behaviour/agressiveness sliders, fix cob data using provider
This commit is contained in:
@ -85,8 +85,14 @@ class COBIntegration:
|
||||
self.cob_provider.subscribe_to_cob_updates(self._on_cob_update)
|
||||
self.cob_provider.subscribe_to_bucket_updates(self._on_bucket_update)
|
||||
|
||||
# Start COB provider
|
||||
await self.cob_provider.start_streaming()
|
||||
# Start COB provider streaming
|
||||
try:
|
||||
logger.info("Starting COB provider streaming...")
|
||||
await self.cob_provider.start_streaming()
|
||||
except Exception as e:
|
||||
logger.error(f"Error starting COB provider streaming: {e}")
|
||||
# Start a background task instead
|
||||
asyncio.create_task(self._start_cob_provider_background())
|
||||
|
||||
# Start analysis threads
|
||||
asyncio.create_task(self._continuous_cob_analysis())
|
||||
@ -94,6 +100,14 @@ class COBIntegration:
|
||||
|
||||
logger.info("COB Integration started successfully")
|
||||
|
||||
async def _start_cob_provider_background(self):
|
||||
"""Start COB provider in background task"""
|
||||
try:
|
||||
logger.info("Starting COB provider in background...")
|
||||
await self.cob_provider.start_streaming()
|
||||
except Exception as e:
|
||||
logger.error(f"Error in background COB provider: {e}")
|
||||
|
||||
async def stop(self):
|
||||
"""Stop COB integration"""
|
||||
logger.info("Stopping COB Integration")
|
||||
|
@ -67,6 +67,10 @@ class TradingDecision:
|
||||
timestamp: datetime
|
||||
reasoning: Dict[str, Any] # Why this decision was made
|
||||
memory_usage: Dict[str, int] # Memory usage of models
|
||||
# NEW: Aggressiveness parameters
|
||||
entry_aggressiveness: float = 0.5 # 0.0 = conservative, 1.0 = very aggressive
|
||||
exit_aggressiveness: float = 0.5 # 0.0 = conservative, 1.0 = very aggressive
|
||||
current_position_pnl: float = 0.0 # Current open position P&L for RL feedback
|
||||
|
||||
class TradingOrchestrator:
|
||||
"""
|
||||
@ -90,6 +94,14 @@ class TradingOrchestrator:
|
||||
self.decision_frequency = self.config.orchestrator.get('decision_frequency', 30)
|
||||
self.symbols = self.config.get('symbols', ['ETH/USDT', 'BTC/USDT']) # Enhanced to support multiple symbols
|
||||
|
||||
# NEW: Aggressiveness parameters
|
||||
self.entry_aggressiveness = self.config.orchestrator.get('entry_aggressiveness', 0.5) # 0.0 = conservative, 1.0 = very aggressive
|
||||
self.exit_aggressiveness = self.config.orchestrator.get('exit_aggressiveness', 0.5) # 0.0 = conservative, 1.0 = very aggressive
|
||||
|
||||
# Position tracking for P&L feedback
|
||||
self.current_positions: Dict[str, Dict] = {} # {symbol: {side, size, entry_price, entry_time, pnl}}
|
||||
self.trading_executor = None # Will be set by dashboard or external system
|
||||
|
||||
# Dynamic weights (will be adapted based on performance)
|
||||
self.model_weights: Dict[str, float] = {} # {model_name: weight}
|
||||
self._initialize_default_weights()
|
||||
@ -1483,7 +1495,7 @@ class TradingOrchestrator:
|
||||
def _combine_predictions(self, symbol: str, price: float,
|
||||
predictions: List[Prediction],
|
||||
timestamp: datetime) -> TradingDecision:
|
||||
"""Combine all predictions into a final decision"""
|
||||
"""Combine all predictions into a final decision with aggressiveness and P&L feedback"""
|
||||
try:
|
||||
reasoning = {
|
||||
'predictions': len(predictions),
|
||||
@ -1491,6 +1503,9 @@ class TradingOrchestrator:
|
||||
'models_used': [pred.model_name for pred in predictions]
|
||||
}
|
||||
|
||||
# Get current position P&L for feedback
|
||||
current_position_pnl = self._get_current_position_pnl(symbol, price)
|
||||
|
||||
# Initialize action scores
|
||||
action_scores = {'BUY': 0.0, 'SELL': 0.0, 'HOLD': 0.0}
|
||||
total_weight = 0.0
|
||||
@ -1516,10 +1531,35 @@ class TradingOrchestrator:
|
||||
best_action = max(action_scores, key=action_scores.get)
|
||||
best_confidence = action_scores[best_action]
|
||||
|
||||
# Apply confidence threshold
|
||||
if best_confidence < self.confidence_threshold:
|
||||
best_action = 'HOLD'
|
||||
reasoning['threshold_applied'] = True
|
||||
# Calculate aggressiveness-adjusted thresholds
|
||||
entry_threshold, exit_threshold = self._calculate_aggressiveness_thresholds(
|
||||
current_position_pnl, symbol
|
||||
)
|
||||
|
||||
# Apply aggressiveness-based confidence thresholds
|
||||
if best_action in ['BUY', 'SELL']:
|
||||
# For entry signals, use entry aggressiveness
|
||||
if not self._has_open_position(symbol):
|
||||
if best_confidence < entry_threshold:
|
||||
best_action = 'HOLD'
|
||||
reasoning['entry_threshold_applied'] = True
|
||||
reasoning['entry_threshold'] = entry_threshold
|
||||
# For exit signals, use exit aggressiveness
|
||||
else:
|
||||
if best_confidence < exit_threshold:
|
||||
best_action = 'HOLD'
|
||||
reasoning['exit_threshold_applied'] = True
|
||||
reasoning['exit_threshold'] = exit_threshold
|
||||
else:
|
||||
# Standard threshold for HOLD
|
||||
if best_confidence < self.confidence_threshold:
|
||||
best_action = 'HOLD'
|
||||
reasoning['threshold_applied'] = True
|
||||
|
||||
# Add P&L-based decision adjustment
|
||||
best_action, best_confidence = self._apply_pnl_feedback(
|
||||
best_action, best_confidence, current_position_pnl, symbol, reasoning
|
||||
)
|
||||
|
||||
# Get memory usage stats
|
||||
try:
|
||||
@ -1527,6 +1567,10 @@ class TradingOrchestrator:
|
||||
except Exception:
|
||||
memory_usage = {}
|
||||
|
||||
# Calculate dynamic aggressiveness based on recent performance
|
||||
entry_aggressiveness = self._calculate_dynamic_entry_aggressiveness(symbol)
|
||||
exit_aggressiveness = self._calculate_dynamic_exit_aggressiveness(symbol, current_position_pnl)
|
||||
|
||||
# Create final decision
|
||||
decision = TradingDecision(
|
||||
action=best_action,
|
||||
@ -1535,12 +1579,15 @@ class TradingOrchestrator:
|
||||
price=price,
|
||||
timestamp=timestamp,
|
||||
reasoning=reasoning,
|
||||
memory_usage=memory_usage.get('models', {}) if memory_usage else {}
|
||||
memory_usage=memory_usage.get('models', {}) if memory_usage else {},
|
||||
entry_aggressiveness=entry_aggressiveness,
|
||||
exit_aggressiveness=exit_aggressiveness,
|
||||
current_position_pnl=current_position_pnl
|
||||
)
|
||||
|
||||
logger.info(f"Decision for {symbol}: {best_action} (confidence: {best_confidence:.3f})")
|
||||
if memory_usage and 'total_used_mb' in memory_usage:
|
||||
logger.debug(f"Memory usage: {memory_usage['total_used_mb']:.1f}MB / {memory_usage['total_limit_mb']:.1f}MB")
|
||||
logger.info(f"Decision for {symbol}: {best_action} (confidence: {best_confidence:.3f}, "
|
||||
f"entry_agg: {entry_aggressiveness:.2f}, exit_agg: {exit_aggressiveness:.2f}, "
|
||||
f"pnl: ${current_position_pnl:.2f})")
|
||||
|
||||
return decision
|
||||
|
||||
@ -1554,7 +1601,10 @@ class TradingOrchestrator:
|
||||
price=price,
|
||||
timestamp=timestamp,
|
||||
reasoning={'error': str(e)},
|
||||
memory_usage={}
|
||||
memory_usage={},
|
||||
entry_aggressiveness=0.5,
|
||||
exit_aggressiveness=0.5,
|
||||
current_position_pnl=0.0
|
||||
)
|
||||
|
||||
def _get_timeframe_weight(self, timeframe: str) -> float:
|
||||
@ -1918,12 +1968,75 @@ class TradingOrchestrator:
|
||||
logger.warning(f"Microstructure features fallback: {e}")
|
||||
comprehensive_features.extend([0.0] * 100)
|
||||
|
||||
# Final validation - now includes COB features (13,400 + 400 = 13,800)
|
||||
# === NEW: P&L FEEDBACK AND AGGRESSIVENESS FEATURES (50) ===
|
||||
try:
|
||||
current_price = self._get_current_price(symbol) or 3500.0
|
||||
current_pnl = self._get_current_position_pnl(symbol, current_price)
|
||||
|
||||
# P&L feedback features (25)
|
||||
pnl_features = [
|
||||
current_pnl, # Current P&L
|
||||
max(-1.0, min(1.0, current_pnl / 100.0)), # Normalized P&L (-1 to 1)
|
||||
1.0 if current_pnl > 0 else 0.0, # Is profitable
|
||||
1.0 if current_pnl < -10.0 else 0.0, # Is losing significantly
|
||||
1.0 if current_pnl > 20.0 else 0.0, # Is winning significantly
|
||||
1.0 if self._has_open_position(symbol) else 0.0, # Has open position
|
||||
]
|
||||
|
||||
# Recent performance features (10)
|
||||
recent_decisions = self.get_recent_decisions(symbol, limit=10)
|
||||
if recent_decisions:
|
||||
win_rate = sum(1 for d in recent_decisions if d.reasoning.get('was_profitable', False)) / len(recent_decisions)
|
||||
avg_confidence = sum(d.confidence for d in recent_decisions) / len(recent_decisions)
|
||||
recent_pnl_changes = [d.current_position_pnl for d in recent_decisions if hasattr(d, 'current_position_pnl')]
|
||||
avg_recent_pnl = sum(recent_pnl_changes) / len(recent_pnl_changes) if recent_pnl_changes else 0.0
|
||||
else:
|
||||
win_rate = 0.5
|
||||
avg_confidence = 0.5
|
||||
avg_recent_pnl = 0.0
|
||||
|
||||
pnl_features.extend([
|
||||
win_rate,
|
||||
avg_confidence,
|
||||
max(-1.0, min(1.0, avg_recent_pnl / 50.0)), # Normalized recent P&L
|
||||
len(recent_decisions) / 10.0, # Decision frequency
|
||||
])
|
||||
|
||||
# Aggressiveness features (15)
|
||||
entry_agg = getattr(self, 'entry_aggressiveness', 0.5)
|
||||
exit_agg = getattr(self, 'exit_aggressiveness', 0.5)
|
||||
|
||||
aggressiveness_features = [
|
||||
entry_agg,
|
||||
exit_agg,
|
||||
entry_agg * 2.0 - 1.0, # Scaled entry aggressiveness (-1 to 1)
|
||||
exit_agg * 2.0 - 1.0, # Scaled exit aggressiveness (-1 to 1)
|
||||
entry_agg * exit_agg, # Combined aggressiveness
|
||||
abs(entry_agg - exit_agg), # Aggressiveness difference
|
||||
1.0 if entry_agg > 0.7 else 0.0, # Is very aggressive entry
|
||||
1.0 if exit_agg > 0.7 else 0.0, # Is very aggressive exit
|
||||
1.0 if entry_agg < 0.3 else 0.0, # Is very conservative entry
|
||||
1.0 if exit_agg < 0.3 else 0.0, # Is very conservative exit
|
||||
]
|
||||
|
||||
# Pad to 50 features total
|
||||
all_feedback_features = pnl_features + aggressiveness_features
|
||||
while len(all_feedback_features) < 50:
|
||||
all_feedback_features.append(0.0)
|
||||
|
||||
comprehensive_features.extend(all_feedback_features[:50])
|
||||
logger.debug("P&L feedback and aggressiveness features: 50 added")
|
||||
|
||||
except Exception as e:
|
||||
logger.warning(f"P&L feedback features fallback: {e}")
|
||||
comprehensive_features.extend([0.0] * 50)
|
||||
|
||||
# Final validation - now includes P&L feedback (13,400 + 400 + 50 = 13,850)
|
||||
total_features = len(comprehensive_features)
|
||||
expected_features = 13800 # Updated to include 400 COB features
|
||||
expected_features = 13850 # Updated to include P&L feedback features
|
||||
|
||||
if total_features >= expected_features - 100: # Allow small tolerance
|
||||
# logger.info(f"TRAINING: Comprehensive RL state built successfully: {total_features} features (including COB)")
|
||||
# logger.info(f"TRAINING: Comprehensive RL state built successfully: {total_features} features (including P&L feedback)")
|
||||
return comprehensive_features
|
||||
else:
|
||||
logger.warning(f"⚠️ Comprehensive RL state incomplete: {total_features} features (expected {expected_features}+)")
|
||||
@ -2651,4 +2764,145 @@ class TradingOrchestrator:
|
||||
return None
|
||||
except Exception as e:
|
||||
logger.error(f"Error getting universal data for {model_type}: {e}")
|
||||
return None
|
||||
return None
|
||||
|
||||
def _get_current_position_pnl(self, symbol: str, current_price: float) -> float:
|
||||
"""Get current position P&L for the symbol"""
|
||||
try:
|
||||
if self.trading_executor and hasattr(self.trading_executor, 'get_current_position'):
|
||||
position = self.trading_executor.get_current_position(symbol)
|
||||
if position:
|
||||
entry_price = position.get('price', 0)
|
||||
size = position.get('size', 0)
|
||||
side = position.get('side', 'LONG')
|
||||
|
||||
if entry_price and size > 0:
|
||||
if side.upper() == 'LONG':
|
||||
pnl = (current_price - entry_price) * size
|
||||
else: # SHORT
|
||||
pnl = (entry_price - current_price) * size
|
||||
return pnl
|
||||
return 0.0
|
||||
except Exception as e:
|
||||
logger.debug(f"Error getting position P&L for {symbol}: {e}")
|
||||
return 0.0
|
||||
|
||||
def _has_open_position(self, symbol: str) -> bool:
|
||||
"""Check if there's an open position for the symbol"""
|
||||
try:
|
||||
if self.trading_executor and hasattr(self.trading_executor, 'get_current_position'):
|
||||
position = self.trading_executor.get_current_position(symbol)
|
||||
return position is not None and position.get('size', 0) > 0
|
||||
return False
|
||||
except Exception:
|
||||
return False
|
||||
|
||||
def _calculate_aggressiveness_thresholds(self, current_pnl: float, symbol: str) -> tuple:
|
||||
"""Calculate confidence thresholds based on aggressiveness settings"""
|
||||
# Base thresholds
|
||||
base_entry_threshold = self.confidence_threshold
|
||||
base_exit_threshold = self.confidence_threshold_close
|
||||
|
||||
# Get aggressiveness settings (could be from config or adaptive)
|
||||
entry_agg = getattr(self, 'entry_aggressiveness', 0.5)
|
||||
exit_agg = getattr(self, 'exit_aggressiveness', 0.5)
|
||||
|
||||
# Adjust thresholds based on aggressiveness
|
||||
# More aggressive = lower threshold (more trades)
|
||||
# Less aggressive = higher threshold (fewer, higher quality trades)
|
||||
entry_threshold = base_entry_threshold * (1.5 - entry_agg) # 0.5 agg = 1.0x, 1.0 agg = 0.5x
|
||||
exit_threshold = base_exit_threshold * (1.5 - exit_agg)
|
||||
|
||||
# Ensure minimum thresholds
|
||||
entry_threshold = max(0.05, entry_threshold)
|
||||
exit_threshold = max(0.02, exit_threshold)
|
||||
|
||||
return entry_threshold, exit_threshold
|
||||
|
||||
def _apply_pnl_feedback(self, action: str, confidence: float, current_pnl: float,
|
||||
symbol: str, reasoning: dict) -> tuple:
|
||||
"""Apply P&L-based feedback to decision making"""
|
||||
try:
|
||||
# If we have a losing position, be more aggressive about cutting losses
|
||||
if current_pnl < -10.0: # Losing more than $10
|
||||
if action == 'SELL' and self._has_open_position(symbol):
|
||||
# Boost confidence for exit signals when losing
|
||||
confidence = min(1.0, confidence * 1.2)
|
||||
reasoning['pnl_loss_cut_boost'] = True
|
||||
elif action == 'BUY':
|
||||
# Reduce confidence for new entries when losing
|
||||
confidence *= 0.8
|
||||
reasoning['pnl_loss_entry_reduction'] = True
|
||||
|
||||
# If we have a winning position, be more conservative about exits
|
||||
elif current_pnl > 5.0: # Winning more than $5
|
||||
if action == 'SELL' and self._has_open_position(symbol):
|
||||
# Reduce confidence for exit signals when winning (let profits run)
|
||||
confidence *= 0.9
|
||||
reasoning['pnl_profit_hold'] = True
|
||||
elif action == 'BUY':
|
||||
# Slightly boost confidence for entries when on a winning streak
|
||||
confidence = min(1.0, confidence * 1.05)
|
||||
reasoning['pnl_winning_streak_boost'] = True
|
||||
|
||||
reasoning['current_pnl'] = current_pnl
|
||||
return action, confidence
|
||||
|
||||
except Exception as e:
|
||||
logger.debug(f"Error applying P&L feedback: {e}")
|
||||
return action, confidence
|
||||
|
||||
def _calculate_dynamic_entry_aggressiveness(self, symbol: str) -> float:
|
||||
"""Calculate dynamic entry aggressiveness based on recent performance"""
|
||||
try:
|
||||
# Start with base aggressiveness
|
||||
base_agg = getattr(self, 'entry_aggressiveness', 0.5)
|
||||
|
||||
# Get recent decisions for this symbol
|
||||
recent_decisions = self.get_recent_decisions(symbol, limit=10)
|
||||
if len(recent_decisions) < 3:
|
||||
return base_agg
|
||||
|
||||
# Calculate win rate
|
||||
winning_decisions = sum(1 for d in recent_decisions
|
||||
if d.reasoning.get('was_profitable', False))
|
||||
win_rate = winning_decisions / len(recent_decisions)
|
||||
|
||||
# Adjust aggressiveness based on performance
|
||||
if win_rate > 0.7: # High win rate - be more aggressive
|
||||
return min(1.0, base_agg + 0.2)
|
||||
elif win_rate < 0.3: # Low win rate - be more conservative
|
||||
return max(0.1, base_agg - 0.2)
|
||||
else:
|
||||
return base_agg
|
||||
|
||||
except Exception as e:
|
||||
logger.debug(f"Error calculating dynamic entry aggressiveness: {e}")
|
||||
return 0.5
|
||||
|
||||
def _calculate_dynamic_exit_aggressiveness(self, symbol: str, current_pnl: float) -> float:
|
||||
"""Calculate dynamic exit aggressiveness based on P&L and market conditions"""
|
||||
try:
|
||||
# Start with base aggressiveness
|
||||
base_agg = getattr(self, 'exit_aggressiveness', 0.5)
|
||||
|
||||
# Adjust based on current P&L
|
||||
if current_pnl < -20.0: # Large loss - be very aggressive about cutting
|
||||
return min(1.0, base_agg + 0.3)
|
||||
elif current_pnl < -5.0: # Small loss - be more aggressive
|
||||
return min(1.0, base_agg + 0.1)
|
||||
elif current_pnl > 20.0: # Large profit - be less aggressive (let it run)
|
||||
return max(0.1, base_agg - 0.2)
|
||||
elif current_pnl > 5.0: # Small profit - slightly less aggressive
|
||||
return max(0.2, base_agg - 0.1)
|
||||
else:
|
||||
return base_agg
|
||||
|
||||
except Exception as e:
|
||||
logger.debug(f"Error calculating dynamic exit aggressiveness: {e}")
|
||||
return 0.5
|
||||
|
||||
def set_trading_executor(self, trading_executor):
|
||||
"""Set the trading executor for position tracking"""
|
||||
self.trading_executor = trading_executor
|
||||
logger.info("Trading executor set for position tracking and P&L feedback")
|
Reference in New Issue
Block a user