Files
gogo2/UNIVERSAL_MODEL_TOGGLE_SYSTEM_SUMMARY.md
Dobromir Popov d35530a9e9 win uni toggle
2025-07-29 16:10:45 +03:00

168 lines
5.5 KiB
Markdown

# Universal Model Toggle System - Implementation Summary
## 🎯 Problem Solved
The original dashboard had hardcoded model toggle callbacks for specific models (DQN, CNN, COB_RL, Decision_Fusion). This meant:
- ❌ Adding new models required manual code changes
- ❌ Each model needed separate hardcoded callbacks
- ❌ No support for dynamic model registration
- ❌ Maintenance nightmare when adding/removing models
## ✅ Solution Implemented
Created a **Universal Model Toggle System** that works with any model dynamically:
### Key Features
1. **Dynamic Model Discovery**
- Automatically detects all models from orchestrator's model registry
- Supports models with or without interfaces
- Works with both registered models and toggle-only models
2. **Universal Callback Generation**
- Single generic callback handler for all models
- Automatically creates inference and training toggles for each model
- No hardcoded model names or callbacks
3. **Robust State Management**
- Toggle states persist across sessions
- Automatic initialization for new models
- Backward compatibility with existing models
4. **Dynamic Model Registration**
- Add new models at runtime without code changes
- Remove models dynamically
- Automatic callback creation for new models
## 🏗️ Architecture Changes
### 1. Dashboard (`web/clean_dashboard.py`)
**Before:**
```python
# Hardcoded model state variables
self.dqn_inference_enabled = True
self.cnn_inference_enabled = True
# ... separate variables for each model
# Hardcoded callbacks for each model
@self.app.callback(Output('dqn-inference-toggle', 'value'), ...)
def update_dqn_inference_toggle(value): ...
@self.app.callback(Output('cnn-inference-toggle', 'value'), ...)
def update_cnn_inference_toggle(value): ...
# ... separate callback for each model
```
**After:**
```python
# Dynamic model state management
self.model_toggle_states = {} # Dynamic storage
# Universal callback setup
self._setup_universal_model_callbacks()
def _setup_universal_model_callbacks(self):
available_models = self._get_available_models()
for model_name in available_models.keys():
self._create_model_toggle_callbacks(model_name)
def _create_model_toggle_callbacks(self, model_name):
# Creates both inference and training callbacks dynamically
@self.app.callback(...)
def update_model_inference_toggle(value):
return self._handle_model_toggle(model_name, 'inference', value)
```
### 2. Orchestrator (`core/orchestrator.py`)
**Enhanced with:**
- `register_model_dynamically()` - Add models at runtime
- `get_all_registered_models()` - Get all available models
- Automatic toggle state initialization for new models
- Notification system for toggle changes
### 3. Model Registry (`models/__init__.py`)
**Enhanced with:**
- `unregister_model()` - Remove models dynamically
- `get_memory_stats()` - Memory usage tracking
- `cleanup_all_models()` - Cleanup functionality
## 🧪 Test Results
The test script `test_universal_model_toggles.py` demonstrates:
**Test 1: Model Discovery** - Found 9 existing models automatically
**Test 2: Dynamic Registration** - Successfully added new model at runtime
**Test 3: Toggle State Management** - Proper state retrieval for all models
**Test 4: State Updates** - Toggle changes work correctly
**Test 5: Interface-less Models** - Models without interfaces work
**Test 6: Dashboard Integration** - Dashboard sees all 14 models dynamically
## 🚀 Usage Examples
### Adding a New Model Dynamically
```python
# Through orchestrator
success = orchestrator.register_model_dynamically("new_model", model_interface)
# Through dashboard
success = dashboard.add_model_dynamically("new_model", model_interface)
```
### Checking Model States
```python
# Get all available models
models = orchestrator.get_all_registered_models()
# Get specific model toggle state
state = orchestrator.get_model_toggle_state("any_model_name")
# Returns: {"inference_enabled": True, "training_enabled": False}
```
### Updating Toggle States
```python
# Enable/disable inference or training for any model
orchestrator.set_model_toggle_state("any_model", inference_enabled=False)
orchestrator.set_model_toggle_state("any_model", training_enabled=True)
```
## 🎯 Benefits Achieved
1. **Scalability**: Add unlimited models without code changes
2. **Maintainability**: Single universal handler instead of N hardcoded callbacks
3. **Flexibility**: Works with any model type (DQN, CNN, Transformer, etc.)
4. **Robustness**: Automatic state management and persistence
5. **Future-Proof**: New model types automatically supported
## 🔧 Technical Implementation Details
### Model Discovery Process
1. Check orchestrator's model registry for registered models
2. Check orchestrator's toggle states for additional models
3. Merge both sources to get complete model list
4. Create callbacks for all discovered models
### Callback Generation
- Uses Python closures to create unique callbacks for each model
- Each model gets both inference and training toggle callbacks
- Callbacks use generic handler with model name parameter
### State Persistence
- Toggle states saved to `data/ui_state.json`
- Automatic loading on startup
- New models get default enabled state
## 🎉 Result
The inf and trn checkboxes now work for **ALL models** - existing and future ones. The system automatically:
- Discovers all available models
- Creates appropriate toggle controls
- Manages state persistence
- Supports dynamic model addition/removal
**No more hardcoded model callbacks needed!** 🚀