8.2 KiB
8.2 KiB
Clean Trading System Architecture Summary
🎯 Project Reorganization Complete
We have successfully transformed the disorganized trading system into a clean, modular, and memory-efficient architecture that fits within 8GB memory constraints and allows easy plugging of new AI models.
🏗️ New Architecture Overview
gogo2/
├── core/ # Core system components
│ ├── config.py # ✅ Central configuration management
│ ├── data_provider.py # ✅ Multi-timeframe, multi-symbol data provider
│ ├── orchestrator.py # ✅ Main decision making orchestrator
│ └── __init__.py
├── models/ # ✅ Modular AI/ML Models
│ ├── __init__.py # ✅ Base interfaces & memory management
│ ├── cnn/ # 🔄 CNN implementations (to be added)
│ └── rl/ # 🔄 RL implementations (to be added)
├── web/ # 🔄 Web dashboard (to be added)
├── trading/ # 🔄 Trading execution (to be added)
├── utils/ # 🔄 Utilities (to be added)
├── main_clean.py # ✅ Clean entry point
├── config.yaml # ✅ Central configuration
└── requirements.txt # 🔄 Dependencies list
✅ Key Features Implemented
1. Memory-Efficient Model Registry
- 8GB total memory limit enforced
- Individual model limits (configurable per model)
- Automatic memory tracking and cleanup
- GPU/CPU device management with fallback
- Model registration/unregistration with memory checks
2. Modular Orchestrator System
- Plugin architecture - easily add new AI models
- Dynamic weighting based on model performance
- Multi-model predictions combining CNN, RL, and any new models
- Confidence-based decisions with threshold controls
- Real-time memory monitoring
3. Unified Data Provider
- Multi-symbol support: ETH/USDT, BTC/USDT (extendable)
- Multi-timeframe: 1s, 5m, 1h, 1d
- Real-time streaming via WebSocket (async)
- Historical data caching with automatic invalidation
- Technical indicators computed automatically
- Feature matrix generation for ML models
4. Central Configuration System
- YAML-based configuration for all settings
- Environment-specific configs support
- Automatic directory creation
- Type-safe property access
- Runtime configuration updates
🧠 Model Interface Design
Base Model Interface
class ModelInterface(ABC):
- predict(features) -> (action_probs, confidence)
- get_memory_usage() -> int (MB)
- cleanup_memory()
- device management (GPU/CPU)
CNN Model Interface
class CNNModelInterface(ModelInterface):
- train(training_data) -> training_metrics
- predict_timeframe(features, timeframe) -> prediction
- timeframe-specific predictions
RL Agent Interface
class RLAgentInterface(ModelInterface):
- act(state) -> action
- act_with_confidence(state) -> (action, confidence)
- remember(experience) -> None
- replay() -> loss
📊 Memory Management Features
Automatic Memory Tracking
- Per-model memory usage monitoring
- Total system memory tracking
- GPU memory management with CUDA cache clearing
- Memory leak prevention with periodic cleanup
Memory Constraints
- Total system limit: 8GB (configurable)
- Default per-model limit: 2GB (configurable)
- Automatic rejection of models exceeding limits
- Memory stats reporting for monitoring
Example Memory Stats
{
'total_limit_mb': 8192.0,
'models': {
'CNN': {'memory_mb': 1500, 'device': 'cuda'},
'RL': {'memory_mb': 800, 'device': 'cuda'},
'Transformer': {'memory_mb': 2000, 'device': 'cuda'}
},
'total_used_mb': 4300,
'total_free_mb': 3892,
'utilization_percent': 52.5
}
🔧 Easy Model Integration
Adding a New Model (Example: Transformer)
from models import ModelInterface, get_model_registry
class TransformerModel(ModelInterface):
def __init__(self, config):
super().__init__('Transformer', config)
self.model = self._build_transformer()
def predict(self, features):
with torch.no_grad():
outputs = self.model(features)
probs = F.softmax(outputs, dim=-1)
confidence = torch.max(probs).item()
return probs.numpy(), confidence
def get_memory_usage(self):
return sum(p.numel() * 4 for p in self.model.parameters()) // (1024*1024)
# Register with orchestrator
registry = get_model_registry()
orchestrator = TradingOrchestrator()
transformer = TransformerModel(config)
if orchestrator.register_model(transformer, weight=0.2):
print("Transformer model added successfully!")
🚀 Performance Optimizations
Data Provider
- Caching with TTL (1-hour expiration)
- Parquet storage for fast I/O
- Batch processing of technical indicators
- Memory-efficient pandas operations
Model System
- Lazy loading of models
- Mixed precision support (GPU)
- Batch inference where possible
- Memory pooling for repeated allocations
Orchestrator
- Asynchronous processing for multiple models
- Weighted averaging of predictions
- Confidence thresholding to avoid low-quality decisions
- Performance-based weight adaptation
📈 Testing Results
Data Provider Test
[SUCCESS] Historical data: 100 candles loaded
[SUCCESS] Feature matrix shape: (1, 20, 8)
[SUCCESS] Data provider health check passed
Orchestrator Test
[SUCCESS] Model registry initialized with 8192.0MB limit
[SUCCESS] Both models registered successfully
[SUCCESS] Memory stats: 0.0% utilization
[SUCCESS] Models registered with orchestrator
[SUCCESS] Performance metrics available
🎛️ Configuration Management
Sample Configuration (config.yaml)
# 8GB total memory limit
performance:
total_memory_gb: 8.0
use_gpu: true
mixed_precision: true
# Model-specific limits
models:
cnn:
max_memory_mb: 2000
window_size: 20
rl:
max_memory_mb: 1500
state_size: 100
# Trading symbols & timeframes
symbols: ["ETH/USDT", "BTC/USDT"]
timeframes: ["1s", "1m", "1h", "1d"]
# Decision making
orchestrator:
confidence_threshold: 0.5
decision_frequency: 60
🔄 Next Steps
Phase 1: Complete Core Models
- Implement CNN model using the interface
- Implement RL agent using the interface
- Add model loading/saving functionality
Phase 2: Enhanced Features
- Web dashboard integration
- Trading execution module
- Backtresting framework
- Performance analytics
Phase 3: Advanced Models
- Transformer model for sequence modeling
- LSTM for temporal patterns
- Ensemble methods
- Meta-learning approaches
🎯 Benefits Achieved
- Memory Efficiency: Strict 8GB enforcement with monitoring
- Modularity: Easy to add/remove/test different AI models
- Maintainability: Clear separation of concerns, no code duplication
- Scalability: Can handle multiple symbols and timeframes efficiently
- Testability: Each component can be tested independently
- Performance: Optimized data processing and model inference
- Flexibility: Configuration-driven behavior
- Monitoring: Real-time memory and performance tracking
🛠️ Usage Examples
Basic Testing
# Test data provider
python main_clean.py --mode test
# Test orchestrator system
python main_clean.py --mode orchestrator
# Test with specific symbol
python main_clean.py --mode test --symbol BTC/USDT
Future Usage
# Training mode
python main_clean.py --mode train --symbol ETH/USDT
# Live trading
python main_clean.py --mode trade
# Web dashboard
python main_clean.py --mode web
This clean architecture provides a solid foundation for building a sophisticated multi-modal trading system that scales efficiently within memory constraints while remaining easy to extend and maintain.