168 lines
5.5 KiB
Markdown
168 lines
5.5 KiB
Markdown
# Universal Model Toggle System - Implementation Summary
|
|
|
|
## 🎯 Problem Solved
|
|
|
|
The original dashboard had hardcoded model toggle callbacks for specific models (DQN, CNN, COB_RL, Decision_Fusion). This meant:
|
|
- ❌ Adding new models required manual code changes
|
|
- ❌ Each model needed separate hardcoded callbacks
|
|
- ❌ No support for dynamic model registration
|
|
- ❌ Maintenance nightmare when adding/removing models
|
|
|
|
## ✅ Solution Implemented
|
|
|
|
Created a **Universal Model Toggle System** that works with any model dynamically:
|
|
|
|
### Key Features
|
|
|
|
1. **Dynamic Model Discovery**
|
|
- Automatically detects all models from orchestrator's model registry
|
|
- Supports models with or without interfaces
|
|
- Works with both registered models and toggle-only models
|
|
|
|
2. **Universal Callback Generation**
|
|
- Single generic callback handler for all models
|
|
- Automatically creates inference and training toggles for each model
|
|
- No hardcoded model names or callbacks
|
|
|
|
3. **Robust State Management**
|
|
- Toggle states persist across sessions
|
|
- Automatic initialization for new models
|
|
- Backward compatibility with existing models
|
|
|
|
4. **Dynamic Model Registration**
|
|
- Add new models at runtime without code changes
|
|
- Remove models dynamically
|
|
- Automatic callback creation for new models
|
|
|
|
## 🏗️ Architecture Changes
|
|
|
|
### 1. Dashboard (`web/clean_dashboard.py`)
|
|
|
|
**Before:**
|
|
```python
|
|
# Hardcoded model state variables
|
|
self.dqn_inference_enabled = True
|
|
self.cnn_inference_enabled = True
|
|
# ... separate variables for each model
|
|
|
|
# Hardcoded callbacks for each model
|
|
@self.app.callback(Output('dqn-inference-toggle', 'value'), ...)
|
|
def update_dqn_inference_toggle(value): ...
|
|
|
|
@self.app.callback(Output('cnn-inference-toggle', 'value'), ...)
|
|
def update_cnn_inference_toggle(value): ...
|
|
# ... separate callback for each model
|
|
```
|
|
|
|
**After:**
|
|
```python
|
|
# Dynamic model state management
|
|
self.model_toggle_states = {} # Dynamic storage
|
|
|
|
# Universal callback setup
|
|
self._setup_universal_model_callbacks()
|
|
|
|
def _setup_universal_model_callbacks(self):
|
|
available_models = self._get_available_models()
|
|
for model_name in available_models.keys():
|
|
self._create_model_toggle_callbacks(model_name)
|
|
|
|
def _create_model_toggle_callbacks(self, model_name):
|
|
# Creates both inference and training callbacks dynamically
|
|
@self.app.callback(...)
|
|
def update_model_inference_toggle(value):
|
|
return self._handle_model_toggle(model_name, 'inference', value)
|
|
```
|
|
|
|
### 2. Orchestrator (`core/orchestrator.py`)
|
|
|
|
**Enhanced with:**
|
|
- `register_model_dynamically()` - Add models at runtime
|
|
- `get_all_registered_models()` - Get all available models
|
|
- Automatic toggle state initialization for new models
|
|
- Notification system for toggle changes
|
|
|
|
### 3. Model Registry (`models/__init__.py`)
|
|
|
|
**Enhanced with:**
|
|
- `unregister_model()` - Remove models dynamically
|
|
- `get_memory_stats()` - Memory usage tracking
|
|
- `cleanup_all_models()` - Cleanup functionality
|
|
|
|
## 🧪 Test Results
|
|
|
|
The test script `test_universal_model_toggles.py` demonstrates:
|
|
|
|
✅ **Test 1: Model Discovery** - Found 9 existing models automatically
|
|
✅ **Test 2: Dynamic Registration** - Successfully added new model at runtime
|
|
✅ **Test 3: Toggle State Management** - Proper state retrieval for all models
|
|
✅ **Test 4: State Updates** - Toggle changes work correctly
|
|
✅ **Test 5: Interface-less Models** - Models without interfaces work
|
|
✅ **Test 6: Dashboard Integration** - Dashboard sees all 14 models dynamically
|
|
|
|
## 🚀 Usage Examples
|
|
|
|
### Adding a New Model Dynamically
|
|
|
|
```python
|
|
# Through orchestrator
|
|
success = orchestrator.register_model_dynamically("new_model", model_interface)
|
|
|
|
# Through dashboard
|
|
success = dashboard.add_model_dynamically("new_model", model_interface)
|
|
```
|
|
|
|
### Checking Model States
|
|
|
|
```python
|
|
# Get all available models
|
|
models = orchestrator.get_all_registered_models()
|
|
|
|
# Get specific model toggle state
|
|
state = orchestrator.get_model_toggle_state("any_model_name")
|
|
# Returns: {"inference_enabled": True, "training_enabled": False}
|
|
```
|
|
|
|
### Updating Toggle States
|
|
|
|
```python
|
|
# Enable/disable inference or training for any model
|
|
orchestrator.set_model_toggle_state("any_model", inference_enabled=False)
|
|
orchestrator.set_model_toggle_state("any_model", training_enabled=True)
|
|
```
|
|
|
|
## 🎯 Benefits Achieved
|
|
|
|
1. **Scalability**: Add unlimited models without code changes
|
|
2. **Maintainability**: Single universal handler instead of N hardcoded callbacks
|
|
3. **Flexibility**: Works with any model type (DQN, CNN, Transformer, etc.)
|
|
4. **Robustness**: Automatic state management and persistence
|
|
5. **Future-Proof**: New model types automatically supported
|
|
|
|
## 🔧 Technical Implementation Details
|
|
|
|
### Model Discovery Process
|
|
1. Check orchestrator's model registry for registered models
|
|
2. Check orchestrator's toggle states for additional models
|
|
3. Merge both sources to get complete model list
|
|
4. Create callbacks for all discovered models
|
|
|
|
### Callback Generation
|
|
- Uses Python closures to create unique callbacks for each model
|
|
- Each model gets both inference and training toggle callbacks
|
|
- Callbacks use generic handler with model name parameter
|
|
|
|
### State Persistence
|
|
- Toggle states saved to `data/ui_state.json`
|
|
- Automatic loading on startup
|
|
- New models get default enabled state
|
|
|
|
## 🎉 Result
|
|
|
|
The inf and trn checkboxes now work for **ALL models** - existing and future ones. The system automatically:
|
|
- Discovers all available models
|
|
- Creates appropriate toggle controls
|
|
- Manages state persistence
|
|
- Supports dynamic model addition/removal
|
|
|
|
**No more hardcoded model callbacks needed!** 🚀 |