Files
gogo2/reports/MULTI_EXCHANGE_COB_PROVIDER_SUMMARY.md
2025-06-25 11:42:12 +03:00

409 lines
13 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Multi-Exchange Consolidated Order Book (COB) Data Provider
## Overview
This document describes the implementation of a comprehensive multi-exchange Consolidated Order Book (COB) data provider for the gogo2 trading system. The system aggregates real-time order book data from multiple cryptocurrency exchanges to provide enhanced market liquidity analysis and fine-grain volume bucket data.
## BookMap API Analysis
### What is BookMap?
BookMap is a professional trading platform that provides:
- **Multibook**: Consolidated order book data from multiple exchanges
- **Real-time market depth visualization**
- **Order flow analysis tools**
- **Market microstructure analytics**
### BookMap API Capabilities
Based on research, BookMap offers three types of APIs:
1. **L1 (Add-ons API)**: For creating custom indicators and trading strategies within BookMap
2. **L0 (Connect API)**: For creating custom market data connections (requires approval)
3. **Broadcasting API (BrAPI)**: For data sharing between BookMap add-ons
### BookMap Multibook Features
BookMap's Multibook provides:
- **Pre-configured synthetic instruments** combining data from major exchanges:
- **USD Spot**: BTC, ETH, ADA, etc. from Bitstamp, Bitfinex, Coinbase Pro, Kraken
- **USDT Spot**: BTC, ETH, DOGE, etc. from Binance, Huobi, Poloniex
- **USDT Perpetual Futures**: From Binance Futures, Bitget, Bybit, OKEx
- **Consolidated order book visualization**
- **Cross-exchange arbitrage detection**
- **Volume-weighted pricing**
### Limitations for External Use
**Important Finding**: BookMap's APIs are primarily designed for:
- Creating add-ons **within** the BookMap platform
- Extending BookMap's functionality
- **NOT for external data consumption**
The APIs do not provide a simple way to consume Multibook data externally for use in other trading systems.
### Cost and Accessibility
- BookMap Multibook requires **Global Plus subscription**
- External API access requires approval and specific use cases
- Focus is on professional institutional users
## Our Implementation Approach
Given the limitations of accessing BookMap's data externally, we've implemented our own multi-exchange COB provider that replicates and extends BookMap's functionality.
## Architecture
### Core Components
1. **MultiExchangeCOBProvider** (`core/multi_exchange_cob_provider.py`)
- Main aggregation engine
- Real-time WebSocket connections to multiple exchanges
- Order book consolidation logic
- Fine-grain price bucket generation
2. **COBIntegration** (`core/cob_integration.py`)
- Integration layer with existing gogo2 system
- CNN/DQN feature generation
- Dashboard data formatting
- Trading signal generation
### Supported Exchanges
| Exchange | WebSocket URL | Market Share Weight | Symbols Supported |
|----------|---------------|-------------------|-------------------|
| Binance | wss://stream.binance.com:9443/ws/ | 30% | BTC/USDT, ETH/USDT |
| Coinbase Pro | wss://ws-feed.exchange.coinbase.com | 25% | BTC-USD, ETH-USD |
| Kraken | wss://ws.kraken.com | 20% | XBT/USDT, ETH/USDT |
| Huobi | wss://api.huobi.pro/ws | 15% | btcusdt, ethusdt |
| Bitfinex | wss://api-pub.bitfinex.com/ws/2 | 10% | tBTCUST, tETHUST |
## Key Features
### 1. Real-Time Order Book Aggregation
```python
@dataclass
class ConsolidatedOrderBookLevel:
price: float
total_size: float
total_volume_usd: float
total_orders: int
side: str
exchange_breakdown: Dict[str, ExchangeOrderBookLevel]
dominant_exchange: str
liquidity_score: float
timestamp: datetime
```
### 2. Fine-Grain Price Buckets
- **Configurable bucket size** (default: 1 basis point)
- **Volume aggregation** at each price level
- **Exchange attribution** for each bucket
- **Real-time bucket updates** every 100ms
```python
price_buckets = {
'bids': {
bucket_key: {
'price': bucket_price,
'volume_usd': total_volume,
'size': total_size,
'orders': total_orders,
'exchanges': ['binance', 'coinbase']
}
},
'asks': { ... }
}
```
### 3. Market Microstructure Analysis
- **Volume-weighted mid price** calculation
- **Liquidity imbalance** detection
- **Cross-exchange spread** analysis
- **Exchange dominance** metrics
- **Market depth** distribution
### 4. CNN/DQN Integration
#### CNN Features (220 dimensions)
- **Order book levels**: 20 levels × 5 features × 2 sides = 200 features
- **Market microstructure**: 20 additional features
- **Normalized and scaled** for neural network consumption
#### DQN State Features (30 dimensions)
- **Normalized order book state**: 20 features
- **Market state indicators**: 10 features
- **Real-time market regime** detection
### 5. Trading Signal Generation
- **Liquidity imbalance signals**
- **Arbitrage opportunity detection**
- **Liquidity anomaly alerts**
- **Market microstructure pattern recognition**
## Implementation Details
### Data Structures
```python
@dataclass
class COBSnapshot:
symbol: str
timestamp: datetime
consolidated_bids: List[ConsolidatedOrderBookLevel]
consolidated_asks: List[ConsolidatedOrderBookLevel]
exchanges_active: List[str]
volume_weighted_mid: float
total_bid_liquidity: float
total_ask_liquidity: float
spread_bps: float
liquidity_imbalance: float
price_buckets: Dict[str, Dict[str, float]]
```
### Real-Time Processing
1. **WebSocket Connections**: Independent connections to each exchange
2. **Order Book Updates**: Process depth updates at 100ms intervals
3. **Consolidation Engine**: Aggregate order books every 100ms
4. **Bucket Generation**: Create fine-grain volume buckets
5. **Feature Generation**: Compute CNN/DQN features in real-time
6. **Signal Detection**: Analyze patterns and generate trading signals
### Performance Optimizations
- **Asynchronous processing** for all WebSocket connections
- **Lock-based synchronization** for thread-safe data access
- **Deque-based storage** for efficient historical data management
- **Configurable update frequencies** for different components
## Integration with Existing System
### Dashboard Integration
```python
# Add COB data to dashboard
cob_integration.add_dashboard_callback(dashboard.update_cob_data)
# Dashboard receives:
{
'consolidated_bids': [...],
'consolidated_asks': [...],
'price_buckets': {...},
'market_quality': {...},
'recent_signals': [...]
}
```
### AI Model Integration
```python
# CNN feature generation
cob_integration.add_cnn_callback(cnn_model.process_cob_features)
# DQN state updates
cob_integration.add_dqn_callback(dqn_agent.update_cob_state)
```
### Trading System Integration
```python
# Signal-based trading
for signal in cob_integration.get_recent_signals(symbol):
if signal['confidence'] > 0.8:
trading_executor.process_cob_signal(signal)
```
## Usage Examples
### Basic Setup
```python
from core.multi_exchange_cob_provider import MultiExchangeCOBProvider
from core.cob_integration import COBIntegration
# Initialize COB provider
symbols = ['BTC/USDT', 'ETH/USDT']
cob_provider = MultiExchangeCOBProvider(
symbols=symbols,
bucket_size_bps=1.0 # 1 basis point granularity
)
# Integration layer
cob_integration = COBIntegration(symbols=symbols)
# Start streaming
await cob_integration.start()
```
### Accessing Data
```python
# Get consolidated order book
cob_snapshot = cob_integration.get_cob_snapshot('BTC/USDT')
# Get fine-grain price buckets
price_buckets = cob_integration.get_price_buckets('BTC/USDT')
# Get exchange breakdown
exchange_breakdown = cob_integration.get_exchange_breakdown('BTC/USDT')
# Get CNN features
cnn_features = cob_integration.get_cob_features('BTC/USDT')
# Get recent trading signals
signals = cob_integration.get_recent_signals('BTC/USDT', count=10)
```
### Market Analysis
```python
# Market depth analysis
depth_analysis = cob_integration.get_market_depth_analysis('BTC/USDT')
print(f"Active exchanges: {depth_analysis['exchanges_active']}")
print(f"Total liquidity: ${depth_analysis['total_bid_liquidity'] + depth_analysis['total_ask_liquidity']:,.0f}")
print(f"Spread: {depth_analysis['spread_bps']:.2f} bps")
print(f"Liquidity imbalance: {depth_analysis['liquidity_imbalance']:.3f}")
```
## Testing
Use the provided test script to validate functionality:
```bash
python test_multi_exchange_cob.py
```
The test script provides:
- **Basic functionality testing**
- **Feature generation validation**
- **Dashboard integration testing**
- **Signal analysis verification**
- **Performance monitoring**
- **Comprehensive test reporting**
## Advantages Over BookMap
### Our Implementation Benefits
1. **Full Control**: Complete customization of aggregation logic
2. **Cost Effective**: Uses free exchange APIs instead of paid BookMap subscription
3. **Direct Integration**: Seamless integration with existing gogo2 architecture
4. **Extended Features**: Custom signal generation and analysis
5. **Fine-Grain Control**: Configurable bucket sizes and update frequencies
6. **Open Source**: Fully customizable and extensible
### Comparison with BookMap Multibook
| Feature | BookMap Multibook | Our Implementation |
|---------|------------------|-------------------|
| **Data Sources** | Pre-configured instruments | Fully configurable exchanges |
| **Cost** | Global Plus subscription | Free (exchange APIs) |
| **Integration** | BookMap platform only | Direct gogo2 integration |
| **Customization** | Limited | Full control |
| **Bucket Granularity** | Fixed by BookMap | Configurable (1 bps default) |
| **Signal Generation** | BookMap's algorithms | Custom trading signals |
| **AI Integration** | Limited | Native CNN/DQN features |
| **Real-time Updates** | BookMap frequency | 100ms configurable |
## Future Enhancements
### Planned Improvements
1. **Additional Exchanges**: OKX, Bybit, KuCoin integration
2. **Options/Futures Support**: Extend beyond spot markets
3. **Advanced Analytics**: Machine learning-based pattern recognition
4. **Risk Management**: Real-time exposure and risk metrics
5. **Cross-Asset Analysis**: Multi-symbol correlation analysis
6. **Historical Analysis**: COB pattern backtesting
7. **API Rate Optimization**: Intelligent request management
8. **Fault Tolerance**: Exchange failover and redundancy
### Performance Optimizations
1. **WebSocket Pooling**: Shared connections for multiple symbols
2. **Data Compression**: Optimized data structures
3. **Caching Strategies**: Intelligent feature caching
4. **Parallel Processing**: Multi-threaded consolidation
5. **Memory Management**: Optimized historical data storage
## Configuration
### Exchange Configuration
```python
exchange_configs = {
'binance': ExchangeConfig(
exchange_type=ExchangeType.BINANCE,
weight=0.3, # 30% weight in aggregation
websocket_url="wss://stream.binance.com:9443/ws/",
symbols_mapping={'BTC/USDT': 'BTCUSDT'},
rate_limits={'requests_per_minute': 1200}
)
}
```
### Bucket Configuration
```python
# Configure price bucket granularity
bucket_size_bps = 1.0 # 1 basis point per bucket
bucket_update_frequency = 100 # Update every 100ms
```
### Feature Configuration
```python
# CNN feature dimensions
cnn_feature_config = {
'order_book_levels': 20,
'features_per_level': 5,
'microstructure_features': 20,
'total_dimensions': 220
}
```
## Monitoring and Diagnostics
### Performance Metrics
- **Update rates**: COB updates per second
- **Processing latency**: Time from exchange update to consolidation
- **Feature generation time**: CNN/DQN feature computation time
- **Memory usage**: Data structure memory consumption
- **Connection health**: WebSocket connection status
### Logging
Comprehensive logging includes:
- Exchange connection events
- Order book update statistics
- Feature generation metrics
- Signal generation events
- Error handling and recovery
## Conclusion
The Multi-Exchange COB Provider successfully replicates and extends BookMap's Multibook functionality while providing:
1. **Superior Integration** with the gogo2 trading system
2. **Cost Effectiveness** using free exchange APIs
3. **Enhanced Customization** for specific trading requirements
4. **Real-time Performance** optimized for high-frequency trading
5. **Advanced Analytics** with native AI model integration
This implementation provides a robust foundation for multi-exchange order book analysis and represents a significant enhancement to the gogo2 trading platform's market data capabilities.
## Files Created
1. `core/multi_exchange_cob_provider.py` - Main COB aggregation engine
2. `core/cob_integration.py` - Integration layer with gogo2 system
3. `test_multi_exchange_cob.py` - Comprehensive testing framework
4. `MULTI_EXCHANGE_COB_PROVIDER_SUMMARY.md` - This documentation
The system is ready for integration and testing with the existing gogo2 trading infrastructure.