Files
gogo2/ANNOTATE/IMPLEMENTATION_SUMMARY.md
2025-10-25 16:35:08 +03:00

11 KiB

ANNOTATE Implementation Summary

🎉 Project Status: Core Features Complete

The Manual Trade Annotation UI is now functionally complete with all core features implemented and ready for use.

Completed Tasks (Tasks 1-5)

Task 1: Project Structure

  • Complete folder structure in /ANNOTATE
  • Flask/Dash web application
  • Template-based architecture (all HTML in separate files)
  • Dark theme CSS
  • Client-side JavaScript modules

Task 2: Data Loading

  • HistoricalDataLoader - Integrates with existing DataProvider
  • TimeRangeManager - Time navigation and prefetching
  • Memory caching with TTL
  • Uses same data source as training/inference

Task 3: Chart Visualization

  • Multi-timeframe Plotly charts (1s, 1m, 1h, 1d)
  • Candlestick + volume visualization
  • Chart synchronization across timeframes
  • Hover info display
  • Zoom and pan functionality
  • Scroll zoom enabled

Task 4: Time Navigation

  • Date/time picker
  • Quick range buttons (1h, 4h, 1d, 1w)
  • Forward/backward navigation
  • Keyboard shortcuts (arrow keys)
  • Time range calculations

Task 5: Trade Annotation

  • Click to mark entry/exit points
  • Visual markers on charts (▲ entry, ▼ exit)
  • P&L calculation and display
  • Connecting lines between entry/exit
  • Annotation editing and deletion
  • Highlight functionality

🎯 Key Features

1. Data Consistency

# Same DataProvider used everywhere
DataProvider  HistoricalDataLoader  Annotation UI
                
            Training/Inference

2. Test Case Generation

# Generates test cases in realtime format
{
    "test_case_id": "annotation_uuid",
    "symbol": "ETH/USDT",
    "timestamp": "2024-01-15T10:30:00Z",
    "action": "BUY",
    "market_state": {
        "ohlcv_1s": [...],  # Actual market data
        "ohlcv_1m": [...],
        "ohlcv_1h": [...],
        "ohlcv_1d": [...]
    },
    "expected_outcome": {
        "direction": "LONG",
        "profit_loss_pct": 2.5,
        "entry_price": 2400.50,
        "exit_price": 2460.75
    }
}

3. Visual Annotation System

  • Entry markers: Green/Red triangles (▲)
  • Exit markers: Green/Red triangles (▼)
  • P&L labels: Displayed with percentage
  • Connecting lines: Dashed lines between entry/exit
  • Color coding: Green for LONG, Red for SHORT

4. Chart Features

  • Multi-timeframe: 4 synchronized charts
  • Candlestick: OHLC visualization
  • Volume bars: Color-coded by direction
  • Hover info: OHLCV details on hover
  • Zoom/Pan: Mouse wheel and drag
  • Crosshair: Unified hover mode

📊 Architecture

Data Flow

User Action (Click on Chart)
    ↓
AnnotationManager.handleChartClick()
    ↓
Create/Complete Annotation
    ↓
Save to AnnotationManager
    ↓
POST /api/save-annotation
    ↓
Store in annotations_db.json
    ↓
Update Chart Visualization
    ↓
Generate Test Case (on demand)
    ↓
Fetch Market Context from DataProvider
    ↓
Save to test_cases/annotation_*.json

Component Integration

┌─────────────────────────────────────┐
│         Browser (Client)            │
│  ┌──────────────────────────────┐  │
│  │  ChartManager                │  │
│  │  - Plotly charts             │  │
│  │  - Annotation visualization  │  │
│  └──────────────────────────────┘  │
│  ┌──────────────────────────────┐  │
│  │  AnnotationManager           │  │
│  │  - Click handling            │  │
│  │  - Entry/exit marking        │  │
│  └──────────────────────────────┘  │
│  ┌──────────────────────────────┐  │
│  │  TimeNavigator               │  │
│  │  - Time range management     │  │
│  │  - Navigation controls       │  │
│  └──────────────────────────────┘  │
└─────────────────────────────────────┘
                 ↕ HTTP/JSON
┌─────────────────────────────────────┐
│      Flask Application Server       │
│  ┌──────────────────────────────┐  │
│  │  AnnotationManager (Python)  │  │
│  │  - Storage/retrieval         │  │
│  │  - Test case generation      │  │
│  └──────────────────────────────┘  │
│  ┌──────────────────────────────┐  │
│  │  HistoricalDataLoader        │  │
│  │  - Data fetching             │  │
│  │  - Caching                   │  │
│  └──────────────────────────────┘  │
└─────────────────────────────────────┘
                 ↕
┌─────────────────────────────────────┐
│      Existing Infrastructure        │
│  ┌──────────────────────────────┐  │
│  │  DataProvider                │  │
│  │  - Historical data           │  │
│  │  - Cached OHLCV              │  │
│  └──────────────────────────────┘  │
│  ┌──────────────────────────────┐  │
│  │  TradingOrchestrator         │  │
│  │  - Model access              │  │
│  └──────────────────────────────┘  │
└─────────────────────────────────────┘

Usage Guide

1. Start the Application

python ANNOTATE/web/app.py

Access at: http://127.0.0.1:8051

2. Navigate to Time Period

  • Use date picker to jump to specific time
  • Use arrow buttons or keyboard arrows to scroll
  • Select quick range (1h, 4h, 1d, 1w)

3. Mark a Trade

  1. Click on chart at entry point → Entry marker appears (▲)
  2. Click again at exit point → Exit marker appears (▼)
  3. Annotation saved automatically with P&L calculation
  4. Visual feedback shows on chart with connecting line

4. Generate Test Case

  1. Find annotation in right sidebar
  2. Click file icon (📄) next to annotation
  3. Test case generated with full market context
  4. Saved to ANNOTATE/data/test_cases/

5. View Annotations

  • All annotations listed in right sidebar
  • Click eye icon (👁️) to navigate to annotation
  • Click trash icon (🗑️) to delete
  • Annotations persist across sessions

📁 File Structure

ANNOTATE/
├── README.md
├── PROGRESS.md
├── IMPLEMENTATION_SUMMARY.md (this file)
├── test_data_loader.py
│
├── web/
│   ├── app.py (Flask/Dash application - 400+ lines)
│   ├── templates/
│   │   ├── base_layout.html
│   │   ├── annotation_dashboard.html
│   │   └── components/
│   │       ├── chart_panel.html
│   │       ├── control_panel.html
│   │       ├── annotation_list.html
│   │       ├── training_panel.html
│   │       └── inference_panel.html
│   └── static/
│       ├── css/
│       │   ├── dark_theme.css
│       │   └── annotation_ui.css
│       └── js/
│           ├── chart_manager.js (Enhanced with annotations)
│           ├── annotation_manager.js
│           ├── time_navigator.js
│           └── training_controller.js
│
├── core/
│   ├── __init__.py
│   ├── annotation_manager.py (Storage + test case generation)
│   ├── training_simulator.py (Model integration)
│   └── data_loader.py (DataProvider integration)
│
└── data/
    ├── annotations/
    │   └── annotations_db.json
    ├── test_cases/
    │   └── annotation_*.json
    ├── training_results/
    └── cache/

🔧 API Endpoints

GET /

Main dashboard page

POST /api/chart-data

Get chart data for symbol/timeframes

{
  "symbol": "ETH/USDT",
  "timeframes": ["1s", "1m", "1h", "1d"],
  "start_time": "2024-01-15T10:00:00Z",
  "end_time": "2024-01-15T11:00:00Z"
}

POST /api/save-annotation

Save new annotation

{
  "symbol": "ETH/USDT",
  "timeframe": "1m",
  "entry": {"timestamp": "...", "price": 2400.50},
  "exit": {"timestamp": "...", "price": 2460.75}
}

POST /api/delete-annotation

Delete annotation by ID

POST /api/generate-test-case

Generate test case from annotation

POST /api/export-annotations

Export annotations to JSON/CSV

🎯 Next Steps (Optional Enhancements)

Task 6: Annotation Storage (Already Complete)

  • JSON-based storage implemented
  • CRUD operations working
  • Auto-save functionality

Task 7: Test Case Generation (Already Complete)

  • Realtime format implemented
  • Market context extraction working
  • File storage implemented

Task 8-10: Model Integration (Future)

  • Load models from orchestrator
  • Run training with test cases
  • Simulate inference
  • Display performance metrics

Task 11-16: Polish (Future)

  • Configuration UI
  • Session persistence
  • Error handling improvements
  • Performance optimizations
  • Responsive design
  • Documentation

Key Achievements

  1. ** Data Consistency**: Uses same DataProvider as training/inference
  2. ** Template Architecture**: All HTML in separate files
  3. ** Dark Theme**: Professional UI matching main dashboard
  4. ** Multi-Timeframe**: 4 synchronized charts
  5. ** Visual Annotations**: Clear entry/exit markers with P&L
  6. ** Test Case Generation**: Realtime format with market context
  7. ** Self-Contained**: Isolated in /ANNOTATE folder
  8. ** Production Ready**: Functional core features complete

🎊 Success Criteria Met

  • Template-based architecture (no inline HTML)
  • Integration with existing DataProvider
  • Data consistency with training/inference
  • Dark theme UI
  • Self-contained project structure
  • Multi-timeframe charts
  • Trade annotation functionality
  • Test case generation
  • Model training integration (optional)
  • Inference simulation (optional)

Ready for Use!

The ANNOTATE system is now ready for production use. You can:

  1. Mark profitable trades on historical data
  2. Generate training test cases
  3. Visualize annotations on charts
  4. Export annotations for analysis
  5. Use same data as training/inference

The core functionality is complete and the system is ready to generate high-quality training data for your models! 🎉