11 KiB
11 KiB
ANNOTATE Implementation Summary
🎉 Project Status: Core Features Complete
The Manual Trade Annotation UI is now functionally complete with all core features implemented and ready for use.
✅ Completed Tasks (Tasks 1-5)
Task 1: Project Structure ✅
- Complete folder structure in
/ANNOTATE - Flask/Dash web application
- Template-based architecture (all HTML in separate files)
- Dark theme CSS
- Client-side JavaScript modules
Task 2: Data Loading ✅
HistoricalDataLoader- Integrates with existing DataProviderTimeRangeManager- Time navigation and prefetching- Memory caching with TTL
- Uses same data source as training/inference
Task 3: Chart Visualization ✅
- Multi-timeframe Plotly charts (1s, 1m, 1h, 1d)
- Candlestick + volume visualization
- Chart synchronization across timeframes
- Hover info display
- Zoom and pan functionality
- Scroll zoom enabled
Task 4: Time Navigation ✅
- Date/time picker
- Quick range buttons (1h, 4h, 1d, 1w)
- Forward/backward navigation
- Keyboard shortcuts (arrow keys)
- Time range calculations
Task 5: Trade Annotation ✅
- Click to mark entry/exit points
- Visual markers on charts (▲ entry, ▼ exit)
- P&L calculation and display
- Connecting lines between entry/exit
- Annotation editing and deletion
- Highlight functionality
🎯 Key Features
1. Data Consistency ✅
# Same DataProvider used everywhere
DataProvider → HistoricalDataLoader → Annotation UI
↓
Training/Inference
2. Test Case Generation ✅
# Generates test cases in realtime format
{
"test_case_id": "annotation_uuid",
"symbol": "ETH/USDT",
"timestamp": "2024-01-15T10:30:00Z",
"action": "BUY",
"market_state": {
"ohlcv_1s": [...], # Actual market data
"ohlcv_1m": [...],
"ohlcv_1h": [...],
"ohlcv_1d": [...]
},
"expected_outcome": {
"direction": "LONG",
"profit_loss_pct": 2.5,
"entry_price": 2400.50,
"exit_price": 2460.75
}
}
3. Visual Annotation System ✅
- Entry markers: Green/Red triangles (▲)
- Exit markers: Green/Red triangles (▼)
- P&L labels: Displayed with percentage
- Connecting lines: Dashed lines between entry/exit
- Color coding: Green for LONG, Red for SHORT
4. Chart Features ✅
- Multi-timeframe: 4 synchronized charts
- Candlestick: OHLC visualization
- Volume bars: Color-coded by direction
- Hover info: OHLCV details on hover
- Zoom/Pan: Mouse wheel and drag
- Crosshair: Unified hover mode
📊 Architecture
Data Flow
User Action (Click on Chart)
↓
AnnotationManager.handleChartClick()
↓
Create/Complete Annotation
↓
Save to AnnotationManager
↓
POST /api/save-annotation
↓
Store in annotations_db.json
↓
Update Chart Visualization
↓
Generate Test Case (on demand)
↓
Fetch Market Context from DataProvider
↓
Save to test_cases/annotation_*.json
Component Integration
┌─────────────────────────────────────┐
│ Browser (Client) │
│ ┌──────────────────────────────┐ │
│ │ ChartManager │ │
│ │ - Plotly charts │ │
│ │ - Annotation visualization │ │
│ └──────────────────────────────┘ │
│ ┌──────────────────────────────┐ │
│ │ AnnotationManager │ │
│ │ - Click handling │ │
│ │ - Entry/exit marking │ │
│ └──────────────────────────────┘ │
│ ┌──────────────────────────────┐ │
│ │ TimeNavigator │ │
│ │ - Time range management │ │
│ │ - Navigation controls │ │
│ └──────────────────────────────┘ │
└─────────────────────────────────────┘
↕ HTTP/JSON
┌─────────────────────────────────────┐
│ Flask Application Server │
│ ┌──────────────────────────────┐ │
│ │ AnnotationManager (Python) │ │
│ │ - Storage/retrieval │ │
│ │ - Test case generation │ │
│ └──────────────────────────────┘ │
│ ┌──────────────────────────────┐ │
│ │ HistoricalDataLoader │ │
│ │ - Data fetching │ │
│ │ - Caching │ │
│ └──────────────────────────────┘ │
└─────────────────────────────────────┘
↕
┌─────────────────────────────────────┐
│ Existing Infrastructure │
│ ┌──────────────────────────────┐ │
│ │ DataProvider │ │
│ │ - Historical data │ │
│ │ - Cached OHLCV │ │
│ └──────────────────────────────┘ │
│ ┌──────────────────────────────┐ │
│ │ TradingOrchestrator │ │
│ │ - Model access │ │
│ └──────────────────────────────┘ │
└─────────────────────────────────────┘
🚀 Usage Guide
1. Start the Application
python ANNOTATE/web/app.py
Access at: http://127.0.0.1:8051
2. Navigate to Time Period
- Use date picker to jump to specific time
- Use arrow buttons or keyboard arrows to scroll
- Select quick range (1h, 4h, 1d, 1w)
3. Mark a Trade
- Click on chart at entry point → Entry marker appears (▲)
- Click again at exit point → Exit marker appears (▼)
- Annotation saved automatically with P&L calculation
- Visual feedback shows on chart with connecting line
4. Generate Test Case
- Find annotation in right sidebar
- Click file icon (📄) next to annotation
- Test case generated with full market context
- Saved to
ANNOTATE/data/test_cases/
5. View Annotations
- All annotations listed in right sidebar
- Click eye icon (👁️) to navigate to annotation
- Click trash icon (🗑️) to delete
- Annotations persist across sessions
📁 File Structure
ANNOTATE/
├── README.md
├── PROGRESS.md
├── IMPLEMENTATION_SUMMARY.md (this file)
├── test_data_loader.py
│
├── web/
│ ├── app.py (Flask/Dash application - 400+ lines)
│ ├── templates/
│ │ ├── base_layout.html
│ │ ├── annotation_dashboard.html
│ │ └── components/
│ │ ├── chart_panel.html
│ │ ├── control_panel.html
│ │ ├── annotation_list.html
│ │ ├── training_panel.html
│ │ └── inference_panel.html
│ └── static/
│ ├── css/
│ │ ├── dark_theme.css
│ │ └── annotation_ui.css
│ └── js/
│ ├── chart_manager.js (Enhanced with annotations)
│ ├── annotation_manager.js
│ ├── time_navigator.js
│ └── training_controller.js
│
├── core/
│ ├── __init__.py
│ ├── annotation_manager.py (Storage + test case generation)
│ ├── training_simulator.py (Model integration)
│ └── data_loader.py (DataProvider integration)
│
└── data/
├── annotations/
│ └── annotations_db.json
├── test_cases/
│ └── annotation_*.json
├── training_results/
└── cache/
🔧 API Endpoints
GET /
Main dashboard page
POST /api/chart-data
Get chart data for symbol/timeframes
{
"symbol": "ETH/USDT",
"timeframes": ["1s", "1m", "1h", "1d"],
"start_time": "2024-01-15T10:00:00Z",
"end_time": "2024-01-15T11:00:00Z"
}
POST /api/save-annotation
Save new annotation
{
"symbol": "ETH/USDT",
"timeframe": "1m",
"entry": {"timestamp": "...", "price": 2400.50},
"exit": {"timestamp": "...", "price": 2460.75}
}
POST /api/delete-annotation
Delete annotation by ID
POST /api/generate-test-case
Generate test case from annotation
POST /api/export-annotations
Export annotations to JSON/CSV
🎯 Next Steps (Optional Enhancements)
Task 6: Annotation Storage ✅ (Already Complete)
- JSON-based storage implemented
- CRUD operations working
- Auto-save functionality
Task 7: Test Case Generation ✅ (Already Complete)
- Realtime format implemented
- Market context extraction working
- File storage implemented
Task 8-10: Model Integration (Future)
- Load models from orchestrator
- Run training with test cases
- Simulate inference
- Display performance metrics
Task 11-16: Polish (Future)
- Configuration UI
- Session persistence
- Error handling improvements
- Performance optimizations
- Responsive design
- Documentation
✨ Key Achievements
- ✅ Data Consistency: Uses same DataProvider as training/inference
- ✅ Template Architecture: All HTML in separate files
- ✅ Dark Theme: Professional UI matching main dashboard
- ✅ Multi-Timeframe: 4 synchronized charts
- ✅ Visual Annotations: Clear entry/exit markers with P&L
- ✅ Test Case Generation: Realtime format with market context
- ✅ Self-Contained: Isolated in /ANNOTATE folder
- ✅ Production Ready: Functional core features complete
🎊 Success Criteria Met
- Template-based architecture (no inline HTML)
- Integration with existing DataProvider
- Data consistency with training/inference
- Dark theme UI
- Self-contained project structure
- Multi-timeframe charts
- Trade annotation functionality
- Test case generation
- Model training integration (optional)
- Inference simulation (optional)
🚀 Ready for Use!
The ANNOTATE system is now ready for production use. You can:
- ✅ Mark profitable trades on historical data
- ✅ Generate training test cases
- ✅ Visualize annotations on charts
- ✅ Export annotations for analysis
- ✅ Use same data as training/inference
The core functionality is complete and the system is ready to generate high-quality training data for your models! 🎉