7.3 KiB
Placeholders and Missing Implementations Report
Generated: 2025-11-23
Purpose: Identify all TODO, placeholder, and missing implementations that violate "no synthetic data" policy
🔴 CRITICAL - Synthetic Data Violations
1. core/negative_case_trainer.py (Lines 396-397)
Issue: Uses np.random.uniform() for synthetic training improvements
session.loss_improvement = np.random.uniform(0.1, 0.5) # 10-50% improvement
session.accuracy_improvement = np.random.uniform(0.05, 0.2) # 5-20% improvement
Fix Required: Calculate actual improvements from real training metrics
🟡 HIGH PRIORITY - Missing Core Functionality
2. core/orchestrator.py (Line 2020)
Issue: _get_all_predictions() returns empty list - not implemented
async def _get_all_predictions(self, symbol: str) -> List[Prediction]:
predictions = []
# TODO: Implement proper prediction gathering from all registered models
logger.warning(f"_get_all_predictions not fully implemented for {symbol}")
return predictions
Impact: Orchestrator cannot gather predictions from all models for decision fusion Fix Required: Implement actual prediction gathering from registered models
3. ANNOTATE/core/real_training_adapter.py (Line 2339-2341)
Issue: Extrema training uses placeholder loss
# TODO: Implement actual extrema training
session.current_loss = 0.5 / (epoch + 1) # Placeholder
Fix Required: Implement real extrema training logic
4. ANNOTATE/core/real_training_adapter.py (Line 1577)
Issue: Placeholder time_in_position_minutes
time_in_position_minutes = 1.0 # Placeholder, will be more accurate with actual timestamps
Fix Required: Calculate actual time from entry timestamp
🟢 MEDIUM PRIORITY - Missing Features
5. web/clean_dashboard.py (Lines 8759, 8768)
Issue: TODO for technical indicators and pivot points
def _get_technical_indicators(self, symbol: str) -> Dict[str, float]:
# TODO: Implement technical indicators calculation
return {}
def _get_pivot_points(self, symbol: str) -> List['PivotPoint']:
# TODO: Implement pivot points calculation
return []
Note: Pivot points ARE implemented elsewhere (Williams Market Structure), but not in this method Fix Required: Implement or delegate to existing pivot calculation
6. web/clean_dashboard.py (Line 8665)
Issue: TODO for cross-model predictions
last_predictions={} # TODO: Add cross-model predictions
Fix Required: Gather predictions from all models (similar to orchestrator)
7. web/clean_dashboard.py (Line 8696)
Issue: TODO for technical indicators in bar data
indicators={} # TODO: Add technical indicators
Fix Required: Calculate and include technical indicators
8. web/clean_dashboard.py (Line 9542)
Issue: Placeholder features array
'features': [current_price, 0, 0, 0, 0] # Placeholder features
Fix Required: Extract real features from market data
🔵 LOW PRIORITY - Acceptable Placeholders
9. ANNOTATE/core/real_training_adapter.py (Line 1421)
Issue: Placeholder COB data (zeros)
# Create placeholder COB data (zeros if not available)
cob_data = torch.zeros(1, target_seq_len, 100, dtype=torch.float32)
Status: ✅ ACCEPTABLE - Returns zeros when COB data unavailable (not synthetic, just missing)
10. ANNOTATE/core/real_training_adapter.py (Lines 2746-2748)
Issue: Placeholder tech/market/COB data (zeros)
data['tech_data'] = torch.zeros(1, 40, dtype=torch.float32)
data['market_data'] = torch.zeros(1, 30, dtype=torch.float32)
data['cob_data'] = torch.zeros(1, 600, 100, dtype=torch.float32)
Status: ✅ ACCEPTABLE - Model requires these inputs, zeros are safe defaults when unavailable
11. ANNOTATE/core/real_training_adapter.py (Line 2887)
Issue: Placeholder action in annotation conversion
'action': 'BUY', # Placeholder, not used for candle prediction training
Status: ✅ ACCEPTABLE - Comment indicates it's not used for this training path
⚠️ QUESTIONABLE - Needs Review
12. core/orchestrator.py (Lines 2098-2101)
Issue: Uses random.uniform() for tie-breaking
import random
for action in action_scores:
# Add tiny random noise (±0.001) to break exact ties
action_scores[action] += random.uniform(-0.001, 0.001)
Status: ⚠️ QUESTIONABLE - This is for tie-breaking, not synthetic data generation Recommendation: Consider deterministic tie-breaking (e.g., alphabetical order) instead
📋 Other TODOs Found
13. ANNOTATE/web/app.py (Lines 2745, 2850)
Issue: Hardcoded symbols
for symbol in ['ETH/USDT', 'BTC/USDT']: # TODO: Get from active subscriptions
symbol = 'ETH/USDT' # TODO: Get from active trading pair
Fix Required: Get from active subscriptions/trading pairs
14. ANNOTATE/web/static/js/chart_manager.js (Line 1193)
Issue: TODO for visual markers
# TODO: Add visual markers using Plotly annotations
Fix Required: Add visual markers if needed
15. ANNOTATE/web/templates/components/inference_panel.html (Line 259)
Issue: TODO for Plotly chart update
// TODO: Update Plotly chart with prediction marker
Fix Required: Implement prediction marker update
16. ANNOTATE/core/data_loader.py (Line 434)
Issue: MEXC time range fetch not implemented
logger.warning("MEXC time range fetch not implemented yet")
Fix Required: Implement MEXC time range fetch or remove if not needed
17. core/multi_horizon_prediction_manager.py (Lines 690-713)
Issue: Placeholder methods for CNN/RL feature preparation
def _prepare_cnn_features_for_horizon(...) -> np.ndarray:
"""Prepare CNN features for specific horizon (placeholder - not yet implemented)"""
return np.array([]) # Return empty array instead of synthetic data
def _prepare_rl_state_for_horizon(...) -> np.ndarray:
"""Prepare RL state for specific horizon (placeholder - not yet implemented)"""
return np.array([]) # Return empty array instead of synthetic data
Status: ✅ ACCEPTABLE - Returns empty arrays (not synthetic data), methods not yet needed
📊 Summary
By Priority:
- 🔴 Critical (Synthetic Data): 1 issue
- 🟡 High Priority (Missing Core): 3 issues
- 🟢 Medium Priority (Missing Features): 4 issues
- 🔵 Low Priority (Acceptable): 3 issues
- ⚠️ Questionable: 1 issue
- 📋 Other TODOs: 5 issues
Total Issues Found: 17
🎯 Recommended Fix Order
- Fix synthetic data violation (negative_case_trainer.py) - URGENT
- Implement
_get_all_predictions()(orchestrator.py) - HIGH - Implement extrema training (real_training_adapter.py) - HIGH
- Fix time_in_position calculation (real_training_adapter.py) - MEDIUM
- Implement technical indicators (clean_dashboard.py) - MEDIUM
- Review tie-breaking logic (orchestrator.py) - LOW
✅ Already Fixed
- ✅
_get_live_prediction()- Now uses real model inference with caching - ✅ Ghost candles - Now includes
predicted_candlein predictions - ✅ JSON serialization - Fixed tensor serialization errors