updated design

This commit is contained in:
Dobromir Popov
2025-07-23 13:39:50 +03:00
parent df17a99247
commit f759eac04b

View File

@ -58,9 +58,11 @@ The DataProvider class will:
- Identify pivot points
- Normalize data
- Distribute data to subscribers
- Calculate any other algoritmic manipulations/calculations on the data
- Cache up to 3x the model inputs (300 ticks OHLCV, etc) data so we can do a proper backtesting in up to 2x time in the future
Based on the existing implementation in `core/data_provider.py`, we'll enhance it to:
- Improve pivot point calculation using Williams Market Structure
- Improve pivot point calculation using reccursive Williams Market Structure
- Optimize data caching for better performance
- Enhance real-time data streaming
- Implement better error handling and fallback mechanisms
@ -129,33 +131,141 @@ Training:
### 4. Orchestrator
The Orchestrator is responsible for making final trading decisions based on inputs from both CNN and RL models.
The Orchestrator serves as the central coordination hub of the multi-modal trading system, responsible for data subscription management, model inference coordination, output storage, and training pipeline orchestration.
#### Key Classes and Interfaces
- **Orchestrator**: Main class for the orchestrator.
- **DataSubscriptionManager**: Manages subscriptions to multiple data streams with different refresh rates.
- **ModelInferenceCoordinator**: Coordinates inference across all models.
- **ModelOutputStore**: Stores and manages model outputs for cross-model feeding.
- **TrainingPipelineManager**: Manages training pipelines for all models.
- **DecisionMaker**: Interface for making trading decisions.
- **MoEGateway**: Mixture of Experts gateway for model integration.
#### Core Responsibilities
##### 1. Data Subscription and Management
The Orchestrator subscribes to the Data Provider and manages multiple data streams with varying refresh rates:
- **10Hz COB (Cumulative Order Book) Data**: High-frequency order book updates for real-time market depth analysis
- **OHLCV Data**: Traditional candlestick data at multiple timeframes (1s, 1m, 1h, 1d)
- **Market Tick Data**: Individual trade executions and price movements
- **Technical Indicators**: Calculated indicators that update at different frequencies
- **Pivot Points**: Market structure analysis data
**Data Stream Management**:
- Maintains separate buffers for each data type with appropriate retention policies
- Ensures thread-safe access to data streams from multiple models
- Implements intelligent caching to serve "last updated" data efficiently
- Maintains full base dataframe that stays current for any model requesting data
- Handles data synchronization across different refresh rates
##### 2. Model Inference Coordination
The Orchestrator coordinates inference across all models in the system:
**Inference Pipeline**:
- Triggers model inference when relevant data updates occur
- Manages inference scheduling based on data availability and model requirements
- Coordinates parallel inference execution for independent models
- Handles model dependencies (e.g., RL model waiting for CNN hidden states)
**Model Input Management**:
- Assembles appropriate input data for each model based on their requirements
- Ensures models receive the most current data available at inference time
- Manages feature engineering and data preprocessing for each model
- Handles different input formats and requirements across models
##### 3. Model Output Storage and Cross-Feeding
The Orchestrator maintains a centralized store for all model outputs and manages cross-model data feeding:
**Output Storage**:
- Stores CNN predictions, confidence scores, and hidden layer states
- Stores RL action recommendations and value estimates
- Maintains historical output sequences for temporal analysis
- Implements efficient retrieval mechanisms for real-time access
**Cross-Model Feeding**:
- Feeds CNN hidden layer states into RL model inputs
- Provides CNN predictions as context for RL decision-making
- Stores model outputs that become inputs for subsequent inference cycles
- Manages circular dependencies and feedback loops between models
##### 4. Training Pipeline Management
The Orchestrator coordinates training for all models by managing the prediction-result feedback loop:
**Training Coordination**:
- Calls each model's training pipeline when new inference results are available
- Provides previous predictions alongside new results for supervised learning
- Manages training data collection and labeling
- Coordinates online learning updates based on real-time performance
**Training Data Management**:
- Maintains training datasets with prediction-result pairs
- Implements data quality checks and filtering
- Manages training data retention and archival policies
- Provides training data statistics and monitoring
**Performance Tracking**:
- Tracks prediction accuracy for each model over time
- Monitors model performance degradation and triggers retraining
- Maintains performance metrics for model comparison and selection
##### 5. Decision Making and Trading Actions
Beyond coordination, the Orchestrator makes final trading decisions:
**Decision Integration**:
- Combines outputs from CNN and RL models using Mixture of Experts approach
- Applies confidence-based filtering to avoid uncertain trades
- Implements configurable thresholds for buy/sell decisions
- Considers market conditions and risk parameters
#### Implementation Details
The Orchestrator will:
- Accept inputs from both CNN and RL models
- Output final trading actions (buy/sell)
- Consider confidence levels of both models
- Learn to avoid entering positions when uncertain
- Allow for configurable thresholds for entering and exiting positions
**Architecture**:
```python
class Orchestrator:
def __init__(self):
self.data_subscription_manager = DataSubscriptionManager()
self.model_inference_coordinator = ModelInferenceCoordinator()
self.model_output_store = ModelOutputStore()
self.training_pipeline_manager = TrainingPipelineManager()
self.decision_maker = DecisionMaker()
self.moe_gateway = MoEGateway()
async def run(self):
# Subscribe to data streams
await self.data_subscription_manager.subscribe_to_data_provider()
# Start inference coordination loop
await self.model_inference_coordinator.start()
# Start training pipeline management
await self.training_pipeline_manager.start()
```
Architecture:
- Mixture of Experts (MoE) approach
- Gating network: Determine which expert to trust
- Expert models: CNN, RL, and potentially others
- Decision network: Combine expert outputs
**Data Flow Management**:
- Implements event-driven architecture for data updates
- Uses async/await patterns for non-blocking operations
- Maintains data freshness timestamps for each stream
- Implements backpressure handling for high-frequency data
Training:
- Train on historical data
- Update model based on trading outcomes
- Use reinforcement learning to optimize decision-making
**Model Coordination**:
- Manages model lifecycle (loading, inference, training, updating)
- Implements model versioning and rollback capabilities
- Handles model failures and fallback mechanisms
- Provides model performance monitoring and alerting
**Training Integration**:
- Implements incremental learning strategies
- Manages training batch composition and scheduling
- Provides training progress monitoring and control
- Handles training failures and recovery
### 5. Trading Executor