Files
gogo2/reports/UNIVERSAL_DATA_STREAM_ARCHITECTURE_AUDIT.md
2025-06-25 11:42:12 +03:00

9.8 KiB

Universal Data Stream Architecture Audit & Optimization Plan

📊 UNIVERSAL DATA FORMAT SPECIFICATION

Our trading system is built around 5 core timeseries streams that provide a standardized data format to all models:

Core Timeseries (The Sacred 5)

  1. ETH/USDT Ticks (1s) - Primary trading pair real-time data
  2. ETH/USDT 1m - Short-term price action and patterns
  3. ETH/USDT 1h - Medium-term trends and momentum
  4. ETH/USDT 1d - Long-term market structure
  5. BTC/USDT Ticks (1s) - Reference asset for correlation analysis

Data Format Structure

@dataclass
class UniversalDataStream:
    eth_ticks: np.ndarray      # [timestamp, open, high, low, close, volume]
    eth_1m: np.ndarray         # [timestamp, open, high, low, close, volume]
    eth_1h: np.ndarray         # [timestamp, open, high, low, close, volume]
    eth_1d: np.ndarray         # [timestamp, open, high, low, close, volume]
    btc_ticks: np.ndarray      # [timestamp, open, high, low, close, volume]
    timestamp: datetime
    metadata: Dict[str, Any]

🏗️ CURRENT ARCHITECTURE COMPONENTS

1. Universal Data Adapter (core/universal_data_adapter.py)

  • Status: Implemented
  • Purpose: Converts any data source into universal 5-timeseries format
  • Key Features:
    • Format validation
    • Data quality assessment
    • Model-specific formatting (CNN, RL, Transformer)
    • Window size management
    • Missing data handling

2. Unified Data Stream (core/unified_data_stream.py)

  • Status: Implemented with Subscriber Architecture
  • Purpose: Central data distribution hub
  • Key Features:
    • Publisher-Subscriber pattern
    • Consumer registration system
    • Multi-consumer data distribution
    • Performance tracking
    • Data caching and buffering

3. Enhanced Orchestrator Integration

  • Status: Implemented
  • Purpose: Neural Decision Fusion using universal data
  • Key Features:
    • NN-driven decision making
    • Model prediction fusion
    • Market context preparation
    • Cross-asset correlation analysis

📈 DATA FLOW MAPPING

Current Data Flow

Data Provider (Binance API)
    ↓
Universal Data Adapter
    ↓
Unified Data Stream (Publisher)
    ↓
┌─────────────────┬─────────────────┬─────────────────┐
│   Dashboard     │   Orchestrator  │   Models        │
│   Subscriber    │   Subscriber    │   Subscriber    │
└─────────────────┴─────────────────┴─────────────────┘

Registered Consumers

  1. Trading Dashboard - UI data updates (ticks, ohlcv, ui_data)
  2. Enhanced Orchestrator - NN decision making (training_data, ohlcv)
  3. CNN Models - Pattern recognition (formatted CNN data)
  4. RL Models - Action learning (state vectors)
  5. COB Integration - Order book analysis (microstructure data)

🔍 ARCHITECTURE AUDIT FINDINGS

STRENGTHS

  1. Standardized Format: All models receive consistent data structure
  2. Publisher-Subscriber: Efficient one-to-many data distribution
  3. Performance Tracking: Built-in metrics and monitoring
  4. Multi-Timeframe: Comprehensive temporal view
  5. Real-time Processing: Live data with proper buffering

⚠️ OPTIMIZATION OPPORTUNITIES

1. Memory Efficiency

  • Issue: Multiple data copies across consumers
  • Impact: High memory usage with many subscribers
  • Solution: Implement shared memory buffers with copy-on-write

2. Processing Latency

  • Issue: Sequential processing in some callbacks
  • Impact: Delays in real-time decision making
  • Solution: Parallel consumer notification with thread pools

3. Data Staleness

  • Issue: No real-time freshness validation
  • Impact: Models might use outdated data
  • Solution: Timestamp-based data validity checks

4. Network Optimization

  • Issue: Individual API calls for each timeframe
  • Impact: Rate limiting and bandwidth waste
  • Solution: Batch requests and intelligent caching

🚀 OPTIMIZATION IMPLEMENTATION PLAN

Phase 1: Memory Optimization

# Implement shared memory data structures
class SharedDataBuffer:
    def __init__(self, max_size: int):
        self.data = np.zeros((max_size, 6), dtype=np.float32)  # OHLCV + timestamp
        self.write_index = 0
        self.readers = {}  # Consumer ID -> last read index
        
    def write(self, new_data: np.ndarray):
        # Atomic write operation
        self.data[self.write_index] = new_data
        self.write_index = (self.write_index + 1) % len(self.data)
    
    def read(self, consumer_id: str, count: int) -> np.ndarray:
        # Return data since last read for this consumer
        last_read = self.readers.get(consumer_id, 0)
        data_slice = self._get_data_slice(last_read, count)
        self.readers[consumer_id] = self.write_index
        return data_slice

Phase 2: Parallel Processing

# Implement concurrent consumer notification
class ParallelDataDistributor:
    def __init__(self, max_workers: int = 4):
        self.executor = ThreadPoolExecutor(max_workers=max_workers)
        
    def distribute_to_consumers(self, data_packet: Dict[str, Any]):
        futures = []
        for consumer in self.active_consumers:
            future = self.executor.submit(self._notify_consumer, consumer, data_packet)
            futures.append(future)
        
        # Wait for all notifications to complete
        for future in as_completed(futures, timeout=0.1):
            try:
                future.result()
            except Exception as e:
                logger.warning(f"Consumer notification failed: {e}")

Phase 3: Intelligent Caching

# Implement smart data caching with expiration
class SmartDataCache:
    def __init__(self):
        self.cache = {}
        self.expiry_times = {}
        self.hit_count = 0
        self.miss_count = 0
    
    def get_data(self, symbol: str, timeframe: str, force_refresh: bool = False) -> np.ndarray:
        cache_key = f"{symbol}_{timeframe}"
        current_time = time.time()
        
        if not force_refresh and cache_key in self.cache:
            if current_time < self.expiry_times[cache_key]:
                self.hit_count += 1
                return self.cache[cache_key]
        
        # Cache miss - fetch fresh data
        self.miss_count += 1
        fresh_data = self._fetch_fresh_data(symbol, timeframe)
        
        # Cache with appropriate expiration
        self.cache[cache_key] = fresh_data
        self.expiry_times[cache_key] = current_time + self._get_cache_duration(timeframe)
        
        return fresh_data

📋 INTEGRATION CHECKLIST

Dashboard Integration

  • Verify web/clean_dashboard.py uses UnifiedDataStream
  • Ensure proper subscriber registration
  • Check data type requirements (ui_data, ohlcv)
  • Validate real-time updates

Model Integration

  • CNN models receive formatted universal data
  • RL models get proper state vectors
  • Neural Decision Fusion uses all 5 timeseries
  • COB integration processes microstructure data

Performance Monitoring

  • Stream statistics tracking
  • Consumer performance metrics
  • Data quality monitoring
  • Memory usage optimization

🎯 IMMEDIATE ACTION ITEMS

High Priority

  1. Audit Dashboard Subscriber - Ensure clean_dashboard.py properly subscribes
  2. Verify Model Data Flow - Check all models receive universal format
  3. Monitor Memory Usage - Track memory consumption across consumers
  4. Performance Profiling - Measure data distribution latency

Medium Priority

  1. Implement Shared Buffers - Reduce memory duplication
  2. Add Data Freshness Checks - Prevent stale data usage
  3. Optimize Network Calls - Batch API requests where possible
  4. Enhanced Error Handling - Graceful degradation on data issues

Low Priority

  1. Advanced Caching - Predictive data pre-loading
  2. Compression - Reduce data transfer overhead
  3. Distributed Processing - Scale across multiple processes
  4. Real-time Analytics - Live data quality metrics

🔧 IMPLEMENTATION STATUS

Completed

  • Universal Data Adapter with 5 timeseries
  • Unified Data Stream with subscriber pattern
  • Enhanced Orchestrator integration
  • Neural Decision Fusion using universal data

🚧 In Progress

  • Dashboard subscriber optimization
  • Memory usage profiling
  • Performance monitoring

📅 Planned

  • Shared memory implementation
  • Parallel consumer notification
  • Advanced caching strategies
  • Real-time quality monitoring

📊 SUCCESS METRICS

Performance Targets

  • Data Latency: < 10ms from source to consumer
  • Memory Efficiency: < 500MB total for all consumers
  • Cache Hit Rate: > 80% for historical data requests
  • Consumer Throughput: > 100 updates/second per consumer

Quality Targets

  • Data Completeness: > 99.9% for all 5 timeseries
  • Timestamp Accuracy: < 1ms deviation from source
  • Format Compliance: 100% validation success
  • Error Rate: < 0.1% failed distributions

🎯 CONCLUSION

The Universal Data Stream architecture is the backbone of our trading system. The 5 timeseries format ensures all models receive consistent, high-quality data. The subscriber architecture enables efficient distribution, but there are clear optimization opportunities for memory usage, processing latency, and caching.

Next Steps: Focus on implementing shared memory buffers and parallel consumer notification to improve performance while maintaining the integrity of our universal data format.

Critical: All optimization work must preserve the 5 timeseries structure as it's fundamental to our model training and decision making processes.