mirror of
https://github.com/JayDDee/cpuminer-opt.git
synced 2025-09-17 23:44:27 +00:00
366 lines
14 KiB
C
366 lines
14 KiB
C
// Copyright (c) 2012-2013 The Cryptonote developers
|
|
// Distributed under the MIT/X11 software license, see the accompanying
|
|
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
|
|
|
#include "miner.h"
|
|
#include "algo-gate-api.h"
|
|
|
|
#if defined(__arm__) || defined(_MSC_VER)
|
|
#ifndef NOASM
|
|
#define NOASM
|
|
#endif
|
|
#endif
|
|
|
|
#include "crypto/oaes_lib.h"
|
|
#include "crypto/c_keccak.h"
|
|
#include "crypto/c_groestl.h"
|
|
#include "crypto/c_blake256.h"
|
|
#include "crypto/c_jh.h"
|
|
#include "crypto/c_skein.h"
|
|
#include "crypto/int-util.h"
|
|
#include "crypto/hash-ops.h"
|
|
|
|
#if USE_INT128
|
|
|
|
#if __GNUC__ == 4 && __GNUC_MINOR__ >= 4 && __GNUC_MINOR__ < 6
|
|
typedef unsigned int uint128_t __attribute__ ((__mode__ (TI)));
|
|
#elif defined (_MSC_VER)
|
|
/* only for mingw64 on windows */
|
|
#undef USE_INT128
|
|
#define USE_INT128 (0)
|
|
#else
|
|
typedef __uint128_t uint128_t;
|
|
#endif
|
|
|
|
#endif
|
|
|
|
#define LITE 1
|
|
#if LITE /* cryptonight-light */
|
|
#define MEMORY (1 << 20)
|
|
#define ITER (1 << 19)
|
|
#else
|
|
#define MEMORY (1 << 21) /* 2 MiB */
|
|
#define ITER (1 << 20)
|
|
#endif
|
|
|
|
#define AES_BLOCK_SIZE 16
|
|
#define AES_KEY_SIZE 32 /*16*/
|
|
#define INIT_SIZE_BLK 8
|
|
#define INIT_SIZE_BYTE (INIT_SIZE_BLK * AES_BLOCK_SIZE)
|
|
|
|
#pragma pack(push, 1)
|
|
union cn_slow_hash_state {
|
|
union hash_state hs;
|
|
struct {
|
|
uint8_t k[64];
|
|
uint8_t init[INIT_SIZE_BYTE];
|
|
};
|
|
};
|
|
#pragma pack(pop)
|
|
|
|
static void do_blake_hash(const void* input, size_t len, char* output) {
|
|
blake256_hash((uint8_t*)output, input, len);
|
|
}
|
|
|
|
static void do_groestl_hash(const void* input, size_t len, char* output) {
|
|
groestl(input, len * 8, (uint8_t*)output);
|
|
}
|
|
|
|
static void do_jh_hash(const void* input, size_t len, char* output) {
|
|
int r = jh_hash(HASH_SIZE * 8, input, 8 * len, (uint8_t*)output);
|
|
assert(likely(SUCCESS == r));
|
|
}
|
|
|
|
static void do_skein_hash(const void* input, size_t len, char* output) {
|
|
int r = skein_hash(8 * HASH_SIZE, input, 8 * len, (uint8_t*)output);
|
|
assert(likely(SKEIN_SUCCESS == r));
|
|
}
|
|
|
|
extern int aesb_single_round(const uint8_t *in, uint8_t*out, const uint8_t *expandedKey);
|
|
extern int aesb_pseudo_round_mut(uint8_t *val, uint8_t *expandedKey);
|
|
#if !defined(_MSC_VER) && !defined(NOASM)
|
|
extern int fast_aesb_single_round(const uint8_t *in, uint8_t*out, const uint8_t *expandedKey);
|
|
extern int fast_aesb_pseudo_round_mut(uint8_t *val, uint8_t *expandedKey);
|
|
#else
|
|
#define fast_aesb_single_round aesb_single_round
|
|
#define fast_aesb_pseudo_round_mut aesb_pseudo_round_mut
|
|
#endif
|
|
|
|
#if defined(NOASM) || !defined(__x86_64__)
|
|
static uint64_t mul128(uint64_t multiplier, uint64_t multiplicand, uint64_t* product_hi) {
|
|
// multiplier = ab = a * 2^32 + b
|
|
// multiplicand = cd = c * 2^32 + d
|
|
// ab * cd = a * c * 2^64 + (a * d + b * c) * 2^32 + b * d
|
|
uint64_t a = hi_dword(multiplier);
|
|
uint64_t b = lo_dword(multiplier);
|
|
uint64_t c = hi_dword(multiplicand);
|
|
uint64_t d = lo_dword(multiplicand);
|
|
|
|
uint64_t ac = a * c;
|
|
uint64_t ad = a * d;
|
|
uint64_t bc = b * c;
|
|
uint64_t bd = b * d;
|
|
|
|
uint64_t adbc = ad + bc;
|
|
uint64_t adbc_carry = adbc < ad ? 1 : 0;
|
|
|
|
// multiplier * multiplicand = product_hi * 2^64 + product_lo
|
|
uint64_t product_lo = bd + (adbc << 32);
|
|
uint64_t product_lo_carry = product_lo < bd ? 1 : 0;
|
|
*product_hi = ac + (adbc >> 32) + (adbc_carry << 32) + product_lo_carry;
|
|
assert(ac <= *product_hi);
|
|
|
|
return product_lo;
|
|
}
|
|
#else
|
|
extern uint64_t mul128(uint64_t multiplier, uint64_t multiplicand, uint64_t* product_hi);
|
|
#endif
|
|
|
|
static void (* const extra_hashes[4])(const void *, size_t, char *) = {
|
|
do_blake_hash, do_groestl_hash, do_jh_hash, do_skein_hash
|
|
};
|
|
|
|
|
|
static inline size_t e2i(const uint8_t* a) {
|
|
#if !LITE
|
|
return ((uint32_t *)a)[0] & 0x1FFFF0;
|
|
#else
|
|
return ((uint32_t *)a)[0] & 0xFFFF0;
|
|
#endif
|
|
}
|
|
|
|
static inline void mul_sum_xor_dst(const uint8_t* a, uint8_t* c, uint8_t* dst) {
|
|
uint64_t hi, lo = mul128(((uint64_t*) a)[0], ((uint64_t*) dst)[0], &hi) + ((uint64_t*) c)[1];
|
|
hi += ((uint64_t*) c)[0];
|
|
|
|
((uint64_t*) c)[0] = ((uint64_t*) dst)[0] ^ hi;
|
|
((uint64_t*) c)[1] = ((uint64_t*) dst)[1] ^ lo;
|
|
((uint64_t*) dst)[0] = hi;
|
|
((uint64_t*) dst)[1] = lo;
|
|
}
|
|
|
|
static inline void xor_blocks(uint8_t* a, const uint8_t* b) {
|
|
#if USE_INT128
|
|
*((uint128_t*) a) ^= *((uint128_t*) b);
|
|
#else
|
|
((uint64_t*) a)[0] ^= ((uint64_t*) b)[0];
|
|
((uint64_t*) a)[1] ^= ((uint64_t*) b)[1];
|
|
#endif
|
|
}
|
|
|
|
static inline void xor_blocks_dst(const uint8_t* a, const uint8_t* b, uint8_t* dst) {
|
|
#if USE_INT128
|
|
*((uint128_t*) dst) = *((uint128_t*) a) ^ *((uint128_t*) b);
|
|
#else
|
|
((uint64_t*) dst)[0] = ((uint64_t*) a)[0] ^ ((uint64_t*) b)[0];
|
|
((uint64_t*) dst)[1] = ((uint64_t*) a)[1] ^ ((uint64_t*) b)[1];
|
|
#endif
|
|
}
|
|
|
|
struct cryptonight_ctx {
|
|
uint8_t _ALIGN(16) long_state[MEMORY];
|
|
union cn_slow_hash_state state;
|
|
uint8_t _ALIGN(16) text[INIT_SIZE_BYTE];
|
|
uint8_t _ALIGN(16) a[AES_BLOCK_SIZE];
|
|
uint8_t _ALIGN(16) b[AES_BLOCK_SIZE];
|
|
uint8_t _ALIGN(16) c[AES_BLOCK_SIZE];
|
|
oaes_ctx* aes_ctx;
|
|
};
|
|
|
|
static void cryptolight_hash_ctx(void* output, const void* input, int len, struct cryptonight_ctx* ctx)
|
|
{
|
|
len = 76;
|
|
hash_process(&ctx->state.hs, (const uint8_t*) input, len);
|
|
ctx->aes_ctx = (oaes_ctx*) oaes_alloc();
|
|
size_t i, j;
|
|
memcpy(ctx->text, ctx->state.init, INIT_SIZE_BYTE);
|
|
|
|
oaes_key_import_data(ctx->aes_ctx, ctx->state.hs.b, AES_KEY_SIZE);
|
|
for (i = 0; likely(i < MEMORY); i += INIT_SIZE_BYTE) {
|
|
aesb_pseudo_round_mut(&ctx->text[AES_BLOCK_SIZE * 0], ctx->aes_ctx->key->exp_data);
|
|
aesb_pseudo_round_mut(&ctx->text[AES_BLOCK_SIZE * 1], ctx->aes_ctx->key->exp_data);
|
|
aesb_pseudo_round_mut(&ctx->text[AES_BLOCK_SIZE * 2], ctx->aes_ctx->key->exp_data);
|
|
aesb_pseudo_round_mut(&ctx->text[AES_BLOCK_SIZE * 3], ctx->aes_ctx->key->exp_data);
|
|
aesb_pseudo_round_mut(&ctx->text[AES_BLOCK_SIZE * 4], ctx->aes_ctx->key->exp_data);
|
|
aesb_pseudo_round_mut(&ctx->text[AES_BLOCK_SIZE * 5], ctx->aes_ctx->key->exp_data);
|
|
aesb_pseudo_round_mut(&ctx->text[AES_BLOCK_SIZE * 6], ctx->aes_ctx->key->exp_data);
|
|
aesb_pseudo_round_mut(&ctx->text[AES_BLOCK_SIZE * 7], ctx->aes_ctx->key->exp_data);
|
|
memcpy(&ctx->long_state[i], ctx->text, INIT_SIZE_BYTE);
|
|
}
|
|
|
|
xor_blocks_dst(&ctx->state.k[0], &ctx->state.k[32], ctx->a);
|
|
xor_blocks_dst(&ctx->state.k[16], &ctx->state.k[48], ctx->b);
|
|
|
|
for (i = 0; likely(i < ITER / 4); ++i) {
|
|
/* Dependency chain: address -> read value ------+
|
|
* written value <-+ hard function (AES or MUL) <+
|
|
* next address <-+
|
|
*/
|
|
/* Iteration 1 */
|
|
j = e2i(ctx->a);
|
|
aesb_single_round(&ctx->long_state[j], ctx->c, ctx->a);
|
|
xor_blocks_dst(ctx->c, ctx->b, &ctx->long_state[j]);
|
|
/* Iteration 2 */
|
|
mul_sum_xor_dst(ctx->c, ctx->a, &ctx->long_state[e2i(ctx->c)]);
|
|
/* Iteration 3 */
|
|
j = e2i(ctx->a);
|
|
aesb_single_round(&ctx->long_state[j], ctx->b, ctx->a);
|
|
xor_blocks_dst(ctx->b, ctx->c, &ctx->long_state[j]);
|
|
/* Iteration 4 */
|
|
mul_sum_xor_dst(ctx->b, ctx->a, &ctx->long_state[e2i(ctx->b)]);
|
|
}
|
|
|
|
memcpy(ctx->text, ctx->state.init, INIT_SIZE_BYTE);
|
|
oaes_key_import_data(ctx->aes_ctx, &ctx->state.hs.b[32], AES_KEY_SIZE);
|
|
for (i = 0; likely(i < MEMORY); i += INIT_SIZE_BYTE) {
|
|
xor_blocks(&ctx->text[0 * AES_BLOCK_SIZE], &ctx->long_state[i + 0 * AES_BLOCK_SIZE]);
|
|
aesb_pseudo_round_mut(&ctx->text[0 * AES_BLOCK_SIZE], ctx->aes_ctx->key->exp_data);
|
|
xor_blocks(&ctx->text[1 * AES_BLOCK_SIZE], &ctx->long_state[i + 1 * AES_BLOCK_SIZE]);
|
|
aesb_pseudo_round_mut(&ctx->text[1 * AES_BLOCK_SIZE], ctx->aes_ctx->key->exp_data);
|
|
xor_blocks(&ctx->text[2 * AES_BLOCK_SIZE], &ctx->long_state[i + 2 * AES_BLOCK_SIZE]);
|
|
aesb_pseudo_round_mut(&ctx->text[2 * AES_BLOCK_SIZE], ctx->aes_ctx->key->exp_data);
|
|
xor_blocks(&ctx->text[3 * AES_BLOCK_SIZE], &ctx->long_state[i + 3 * AES_BLOCK_SIZE]);
|
|
aesb_pseudo_round_mut(&ctx->text[3 * AES_BLOCK_SIZE], ctx->aes_ctx->key->exp_data);
|
|
xor_blocks(&ctx->text[4 * AES_BLOCK_SIZE], &ctx->long_state[i + 4 * AES_BLOCK_SIZE]);
|
|
aesb_pseudo_round_mut(&ctx->text[4 * AES_BLOCK_SIZE], ctx->aes_ctx->key->exp_data);
|
|
xor_blocks(&ctx->text[5 * AES_BLOCK_SIZE], &ctx->long_state[i + 5 * AES_BLOCK_SIZE]);
|
|
aesb_pseudo_round_mut(&ctx->text[5 * AES_BLOCK_SIZE], ctx->aes_ctx->key->exp_data);
|
|
xor_blocks(&ctx->text[6 * AES_BLOCK_SIZE], &ctx->long_state[i + 6 * AES_BLOCK_SIZE]);
|
|
aesb_pseudo_round_mut(&ctx->text[6 * AES_BLOCK_SIZE], ctx->aes_ctx->key->exp_data);
|
|
xor_blocks(&ctx->text[7 * AES_BLOCK_SIZE], &ctx->long_state[i + 7 * AES_BLOCK_SIZE]);
|
|
aesb_pseudo_round_mut(&ctx->text[7 * AES_BLOCK_SIZE], ctx->aes_ctx->key->exp_data);
|
|
}
|
|
memcpy(ctx->state.init, ctx->text, INIT_SIZE_BYTE);
|
|
hash_permutation(&ctx->state.hs);
|
|
/*memcpy(hash, &state, 32);*/
|
|
extra_hashes[ctx->state.hs.b[0] & 3](&ctx->state, 200, output);
|
|
oaes_free((OAES_CTX **) &ctx->aes_ctx);
|
|
}
|
|
|
|
void cryptolight_hash(void* output, const void* input, int len) {
|
|
struct cryptonight_ctx *ctx = (struct cryptonight_ctx*)malloc(sizeof(struct cryptonight_ctx));
|
|
cryptolight_hash_ctx(output, input, len, ctx);
|
|
free(ctx);
|
|
}
|
|
|
|
static void cryptolight_hash_ctx_aes_ni(void* output, const void* input,
|
|
int len, struct cryptonight_ctx* ctx)
|
|
{
|
|
hash_process(&ctx->state.hs, (const uint8_t*)input, len);
|
|
ctx->aes_ctx = (oaes_ctx*) oaes_alloc();
|
|
size_t i, j;
|
|
memcpy(ctx->text, ctx->state.init, INIT_SIZE_BYTE);
|
|
|
|
oaes_key_import_data(ctx->aes_ctx, ctx->state.hs.b, AES_KEY_SIZE);
|
|
for (i = 0; likely(i < MEMORY); i += INIT_SIZE_BYTE) {
|
|
fast_aesb_pseudo_round_mut(&ctx->text[AES_BLOCK_SIZE * 0], ctx->aes_ctx->key->exp_data);
|
|
fast_aesb_pseudo_round_mut(&ctx->text[AES_BLOCK_SIZE * 1], ctx->aes_ctx->key->exp_data);
|
|
fast_aesb_pseudo_round_mut(&ctx->text[AES_BLOCK_SIZE * 2], ctx->aes_ctx->key->exp_data);
|
|
fast_aesb_pseudo_round_mut(&ctx->text[AES_BLOCK_SIZE * 3], ctx->aes_ctx->key->exp_data);
|
|
fast_aesb_pseudo_round_mut(&ctx->text[AES_BLOCK_SIZE * 4], ctx->aes_ctx->key->exp_data);
|
|
fast_aesb_pseudo_round_mut(&ctx->text[AES_BLOCK_SIZE * 5], ctx->aes_ctx->key->exp_data);
|
|
fast_aesb_pseudo_round_mut(&ctx->text[AES_BLOCK_SIZE * 6], ctx->aes_ctx->key->exp_data);
|
|
fast_aesb_pseudo_round_mut(&ctx->text[AES_BLOCK_SIZE * 7], ctx->aes_ctx->key->exp_data);
|
|
memcpy(&ctx->long_state[i], ctx->text, INIT_SIZE_BYTE);
|
|
}
|
|
|
|
xor_blocks_dst(&ctx->state.k[0], &ctx->state.k[32], ctx->a);
|
|
xor_blocks_dst(&ctx->state.k[16], &ctx->state.k[48], ctx->b);
|
|
|
|
for (i = 0; likely(i < ITER / 4); ++i) {
|
|
/* Dependency chain: address -> read value ------+
|
|
* written value <-+ hard function (AES or MUL) <+
|
|
* next address <-+
|
|
*/
|
|
/* Iteration 1 */
|
|
j = e2i(ctx->a);
|
|
fast_aesb_single_round(&ctx->long_state[j], ctx->c, ctx->a);
|
|
xor_blocks_dst(ctx->c, ctx->b, &ctx->long_state[j]);
|
|
/* Iteration 2 */
|
|
mul_sum_xor_dst(ctx->c, ctx->a, &ctx->long_state[e2i(ctx->c)]);
|
|
/* Iteration 3 */
|
|
j = e2i(ctx->a);
|
|
fast_aesb_single_round(&ctx->long_state[j], ctx->b, ctx->a);
|
|
xor_blocks_dst(ctx->b, ctx->c, &ctx->long_state[j]);
|
|
/* Iteration 4 */
|
|
mul_sum_xor_dst(ctx->b, ctx->a, &ctx->long_state[e2i(ctx->b)]);
|
|
}
|
|
|
|
memcpy(ctx->text, ctx->state.init, INIT_SIZE_BYTE);
|
|
oaes_key_import_data(ctx->aes_ctx, &ctx->state.hs.b[32], AES_KEY_SIZE);
|
|
for (i = 0; likely(i < MEMORY); i += INIT_SIZE_BYTE) {
|
|
xor_blocks(&ctx->text[0 * AES_BLOCK_SIZE], &ctx->long_state[i + 0 * AES_BLOCK_SIZE]);
|
|
fast_aesb_pseudo_round_mut(&ctx->text[0 * AES_BLOCK_SIZE], ctx->aes_ctx->key->exp_data);
|
|
xor_blocks(&ctx->text[1 * AES_BLOCK_SIZE], &ctx->long_state[i + 1 * AES_BLOCK_SIZE]);
|
|
fast_aesb_pseudo_round_mut(&ctx->text[1 * AES_BLOCK_SIZE], ctx->aes_ctx->key->exp_data);
|
|
xor_blocks(&ctx->text[2 * AES_BLOCK_SIZE], &ctx->long_state[i + 2 * AES_BLOCK_SIZE]);
|
|
fast_aesb_pseudo_round_mut(&ctx->text[2 * AES_BLOCK_SIZE], ctx->aes_ctx->key->exp_data);
|
|
xor_blocks(&ctx->text[3 * AES_BLOCK_SIZE], &ctx->long_state[i + 3 * AES_BLOCK_SIZE]);
|
|
fast_aesb_pseudo_round_mut(&ctx->text[3 * AES_BLOCK_SIZE], ctx->aes_ctx->key->exp_data);
|
|
xor_blocks(&ctx->text[4 * AES_BLOCK_SIZE], &ctx->long_state[i + 4 * AES_BLOCK_SIZE]);
|
|
fast_aesb_pseudo_round_mut(&ctx->text[4 * AES_BLOCK_SIZE], ctx->aes_ctx->key->exp_data);
|
|
xor_blocks(&ctx->text[5 * AES_BLOCK_SIZE], &ctx->long_state[i + 5 * AES_BLOCK_SIZE]);
|
|
fast_aesb_pseudo_round_mut(&ctx->text[5 * AES_BLOCK_SIZE], ctx->aes_ctx->key->exp_data);
|
|
xor_blocks(&ctx->text[6 * AES_BLOCK_SIZE], &ctx->long_state[i + 6 * AES_BLOCK_SIZE]);
|
|
fast_aesb_pseudo_round_mut(&ctx->text[6 * AES_BLOCK_SIZE], ctx->aes_ctx->key->exp_data);
|
|
xor_blocks(&ctx->text[7 * AES_BLOCK_SIZE], &ctx->long_state[i + 7 * AES_BLOCK_SIZE]);
|
|
fast_aesb_pseudo_round_mut(&ctx->text[7 * AES_BLOCK_SIZE], ctx->aes_ctx->key->exp_data);
|
|
}
|
|
memcpy(ctx->state.init, ctx->text, INIT_SIZE_BYTE);
|
|
hash_permutation(&ctx->state.hs);
|
|
/*memcpy(hash, &state, 32);*/
|
|
extra_hashes[ctx->state.hs.b[0] & 3](&ctx->state, 200, output);
|
|
oaes_free((OAES_CTX **) &ctx->aes_ctx);
|
|
}
|
|
|
|
int scanhash_cryptolight(int thr_id, struct work *work,
|
|
uint32_t max_nonce, uint64_t *hashes_done)
|
|
{
|
|
uint32_t *pdata = work->data;
|
|
uint32_t *ptarget = work->target;
|
|
uint32_t *nonceptr = (uint32_t*) (((char*)pdata) + 39);
|
|
uint32_t n = *nonceptr - 1;
|
|
const uint32_t first_nonce = n + 1;
|
|
//const uint32_t Htarg = ptarget[7];
|
|
uint32_t _ALIGN(32) hash[HASH_SIZE / 4];
|
|
|
|
struct cryptonight_ctx *ctx = (struct cryptonight_ctx*)malloc(sizeof(struct cryptonight_ctx));
|
|
|
|
#ifndef NO_AES_NI
|
|
do {
|
|
*nonceptr = ++n;
|
|
cryptolight_hash_ctx_aes_ni(hash, pdata, 76, ctx);
|
|
if (unlikely(hash[7] < ptarget[7])) {
|
|
*hashes_done = n - first_nonce + 1;
|
|
free(ctx);
|
|
return true;
|
|
}
|
|
} while (likely((n <= max_nonce && !work_restart[thr_id].restart)));
|
|
#else
|
|
do {
|
|
*nonceptr = ++n;
|
|
cryptolight_hash_ctx(hash, pdata, 76, ctx);
|
|
if (unlikely(hash[7] < ptarget[7])) {
|
|
*hashes_done = n - first_nonce + 1;
|
|
free(ctx);
|
|
return true;
|
|
}
|
|
} while (likely((n <= max_nonce && !work_restart[thr_id].restart)));
|
|
#endif
|
|
free(ctx);
|
|
*hashes_done = n - first_nonce + 1;
|
|
return 0;
|
|
}
|
|
|
|
bool register_cryptolight_algo( algo_gate_t* gate )
|
|
{
|
|
register_json_rpc2( gate );
|
|
gate->optimizations = SSE2_OPT | AES_OPT;
|
|
gate->scanhash = (void*)&scanhash_cryptolight;
|
|
gate->hash = (void*)&cryptolight_hash;
|
|
gate->hash_suw = (void*)&cryptolight_hash;
|
|
gate->get_max64 = (void*)&get_max64_0x40LL;
|
|
return true;
|
|
};
|
|
|