Files
cpuminer-opt-gpu/algo/cubehash/sse2/cubehash_sse2.c.broke
2016-09-22 13:16:18 -04:00

293 lines
8.5 KiB
Plaintext

/* CubeHash 16/32 is recommended for SHA-3 "normal", 16/1 for "formal" */
#define CUBEHASH_ROUNDS 16
#define CUBEHASH_BLOCKBYTES 32
#define OPTIMIZE_SSE2
#if defined(OPTIMIZE_SSE2)
#include <emmintrin.h>
#endif
#ifdef __AVX2__
#include <immintrin.h>
#endif
#include "cubehash_sse2.h"
#include "algo/sha3/sha3-defs.h"
//enum { SUCCESS = 0, FAIL = 1, BAD_HASHBITLEN = 2 };
//#if defined(OPTIMIZE_SSE2)
static inline void transform( cubehashParam *sp )
{
int r;
#ifdef __AVX2__
__m256i x0, x1, x2, x3, y0, y1;
#ifdef UNUSED
__m256i y2, y3;
#endif
x0 = _mm256_loadu_si256( 0 + sp->x );
x1 = _mm256_loadu_si256( 2 + sp->x );
x2 = _mm256_loadu_si256( 4 + sp->x );
x3 = _mm256_loadu_si256( 6 + sp->x );
for ( r = 0; r < sp->rounds; ++r )
{
x2 = _mm256_add_epi32( x0, x2 );
x3 = _mm256_add_epi32( x1, x3 );
y0 = x1;
y1 = x0;
x0 = _mm256_xor_si256( _mm256_slli_epi32( y0, 7 ),
_mm256_srli_epi32( y0, 25 ) );
x1 = _mm256_xor_si256( _mm256_slli_epi32( y1, 7 ),
_mm256_srli_epi32( y1, 25 ) );
x0 = _mm256_xor_si256( x0, x2 );
x1 = _mm256_xor_si256( x1, x3 );
x2 = _mm256_shuffle_epi32( x2, 0x4e );
x3 = _mm256_shuffle_epi32( x3, 0x4e );
x2 = _mm256_add_epi32( x0, x2 );
x3 = _mm256_add_epi32( x1, x3 );
y0 = _mm256_permute2f128_si256( x0, x0, 1 );
y1 = _mm256_permute2f128_si256( x1, x1, 1 );
x0 = _mm256_xor_si256( _mm256_slli_epi32( y0, 11 ),
_mm256_srli_epi32( y0, 21 ) );
x1 = _mm256_xor_si256( _mm256_slli_epi32( y1, 11 ),
_mm256_srli_epi32( y1, 21 ) );
x0 = _mm256_xor_si256( x0, x2 );
x1 = _mm256_xor_si256( x1, x3 );
x2 = _mm256_shuffle_epi32( x2, 0xb1 );
x3 = _mm256_shuffle_epi32( x3, 0xb1 );
}
_mm256_storeu_si256( 0 + sp->x, x0 );
_mm256_storeu_si256( 2 + sp->x, x1 );
_mm256_storeu_si256( 4 + sp->x, x2 );
_mm256_storeu_si256( 6 + sp->x, x3 );
#elif defined OPTIMIZE_SSE2
__m128i x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3;
#ifdef UNUSED
__m128i y4, y5, y6, y7;
#endif
x0 = _mm_load_si128(0 + sp->x);
x1 = _mm_load_si128(1 + sp->x);
x2 = _mm_load_si128(2 + sp->x);
x3 = _mm_load_si128(3 + sp->x);
x4 = _mm_load_si128(4 + sp->x);
x5 = _mm_load_si128(5 + sp->x);
x6 = _mm_load_si128(6 + sp->x);
x7 = _mm_load_si128(7 + sp->x);
for (r = 0; r < sp->rounds; ++r) {
x4 = _mm_add_epi32(x0, x4);
x5 = _mm_add_epi32(x1, x5);
x6 = _mm_add_epi32(x2, x6);
x7 = _mm_add_epi32(x3, x7);
y0 = x2;
y1 = x3;
y2 = x0;
y3 = x1;
x0 = _mm_xor_si128(_mm_slli_epi32(y0, 7), _mm_srli_epi32(y0, 25));
x1 = _mm_xor_si128(_mm_slli_epi32(y1, 7), _mm_srli_epi32(y1, 25));
x2 = _mm_xor_si128(_mm_slli_epi32(y2, 7), _mm_srli_epi32(y2, 25));
x3 = _mm_xor_si128(_mm_slli_epi32(y3, 7), _mm_srli_epi32(y3, 25));
x0 = _mm_xor_si128(x0, x4);
x1 = _mm_xor_si128(x1, x5);
x2 = _mm_xor_si128(x2, x6);
x3 = _mm_xor_si128(x3, x7);
x4 = _mm_shuffle_epi32(x4, 0x4e);
x5 = _mm_shuffle_epi32(x5, 0x4e);
x6 = _mm_shuffle_epi32(x6, 0x4e);
x7 = _mm_shuffle_epi32(x7, 0x4e);
x4 = _mm_add_epi32(x0, x4);
x5 = _mm_add_epi32(x1, x5);
x6 = _mm_add_epi32(x2, x6);
x7 = _mm_add_epi32(x3, x7);
y0 = x1;
y1 = x0;
y2 = x3;
y3 = x2;
x0 = _mm_xor_si128(_mm_slli_epi32(y0, 11), _mm_srli_epi32(y0, 21));
x1 = _mm_xor_si128(_mm_slli_epi32(y1, 11), _mm_srli_epi32(y1, 21));
x2 = _mm_xor_si128(_mm_slli_epi32(y2, 11), _mm_srli_epi32(y2, 21));
x3 = _mm_xor_si128(_mm_slli_epi32(y3, 11), _mm_srli_epi32(y3, 21));
x0 = _mm_xor_si128(x0, x4);
x1 = _mm_xor_si128(x1, x5);
x2 = _mm_xor_si128(x2, x6);
x3 = _mm_xor_si128(x3, x7);
x4 = _mm_shuffle_epi32(x4, 0xb1);
x5 = _mm_shuffle_epi32(x5, 0xb1);
x6 = _mm_shuffle_epi32(x6, 0xb1);
x7 = _mm_shuffle_epi32(x7, 0xb1);
}
_mm_store_si128(0 + sp->x, x0);
_mm_store_si128(1 + sp->x, x1);
_mm_store_si128(2 + sp->x, x2);
_mm_store_si128(3 + sp->x, x3);
_mm_store_si128(4 + sp->x, x4);
_mm_store_si128(5 + sp->x, x5);
_mm_store_si128(6 + sp->x, x6);
_mm_store_si128(7 + sp->x, x7);
#else /* OPTIMIZE_SSE2 */
// Tis code probably not used, sph used instead for uniptoimized mining.
#define ROTATE(a,b) (((a) << (b)) | ((a) >> (32 - b)))
uint32_t y[16];
int i;
for (r = 0; r < sp->rounds; ++r) {
for (i = 0; i < 16; ++i) sp->x[i + 16] += sp->x[i];
for (i = 0; i < 16; ++i) sp->x[i] = ROTATE(y[i],7);
for (i = 0; i < 16; ++i) sp->x[i] ^= sp->x[i + 16];
for (i = 0; i < 16; ++i) y[i ^ 2] = sp->x[i + 16];
for (i = 0; i < 16; ++i) sp->x[i + 16] = y[i];
for (i = 0; i < 16; ++i) sp->x[i + 16] += sp->x[i];
for (i = 0; i < 16; ++i) y[i ^ 4] = sp->x[i];
for (i = 0; i < 16; ++i) sp->x[i] = ROTATE(y[i],11);
for (i = 0; i < 16; ++i) sp->x[i] ^= sp->x[i + 16];
for (i = 0; i < 16; ++i) y[i ^ 1] = sp->x[i + 16];
for (i = 0; i < 16; ++i) sp->x[i + 16] = y[i];
}
#endif
} // transform
int cubehashInit(cubehashParam *sp, int hashbitlen, int rounds, int blockbytes)
{
int i;
if (hashbitlen < 8) return BAD_HASHBITLEN;
if (hashbitlen > 512) return BAD_HASHBITLEN;
if (hashbitlen != 8 * (hashbitlen / 8)) return BAD_HASHBITLEN;
/* Sanity checks */
if (rounds <= 0 || rounds > 32) rounds = CUBEHASH_ROUNDS;
if (blockbytes <= 0 || blockbytes >= 256) blockbytes = CUBEHASH_BLOCKBYTES;
sp->hashbitlen = hashbitlen;
sp->rounds = rounds;
sp->blockbytes = blockbytes;
#if defined __AVX2__
for (i = 0; i < 4; ++i) sp->x[i] = _mm256_set_epi64x( 0, 0, 0, 0 );
// try swapping
sp->x[0] = _mm256_set_epi32( 0, sp->rounds, sp->blockbytes, hashbitlen / 8,
0, 0, 0, 0);
// sp->x[0] = _mm256_set_epi32( 0, 0, 0, 0,
// 0, sp->rounds, sp->blockbytes, hashbitlen / 8 );
#elif defined(OPTIMIZE_SSE2)
for (i = 0; i < 8; ++i) sp->x[i] = _mm_set_epi32(0, 0, 0, 0);
sp->x[0] = _mm_set_epi32(0, sp->rounds, sp->blockbytes, hashbitlen / 8);
#else
for (i = 0; i < 32; ++i) sp->x[i] = 0;
sp->x[0] = hashbitlen / 8;
sp->x[1] = sp->blockbytes;
sp->x[2] = sp->rounds;
#endif
for (i = 0; i < 10; ++i) transform(sp);
sp->pos = 0;
return SUCCESS;
}
int
cubehashReset(cubehashParam *sp)
{
return cubehashInit(sp, sp->hashbitlen, sp->rounds, sp->blockbytes);
}
int cubehashUpdate(cubehashParam *sp, const byte *data, size_t size)
{
uint64_t databitlen = 8 * size;
/* caller promises us that previous data had integral number of bytes */
/* so sp->pos is a multiple of 8 */
while (databitlen >= 8) {
#if defined __AVX2__
((unsigned char *) sp->x)[sp->pos / 8] ^= *data;
#elif defined(OPTIMIZE_SSE2)
((unsigned char *) sp->x)[sp->pos / 8] ^= *data;
#else
uint32_t u = *data;
u <<= 8 * ((sp->pos / 8) % 4);
sp->x[sp->pos / 32] ^= u;
#endif
data += 1;
databitlen -= 8;
sp->pos += 8;
if (sp->pos == 8 * sp->blockbytes) {
transform(sp);
sp->pos = 0;
}
}
if (databitlen > 0) {
#if defined __AVX2__
((unsigned char *) sp->x)[sp->pos / 8] ^= *data;
#elif defined(OPTIMIZE_SSE2)
((unsigned char *) sp->x)[sp->pos / 8] ^= *data;
#else
uint32_t u = *data;
u <<= 8 * ((sp->pos / 8) % 4);
sp->x[sp->pos / 32] ^= u;
#endif
sp->pos += databitlen;
}
return SUCCESS;
}
int cubehashDigest(cubehashParam *sp, byte *digest)
{
int i;
#if defined __AVX2__
((unsigned char *) sp->x)[sp->pos / 8] ^= (128 >> (sp->pos % 8));
__m128i t;
transform(sp);
// try control 0
// t = _mm256_extracti128_si256( sp->x[7], 1 );
t = _mm256_extracti128_si256( sp->x[7], 0 );
t = _mm_xor_si128( t, _mm_set_epi32(1, 0, 0, 0) );
// _mm256_inserti128_si256( sp->x[7], t, 1 );
_mm256_inserti128_si256( sp->x[7], t, 0 );
for (i = 0; i < 10; ++i) transform(sp);
for (i = 0; i < sp->hashbitlen / 8; ++i)
digest[i] = ((unsigned char *) sp->x)[i];
#elif defined(OPTIMIZE_SSE2)
((unsigned char *) sp->x)[sp->pos / 8] ^= (128 >> (sp->pos % 8));
transform(sp);
sp->x[7] = _mm_xor_si128(sp->x[7], _mm_set_epi32(1, 0, 0, 0));
for (i = 0; i < 10; ++i) transform(sp);
for (i = 0; i < sp->hashbitlen / 8; ++i)
digest[i] = ((unsigned char *) sp->x)[i];
#else
uint32_t u;
u = (128 >> (sp->pos % 8));
u <<= 8 * ((sp->pos / 8) % 4);
sp->x[sp->pos / 32] ^= u;
transform(sp);
sp->x[31] ^= 1;
for (i = 0; i < 10; ++i) transform(sp);
for (i = 0; i < sp->hashbitlen / 8; ++i)
digest[i] = sp->x[i / 4] >> (8 * (i % 4));
#endif
return SUCCESS;
}