This commit is contained in:
Dobromir Popov
2025-10-23 19:43:41 +03:00
parent 0225f4df58
commit de2ad92602
5 changed files with 379 additions and 96 deletions

View File

@@ -343,9 +343,34 @@ class AnnotationDashboard:
'volume': df['volume'].tolist()
}
# Get pivot bounds for the symbol
pivot_bounds = None
if self.data_provider:
try:
pivot_bounds = self.data_provider.get_pivot_bounds(symbol)
if pivot_bounds:
logger.info(f"Found pivot bounds for {symbol}: {len(pivot_bounds.pivot_support_levels)} support, {len(pivot_bounds.pivot_resistance_levels)} resistance")
except Exception as e:
logger.error(f"Error getting pivot bounds: {e}")
return jsonify({
'success': True,
'chart_data': chart_data
'chart_data': chart_data,
'pivot_bounds': {
'support_levels': pivot_bounds.pivot_support_levels if pivot_bounds else [],
'resistance_levels': pivot_bounds.pivot_resistance_levels if pivot_bounds else [],
'price_range': {
'min': pivot_bounds.price_min if pivot_bounds else None,
'max': pivot_bounds.price_max if pivot_bounds else None
},
'volume_range': {
'min': pivot_bounds.volume_min if pivot_bounds else None,
'max': pivot_bounds.volume_max if pivot_bounds else None
},
'timeframe': '1m', # Pivot bounds are calculated from 1m data
'period': '30 days', # Monthly data
'total_levels': len(pivot_bounds.pivot_support_levels) + len(pivot_bounds.pivot_resistance_levels) if pivot_bounds else 0
} if pivot_bounds else None
})
except Exception as e:
@@ -559,9 +584,34 @@ class AnnotationDashboard:
except Exception as e:
logger.error(f"Error refreshing {timeframe} data: {e}")
# Get pivot bounds for the symbol
pivot_bounds = None
if self.data_provider:
try:
pivot_bounds = self.data_provider.get_pivot_bounds(symbol)
if pivot_bounds:
logger.info(f"Found pivot bounds for {symbol}: {len(pivot_bounds.pivot_support_levels)} support, {len(pivot_bounds.pivot_resistance_levels)} resistance")
except Exception as e:
logger.error(f"Error getting pivot bounds: {e}")
return jsonify({
'success': True,
'chart_data': chart_data,
'pivot_bounds': {
'support_levels': pivot_bounds.pivot_support_levels if pivot_bounds else [],
'resistance_levels': pivot_bounds.pivot_resistance_levels if pivot_bounds else [],
'price_range': {
'min': pivot_bounds.price_min if pivot_bounds else None,
'max': pivot_bounds.price_max if pivot_bounds else None
},
'volume_range': {
'min': pivot_bounds.volume_min if pivot_bounds else None,
'max': pivot_bounds.volume_max if pivot_bounds else None
},
'timeframe': '1m', # Pivot bounds are calculated from 1m data
'period': '30 days', # Monthly data
'total_levels': len(pivot_bounds.pivot_support_levels) + len(pivot_bounds.pivot_resistance_levels) if pivot_bounds else 0
} if pivot_bounds else None,
'message': f'Refreshed data for {symbol}'
})

View File

@@ -14,14 +14,15 @@ class ChartManager {
}
/**
* Initialize charts for all timeframes
* Initialize charts for all timeframes with pivot bounds
*/
initializeCharts(chartData) {
initializeCharts(chartData, pivotBounds = null) {
console.log('Initializing charts with data:', chartData);
console.log('Pivot bounds:', pivotBounds);
this.timeframes.forEach(timeframe => {
if (chartData[timeframe]) {
this.createChart(timeframe, chartData[timeframe]);
this.createChart(timeframe, chartData[timeframe], pivotBounds);
}
});
@@ -32,7 +33,7 @@ class ChartManager {
/**
* Create a single chart for a timeframe
*/
createChart(timeframe, data) {
createChart(timeframe, data, pivotBounds = null) {
const plotId = `plot-${timeframe}`;
const plotElement = document.getElementById(plotId);
@@ -129,7 +130,49 @@ class ChartManager {
scrollZoom: true
};
Plotly.newPlot(plotId, [candlestickTrace, volumeTrace], layout, config);
// Prepare chart data with pivot bounds
const chartData = [candlestickTrace, volumeTrace];
// Add pivot levels if available
if (pivotBounds && pivotBounds.support_levels && pivotBounds.resistance_levels) {
// Add support levels
pivotBounds.support_levels.forEach((level, index) => {
chartData.push({
x: data.timestamps,
y: Array(data.timestamps.length).fill(level),
type: 'scatter',
mode: 'lines',
line: {
color: '#28a745',
width: 1,
dash: 'dash'
},
name: `Support ${index + 1}`,
showlegend: index === 0, // Only show legend for first support level
hovertemplate: `Support: $%{y:.2f}<extra></extra>`
});
});
// Add resistance levels
pivotBounds.resistance_levels.forEach((level, index) => {
chartData.push({
x: data.timestamps,
y: Array(data.timestamps.length).fill(level),
type: 'scatter',
mode: 'lines',
line: {
color: '#dc3545',
width: 1,
dash: 'dash'
},
name: `Resistance ${index + 1}`,
showlegend: index === 0, // Only show legend for first resistance level
hovertemplate: `Resistance: $%{y:.2f}<extra></extra>`
});
});
}
Plotly.newPlot(plotId, chartData, layout, config);
// Store chart reference
this.charts[timeframe] = {
@@ -204,29 +247,74 @@ class ChartManager {
}
/**
* Update charts with new data
* Update charts with new data including pivot levels
*/
updateCharts(newData) {
updateCharts(newData, pivotBounds = null) {
Object.keys(newData).forEach(timeframe => {
if (this.charts[timeframe]) {
const plotId = this.charts[timeframe].plotId;
Plotly.react(plotId, [
// Prepare chart data
const chartData = [
{
x: newData[timeframe].timestamps,
open: newData[timeframe].open,
high: newData[timeframe].high,
low: newData[timeframe].low,
close: newData[timeframe].close,
type: 'candlestick'
type: 'candlestick',
name: 'Price'
},
{
x: newData[timeframe].timestamps,
y: newData[timeframe].volume,
type: 'bar',
yaxis: 'y2'
yaxis: 'y2',
name: 'Volume',
marker: { color: 'rgba(0, 123, 255, 0.3)' }
}
]);
];
// Add pivot levels if available
if (pivotBounds && pivotBounds.support_levels && pivotBounds.resistance_levels) {
// Add support levels
pivotBounds.support_levels.forEach((level, index) => {
chartData.push({
x: newData[timeframe].timestamps,
y: Array(newData[timeframe].timestamps.length).fill(level),
type: 'scatter',
mode: 'lines',
line: {
color: '#28a745',
width: 1,
dash: 'dash'
},
name: `Support ${index + 1}`,
showlegend: index === 0, // Only show legend for first support level
hovertemplate: `Support: $%{y:.2f}<extra></extra>`
});
});
// Add resistance levels
pivotBounds.resistance_levels.forEach((level, index) => {
chartData.push({
x: newData[timeframe].timestamps,
y: Array(newData[timeframe].timestamps.length).fill(level),
type: 'scatter',
mode: 'lines',
line: {
color: '#dc3545',
width: 1,
dash: 'dash'
},
name: `Resistance ${index + 1}`,
showlegend: index === 0, // Only show legend for first resistance level
hovertemplate: `Resistance: $%{y:.2f}<extra></extra>`
});
});
}
Plotly.react(plotId, chartData);
}
});
}

View File

@@ -61,8 +61,8 @@
// Initialize application state
window.appState = {
currentSymbol: '{{ current_symbol }}',
currentTimeframes: {{ timeframes | tojson }},
annotations: { { annotations | tojson } },
currentTimeframes: '{{ timeframes | tojson }}',
annotations: '{{ annotations | tojson }}',
pendingAnnotation: null,
chartManager: null,
annotationManager: null,
@@ -95,7 +95,87 @@
});
function loadInitialData() {
console.log('Loading initial chart data...');
// Fetch initial chart data
fetch('/api/chart-data', {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({
symbol: appState.currentSymbol,
timeframes: appState.currentTimeframes,
start_time: null,
end_time: null
})
})
.then(response => {
console.log('Chart data response status:', response.status);
return response.json();
})
.then(data => {
console.log('Chart data received:', data);
if (data.success) {
console.log('Initializing charts with data...');
window.appState.chartManager.initializeCharts(data.chart_data, data.pivot_bounds);
// Show pivot bounds info if available
if (data.pivot_bounds) {
const pivotInfo = data.pivot_bounds;
console.log(`Loaded ${pivotInfo.total_levels} pivot levels (${pivotInfo.support_levels.length} support, ${pivotInfo.resistance_levels.length} resistance) from ${pivotInfo.timeframe} data over ${pivotInfo.period}`);
}
// Load existing annotations
console.log('Loading', window.appState.annotations.length, 'existing annotations');
window.appState.annotations.forEach(annotation => {
window.appState.chartManager.addAnnotation(annotation);
});
// Update annotation list
if (typeof renderAnnotationsList === 'function') {
renderAnnotationsList(window.appState.annotations);
}
// DISABLED: Live updates were causing data corruption (red wall issue)
// Use manual refresh button instead
// startLiveChartUpdates();
console.log('Initial data load complete');
} else {
console.error('Chart data load failed:', data.error);
showError('Failed to load chart data: ' + data.error.message);
}
})
.catch(error => {
console.error('Chart data fetch error:', error);
showError('Network error: ' + error.message);
});
}
// Live chart update mechanism
let liveUpdateInterval = null;
function startLiveChartUpdates() {
// Clear any existing interval
if (liveUpdateInterval) {
clearInterval(liveUpdateInterval);
}
console.log('Starting live chart updates (1s interval)');
// Update every second for 1s chart
liveUpdateInterval = setInterval(() => {
updateLiveChartData();
}, 1000);
}
function updateLiveChartData() {
// Only update if we have a chart manager
if (!window.appState || !window.appState.chartManager) {
return;
}
// Fetch latest data
fetch('/api/chart-data', {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
@@ -108,28 +188,30 @@
})
.then(response => response.json())
.then(data => {
if (data.success) {
window.appState.chartManager.initializeCharts(data.chart_data);
if (data.success && window.appState.chartManager) {
// Update charts with new data and pivot bounds
window.appState.chartManager.updateCharts(data.chart_data, data.pivot_bounds);
// Load existing annotations
console.log('Loading', window.appState.annotations.length, 'existing annotations');
window.appState.annotations.forEach(annotation => {
window.appState.chartManager.addAnnotation(annotation);
});
// Update annotation list
if (typeof renderAnnotationsList === 'function') {
renderAnnotationsList(window.appState.annotations);
// Show pivot bounds info if available
if (data.pivot_bounds) {
const pivotInfo = data.pivot_bounds;
console.log(`Loaded ${pivotInfo.total_levels} pivot levels (${pivotInfo.support_levels.length} support, ${pivotInfo.resistance_levels.length} resistance) from ${pivotInfo.timeframe} data over ${pivotInfo.period}`);
}
} else {
showError('Failed to load chart data: ' + data.error.message);
}
})
.catch(error => {
showError('Network error: ' + error.message);
console.debug('Live update error:', error);
// Don't show error to user for live updates
});
}
// Clean up on page unload
window.addEventListener('beforeunload', function () {
if (liveUpdateInterval) {
clearInterval(liveUpdateInterval);
}
});
function setupKeyboardShortcuts() {
document.addEventListener('keydown', function (e) {
// Arrow left - navigate backward

View File

@@ -218,11 +218,18 @@
.then(response => response.json())
.then(data => {
if (data.success) {
// Update charts with new data
// Update charts with new data and pivot bounds
if (appState.chartManager) {
appState.chartManager.updateCharts(data.chart_data);
appState.chartManager.updateCharts(data.chart_data, data.pivot_bounds);
}
// Show pivot bounds info if available
if (data.pivot_bounds) {
const pivotInfo = data.pivot_bounds;
showSuccess(`Chart data refreshed successfully. Found ${pivotInfo.total_levels} pivot levels (${pivotInfo.support_levels.length} support, ${pivotInfo.resistance_levels.length} resistance) from ${pivotInfo.timeframe} data over ${pivotInfo.period}`);
} else {
showSuccess('Chart data refreshed successfully');
}
showSuccess('Chart data refreshed successfully');
} else {
showError('Failed to refresh data: ' + data.error.message);
}

View File

@@ -156,6 +156,14 @@ class DataProvider:
self.real_time_data = {} # {symbol: {timeframe: deque}}
self.current_prices = {} # {symbol: float}
# Thread-safe data access with RLock (reentrant lock)
from threading import RLock
self.data_lock = RLock()
# Catch-up state tracking
self.catch_up_in_progress = False
self.catch_up_completed = False
# Live price cache for low-latency price updates
self.live_price_cache: Dict[str, Tuple[float, datetime]] = {}
self.live_price_cache_ttl = timedelta(milliseconds=500)
@@ -583,69 +591,114 @@ class DataProvider:
logger.info("Initial data load completed")
# Catch up on missing candles if needed
self._catch_up_missing_candles()
# Start background candle catch-up with proper locking
self._start_background_catch_up()
def _start_background_catch_up(self):
"""
Start background candle catch-up with proper thread safety
This runs in a separate thread and uses locks to prevent race conditions
"""
import threading
def catch_up_worker():
# Wait a bit for initial data to settle
import time
time.sleep(2)
logger.info("Starting background candle catch-up with thread safety")
self._catch_up_missing_candles()
logger.info("Background candle catch-up completed")
catch_up_thread = threading.Thread(
target=catch_up_worker,
daemon=True,
name="CandleCatchUpWorker"
)
catch_up_thread.start()
def _catch_up_missing_candles(self):
"""
Catch up on missing candles at startup
Catch up on missing candles at startup with thread-safe locking
Fetches up to 1500 candles per timeframe if we're missing data
"""
logger.info("Checking for missing candles to catch up...")
# Mark catch-up as in progress
with self.data_lock:
if self.catch_up_in_progress:
logger.warning("Catch-up already in progress, skipping")
return
self.catch_up_in_progress = True
target_candles = 1500 # Target number of candles per timeframe
for symbol in self.symbols:
for timeframe in self.timeframes:
try:
# Check current candle count
current_df = self.cached_data[symbol][timeframe]
current_count = len(current_df) if not current_df.empty else 0
if current_count >= target_candles:
logger.debug(f"{symbol} {timeframe}: Already have {current_count} candles (target: {target_candles})")
continue
# Calculate how many candles we need
needed = target_candles - current_count
logger.info(f"{symbol} {timeframe}: Need {needed} more candles (have {current_count}/{target_candles})")
# Fetch missing candles
# Try Binance first (usually has better historical data)
df = self._fetch_from_binance(symbol, timeframe, needed)
if df is None or df.empty:
# Fallback to MEXC
logger.debug(f"Binance fetch failed for {symbol} {timeframe}, trying MEXC...")
df = self._fetch_from_mexc(symbol, timeframe, needed)
if df is not None and not df.empty:
# Ensure proper datetime index
df = self._ensure_datetime_index(df)
try:
logger.info("Checking for missing candles to catch up...")
target_candles = 1500 # Target number of candles per timeframe
for symbol in self.symbols:
for timeframe in self.timeframes:
try:
# Read current count with lock
with self.data_lock:
current_df = self.cached_data[symbol][timeframe].copy()
current_count = len(current_df) if not current_df.empty else 0
# Merge with existing data
if not current_df.empty:
combined_df = pd.concat([current_df, df], ignore_index=False)
combined_df = combined_df[~combined_df.index.duplicated(keep='last')]
combined_df = combined_df.sort_index()
self.cached_data[symbol][timeframe] = combined_df.tail(target_candles)
if current_count >= target_candles:
logger.debug(f"{symbol} {timeframe}: Already have {current_count} candles (target: {target_candles})")
continue
# Calculate how many candles we need
needed = target_candles - current_count
logger.info(f"{symbol} {timeframe}: Need {needed} more candles (have {current_count}/{target_candles})")
# Fetch missing candles (outside lock - network I/O)
# Try Binance first (usually has better historical data)
df = self._fetch_from_binance(symbol, timeframe, needed)
if df is None or df.empty:
# Fallback to MEXC
logger.debug(f"Binance fetch failed for {symbol} {timeframe}, trying MEXC...")
df = self._fetch_from_mexc(symbol, timeframe, needed)
if df is not None and not df.empty:
# Ensure proper datetime index
df = self._ensure_datetime_index(df)
# Update cached data with lock
with self.data_lock:
current_df = self.cached_data[symbol][timeframe]
# Merge with existing data
if not current_df.empty:
combined_df = pd.concat([current_df, df], ignore_index=False)
combined_df = combined_df[~combined_df.index.duplicated(keep='last')]
combined_df = combined_df.sort_index()
self.cached_data[symbol][timeframe] = combined_df.tail(target_candles)
else:
self.cached_data[symbol][timeframe] = df.tail(target_candles)
final_count = len(self.cached_data[symbol][timeframe])
logger.info(f"{symbol} {timeframe}: Caught up! Now have {final_count} candles")
else:
self.cached_data[symbol][timeframe] = df.tail(target_candles)
final_count = len(self.cached_data[symbol][timeframe])
logger.info(f" {symbol} {timeframe}: Caught up! Now have {final_count} candles")
else:
logger.warning(f"{symbol} {timeframe}: Could not fetch historical data from any exchange")
except Exception as e:
logger.error(f"Error catching up candles for {symbol} {timeframe}: {e}")
logger.info("Candle catch-up completed")
logger.warning(f"{symbol} {timeframe}: Could not fetch historical data from any exchange")
except Exception as e:
logger.error(f"Error catching up candles for {symbol} {timeframe}: {e}")
logger.info("Candle catch-up completed successfully")
except Exception as e:
logger.error(f"Fatal error in candle catch-up: {e}")
finally:
# Mark catch-up as complete
with self.data_lock:
self.catch_up_in_progress = False
self.catch_up_completed = True
def _update_cached_data(self, symbol: str, timeframe: str):
"""Update cached data by fetching last 2 candles"""
"""Update cached data by fetching last 2 candles with thread-safe locking"""
try:
# Fetch last 2 candles
# Fetch last 2 candles (outside lock - network I/O)
df = self._fetch_from_binance(symbol, timeframe, 2)
if df is None or df.empty:
@@ -655,21 +708,24 @@ class DataProvider:
# Ensure proper datetime index
df = self._ensure_datetime_index(df)
# Get existing cached data
existing_df = self.cached_data[symbol][timeframe]
if not existing_df.empty:
# Merge new data with existing, avoiding duplicates
combined_df = pd.concat([existing_df, df], ignore_index=False)
combined_df = combined_df[~combined_df.index.duplicated(keep='last')]
combined_df = combined_df.sort_index()
# Update cached data with lock
with self.data_lock:
existing_df = self.cached_data[symbol][timeframe]
# Keep only last 1500 candles
self.cached_data[symbol][timeframe] = combined_df.tail(1500)
else:
self.cached_data[symbol][timeframe] = df
if not existing_df.empty:
# Merge new data with existing, avoiding duplicates
combined_df = pd.concat([existing_df, df], ignore_index=False)
combined_df = combined_df[~combined_df.index.duplicated(keep='last')]
combined_df = combined_df.sort_index()
# Keep only last 1500 candles
self.cached_data[symbol][timeframe] = combined_df.tail(1500)
else:
self.cached_data[symbol][timeframe] = df
candle_count = len(self.cached_data[symbol][timeframe])
logger.debug(f"Updated cached data for {symbol} {timeframe}: {len(self.cached_data[symbol][timeframe])} candles")
logger.debug(f"Updated cached data for {symbol} {timeframe}: {candle_count} candles")
except Exception as e:
logger.debug(f"Error updating cached data for {symbol} {timeframe}: {e}")