Files
gogo2/.kiro/specs/multi-exchange-data-aggregation/design.md
2025-08-04 15:50:54 +03:00

448 lines
12 KiB
Markdown

# Design Document
## Overview
The Multi-Exchange Data Aggregation System is a comprehensive data collection and processing subsystem designed to serve as the foundational data layer for the trading orchestrator. The system will collect real-time order book and OHLCV data from the top 10 cryptocurrency exchanges, aggregate it into standardized formats, store it in a TimescaleDB time-series database, and provide both live data feeds and historical replay capabilities.
The system follows a microservices architecture with containerized components, ensuring scalability, maintainability, and seamless integration with the existing trading infrastructure.
We implement it in the `.\COBY` subfolder for easy integration with the existing system
## Architecture
### High-Level Architecture
```mermaid
graph TB
subgraph "Exchange Connectors"
E1[Binance WebSocket]
E2[Coinbase WebSocket]
E3[Kraken WebSocket]
E4[Bybit WebSocket]
E5[OKX WebSocket]
E6[Huobi WebSocket]
E7[KuCoin WebSocket]
E8[Gate.io WebSocket]
E9[Bitfinex WebSocket]
E10[MEXC WebSocket]
end
subgraph "Data Processing Layer"
DP[Data Processor]
AGG[Aggregation Engine]
NORM[Data Normalizer]
end
subgraph "Storage Layer"
TSDB[(TimescaleDB)]
CACHE[Redis Cache]
end
subgraph "API Layer"
LIVE[Live Data API]
REPLAY[Replay API]
WEB[Web Dashboard]
end
subgraph "Integration Layer"
ORCH[Orchestrator Interface]
ADAPTER[Data Adapter]
end
E1 --> DP
E2 --> DP
E3 --> DP
E4 --> DP
E5 --> DP
E6 --> DP
E7 --> DP
E8 --> DP
E9 --> DP
E10 --> DP
DP --> NORM
NORM --> AGG
AGG --> TSDB
AGG --> CACHE
CACHE --> LIVE
TSDB --> REPLAY
LIVE --> WEB
REPLAY --> WEB
LIVE --> ADAPTER
REPLAY --> ADAPTER
ADAPTER --> ORCH
```
### Component Architecture
The system is organized into several key components:
1. **Exchange Connectors**: WebSocket clients for each exchange
2. **Data Processing Engine**: Normalizes and validates incoming data
3. **Aggregation Engine**: Creates price buckets and heatmaps
4. **Storage Layer**: TimescaleDB for persistence, Redis for caching
5. **API Layer**: REST and WebSocket APIs for data access
6. **Web Dashboard**: Real-time visualization interface
7. **Integration Layer**: Orchestrator-compatible interface
## Components and Interfaces
### Exchange Connector Interface
```python
class ExchangeConnector:
"""Base interface for exchange WebSocket connectors"""
async def connect(self) -> bool
async def disconnect(self) -> None
async def subscribe_orderbook(self, symbol: str) -> None
async def subscribe_trades(self, symbol: str) -> None
def get_connection_status(self) -> ConnectionStatus
def add_data_callback(self, callback: Callable) -> None
```
### Data Processing Interface
```python
class DataProcessor:
"""Processes and normalizes raw exchange data"""
def normalize_orderbook(self, raw_data: Dict, exchange: str) -> OrderBookSnapshot
def normalize_trade(self, raw_data: Dict, exchange: str) -> TradeEvent
def validate_data(self, data: Union[OrderBookSnapshot, TradeEvent]) -> bool
def calculate_metrics(self, orderbook: OrderBookSnapshot) -> OrderBookMetrics
```
### Aggregation Engine Interface
```python
class AggregationEngine:
"""Aggregates data into price buckets and heatmaps"""
def create_price_buckets(self, orderbook: OrderBookSnapshot, bucket_size: float) -> PriceBuckets
def update_heatmap(self, symbol: str, buckets: PriceBuckets) -> HeatmapData
def calculate_imbalances(self, orderbook: OrderBookSnapshot) -> ImbalanceMetrics
def aggregate_across_exchanges(self, symbol: str) -> ConsolidatedOrderBook
```
### Storage Interface
```python
class StorageManager:
"""Manages data persistence and retrieval"""
async def store_orderbook(self, data: OrderBookSnapshot) -> bool
async def store_trade(self, data: TradeEvent) -> bool
async def get_historical_data(self, symbol: str, start: datetime, end: datetime) -> List[Dict]
async def get_latest_data(self, symbol: str) -> Dict
def setup_database_schema(self) -> None
```
### Replay Interface
```python
class ReplayManager:
"""Provides historical data replay functionality"""
def create_replay_session(self, start_time: datetime, end_time: datetime, speed: float) -> str
async def start_replay(self, session_id: str) -> None
async def pause_replay(self, session_id: str) -> None
async def stop_replay(self, session_id: str) -> None
def get_replay_status(self, session_id: str) -> ReplayStatus
```
## Data Models
### Core Data Structures
```python
@dataclass
class OrderBookSnapshot:
"""Standardized order book snapshot"""
symbol: str
exchange: str
timestamp: datetime
bids: List[PriceLevel]
asks: List[PriceLevel]
sequence_id: Optional[int] = None
@dataclass
class PriceLevel:
"""Individual price level in order book"""
price: float
size: float
count: Optional[int] = None
@dataclass
class TradeEvent:
"""Standardized trade event"""
symbol: str
exchange: str
timestamp: datetime
price: float
size: float
side: str # 'buy' or 'sell'
trade_id: str
@dataclass
class PriceBuckets:
"""Aggregated price buckets for heatmap"""
symbol: str
timestamp: datetime
bucket_size: float
bid_buckets: Dict[float, float] # price -> volume
ask_buckets: Dict[float, float] # price -> volume
@dataclass
class HeatmapData:
"""Heatmap visualization data"""
symbol: str
timestamp: datetime
bucket_size: float
data: List[HeatmapPoint]
@dataclass
class HeatmapPoint:
"""Individual heatmap data point"""
price: float
volume: float
intensity: float # 0.0 to 1.0
side: str # 'bid' or 'ask'
```
### Database Schema
#### TimescaleDB Tables
```sql
-- Order book snapshots table
CREATE TABLE order_book_snapshots (
id BIGSERIAL,
symbol VARCHAR(20) NOT NULL,
exchange VARCHAR(20) NOT NULL,
timestamp TIMESTAMPTZ NOT NULL,
bids JSONB NOT NULL,
asks JSONB NOT NULL,
sequence_id BIGINT,
mid_price DECIMAL(20,8),
spread DECIMAL(20,8),
bid_volume DECIMAL(30,8),
ask_volume DECIMAL(30,8),
PRIMARY KEY (timestamp, symbol, exchange)
);
-- Convert to hypertable
SELECT create_hypertable('order_book_snapshots', 'timestamp');
-- Trade events table
CREATE TABLE trade_events (
id BIGSERIAL,
symbol VARCHAR(20) NOT NULL,
exchange VARCHAR(20) NOT NULL,
timestamp TIMESTAMPTZ NOT NULL,
price DECIMAL(20,8) NOT NULL,
size DECIMAL(30,8) NOT NULL,
side VARCHAR(4) NOT NULL,
trade_id VARCHAR(100) NOT NULL,
PRIMARY KEY (timestamp, symbol, exchange, trade_id)
);
-- Convert to hypertable
SELECT create_hypertable('trade_events', 'timestamp');
-- Aggregated heatmap data table
CREATE TABLE heatmap_data (
symbol VARCHAR(20) NOT NULL,
timestamp TIMESTAMPTZ NOT NULL,
bucket_size DECIMAL(10,2) NOT NULL,
price_bucket DECIMAL(20,8) NOT NULL,
volume DECIMAL(30,8) NOT NULL,
side VARCHAR(3) NOT NULL,
exchange_count INTEGER NOT NULL,
PRIMARY KEY (timestamp, symbol, bucket_size, price_bucket, side)
);
-- Convert to hypertable
SELECT create_hypertable('heatmap_data', 'timestamp');
-- OHLCV data table
CREATE TABLE ohlcv_data (
symbol VARCHAR(20) NOT NULL,
timestamp TIMESTAMPTZ NOT NULL,
timeframe VARCHAR(10) NOT NULL,
open_price DECIMAL(20,8) NOT NULL,
high_price DECIMAL(20,8) NOT NULL,
low_price DECIMAL(20,8) NOT NULL,
close_price DECIMAL(20,8) NOT NULL,
volume DECIMAL(30,8) NOT NULL,
trade_count INTEGER,
PRIMARY KEY (timestamp, symbol, timeframe)
);
-- Convert to hypertable
SELECT create_hypertable('ohlcv_data', 'timestamp');
```
## Error Handling
### Connection Management
The system implements robust error handling for exchange connections:
1. **Exponential Backoff**: Failed connections retry with increasing delays
2. **Circuit Breaker**: Temporarily disable problematic exchanges
3. **Graceful Degradation**: Continue operation with available exchanges
4. **Health Monitoring**: Continuous monitoring of connection status
### Data Validation
All incoming data undergoes validation:
1. **Schema Validation**: Ensure data structure compliance
2. **Range Validation**: Check price and volume ranges
3. **Timestamp Validation**: Verify temporal consistency
4. **Duplicate Detection**: Prevent duplicate data storage
### Database Resilience
Database operations include comprehensive error handling:
1. **Connection Pooling**: Maintain multiple database connections
2. **Transaction Management**: Ensure data consistency
3. **Retry Logic**: Automatic retry for transient failures
4. **Backup Strategies**: Regular data backups and recovery procedures
## Testing Strategy
### Unit Testing
Each component will have comprehensive unit tests:
1. **Exchange Connectors**: Mock WebSocket responses
2. **Data Processing**: Test normalization and validation
3. **Aggregation Engine**: Verify bucket calculations
4. **Storage Layer**: Test database operations
5. **API Layer**: Test endpoint responses
### Integration Testing
End-to-end testing scenarios:
1. **Multi-Exchange Data Flow**: Test complete data pipeline
2. **Database Integration**: Verify TimescaleDB operations
3. **API Integration**: Test orchestrator interface compatibility
4. **Performance Testing**: Load testing with high-frequency data
### Performance Testing
Performance benchmarks and testing:
1. **Throughput Testing**: Measure data processing capacity
2. **Latency Testing**: Measure end-to-end data latency
3. **Memory Usage**: Monitor memory consumption patterns
4. **Database Performance**: Query performance optimization
### Monitoring and Observability
Comprehensive monitoring system:
1. **Metrics Collection**: Prometheus-compatible metrics
2. **Logging**: Structured logging with correlation IDs
3. **Alerting**: Real-time alerts for system issues
4. **Dashboards**: Grafana dashboards for system monitoring
## Deployment Architecture
### Docker Containerization
The system will be deployed using Docker containers:
```yaml
# docker-compose.yml
version: '3.8'
services:
timescaledb:
image: timescale/timescaledb:latest-pg14
environment:
POSTGRES_DB: market_data
POSTGRES_USER: market_user
POSTGRES_PASSWORD: ${DB_PASSWORD}
volumes:
- timescale_data:/var/lib/postgresql/data
ports:
- "5432:5432"
redis:
image: redis:7-alpine
ports:
- "6379:6379"
volumes:
- redis_data:/data
data-aggregator:
build: ./data-aggregator
environment:
- DB_HOST=timescaledb
- REDIS_HOST=redis
- LOG_LEVEL=INFO
depends_on:
- timescaledb
- redis
web-dashboard:
build: ./web-dashboard
ports:
- "8080:8080"
environment:
- API_HOST=data-aggregator
depends_on:
- data-aggregator
volumes:
timescale_data:
redis_data:
```
### Configuration Management
Environment-based configuration:
```python
# config.py
@dataclass
class Config:
# Database settings
db_host: str = os.getenv('DB_HOST', 'localhost')
db_port: int = int(os.getenv('DB_PORT', '5432'))
db_name: str = os.getenv('DB_NAME', 'market_data')
db_user: str = os.getenv('DB_USER', 'market_user')
db_password: str = os.getenv('DB_PASSWORD', '')
# Redis settings
redis_host: str = os.getenv('REDIS_HOST', 'localhost')
redis_port: int = int(os.getenv('REDIS_PORT', '6379'))
# Exchange settings
exchanges: List[str] = field(default_factory=lambda: [
'binance', 'coinbase', 'kraken', 'bybit', 'okx',
'huobi', 'kucoin', 'gateio', 'bitfinex', 'mexc'
])
# Aggregation settings
btc_bucket_size: float = 10.0 # $10 USD buckets for BTC
eth_bucket_size: float = 1.0 # $1 USD buckets for ETH
# Performance settings
max_connections_per_exchange: int = 5
data_buffer_size: int = 10000
batch_write_size: int = 1000
# API settings
api_host: str = os.getenv('API_HOST', '0.0.0.0')
api_port: int = int(os.getenv('API_PORT', '8080'))
websocket_port: int = int(os.getenv('WS_PORT', '8081'))
```
This design provides a robust, scalable foundation for multi-exchange data aggregation that seamlessly integrates with the existing trading orchestrator while providing the flexibility for future enhancements and additional exchange integrations.