try to fix input dimentions
This commit is contained in:
@ -250,6 +250,12 @@ class COBRLModelInterface(ModelInterface):
|
||||
|
||||
logger.info(f"COB RL Model Interface initialized on {self.device}")
|
||||
|
||||
def to(self, device):
|
||||
"""PyTorch-style device movement method"""
|
||||
self.device = device
|
||||
self.model = self.model.to(device)
|
||||
return self
|
||||
|
||||
def predict(self, cob_features: np.ndarray) -> Dict[str, Any]:
|
||||
"""Make prediction using the model"""
|
||||
self.model.eval()
|
||||
|
@ -454,6 +454,13 @@ class DQNAgent:
|
||||
logger.error(f"Failed to move models to {self.device}: {str(e)}")
|
||||
return False
|
||||
|
||||
def to(self, device):
|
||||
"""PyTorch-style device movement method"""
|
||||
self.device = device
|
||||
self.policy_net = self.policy_net.to(device)
|
||||
self.target_net = self.target_net.to(device)
|
||||
return self
|
||||
|
||||
def remember(self, state: np.ndarray, action: int, reward: float,
|
||||
next_state: np.ndarray, done: bool, is_extrema: bool = False):
|
||||
"""
|
||||
|
@ -498,10 +498,20 @@ class EnhancedCNN(nn.Module):
|
||||
"""Enhanced action selection with ultra massive model predictions"""
|
||||
if explore and np.random.random() < 0.1: # 10% random exploration
|
||||
return np.random.choice(self.n_actions)
|
||||
|
||||
|
||||
self.eval()
|
||||
state_tensor = torch.FloatTensor(state).unsqueeze(0).to(self.device)
|
||||
|
||||
|
||||
# Accept both NumPy arrays and already-built torch tensors
|
||||
if isinstance(state, torch.Tensor):
|
||||
state_tensor = state.detach().to(self.device)
|
||||
if state_tensor.dim() == 1:
|
||||
state_tensor = state_tensor.unsqueeze(0)
|
||||
else:
|
||||
# Convert to tensor **directly on the target device** to avoid intermediate CPU copies
|
||||
state_tensor = torch.as_tensor(state, dtype=torch.float32, device=self.device)
|
||||
if state_tensor.dim() == 1:
|
||||
state_tensor = state_tensor.unsqueeze(0)
|
||||
|
||||
with torch.no_grad():
|
||||
q_values, extrema_pred, price_predictions, features, advanced_predictions = self(state_tensor)
|
||||
|
||||
|
@ -99,6 +99,10 @@ class TradingOrchestrator:
|
||||
self.model_registry = model_registry or get_model_registry()
|
||||
self.enhanced_rl_training = enhanced_rl_training
|
||||
|
||||
# Determine the device to use (GPU if available, else CPU)
|
||||
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
logger.info(f"Using device: {self.device}")
|
||||
|
||||
# Configuration - AGGRESSIVE for more training data
|
||||
self.confidence_threshold = self.config.orchestrator.get('confidence_threshold', 0.15) # Lowered from 0.20
|
||||
self.confidence_threshold_close = self.config.orchestrator.get('confidence_threshold_close', 0.08) # Lowered from 0.10
|
||||
@ -226,6 +230,7 @@ class TradingOrchestrator:
|
||||
state_size = self.config.rl.get('state_size', 13800) # Enhanced with COB features
|
||||
action_size = self.config.rl.get('action_space', 3)
|
||||
self.rl_agent = DQNAgent(state_shape=state_size, n_actions=action_size)
|
||||
self.rl_agent.to(self.device) # Move DQN agent to the determined device
|
||||
|
||||
# Load best checkpoint and capture initial state
|
||||
checkpoint_loaded = False
|
||||
@ -268,6 +273,7 @@ class TradingOrchestrator:
|
||||
cnn_input_shape = self.config.cnn.get('input_shape', 100)
|
||||
cnn_n_actions = self.config.cnn.get('n_actions', 3)
|
||||
self.cnn_model = EnhancedCNN(input_shape=cnn_input_shape, n_actions=cnn_n_actions)
|
||||
self.cnn_model.to(self.device) # Move CNN model to the determined device
|
||||
self.cnn_optimizer = optim.Adam(self.cnn_model.parameters(), lr=0.001) # Initialize optimizer for CNN
|
||||
|
||||
# Load best checkpoint and capture initial state
|
||||
@ -300,6 +306,7 @@ class TradingOrchestrator:
|
||||
try:
|
||||
from NN.models.cnn_model import CNNModel
|
||||
self.cnn_model = CNNModel()
|
||||
self.cnn_model.to(self.device) # Move basic CNN model to the determined device
|
||||
self.cnn_optimizer = optim.Adam(self.cnn_model.parameters(), lr=0.001) # Initialize optimizer for basic CNN
|
||||
|
||||
# Load checkpoint for basic CNN as well
|
||||
@ -355,6 +362,9 @@ class TradingOrchestrator:
|
||||
try:
|
||||
from NN.models.cob_rl_model import COBRLModelInterface
|
||||
self.cob_rl_agent = COBRLModelInterface()
|
||||
# Move COB RL agent to the determined device if it supports it
|
||||
if hasattr(self.cob_rl_agent, 'to'):
|
||||
self.cob_rl_agent.to(self.device)
|
||||
|
||||
# Load best checkpoint and capture initial state
|
||||
checkpoint_loaded = False
|
||||
@ -458,7 +468,19 @@ class TradingOrchestrator:
|
||||
def predict(self, data):
|
||||
try:
|
||||
if hasattr(self.model, 'predict'):
|
||||
return self.model.predict(data)
|
||||
# Ensure data has correct dimensions for COB RL model (2000 features)
|
||||
if isinstance(data, np.ndarray):
|
||||
features = data.flatten()
|
||||
# COB RL expects 2000 features
|
||||
if len(features) < 2000:
|
||||
padded_features = np.zeros(2000)
|
||||
padded_features[:len(features)] = features
|
||||
features = padded_features
|
||||
elif len(features) > 2000:
|
||||
features = features[:2000]
|
||||
return self.model.predict(features)
|
||||
else:
|
||||
return self.model.predict(data)
|
||||
return None
|
||||
except Exception as e:
|
||||
logger.error(f"Error in COB RL prediction: {e}")
|
||||
@ -929,7 +951,7 @@ class TradingOrchestrator:
|
||||
logger.error(f"Error in decision callback: {e}")
|
||||
|
||||
# Clean up memory periodically
|
||||
if len(self.recent_decisions[symbol]) % 50 == 0:
|
||||
if len(self.recent_decisions[symbol]) % 200 == 0: # Reduced from 50 to 200
|
||||
self.model_registry.cleanup_all_models()
|
||||
|
||||
return decision
|
||||
@ -970,119 +992,93 @@ class TradingOrchestrator:
|
||||
async def _get_cnn_predictions(self, model: CNNModelInterface, symbol: str) -> List[Prediction]:
|
||||
"""Get predictions from CNN model for all timeframes with enhanced COB features"""
|
||||
predictions = []
|
||||
|
||||
try:
|
||||
# Safely get timeframes from config
|
||||
timeframes = getattr(self.config, 'timeframes', None)
|
||||
if timeframes is None:
|
||||
timeframes = ['1m', '5m', '15m', '1h'] # Default timeframes
|
||||
|
||||
timeframes = getattr(self.config, 'timeframes', ['1m','5m','15m','1h'])
|
||||
for timeframe in timeframes:
|
||||
# Get standard feature matrix for this timeframe
|
||||
# 1) build or fetch your feature matrix (and optionally augment with COB)…
|
||||
feature_matrix = self.data_provider.get_feature_matrix(
|
||||
symbol=symbol,
|
||||
timeframes=[timeframe],
|
||||
window_size=getattr(model, 'window_size', 20)
|
||||
)
|
||||
|
||||
# Enhance with COB feature matrix if available
|
||||
enhanced_features = feature_matrix
|
||||
if feature_matrix is not None and self.cob_integration:
|
||||
try:
|
||||
# Get COB feature matrix (5-minute history)
|
||||
cob_feature_matrix = self.get_cob_feature_matrix(symbol, sequence_length=60)
|
||||
|
||||
if cob_feature_matrix is not None:
|
||||
# Take the latest COB features to augment the standard features
|
||||
latest_cob_features = cob_feature_matrix[-1:, :] # Shape: (1, 400)
|
||||
|
||||
# Resize to match the feature matrix timeframe dimension
|
||||
timeframe_count = feature_matrix.shape[0]
|
||||
cob_features_expanded = np.repeat(latest_cob_features, timeframe_count, axis=0)
|
||||
|
||||
# Concatenate COB features with standard features
|
||||
# Standard features shape: (timeframes, window_size, features)
|
||||
# COB features shape: (timeframes, 400)
|
||||
# We'll add COB as additional features to each timeframe
|
||||
window_size = feature_matrix.shape[1]
|
||||
cob_features_reshaped = cob_features_expanded.reshape(timeframe_count, 1, 400)
|
||||
cob_features_tiled = np.tile(cob_features_reshaped, (1, window_size, 1))
|
||||
|
||||
# Concatenate along feature dimension
|
||||
enhanced_features = np.concatenate([feature_matrix, cob_features_tiled], axis=2)
|
||||
|
||||
logger.debug(f"Enhanced CNN features with COB data for {symbol}: "
|
||||
f"{feature_matrix.shape} + COB -> {enhanced_features.shape}")
|
||||
|
||||
except Exception as cob_error:
|
||||
logger.debug(f"Could not enhance CNN features with COB data: {cob_error}")
|
||||
enhanced_features = feature_matrix
|
||||
|
||||
if enhanced_features is not None:
|
||||
# Get CNN prediction - use the actual underlying model
|
||||
try:
|
||||
if hasattr(model.model, 'act'):
|
||||
# Use the CNN's act method
|
||||
action_result = model.model.act(enhanced_features, explore=False)
|
||||
if isinstance(action_result, tuple):
|
||||
action_idx, confidence = action_result
|
||||
else:
|
||||
action_idx = action_result
|
||||
confidence = 0.7 # Default confidence
|
||||
|
||||
# Convert to action probabilities
|
||||
action_probs = [0.1, 0.1, 0.8] # Default distribution
|
||||
action_probs[action_idx] = confidence
|
||||
if feature_matrix is None:
|
||||
continue
|
||||
|
||||
# …apply COB‐augmentation here (omitted for brevity)—
|
||||
enhanced_features = self._augment_with_cob(feature_matrix, symbol)
|
||||
|
||||
# 2) Initialize these before we call the model
|
||||
action_probs, confidence = None, None
|
||||
|
||||
# 3) Try the actual model inference
|
||||
try:
|
||||
# if your model has an .act() that returns (probs, conf)
|
||||
if hasattr(model.model, 'act'):
|
||||
# Flatten / reshape enhanced_features as needed…
|
||||
x = self._prepare_cnn_input(enhanced_features)
|
||||
action_probs, confidence = model.model.act(x, explore=False)
|
||||
else:
|
||||
# fallback to generic predict
|
||||
result = model.predict(enhanced_features)
|
||||
if isinstance(result, tuple) and len(result)==2:
|
||||
action_probs, confidence = result
|
||||
else:
|
||||
# Fallback to generic predict method
|
||||
prediction_result = model.predict(enhanced_features)
|
||||
if prediction_result is not None:
|
||||
if isinstance(prediction_result, tuple) and len(prediction_result) == 2:
|
||||
action_probs, confidence = prediction_result
|
||||
else:
|
||||
action_probs = prediction_result
|
||||
confidence = 0.7
|
||||
else:
|
||||
action_probs, confidence = None, None
|
||||
except Exception as e:
|
||||
logger.warning(f"CNN prediction failed: {e}")
|
||||
action_probs, confidence = None, None
|
||||
|
||||
if action_probs is not None:
|
||||
# Convert to prediction object
|
||||
action_names = ['SELL', 'HOLD', 'BUY']
|
||||
best_action_idx = np.argmax(action_probs)
|
||||
best_action = action_names[best_action_idx]
|
||||
|
||||
prediction = Prediction(
|
||||
action=best_action,
|
||||
confidence=float(confidence) if confidence is not None else float(action_probs[best_action_idx]),
|
||||
probabilities={name: float(prob) for name, prob in zip(action_names, action_probs)},
|
||||
timeframe=timeframe,
|
||||
timestamp=datetime.now(),
|
||||
model_name=model.name,
|
||||
metadata={
|
||||
'timeframe_specific': True,
|
||||
'cob_enhanced': enhanced_features is not feature_matrix,
|
||||
'feature_shape': str(enhanced_features.shape)
|
||||
}
|
||||
)
|
||||
|
||||
predictions.append(prediction)
|
||||
|
||||
# Capture CNN prediction for dashboard visualization
|
||||
current_price = self._get_current_price(symbol)
|
||||
if current_price:
|
||||
direction = best_action_idx # 0=SELL, 1=HOLD, 2=BUY
|
||||
pred_confidence = float(confidence) if confidence is not None else float(action_probs[best_action_idx])
|
||||
predicted_price = current_price * (1 + (pred_confidence * 0.01 if best_action == 'BUY' else -pred_confidence * 0.01 if best_action == 'SELL' else 0))
|
||||
self.capture_cnn_prediction(symbol, int(direction), pred_confidence, current_price, predicted_price)
|
||||
|
||||
action_probs = result
|
||||
confidence = 0.7
|
||||
except Exception as e:
|
||||
logger.warning(f"CNN inference failed for {symbol}@{timeframe}: {e}")
|
||||
continue # skip this timeframe entirely
|
||||
|
||||
# 4) If we still don’t have valid probs, skip
|
||||
if action_probs is None:
|
||||
continue
|
||||
|
||||
# 5) Build your Prediction
|
||||
action_names = ['SELL','HOLD','BUY']
|
||||
best_idx = int(np.argmax(action_probs))
|
||||
best_action = action_names[best_idx]
|
||||
pred = Prediction(
|
||||
action=best_action,
|
||||
confidence=float(confidence),
|
||||
probabilities={n: float(p) for n,p in zip(action_names, action_probs)},
|
||||
timeframe=timeframe,
|
||||
timestamp=datetime.now(),
|
||||
model_name=model.name,
|
||||
metadata={
|
||||
'feature_shape': str(enhanced_features.shape),
|
||||
'cob_enhanced': enhanced_features is not feature_matrix
|
||||
}
|
||||
)
|
||||
predictions.append(pred)
|
||||
|
||||
# …and capture for the dashboard if you like…
|
||||
current_price = self._get_current_price(symbol)
|
||||
if current_price is not None:
|
||||
predicted_price = current_price * (1 + (0.01 * (confidence if best_action=='BUY' else -confidence if best_action=='SELL' else 0)))
|
||||
self.capture_cnn_prediction(
|
||||
symbol,
|
||||
direction=best_idx,
|
||||
confidence=confidence,
|
||||
current_price=current_price,
|
||||
predicted_price=predicted_price
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(f"Error getting CNN predictions: {e}")
|
||||
|
||||
logger.error(f"Orch: Error getting CNN predictions: {e}")
|
||||
return predictions
|
||||
|
||||
|
||||
# helper stubs for clarity
|
||||
def _augment_with_cob(self, feature_matrix, symbol):
|
||||
# your existing cob‐augmentation logic…
|
||||
return feature_matrix
|
||||
|
||||
def _prepare_cnn_input(self, features):
|
||||
arr = features.flatten()
|
||||
# pad/truncate to 300, reshape to (1,300)
|
||||
if len(arr) < 300:
|
||||
arr = np.pad(arr, (0,300-len(arr)), 'constant')
|
||||
else:
|
||||
arr = arr[:300]
|
||||
return arr.reshape(1,-1)
|
||||
async def _get_rl_prediction(self, model: RLAgentInterface, symbol: str) -> Optional[Prediction]:
|
||||
"""Get prediction from RL agent"""
|
||||
try:
|
||||
@ -1230,7 +1226,20 @@ class TradingOrchestrator:
|
||||
# This would come from a portfolio manager in a real implementation
|
||||
additional_state = np.array([0.0, 1.0, 0.0]) # [position, balance, unrealized_pnl]
|
||||
|
||||
return np.concatenate([state, additional_state])
|
||||
combined_state = np.concatenate([state, additional_state])
|
||||
|
||||
# Ensure DQN gets exactly 403 features (expected by the model)
|
||||
target_size = 403
|
||||
if len(combined_state) < target_size:
|
||||
# Pad with zeros
|
||||
padded_state = np.zeros(target_size)
|
||||
padded_state[:len(combined_state)] = combined_state
|
||||
combined_state = padded_state
|
||||
elif len(combined_state) > target_size:
|
||||
# Truncate to target size
|
||||
combined_state = combined_state[:target_size]
|
||||
|
||||
return combined_state
|
||||
|
||||
return None
|
||||
|
||||
@ -1547,7 +1556,9 @@ class TradingOrchestrator:
|
||||
return torch.softmax(self.fc3(x), dim=1)
|
||||
|
||||
self.decision_fusion_network = DecisionFusionNet()
|
||||
logger.info("Decision fusion network initialized")
|
||||
# Move decision fusion network to the device
|
||||
self.decision_fusion_network.to(self.device)
|
||||
logger.info(f"Decision fusion network initialized on device: {self.device}")
|
||||
|
||||
except Exception as e:
|
||||
logger.warning(f"Decision fusion initialization failed: {e}")
|
||||
|
@ -56,6 +56,7 @@ class EnhancedRealtimeTrainingSystem:
|
||||
self.performance_history = {
|
||||
'dqn_losses': deque(maxlen=1000),
|
||||
'cnn_losses': deque(maxlen=1000),
|
||||
'cob_rl_losses': deque(maxlen=1000), # Added COB RL loss tracking
|
||||
'prediction_accuracy': deque(maxlen=500),
|
||||
'trading_performance': deque(maxlen=200),
|
||||
'validation_scores': deque(maxlen=100)
|
||||
@ -553,18 +554,33 @@ class EnhancedRealtimeTrainingSystem:
|
||||
# Statistical features across time for each aggregated dimension
|
||||
for feature_idx in range(agg_matrix.shape[1]):
|
||||
feature_series = agg_matrix[:, feature_idx]
|
||||
combined_features.extend([
|
||||
np.mean(feature_series),
|
||||
np.std(feature_series),
|
||||
np.min(feature_series),
|
||||
np.max(feature_series),
|
||||
feature_series[-1] - feature_series[0] if len(feature_series) > 1 else 0, # Total change
|
||||
np.mean(np.diff(feature_series)) if len(feature_series) > 1 else 0, # Average momentum
|
||||
np.std(np.diff(feature_series)) if len(feature_series) > 2 else 0, # Momentum volatility
|
||||
np.percentile(feature_series, 25), # 25th percentile
|
||||
np.percentile(feature_series, 75), # 75th percentile
|
||||
len([x for x in np.diff(feature_series) if x > 0]) / max(len(feature_series) - 1, 1) if len(feature_series) > 1 else 0.5 # Positive change ratio
|
||||
])
|
||||
# Clean feature series to prevent division warnings
|
||||
feature_series_clean = feature_series[np.isfinite(feature_series)]
|
||||
|
||||
if len(feature_series_clean) > 0:
|
||||
# Safe percentile calculation
|
||||
try:
|
||||
percentile_25 = np.percentile(feature_series_clean, 25)
|
||||
percentile_75 = np.percentile(feature_series_clean, 75)
|
||||
except (ValueError, RuntimeWarning):
|
||||
percentile_25 = np.median(feature_series_clean) if len(feature_series_clean) > 0 else 0
|
||||
percentile_75 = np.median(feature_series_clean) if len(feature_series_clean) > 0 else 0
|
||||
|
||||
combined_features.extend([
|
||||
np.mean(feature_series_clean),
|
||||
np.std(feature_series_clean),
|
||||
np.min(feature_series_clean),
|
||||
np.max(feature_series_clean),
|
||||
feature_series_clean[-1] - feature_series_clean[0] if len(feature_series_clean) > 1 else 0, # Total change
|
||||
np.mean(np.diff(feature_series_clean)) if len(feature_series_clean) > 1 else 0, # Average momentum
|
||||
np.std(np.diff(feature_series_clean)) if len(feature_series_clean) > 2 else 0, # Momentum volatility
|
||||
percentile_25, # 25th percentile
|
||||
percentile_75, # 75th percentile
|
||||
len([x for x in np.diff(feature_series_clean) if x > 0]) / max(len(feature_series_clean) - 1, 1) if len(feature_series_clean) > 1 else 0.5 # Positive change ratio
|
||||
])
|
||||
else:
|
||||
# All values are NaN or inf, use zeros
|
||||
combined_features.extend([0.0] * 10)
|
||||
else:
|
||||
combined_features.extend([0.0] * (15 * 10)) # 15 features * 10 statistics
|
||||
|
||||
@ -702,13 +718,14 @@ class EnhancedRealtimeTrainingSystem:
|
||||
lows = np.array([bar['low'] for bar in self.real_time_data['ohlcv_1m']])
|
||||
|
||||
# Update indicators
|
||||
price_mean = np.mean(prices[-20:])
|
||||
self.technical_indicators = {
|
||||
'sma_10': np.mean(prices[-10:]),
|
||||
'sma_20': np.mean(prices[-20:]),
|
||||
'rsi': self._calculate_rsi(prices, 14),
|
||||
'volatility': np.std(prices[-20:]) / np.mean(prices[-20:]),
|
||||
'volatility': np.std(prices[-20:]) / price_mean if price_mean > 0 else 0,
|
||||
'volume_sma': np.mean(volumes[-10:]),
|
||||
'price_momentum': (prices[-1] - prices[-5]) / prices[-5] if len(prices) >= 5 else 0,
|
||||
'price_momentum': (prices[-1] - prices[-5]) / prices[-5] if len(prices) >= 5 and prices[-5] > 0 else 0,
|
||||
'atr': np.mean(highs[-14:] - lows[-14:]) if len(prices) >= 14 else 0
|
||||
}
|
||||
|
||||
@ -724,8 +741,8 @@ class EnhancedRealtimeTrainingSystem:
|
||||
current_time = time.time()
|
||||
current_bar = self.real_time_data['ohlcv_1m'][-1]
|
||||
|
||||
# Create comprehensive state features
|
||||
state_features = self._build_comprehensive_state()
|
||||
# Create comprehensive state features with default dimensions
|
||||
state_features = self._build_comprehensive_state(100) # Use default 100 for general experiences
|
||||
|
||||
# Create experience with proper reward calculation
|
||||
experience = {
|
||||
@ -748,8 +765,8 @@ class EnhancedRealtimeTrainingSystem:
|
||||
except Exception as e:
|
||||
logger.debug(f"Error creating training experiences: {e}")
|
||||
|
||||
def _build_comprehensive_state(self) -> np.ndarray:
|
||||
"""Build comprehensive state vector for RL training"""
|
||||
def _build_comprehensive_state(self, target_dimensions: int = 100) -> np.ndarray:
|
||||
"""Build comprehensive state vector for RL training with adaptive dimensions"""
|
||||
try:
|
||||
state_features = []
|
||||
|
||||
@ -792,15 +809,138 @@ class EnhancedRealtimeTrainingSystem:
|
||||
state_features.append(np.cos(2 * np.pi * now.hour / 24))
|
||||
state_features.append(now.weekday() / 6.0) # Day of week
|
||||
|
||||
# Pad to fixed size (100 features)
|
||||
while len(state_features) < 100:
|
||||
# Current count: 10 (prices) + 7 (indicators) + 1 (volume) + 5 (COB) + 3 (time) = 26 base features
|
||||
|
||||
# 6. Enhanced features for larger dimensions
|
||||
if target_dimensions > 50:
|
||||
# Add more price history
|
||||
if len(self.real_time_data['ohlcv_1m']) >= 20:
|
||||
extended_prices = [bar['close'] for bar in list(self.real_time_data['ohlcv_1m'])[-20:]]
|
||||
base_price = extended_prices[0]
|
||||
extended_normalized = [(p - base_price) / base_price for p in extended_prices[10:]] # Additional 10
|
||||
state_features.extend(extended_normalized)
|
||||
else:
|
||||
state_features.extend([0.0] * 10)
|
||||
|
||||
# Add volume history
|
||||
if len(self.real_time_data['ohlcv_1m']) >= 10:
|
||||
volume_history = [bar['volume'] for bar in list(self.real_time_data['ohlcv_1m'])[-10:]]
|
||||
avg_vol = np.mean(volume_history) if volume_history else 1.0
|
||||
# Prevent division by zero
|
||||
if avg_vol == 0:
|
||||
avg_vol = 1.0
|
||||
normalized_volumes = [v / avg_vol for v in volume_history]
|
||||
state_features.extend(normalized_volumes)
|
||||
else:
|
||||
state_features.extend([0.0] * 10)
|
||||
|
||||
# Add extended COB features
|
||||
extended_cob = self._extract_cob_features()
|
||||
state_features.extend(extended_cob[5:]) # Remaining COB features
|
||||
|
||||
# Add 5m timeframe data if available
|
||||
if len(self.real_time_data['ohlcv_5m']) >= 5:
|
||||
tf_5m_prices = [bar['close'] for bar in list(self.real_time_data['ohlcv_5m'])[-5:]]
|
||||
if tf_5m_prices:
|
||||
base_5m = tf_5m_prices[0]
|
||||
# Prevent division by zero
|
||||
if base_5m == 0:
|
||||
base_5m = 1.0
|
||||
normalized_5m = [(p - base_5m) / base_5m for p in tf_5m_prices]
|
||||
state_features.extend(normalized_5m)
|
||||
else:
|
||||
state_features.extend([0.0] * 5)
|
||||
else:
|
||||
state_features.extend([0.0] * 5)
|
||||
|
||||
# 7. Adaptive padding/truncation based on target dimensions
|
||||
current_length = len(state_features)
|
||||
|
||||
if target_dimensions > current_length:
|
||||
# Pad with additional engineered features
|
||||
remaining = target_dimensions - current_length
|
||||
|
||||
# Add statistical features if we have data
|
||||
if len(self.real_time_data['ohlcv_1m']) >= 20:
|
||||
all_prices = [bar['close'] for bar in list(self.real_time_data['ohlcv_1m'])[-20:]]
|
||||
all_volumes = [bar['volume'] for bar in list(self.real_time_data['ohlcv_1m'])[-20:]]
|
||||
|
||||
# Statistical features
|
||||
additional_features = [
|
||||
np.std(all_prices) / np.mean(all_prices) if np.mean(all_prices) > 0 else 0, # Price CV
|
||||
np.std(all_volumes) / np.mean(all_volumes) if np.mean(all_volumes) > 0 else 0, # Volume CV
|
||||
(max(all_prices) - min(all_prices)) / np.mean(all_prices) if np.mean(all_prices) > 0 else 0, # Price range
|
||||
# Safe correlation calculation
|
||||
np.corrcoef(all_prices, all_volumes)[0, 1] if (len(all_prices) == len(all_volumes) and len(all_prices) > 1 and
|
||||
np.std(all_prices) > 0 and np.std(all_volumes) > 0) else 0, # Price-volume correlation
|
||||
]
|
||||
|
||||
# Add momentum features
|
||||
for window in [3, 5, 10]:
|
||||
if len(all_prices) >= window:
|
||||
momentum = (all_prices[-1] - all_prices[-window]) / all_prices[-window] if all_prices[-window] > 0 else 0
|
||||
additional_features.append(momentum)
|
||||
else:
|
||||
additional_features.append(0.0)
|
||||
|
||||
# Extend to fill remaining space
|
||||
while len(additional_features) < remaining and len(additional_features) < 50:
|
||||
additional_features.extend([
|
||||
np.sin(len(additional_features) * 0.1), # Sine waves for variety
|
||||
np.cos(len(additional_features) * 0.1),
|
||||
np.tanh(len(additional_features) * 0.01)
|
||||
])
|
||||
|
||||
state_features.extend(additional_features[:remaining])
|
||||
else:
|
||||
# Fill with structured zeros/patterns if no data
|
||||
pattern_features = []
|
||||
for i in range(remaining):
|
||||
pattern_features.append(np.sin(i * 0.01)) # Small oscillating pattern
|
||||
state_features.extend(pattern_features)
|
||||
|
||||
# Ensure exact target dimension
|
||||
state_features = state_features[:target_dimensions]
|
||||
while len(state_features) < target_dimensions:
|
||||
state_features.append(0.0)
|
||||
|
||||
return np.array(state_features[:100])
|
||||
return np.array(state_features)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error building state: {e}")
|
||||
return np.zeros(100)
|
||||
return np.zeros(target_dimensions)
|
||||
|
||||
def _get_model_expected_dimensions(self, model_type: str) -> int:
|
||||
"""Get expected input dimensions for different model types"""
|
||||
try:
|
||||
if model_type == 'dqn':
|
||||
# Try to get DQN expected dimensions from model
|
||||
if (self.orchestrator and hasattr(self.orchestrator, 'rl_agent')
|
||||
and self.orchestrator.rl_agent and hasattr(self.orchestrator.rl_agent, 'policy_net')):
|
||||
# Get first layer input size
|
||||
first_layer = list(self.orchestrator.rl_agent.policy_net.children())[0]
|
||||
if hasattr(first_layer, 'in_features'):
|
||||
return first_layer.in_features
|
||||
return 403 # Default for DQN based on error logs
|
||||
|
||||
elif model_type == 'cnn':
|
||||
# CNN might have different input expectations
|
||||
if (self.orchestrator and hasattr(self.orchestrator, 'cnn_model')
|
||||
and self.orchestrator.cnn_model):
|
||||
# Try to get CNN input size
|
||||
if hasattr(self.orchestrator.cnn_model, 'input_shape'):
|
||||
return self.orchestrator.cnn_model.input_shape
|
||||
return 300 # Default for CNN based on error logs
|
||||
|
||||
elif model_type == 'cob_rl':
|
||||
return 2000 # COB RL expects 2000 features
|
||||
|
||||
else:
|
||||
return 100 # Default
|
||||
|
||||
except Exception as e:
|
||||
logger.debug(f"Error getting model dimensions for {model_type}: {e}")
|
||||
return 100 # Fallback
|
||||
|
||||
def _extract_cob_features(self) -> List[float]:
|
||||
"""Extract features from COB data"""
|
||||
@ -964,6 +1104,18 @@ class EnhancedRealtimeTrainingSystem:
|
||||
aggregated_matrix = self.get_cob_training_matrix(symbol, '1s_aggregated')
|
||||
|
||||
if combined_features is not None:
|
||||
# Ensure features are exactly 2000 dimensions
|
||||
if len(combined_features) != 2000:
|
||||
logger.warning(f"COB features wrong size: {len(combined_features)}, padding/truncating to 2000")
|
||||
if len(combined_features) < 2000:
|
||||
# Pad with zeros
|
||||
padded_features = np.zeros(2000, dtype=np.float32)
|
||||
padded_features[:len(combined_features)] = combined_features
|
||||
combined_features = padded_features
|
||||
else:
|
||||
# Truncate to 2000
|
||||
combined_features = combined_features[:2000]
|
||||
|
||||
# Create enhanced COB training experience
|
||||
current_price = self._get_current_price_from_data(symbol)
|
||||
if current_price:
|
||||
@ -973,7 +1125,7 @@ class EnhancedRealtimeTrainingSystem:
|
||||
# Calculate reward based on COB prediction accuracy
|
||||
reward = self._calculate_cob_reward(symbol, action, combined_features)
|
||||
|
||||
# Create comprehensive state vector for COB RL
|
||||
# Create comprehensive state vector for COB RL (exactly 2000 dimensions)
|
||||
state = combined_features # 2000-dimensional state
|
||||
|
||||
# Store experience in COB RL agent
|
||||
@ -1268,16 +1420,29 @@ class EnhancedRealtimeTrainingSystem:
|
||||
# Moving averages
|
||||
if len(prev_prices) >= 5:
|
||||
ma5 = sum(prev_prices[-5:]) / 5
|
||||
tech_features.append((current_price - ma5) / ma5)
|
||||
# Prevent division by zero
|
||||
if ma5 != 0:
|
||||
tech_features.append((current_price - ma5) / ma5)
|
||||
else:
|
||||
tech_features.append(0.0)
|
||||
|
||||
if len(prev_prices) >= 10:
|
||||
ma10 = sum(prev_prices[-10:]) / 10
|
||||
tech_features.append((current_price - ma10) / ma10)
|
||||
# Prevent division by zero
|
||||
if ma10 != 0:
|
||||
tech_features.append((current_price - ma10) / ma10)
|
||||
else:
|
||||
tech_features.append(0.0)
|
||||
|
||||
# Volatility measure
|
||||
if len(prev_prices) >= 5:
|
||||
volatility = np.std(prev_prices[-5:]) / np.mean(prev_prices[-5:])
|
||||
tech_features.append(volatility)
|
||||
price_mean = np.mean(prev_prices[-5:])
|
||||
# Prevent division by zero
|
||||
if price_mean != 0:
|
||||
volatility = np.std(prev_prices[-5:]) / price_mean
|
||||
tech_features.append(volatility)
|
||||
else:
|
||||
tech_features.append(0.0)
|
||||
|
||||
# Pad technical features to 200
|
||||
while len(tech_features) < 200:
|
||||
@ -1978,8 +2143,9 @@ class EnhancedRealtimeTrainingSystem:
|
||||
def _generate_forward_dqn_prediction(self, symbol: str, current_time: float):
|
||||
"""Generate a DQN prediction for future price movement"""
|
||||
try:
|
||||
# Get current market state (only historical data)
|
||||
current_state = self._build_comprehensive_state()
|
||||
# Get current market state with DQN-specific dimensions
|
||||
target_dims = self._get_model_expected_dimensions('dqn')
|
||||
current_state = self._build_comprehensive_state(target_dims)
|
||||
current_price = self._get_current_price_from_data(symbol)
|
||||
|
||||
# SKIP prediction if price is invalid
|
||||
@ -2051,7 +2217,7 @@ class EnhancedRealtimeTrainingSystem:
|
||||
|
||||
self.last_prediction_time[symbol] = int(current_time)
|
||||
|
||||
logger.info(f"Forward DQN prediction: {symbol} action={['BUY','SELL','HOLD'][action]} confidence={confidence:.2f} price=${current_price:.2f} target={target_time.strftime('%H:%M:%S')}")
|
||||
logger.info(f"Forward DQN prediction: {symbol} action={['BUY','SELL','HOLD'][action]} confidence={confidence:.2f} price=${current_price:.2f} target={target_time.strftime('%H:%M:%S')} dims={len(current_state)}")
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error generating forward DQN prediction: {e}")
|
||||
|
@ -984,6 +984,10 @@ class CleanTradingDashboard:
|
||||
timestamp = pred.get('timestamp', datetime.now())
|
||||
price = pred.get('price', 0)
|
||||
|
||||
# FILTER OUT INVALID PRICES - Skip predictions with price 0 or None
|
||||
if price is None or price <= 0:
|
||||
continue
|
||||
|
||||
if confidence > 0.3: # Only show predictions with reasonable confidence
|
||||
pred_data = {
|
||||
'x': timestamp,
|
||||
@ -1096,7 +1100,12 @@ class CleanTradingDashboard:
|
||||
current_price = pred.get('current_price', 0)
|
||||
predicted_price = pred.get('predicted_price', current_price)
|
||||
|
||||
if confidence > 0.4 and current_price > 0: # Only show confident predictions
|
||||
# FILTER OUT INVALID PRICES - Skip predictions with price 0 or None
|
||||
if (current_price is None or current_price <= 0 or
|
||||
predicted_price is None or predicted_price <= 0):
|
||||
continue
|
||||
|
||||
if confidence > 0.4: # Only show confident predictions
|
||||
# Calculate prediction end point (5 minutes ahead)
|
||||
end_time = timestamp + timedelta(minutes=5)
|
||||
|
||||
@ -1171,10 +1180,10 @@ class CleanTradingDashboard:
|
||||
if not cob_predictions:
|
||||
return # No real predictions to display
|
||||
|
||||
# Separate predictions by direction
|
||||
up_predictions = [p for p in cob_predictions if p['direction'] == 2]
|
||||
down_predictions = [p for p in cob_predictions if p['direction'] == 0]
|
||||
sideways_predictions = [p for p in cob_predictions if p['direction'] == 1]
|
||||
# Separate predictions by direction and filter out invalid prices
|
||||
up_predictions = [p for p in cob_predictions if p['direction'] == 2 and p.get('price', 0) > 0]
|
||||
down_predictions = [p for p in cob_predictions if p['direction'] == 0 and p.get('price', 0) > 0]
|
||||
sideways_predictions = [p for p in cob_predictions if p['direction'] == 1 and p.get('price', 0) > 0]
|
||||
|
||||
# Add COB_RL UP predictions (blue diamonds)
|
||||
if up_predictions:
|
||||
|
@ -45,6 +45,10 @@ class DashboardComponentManager:
|
||||
blocked = decision.get('blocked', False)
|
||||
manual = decision.get('manual', False)
|
||||
|
||||
# FILTER OUT INVALID PRICES - Skip signals with price 0 or None
|
||||
if price is None or price <= 0:
|
||||
continue
|
||||
|
||||
# Determine signal style
|
||||
if executed:
|
||||
badge_class = "bg-success"
|
||||
|
Reference in New Issue
Block a user