Files
gogo2/.kiro/specs/ui-stability-fix/design.md
2025-07-22 15:44:59 +03:00

350 lines
9.6 KiB
Markdown

# Design Document
## Overview
The UI Stability Fix implements a comprehensive solution to resolve critical stability issues between the dashboard UI and training processes. The design focuses on complete process isolation, proper async/await handling, resource conflict resolution, and robust error handling. The solution ensures that the dashboard can operate independently without affecting training system stability.
## Architecture
### High-Level Architecture
```mermaid
graph TB
subgraph "Training Process"
TP[Training Process]
TM[Training Models]
TD[Training Data]
TL[Training Logs]
end
subgraph "Dashboard Process"
DP[Dashboard Process]
DU[Dashboard UI]
DC[Dashboard Cache]
DL[Dashboard Logs]
end
subgraph "Shared Resources"
SF[Shared Files]
SC[Shared Config]
SM[Shared Models]
SD[Shared Data]
end
TP --> SF
DP --> SF
TP --> SC
DP --> SC
TP --> SM
DP --> SM
TP --> SD
DP --> SD
TP -.->|No Direct Connection| DP
```
### Process Isolation Design
The system will implement complete process isolation using:
1. **Separate Python Processes**: Dashboard and training run as independent processes
2. **Inter-Process Communication**: File-based communication for status and data sharing
3. **Resource Partitioning**: Separate resource allocation for each process
4. **Independent Lifecycle Management**: Each process can start, stop, and restart independently
### Async/Await Error Resolution
The design addresses async issues through:
1. **Proper Event Loop Management**: Single event loop per process with proper lifecycle
2. **Async Context Isolation**: Separate async contexts for different components
3. **Coroutine Handling**: Proper awaiting of all async operations
4. **Exception Propagation**: Proper async exception handling and propagation
## Components and Interfaces
### 1. Process Manager
**Purpose**: Manages the lifecycle of both dashboard and training processes
**Interface**:
```python
class ProcessManager:
def start_training_process(self) -> bool
def start_dashboard_process(self, port: int = 8050) -> bool
def stop_training_process(self) -> bool
def stop_dashboard_process(self) -> bool
def get_process_status(self) -> Dict[str, str]
def restart_process(self, process_name: str) -> bool
```
**Implementation Details**:
- Uses subprocess.Popen for process creation
- Monitors process health with periodic checks
- Handles process output logging and error capture
- Implements graceful shutdown with timeout handling
### 2. Isolated Dashboard
**Purpose**: Provides a completely isolated dashboard that doesn't interfere with training
**Interface**:
```python
class IsolatedDashboard:
def __init__(self, config: Dict[str, Any])
def start_server(self, host: str, port: int) -> None
def stop_server(self) -> None
def update_data_from_files(self) -> None
def get_training_status(self) -> Dict[str, Any]
```
**Implementation Details**:
- Runs in separate process with own event loop
- Reads data from shared files instead of direct memory access
- Uses file-based communication for training status
- Implements proper async/await patterns for all operations
### 3. Isolated Training Process
**Purpose**: Runs training completely isolated from UI components
**Interface**:
```python
class IsolatedTrainingProcess:
def __init__(self, config: Dict[str, Any])
def start_training(self) -> None
def stop_training(self) -> None
def get_training_metrics(self) -> Dict[str, Any]
def save_status_to_file(self) -> None
```
**Implementation Details**:
- No UI dependencies or imports
- Writes status and metrics to shared files
- Implements proper resource cleanup
- Uses separate logging configuration
### 4. Shared Data Manager
**Purpose**: Manages data sharing between processes through files
**Interface**:
```python
class SharedDataManager:
def write_training_status(self, status: Dict[str, Any]) -> None
def read_training_status(self) -> Dict[str, Any]
def write_market_data(self, data: Dict[str, Any]) -> None
def read_market_data(self) -> Dict[str, Any]
def write_model_metrics(self, metrics: Dict[str, Any]) -> None
def read_model_metrics(self) -> Dict[str, Any]
```
**Implementation Details**:
- Uses JSON files for structured data
- Implements file locking to prevent corruption
- Provides atomic write operations
- Includes data validation and error handling
### 5. Resource Manager
**Purpose**: Manages resource allocation and prevents conflicts
**Interface**:
```python
class ResourceManager:
def allocate_gpu_resources(self, process_name: str) -> bool
def release_gpu_resources(self, process_name: str) -> None
def check_memory_usage(self) -> Dict[str, float]
def enforce_resource_limits(self) -> None
```
**Implementation Details**:
- Monitors GPU memory usage per process
- Implements resource quotas and limits
- Provides resource conflict detection
- Includes automatic resource cleanup
### 6. Async Handler
**Purpose**: Properly handles all async operations in the dashboard
**Interface**:
```python
class AsyncHandler:
def __init__(self, loop: asyncio.AbstractEventLoop)
async def handle_orchestrator_connection(self) -> None
async def handle_cob_integration(self) -> None
async def handle_trading_decisions(self, decision: Dict) -> None
def run_async_safely(self, coro: Coroutine) -> Any
```
**Implementation Details**:
- Manages single event loop per process
- Provides proper exception handling for async operations
- Implements timeout handling for long-running operations
- Includes async context management
## Data Models
### Process Status Model
```python
@dataclass
class ProcessStatus:
name: str
pid: int
status: str # 'running', 'stopped', 'error'
start_time: datetime
last_heartbeat: datetime
memory_usage: float
cpu_usage: float
error_message: Optional[str] = None
```
### Training Status Model
```python
@dataclass
class TrainingStatus:
is_running: bool
current_epoch: int
total_epochs: int
loss: float
accuracy: float
last_update: datetime
model_path: str
error_message: Optional[str] = None
```
### Dashboard State Model
```python
@dataclass
class DashboardState:
is_connected: bool
last_data_update: datetime
active_connections: int
error_count: int
performance_metrics: Dict[str, float]
```
## Error Handling
### Exception Hierarchy
```python
class UIStabilityError(Exception):
"""Base exception for UI stability issues"""
pass
class ProcessCommunicationError(UIStabilityError):
"""Error in inter-process communication"""
pass
class AsyncOperationError(UIStabilityError):
"""Error in async operation handling"""
pass
class ResourceConflictError(UIStabilityError):
"""Error due to resource conflicts"""
pass
```
### Error Recovery Strategies
1. **Automatic Retry**: For transient network and file I/O errors
2. **Graceful Degradation**: Fallback to basic functionality when components fail
3. **Process Restart**: Automatic restart of failed processes
4. **Circuit Breaker**: Temporary disable of failing components
5. **Rollback**: Revert to last known good state
### Error Monitoring
- Centralized error logging with structured format
- Real-time error rate monitoring
- Automatic alerting for critical errors
- Error trend analysis and reporting
## Testing Strategy
### Unit Tests
- Test each component in isolation
- Mock external dependencies
- Verify error handling paths
- Test async operation handling
### Integration Tests
- Test inter-process communication
- Verify resource sharing mechanisms
- Test process lifecycle management
- Validate error recovery scenarios
### System Tests
- End-to-end stability testing
- Load testing with concurrent processes
- Failure injection testing
- Performance regression testing
### Monitoring Tests
- Health check endpoint testing
- Metrics collection validation
- Alert system testing
- Dashboard functionality testing
## Performance Considerations
### Resource Optimization
- Minimize memory footprint of each process
- Optimize file I/O operations for data sharing
- Implement efficient data serialization
- Use connection pooling for external services
### Scalability
- Support multiple dashboard instances
- Handle increased data volume gracefully
- Implement efficient caching strategies
- Optimize for high-frequency updates
### Monitoring
- Real-time performance metrics collection
- Resource usage tracking per process
- Response time monitoring
- Throughput measurement
## Security Considerations
### Process Isolation
- Separate user contexts for processes
- Limited file system access permissions
- Network access restrictions
- Resource usage limits
### Data Protection
- Secure file sharing mechanisms
- Data validation and sanitization
- Access control for shared resources
- Audit logging for sensitive operations
### Communication Security
- Encrypted inter-process communication
- Authentication for API endpoints
- Input validation for all interfaces
- Rate limiting for external requests
## Deployment Strategy
### Development Environment
- Local process management scripts
- Development-specific configuration
- Enhanced logging and debugging
- Hot-reload capabilities
### Production Environment
- Systemd service management
- Production configuration templates
- Log rotation and archiving
- Monitoring and alerting setup
### Migration Plan
1. Deploy new process management components
2. Update configuration files
3. Test process isolation functionality
4. Gradually migrate existing deployments
5. Monitor stability improvements
6. Remove legacy components