gogo2/CLEAN_ARCHITECTURE_SUMMARY.md
Dobromir Popov 509ad0ae17 cleanup_1
2025-05-24 02:01:07 +03:00

8.2 KiB

Clean Trading System Architecture Summary

🎯 Project Reorganization Complete

We have successfully transformed the disorganized trading system into a clean, modular, and memory-efficient architecture that fits within 8GB memory constraints and allows easy plugging of new AI models.

🏗️ New Architecture Overview

gogo2/
├── core/                           # Core system components
│   ├── config.py                   # ✅ Central configuration management
│   ├── data_provider.py           # ✅ Multi-timeframe, multi-symbol data provider
│   ├── orchestrator.py            # ✅ Main decision making orchestrator
│   └── __init__.py
├── models/                         # ✅ Modular AI/ML Models
│   ├── __init__.py                # ✅ Base interfaces & memory management
│   ├── cnn/                       # 🔄 CNN implementations (to be added)
│   └── rl/                        # 🔄 RL implementations (to be added)
├── web/                           # 🔄 Web dashboard (to be added)
├── trading/                       # 🔄 Trading execution (to be added)
├── utils/                         # 🔄 Utilities (to be added)
├── main_clean.py                  # ✅ Clean entry point
├── config.yaml                   # ✅ Central configuration
└── requirements.txt               # 🔄 Dependencies list

Key Features Implemented

1. Memory-Efficient Model Registry

  • 8GB total memory limit enforced
  • Individual model limits (configurable per model)
  • Automatic memory tracking and cleanup
  • GPU/CPU device management with fallback
  • Model registration/unregistration with memory checks

2. Modular Orchestrator System

  • Plugin architecture - easily add new AI models
  • Dynamic weighting based on model performance
  • Multi-model predictions combining CNN, RL, and any new models
  • Confidence-based decisions with threshold controls
  • Real-time memory monitoring

3. Unified Data Provider

  • Multi-symbol support: ETH/USDT, BTC/USDT (extendable)
  • Multi-timeframe: 1m, 5m, 15m, 1h, 4h, 1d
  • Real-time streaming via WebSocket (async)
  • Historical data caching with automatic invalidation
  • Technical indicators computed automatically
  • Feature matrix generation for ML models

4. Central Configuration System

  • YAML-based configuration for all settings
  • Environment-specific configs support
  • Automatic directory creation
  • Type-safe property access
  • Runtime configuration updates

🧠 Model Interface Design

Base Model Interface

class ModelInterface(ABC):
    - predict(features) -> (action_probs, confidence)
    - get_memory_usage() -> int (MB)
    - cleanup_memory()
    - device management (GPU/CPU)

CNN Model Interface

class CNNModelInterface(ModelInterface):
    - train(training_data) -> training_metrics
    - predict_timeframe(features, timeframe) -> prediction
    - timeframe-specific predictions

RL Agent Interface

class RLAgentInterface(ModelInterface):
    - act(state) -> action
    - act_with_confidence(state) -> (action, confidence)
    - remember(experience) -> None
    - replay() -> loss

📊 Memory Management Features

Automatic Memory Tracking

  • Per-model memory usage monitoring
  • Total system memory tracking
  • GPU memory management with CUDA cache clearing
  • Memory leak prevention with periodic cleanup

Memory Constraints

  • Total system limit: 8GB (configurable)
  • Default per-model limit: 2GB (configurable)
  • Automatic rejection of models exceeding limits
  • Memory stats reporting for monitoring

Example Memory Stats

{
    'total_limit_mb': 8192.0,
    'models': {
        'CNN': {'memory_mb': 1500, 'device': 'cuda'},
        'RL': {'memory_mb': 800, 'device': 'cuda'},
        'Transformer': {'memory_mb': 2000, 'device': 'cuda'}
    },
    'total_used_mb': 4300,
    'total_free_mb': 3892,
    'utilization_percent': 52.5
}

🔧 Easy Model Integration

Adding a New Model (Example: Transformer)

from models import ModelInterface, get_model_registry

class TransformerModel(ModelInterface):
    def __init__(self, config):
        super().__init__('Transformer', config)
        self.model = self._build_transformer()
    
    def predict(self, features):
        with torch.no_grad():
            outputs = self.model(features)
            probs = F.softmax(outputs, dim=-1)
            confidence = torch.max(probs).item()
        return probs.numpy(), confidence
    
    def get_memory_usage(self):
        return sum(p.numel() * 4 for p in self.model.parameters()) // (1024*1024)

# Register with orchestrator
registry = get_model_registry()
orchestrator = TradingOrchestrator()

transformer = TransformerModel(config)
if orchestrator.register_model(transformer, weight=0.2):
    print("Transformer model added successfully!")

🚀 Performance Optimizations

Data Provider

  • Caching with TTL (1-hour expiration)
  • Parquet storage for fast I/O
  • Batch processing of technical indicators
  • Memory-efficient pandas operations

Model System

  • Lazy loading of models
  • Mixed precision support (GPU)
  • Batch inference where possible
  • Memory pooling for repeated allocations

Orchestrator

  • Asynchronous processing for multiple models
  • Weighted averaging of predictions
  • Confidence thresholding to avoid low-quality decisions
  • Performance-based weight adaptation

📈 Testing Results

Data Provider Test

[SUCCESS] Historical data: 100 candles loaded
[SUCCESS] Feature matrix shape: (1, 20, 8)
[SUCCESS] Data provider health check passed

Orchestrator Test

[SUCCESS] Model registry initialized with 8192.0MB limit
[SUCCESS] Both models registered successfully
[SUCCESS] Memory stats: 0.0% utilization
[SUCCESS] Models registered with orchestrator
[SUCCESS] Performance metrics available

🎛️ Configuration Management

Sample Configuration (config.yaml)

# 8GB total memory limit
performance:
  total_memory_gb: 8.0
  use_gpu: true
  mixed_precision: true

# Model-specific limits
models:
  cnn:
    max_memory_mb: 2000
    window_size: 20
  rl:
    max_memory_mb: 1500
    state_size: 100

# Trading symbols & timeframes
symbols: ["ETH/USDT", "BTC/USDT"]
timeframes: ["1m", "5m", "15m", "1h", "4h", "1d"]

# Decision making
orchestrator:
  confidence_threshold: 0.5
  decision_frequency: 60

🔄 Next Steps

Phase 1: Complete Core Models

  • Implement CNN model using the interface
  • Implement RL agent using the interface
  • Add model loading/saving functionality

Phase 2: Enhanced Features

  • Web dashboard integration
  • Trading execution module
  • Backtresting framework
  • Performance analytics

Phase 3: Advanced Models

  • Transformer model for sequence modeling
  • LSTM for temporal patterns
  • Ensemble methods
  • Meta-learning approaches

🎯 Benefits Achieved

  1. Memory Efficiency: Strict 8GB enforcement with monitoring
  2. Modularity: Easy to add/remove/test different AI models
  3. Maintainability: Clear separation of concerns, no code duplication
  4. Scalability: Can handle multiple symbols and timeframes efficiently
  5. Testability: Each component can be tested independently
  6. Performance: Optimized data processing and model inference
  7. Flexibility: Configuration-driven behavior
  8. Monitoring: Real-time memory and performance tracking

🛠️ Usage Examples

Basic Testing

# Test data provider
python main_clean.py --mode test

# Test orchestrator system
python main_clean.py --mode orchestrator

# Test with specific symbol
python main_clean.py --mode test --symbol BTC/USDT

Future Usage

# Training mode
python main_clean.py --mode train --symbol ETH/USDT

# Live trading
python main_clean.py --mode trade

# Web dashboard
python main_clean.py --mode web

This clean architecture provides a solid foundation for building a sophisticated multi-modal trading system that scales efficiently within memory constraints while remaining easy to extend and maintain.