4.3 KiB
4.3 KiB
Quick Start Guide
🚀 Fastest Way to Start
First Time Setup
cd /mnt/shared/DEV/repos/d-popov.com/gogo2
python -m venv venv
source venv/bin/activate
pip install -r requirements.txt
# Auto-detect and install correct PyTorch (NVIDIA/AMD/CPU)
./scripts/setup-pytorch.sh
Daily Use (After Setup)
Your system is ready to go with GPU support!
cd /mnt/shared/DEV/repos/d-popov.com/gogo2
source venv/bin/activate
python kill_dashboard.py # Kill any stale processes
python ANNOTATE/web/app.py
Access: http://localhost:8051
GPU Status:
- ✅ AMD Radeon Graphics (Strix Halo 8050S/8060S)
- ✅ ROCm 6.2 PyTorch installed
- ✅ 47GB shared memory
- ✅ 2-3x faster training vs CPU
Alternative: Use Existing Docker Container
You have amd-strix-halo-llama-rocm container already running with ROCm support:
Setup Container (One-Time)
# 1. Install Python in container (Fedora-based)
docker exec amd-strix-halo-llama-rocm dnf install -y python3.12 python3-pip python3-devel git
# 2. Create symlinks
docker exec amd-strix-halo-llama-rocm bash -c "ln -sf /usr/bin/python3.12 /usr/bin/python3 && ln -sf /usr/bin/python3.12 /usr/bin/python"
# 3. Copy project to container
docker exec amd-strix-halo-llama-rocm mkdir -p /workspace
docker cp /mnt/shared/DEV/repos/d-popov.com/gogo2 amd-strix-halo-llama-rocm:/workspace/
# 4. Install dependencies
docker exec amd-strix-halo-llama-rocm bash -c "cd /workspace/gogo2 && pip3 install -r requirements.txt && pip3 install torch --index-url https://download.pytorch.org/whl/rocm6.2"
Start ANNOTATE in Container
# Enter container
docker exec -it amd-strix-halo-llama-rocm bash
# Inside container:
cd /workspace/gogo2
python3 ANNOTATE/web/app.py --port 8051
Access: http://localhost:8051 (if port is exposed)
Helper script: ./scripts/attach-to-rocm-container.sh (guides you through setup)
Development Workflows
1. ANNOTATE Dashboard (Manual Trading)
source venv/bin/activate
python ANNOTATE/web/app.py
- Create trade annotations
- Train models on annotations
- Test inference
2. Main Dashboard (Live Trading)
source venv/bin/activate
python main_dashboard.py --port 8050
- Real-time market data
- Live predictions
- Performance monitoring
3. Training Runner
source venv/bin/activate
# Real-time training (4 hours)
python training_runner.py --mode realtime --duration 4 --symbol ETH/USDT
# Backtest training
python training_runner.py --mode backtest --start-date 2024-01-01 --end-date 2024-12-31
4. COB Dashboard
source venv/bin/activate
python web/cob_realtime_dashboard.py
- Order book analysis
- Market microstructure
- Liquidity monitoring
Troubleshooting
Port Already in Use
# Kill stale processes
python kill_dashboard.py
# Or manually
lsof -i :8051
kill -9 <PID>
GPU Not Working
# Check GPU
python -c "import torch; print(f'CUDA: {torch.cuda.is_available()}'); print(f'Device: {torch.cuda.get_device_name(0)}')"
# Should show:
# CUDA: True
# Device: AMD Radeon Graphics
Missing Dependencies
# Reinstall
pip install -r requirements.txt
pip install torch --index-url https://download.pytorch.org/whl/rocm6.2
Documentation
- 📖 Full Setup: readme.md
- 🐳 Docker Guide: docs/AMD_STRIX_HALO_DOCKER.md
- 🔌 Container Usage: docs/USING_EXISTING_ROCM_CONTAINER.md
- 🎓 Training Guide: ANNOTATE/TRAINING_GUIDE.md
- 🔧 Kill Processes: kill_dashboard.py
Common Commands
# Activate environment
source venv/bin/activate
# Check Python/GPU
python --version
python -c "import torch; print(torch.cuda.is_available())"
# Kill stale processes
python kill_dashboard.py
# List Docker containers
docker ps -a
# Attach to container
docker exec -it amd-strix-halo-llama-rocm bash
# View logs
tail -f logs/*.log
Next Steps
- ✅ Start ANNOTATE - Create trading annotations
- 📊 Train Models - Use your annotations to train
- 🔴 Live Inference - Test predictions in real-time
- 📈 Monitor Performance - Track accuracy and profits
System: AMD Strix Halo (Radeon 8050S/8060S)
Status: ✅ Ready for GPU-accelerated training
Last Updated: 2025-11-12