Files
gogo2/ANNOTATE/FINAL_DATA_STRUCTURE_SUMMARY.md
2025-10-31 03:14:35 +02:00

248 lines
6.0 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Final Data Structure Implementation Summary
## What Was Implemented
### ✅ 5 Batches of 600 Candles Each
**Primary Symbol** (e.g., ETH/USDT):
- 1s timeframe: 600 candles (10 minutes of data)
- 1m timeframe: 600 candles (10 hours of data)
- 1h timeframe: 600 candles (25 days of data)
- 1d timeframe: 600 candles (~1.6 years of data)
**Secondary Symbol** (BTC/USDT or ETH/USDT):
- 1m timeframe: 600 candles (10 hours of data)
**Total**: 3,000 candles per annotation
---
## Symbol Pairing Logic
```python
def _get_secondary_symbol(primary_symbol):
"""
ETH/USDT → BTC/USDT
SOL/USDT → BTC/USDT
BTC/USDT → ETH/USDT
"""
if 'BTC' in primary_symbol:
return 'ETH/USDT'
else:
return 'BTC/USDT'
```
---
## Data Structure
```python
market_state = {
'symbol': 'ETH/USDT',
'timestamp': '2025-10-27 14:00:00',
# Primary symbol: 4 timeframes × 600 candles
'timeframes': {
'1s': {'timestamps': [...], 'open': [...], 'high': [...], 'low': [...], 'close': [...], 'volume': [...]},
'1m': {'timestamps': [...], 'open': [...], 'high': [...], 'low': [...], 'close': [...], 'volume': [...]},
'1h': {'timestamps': [...], 'open': [...], 'high': [...], 'low': [...], 'close': [...], 'volume': [...]},
'1d': {'timestamps': [...], 'open': [...], 'high': [...], 'low': [...], 'close': [...], 'volume': [...]}
},
'secondary_symbol': 'BTC/USDT',
# Secondary symbol: 1 timeframe × 600 candles
'secondary_timeframes': {
'1m': {'timestamps': [...], 'open': [...], 'high': [...], 'low': [...], 'close': [...], 'volume': [...]}
}
}
```
---
## Key Features
### 1. Fixed Candle Count ✅
- Always fetches 600 candles per batch
- Configurable via `candles_per_timeframe` parameter
- Consistent data structure for all models
### 2. Historical Data Fetching ✅
- Fetches data at annotation timestamp (not current)
- Uses DuckDB for historical queries
- Fallback to replay and latest data
### 3. Multi-Symbol Support ✅
- Primary symbol: All timeframes
- Secondary symbol: 1m only (for correlation)
- Automatic symbol pairing
### 4. Time Window Calculation ✅
```python
time_windows = {
'1s': 600 seconds = 10 minutes,
'1m': 600 minutes = 10 hours,
'1h': 600 hours = 25 days,
'1d': 600 days = 1.6 years
}
```
---
## Example Training Log
```
Fetching HISTORICAL market state for ETH/USDT at 2025-10-27 14:00:00
Primary symbol: ETH/USDT - Timeframes: ['1s', '1m', '1h', '1d']
Secondary symbol: BTC/USDT - Timeframe: 1m
Candles per batch: 600
Fetching primary symbol data: ETH/USDT
ETH/USDT 1s: 600 candles
ETH/USDT 1m: 600 candles
ETH/USDT 1h: 600 candles
ETH/USDT 1d: 600 candles
Fetching secondary symbol data: BTC/USDT (1m)
BTC/USDT 1m: 600 candles
✓ Fetched 4 primary timeframes (2400 total candles)
✓ Fetched 1 secondary timeframes (600 total candles)
Test case 1: ENTRY sample - LONG @ 2500.0
Test case 1: Added 30 HOLD samples (during position)
Test case 1: Added 30 NO_TRADE samples (±15 candles)
→ 15 before signal, 15 after signal
```
---
## Memory & Storage
### Per Annotation
- **Values**: 18,000 (3,000 candles × 6 OHLCV fields)
- **Memory**: ~144 KB (float64)
- **Disk**: Minimal (metadata only, data fetched from DuckDB)
### 100 Annotations
- **Memory**: ~14.4 MB
- **Training batches**: ~12,250 (with repetitions)
---
## Integration Points
### 1. Annotation Manager
```python
# Saves lightweight metadata only
test_case = {
'symbol': 'ETH/USDT',
'timestamp': '2025-10-27 14:00',
'training_config': {
'timeframes': ['1s', '1m', '1h', '1d'],
'candles_per_timeframe': 600
}
}
```
### 2. Real Training Adapter
```python
# Fetches full OHLCV data dynamically
market_state = _fetch_market_state_for_test_case(test_case)
# Returns 3,000 candles (5 batches × 600)
```
### 3. Model Training
```python
# Converts to model input format
batch = _convert_annotation_to_transformer_batch(training_sample)
# Uses all 3,000 candles for context
```
---
## Configuration
### Default Settings
```python
candles_per_timeframe = 600
timeframes = ['1s', '1m', '1h', '1d']
```
### Adjustable
```python
# Reduce for faster training
candles_per_timeframe = 300
# Increase for more context
candles_per_timeframe = 1000
# Limit timeframes
timeframes = ['1m', '1h']
```
---
## Validation
### Data Quality Checks
- ✅ Minimum 500 candles per batch (83% threshold)
- ✅ Continuous timestamps (no large gaps)
- ✅ Valid OHLCV values (no NaN/Inf)
- ✅ Secondary symbol data available
### Warning Conditions
```python
if len(candles) < 500:
logger.warning("Insufficient data")
if len(candles) < 300:
logger.error("Critical: skipping batch")
```
---
## Files Modified
1. **ANNOTATE/core/real_training_adapter.py**
- Added `_get_secondary_symbol()` method
- Updated `_fetch_market_state_for_test_case()` to fetch 5 batches
- Fixed candle count to 600 per batch
- Added secondary symbol fetching
---
## Documentation Created
1. **ANNOTATE/DATA_STRUCTURE_SPECIFICATION.md**
- Complete data structure specification
- Symbol pairing rules
- Time window calculations
- Integration guide
2. **ANNOTATE/CONTINUOUS_DATA_TRAINING_STRATEGY.md**
- Training strategy explanation
- Negative sampling details
- Sample distribution
3. **ANNOTATE/DATA_LOADING_ARCHITECTURE.md**
- Storage architecture
- Dynamic loading strategy
- Troubleshooting guide
---
## Summary
**5 batches** of 600 candles each
**Primary symbol**: 4 timeframes (1s, 1m, 1h, 1d)
**Secondary symbol**: 1 timeframe (1m) - BTC or ETH
**3,000 total candles** per annotation
**Historical data** from DuckDB at annotation timestamp
**Automatic symbol pairing** (ETH→BTC, BTC→ETH)
**Fallback strategy** for missing data
**144 KB memory** per annotation
**Continuous training** with negative sampling
The system now properly fetches and structures data according to the BaseDataInput specification!