5.0 KiB
5.0 KiB
🚀 LIVE GPU TRAINING STATUS - 504M PARAMETER MODEL
Date: May 24, 2025 - 23:37 EEST
Status: ✅ ACTIVE GPU TRAINING WITH REAL LIVE DATA
Model: 504.89 Million Parameter Enhanced CNN + DQN Agent
VRAM Usage: 1.2GB / 8.1GB (15% utilization)
🎯 REAL LIVE MARKET DATA CONFIRMED
📊 100% REAL DATA SOURCES:
- ✅ Binance WebSocket Streams:
wss://stream.binance.com:9443/ws/
- ✅ Binance REST API:
https://api.binance.com/api/v3/klines
- ✅ Real-time Tick Data: 1-second granularity
- ✅ Live Price Feed: ETH/USDT, BTC/USDT current prices
- ✅ Historical Cache: Real market data only (< 15min old)
🚫 NO SYNTHETIC DATA POLICY ENFORCED:
- Zero synthetic/generated data
- Zero simulated market conditions
- Zero mock data for testing
- All training samples from real price movements
🔥 ACTIVE TRAINING SYSTEMS
📈 GPU Training (Process 45076):
NVIDIA GeForce RTX 4060 Ti 8GB
├── Memory Usage: 1,212 MB / 8,188 MB (15%)
├── GPU Utilization: 12%
├── Temperature: 63°C
└── Power: 23W / 55W
🖥️ Active Python Processes:
PID: 2584 - Scalping Dashboard (8050)
PID: 39444 - RL Training Engine
PID: 45076 - GPU Training Process ⚡
PID: 45612 - Training Monitor
📊 LIVE DASHBOARD & MONITORING
🌐 Active Web Interfaces:
- Scalping Dashboard: http://127.0.0.1:8050
- TensorBoard: http://127.0.0.1:6006
- Training Monitor: Running in background
📱 Real-time Trading Actions Visible:
🔥 TRADE #242 OPENED: BUY ETH/USDT @ $3071.07
📈 Quantity: 0.0486 | Confidence: 89.3%
💰 Position Value: $74,623.56 (500x leverage)
🎯 Net PnL: $+32.49 | Total PnL: $+8068.27
⚡ TRAINING CONFIGURATION
🚀 Massive Model Architecture:
- Enhanced CNN: 168,296,366 parameters
- DQN Agent: 336,592,732 parameters (dual networks)
- Total Parameters: 504,889,098 (504.89M)
- Memory Usage: 1,926.7 MB (1.93 GB)
🎯 Training Features:
- Input Shape: (4, 20, 48) - 4 timeframes, 20 steps, 48 features
- Timeframes: 1s, 1m, 5m, 1h
- Features: 48 technical indicators from real market data
- Symbols: ETH/USDT primary, BTC/USDT secondary
- Leverage: 500x for scalping
📊 Real-time Feature Processing:
Features: ['ad_line', 'adx', 'adx_neg', 'adx_pos', 'atr', 'bb_lower',
'bb_middle', 'bb_percent', 'bb_upper', 'bb_width', 'close', 'ema_12',
'ema_26', 'ema_50', 'high', 'keltner_lower', 'keltner_middle',
'keltner_upper', 'low', 'macd', 'macd_histogram', 'macd_signal', 'mfi',
'momentum_composite', 'obv', 'open', 'price_position', 'psar', 'roc',
'rsi_14', 'rsi_21', 'rsi_7', 'sma_10', 'sma_20', 'sma_50', 'stoch_d',
'stoch_k', 'trend_strength', 'true_range', 'ultimate_osc',
'volatility_regime', 'volume', 'volume_sma_10', 'volume_sma_20',
'volume_sma_50', 'vpt', 'vwap', 'williams_r']
🎖️ TRAINING OBJECTIVES
🎯 Primary Goals:
- Maximize Profit: RL agent optimized for profit maximization
- Real-time Scalping: 1-15 second trade durations
- Risk Management: Dynamic position sizing with 500x leverage
- Live Adaptation: Continuous learning from real market data
📈 Performance Metrics:
- Win Rate Target: >60%
- Trade Duration: 2-15 seconds average
- PnL Target: Positive overnight session
- Leverage Efficiency: 500x optimal utilization
📝 LIVE TRAINING LOG SAMPLE:
2025-05-24 23:37:44,054 - core.data_provider - INFO - Using 48 common features
2025-05-24 23:37:44,103 - core.data_provider - INFO - Created feature matrix for ETH/USDT: (4, 20, 48)
2025-05-24 23:37:44,114 - core.data_provider - INFO - Using cached data for ETH/USDT 1s
2025-05-24 23:37:44,175 - core.data_provider - INFO - Created feature matrix for ETH/USDT: (4, 20, 48)
🔄 CONTINUOUS OPERATIONS
✅ Currently Running:
- GPU training with 504M parameter model
- Real-time data streaming from Binance
- Live scalping dashboard with trading actions
- TensorBoard monitoring and visualization
- Automated training progress logging
- Overnight training monitor
- Feature extraction from live market data
🎯 Expected Overnight Results:
- Model convergence on real market patterns
- Optimized trading strategies for current market conditions
- Enhanced profit maximization capabilities
- Improved real-time decision making
🚨 MONITORING ALERTS
✅ System Health:
- GPU temperature: Normal (63°C)
- Memory usage: Optimal (15% utilization)
- Data feed: Active and stable
- Training progress: Ongoing
📞 Access Points:
- Dashboard: http://127.0.0.1:8050
- TensorBoard: http://127.0.0.1:6006
- Logs:
logs/trading.log
,logs/overnight_training/
🎉 SUCCESS STATUS: GPU training active with 504M parameter model using 100% real live market data. Dashboard showing live trading actions. All systems operational for overnight training session!