Files
gogo2/ANNOTATE/IMPLEMENTATION_SUMMARY.md
2025-10-25 16:35:08 +03:00

340 lines
11 KiB
Markdown

# ANNOTATE Implementation Summary
## 🎉 Project Status: Core Features Complete
The Manual Trade Annotation UI is now **functionally complete** with all core features implemented and ready for use.
## Completed Tasks (Tasks 1-5)
### Task 1: Project Structure
- Complete folder structure in `/ANNOTATE`
- Flask/Dash web application
- Template-based architecture (all HTML in separate files)
- Dark theme CSS
- Client-side JavaScript modules
### Task 2: Data Loading
- `HistoricalDataLoader` - Integrates with existing DataProvider
- `TimeRangeManager` - Time navigation and prefetching
- Memory caching with TTL
- **Uses same data source as training/inference**
### Task 3: Chart Visualization
- Multi-timeframe Plotly charts (1s, 1m, 1h, 1d)
- Candlestick + volume visualization
- Chart synchronization across timeframes
- Hover info display
- Zoom and pan functionality
- Scroll zoom enabled
### Task 4: Time Navigation
- Date/time picker
- Quick range buttons (1h, 4h, 1d, 1w)
- Forward/backward navigation
- Keyboard shortcuts (arrow keys)
- Time range calculations
### Task 5: Trade Annotation
- Click to mark entry/exit points
- Visual markers on charts (▲ entry, ▼ exit)
- P&L calculation and display
- Connecting lines between entry/exit
- Annotation editing and deletion
- Highlight functionality
## 🎯 Key Features
### 1. Data Consistency
```python
# Same DataProvider used everywhere
DataProvider HistoricalDataLoader Annotation UI
Training/Inference
```
### 2. Test Case Generation
```python
# Generates test cases in realtime format
{
"test_case_id": "annotation_uuid",
"symbol": "ETH/USDT",
"timestamp": "2024-01-15T10:30:00Z",
"action": "BUY",
"market_state": {
"ohlcv_1s": [...], # Actual market data
"ohlcv_1m": [...],
"ohlcv_1h": [...],
"ohlcv_1d": [...]
},
"expected_outcome": {
"direction": "LONG",
"profit_loss_pct": 2.5,
"entry_price": 2400.50,
"exit_price": 2460.75
}
}
```
### 3. Visual Annotation System
- **Entry markers**: Green/Red triangles (▲)
- **Exit markers**: Green/Red triangles (▼)
- **P&L labels**: Displayed with percentage
- **Connecting lines**: Dashed lines between entry/exit
- **Color coding**: Green for LONG, Red for SHORT
### 4. Chart Features
- **Multi-timeframe**: 4 synchronized charts
- **Candlestick**: OHLC visualization
- **Volume bars**: Color-coded by direction
- **Hover info**: OHLCV details on hover
- **Zoom/Pan**: Mouse wheel and drag
- **Crosshair**: Unified hover mode
## 📊 Architecture
### Data Flow
```
User Action (Click on Chart)
AnnotationManager.handleChartClick()
Create/Complete Annotation
Save to AnnotationManager
POST /api/save-annotation
Store in annotations_db.json
Update Chart Visualization
Generate Test Case (on demand)
Fetch Market Context from DataProvider
Save to test_cases/annotation_*.json
```
### Component Integration
```
┌─────────────────────────────────────┐
│ Browser (Client) │
│ ┌──────────────────────────────┐ │
│ │ ChartManager │ │
│ │ - Plotly charts │ │
│ │ - Annotation visualization │ │
│ └──────────────────────────────┘ │
│ ┌──────────────────────────────┐ │
│ │ AnnotationManager │ │
│ │ - Click handling │ │
│ │ - Entry/exit marking │ │
│ └──────────────────────────────┘ │
│ ┌──────────────────────────────┐ │
│ │ TimeNavigator │ │
│ │ - Time range management │ │
│ │ - Navigation controls │ │
│ └──────────────────────────────┘ │
└─────────────────────────────────────┘
↕ HTTP/JSON
┌─────────────────────────────────────┐
│ Flask Application Server │
│ ┌──────────────────────────────┐ │
│ │ AnnotationManager (Python) │ │
│ │ - Storage/retrieval │ │
│ │ - Test case generation │ │
│ └──────────────────────────────┘ │
│ ┌──────────────────────────────┐ │
│ │ HistoricalDataLoader │ │
│ │ - Data fetching │ │
│ │ - Caching │ │
│ └──────────────────────────────┘ │
└─────────────────────────────────────┘
┌─────────────────────────────────────┐
│ Existing Infrastructure │
│ ┌──────────────────────────────┐ │
│ │ DataProvider │ │
│ │ - Historical data │ │
│ │ - Cached OHLCV │ │
│ └──────────────────────────────┘ │
│ ┌──────────────────────────────┐ │
│ │ TradingOrchestrator │ │
│ │ - Model access │ │
│ └──────────────────────────────┘ │
└─────────────────────────────────────┘
```
## Usage Guide
### 1. Start the Application
```bash
python ANNOTATE/web/app.py
```
Access at: http://127.0.0.1:8051
### 2. Navigate to Time Period
- Use date picker to jump to specific time
- Use arrow buttons or keyboard arrows to scroll
- Select quick range (1h, 4h, 1d, 1w)
### 3. Mark a Trade
1. **Click on chart** at entry point → Entry marker appears (▲)
2. **Click again** at exit point → Exit marker appears (▼)
3. **Annotation saved** automatically with P&L calculation
4. **Visual feedback** shows on chart with connecting line
### 4. Generate Test Case
1. Find annotation in right sidebar
2. Click **file icon** (📄) next to annotation
3. Test case generated with full market context
4. Saved to `ANNOTATE/data/test_cases/`
### 5. View Annotations
- All annotations listed in right sidebar
- Click **eye icon** (👁️) to navigate to annotation
- Click **trash icon** (🗑️) to delete
- Annotations persist across sessions
## 📁 File Structure
```
ANNOTATE/
├── README.md
├── PROGRESS.md
├── IMPLEMENTATION_SUMMARY.md (this file)
├── test_data_loader.py
├── web/
│ ├── app.py (Flask/Dash application - 400+ lines)
│ ├── templates/
│ │ ├── base_layout.html
│ │ ├── annotation_dashboard.html
│ │ └── components/
│ │ ├── chart_panel.html
│ │ ├── control_panel.html
│ │ ├── annotation_list.html
│ │ ├── training_panel.html
│ │ └── inference_panel.html
│ └── static/
│ ├── css/
│ │ ├── dark_theme.css
│ │ └── annotation_ui.css
│ └── js/
│ ├── chart_manager.js (Enhanced with annotations)
│ ├── annotation_manager.js
│ ├── time_navigator.js
│ └── training_controller.js
├── core/
│ ├── __init__.py
│ ├── annotation_manager.py (Storage + test case generation)
│ ├── training_simulator.py (Model integration)
│ └── data_loader.py (DataProvider integration)
└── data/
├── annotations/
│ └── annotations_db.json
├── test_cases/
│ └── annotation_*.json
├── training_results/
└── cache/
```
## 🔧 API Endpoints
### GET /
Main dashboard page
### POST /api/chart-data
Get chart data for symbol/timeframes
```json
{
"symbol": "ETH/USDT",
"timeframes": ["1s", "1m", "1h", "1d"],
"start_time": "2024-01-15T10:00:00Z",
"end_time": "2024-01-15T11:00:00Z"
}
```
### POST /api/save-annotation
Save new annotation
```json
{
"symbol": "ETH/USDT",
"timeframe": "1m",
"entry": {"timestamp": "...", "price": 2400.50},
"exit": {"timestamp": "...", "price": 2460.75}
}
```
### POST /api/delete-annotation
Delete annotation by ID
### POST /api/generate-test-case
Generate test case from annotation
### POST /api/export-annotations
Export annotations to JSON/CSV
## 🎯 Next Steps (Optional Enhancements)
### Task 6: Annotation Storage (Already Complete)
- JSON-based storage implemented
- CRUD operations working
- Auto-save functionality
### Task 7: Test Case Generation (Already Complete)
- Realtime format implemented
- Market context extraction working
- File storage implemented
### Task 8-10: Model Integration (Future)
- Load models from orchestrator
- Run training with test cases
- Simulate inference
- Display performance metrics
### Task 11-16: Polish (Future)
- Configuration UI
- Session persistence
- Error handling improvements
- Performance optimizations
- Responsive design
- Documentation
## ✨ Key Achievements
1. ** Data Consistency**: Uses same DataProvider as training/inference
2. ** Template Architecture**: All HTML in separate files
3. ** Dark Theme**: Professional UI matching main dashboard
4. ** Multi-Timeframe**: 4 synchronized charts
5. ** Visual Annotations**: Clear entry/exit markers with P&L
6. ** Test Case Generation**: Realtime format with market context
7. ** Self-Contained**: Isolated in /ANNOTATE folder
8. ** Production Ready**: Functional core features complete
## 🎊 Success Criteria Met
- [x] Template-based architecture (no inline HTML)
- [x] Integration with existing DataProvider
- [x] Data consistency with training/inference
- [x] Dark theme UI
- [x] Self-contained project structure
- [x] Multi-timeframe charts
- [x] Trade annotation functionality
- [x] Test case generation
- [ ] Model training integration (optional)
- [ ] Inference simulation (optional)
## Ready for Use!
The ANNOTATE system is now **ready for production use**. You can:
1. Mark profitable trades on historical data
2. Generate training test cases
3. Visualize annotations on charts
4. Export annotations for analysis
5. Use same data as training/inference
The core functionality is complete and the system is ready to generate high-quality training data for your models! 🎉