fixes
This commit is contained in:
@ -1395,13 +1395,14 @@ class EnhancedTradingOrchestrator(TradingOrchestrator):
|
||||
predictions = prediction_result.get('probabilities', [0.33, 0.33, 0.34])
|
||||
confidence = prediction_result.get('confidence', 0.7)
|
||||
|
||||
# Convert predictions to numpy array first
|
||||
# Convert predictions to numpy array first using safe conversion
|
||||
if isinstance(predictions, np.ndarray):
|
||||
predictions_array = predictions.flatten()
|
||||
elif isinstance(predictions, (list, tuple)):
|
||||
predictions_array = np.array(predictions, dtype=np.float32).flatten()
|
||||
else:
|
||||
predictions_array = np.array([float(predictions)], dtype=np.float32)
|
||||
# Use safe tensor conversion for single values
|
||||
predictions_array = np.array([self._safe_tensor_to_scalar(predictions, 0.5)], dtype=np.float32)
|
||||
|
||||
# Create final predictions array with confidence
|
||||
# Use safe tensor conversion to avoid scalar conversion errors
|
||||
@ -1416,7 +1417,7 @@ class EnhancedTradingOrchestrator(TradingOrchestrator):
|
||||
# Handle (pred_class, pred_proba) tuple from CNN models
|
||||
pred_class, pred_proba = prediction_result
|
||||
|
||||
# Flatten and process the probability array
|
||||
# Flatten and process the probability array using safe conversion
|
||||
if isinstance(pred_proba, np.ndarray):
|
||||
if pred_proba.ndim > 1:
|
||||
# Handle 2D arrays like [[0.1, 0.2, 0.7]]
|
||||
@ -1428,16 +1429,17 @@ class EnhancedTradingOrchestrator(TradingOrchestrator):
|
||||
# Use the probability values as the predictions array
|
||||
predictions = pred_proba_flat.astype(np.float32)
|
||||
else:
|
||||
# Fallback: use class prediction only
|
||||
predictions = np.array([float(pred_class)], dtype=np.float32)
|
||||
# Fallback: use class prediction with safe conversion
|
||||
predictions = np.array([self._safe_tensor_to_scalar(pred_class, 0.5)], dtype=np.float32)
|
||||
else:
|
||||
# Handle direct prediction result
|
||||
# Handle direct prediction result using safe conversion
|
||||
if isinstance(prediction_result, np.ndarray):
|
||||
predictions = prediction_result.flatten()
|
||||
elif isinstance(prediction_result, (list, tuple)):
|
||||
predictions = np.array(prediction_result, dtype=np.float32).flatten()
|
||||
else:
|
||||
predictions = np.array([float(prediction_result)], dtype=np.float32)
|
||||
# Use safe tensor conversion for single tensor/scalar values
|
||||
predictions = np.array([self._safe_tensor_to_scalar(prediction_result, 0.5)], dtype=np.float32)
|
||||
|
||||
# Extract hidden features if model supports it
|
||||
hidden_features = None
|
||||
@ -4740,7 +4742,8 @@ class EnhancedTradingOrchestrator(TradingOrchestrator):
|
||||
Python float scalar value
|
||||
"""
|
||||
try:
|
||||
if hasattr(tensor_value, 'item'):
|
||||
# Handle PyTorch tensors first
|
||||
if hasattr(tensor_value, 'numel') and hasattr(tensor_value, 'item'):
|
||||
# PyTorch tensor - handle different shapes
|
||||
if tensor_value.numel() == 1:
|
||||
return float(tensor_value.item())
|
||||
@ -4754,9 +4757,12 @@ class EnhancedTradingOrchestrator(TradingOrchestrator):
|
||||
return float(tensor_value.flatten()[0])
|
||||
else:
|
||||
return float(tensor_value.flat[0])
|
||||
elif hasattr(tensor_value, 'item') and not isinstance(tensor_value, np.ndarray):
|
||||
# Other tensor types that have .item() method
|
||||
return float(tensor_value.item())
|
||||
else:
|
||||
# Already a scalar value
|
||||
return float(tensor_value)
|
||||
except Exception as e:
|
||||
logger.warning(f"Error converting tensor to scalar, using default {default_value}: {e}")
|
||||
logger.debug(f"Error converting tensor to scalar, using default {default_value}: {e}")
|
||||
return default_value
|
Reference in New Issue
Block a user