B8B),
SPH_C32(0x4167D83E), SPH_C32(0x3FEE2313), SPH_C32(0xC701CF8C),
SPH_C32(0xCC39968E), SPH_C32(0x50AC5695), SPH_C32(0x4D42C787),
SPH_C32(0xA647A8B3), SPH_C32(0x97CF0BEF), SPH_C32(0x825B4537),
SPH_C32(0xEEF864D2), SPH_C32(0xF22090C4), SPH_C32(0xD0E5CD33),
SPH_C32(0xA23911AE), SPH_C32(0xFCD398D9), SPH_C32(0x148FE485),
SPH_C32(0x1B017BEF), SPH_C32(0xB6444532), SPH_C32(0x6A536159),
SPH_C32(0x2FF5781C), SPH_C32(0x91FA7934), SPH_C32(0x0DBADEA9),
SPH_C32(0xD65C8A2B), SPH_C32(0xA5A70E75), SPH_C32(0xB1C62456),
SPH_C32(0xBC796576), SPH_C32(0x1921C8F7), SPH_C32(0xE7989AF1),
SPH_C32(0x7795D246), SPH_C32(0xD43E3B44)
};
#define T32 SPH_T32
#define ROTL32 SPH_ROTL32
#if SPH_CUBEHASH_NOCOPY
#define DECL_STATE
#define READ_STATE(cc)
#define WRITE_STATE(cc)
#define x0 ((sc)->state[ 0])
#define x1 ((sc)->state[ 1])
#define x2 ((sc)->state[ 2])
#define x3 ((sc)->state[ 3])
#define x4 ((sc)->state[ 4])
#define x5 ((sc)->state[ 5])
#define x6 ((sc)->state[ 6])
#define x7 ((sc)->state[ 7])
#define x8 ((sc)->state[ 8])
#define x9 ((sc)->state[ 9])
#define xa ((sc)->state[10])
#define xb ((sc)->state[11])
#define xc ((sc)->state[12])
#define xd ((sc)->state[13])
#define xe ((sc)->state[14])
#define xf ((sc)->state[15])
#define xg ((sc)->state[16])
#define xh ((sc)->state[17])
#define xi ((sc)->state[18])
#define xj ((sc)->state[19])
#define xk ((sc)->state[20])
#define xl ((sc)->state[21])
#define xm ((sc)->state[22])
#define xn ((sc)->state[23])
#define xo ((sc)->state[24])
#define xp ((sc)->state[25])
#define xq ((sc)->state[26])
#define xr ((sc)->state[27])
#define xs ((sc)->state[28])
#define xt ((sc)->state[29])
#define xu ((sc)->state[30])
#define xv ((sc)->state[31])
#else
#define DECL_STATE \
sph_u32 x0, x1, x2, x3, x4, x5, x6, x7; \
sph_u32 x8, x9, xa, xb, xc, xd, xe, xf; \
sph_u32 xg, xh, xi, xj, xk, xl, xm, xn; \
sph_u32 xo, xp, xq, xr, xs, xt, xu, xv;
#define READ_STATE(cc) do { \
x0 = (cc)->state[ 0]; \
x1 = (cc)->state[ 1]; \
x2 = (cc)->state[ 2]; \
x3 = (cc)->state[ 3]; \
x4 = (cc)->state[ 4]; \
x5 = (cc)->state[ 5]; \
x6 = (cc)->state[ 6]; \
x7 = (cc)->state[ 7]; \
x8 = (cc)->state[ 8]; \
x9 = (cc)->state[ 9]; \
xa = (cc)->state[10]; \
xb = (cc)->state[11]; \
xc = (cc)->state[12]; \
xd = (cc)->state[13]; \
xe = (cc)->state[14]; \
xf = (cc)->state[15]; \
xg = (cc)->state[16]; \
xh = (cc)->state[17]; \
xi = (cc)->state[18]; \
xj = (cc)->state[19]; \
xk = (cc)->state[20]; \
xl = (cc)->state[21]; \
xm = (cc)->state[22]; \
xn = (cc)->state[23]; \
xo = (cc)->state[24]; \
xp = (cc)->state[25]; \
xq = (cc)->state[26]; \
xr = (cc)->state[27]; \
xs = (cc)->state[28]; \
xt = (cc)->state[29]; \
xu = (cc)->state[30]; \
xv = (cc)->state[31]; \
} while (0)
#define WRITE_STATE(cc) do { \
(cc)->state[ 0] = x0; \
(cc)->state[ 1] = x1; \
(cc)->state[ 2] = x2; \
(cc)->state[ 3] = x3; \
(cc)->state[ 4] = x4; \
(cc)->state[ 5] = x5; \
(cc)->state[ 6] = x6; \
(cc)->state[ 7] = x7; \
(cc)->state[ 8] = x8; \
(cc)->state[ 9] = x9; \
(cc)->state[10] = xa; \
(cc)->state[11] = xb; \
(cc)->state[12] = xc; \
(cc)->state[13] = xd; \
(cc)->state[14] = xe; \
(cc)->state[15] = xf; \
(cc)->state[16] = xg; \
(cc)->state[17] = xh; \
(cc)->state[18] = xi; \
(cc)->state[19] = xj; \
(cc)->state[20] = xk; \
(cc)->state[21] = xl; \
(cc)->state[22] = xm; \
(cc)->state[23] = xn; \
(cc)->state[24] = xo; \
(cc)->state[25] = xp; \
(cc)->state[26] = xq; \
(cc)->state[27] = xr; \
(cc)->state[28] = xs; \
(cc)->state[29] = xt; \
(cc)->state[30] = xu; \
(cc)->state[31] = xv; \
} while (0)
#endif
#define INPUT_BLOCK do { \
x0 ^= sph_dec32le_aligned(buf + 0); \
x1 ^= sph_dec32le_aligned(buf + 4); \
x2 ^= sph_dec32le_aligned(buf + 8); \
x3 ^= sph_dec32le_aligned(buf + 12); \
x4 ^= sph_dec32le_aligned(buf + 16); \
x5 ^= sph_dec32le_aligned(buf + 20); \
x6 ^= sph_dec32le_aligned(buf + 24); \
x7 ^= sph_dec32le_aligned(buf + 28); \
} while (0)
#define ROUND_EVEN do { \
xg = T32(x0 + xg); \
x0 = ROTL32(x0, 7); \
xh = T32(x1 + xh); \
x1 = ROTL32(x1, 7); \
xi = T32(x2 + xi); \
x2 = ROTL32(x2, 7); \
xj = T32(x3 + xj); \
x3 = ROTL32(x3, 7); \
xk = T32(x4 + xk); \
x4 = ROTL32(x4, 7); \
xl = T32(x5 + xl); \
x5 = ROTL32(x5, 7); \
xm = T32(x6 + xm); \
x6 = ROTL32(x6, 7); \
xn = T32(x7 + xn); \
x7 = ROTL32(x7, 7); \
xo = T32(x8 + xo); \
x8 = ROTL32(x8, 7); \
xp = T32(x9 + xp); \
x9 = ROTL32(x9, 7); \
xq = T32(xa + xq); \
xa = ROTL32(xa, 7); \
xr = T32(xb + xr); \
xb = ROTL32(xb, 7); \
xs = T32(xc + xs); \
xc = ROTL32(xc, 7); \
xt = T32(xd + xt); \
xd = ROTL32(xd, 7); \
xu = T32(xe + xu); \
xe = ROTL32(xe, 7); \
xv = T32(xf + xv); \
xf = ROTL32(xf, 7); \
x8 ^= xg; \
x9 ^= xh; \
xa ^= xi; \
xb ^= xj; \
xc ^= xk; \
xd ^= xl; \
xe ^= xm; \
xf ^= xn; \
x0 ^= xo; \
x1 ^= xp; \
x2 ^= xq; \
x3 ^= xr; \
x4 ^= xs; \
x5 ^= xt; \
x6 ^= xu; \
x7 ^= xv; \
xi = T32(x8 + xi); \
x8 = ROTL32(x8, 11); \
xj = T32(x9 + xj); \
x9 = ROTL32(x9, 11); \
xg = T32(xa + xg); \
xa = ROTL32(xa, 11); \
xh = T32(xb + xh); \
xb = ROTL32(xb, 11); \
xm = T32(xc + xm); \
xc = ROTL32(xc, 11); \
xn = T32(xd + xn); \
xd = ROTL32(xd, 11); \
xk = T32(xe + xk); \
xe = ROTL32(xe, 11); \
xl = T32(xf + xl); \
xf = ROTL32(xf, 11); \
xq = T32(x0 + xq); \
x0 = ROTL32(x0, 11); \
xr = T32(x1 + xr); \
x1 = ROTL32(x1, 11); \
xo = T32(x2 + xo); \
x2 = ROTL32(x2, 11); \
xp = T32(x3 + xp); \
x3 = ROTL32(x3, 11); \
xu = T32(x4 + xu); \
x4 = ROTL32(x4, 11); \
xv = T32(x5 + xv); \
x5 = ROTL32(x5, 11); \
xs = T32(x6 + xs); \
x6 = ROTL32(x6, 11); \
xt = T32(x7 + xt); \
x7 = ROTL32(x7, 11); \
xc ^= xi; \
xd ^= xj; \
xe ^= xg; \
xf ^= xh; \
x8 ^= xm; \
x9 ^= xn; \
xa ^= xk; \
xb ^= xl; \
x4 ^= xq; \
x5 ^= xr; \
x6 ^= xo; \
x7 ^= xp; \
x0 ^= xu; \
x1 ^= xv; \
x2 ^= xs; \
x3 ^= xt; \
} while (0)
#define ROUND_ODD do { \
xj = T32(xc + xj); \
xc = ROTL32(xc, 7); \
xi = T32(xd + xi); \
xd = ROTL32(xd, 7); \
xh = T32(xe + xh); \
xe = ROTL32(xe, 7); \
xg = T32(xf + xg); \
xf = ROTL32(xf, 7); \
xn = T32(x8 + xn); \
x8 = ROTL32(x8, 7); \
xm = T32(x9 + xm); \
x9 = ROTL32(x9, 7); \
xl = T32(xa + xl); \
xa = ROTL32(xa, 7); \
xk = T32(xb + xk); \
xb = ROTL32(xb, 7); \
xr = T32(x4 + xr); \
x4 = ROTL32(x4, 7); \
xq = T32(x5 + xq); \
x5 = ROTL32(x5, 7); \
xp = T32(x6 + xp); \
x6 = ROTL32(x6, 7); \
xo = T32(x7 + xo); \
x7 = ROTL32(x7, 7); \
xv = T32(x0 + xv); \
x0 = ROTL32(x0, 7); \
xu = T32(x1 + xu); \
x1 = ROTL32(x1, 7); \
xt = T32(x2 + xt); \
x2 = ROTL32(x2, 7); \
xs = T32(x3 + xs); \
x3 = ROTL32(x3, 7); \
x4 ^= xj; \
x5 ^= xi; \
x6 ^= xh; \
x7 ^= xg; \
x0 ^= xn; \
x1 ^= xm; \
x2 ^= xl; \
x3 ^= xk; \
xc ^= xr; \
xd ^= xq; \
xe ^= xp; \
xf ^= xo; \
x8 ^= xv; \
x9 ^= xu; \
xa ^= xt; \
xb ^= xs; \
xh = T32(x4 + xh); \
x4 = ROTL32(x4, 11); \
xg = T32(x5 + xg); \
x5 = ROTL32(x5, 11); \
xj = T32(x6 + xj); \
x6 = ROTL32(x6, 11); \
xi = T32(x7 + xi); \
x7 = ROTL32(x7, 11); \
xl = T32(x0 + xl); \
x0 = ROTL32(x0, 11); \
xk = T32(x1 + xk); \
x1 = ROTL32(x1, 11); \
xn = T32(x2 + xn); \
x2 = ROTL32(x2, 11); \
xm = T32(x3 + xm); \
x3 = ROTL32(x3, 11); \
xp = T32(xc + xp); \
xc = ROTL32(xc, 11); \
xo = T32(xd + xo); \
xd = ROTL32(xd, 11); \
xr = T32(xe + xr); \
xe = ROTL32(xe, 11); \
xq = T32(xf + xq); \
xf = ROTL32(xf, 11); \
xt = T32(x8 + xt); \
x8 = ROTL32(x8, 11); \
xs = T32(x9 + xs); \
x9 = ROTL32(x9, 11); \
xv = T32(xa + xv); \
xa = ROTL32(xa, 11); \
xu = T32(xb + xu); \
xb = ROTL32(xb, 11); \
x0 ^= xh; \
x1 ^= xg; \
x2 ^= xj; \
x3 ^= xi; \
x4 ^= xl; \
x5 ^= xk; \
x6 ^= xn; \
x7 ^= xm; \
x8 ^= xp; \
x9 ^= xo; \
xa ^= xr; \
xb ^= xq; \
xc ^= xt; \
xd ^= xs; \
xe ^= xv; \
xf ^= xu; \
} while (0)
/*
* There is no need to unroll all 16 rounds. The word-swapping permutation
* is an involution, so we need to unroll an even number of rounds. On
* "big" systems, unrolling 4 rounds yields about 97% of the speed
* achieved with full unrolling; and it keeps the code more compact
* for small architectures.
*/
#if SPH_CUBEHASH_UNROLL == 2
#define SIXTEEN_ROUNDS do { \
int j; \
for (j = 0; j < 8; j ++) { \
ROUND_EVEN; \
ROUND_ODD; \
} \
} while (0)
#elif SPH_CUBEHASH_UNROLL == 4
#define SIXTEEN_ROUNDS do { \
int j; \
for (j = 0; j < 4; j ++) { \
ROUND_EVEN; \
ROUND_ODD; \
ROUND_EVEN; \
ROUND_ODD; \
} \
} while (0)
#elif SPH_CUBEHASH_UNROLL == 8
#define SIXTEEN_ROUNDS do { \
int j; \
for (j = 0; j < 2; j ++) { \
ROUND_EVEN; \
ROUND_ODD; \
ROUND_EVEN; \
ROUND_ODD; \
ROUND_EVEN; \
ROUND_ODD; \
ROUND_EVEN; \
ROUND_ODD; \
} \
} while (0)
#else
#define SIXTEEN_ROUNDS do { \
ROUND_EVEN; \
ROUND_ODD; \
ROUND_EVEN; \
ROUND_ODD; \
ROUND_EVEN; \
ROUND_ODD; \
ROUND_EVEN; \
ROUND_ODD; \
ROUND_EVEN; \
ROUND_ODD; \
ROUND_EVEN; \
ROUND_ODD; \
ROUND_EVEN; \
ROUND_ODD; \
ROUND_EVEN; \
ROUND_ODD; \
} while (0)
#endif
static void
cubehash_init(sph_cubehash_context *sc, const sph_u32 *iv)
{
memcpy(sc->state, iv, sizeof sc->state);
sc->ptr = 0;
}
static void
cubehash_core(sph_cubehash_context *sc, const void *data, size_t len)
{
unsigned char *buf;
size_t ptr;
DECL_STATE
buf = sc->buf;
ptr = sc->ptr;
if (len < (sizeof sc->buf) - ptr) {
memcpy(buf + ptr, data, len);
ptr += len;
sc->ptr = ptr;
return;
}
READ_STATE(sc);
while (len > 0) {
size_t clen;
clen = (sizeof sc->buf) - ptr;
if (clen > len)
clen = len;
memcpy(buf + ptr, data, clen);
ptr += clen;
data = (const unsigned char *)data + clen;
len -= clen;
if (ptr == sizeof sc->buf) {
INPUT_BLOCK;
SIXTEEN_ROUNDS;
ptr = 0;
}
}
WRITE_STATE(sc);
sc->ptr = ptr;
}
static void
cubehash_close(sph_cubehash_context *sc, unsigned ub, unsigned n,
void *dst, size_t out_size_w32)
{
unsigned char *buf, *out;
size_t ptr;
unsigned z;
int i;
DECL_STATE
buf = sc->buf;
ptr = sc->ptr;
z = 0x80 >> n;
buf[ptr ++] = ((ub & -z) | z) & 0xFF;
memset(buf + ptr, 0, (sizeof sc->buf) - ptr);
READ_STATE(sc);
INPUT_BLOCK;
for (i = 0; i < 11; i ++) {
SIXTEEN_ROUNDS;
if (i == 0)
xv ^= SPH_C32(1);
}
WRITE_STATE(sc);
out = dst;
for (z = 0; z < out_size_w32; z ++)
sph_enc32le(out + (z << 2), sc->state[z]);
}
/* see sph_cubehash.h */
void
sph_cubehash224_init(void *cc)
{
cubehash_init(cc, IV224);
}
/* see sph_cubehash.h */
void
sph_cubehash224(void *cc, const void *data, size_t len)
{
cubehash_core(cc, data, len);
}
/* see sph_cubehash.h */
void
sph_cubehash224_close(void *cc, void *dst)
{
sph_cubehash224_addbits_and_close(cc, 0, 0, dst);
}
/* see sph_cubehash.h */
void
sph_cubehash224_addbits_and_close(void *cc, unsigned ub, unsigned n, void *dst)
{
cubehash_close(cc, ub, n, dst, 7);
sph_cubehash224_init(cc);
}
/* see sph_cubehash.h */
void
sph_cubehash256_init(void *cc)
{
cubehash_init(cc, IV256);
}
/* see sph_cubehash.h */
void
sph_cubehash256(void *cc, const void *data, size_t len)
{
cubehash_core(cc, data, len);
}
/* see sph_cubehash.h */
void
sph_cubehash256_close(void *cc, void *dst)
{
sph_cubehash256_addbits_and_close(cc, 0, 0, dst);
}
/* see sph_cubehash.h */
void
sph_cubehash256_addbits_and_close(void *cc, unsigned ub, unsigned n, void *dst)
{
cubehash_close(cc, ub, n, dst, 8);
sph_cubehash256_init(cc);
}
/* see sph_cubehash.h */
void
sph_cubehash384_init(void *cc)
{
cubehash_init(cc, IV384);
}
/* see sph_cubehash.h */
void
sph_cubehash384(void *cc, const void *data, size_t len)
{
cubehash_core(cc, data, len);
}
/* see sph_cubehash.h */
void
sph_cubehash384_close(void *cc, void *dst)
{
sph_cubehash384_addbits_and_close(cc, 0, 0, dst);
}
/* see sph_cubehash.h */
void
sph_cubehash384_addbits_and_close(void *cc, unsigned ub, unsigned n, void *dst)
{
cubehash_close(cc, ub, n, dst, 12);
sph_cubehash384_init(cc);
}
/* see sph_cubehash.h */
void
sph_cubehash512_init(void *cc)
{
cubehash_init(cc, IV512);
}
/* see sph_cubehash.h */
void
sph_cubehash512(void *cc, const void *data, size_t len)
{
cubehash_core(cc, data, len);
}
/* see sph_cubehash.h */
void
sph_cubehash512_close(void *cc, void *dst)
{
sph_cubehash512_addbits_and_close(cc, 0, 0, dst);
}
/* see sph_cubehash.h */
void
sph_cubehash512_addbits_and_close(void *cc, unsigned ub, unsigned n, void *dst)
{
cubehash_close(cc, ub, n, dst, 16);
sph_cubehash512_init(cc);
}
#ifdef __cplusplus
}
#endif

View File

@@ -0,0 +1,292 @@
/* $Id: sph_cubehash.h 180 2010-05-08 02:29:25Z tp $ */
/**
* CubeHash interface. CubeHash is a family of functions which differ by
* their output size; this implementation defines CubeHash for output
* sizes 224, 256, 384 and 512 bits, with the "standard parameters"
* (CubeHash16/32 with the CubeHash specification notations).
*
* ==========================(LICENSE BEGIN)============================
*
* Copyright (c) 2007-2010 Projet RNRT SAPHIR
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* ===========================(LICENSE END)=============================
*
* @file sph_cubehash.h
* @author Thomas Pornin <thomas.pornin@cryptolog.com>
*/
#ifndef SPH_CUBEHASH_H__
#define SPH_CUBEHASH_H__
#ifdef __cplusplus
extern "C"{
#endif
#include <stddef.h>
#include "algo/sha3/sph_types.h"
/**
* Output size (in bits) for CubeHash-224.
*/
#define SPH_SIZE_cubehash224 224
/**
* Output size (in bits) for CubeHash-256.
*/
#define SPH_SIZE_cubehash256 256
/**
* Output size (in bits) for CubeHash-384.
*/
#define SPH_SIZE_cubehash384 384
/**
* Output size (in bits) for CubeHash-512.
*/
#define SPH_SIZE_cubehash512 512
/**
* This structure is a context for CubeHash computations: it contains the
* intermediate values and some data from the last entered block. Once
* a CubeHash computation has been performed, the context can be reused for
* another computation.
*
* The contents of this structure are private. A running CubeHash computation
* can be cloned by copying the context (e.g. with a simple
* <code>memcpy()</code>).
*/
typedef struct {
#ifndef DOXYGEN_IGNORE
unsigned char buf[32]; /* first field, for alignment */
size_t ptr;
sph_u32 state[32];
#endif
} sph_cubehash_context;
/**
* Type for a CubeHash-224 context (identical to the common context).
*/
typedef sph_cubehash_context sph_cubehash224_context;
/**
* Type for a CubeHash-256 context (identical to the common context).
*/
typedef sph_cubehash_context sph_cubehash256_context;
/**
* Type for a CubeHash-384 context (identical to the common context).
*/
typedef sph_cubehash_context sph_cubehash384_context;
/**
* Type for a CubeHash-512 context (identical to the common context).
*/
typedef sph_cubehash_context sph_cubehash512_context;
/**
* Initialize a CubeHash-224 context. This process performs no memory
* allocation.
*
* @param cc the CubeHash-224 context (pointer to a
* <code>sph_cubehash224_context</code>)
*/
void sph_cubehash224_init(void *cc);
/**
* Process some data bytes. It is acceptable that <code>len</code> is zero
* (in which case this function does nothing).
*
* @param cc the CubeHash-224 context
* @param data the input data
* @param len the input data length (in bytes)
*/
void sph_cubehash224(void *cc, const void *data, size_t len);
/**
* Terminate the current CubeHash-224 computation and output the result into
* the provided buffer. The destination buffer must be wide enough to
* accomodate the result (28 bytes). The context is automatically
* reinitialized.
*
* @param cc the CubeHash-224 context
* @param dst the destination buffer
*/
void sph_cubehash224_close(void *cc, void *dst);
/**
* Add a few additional bits (0 to 7) to the current computation, then
* terminate it and output the result in the provided buffer, which must
* be wide enough to accomodate the result (28 bytes). If bit number i
* in <code>ub</code> has value 2^i, then the extra bits are those
* numbered 7 downto 8-n (this is the big-endian convention at the byte
* level). The context is automatically reinitialized.
*
* @param cc the CubeHash-224 context
* @param ub the extra bits
* @param n the number of extra bits (0 to 7)
* @param dst the destination buffer
*/
void sph_cubehash224_addbits_and_close(
void *cc, unsigned ub, unsigned n, void *dst);
/**
* Initialize a CubeHash-256 context. This process performs no memory
* allocation.
*
* @param cc the CubeHash-256 context (pointer to a
* <code>sph_cubehash256_context</code>)
*/
void sph_cubehash256_init(void *cc);
/**
* Process some data bytes. It is acceptable that <code>len</code> is zero
* (in which case this function does nothing).
*
* @param cc the CubeHash-256 context
* @param data the input data
* @param len the input data length (in bytes)
*/
void sph_cubehash256(void *cc, const void *data, size_t len);
/**
* Terminate the current CubeHash-256 computation and output the result into
* the provided buffer. The destination buffer must be wide enough to
* accomodate the result (32 bytes). The context is automatically
* reinitialized.
*
* @param cc the CubeHash-256 context
* @param dst the destination buffer
*/
void sph_cubehash256_close(void *cc, void *dst);
/**
* Add a few additional bits (0 to 7) to the current computation, then
* terminate it and output the result in the provided buffer, which must
* be wide enough to accomodate the result (32 bytes). If bit number i
* in <code>ub</code> has value 2^i, then the extra bits are those
* numbered 7 downto 8-n (this is the big-endian convention at the byte
* level). The context is automatically reinitialized.
*
* @param cc the CubeHash-256 context
* @param ub the extra bits
* @param n the number of extra bits (0 to 7)
* @param dst the destination buffer
*/
void sph_cubehash256_addbits_and_close(
void *cc, unsigned ub, unsigned n, void *dst);
/**
* Initialize a CubeHash-384 context. This process performs no memory
* allocation.
*
* @param cc the CubeHash-384 context (pointer to a
* <code>sph_cubehash384_context</code>)
*/
void sph_cubehash384_init(void *cc);
/**
* Process some data bytes. It is acceptable that <code>len</code> is zero
* (in which case this function does nothing).
*
* @param cc the CubeHash-384 context
* @param data the input data
* @param len the input data length (in bytes)
*/
void sph_cubehash384(void *cc, const void *data, size_t len);
/**
* Terminate the current CubeHash-384 computation and output the result into
* the provided buffer. The destination buffer must be wide enough to
* accomodate the result (48 bytes). The context is automatically
* reinitialized.
*
* @param cc the CubeHash-384 context
* @param dst the destination buffer
*/
void sph_cubehash384_close(void *cc, void *dst);
/**
* Add a few additional bits (0 to 7) to the current computation, then
* terminate it and output the result in the provided buffer, which must
* be wide enough to accomodate the result (48 bytes). If bit number i
* in <code>ub</code> has value 2^i, then the extra bits are those
* numbered 7 downto 8-n (this is the big-endian convention at the byte
* level). The context is automatically reinitialized.
*
* @param cc the CubeHash-384 context
* @param ub the extra bits
* @param n the number of extra bits (0 to 7)
* @param dst the destination buffer
*/
void sph_cubehash384_addbits_and_close(
void *cc, unsigned ub, unsigned n, void *dst);
/**
* Initialize a CubeHash-512 context. This process performs no memory
* allocation.
*
* @param cc the CubeHash-512 context (pointer to a
* <code>sph_cubehash512_context</code>)
*/
void sph_cubehash512_init(void *cc);
/**
* Process some data bytes. It is acceptable that <code>len</code> is zero
* (in which case this function does nothing).
*
* @param cc the CubeHash-512 context
* @param data the input data
* @param len the input data length (in bytes)
*/
void sph_cubehash512(void *cc, const void *data, size_t len);
/**
* Terminate the current CubeHash-512 computation and output the result into
* the provided buffer. The destination buffer must be wide enough to
* accomodate the result (64 bytes). The context is automatically
* reinitialized.
*
* @param cc the CubeHash-512 context
* @param dst the destination buffer
*/
void sph_cubehash512_close(void *cc, void *dst);
/**
* Add a few additional bits (0 to 7) to the current computation, then
* terminate it and output the result in the provided buffer, which must
* be wide enough to accomodate the result (64 bytes). If bit number i
* in <code>ub</code> has value 2^i, then the extra bits are those
* numbered 7 downto 8-n (this is the big-endian convention at the byte
* level). The context is automatically reinitialized.
*
* @param cc the CubeHash-512 context
* @param ub the extra bits
* @param n the number of extra bits (0 to 7)
* @param dst the destination buffer
*/
void sph_cubehash512_addbits_and_close(
void *cc, unsigned ub, unsigned n, void *dst);
#ifdef __cplusplus
}
#endif
#endif

View File

View File

@@ -0,0 +1,268 @@
/* CubeHash 16/32 is recommended for SHA-3 "normal", 16/1 for "formal" */
#define CUBEHASH_ROUNDS 16
#define CUBEHASH_BLOCKBYTES 32
#define OPTIMIZE_SSE2
#if defined(OPTIMIZE_SSE2)
#include <emmintrin.h>
#endif
#ifdef __AVX2__
#include <immintrin.h>
#endif
#include "cubehash_sse2.h"
#include "algo/sha3/sha3-defs.h"
//enum { SUCCESS = 0, FAIL = 1, BAD_HASHBITLEN = 2 };
//#if defined(OPTIMIZE_SSE2)
static void transform( cubehashParam *sp )
{
int r;
const int rounds = sp->rounds;
#ifdef __AVX2__
__m256i x0, x1, x2, x3, y0, y1;
#ifdef UNUSED
__m256i y2, y3;
#endif
x0 = _mm256_load_si256( 0 + sp->x );
x1 = _mm256_load_si256( 2 + sp->x );
x2 = _mm256_load_si256( 4 + sp->x );
x3 = _mm256_load_si256( 6 + sp->x );
for ( r = 0; r < rounds; ++r )
{
x2 = _mm256_add_epi32( x0, x2 );
x3 = _mm256_add_epi32( x1, x3 );
y0 = x1;
y1 = x0;
x0 = _mm256_xor_si256( _mm256_slli_epi32( y0, 7 ),
_mm256_srli_epi32( y0, 25 ) );
x1 = _mm256_xor_si256( _mm256_slli_epi32( y1, 7 ),
_mm256_srli_epi32( y1, 25 ) );
x0 = _mm256_xor_si256( x0, x2 );
x1 = _mm256_xor_si256( x1, x3 );
x2 = _mm256_shuffle_epi32( x2, 0x4e );
x3 = _mm256_shuffle_epi32( x3, 0x4e );
x2 = _mm256_add_epi32( x0, x2 );
x3 = _mm256_add_epi32( x1, x3 );
y0 = _mm256_permute2f128_si256( x0, x0, 1 );
y1 = _mm256_permute2f128_si256( x1, x1, 1 );
x0 = _mm256_xor_si256( _mm256_slli_epi32( y0, 11 ),
_mm256_srli_epi32( y0, 21 ) );
x1 = _mm256_xor_si256( _mm256_slli_epi32( y1, 11 ),
_mm256_srli_epi32( y1, 21 ) );
x0 = _mm256_xor_si256( x0, x2 );
x1 = _mm256_xor_si256( x1, x3 );
x2 = _mm256_shuffle_epi32( x2, 0xb1 );
x3 = _mm256_shuffle_epi32( x3, 0xb1 );
}
_mm256_store_si256( 0 + sp->x, x0 );
_mm256_store_si256( 2 + sp->x, x1 );
_mm256_store_si256( 4 + sp->x, x2 );
_mm256_store_si256( 6 + sp->x, x3 );
#elif defined OPTIMIZE_SSE2
__m128i x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3;
#ifdef UNUSED
__m128i y4, y5, y6, y7;
#endif
x0 = _mm_load_si128(0 + sp->x);
x1 = _mm_load_si128(1 + sp->x);
x2 = _mm_load_si128(2 + sp->x);
x3 = _mm_load_si128(3 + sp->x);
x4 = _mm_load_si128(4 + sp->x);
x5 = _mm_load_si128(5 + sp->x);
x6 = _mm_load_si128(6 + sp->x);
x7 = _mm_load_si128(7 + sp->x);
for (r = 0; r < rounds; ++r) {
x4 = _mm_add_epi32(x0, x4);
x5 = _mm_add_epi32(x1, x5);
x6 = _mm_add_epi32(x2, x6);
x7 = _mm_add_epi32(x3, x7);
y0 = x2;
y1 = x3;
y2 = x0;
y3 = x1;
x0 = _mm_xor_si128(_mm_slli_epi32(y0, 7), _mm_srli_epi32(y0, 25));
x1 = _mm_xor_si128(_mm_slli_epi32(y1, 7), _mm_srli_epi32(y1, 25));
x2 = _mm_xor_si128(_mm_slli_epi32(y2, 7), _mm_srli_epi32(y2, 25));
x3 = _mm_xor_si128(_mm_slli_epi32(y3, 7), _mm_srli_epi32(y3, 25));
x0 = _mm_xor_si128(x0, x4);
x1 = _mm_xor_si128(x1, x5);
x2 = _mm_xor_si128(x2, x6);
x3 = _mm_xor_si128(x3, x7);
x4 = _mm_shuffle_epi32(x4, 0x4e);
x5 = _mm_shuffle_epi32(x5, 0x4e);
x6 = _mm_shuffle_epi32(x6, 0x4e);
x7 = _mm_shuffle_epi32(x7, 0x4e);
x4 = _mm_add_epi32(x0, x4);
x5 = _mm_add_epi32(x1, x5);
x6 = _mm_add_epi32(x2, x6);
x7 = _mm_add_epi32(x3, x7);
y0 = x1;
y1 = x0;
y2 = x3;
y3 = x2;
x0 = _mm_xor_si128(_mm_slli_epi32(y0, 11), _mm_srli_epi32(y0, 21));
x1 = _mm_xor_si128(_mm_slli_epi32(y1, 11), _mm_srli_epi32(y1, 21));
x2 = _mm_xor_si128(_mm_slli_epi32(y2, 11), _mm_srli_epi32(y2, 21));
x3 = _mm_xor_si128(_mm_slli_epi32(y3, 11), _mm_srli_epi32(y3, 21));
x0 = _mm_xor_si128(x0, x4);
x1 = _mm_xor_si128(x1, x5);
x2 = _mm_xor_si128(x2, x6);
x3 = _mm_xor_si128(x3, x7);
x4 = _mm_shuffle_epi32(x4, 0xb1);
x5 = _mm_shuffle_epi32(x5, 0xb1);
x6 = _mm_shuffle_epi32(x6, 0xb1);
x7 = _mm_shuffle_epi32(x7, 0xb1);
}
_mm_store_si128(0 + sp->x, x0);
_mm_store_si128(1 + sp->x, x1);
_mm_store_si128(2 + sp->x, x2);
_mm_store_si128(3 + sp->x, x3);
_mm_store_si128(4 + sp->x, x4);
_mm_store_si128(5 + sp->x, x5);
_mm_store_si128(6 + sp->x, x6);
_mm_store_si128(7 + sp->x, x7);
#else /* OPTIMIZE_SSE2 */
// Tis code probably not used, sph used instead for uniptoimized mining.
#define ROTATE(a,b) (((a) << (b)) | ((a) >> (32 - b)))
uint32_t y[16];
int i;
for (r = 0; r < rounds; ++r) {
for (i = 0; i < 16; ++i) sp->x[i + 16] += sp->x[i];
for (i = 0; i < 16; ++i) sp->x[i] = ROTATE(y[i],7);
for (i = 0; i < 16; ++i) sp->x[i] ^= sp->x[i + 16];
for (i = 0; i < 16; ++i) y[i ^ 2] = sp->x[i + 16];
for (i = 0; i < 16; ++i) sp->x[i + 16] = y[i];
for (i = 0; i < 16; ++i) sp->x[i + 16] += sp->x[i];
for (i = 0; i < 16; ++i) y[i ^ 4] = sp->x[i];
for (i = 0; i < 16; ++i) sp->x[i] = ROTATE(y[i],11);
for (i = 0; i < 16; ++i) sp->x[i] ^= sp->x[i + 16];
for (i = 0; i < 16; ++i) y[i ^ 1] = sp->x[i + 16];
for (i = 0; i < 16; ++i) sp->x[i + 16] = y[i];
}
#endif
} // transform
int cubehashInit(cubehashParam *sp, int hashbitlen, int rounds, int blockbytes)
{
int i;
if (hashbitlen < 8) return BAD_HASHBITLEN;
if (hashbitlen > 512) return BAD_HASHBITLEN;
if (hashbitlen != 8 * (hashbitlen / 8)) return BAD_HASHBITLEN;
/* Sanity checks */
if (rounds <= 0 || rounds > 32) rounds = CUBEHASH_ROUNDS;
if (blockbytes <= 0 || blockbytes >= 256) blockbytes = CUBEHASH_BLOCKBYTES;
sp->hashbitlen = hashbitlen;
sp->rounds = rounds;
sp->blockbytes = blockbytes;
#if defined(OPTIMIZE_SSE2)
for (i = 0; i < 8; ++i) sp->x[i] = _mm_set_epi32(0, 0, 0, 0);
sp->x[0] = _mm_set_epi32(0, sp->rounds, sp->blockbytes, hashbitlen / 8);
#else
for (i = 0; i < 32; ++i) sp->x[i] = 0;
sp->x[0] = hashbitlen / 8;
sp->x[1] = sp->blockbytes;
sp->x[2] = sp->rounds;
#endif
for (i = 0; i < 10; ++i) transform(sp);
sp->pos = 0;
return SUCCESS;
}
int
cubehashReset(cubehashParam *sp)
{
return cubehashInit(sp, sp->hashbitlen, sp->rounds, sp->blockbytes);
}
int cubehashUpdate(cubehashParam *sp, const byte *data, size_t size)
{
uint64_t databitlen = 8 * size;
/* caller promises us that previous data had integral number of bytes */
/* so sp->pos is a multiple of 8 */
while (databitlen >= 8) {
#if defined(OPTIMIZE_SSE2)
((unsigned char *) sp->x)[sp->pos / 8] ^= *data;
#else
uint32_t u = *data;
u <<= 8 * ((sp->pos / 8) % 4);
sp->x[sp->pos / 32] ^= u;
#endif
data += 1;
databitlen -= 8;
sp->pos += 8;
if (sp->pos == 8 * sp->blockbytes) {
transform(sp);
sp->pos = 0;
}
}
if (databitlen > 0) {
#if defined(OPTIMIZE_SSE2)
((unsigned char *) sp->x)[sp->pos / 8] ^= *data;
#else
uint32_t u = *data;
u <<= 8 * ((sp->pos / 8) % 4);
sp->x[sp->pos / 32] ^= u;
#endif
sp->pos += databitlen;
}
return SUCCESS;
}
int cubehashDigest(cubehashParam *sp, byte *digest)
{
int i;
#if defined(OPTIMIZE_SSE2)
((unsigned char *) sp->x)[sp->pos / 8] ^= (128 >> (sp->pos % 8));
transform(sp);
sp->x[7] = _mm_xor_si128(sp->x[7], _mm_set_epi32(1, 0, 0, 0));
for (i = 0; i < 10; ++i) transform(sp);
for (i = 0; i < sp->hashbitlen / 8; ++i)
digest[i] = ((unsigned char *) sp->x)[i];
#else
uint32_t u;
u = (128 >> (sp->pos % 8));
u <<= 8 * ((sp->pos / 8) % 4);
sp->x[sp->pos / 32] ^= u;
transform(sp);
sp->x[31] ^= 1;
for (i = 0; i < 10; ++i) transform(sp);
for (i = 0; i < sp->hashbitlen / 8; ++i)
digest[i] = sp->x[i / 4] >> (8 * (i % 4));
#endif
return SUCCESS;
}

View File

@@ -0,0 +1,292 @@
/* CubeHash 16/32 is recommended for SHA-3 "normal", 16/1 for "formal" */
#define CUBEHASH_ROUNDS 16
#define CUBEHASH_BLOCKBYTES 32
#define OPTIMIZE_SSE2
#if defined(OPTIMIZE_SSE2)
#include <emmintrin.h>
#endif
#ifdef __AVX2__
#include <immintrin.h>
#endif
#include "cubehash_sse2.h"
#include "algo/sha3/sha3-defs.h"
//enum { SUCCESS = 0, FAIL = 1, BAD_HASHBITLEN = 2 };
//#if defined(OPTIMIZE_SSE2)
static inline void transform( cubehashParam *sp )
{
int r;
#ifdef __AVX2__
__m256i x0, x1, x2, x3, y0, y1;
#ifdef UNUSED
__m256i y2, y3;
#endif
x0 = _mm256_loadu_si256( 0 + sp->x );
x1 = _mm256_loadu_si256( 2 + sp->x );
x2 = _mm256_loadu_si256( 4 + sp->x );
x3 = _mm256_loadu_si256( 6 + sp->x );
for ( r = 0; r < sp->rounds; ++r )
{
x2 = _mm256_add_epi32( x0, x2 );
x3 = _mm256_add_epi32( x1, x3 );
y0 = x1;
y1 = x0;
x0 = _mm256_xor_si256( _mm256_slli_epi32( y0, 7 ),
_mm256_srli_epi32( y0, 25 ) );
x1 = _mm256_xor_si256( _mm256_slli_epi32( y1, 7 ),
_mm256_srli_epi32( y1, 25 ) );
x0 = _mm256_xor_si256( x0, x2 );
x1 = _mm256_xor_si256( x1, x3 );
x2 = _mm256_shuffle_epi32( x2, 0x4e );
x3 = _mm256_shuffle_epi32( x3, 0x4e );
x2 = _mm256_add_epi32( x0, x2 );
x3 = _mm256_add_epi32( x1, x3 );
y0 = _mm256_permute2f128_si256( x0, x0, 1 );
y1 = _mm256_permute2f128_si256( x1, x1, 1 );
x0 = _mm256_xor_si256( _mm256_slli_epi32( y0, 11 ),
_mm256_srli_epi32( y0, 21 ) );
x1 = _mm256_xor_si256( _mm256_slli_epi32( y1, 11 ),
_mm256_srli_epi32( y1, 21 ) );
x0 = _mm256_xor_si256( x0, x2 );
x1 = _mm256_xor_si256( x1, x3 );
x2 = _mm256_shuffle_epi32( x2, 0xb1 );
x3 = _mm256_shuffle_epi32( x3, 0xb1 );
}
_mm256_storeu_si256( 0 + sp->x, x0 );
_mm256_storeu_si256( 2 + sp->x, x1 );
_mm256_storeu_si256( 4 + sp->x, x2 );
_mm256_storeu_si256( 6 + sp->x, x3 );
#elif defined OPTIMIZE_SSE2
__m128i x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3;
#ifdef UNUSED
__m128i y4, y5, y6, y7;
#endif
x0 = _mm_load_si128(0 + sp->x);
x1 = _mm_load_si128(1 + sp->x);
x2 = _mm_load_si128(2 + sp->x);
x3 = _mm_load_si128(3 + sp->x);
x4 = _mm_load_si128(4 + sp->x);
x5 = _mm_load_si128(5 + sp->x);
x6 = _mm_load_si128(6 + sp->x);
x7 = _mm_load_si128(7 + sp->x);
for (r = 0; r < sp->rounds; ++r) {
x4 = _mm_add_epi32(x0, x4);
x5 = _mm_add_epi32(x1, x5);
x6 = _mm_add_epi32(x2, x6);
x7 = _mm_add_epi32(x3, x7);
y0 = x2;
y1 = x3;
y2 = x0;
y3 = x1;
x0 = _mm_xor_si128(_mm_slli_epi32(y0, 7), _mm_srli_epi32(y0, 25));
x1 = _mm_xor_si128(_mm_slli_epi32(y1, 7), _mm_srli_epi32(y1, 25));
x2 = _mm_xor_si128(_mm_slli_epi32(y2, 7), _mm_srli_epi32(y2, 25));
x3 = _mm_xor_si128(_mm_slli_epi32(y3, 7), _mm_srli_epi32(y3, 25));
x0 = _mm_xor_si128(x0, x4);
x1 = _mm_xor_si128(x1, x5);
x2 = _mm_xor_si128(x2, x6);
x3 = _mm_xor_si128(x3, x7);
x4 = _mm_shuffle_epi32(x4, 0x4e);
x5 = _mm_shuffle_epi32(x5, 0x4e);
x6 = _mm_shuffle_epi32(x6, 0x4e);
x7 = _mm_shuffle_epi32(x7, 0x4e);
x4 = _mm_add_epi32(x0, x4);
x5 = _mm_add_epi32(x1, x5);
x6 = _mm_add_epi32(x2, x6);
x7 = _mm_add_epi32(x3, x7);
y0 = x1;
y1 = x0;
y2 = x3;
y3 = x2;
x0 = _mm_xor_si128(_mm_slli_epi32(y0, 11), _mm_srli_epi32(y0, 21));
x1 = _mm_xor_si128(_mm_slli_epi32(y1, 11), _mm_srli_epi32(y1, 21));
x2 = _mm_xor_si128(_mm_slli_epi32(y2, 11), _mm_srli_epi32(y2, 21));
x3 = _mm_xor_si128(_mm_slli_epi32(y3, 11), _mm_srli_epi32(y3, 21));
x0 = _mm_xor_si128(x0, x4);
x1 = _mm_xor_si128(x1, x5);
x2 = _mm_xor_si128(x2, x6);
x3 = _mm_xor_si128(x3, x7);
x4 = _mm_shuffle_epi32(x4, 0xb1);
x5 = _mm_shuffle_epi32(x5, 0xb1);
x6 = _mm_shuffle_epi32(x6, 0xb1);
x7 = _mm_shuffle_epi32(x7, 0xb1);
}
_mm_store_si128(0 + sp->x, x0);
_mm_store_si128(1 + sp->x, x1);
_mm_store_si128(2 + sp->x, x2);
_mm_store_si128(3 + sp->x, x3);
_mm_store_si128(4 + sp->x, x4);
_mm_store_si128(5 + sp->x, x5);
_mm_store_si128(6 + sp->x, x6);
_mm_store_si128(7 + sp->x, x7);
#else /* OPTIMIZE_SSE2 */
// Tis code probably not used, sph used instead for uniptoimized mining.
#define ROTATE(a,b) (((a) << (b)) | ((a) >> (32 - b)))
uint32_t y[16];
int i;
for (r = 0; r < sp->rounds; ++r) {
for (i = 0; i < 16; ++i) sp->x[i + 16] += sp->x[i];
for (i = 0; i < 16; ++i) sp->x[i] = ROTATE(y[i],7);
for (i = 0; i < 16; ++i) sp->x[i] ^= sp->x[i + 16];
for (i = 0; i < 16; ++i) y[i ^ 2] = sp->x[i + 16];
for (i = 0; i < 16; ++i) sp->x[i + 16] = y[i];
for (i = 0; i < 16; ++i) sp->x[i + 16] += sp->x[i];
for (i = 0; i < 16; ++i) y[i ^ 4] = sp->x[i];
for (i = 0; i < 16; ++i) sp->x[i] = ROTATE(y[i],11);
for (i = 0; i < 16; ++i) sp->x[i] ^= sp->x[i + 16];
for (i = 0; i < 16; ++i) y[i ^ 1] = sp->x[i + 16];
for (i = 0; i < 16; ++i) sp->x[i + 16] = y[i];
}
#endif
} // transform
int cubehashInit(cubehashParam *sp, int hashbitlen, int rounds, int blockbytes)
{
int i;
if (hashbitlen < 8) return BAD_HASHBITLEN;
if (hashbitlen > 512) return BAD_HASHBITLEN;
if (hashbitlen != 8 * (hashbitlen / 8)) return BAD_HASHBITLEN;
/* Sanity checks */
if (rounds <= 0 || rounds > 32) rounds = CUBEHASH_ROUNDS;
if (blockbytes <= 0 || blockbytes >= 256) blockbytes = CUBEHASH_BLOCKBYTES;
sp->hashbitlen = hashbitlen;
sp->rounds = rounds;
sp->blockbytes = blockbytes;
#if defined __AVX2__
for (i = 0; i < 4; ++i) sp->x[i] = _mm256_set_epi64x( 0, 0, 0, 0 );
// try swapping
sp->x[0] = _mm256_set_epi32( 0, sp->rounds, sp->blockbytes, hashbitlen / 8,
0, 0, 0, 0);
// sp->x[0] = _mm256_set_epi32( 0, 0, 0, 0,
// 0, sp->rounds, sp->blockbytes, hashbitlen / 8 );
#elif defined(OPTIMIZE_SSE2)
for (i = 0; i < 8; ++i) sp->x[i] = _mm_set_epi32(0, 0, 0, 0);
sp->x[0] = _mm_set_epi32(0, sp->rounds, sp->blockbytes, hashbitlen / 8);
#else
for (i = 0; i < 32; ++i) sp->x[i] = 0;
sp->x[0] = hashbitlen / 8;
sp->x[1] = sp->blockbytes;
sp->x[2] = sp->rounds;
#endif
for (i = 0; i < 10; ++i) transform(sp);
sp->pos = 0;
return SUCCESS;
}
int
cubehashReset(cubehashParam *sp)
{
return cubehashInit(sp, sp->hashbitlen, sp->rounds, sp->blockbytes);
}
int cubehashUpdate(cubehashParam *sp, const byte *data, size_t size)
{
uint64_t databitlen = 8 * size;
/* caller promises us that previous data had integral number of bytes */
/* so sp->pos is a multiple of 8 */
while (databitlen >= 8) {
#if defined __AVX2__
((unsigned char *) sp->x)[sp->pos / 8] ^= *data;
#elif defined(OPTIMIZE_SSE2)
((unsigned char *) sp->x)[sp->pos / 8] ^= *data;
#else
uint32_t u = *data;
u <<= 8 * ((sp->pos / 8) % 4);
sp->x[sp->pos / 32] ^= u;
#endif
data += 1;
databitlen -= 8;
sp->pos += 8;
if (sp->pos == 8 * sp->blockbytes) {
transform(sp);
sp->pos = 0;
}
}
if (databitlen > 0) {
#if defined __AVX2__
((unsigned char *) sp->x)[sp->pos / 8] ^= *data;
#elif defined(OPTIMIZE_SSE2)
((unsigned char *) sp->x)[sp->pos / 8] ^= *data;
#else
uint32_t u = *data;
u <<= 8 * ((sp->pos / 8) % 4);
sp->x[sp->pos / 32] ^= u;
#endif
sp->pos += databitlen;
}
return SUCCESS;
}
int cubehashDigest(cubehashParam *sp, byte *digest)
{
int i;
#if defined __AVX2__
((unsigned char *) sp->x)[sp->pos / 8] ^= (128 >> (sp->pos % 8));
__m128i t;
transform(sp);
// try control 0
// t = _mm256_extracti128_si256( sp->x[7], 1 );
t = _mm256_extracti128_si256( sp->x[7], 0 );
t = _mm_xor_si128( t, _mm_set_epi32(1, 0, 0, 0) );
// _mm256_inserti128_si256( sp->x[7], t, 1 );
_mm256_inserti128_si256( sp->x[7], t, 0 );
for (i = 0; i < 10; ++i) transform(sp);
for (i = 0; i < sp->hashbitlen / 8; ++i)
digest[i] = ((unsigned char *) sp->x)[i];
#elif defined(OPTIMIZE_SSE2)
((unsigned char *) sp->x)[sp->pos / 8] ^= (128 >> (sp->pos % 8));
transform(sp);
sp->x[7] = _mm_xor_si128(sp->x[7], _mm_set_epi32(1, 0, 0, 0));
for (i = 0; i < 10; ++i) transform(sp);
for (i = 0; i < sp->hashbitlen / 8; ++i)
digest[i] = ((unsigned char *) sp->x)[i];
#else
uint32_t u;
u = (128 >> (sp->pos % 8));
u <<= 8 * ((sp->pos / 8) % 4);
sp->x[sp->pos / 32] ^= u;
transform(sp);
sp->x[31] ^= 1;
for (i = 0; i < 10; ++i) transform(sp);
for (i = 0; i < sp->hashbitlen / 8; ++i)
digest[i] = sp->x[i / 4] >> (8 * (i % 4));
#endif
return SUCCESS;
}

View File

@@ -0,0 +1,64 @@
#ifndef CUBEHASH_SSE2_H__
#define CUBEHASH_SSE2_H__
#include "compat.h"
#include <stdint.h>
#include "algo/sha3/sha3-defs.h"
//#include <beecrypt/beecrypt.h>
//#if defined(__SSE2__)
#define OPTIMIZE_SSE2
//#endif
#if defined(OPTIMIZE_SSE2)
#include <emmintrin.h>
#endif
/*!\brief Holds all the parameters necessary for the CUBEHASH algorithm.
* \ingroup HASH_cubehash_m
*/
struct _cubehashParam
//#endif
{
int hashbitlen;
int rounds;
int blockbytes;
int pos; /* number of bits read into x from current block */
#if defined(OPTIMIZE_SSE2)
__m128i _ALIGN(256) x[8];
#else
uint32_t x[32];
#endif
};
//#ifndef __cplusplus
typedef struct _cubehashParam cubehashParam;
//#endif
#ifdef __cplusplus
extern "C" {
#endif
/*!\var cubehash256
* \brief Holds the full API description of the CUBEHASH algorithm.
*/
//extern BEECRYPTAPI const hashFunction cubehash256;
//BEECRYPTAPI
int cubehashInit(cubehashParam* sp, int hashbitlen, int rounds, int blockbytes);
//BEECRYPTAPI
int cubehashReset(cubehashParam* sp);
//BEECRYPTAPI
int cubehashUpdate(cubehashParam* sp, const byte *data, size_t size);
//BEECRYPTAPI
int cubehashDigest(cubehashParam* sp, byte *digest);
#ifdef __cplusplus
}
#endif
#endif /* H_CUBEHASH */

264
algo/drop.c Normal file
View File

@@ -0,0 +1,264 @@
/**
* ==========================(LICENSE BEGIN)============================
*
* Copyright (c) 2015 kernels10, tpruvot
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* ===========================(LICENSE END)=============================
*
* @file drop.c
* @author kernels10 <kernels10@gmail.com.com>
* @author tpruvot <tpruvot@github>
*/
#define POK_BOOL_MASK 0x00008000
#define POK_DATA_MASK 0xFFFF0000
#include "miner.h"
#include "algo-gate-api.h"
#include <string.h>
#include "algo/blake/sph_blake.h"
#include "algo/groestl/sph_groestl.h"
#include "algo/jh/sph_jh.h"
#include "algo/keccak/sph_keccak.h"
#include "algo/skein/sph_skein.h"
#include "algo/cubehash/sph_cubehash.h"
#include "algo/echo/sph_echo.h"
#include "algo/fugue//sph_fugue.h"
#include "algo/luffa/sph_luffa.h"
#include "algo/simd/sph_simd.h"
#include "algo/shavite/sph_shavite.h"
static void shiftr_lp(const uint32_t *input, uint32_t *output, unsigned int shift)
{
if(!shift) {
memcpy(output, input, 64);
return;
}
memset(output, 0, 64);
for(int i = 0; i < 15; ++i) {
output[i + 1] |= (input[i] >> (32 - shift));
output[i] |= (input[i] << shift);
}
output[15] |= (input[15] << shift);
return;
}
static void switchHash(const void *input, void *output, int id)
{
/*
sph_keccak512_context ctx_keccak;
sph_blake512_context ctx_blake;
sph_groestl512_context ctx_groestl;
sph_skein512_context ctx_skein;
sph_luffa512_context ctx_luffa;
sph_echo512_context ctx_echo;
sph_simd512_context ctx_simd;
sph_cubehash512_context ctx_cubehash;
sph_fugue512_context ctx_fugue;
sph_shavite512_context ctx_shavite;
switch(id) {
case 0:
sph_keccak512_init(&ctx_keccak); sph_keccak512(&ctx_keccak, input, 64); sph_keccak512_close(&ctx_keccak, output);
break;
case 1:
sph_blake512_init(&ctx_blake); sph_blake512(&ctx_blake, input, 64); sph_blake512_close(&ctx_blake, output);
break;
case 2:
sph_groestl512_init(&ctx_groestl); sph_groestl512(&ctx_groestl, input, 64); sph_groestl512_close(&ctx_groestl, output);
break;
case 3:
sph_skein512_init(&ctx_skein); sph_skein512(&ctx_skein, input, 64); sph_skein512_close(&ctx_skein, output);
break;
case 4:
sph_luffa512_init(&ctx_luffa); sph_luffa512(&ctx_luffa, input, 64); sph_luffa512_close(&ctx_luffa, output);
break;
case 5:
sph_echo512_init(&ctx_echo); sph_echo512(&ctx_echo, input, 64); sph_echo512_close(&ctx_echo, output);
break;
case 6:
sph_shavite512_init(&ctx_shavite); sph_shavite512(&ctx_shavite, input, 64); sph_shavite512_close(&ctx_shavite, output);
break;
case 7:
sph_fugue512_init(&ctx_fugue); sph_fugue512(&ctx_fugue, input, 64); sph_fugue512_close(&ctx_fugue, output);
break;
case 8:
sph_simd512_init(&ctx_simd); sph_simd512(&ctx_simd, input, 64); sph_simd512_close(&ctx_simd, output);
break;
case 9:
sph_cubehash512_init(&ctx_cubehash); sph_cubehash512(&ctx_cubehash, input, 64); sph_cubehash512_close(&ctx_cubehash, output);
break;
default:
break;
}
*/
}
void droplp_hash(void *state, const void *input)
{
uint32_t _ALIGN(64) hash[2][16];
sph_jh512_context ctx_jh;
uint32_t *hashA = hash[0];
uint32_t *hashB = hash[1];
sph_jh512_init(&ctx_jh);
sph_jh512(&ctx_jh, input, 80);
sph_jh512_close(&ctx_jh, (void*)(hashA));
unsigned int startPosition = hashA[0] % 31;
unsigned int i = 0;
int j = 0;
int start = 0;
for (i = startPosition; i < 31; i+=9) {
start = i % 10;
for (j = start; j < 10; j++) {
shiftr_lp(hashA, hashB, (i & 3));
switchHash((const void*)hashB, (void*)hashA, j);
}
for (j = 0; j < start; j++) {
shiftr_lp(hashA, hashB, (i & 3));
switchHash((const void*)hashB, (void*)hashA, j);
}
}
for (i = 0; i < startPosition; i += 9) {
start = i % 10;
for (j = start; j < 10; j++) {
shiftr_lp(hashA, hashB, (i & 3));
switchHash((const void*)hashB, (void*)hashA, j);
}
for (j = 0; j < start; j++) {
shiftr_lp(hashA, hashB, (i & 3));
switchHash((const void*)hashB, (void*)hashA, j);
}
}
memcpy(state, hashA, 32);
}
static void droplp_hash_pok(void *output, uint32_t *pdata, const uint32_t version)
{
uint32_t _ALIGN(64) hash[8];
uint32_t pok;
pdata[0] = version;
droplp_hash(hash, pdata);
// fill PoK
pok = version | (hash[0] & POK_DATA_MASK);
if (pdata[0] != pok) {
pdata[0] = pok;
droplp_hash(hash, pdata);
}
memcpy(output, hash, 32);
}
int scanhash_drop(int thr_id, struct work *work, uint32_t max_nonce, uint64_t *hashes_done)
{
uint32_t _ALIGN(64) hash[16];
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
const uint32_t version = pdata[0] & (~POK_DATA_MASK);
const uint32_t first_nonce = pdata[19];
uint32_t nonce = first_nonce;
#define tmpdata pdata
if (opt_benchmark)
ptarget[7] = 0x07ff;
const uint32_t htarg = ptarget[7];
do {
tmpdata[19] = nonce;
droplp_hash_pok(hash, tmpdata, version);
if (hash[7] <= htarg && fulltest(hash, ptarget)) {
pdata[0] = tmpdata[0];
pdata[19] = nonce;
*hashes_done = pdata[19] - first_nonce + 1;
if (opt_debug)
applog(LOG_INFO, "found nonce %x", nonce);
return 1;
}
nonce++;
} while (nonce < max_nonce && !work_restart[thr_id].restart);
pdata[19] = nonce;
*hashes_done = pdata[19] - first_nonce + 1;
return 0;
}
void drop_get_new_work( struct work* work, struct work* g_work, int thr_id,
uint32_t* end_nonce_ptr, bool clean_job )
{
// ignore POK in first word
// const int nonce_i = 19;
const int wkcmp_sz = 72; // (19-1) * sizeof(uint32_t)
uint32_t *nonceptr = algo_gate.get_nonceptr( work->data );
if ( memcmp( &work->data[1], &g_work->data[1], wkcmp_sz )
&& ( clean_job || ( *nonceptr >= *end_nonce_ptr ) ) )
{
work_free( work );
work_copy( work, g_work );
*nonceptr = ( 0xffffffffU / opt_n_threads ) * thr_id;
if ( opt_randomize )
*nonceptr += ( (rand() *4 ) & UINT32_MAX ) / opt_n_threads;
*end_nonce_ptr = ( 0xffffffffU / opt_n_threads ) * (thr_id+1) - 0x20;
}
else
++(*nonceptr);
}
void drop_set_target( struct work* work, double job_diff )
{
work_set_target( work, job_diff / (65536.0 * opt_diff_factor) );
}
void drop_display_pok( struct work* work )
{
if ( work->data[0] & 0x00008000 )
applog(LOG_BLUE, "POK received: %08xx", work->data[0] );
}
// Need to fix POK offset problems like zr5
bool register_drop_algo( algo_gate_t* gate )
{
algo_not_tested();
gate->scanhash = (void*)&scanhash_drop;
gate->hash = (void*)&droplp_hash_pok;
gate->hash_alt = (void*)&droplp_hash_pok;
gate->hash_suw = (void*)&droplp_hash_pok;
gate->get_new_work = (void*)&drop_get_new_work;
gate->set_target = (void*)&scrypt_set_target;
gate->build_stratum_request = (void*)&std_be_build_stratum_request;
gate->set_work_data_endian = (void*)&swab_work_data;
gate->display_extra_data = (void*)&drop_display_pok;
gate->work_data_size = 80;
gate->work_cmp_size = 72;
return true;
};

0
algo/echo/.dirstamp Normal file
View File

View File

2
algo/echo/aes_ni/api.h Normal file
View File

@@ -0,0 +1,2 @@
#define CRYPTO_BYTES 64
#define CRYPTO_VERSION "1.208"

View File

@@ -0,0 +1,2 @@
amd64
x86

623
algo/echo/aes_ni/hash.c Normal file
View File

@@ -0,0 +1,623 @@
/*
* file : echo_vperm.c
* version : 1.0.208
* date : 14.12.2010
*
* - vperm and aes_ni implementations of hash function ECHO
* - implements NIST hash api
* - assumes that message lenght is multiple of 8-bits
* - _ECHO_VPERM_ must be defined if compiling with ../main.c
* - define NO_AES_NI for aes_ni version
*
* Cagdas Calik
* ccalik@metu.edu.tr
* Institute of Applied Mathematics, Middle East Technical University, Turkey.
*
*/
#include <memory.h>
#include "miner.h"
#include "hash_api.h"
#include "vperm.h"
#ifndef NO_AES_NI
#include <wmmintrin.h>
#else
#include <tmmintrin.h>
#endif
MYALIGN const unsigned int _k_s0F[] = {0x0F0F0F0F, 0x0F0F0F0F, 0x0F0F0F0F, 0x0F0F0F0F};
MYALIGN const unsigned int _k_ipt[] = {0x5A2A7000, 0xC2B2E898, 0x52227808, 0xCABAE090, 0x317C4D00, 0x4C01307D, 0xB0FDCC81, 0xCD80B1FC};
MYALIGN const unsigned int _k_opt[] = {0xD6B66000, 0xFF9F4929, 0xDEBE6808, 0xF7974121, 0x50BCEC00, 0x01EDBD51, 0xB05C0CE0, 0xE10D5DB1};
MYALIGN const unsigned int _k_inv[] = {0x0D080180, 0x0E05060F, 0x0A0B0C02, 0x04070309, 0x0F0B0780, 0x01040A06, 0x02050809, 0x030D0E0C};
MYALIGN const unsigned int _k_sb1[] = {0xCB503E00, 0xB19BE18F, 0x142AF544, 0xA5DF7A6E, 0xFAE22300, 0x3618D415, 0x0D2ED9EF, 0x3BF7CCC1};
MYALIGN const unsigned int _k_sb2[] = {0x0B712400, 0xE27A93C6, 0xBC982FCD, 0x5EB7E955, 0x0AE12900, 0x69EB8840, 0xAB82234A, 0xC2A163C8};
MYALIGN const unsigned int _k_sb3[] = {0xC0211A00, 0x53E17249, 0xA8B2DA89, 0xFB68933B, 0xF0030A00, 0x5FF35C55, 0xA6ACFAA5, 0xF956AF09};
MYALIGN const unsigned int _k_sb4[] = {0x3FD64100, 0xE1E937A0, 0x49087E9F, 0xA876DE97, 0xC393EA00, 0x3D50AED7, 0x876D2914, 0xBA44FE79};
MYALIGN const unsigned int _k_sb5[] = {0xF4867F00, 0x5072D62F, 0x5D228BDB, 0x0DA9A4F9, 0x3971C900, 0x0B487AC2, 0x8A43F0FB, 0x81B332B8};
MYALIGN const unsigned int _k_sb7[] = {0xFFF75B00, 0xB20845E9, 0xE1BAA416, 0x531E4DAC, 0x3390E000, 0x62A3F282, 0x21C1D3B1, 0x43125170};
MYALIGN const unsigned int _k_sbo[] = {0x6FBDC700, 0xD0D26D17, 0xC502A878, 0x15AABF7A, 0x5FBB6A00, 0xCFE474A5, 0x412B35FA, 0x8E1E90D1};
MYALIGN const unsigned int _k_h63[] = {0x63636363, 0x63636363, 0x63636363, 0x63636363};
MYALIGN const unsigned int _k_hc6[] = {0xc6c6c6c6, 0xc6c6c6c6, 0xc6c6c6c6, 0xc6c6c6c6};
MYALIGN const unsigned int _k_h5b[] = {0x5b5b5b5b, 0x5b5b5b5b, 0x5b5b5b5b, 0x5b5b5b5b};
MYALIGN const unsigned int _k_h4e[] = {0x4e4e4e4e, 0x4e4e4e4e, 0x4e4e4e4e, 0x4e4e4e4e};
MYALIGN const unsigned int _k_h0e[] = {0x0e0e0e0e, 0x0e0e0e0e, 0x0e0e0e0e, 0x0e0e0e0e};
MYALIGN const unsigned int _k_h15[] = {0x15151515, 0x15151515, 0x15151515, 0x15151515};
MYALIGN const unsigned int _k_aesmix1[] = {0x0f0a0500, 0x030e0904, 0x07020d08, 0x0b06010c};
MYALIGN const unsigned int _k_aesmix2[] = {0x000f0a05, 0x04030e09, 0x0807020d, 0x0c0b0601};
MYALIGN const unsigned int _k_aesmix3[] = {0x05000f0a, 0x0904030e, 0x0d080702, 0x010c0b06};
MYALIGN const unsigned int _k_aesmix4[] = {0x0a05000f, 0x0e090403, 0x020d0807, 0x06010c0b};
MYALIGN const unsigned int const1[] = {0x00000001, 0x00000000, 0x00000000, 0x00000000};
MYALIGN const unsigned int mul2mask[] = {0x00001b00, 0x00000000, 0x00000000, 0x00000000};
MYALIGN const unsigned int lsbmask[] = {0x01010101, 0x01010101, 0x01010101, 0x01010101};
MYALIGN const unsigned int invshiftrows[] = {0x070a0d00, 0x0b0e0104, 0x0f020508, 0x0306090c};
MYALIGN const unsigned int zero[] = {0x00000000, 0x00000000, 0x00000000, 0x00000000};
MYALIGN const unsigned int mul2ipt[] = {0x728efc00, 0x6894e61a, 0x3fc3b14d, 0x25d9ab57, 0xfd5ba600, 0x2a8c71d7, 0x1eb845e3, 0xc96f9234};
//#include "crypto_hash.h"
int crypto_hash(
unsigned char *out,
const unsigned char *in,
unsigned long long inlen
)
{
if(hash_echo(512, in, inlen * 8, out) == SUCCESS)
return 0;
return -1;
}
/*
int main()
{
return 0;
}
*/
#if 0
void DumpState(__m128i *ps)
{
int i, j, k;
unsigned int ucol;
for(j = 0; j < 4; j++)
{
for(i = 0; i < 4; i++)
{
printf("row %d,col %d : ", i, j);
for(k = 0; k < 4; k++)
{
ucol = *((int*)ps + 16 * i + 4 * j + k);
printf("%02x%02x%02x%02x ", (ucol >> 0) & 0xff, (ucol >> 8) & 0xff, (ucol >> 16) & 0xff, (ucol >> 24) & 0xff);
}
printf("\n");
}
}
printf("\n");
}
#endif
#ifndef NO_AES_NI
#define ECHO_SUBBYTES(state, i, j) \
state[i][j] = _mm_aesenc_si128(state[i][j], k1);\
state[i][j] = _mm_aesenc_si128(state[i][j], M128(zero));\
k1 = _mm_add_epi32(k1, M128(const1))
#else
#define ECHO_SUBBYTES(state, i, j) \
AES_ROUND_VPERM(state[i][j], t1, t2, t3, t4, s1, s2, s3);\
state[i][j] = _mm_xor_si128(state[i][j], k1);\
AES_ROUND_VPERM(state[i][j], t1, t2, t3, t4, s1, s2, s3);\
k1 = _mm_add_epi32(k1, M128(const1))
#define ECHO_SUB_AND_MIX(state, i, j, state2, c, r1, r2, r3, r4) \
AES_ROUND_VPERM_CORE(state[i][j], t1, t2, t3, t4, s1, s2, s3);\
ktemp = k1;\
TRANSFORM(ktemp, _k_ipt, t1, t4);\
state[i][j] = _mm_xor_si128(state[i][j], ktemp);\
AES_ROUND_VPERM_CORE(state[i][j], t1, t2, t3, t4, s1, s2, s3);\
k1 = _mm_add_epi32(k1, M128(const1));\
s1 = state[i][j];\
s2 = s1;\
TRANSFORM(s2, mul2ipt, t1, t2);\
s3 = _mm_xor_si128(s1, s2);\
state2[r1][c] = _mm_xor_si128(state2[r1][c], s2);\
state2[r2][c] = _mm_xor_si128(state2[r2][c], s1);\
state2[r3][c] = _mm_xor_si128(state2[r3][c], s1);\
state2[r4][c] = _mm_xor_si128(state2[r4][c], s3)
#endif
#define ECHO_MIXBYTES(state1, state2, j, t1, t2, s2) \
s2 = _mm_add_epi8(state1[0][j], state1[0][j]);\
t1 = _mm_srli_epi16(state1[0][j], 7);\
t1 = _mm_and_si128(t1, M128(lsbmask));\
t2 = _mm_shuffle_epi8(M128(mul2mask), t1);\
s2 = _mm_xor_si128(s2, t2);\
state2[0][j] = s2;\
state2[1][j] = state1[0][j];\
state2[2][j] = state1[0][j];\
state2[3][j] = _mm_xor_si128(s2, state1[0][j]);\
s2 = _mm_add_epi8(state1[1][(j + 1) & 3], state1[1][(j + 1) & 3]);\
t1 = _mm_srli_epi16(state1[1][(j + 1) & 3], 7);\
t1 = _mm_and_si128(t1, M128(lsbmask));\
t2 = _mm_shuffle_epi8(M128(mul2mask), t1);\
s2 = _mm_xor_si128(s2, t2);\
state2[0][j] = _mm_xor_si128(state2[0][j], _mm_xor_si128(s2, state1[1][(j + 1) & 3]));\
state2[1][j] = _mm_xor_si128(state2[1][j], s2);\
state2[2][j] = _mm_xor_si128(state2[2][j], state1[1][(j + 1) & 3]);\
state2[3][j] = _mm_xor_si128(state2[3][j], state1[1][(j + 1) & 3]);\
s2 = _mm_add_epi8(state1[2][(j + 2) & 3], state1[2][(j + 2) & 3]);\
t1 = _mm_srli_epi16(state1[2][(j + 2) & 3], 7);\
t1 = _mm_and_si128(t1, M128(lsbmask));\
t2 = _mm_shuffle_epi8(M128(mul2mask), t1);\
s2 = _mm_xor_si128(s2, t2);\
state2[0][j] = _mm_xor_si128(state2[0][j], state1[2][(j + 2) & 3]);\
state2[1][j] = _mm_xor_si128(state2[1][j], _mm_xor_si128(s2, state1[2][(j + 2) & 3]));\
state2[2][j] = _mm_xor_si128(state2[2][j], s2);\
state2[3][j] = _mm_xor_si128(state2[3][j], state1[2][(j + 2) & 3]);\
s2 = _mm_add_epi8(state1[3][(j + 3) & 3], state1[3][(j + 3) & 3]);\
t1 = _mm_srli_epi16(state1[3][(j + 3) & 3], 7);\
t1 = _mm_and_si128(t1, M128(lsbmask));\
t2 = _mm_shuffle_epi8(M128(mul2mask), t1);\
s2 = _mm_xor_si128(s2, t2);\
state2[0][j] = _mm_xor_si128(state2[0][j], state1[3][(j + 3) & 3]);\
state2[1][j] = _mm_xor_si128(state2[1][j], state1[3][(j + 3) & 3]);\
state2[2][j] = _mm_xor_si128(state2[2][j], _mm_xor_si128(s2, state1[3][(j + 3) & 3]));\
state2[3][j] = _mm_xor_si128(state2[3][j], s2)
#define ECHO_ROUND_UNROLL2 \
ECHO_SUBBYTES(_state, 0, 0);\
ECHO_SUBBYTES(_state, 1, 0);\
ECHO_SUBBYTES(_state, 2, 0);\
ECHO_SUBBYTES(_state, 3, 0);\
ECHO_SUBBYTES(_state, 0, 1);\
ECHO_SUBBYTES(_state, 1, 1);\
ECHO_SUBBYTES(_state, 2, 1);\
ECHO_SUBBYTES(_state, 3, 1);\
ECHO_SUBBYTES(_state, 0, 2);\
ECHO_SUBBYTES(_state, 1, 2);\
ECHO_SUBBYTES(_state, 2, 2);\
ECHO_SUBBYTES(_state, 3, 2);\
ECHO_SUBBYTES(_state, 0, 3);\
ECHO_SUBBYTES(_state, 1, 3);\
ECHO_SUBBYTES(_state, 2, 3);\
ECHO_SUBBYTES(_state, 3, 3);\
ECHO_MIXBYTES(_state, _state2, 0, t1, t2, s2);\
ECHO_MIXBYTES(_state, _state2, 1, t1, t2, s2);\
ECHO_MIXBYTES(_state, _state2, 2, t1, t2, s2);\
ECHO_MIXBYTES(_state, _state2, 3, t1, t2, s2);\
ECHO_SUBBYTES(_state2, 0, 0);\
ECHO_SUBBYTES(_state2, 1, 0);\
ECHO_SUBBYTES(_state2, 2, 0);\
ECHO_SUBBYTES(_state2, 3, 0);\
ECHO_SUBBYTES(_state2, 0, 1);\
ECHO_SUBBYTES(_state2, 1, 1);\
ECHO_SUBBYTES(_state2, 2, 1);\
ECHO_SUBBYTES(_state2, 3, 1);\
ECHO_SUBBYTES(_state2, 0, 2);\
ECHO_SUBBYTES(_state2, 1, 2);\
ECHO_SUBBYTES(_state2, 2, 2);\
ECHO_SUBBYTES(_state2, 3, 2);\
ECHO_SUBBYTES(_state2, 0, 3);\
ECHO_SUBBYTES(_state2, 1, 3);\
ECHO_SUBBYTES(_state2, 2, 3);\
ECHO_SUBBYTES(_state2, 3, 3);\
ECHO_MIXBYTES(_state2, _state, 0, t1, t2, s2);\
ECHO_MIXBYTES(_state2, _state, 1, t1, t2, s2);\
ECHO_MIXBYTES(_state2, _state, 2, t1, t2, s2);\
ECHO_MIXBYTES(_state2, _state, 3, t1, t2, s2)
#define SAVESTATE(dst, src)\
dst[0][0] = src[0][0];\
dst[0][1] = src[0][1];\
dst[0][2] = src[0][2];\
dst[0][3] = src[0][3];\
dst[1][0] = src[1][0];\
dst[1][1] = src[1][1];\
dst[1][2] = src[1][2];\
dst[1][3] = src[1][3];\
dst[2][0] = src[2][0];\
dst[2][1] = src[2][1];\
dst[2][2] = src[2][2];\
dst[2][3] = src[2][3];\
dst[3][0] = src[3][0];\
dst[3][1] = src[3][1];\
dst[3][2] = src[3][2];\
dst[3][3] = src[3][3]
void Compress(hashState_echo *ctx, const unsigned char *pmsg, unsigned int uBlockCount)
{
unsigned int r, b, i, j;
__m128i t1, t2, t3, t4, s1, s2, s3, k1, ktemp;
__m128i _state[4][4], _state2[4][4], _statebackup[4][4];
for(i = 0; i < 4; i++)
for(j = 0; j < ctx->uHashSize / 256; j++)
_state[i][j] = ctx->state[i][j];
#ifdef NO_AES_NI
// transform cv
for(i = 0; i < 4; i++)
for(j = 0; j < ctx->uHashSize / 256; j++)
{
TRANSFORM(_state[i][j], _k_ipt, t1, t2);
}
#endif
for(b = 0; b < uBlockCount; b++)
{
ctx->k = _mm_add_epi64(ctx->k, ctx->const1536);
// load message
for(j = ctx->uHashSize / 256; j < 4; j++)
{
for(i = 0; i < 4; i++)
{
_state[i][j] = _mm_loadu_si128((__m128i*)pmsg + 4 * (j - (ctx->uHashSize / 256)) + i);
#ifdef NO_AES_NI
// transform message
TRANSFORM(_state[i][j], _k_ipt, t1, t2);
#endif
}
}
// save state
SAVESTATE(_statebackup, _state);
k1 = ctx->k;
#ifndef NO_AES_NI
for(r = 0; r < ctx->uRounds / 2; r++)
{
ECHO_ROUND_UNROLL2;
}
#else
for(r = 0; r < ctx->uRounds / 2; r++)
{
_state2[0][0] = M128(zero); _state2[1][0] = M128(zero); _state2[2][0] = M128(zero); _state2[3][0] = M128(zero);
_state2[0][1] = M128(zero); _state2[1][1] = M128(zero); _state2[2][1] = M128(zero); _state2[3][1] = M128(zero);
_state2[0][2] = M128(zero); _state2[1][2] = M128(zero); _state2[2][2] = M128(zero); _state2[3][2] = M128(zero);
_state2[0][3] = M128(zero); _state2[1][3] = M128(zero); _state2[2][3] = M128(zero); _state2[3][3] = M128(zero);
ECHO_SUB_AND_MIX(_state, 0, 0, _state2, 0, 0, 1, 2, 3);
ECHO_SUB_AND_MIX(_state, 1, 0, _state2, 3, 1, 2, 3, 0);
ECHO_SUB_AND_MIX(_state, 2, 0, _state2, 2, 2, 3, 0, 1);
ECHO_SUB_AND_MIX(_state, 3, 0, _state2, 1, 3, 0, 1, 2);
ECHO_SUB_AND_MIX(_state, 0, 1, _state2, 1, 0, 1, 2, 3);
ECHO_SUB_AND_MIX(_state, 1, 1, _state2, 0, 1, 2, 3, 0);
ECHO_SUB_AND_MIX(_state, 2, 1, _state2, 3, 2, 3, 0, 1);
ECHO_SUB_AND_MIX(_state, 3, 1, _state2, 2, 3, 0, 1, 2);
ECHO_SUB_AND_MIX(_state, 0, 2, _state2, 2, 0, 1, 2, 3);
ECHO_SUB_AND_MIX(_state, 1, 2, _state2, 1, 1, 2, 3, 0);
ECHO_SUB_AND_MIX(_state, 2, 2, _state2, 0, 2, 3, 0, 1);
ECHO_SUB_AND_MIX(_state, 3, 2, _state2, 3, 3, 0, 1, 2);
ECHO_SUB_AND_MIX(_state, 0, 3, _state2, 3, 0, 1, 2, 3);
ECHO_SUB_AND_MIX(_state, 1, 3, _state2, 2, 1, 2, 3, 0);
ECHO_SUB_AND_MIX(_state, 2, 3, _state2, 1, 2, 3, 0, 1);
ECHO_SUB_AND_MIX(_state, 3, 3, _state2, 0, 3, 0, 1, 2);
_state[0][0] = M128(zero); _state[1][0] = M128(zero); _state[2][0] = M128(zero); _state[3][0] = M128(zero);
_state[0][1] = M128(zero); _state[1][1] = M128(zero); _state[2][1] = M128(zero); _state[3][1] = M128(zero);
_state[0][2] = M128(zero); _state[1][2] = M128(zero); _state[2][2] = M128(zero); _state[3][2] = M128(zero);
_state[0][3] = M128(zero); _state[1][3] = M128(zero); _state[2][3] = M128(zero); _state[3][3] = M128(zero);
ECHO_SUB_AND_MIX(_state2, 0, 0, _state, 0, 0, 1, 2, 3);
ECHO_SUB_AND_MIX(_state2, 1, 0, _state, 3, 1, 2, 3, 0);
ECHO_SUB_AND_MIX(_state2, 2, 0, _state, 2, 2, 3, 0, 1);
ECHO_SUB_AND_MIX(_state2, 3, 0, _state, 1, 3, 0, 1, 2);
ECHO_SUB_AND_MIX(_state2, 0, 1, _state, 1, 0, 1, 2, 3);
ECHO_SUB_AND_MIX(_state2, 1, 1, _state, 0, 1, 2, 3, 0);
ECHO_SUB_AND_MIX(_state2, 2, 1, _state, 3, 2, 3, 0, 1);
ECHO_SUB_AND_MIX(_state2, 3, 1, _state, 2, 3, 0, 1, 2);
ECHO_SUB_AND_MIX(_state2, 0, 2, _state, 2, 0, 1, 2, 3);
ECHO_SUB_AND_MIX(_state2, 1, 2, _state, 1, 1, 2, 3, 0);
ECHO_SUB_AND_MIX(_state2, 2, 2, _state, 0, 2, 3, 0, 1);
ECHO_SUB_AND_MIX(_state2, 3, 2, _state, 3, 3, 0, 1, 2);
ECHO_SUB_AND_MIX(_state2, 0, 3, _state, 3, 0, 1, 2, 3);
ECHO_SUB_AND_MIX(_state2, 1, 3, _state, 2, 1, 2, 3, 0);
ECHO_SUB_AND_MIX(_state2, 2, 3, _state, 1, 2, 3, 0, 1);
ECHO_SUB_AND_MIX(_state2, 3, 3, _state, 0, 3, 0, 1, 2);
}
#endif
if(ctx->uHashSize == 256)
{
for(i = 0; i < 4; i++)
{
_state[i][0] = _mm_xor_si128(_state[i][0], _state[i][1]);
_state[i][0] = _mm_xor_si128(_state[i][0], _state[i][2]);
_state[i][0] = _mm_xor_si128(_state[i][0], _state[i][3]);
_state[i][0] = _mm_xor_si128(_state[i][0], _statebackup[i][0]);
_state[i][0] = _mm_xor_si128(_state[i][0], _statebackup[i][1]);
_state[i][0] = _mm_xor_si128(_state[i][0], _statebackup[i][2]);
_state[i][0] = _mm_xor_si128(_state[i][0], _statebackup[i][3]);
}
}
else
{
for(i = 0; i < 4; i++)
{
_state[i][0] = _mm_xor_si128(_state[i][0], _state[i][2]);
_state[i][1] = _mm_xor_si128(_state[i][1], _state[i][3]);
_state[i][0] = _mm_xor_si128(_state[i][0], _statebackup[i][0]);
_state[i][0] = _mm_xor_si128(_state[i][0], _statebackup[i][2]);
_state[i][1] = _mm_xor_si128(_state[i][1], _statebackup[i][1]);
_state[i][1] = _mm_xor_si128(_state[i][1], _statebackup[i][3]);
}
}
pmsg += ctx->uBlockLength;
}
#ifdef NO_AES_NI
// transform state
for(i = 0; i < 4; i++)
for(j = 0; j < 4; j++)
{
TRANSFORM(_state[i][j], _k_opt, t1, t2);
}
#endif
SAVESTATE(ctx->state, _state);
}
HashReturn init_echo(hashState_echo *ctx, int nHashSize)
{
int i, j;
ctx->k = _mm_xor_si128(ctx->k, ctx->k);
ctx->processed_bits = 0;
ctx->uBufferBytes = 0;
switch(nHashSize)
{
case 256:
ctx->uHashSize = 256;
ctx->uBlockLength = 192;
ctx->uRounds = 8;
ctx->hashsize = _mm_set_epi32(0, 0, 0, 0x00000100);
ctx->const1536 = _mm_set_epi32(0x00000000, 0x00000000, 0x00000000, 0x00000600);
break;
case 512:
ctx->uHashSize = 512;
ctx->uBlockLength = 128;
ctx->uRounds = 10;
ctx->hashsize = _mm_set_epi32(0, 0, 0, 0x00000200);
ctx->const1536 = _mm_set_epi32(0x00000000, 0x00000000, 0x00000000, 0x00000400);
break;
default:
return BAD_HASHBITLEN;
}
for(i = 0; i < 4; i++)
for(j = 0; j < nHashSize / 256; j++)
ctx->state[i][j] = ctx->hashsize;
for(i = 0; i < 4; i++)
for(j = nHashSize / 256; j < 4; j++)
ctx->state[i][j] = _mm_set_epi32(0, 0, 0, 0);
return SUCCESS;
}
HashReturn update_echo(hashState_echo *state, const BitSequence *data, DataLength databitlen)
{
unsigned int uByteLength, uBlockCount, uRemainingBytes;
uByteLength = (unsigned int)(databitlen / 8);
if((state->uBufferBytes + uByteLength) >= state->uBlockLength)
{
if(state->uBufferBytes != 0)
{
// Fill the buffer
memcpy(state->buffer + state->uBufferBytes, (void*)data, state->uBlockLength - state->uBufferBytes);
// Process buffer
Compress(state, state->buffer, 1);
state->processed_bits += state->uBlockLength * 8;
data += state->uBlockLength - state->uBufferBytes;
uByteLength -= state->uBlockLength - state->uBufferBytes;
}
// buffer now does not contain any unprocessed bytes
uBlockCount = uByteLength / state->uBlockLength;
uRemainingBytes = uByteLength % state->uBlockLength;
if(uBlockCount > 0)
{
Compress(state, data, uBlockCount);
state->processed_bits += uBlockCount * state->uBlockLength * 8;
data += uBlockCount * state->uBlockLength;
}
if(uRemainingBytes > 0)
{
memcpy(state->buffer, (void*)data, uRemainingBytes);
}
state->uBufferBytes = uRemainingBytes;
}
else
{
memcpy(state->buffer + state->uBufferBytes, (void*)data, uByteLength);
state->uBufferBytes += uByteLength;
}
return SUCCESS;
}
HashReturn final_echo(hashState_echo *state, BitSequence *hashval)
{
__m128i remainingbits;
// Add remaining bytes in the buffer
state->processed_bits += state->uBufferBytes * 8;
remainingbits = _mm_set_epi32(0, 0, 0, state->uBufferBytes * 8);
// Pad with 0x80
state->buffer[state->uBufferBytes++] = 0x80;
// Enough buffer space for padding in this block?
if((state->uBlockLength - state->uBufferBytes) >= 18)
{
// Pad with zeros
memset(state->buffer + state->uBufferBytes, 0, state->uBlockLength - (state->uBufferBytes + 18));
// Hash size
*((unsigned short*)(state->buffer + state->uBlockLength - 18)) = state->uHashSize;
// Processed bits
*((DataLength*)(state->buffer + state->uBlockLength - 16)) = state->processed_bits;
*((DataLength*)(state->buffer + state->uBlockLength - 8)) = 0;
// Last block contains message bits?
if(state->uBufferBytes == 1)
{
state->k = _mm_xor_si128(state->k, state->k);
state->k = _mm_sub_epi64(state->k, state->const1536);
}
else
{
state->k = _mm_add_epi64(state->k, remainingbits);
state->k = _mm_sub_epi64(state->k, state->const1536);
}
// Compress
Compress(state, state->buffer, 1);
}
else
{
// Fill with zero and compress
memset(state->buffer + state->uBufferBytes, 0, state->uBlockLength - state->uBufferBytes);
state->k = _mm_add_epi64(state->k, remainingbits);
state->k = _mm_sub_epi64(state->k, state->const1536);
Compress(state, state->buffer, 1);
// Last block
memset(state->buffer, 0, state->uBlockLength - 18);
// Hash size
*((unsigned short*)(state->buffer + state->uBlockLength - 18)) = state->uHashSize;
// Processed bits
*((DataLength*)(state->buffer + state->uBlockLength - 16)) = state->processed_bits;
*((DataLength*)(state->buffer + state->uBlockLength - 8)) = 0;
// Compress the last block
state->k = _mm_xor_si128(state->k, state->k);
state->k = _mm_sub_epi64(state->k, state->const1536);
Compress(state, state->buffer, 1);
}
// Store the hash value
_mm_storeu_si128((__m128i*)hashval + 0, state->state[0][0]);
_mm_storeu_si128((__m128i*)hashval + 1, state->state[1][0]);
if(state->uHashSize == 512)
{
_mm_storeu_si128((__m128i*)hashval + 2, state->state[2][0]);
_mm_storeu_si128((__m128i*)hashval + 3, state->state[3][0]);
}
return SUCCESS;
}
HashReturn hash_echo(int hashbitlen, const BitSequence *data, DataLength databitlen, BitSequence *hashval)
{
HashReturn hRet;
hashState_echo hs;
/////
/*
__m128i a, b, c, d, t[4], u[4], v[4];
a = _mm_set_epi32(0x0f0e0d0c, 0x0b0a0908, 0x07060504, 0x03020100);
b = _mm_set_epi32(0x1f1e1d1c, 0x1b1a1918, 0x17161514, 0x13121110);
c = _mm_set_epi32(0x2f2e2d2c, 0x2b2a2928, 0x27262524, 0x23222120);
d = _mm_set_epi32(0x3f3e3d3c, 0x3b3a3938, 0x37363534, 0x33323130);
t[0] = _mm_unpacklo_epi8(a, b);
t[1] = _mm_unpackhi_epi8(a, b);
t[2] = _mm_unpacklo_epi8(c, d);
t[3] = _mm_unpackhi_epi8(c, d);
u[0] = _mm_unpacklo_epi16(t[0], t[2]);
u[1] = _mm_unpackhi_epi16(t[0], t[2]);
u[2] = _mm_unpacklo_epi16(t[1], t[3]);
u[3] = _mm_unpackhi_epi16(t[1], t[3]);
t[0] = _mm_unpacklo_epi16(u[0], u[1]);
t[1] = _mm_unpackhi_epi16(u[0], u[1]);
t[2] = _mm_unpacklo_epi16(u[2], u[3]);
t[3] = _mm_unpackhi_epi16(u[2], u[3]);
u[0] = _mm_unpacklo_epi8(t[0], t[1]);
u[1] = _mm_unpackhi_epi8(t[0], t[1]);
u[2] = _mm_unpacklo_epi8(t[2], t[3]);
u[3] = _mm_unpackhi_epi8(t[2], t[3]);
a = _mm_unpacklo_epi8(u[0], u[1]);
b = _mm_unpackhi_epi8(u[0], u[1]);
c = _mm_unpacklo_epi8(u[2], u[3]);
d = _mm_unpackhi_epi8(u[2], u[3]);
*/
/////
hRet = init_echo(&hs, hashbitlen);
if(hRet != SUCCESS)
return hRet;
hRet = update_echo(&hs, data, databitlen);
if(hRet != SUCCESS)
return hRet;
hRet = final_echo(&hs, hashval);
if(hRet != SUCCESS)
return hRet;
return SUCCESS;
}

View File

@@ -0,0 +1,58 @@
/*
* file : hash_api.h
* version : 1.0.208
* date : 14.12.2010
*
* ECHO vperm implementation Hash API
*
* Cagdas Calik
* ccalik@metu.edu.tr
* Institute of Applied Mathematics, Middle East Technical University, Turkey.
*
*/
#ifndef HASH_API_H
#define HASH_API_H
#ifndef NO_AES_NI
#define HASH_IMPL_STR "ECHO-aesni"
#else
#define HASH_IMPL_STR "ECHO-vperm"
#endif
#include "algo/sha3/sha3_common.h"
#include <emmintrin.h>
typedef struct
{
__m128i state[4][4];
__m128i k;
__m128i hashsize;
__m128i const1536;
unsigned int uRounds;
unsigned int uHashSize;
unsigned int uBlockLength;
unsigned int uBufferBytes;
DataLength processed_bits;
BitSequence buffer[192];
} hashState_echo;
HashReturn init_echo(hashState_echo *state, int hashbitlen);
HashReturn reinit_echo(hashState_echo *state);
HashReturn update_echo(hashState_echo *state, const BitSequence *data, DataLength databitlen);
HashReturn final_echo(hashState_echo *state, BitSequence *hashval);
HashReturn hash_echo(int hashbitlen, const BitSequence *data, DataLength databitlen, BitSequence *hashval);
#endif // HASH_API_H

View File

@@ -0,0 +1 @@
Çağdaş Çalık

119
algo/echo/aes_ni/vperm.h Normal file
View File

@@ -0,0 +1,119 @@
/*
* file : vperm.h
* version : 1.0.208
* date : 14.12.2010
*
* vperm implementation of AES s-box
*
* Credits: Adapted from Mike Hamburg's AES implementation, http://crypto.stanford.edu/vpaes/
*
* Cagdas Calik
* ccalik@metu.edu.tr
* Institute of Applied Mathematics, Middle East Technical University, Turkey.
*
*/
#ifndef VPERM_H
#define VPERM_H
#include "algo/sha3/sha3_common.h"
#include <tmmintrin.h>
/*
extern const unsigned int _k_s0F[];
extern const unsigned int _k_ipt[];
extern const unsigned int _k_opt[];
extern const unsigned int _k_inv[];
extern const unsigned int _k_sb1[];
extern const unsigned int _k_sb2[];
extern const unsigned int _k_sb3[];
extern const unsigned int _k_sb4[];
extern const unsigned int _k_sb5[];
extern const unsigned int _k_sb7[];
extern const unsigned int _k_sbo[];
extern const unsigned int _k_h63[];
extern const unsigned int _k_hc6[];
extern const unsigned int _k_h5b[];
extern const unsigned int _k_h4e[];
extern const unsigned int _k_h0e[];
extern const unsigned int _k_h15[];
extern const unsigned int _k_aesmix1[];
extern const unsigned int _k_aesmix2[];
extern const unsigned int _k_aesmix3[];
extern const unsigned int _k_aesmix4[];
*/
// input: x, table
// output: x
#define TRANSFORM(x, table, t1, t2)\
t1 = _mm_andnot_si128(M128(_k_s0F), x);\
t1 = _mm_srli_epi32(t1, 4);\
x = _mm_and_si128(x, M128(_k_s0F));\
t1 = _mm_shuffle_epi8(*((__m128i*)table + 1), t1);\
x = _mm_shuffle_epi8(*((__m128i*)table + 0), x);\
x = _mm_xor_si128(x, t1)
// compiled erroneously with 32-bit msc compiler
//t2 = _mm_shuffle_epi8(table[0], x);\
//x = _mm_shuffle_epi8(table[1], t1);\
//x = _mm_xor_si128(x, t2)
// input: x
// output: t2, t3
#define SUBSTITUTE_VPERM_CORE(x, t1, t2, t3, t4)\
t1 = _mm_andnot_si128(M128(_k_s0F), x);\
t1 = _mm_srli_epi32(t1, 4);\
x = _mm_and_si128(x, M128(_k_s0F));\
t2 = _mm_shuffle_epi8(*((__m128i*)_k_inv + 1), x);\
x = _mm_xor_si128(x, t1);\
t3 = _mm_shuffle_epi8(*((__m128i*)_k_inv + 0), t1);\
t3 = _mm_xor_si128(t3, t2);\
t4 = _mm_shuffle_epi8(*((__m128i*)_k_inv + 0), x);\
t4 = _mm_xor_si128(t4, t2);\
t2 = _mm_shuffle_epi8(*((__m128i*)_k_inv + 0), t3);\
t2 = _mm_xor_si128(t2, x);\
t3 = _mm_shuffle_epi8(*((__m128i*)_k_inv + 0), t4);\
t3 = _mm_xor_si128(t3, t1);\
// input: x1, x2, table
// output: y
#define VPERM_LOOKUP(x1, x2, table, y, t)\
t = _mm_shuffle_epi8(*((__m128i*)table + 0), x1);\
y = _mm_shuffle_epi8(*((__m128i*)table + 1), x2);\
y = _mm_xor_si128(y, t)
// input: x
// output: x
#define SUBSTITUTE_VPERM(x, t1, t2, t3, t4) \
TRANSFORM(x, _k_ipt, t1, t2);\
SUBSTITUTE_VPERM_CORE(x, t1, t2, t3, t4);\
VPERM_LOOKUP(t2, t3, _k_sbo, x, t1);\
x = _mm_xor_si128(x, M128(_k_h63))
// input: x
// output: x
#define AES_ROUND_VPERM_CORE(x, t1, t2, t3, t4, s1, s2, s3) \
SUBSTITUTE_VPERM_CORE(x, t1, t2, t3, t4);\
VPERM_LOOKUP(t2, t3, _k_sb1, s1, t1);\
VPERM_LOOKUP(t2, t3, _k_sb2, s2, t1);\
s3 = _mm_xor_si128(s1, s2);\
x = _mm_shuffle_epi8(s2, M128(_k_aesmix1));\
x = _mm_xor_si128(x, _mm_shuffle_epi8(s3, M128(_k_aesmix2)));\
x = _mm_xor_si128(x, _mm_shuffle_epi8(s1, M128(_k_aesmix3)));\
x = _mm_xor_si128(x, _mm_shuffle_epi8(s1, M128(_k_aesmix4)));\
x = _mm_xor_si128(x, M128(_k_h5b))
// input: x
// output: x
#define AES_ROUND_VPERM(x, t1, t2, t3, t4, s1, s2, s3) \
TRANSFORM(x, _k_ipt, t1, t2);\
AES_ROUND_VPERM_CORE(x, t1, t2, t3, t4, s1, s2, s3);\
TRANSFORM(x, _k_opt, t1, t2)
#endif // VPERM_H

1031
algo/echo/sph_echo.c Normal file

File diff suppressed because it is too large Load Diff

320
algo/echo/sph_echo.h Normal file
View File

@@ -0,0 +1,320 @@
/* $Id: sph_echo.h 216 2010-06-08 09:46:57Z tp $ */
/**
* ECHO interface. ECHO is a family of functions which differ by
* their output size; this implementation defines ECHO for output
* sizes 224, 256, 384 and 512 bits.
*
* ==========================(LICENSE BEGIN)============================
*
* Copyright (c) 2007-2010 Projet RNRT SAPHIR
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* ===========================(LICENSE END)=============================
*
* @file sph_echo.h
* @author Thomas Pornin <thomas.pornin@cryptolog.com>
*/
#ifndef SPH_ECHO_H__
#define SPH_ECHO_H__
#ifdef __cplusplus
extern "C"{
#endif
#include <stddef.h>
#include "algo/sha3/sph_types.h"
/**
* Output size (in bits) for ECHO-224.
*/
#define SPH_SIZE_echo224 224
/**
* Output size (in bits) for ECHO-256.
*/
#define SPH_SIZE_echo256 256
/**
* Output size (in bits) for ECHO-384.
*/
#define SPH_SIZE_echo384 384
/**
* Output size (in bits) for ECHO-512.
*/
#define SPH_SIZE_echo512 512
/**
* This structure is a context for ECHO computations: it contains the
* intermediate values and some data from the last entered block. Once
* an ECHO computation has been performed, the context can be reused for
* another computation. This specific structure is used for ECHO-224
* and ECHO-256.
*
* The contents of this structure are private. A running ECHO computation
* can be cloned by copying the context (e.g. with a simple
* <code>memcpy()</code>).
*/
typedef struct {
#ifndef DOXYGEN_IGNORE
unsigned char buf[192]; /* first field, for alignment */
size_t ptr;
union {
sph_u32 Vs[4][4];
#if SPH_64
sph_u64 Vb[4][2];
#endif
} u;
sph_u32 C0, C1, C2, C3;
#endif
} sph_echo_small_context;
/**
* This structure is a context for ECHO computations: it contains the
* intermediate values and some data from the last entered block. Once
* an ECHO computation has been performed, the context can be reused for
* another computation. This specific structure is used for ECHO-384
* and ECHO-512.
*
* The contents of this structure are private. A running ECHO computation
* can be cloned by copying the context (e.g. with a simple
* <code>memcpy()</code>).
*/
typedef struct {
#ifndef DOXYGEN_IGNORE
unsigned char buf[128]; /* first field, for alignment */
size_t ptr;
union {
sph_u32 Vs[8][4];
#if SPH_64
sph_u64 Vb[8][2];
#endif
} u;
sph_u32 C0, C1, C2, C3;
#endif
} sph_echo_big_context;
/**
* Type for a ECHO-224 context (identical to the common "small" context).
*/
typedef sph_echo_small_context sph_echo224_context;
/**
* Type for a ECHO-256 context (identical to the common "small" context).
*/
typedef sph_echo_small_context sph_echo256_context;
/**
* Type for a ECHO-384 context (identical to the common "big" context).
*/
typedef sph_echo_big_context sph_echo384_context;
/**
* Type for a ECHO-512 context (identical to the common "big" context).
*/
typedef sph_echo_big_context sph_echo512_context;
/**
* Initialize an ECHO-224 context. This process performs no memory allocation.
*
* @param cc the ECHO-224 context (pointer to a
* <code>sph_echo224_context</code>)
*/
void sph_echo224_init(void *cc);
/**
* Process some data bytes. It is acceptable that <code>len</code> is zero
* (in which case this function does nothing).
*
* @param cc the ECHO-224 context
* @param data the input data
* @param len the input data length (in bytes)
*/
void sph_echo224(void *cc, const void *data, size_t len);
/**
* Terminate the current ECHO-224 computation and output the result into
* the provided buffer. The destination buffer must be wide enough to
* accomodate the result (28 bytes). The context is automatically
* reinitialized.
*
* @param cc the ECHO-224 context
* @param dst the destination buffer
*/
void sph_echo224_close(void *cc, void *dst);
/**
* Add a few additional bits (0 to 7) to the current computation, then
* terminate it and output the result in the provided buffer, which must
* be wide enough to accomodate the result (28 bytes). If bit number i
* in <code>ub</code> has value 2^i, then the extra bits are those
* numbered 7 downto 8-n (this is the big-endian convention at the byte
* level). The context is automatically reinitialized.
*
* @param cc the ECHO-224 context
* @param ub the extra bits
* @param n the number of extra bits (0 to 7)
* @param dst the destination buffer
*/
void sph_echo224_addbits_and_close(
void *cc, unsigned ub, unsigned n, void *dst);
/**
* Initialize an ECHO-256 context. This process performs no memory allocation.
*
* @param cc the ECHO-256 context (pointer to a
* <code>sph_echo256_context</code>)
*/
void sph_echo256_init(void *cc);
/**
* Process some data bytes. It is acceptable that <code>len</code> is zero
* (in which case this function does nothing).
*
* @param cc the ECHO-256 context
* @param data the input data
* @param len the input data length (in bytes)
*/
void sph_echo256(void *cc, const void *data, size_t len);
/**
* Terminate the current ECHO-256 computation and output the result into
* the provided buffer. The destination buffer must be wide enough to
* accomodate the result (32 bytes). The context is automatically
* reinitialized.
*
* @param cc the ECHO-256 context
* @param dst the destination buffer
*/
void sph_echo256_close(void *cc, void *dst);
/**
* Add a few additional bits (0 to 7) to the current computation, then
* terminate it and output the result in the provided buffer, which must
* be wide enough to accomodate the result (32 bytes). If bit number i
* in <code>ub</code> has value 2^i, then the extra bits are those
* numbered 7 downto 8-n (this is the big-endian convention at the byte
* level). The context is automatically reinitialized.
*
* @param cc the ECHO-256 context
* @param ub the extra bits
* @param n the number of extra bits (0 to 7)
* @param dst the destination buffer
*/
void sph_echo256_addbits_and_close(
void *cc, unsigned ub, unsigned n, void *dst);
/**
* Initialize an ECHO-384 context. This process performs no memory allocation.
*
* @param cc the ECHO-384 context (pointer to a
* <code>sph_echo384_context</code>)
*/
void sph_echo384_init(void *cc);
/**
* Process some data bytes. It is acceptable that <code>len</code> is zero
* (in which case this function does nothing).
*
* @param cc the ECHO-384 context
* @param data the input data
* @param len the input data length (in bytes)
*/
void sph_echo384(void *cc, const void *data, size_t len);
/**
* Terminate the current ECHO-384 computation and output the result into
* the provided buffer. The destination buffer must be wide enough to
* accomodate the result (48 bytes). The context is automatically
* reinitialized.
*
* @param cc the ECHO-384 context
* @param dst the destination buffer
*/
void sph_echo384_close(void *cc, void *dst);
/**
* Add a few additional bits (0 to 7) to the current computation, then
* terminate it and output the result in the provided buffer, which must
* be wide enough to accomodate the result (48 bytes). If bit number i
* in <code>ub</code> has value 2^i, then the extra bits are those
* numbered 7 downto 8-n (this is the big-endian convention at the byte
* level). The context is automatically reinitialized.
*
* @param cc the ECHO-384 context
* @param ub the extra bits
* @param n the number of extra bits (0 to 7)
* @param dst the destination buffer
*/
void sph_echo384_addbits_and_close(
void *cc, unsigned ub, unsigned n, void *dst);
/**
* Initialize an ECHO-512 context. This process performs no memory allocation.
*
* @param cc the ECHO-512 context (pointer to a
* <code>sph_echo512_context</code>)
*/
void sph_echo512_init(void *cc);
/**
* Process some data bytes. It is acceptable that <code>len</code> is zero
* (in which case this function does nothing).
*
* @param cc the ECHO-512 context
* @param data the input data
* @param len the input data length (in bytes)
*/
void sph_echo512(void *cc, const void *data, size_t len);
/**
* Terminate the current ECHO-512 computation and output the result into
* the provided buffer. The destination buffer must be wide enough to
* accomodate the result (64 bytes). The context is automatically
* reinitialized.
*
* @param cc the ECHO-512 context
* @param dst the destination buffer
*/
void sph_echo512_close(void *cc, void *dst);
/**
* Add a few additional bits (0 to 7) to the current computation, then
* terminate it and output the result in the provided buffer, which must
* be wide enough to accomodate the result (64 bytes). If bit number i
* in <code>ub</code> has value 2^i, then the extra bits are those
* numbered 7 downto 8-n (this is the big-endian convention at the byte
* level). The context is automatically reinitialized.
*
* @param cc the ECHO-512 context
* @param ub the extra bits
* @param n the number of extra bits (0 to 7)
* @param dst the destination buffer
*/
void sph_echo512_addbits_and_close(
void *cc, unsigned ub, unsigned n, void *dst);
#ifdef __cplusplus
}
#endif
#endif

1031
algo/echo/sse2/echo.c Normal file

File diff suppressed because it is too large Load Diff

320
algo/echo/sse2/sph_echo.h Normal file
View File

@@ -0,0 +1,320 @@
/* $Id: sph_echo.h 216 2010-06-08 09:46:57Z tp $ */
/**
* ECHO interface. ECHO is a family of functions which differ by
* their output size; this implementation defines ECHO for output
* sizes 224, 256, 384 and 512 bits.
*
* ==========================(LICENSE BEGIN)============================
*
* Copyright (c) 2007-2010 Projet RNRT SAPHIR
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* ===========================(LICENSE END)=============================
*
* @file sph_echo.h
* @author Thomas Pornin <thomas.pornin@cryptolog.com>
*/
#ifndef SPH_ECHO_H__
#define SPH_ECHO_H__
#ifdef __cplusplus
extern "C"{
#endif
#include <stddef.h>
#include "algo/sha3/sph_types.h"
/**
* Output size (in bits) for ECHO-224.
*/
#define SPH_SIZE_echo224 224
/**
* Output size (in bits) for ECHO-256.
*/
#define SPH_SIZE_echo256 256
/**
* Output size (in bits) for ECHO-384.
*/
#define SPH_SIZE_echo384 384
/**
* Output size (in bits) for ECHO-512.
*/
#define SPH_SIZE_echo512 512
/**
* This structure is a context for ECHO computations: it contains the
* intermediate values and some data from the last entered block. Once
* an ECHO computation has been performed, the context can be reused for
* another computation. This specific structure is used for ECHO-224
* and ECHO-256.
*
* The contents of this structure are private. A running ECHO computation
* can be cloned by copying the context (e.g. with a simple
* <code>memcpy()</code>).
*/
typedef struct {
#ifndef DOXYGEN_IGNORE
unsigned char buf[192]; /* first field, for alignment */
size_t ptr;
union {
sph_u32 Vs[4][4];
#if SPH_64
sph_u64 Vb[4][2];
#endif
} u;
sph_u32 C0, C1, C2, C3;
#endif
} sph_echo_small_context;
/**
* This structure is a context for ECHO computations: it contains the
* intermediate values and some data from the last entered block. Once
* an ECHO computation has been performed, the context can be reused for
* another computation. This specific structure is used for ECHO-384
* and ECHO-512.
*
* The contents of this structure are private. A running ECHO computation
* can be cloned by copying the context (e.g. with a simple
* <code>memcpy()</code>).
*/
typedef struct {
#ifndef DOXYGEN_IGNORE
unsigned char buf[128]; /* first field, for alignment */
size_t ptr;
union {
sph_u32 Vs[8][4];
#if SPH_64
sph_u64 Vb[8][2];
#endif
} u;
sph_u32 C0, C1, C2, C3;
#endif
} sph_echo_big_context;
/**
* Type for a ECHO-224 context (identical to the common "small" context).
*/
typedef sph_echo_small_context sph_echo224_context;
/**
* Type for a ECHO-256 context (identical to the common "small" context).
*/
typedef sph_echo_small_context sph_echo256_context;
/**
* Type for a ECHO-384 context (identical to the common "big" context).
*/
typedef sph_echo_big_context sph_echo384_context;
/**
* Type for a ECHO-512 context (identical to the common "big" context).
*/
typedef sph_echo_big_context sph_echo512_context;
/**
* Initialize an ECHO-224 context. This process performs no memory allocation.
*
* @param cc the ECHO-224 context (pointer to a
* <code>sph_echo224_context</code>)
*/
void sph_echo224_init(void *cc);
/**
* Process some data bytes. It is acceptable that <code>len</code> is zero
* (in which case this function does nothing).
*
* @param cc the ECHO-224 context
* @param data the input data
* @param len the input data length (in bytes)
*/
void sph_echo224(void *cc, const void *data, size_t len);
/**
* Terminate the current ECHO-224 computation and output the result into
* the provided buffer. The destination buffer must be wide enough to
* accomodate the result (28 bytes). The context is automatically
* reinitialized.
*
* @param cc the ECHO-224 context
* @param dst the destination buffer
*/
void sph_echo224_close(void *cc, void *dst);
/**
* Add a few additional bits (0 to 7) to the current computation, then
* terminate it and output the result in the provided buffer, which must
* be wide enough to accomodate the result (28 bytes). If bit number i
* in <code>ub</code> has value 2^i, then the extra bits are those
* numbered 7 downto 8-n (this is the big-endian convention at the byte
* level). The context is automatically reinitialized.
*
* @param cc the ECHO-224 context
* @param ub the extra bits
* @param n the number of extra bits (0 to 7)
* @param dst the destination buffer
*/
void sph_echo224_addbits_and_close(
void *cc, unsigned ub, unsigned n, void *dst);
/**
* Initialize an ECHO-256 context. This process performs no memory allocation.
*
* @param cc the ECHO-256 context (pointer to a
* <code>sph_echo256_context</code>)
*/
void sph_echo256_init(void *cc);
/**
* Process some data bytes. It is acceptable that <code>len</code> is zero
* (in which case this function does nothing).
*
* @param cc the ECHO-256 context
* @param data the input data
* @param len the input data length (in bytes)
*/
void sph_echo256(void *cc, const void *data, size_t len);
/**
* Terminate the current ECHO-256 computation and output the result into
* the provided buffer. The destination buffer must be wide enough to
* accomodate the result (32 bytes). The context is automatically
* reinitialized.
*
* @param cc the ECHO-256 context
* @param dst the destination buffer
*/
void sph_echo256_close(void *cc, void *dst);
/**
* Add a few additional bits (0 to 7) to the current computation, then
* terminate it and output the result in the provided buffer, which must
* be wide enough to accomodate the result (32 bytes). If bit number i
* in <code>ub</code> has value 2^i, then the extra bits are those
* numbered 7 downto 8-n (this is the big-endian convention at the byte
* level). The context is automatically reinitialized.
*
* @param cc the ECHO-256 context
* @param ub the extra bits
* @param n the number of extra bits (0 to 7)
* @param dst the destination buffer
*/
void sph_echo256_addbits_and_close(
void *cc, unsigned ub, unsigned n, void *dst);
/**
* Initialize an ECHO-384 context. This process performs no memory allocation.
*
* @param cc the ECHO-384 context (pointer to a
* <code>sph_echo384_context</code>)
*/
void sph_echo384_init(void *cc);
/**
* Process some data bytes. It is acceptable that <code>len</code> is zero
* (in which case this function does nothing).
*
* @param cc the ECHO-384 context
* @param data the input data
* @param len the input data length (in bytes)
*/
void sph_echo384(void *cc, const void *data, size_t len);
/**
* Terminate the current ECHO-384 computation and output the result into
* the provided buffer. The destination buffer must be wide enough to
* accomodate the result (48 bytes). The context is automatically
* reinitialized.
*
* @param cc the ECHO-384 context
* @param dst the destination buffer
*/
void sph_echo384_close(void *cc, void *dst);
/**
* Add a few additional bits (0 to 7) to the current computation, then
* terminate it and output the result in the provided buffer, which must
* be wide enough to accomodate the result (48 bytes). If bit number i
* in <code>ub</code> has value 2^i, then the extra bits are those
* numbered 7 downto 8-n (this is the big-endian convention at the byte
* level). The context is automatically reinitialized.
*
* @param cc the ECHO-384 context
* @param ub the extra bits
* @param n the number of extra bits (0 to 7)
* @param dst the destination buffer
*/
void sph_echo384_addbits_and_close(
void *cc, unsigned ub, unsigned n, void *dst);
/**
* Initialize an ECHO-512 context. This process performs no memory allocation.
*
* @param cc the ECHO-512 context (pointer to a
* <code>sph_echo512_context</code>)
*/
void sph_echo512_init(void *cc);
/**
* Process some data bytes. It is acceptable that <code>len</code> is zero
* (in which case this function does nothing).
*
* @param cc the ECHO-512 context
* @param data the input data
* @param len the input data length (in bytes)
*/
void sph_echo512(void *cc, const void *data, size_t len);
/**
* Terminate the current ECHO-512 computation and output the result into
* the provided buffer. The destination buffer must be wide enough to
* accomodate the result (64 bytes). The context is automatically
* reinitialized.
*
* @param cc the ECHO-512 context
* @param dst the destination buffer
*/
void sph_echo512_close(void *cc, void *dst);
/**
* Add a few additional bits (0 to 7) to the current computation, then
* terminate it and output the result in the provided buffer, which must
* be wide enough to accomodate the result (64 bytes). If bit number i
* in <code>ub</code> has value 2^i, then the extra bits are those
* numbered 7 downto 8-n (this is the big-endian convention at the byte
* level). The context is automatically reinitialized.
*
* @param cc the ECHO-512 context
* @param ub the extra bits
* @param n the number of extra bits (0 to 7)
* @param dst the destination buffer
*/
void sph_echo512_addbits_and_close(
void *cc, unsigned ub, unsigned n, void *dst);
#ifdef __cplusplus
}
#endif
#endif

139
algo/fresh.c Normal file
View File

@@ -0,0 +1,139 @@
#include "miner.h"
#include "algo-gate-api.h"
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <stdio.h>
#include "algo/shavite/sph_shavite.h"
#include "algo/simd/sph_simd.h"
#include "algo/echo/sph_echo.h"
//#define DEBUG_ALGO
extern void freshhash(void* output, const void* input, uint32_t len)
{
unsigned char hash[128]; // uint32_t hashA[16], hashB[16];
#define hashA hash
#define hashB hash+64
sph_shavite512_context ctx_shavite;
sph_simd512_context ctx_simd;
sph_echo512_context ctx_echo;
sph_shavite512_init(&ctx_shavite);
sph_shavite512(&ctx_shavite, input, len);
sph_shavite512_close(&ctx_shavite, hashA);
sph_simd512_init(&ctx_simd);
sph_simd512(&ctx_simd, hashA, 64);
sph_simd512_close(&ctx_simd, hashB);
sph_shavite512_init(&ctx_shavite);
sph_shavite512(&ctx_shavite, hashB, 64);
sph_shavite512_close(&ctx_shavite, hashA);
sph_simd512_init(&ctx_simd);
sph_simd512(&ctx_simd, hashA, 64);
sph_simd512_close(&ctx_simd, hashB);
sph_echo512_init(&ctx_echo);
sph_echo512(&ctx_echo, hashB, 64);
sph_echo512_close(&ctx_echo, hashA);
memcpy(output, hash, 32);
}
int scanhash_fresh(int thr_id, struct work *work,
uint32_t max_nonce, uint64_t *hashes_done)
{
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
uint32_t len = 80;
uint32_t n = pdata[19] - 1;
const uint32_t first_nonce = pdata[19];
const uint32_t Htarg = ptarget[7];
#ifdef _MSC_VER
uint32_t __declspec(align(32)) hash64[8];
#else
uint32_t hash64[8] __attribute__((aligned(32)));
#endif
uint32_t endiandata[32];
uint64_t htmax[] = {
0,
0xF,
0xFF,
0xFFF,
0xFFFF,
0x10000000
};
uint32_t masks[] = {
0xFFFFFFFF,
0xFFFFFFF0,
0xFFFFFF00,
0xFFFFF000,
0xFFFF0000,
0
};
// we need bigendian data...
for (int k = 0; k < 19; k++)
be32enc(&endiandata[k], pdata[k]);
#ifdef DEBUG_ALGO
if (Htarg != 0)
printf("[%d] Htarg=%X\n", thr_id, Htarg);
#endif
for (int m=0; m < 6; m++) {
if (Htarg <= htmax[m]) {
uint32_t mask = masks[m];
do {
pdata[19] = ++n;
be32enc(&endiandata[19], n);
freshhash(hash64, endiandata, len);
#ifndef DEBUG_ALGO
if ((!(hash64[7] & mask)) && fulltest(hash64, ptarget)) {
*hashes_done = n - first_nonce + 1;
return true;
}
#else
if (!(n % 0x1000) && !thr_id) printf(".");
if (!(hash64[7] & mask)) {
printf("[%d]",thr_id);
if (fulltest(hash64, ptarget)) {
*hashes_done = n - first_nonce + 1;
return true;
}
}
#endif
} while (n < max_nonce && !work_restart[thr_id].restart);
// see blake.c if else to understand the loop on htmax => mask
break;
}
}
*hashes_done = n - first_nonce + 1;
pdata[19] = n;
return 0;
}
void fresh_set_target( struct work* work, double job_diff )
{
work_set_target( work, job_diff / (256.0 * opt_diff_factor) );
}
bool register_fresh_algo( algo_gate_t* gate )
{
algo_not_tested();
gate->scanhash = (void*)&scanhash_fresh;
gate->hash = (void*)&freshhash;
gate->hash_alt = (void*)&freshhash;
gate->set_target = (void*)&fresh_set_target;
gate->get_max64 = (void*)&get_max64_0x3ffff;
return true;
};

0
algo/fugue/.dirstamp Normal file
View File

1208
algo/fugue/sph_fugue.c Normal file

File diff suppressed because it is too large Load Diff

81
algo/fugue/sph_fugue.h Normal file
View File

@@ -0,0 +1,81 @@
#ifndef SPH_FUGUE_H__
#define SPH_FUGUE_H__
#include <stddef.h>
#include "algo/sha3/sph_types.h"
#ifdef __cplusplus
extern "C"{
#endif
#define SPH_SIZE_fugue224 224
#define SPH_SIZE_fugue256 256
#define SPH_SIZE_fugue384 384
#define SPH_SIZE_fugue512 512
typedef struct {
#ifndef DOXYGEN_IGNORE
sph_u32 partial;
unsigned partial_len;
unsigned round_shift;
sph_u32 S[36];
#if SPH_64
sph_u64 bit_count;
#else
sph_u32 bit_count_high, bit_count_low;
#endif
#endif
} sph_fugue_context;
typedef sph_fugue_context sph_fugue224_context;
typedef sph_fugue_context sph_fugue256_context;
typedef sph_fugue_context sph_fugue384_context;
typedef sph_fugue_context sph_fugue512_context;
void sph_fugue224_init(void *cc);
void sph_fugue224(void *cc, const void *data, size_t len);
void sph_fugue224_close(void *cc, void *dst);
void sph_fugue224_addbits_and_close(
void *cc, unsigned ub, unsigned n, void *dst);
void sph_fugue256_init(void *cc);
void sph_fugue256(void *cc, const void *data, size_t len);
void sph_fugue256_close(void *cc, void *dst);
void sph_fugue256_addbits_and_close(
void *cc, unsigned ub, unsigned n, void *dst);
void sph_fugue384_init(void *cc);
void sph_fugue384(void *cc, const void *data, size_t len);
void sph_fugue384_close(void *cc, void *dst);
void sph_fugue384_addbits_and_close(
void *cc, unsigned ub, unsigned n, void *dst);
void sph_fugue512_init(void *cc);
void sph_fugue512(void *cc, const void *data, size_t len);
void sph_fugue512_close(void *cc, void *dst);
void sph_fugue512_addbits_and_close(
void *cc, unsigned ub, unsigned n, void *dst);
#ifdef __cplusplus
}
#endif
#endif

0
algo/gost/.dirstamp Normal file
View File

1045
algo/gost/sph_gost.c Normal file

File diff suppressed because it is too large Load Diff

185
algo/gost/sph_gost.h Normal file
View File

@@ -0,0 +1,185 @@
/* $Id: sph_gost.h 216 2010-06-08 09:46:57Z tp $ */
/**
* GOST interface. This is the interface for GOST R 12 with the
* recommended parameters for SHA-3, with output lengths 256
* and 512 bits.
*
* ==========================(LICENSE BEGIN)============================
*
* Copyright (c) 2007-2010 Projet RNRT SAPHIR
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* ===========================(LICENSE END)=============================
*
* @file sph_gost.h
* @author Mish <mish@btchouse.com>
*/
#ifndef SPH_GOST_H__
#define SPH_GOST_H__
#ifdef __cplusplus
extern "C"{
#endif
#include <stddef.h>
#include "algo/sha3/sph_types.h"
/**
* Output size (in bits) for GOST-256.
*/
#define SPH_SIZE_gost256 256
/**
* Output size (in bits) for GOST-512.
*/
#define SPH_SIZE_gost512 512
/**
* This structure is a context for Keccak computations: it contains the
* intermediate values and some data from the last entered block. Once a
* GOST computation has been performed, the context can be reused for
* another computation.
*
* The contents of this structure are private. A running GOST computation
* can be cloned by copying the context (e.g. with a simple
* <code>memcpy()</code>).
*/
/**
* This structure is a context for Gost-256 computations.
*/
typedef struct {
#ifndef DOXYGEN_IGNORE
unsigned char buf[32]; /* first field, for alignment */
size_t ptr;
sph_u32 V[3][8];
#endif
} sph_gost256_context;
/**
* This structure is a context for Gost-512 computations.
*/
typedef struct {
#ifndef DOXYGEN_IGNORE
unsigned char buf[64]; /* first field, for alignment */
size_t ptr;
sph_u32 V[5][8];
#endif
} sph_gost512_context;
/**
* Initialize a GOST-256 context. This process performs no memory allocation.
*
* @param cc the GOST-256 context (pointer to a
* <code>sph_gost256_context</code>)
*/
void sph_gost256_init(void *cc);
/**
* Process some data bytes. It is acceptable that <code>len</code> is zero
* (in which case this function does nothing).
*
* @param cc the Gost-256 context
* @param data the input data
* @param len the input data length (in bytes)
*/
void sph_gost256(void *cc, const void *data, size_t len);
/**
* Terminate the current GOST-256 computation and output the result into
* the provided buffer. The destination buffer must be wide enough to
* accomodate the result (32 bytes). The context is automatically
* reinitialized.
*
* @param cc the GOST-256 context
* @param dst the destination buffer
*/
void sph_gost256_close(void *cc, void *dst);
/**
* Add a few additional bits (0 to 7) to the current computation, then
* terminate it and output the result in the provided buffer, which must
* be wide enough to accomodate the result (32 bytes). If bit number i
* in <code>ub</code> has value 2^i, then the extra bits are those
* numbered 7 downto 8-n (this is the big-endian convention at the byte
* level). The context is automatically reinitialized.
*
* @param cc the GOST-256 context
* @param ub the extra bits
* @param n the number of extra bits (0 to 7)
* @param dst the destination buffer
*/
void sph_gost256_addbits_and_close(
void *cc, unsigned ub, unsigned n, void *dst);
/**
* Initialize a Gost-512 context. This process performs no memory allocation.
*
* @param cc the GOST-512 context (pointer to a
* <code>sph_gost512_context</code>)
*/
void sph_gost512_init(void *cc);
/**
* Process some data bytes. It is acceptable that <code>len</code> is zero
* (in which case this function does nothing).
*
* @param cc the GOST-512 context
* @param data the input data
* @param len the input data length (in bytes)
*/
void sph_gost512(void *cc, const void *data, size_t len);
/**
* Terminate the current GOST-512 computation and output the result into
* the provided buffer. The destination buffer must be wide enough to
* accomodate the result (64 bytes). The context is automatically
* reinitialized.
*
* @param cc the GOST-512 context
* @param dst the destination buffer
*/
void sph_gost512_close(void *cc, void *dst);
/**
* Add a few additional bits (0 to 7) to the current computation, then
* terminate it and output the result in the provided buffer, which must
* be wide enough to accomodate the result (64 bytes). If bit number i
* in <code>ub</code> has value 2^i, then the extra bits are those
* numbered 7 downto 8-n (this is the big-endian convention at the byte
* level). The context is automatically reinitialized.
*
* @param cc the GOST-512 context
* @param ub the extra bits
* @param n the number of extra bits (0 to 7)
* @param dst the destination buffer
*/
void sph_gost512_addbits_and_close(
void *cc, unsigned ub, unsigned n, void *dst);
#ifdef __cplusplus
}
#endif
#endif

0
algo/groestl/.dirstamp Normal file
View File

View File

View File

@@ -0,0 +1,14 @@
This package contains an implementation of the Groestl-512 hash
function optimized for the Intel AES instructions.
Authors are Krystian Matusiewicz, Günther A. Roland, Martin Schläffer
There are no known present or future claims by a copyright holder that
the distribution of this software infringes the copyright. In
particular, the author of the software is not making such claims and
does not intend to make such claims.
Moreover, there are no known present or future claims by a patent
holder that the use of this software infringes the patent. In
particular, the author of the software is not making such claims and
does not intend to make such claims.

View File

@@ -0,0 +1,2 @@
#define CRYPTO_BYTES 64
#define CRYPTO_VERSION "2.2"

Some files were not shown because too many files have changed in this diff Show More