cleanup, cob ladder still broken

This commit is contained in:
Dobromir Popov
2025-07-07 01:07:48 +03:00
parent 97d9bc97ee
commit 9101448e78
75 changed files with 546 additions and 12123 deletions

View File

@ -113,6 +113,15 @@ class DQNAgent:
# Initialize avg_reward for dashboard compatibility
self.avg_reward = 0.0 # Average reward tracking for dashboard
# Market regime adaptation weights
self.market_regime_weights = {
'trending': 1.0,
'sideways': 0.8,
'volatile': 1.2,
'bullish': 1.1,
'bearish': 1.1
}
# Load best checkpoint if available
if self.enable_checkpoints:
self.load_best_checkpoint()
@ -490,7 +499,17 @@ class DQNAgent:
state_tensor = torch.FloatTensor(state).unsqueeze(0).to(self.device)
q_values = self.policy_net(state_tensor)
# Ensure q_values has correct shape for softmax
# Handle case where network might return a tuple instead of tensor
if isinstance(q_values, tuple):
# If it's a tuple, take the first element (usually the main output)
q_values = q_values[0]
# Ensure q_values is a tensor and has correct shape for softmax
if not hasattr(q_values, 'dim'):
logger.error(f"DQN: q_values is not a tensor: {type(q_values)}")
# Return default action with low confidence
return 1, 0.1 # Default to HOLD action
if q_values.dim() == 1:
q_values = q_values.unsqueeze(0)

View File

@ -117,52 +117,52 @@ class EnhancedCNN(nn.Module):
# Ultra massive convolutional backbone with much deeper residual blocks
self.conv_layers = nn.Sequential(
# Initial ultra large conv block
nn.Conv1d(self.channels, 512, kernel_size=7, padding=3), # Ultra wide initial layer
nn.BatchNorm1d(512),
nn.Conv1d(self.channels, 1024, kernel_size=7, padding=3), # Ultra wide initial layer (increased from 512)
nn.BatchNorm1d(1024),
nn.ReLU(),
nn.Dropout(0.1),
# First residual stage - 512 channels
ResidualBlock(512, 768),
ResidualBlock(768, 768),
ResidualBlock(768, 768),
ResidualBlock(768, 768), # Additional layer
nn.MaxPool1d(kernel_size=2, stride=2),
nn.Dropout(0.2),
# Second residual stage - 768 to 1024 channels
ResidualBlock(768, 1024),
ResidualBlock(1024, 1024),
ResidualBlock(1024, 1024),
ResidualBlock(1024, 1024), # Additional layer
nn.MaxPool1d(kernel_size=2, stride=2),
nn.Dropout(0.25),
# Third residual stage - 1024 to 1536 channels
ResidualBlock(1024, 1536),
# First residual stage - 1024 channels (increased from 512)
ResidualBlock(1024, 1536), # Increased from 768
ResidualBlock(1536, 1536),
ResidualBlock(1536, 1536),
ResidualBlock(1536, 1536), # Additional layer
nn.MaxPool1d(kernel_size=2, stride=2),
nn.Dropout(0.3),
nn.Dropout(0.2),
# Fourth residual stage - 1536 to 2048 channels
# Second residual stage - 1536 to 2048 channels (increased from 768 to 1024)
ResidualBlock(1536, 2048),
ResidualBlock(2048, 2048),
ResidualBlock(2048, 2048),
ResidualBlock(2048, 2048), # Additional layer
nn.MaxPool1d(kernel_size=2, stride=2),
nn.Dropout(0.3),
nn.Dropout(0.25),
# Fifth residual stage - ULTRA MASSIVE 2048 to 3072 channels
# Third residual stage - 2048 to 3072 channels (increased from 1024 to 1536)
ResidualBlock(2048, 3072),
ResidualBlock(3072, 3072),
ResidualBlock(3072, 3072),
ResidualBlock(3072, 3072),
ResidualBlock(3072, 3072), # Additional layer
nn.MaxPool1d(kernel_size=2, stride=2),
nn.Dropout(0.3),
# Fourth residual stage - 3072 to 4096 channels (increased from 1536 to 2048)
ResidualBlock(3072, 4096),
ResidualBlock(4096, 4096),
ResidualBlock(4096, 4096),
ResidualBlock(4096, 4096), # Additional layer
nn.MaxPool1d(kernel_size=2, stride=2),
nn.Dropout(0.3),
# Fifth residual stage - ULTRA MASSIVE 4096 to 6144 channels (increased from 2048 to 3072)
ResidualBlock(4096, 6144),
ResidualBlock(6144, 6144),
ResidualBlock(6144, 6144),
ResidualBlock(6144, 6144),
nn.AdaptiveAvgPool1d(1) # Global average pooling
)
# Ultra massive feature dimension after conv layers
self.conv_features = 3072
self.conv_features = 6144 # Increased from 3072
else:
# For 1D vectors, use ultra massive dense preprocessing
self.conv_layers = None
@ -171,36 +171,36 @@ class EnhancedCNN(nn.Module):
# ULTRA MASSIVE fully connected feature extraction layers
if self.conv_layers is None:
# For 1D inputs - ultra massive feature extraction
self.fc1 = nn.Linear(self.feature_dim, 3072)
self.features_dim = 3072
self.fc1 = nn.Linear(self.feature_dim, 6144) # Increased from 3072
self.features_dim = 6144 # Increased from 3072
else:
# For data processed by ultra massive conv layers
self.fc1 = nn.Linear(self.conv_features, 3072)
self.features_dim = 3072
self.fc1 = nn.Linear(self.conv_features, 6144) # Increased from 3072
self.features_dim = 6144 # Increased from 3072
# ULTRA MASSIVE common feature extraction with multiple deep layers
self.fc_layers = nn.Sequential(
self.fc1,
nn.ReLU(),
nn.Dropout(0.3),
nn.Linear(3072, 3072), # Keep ultra massive width
nn.Linear(6144, 6144), # Keep ultra massive width (increased from 3072)
nn.ReLU(),
nn.Dropout(0.3),
nn.Linear(3072, 2560), # Ultra wide hidden layer
nn.Linear(6144, 4096), # Ultra wide hidden layer (increased from 2560)
nn.ReLU(),
nn.Dropout(0.3),
nn.Linear(2560, 2048), # Still very wide
nn.Linear(4096, 3072), # Still very wide (increased from 2048)
nn.ReLU(),
nn.Dropout(0.3),
nn.Linear(2048, 1536), # Large hidden layer
nn.Linear(3072, 2048), # Large hidden layer (increased from 1536)
nn.ReLU(),
nn.Dropout(0.3),
nn.Linear(1536, 1024), # Final feature representation
nn.Linear(2048, 1024), # Final feature representation (increased from 1024, but keeping the same value to align with attention layers)
nn.ReLU()
)
# Multiple attention mechanisms for different aspects (larger capacity)
self.price_attention = SelfAttention(1024) # Increased from 768
# Multiple specialized attention mechanisms (larger capacity)
self.price_attention = SelfAttention(1024) # Keeping 1024
self.volume_attention = SelfAttention(1024)
self.trend_attention = SelfAttention(1024)
self.volatility_attention = SelfAttention(1024)
@ -209,108 +209,108 @@ class EnhancedCNN(nn.Module):
# Ultra massive attention fusion layer
self.attention_fusion = nn.Sequential(
nn.Linear(1024 * 6, 2048), # Combine all 6 attention outputs
nn.Linear(1024 * 6, 4096), # Combine all 6 attention outputs (increased from 2048)
nn.ReLU(),
nn.Dropout(0.3),
nn.Linear(2048, 1536),
nn.Linear(4096, 3072), # Increased from 1536
nn.ReLU(),
nn.Dropout(0.3),
nn.Linear(1536, 1024)
nn.Linear(3072, 1024) # Keeping 1024
)
# ULTRA MASSIVE dueling architecture with much deeper networks
self.advantage_stream = nn.Sequential(
nn.Linear(1024, 768),
nn.Linear(1024, 1536), # Increased from 768
nn.ReLU(),
nn.Dropout(0.3),
nn.Linear(768, 512),
nn.Linear(1536, 1024), # Increased from 512
nn.ReLU(),
nn.Dropout(0.3),
nn.Linear(512, 256),
nn.Linear(1024, 512), # Increased from 256
nn.ReLU(),
nn.Dropout(0.3),
nn.Linear(256, 128),
nn.Linear(512, 256), # Increased from 128
nn.ReLU(),
nn.Linear(128, self.n_actions)
nn.Linear(256, self.n_actions)
)
self.value_stream = nn.Sequential(
nn.Linear(1024, 768),
nn.Linear(1024, 1536), # Increased from 768
nn.ReLU(),
nn.Dropout(0.3),
nn.Linear(768, 512),
nn.Linear(1536, 1024), # Increased from 512
nn.ReLU(),
nn.Dropout(0.3),
nn.Linear(512, 256),
nn.Linear(1024, 512), # Increased from 256
nn.ReLU(),
nn.Dropout(0.3),
nn.Linear(256, 128),
nn.Linear(512, 256), # Increased from 128
nn.ReLU(),
nn.Linear(128, 1)
nn.Linear(256, 1)
)
# ULTRA MASSIVE extrema detection head with deeper ensemble predictions
self.extrema_head = nn.Sequential(
nn.Linear(1024, 768),
nn.Linear(1024, 1536), # Increased from 768
nn.ReLU(),
nn.Dropout(0.3),
nn.Linear(768, 512),
nn.Linear(1536, 1024), # Increased from 512
nn.ReLU(),
nn.Dropout(0.3),
nn.Linear(512, 256),
nn.Linear(1024, 512), # Increased from 256
nn.ReLU(),
nn.Dropout(0.3),
nn.Linear(256, 128),
nn.Linear(512, 256), # Increased from 128
nn.ReLU(),
nn.Linear(128, 3) # 0=bottom, 1=top, 2=neither
nn.Linear(256, 3) # 0=bottom, 1=top, 2=neither
)
# ULTRA MASSIVE multi-timeframe price prediction heads
self.price_pred_immediate = nn.Sequential(
nn.Linear(1024, 512),
nn.Linear(1024, 1024), # Increased from 512
nn.ReLU(),
nn.Dropout(0.3),
nn.Linear(512, 256),
nn.Linear(1024, 512), # Increased from 256
nn.ReLU(),
nn.Dropout(0.3),
nn.Linear(256, 128),
nn.Linear(512, 256), # Increased from 128
nn.ReLU(),
nn.Linear(128, 3) # Up, Down, Sideways
nn.Linear(256, 3) # Up, Down, Sideways
)
self.price_pred_midterm = nn.Sequential(
nn.Linear(1024, 512),
nn.Linear(1024, 1024), # Increased from 512
nn.ReLU(),
nn.Dropout(0.3),
nn.Linear(512, 256),
nn.Linear(1024, 512), # Increased from 256
nn.ReLU(),
nn.Dropout(0.3),
nn.Linear(256, 128),
nn.Linear(512, 256), # Increased from 128
nn.ReLU(),
nn.Linear(128, 3) # Up, Down, Sideways
nn.Linear(256, 3) # Up, Down, Sideways
)
self.price_pred_longterm = nn.Sequential(
nn.Linear(1024, 512),
nn.Linear(1024, 1024), # Increased from 512
nn.ReLU(),
nn.Dropout(0.3),
nn.Linear(512, 256),
nn.Linear(1024, 512), # Increased from 256
nn.ReLU(),
nn.Dropout(0.3),
nn.Linear(256, 128),
nn.Linear(512, 256), # Increased from 128
nn.ReLU(),
nn.Linear(128, 3) # Up, Down, Sideways
nn.Linear(256, 3) # Up, Down, Sideways
)
# ULTRA MASSIVE value prediction with ensemble approaches
self.price_pred_value = nn.Sequential(
nn.Linear(1024, 768),
nn.Linear(1024, 1536), # Increased from 768
nn.ReLU(),
nn.Dropout(0.3),
nn.Linear(768, 512),
nn.Linear(1536, 1024), # Increased from 512
nn.ReLU(),
nn.Dropout(0.3),
nn.Linear(512, 256),
nn.Linear(1024, 256),
nn.ReLU(),
nn.Dropout(0.3),
nn.Linear(256, 128),
@ -391,7 +391,7 @@ class EnhancedCNN(nn.Module):
# Handle 4D input [batch, timeframes, window, features] or 3D input [batch, timeframes, features]
if len(x.shape) == 4:
# Flatten window and features: [batch, timeframes, window*features]
x = x.view(batch_size, x.size(1), -1)
x = x.reshape(batch_size, x.size(1), -1)
if self.conv_layers is not None:
# Now x is 3D: [batch, timeframes, features]
@ -405,10 +405,10 @@ class EnhancedCNN(nn.Module):
# Apply ultra massive convolutions
x_conv = self.conv_layers(x_reshaped)
# Flatten: [batch, channels, 1] -> [batch, channels]
x_flat = x_conv.view(batch_size, -1)
x_flat = x_conv.reshape(batch_size, -1)
else:
# If no conv layers, just flatten
x_flat = x.view(batch_size, -1)
x_flat = x.reshape(batch_size, -1)
else:
# For 2D input [batch, features]
x_flat = x
@ -512,30 +512,30 @@ class EnhancedCNN(nn.Module):
# Log advanced predictions for better decision making
if hasattr(self, '_log_predictions') and self._log_predictions:
# Log volatility prediction
volatility = torch.softmax(advanced_predictions['volatility'], dim=1)
volatility_class = torch.argmax(volatility, dim=1).item()
volatility = torch.softmax(advanced_predictions['volatility'], dim=1).squeeze(0)
volatility_class = int(torch.argmax(volatility).item())
volatility_labels = ['Very Low', 'Low', 'Medium', 'High', 'Very High']
# Log support/resistance prediction
sr = torch.softmax(advanced_predictions['support_resistance'], dim=1)
sr_class = torch.argmax(sr, dim=1).item()
sr = torch.softmax(advanced_predictions['support_resistance'], dim=1).squeeze(0)
sr_class = int(torch.argmax(sr).item())
sr_labels = ['Strong Support', 'Weak Support', 'Neutral', 'Weak Resistance', 'Strong Resistance', 'Breakout']
# Log market regime prediction
regime = torch.softmax(advanced_predictions['market_regime'], dim=1)
regime_class = torch.argmax(regime, dim=1).item()
regime = torch.softmax(advanced_predictions['market_regime'], dim=1).squeeze(0)
regime_class = int(torch.argmax(regime).item())
regime_labels = ['Bull Trend', 'Bear Trend', 'Sideways', 'Volatile Up', 'Volatile Down', 'Accumulation', 'Distribution']
# Log risk assessment
risk = torch.softmax(advanced_predictions['risk_assessment'], dim=1)
risk_class = torch.argmax(risk, dim=1).item()
risk = torch.softmax(advanced_predictions['risk_assessment'], dim=1).squeeze(0)
risk_class = int(torch.argmax(risk).item())
risk_labels = ['Low Risk', 'Medium Risk', 'High Risk', 'Extreme Risk']
logger.info(f"ULTRA MASSIVE Model Predictions:")
logger.info(f" Volatility: {volatility_labels[volatility_class]} ({volatility[0, volatility_class]:.3f})")
logger.info(f" Support/Resistance: {sr_labels[sr_class]} ({sr[0, sr_class]:.3f})")
logger.info(f" Market Regime: {regime_labels[regime_class]} ({regime[0, regime_class]:.3f})")
logger.info(f" Risk Level: {risk_labels[risk_class]} ({risk[0, risk_class]:.3f})")
logger.info(f" Volatility: {volatility_labels[volatility_class]} ({volatility[volatility_class]:.3f})")
logger.info(f" Support/Resistance: {sr_labels[sr_class]} ({sr[sr_class]:.3f})")
logger.info(f" Market Regime: {regime_labels[regime_class]} ({regime[regime_class]:.3f})")
logger.info(f" Risk Level: {risk_labels[risk_class]} ({risk[risk_class]:.3f})")
return action

View File

@ -200,7 +200,7 @@ enhanced_training:
min_training_samples: 100 # Minimum samples before training starts
adaptation_threshold: 0.1 # Performance threshold for adaptation
forward_looking_predictions: true # Enable forward-looking prediction validation
# Real-time RL COB Trader Configuration
realtime_rl:
# Model parameters for 400M parameter network (faster startup)

View File

@ -34,7 +34,7 @@ class COBIntegration:
Integration layer for Multi-Exchange COB data with gogo2 trading system
"""
def __init__(self, data_provider: DataProvider = None, symbols: List[str] = None):
def __init__(self, data_provider: Optional[DataProvider] = None, symbols: Optional[List[str]] = None):
"""
Initialize COB Integration
@ -45,15 +45,8 @@ class COBIntegration:
self.data_provider = data_provider
self.symbols = symbols or ['BTC/USDT', 'ETH/USDT']
# Initialize COB provider
self.cob_provider = MultiExchangeCOBProvider(
symbols=self.symbols,
bucket_size_bps=1.0 # 1 basis point granularity
)
# Register callbacks
self.cob_provider.subscribe_to_cob_updates(self._on_cob_update)
self.cob_provider.subscribe_to_bucket_updates(self._on_bucket_update)
# Initialize COB provider to None, will be set in start()
self.cob_provider = None
# CNN/DQN integration
self.cnn_callbacks: List[Callable] = []
@ -75,13 +68,23 @@ class COBIntegration:
self.liquidity_alerts[symbol] = []
self.arbitrage_opportunities[symbol] = []
logger.info("COB Integration initialized")
logger.info("COB Integration initialized (provider will be started in async)")
logger.info(f"Symbols: {self.symbols}")
async def start(self):
"""Start COB integration"""
logger.info("Starting COB Integration")
# Initialize COB provider here, within the async context
self.cob_provider = MultiExchangeCOBProvider(
symbols=self.symbols,
bucket_size_bps=1.0 # 1 basis point granularity
)
# Register callbacks
self.cob_provider.subscribe_to_cob_updates(self._on_cob_update)
self.cob_provider.subscribe_to_bucket_updates(self._on_bucket_update)
# Start COB provider
await self.cob_provider.start_streaming()
@ -94,7 +97,8 @@ class COBIntegration:
async def stop(self):
"""Stop COB integration"""
logger.info("Stopping COB Integration")
await self.cob_provider.stop_streaming()
if self.cob_provider:
await self.cob_provider.stop_streaming()
logger.info("COB Integration stopped")
def add_cnn_callback(self, callback: Callable[[str, Dict], None]):
@ -293,7 +297,9 @@ class COBIntegration:
"""Generate formatted data for dashboard visualization"""
try:
# Get fixed bucket size for the symbol
bucket_size = self.cob_provider.fixed_usd_buckets.get(symbol, 1.0)
bucket_size = 1.0 # Default bucket size
if self.cob_provider:
bucket_size = self.cob_provider.fixed_usd_buckets.get(symbol, 1.0)
# Calculate price range for buckets
mid_price = cob_snapshot.volume_weighted_mid
@ -338,15 +344,16 @@ class COBIntegration:
# Get actual Session Volume Profile (SVP) from trade data
svp_data = []
try:
svp_result = self.cob_provider.get_session_volume_profile(symbol, bucket_size)
if svp_result and 'data' in svp_result:
svp_data = svp_result['data']
logger.debug(f"Retrieved SVP data for {symbol}: {len(svp_data)} price levels")
else:
logger.warning(f"No SVP data available for {symbol}")
except Exception as e:
logger.error(f"Error getting SVP data for {symbol}: {e}")
if self.cob_provider:
try:
svp_result = self.cob_provider.get_session_volume_profile(symbol, bucket_size)
if svp_result and 'data' in svp_result:
svp_data = svp_result['data']
logger.debug(f"Retrieved SVP data for {symbol}: {len(svp_data)} price levels")
else:
logger.warning(f"No SVP data available for {symbol}")
except Exception as e:
logger.error(f"Error getting SVP data for {symbol}: {e}")
# Generate market stats
stats = {
@ -381,19 +388,21 @@ class COBIntegration:
stats['svp_price_levels'] = 0
stats['session_start'] = ''
# Add real-time statistics for NN models
try:
realtime_stats = self.cob_provider.get_realtime_stats(symbol)
if realtime_stats:
stats['realtime_1s'] = realtime_stats.get('1s_stats', {})
stats['realtime_5s'] = realtime_stats.get('5s_stats', {})
else:
# Get additional real-time stats
realtime_stats = {}
if self.cob_provider:
try:
realtime_stats = self.cob_provider.get_realtime_stats(symbol)
if realtime_stats:
stats['realtime_1s'] = realtime_stats.get('1s_stats', {})
stats['realtime_5s'] = realtime_stats.get('5s_stats', {})
else:
stats['realtime_1s'] = {}
stats['realtime_5s'] = {}
except Exception as e:
logger.error(f"Error getting real-time stats for {symbol}: {e}")
stats['realtime_1s'] = {}
stats['realtime_5s'] = {}
except Exception as e:
logger.error(f"Error getting real-time stats for {symbol}: {e}")
stats['realtime_1s'] = {}
stats['realtime_5s'] = {}
return {
'type': 'cob_update',
@ -463,9 +472,10 @@ class COBIntegration:
while True:
try:
for symbol in self.symbols:
cob_snapshot = self.cob_provider.get_consolidated_orderbook(symbol)
if cob_snapshot:
await self._analyze_cob_patterns(symbol, cob_snapshot)
if self.cob_provider:
cob_snapshot = self.cob_provider.get_consolidated_orderbook(symbol)
if cob_snapshot:
await self._analyze_cob_patterns(symbol, cob_snapshot)
await asyncio.sleep(1)
@ -540,18 +550,26 @@ class COBIntegration:
def get_cob_snapshot(self, symbol: str) -> Optional[COBSnapshot]:
"""Get latest COB snapshot for a symbol"""
if not self.cob_provider:
return None
return self.cob_provider.get_consolidated_orderbook(symbol)
def get_market_depth_analysis(self, symbol: str) -> Optional[Dict]:
"""Get detailed market depth analysis"""
if not self.cob_provider:
return None
return self.cob_provider.get_market_depth_analysis(symbol)
def get_exchange_breakdown(self, symbol: str) -> Optional[Dict]:
"""Get liquidity breakdown by exchange"""
if not self.cob_provider:
return None
return self.cob_provider.get_exchange_breakdown(symbol)
def get_price_buckets(self, symbol: str) -> Optional[Dict]:
"""Get fine-grain price buckets"""
if not self.cob_provider:
return None
return self.cob_provider.get_price_buckets(symbol)
def get_recent_signals(self, symbol: str, count: int = 20) -> List[Dict]:
@ -560,6 +578,16 @@ class COBIntegration:
def get_statistics(self) -> Dict[str, Any]:
"""Get COB integration statistics"""
if not self.cob_provider:
return {
'cnn_callbacks': len(self.cnn_callbacks),
'dqn_callbacks': len(self.dqn_callbacks),
'dashboard_callbacks': len(self.dashboard_callbacks),
'cached_features': list(self.cob_feature_cache.keys()),
'total_signals': {symbol: len(signals) for symbol, signals in self.cob_signals.items()},
'provider_status': 'Not initialized'
}
provider_stats = self.cob_provider.get_statistics()
return {
@ -574,6 +602,11 @@ class COBIntegration:
def get_realtime_stats_for_nn(self, symbol: str) -> Dict:
"""Get real-time statistics formatted for NN models"""
try:
# Check if COB provider is initialized
if not self.cob_provider:
logger.debug(f"COB provider not initialized yet for {symbol}")
return {}
realtime_stats = self.cob_provider.get_realtime_stats(symbol)
if not realtime_stats:
return {}
@ -608,4 +641,66 @@ class COBIntegration:
except Exception as e:
logger.error(f"Error getting NN stats for {symbol}: {e}")
return {}
return {}
def get_realtime_stats(self):
# Added null check to ensure the COB provider is initialized
if self.cob_provider is None:
logger.warning("COB provider is uninitialized; attempting initialization.")
self.initialize_provider()
if self.cob_provider is None:
logger.error("COB provider failed to initialize; returning default empty snapshot.")
return COBSnapshot(
symbol="",
timestamp=0,
exchanges_active=0,
total_bid_liquidity=0,
total_ask_liquidity=0,
price_buckets=[],
volume_weighted_mid=0,
spread_bps=0,
liquidity_imbalance=0,
consolidated_bids=[],
consolidated_asks=[]
)
try:
snapshot = self.cob_provider.get_realtime_stats()
return snapshot
except Exception as e:
logger.error(f"Error retrieving COB snapshot: {e}")
return COBSnapshot(
symbol="",
timestamp=0,
exchanges_active=0,
total_bid_liquidity=0,
total_ask_liquidity=0,
price_buckets=[],
volume_weighted_mid=0,
spread_bps=0,
liquidity_imbalance=0,
consolidated_bids=[],
consolidated_asks=[]
)
def stop_streaming(self):
pass
def _initialize_cob_integration(self):
"""Initialize COB integration with high-frequency data handling"""
logger.info("Initializing COB integration...")
if not COB_INTEGRATION_AVAILABLE:
logger.warning("COB integration not available - skipping initialization")
return
try:
if not hasattr(self.orchestrator, 'cob_integration') or self.orchestrator.cob_integration is None:
logger.info("Creating new COB integration instance")
self.orchestrator.cob_integration = COBIntegration(self.data_provider)
else:
logger.info("Using existing COB integration from orchestrator")
# Start simple COB data collection for both symbols
self._start_simple_cob_collection()
logger.info("COB integration initialized successfully")
except Exception as e:
logger.error(f"Error initializing COB integration: {e}")

View File

@ -33,7 +33,7 @@ except ImportError:
import numpy as np
import pandas as pd
from datetime import datetime, timedelta
from typing import Dict, List, Optional, Tuple, Any, Callable, Union
from typing import Dict, List, Optional, Tuple, Any, Callable, Union, Awaitable
from collections import deque, defaultdict
from dataclasses import dataclass, field
from threading import Thread, Lock
@ -194,6 +194,11 @@ class MultiExchangeCOBProvider:
# Thread safety
self.data_lock = asyncio.Lock()
# Initialize aiohttp session and connector to None, will be set up in start_streaming
self.session: Optional[aiohttp.ClientSession] = None
self.connector: Optional[aiohttp.TCPConnector] = None
self.rest_session: Optional[aiohttp.ClientSession] = None # Added for explicit None initialization
# Create REST API session
# Fix for Windows aiodns issue - use ThreadedResolver instead
connector = aiohttp.TCPConnector(
@ -286,64 +291,62 @@ class MultiExchangeCOBProvider:
return configs
async def start_streaming(self):
"""Start streaming from all configured exchanges"""
if self.is_streaming:
logger.warning("COB streaming already active")
return
logger.info("Starting Multi-Exchange COB streaming")
"""Start real-time order book streaming from all configured exchanges"""
logger.info(f"Starting COB streaming for symbols: {self.symbols}")
self.is_streaming = True
# Start streaming tasks for each exchange and symbol
# Setup aiohttp session here, within the async context
await self._setup_http_session()
# Start WebSocket connections for each active exchange and symbol
tasks = []
for exchange_name in self.active_exchanges:
for symbol in self.symbols:
# WebSocket task for real-time top 20 levels
task = asyncio.create_task(
self._stream_exchange_orderbook(exchange_name, symbol)
)
tasks.append(task)
# REST API task for deep order book snapshots
deep_task = asyncio.create_task(
self._stream_deep_orderbook(exchange_name, symbol)
)
tasks.append(deep_task)
# Trade stream task for SVP
if exchange_name == 'binance':
trade_task = asyncio.create_task(
self._stream_binance_trades(symbol)
)
tasks.append(trade_task)
# Start consolidation and analysis tasks
tasks.extend([
asyncio.create_task(self._continuous_consolidation()),
asyncio.create_task(self._continuous_bucket_updates())
])
# Wait for all tasks
try:
await asyncio.gather(*tasks)
except Exception as e:
logger.error(f"Error in streaming tasks: {e}")
finally:
self.is_streaming = False
for symbol in self.symbols:
for exchange_name, config in self.exchange_configs.items():
if config.enabled and exchange_name in self.active_exchanges:
# Start WebSocket stream
tasks.append(self._stream_exchange_orderbook(exchange_name, symbol))
# Start deep order book (REST API) stream
tasks.append(self._stream_deep_orderbook(exchange_name, symbol))
# Start trade stream (for SVP)
if exchange_name == 'binance': # Only Binance for now
tasks.append(self._stream_binance_trades(symbol))
# Start continuous consolidation and bucket updates
tasks.append(self._continuous_consolidation())
tasks.append(self._continuous_bucket_updates())
logger.info(f"Starting {len(tasks)} COB streaming tasks")
await asyncio.gather(*tasks)
async def _setup_http_session(self):
"""Setup aiohttp session and connector"""
self.connector = aiohttp.TCPConnector(
resolver=aiohttp.ThreadedResolver() # This is now created inside async function
)
self.session = aiohttp.ClientSession(connector=self.connector)
self.rest_session = aiohttp.ClientSession(connector=self.connector) # Moved here from __init__
logger.info("aiohttp session and connector setup completed")
async def stop_streaming(self):
"""Stop streaming from all exchanges"""
logger.info("Stopping Multi-Exchange COB streaming")
"""Stop real-time order book streaming and close sessions"""
logger.info("Stopping COB Integration")
self.is_streaming = False
# Close REST API session
if self.rest_session:
if self.session and not self.session.closed:
await self.session.close()
logger.info("aiohttp session closed")
if self.rest_session and not self.rest_session.closed:
await self.rest_session.close()
self.rest_session = None
# Wait a bit for tasks to stop gracefully
await asyncio.sleep(1)
logger.info("aiohttp REST session closed")
if self.connector and not self.connector.closed:
await self.connector.close()
logger.info("aiohttp connector closed")
logger.info("COB Integration stopped")
async def _stream_deep_orderbook(self, exchange_name: str, symbol: str):
"""Fetch deep order book data via REST API periodically"""
@ -1086,12 +1089,12 @@ class MultiExchangeCOBProvider:
# Public interface methods
def subscribe_to_cob_updates(self, callback: Callable[[str, COBSnapshot], None]):
def subscribe_to_cob_updates(self, callback: Callable[[str, COBSnapshot], Awaitable[None]]):
"""Subscribe to consolidated order book updates"""
self.cob_update_callbacks.append(callback)
logger.info(f"Added COB update callback: {len(self.cob_update_callbacks)} total")
def subscribe_to_bucket_updates(self, callback: Callable[[str, Dict], None]):
def subscribe_to_bucket_updates(self, callback: Callable[[str, Dict], Awaitable[None]]):
"""Subscribe to price bucket updates"""
self.bucket_update_callbacks.append(callback)
logger.info(f"Added bucket update callback: {len(self.bucket_update_callbacks)} total")

View File

@ -386,7 +386,7 @@ class TradingOrchestrator:
# Import COB integration directly (same as working dashboard)
from core.cob_integration import COBIntegration
# Initialize COB integration with our symbols
# Initialize COB integration with our symbols (but don't start it yet)
self.cob_integration = COBIntegration(symbols=self.symbols)
# Register callbacks to receive real-time COB data
@ -440,13 +440,21 @@ class TradingOrchestrator:
except Exception as e:
logger.error(f"Error initializing COB integration: {e}")
self.cob_integration = None
self.cob_integration = None # Ensure it's None if init fails
logger.info("COB integration will be disabled - models will use basic price data")
async def start_cob_integration(self):
"""Start COB integration with matrix data collection"""
try:
if self.cob_integration:
if not self.cob_integration:
logger.info("COB integration not initialized yet, creating instance.")
from core.cob_integration import COBIntegration
self.cob_integration = COBIntegration(symbols=self.symbols)
# Re-register callbacks if COBIntegration was just created
self.cob_integration.add_cnn_callback(self._on_cob_cnn_features)
self.cob_integration.add_dqn_callback(self._on_cob_dqn_features)
self.cob_integration.add_dashboard_callback(self._on_cob_dashboard_data)
logger.info("Starting COB integration with 5-minute matrix collection...")
# Start COB integration in background thread
@ -480,12 +488,11 @@ class TradingOrchestrator:
self._start_cob_matrix_worker()
logger.info("COB Integration started - 5-minute data matrix streaming active")
else:
logger.warning("COB integration is None - cannot start")
except Exception as e:
logger.error(f"Error starting COB integration: {e}")
self.cob_integration = None
logger.info("COB integration will be disabled - models will use basic price data")
def _start_cob_matrix_worker(self):
"""Start background worker for COB matrix updates"""
@ -760,7 +767,18 @@ class TradingOrchestrator:
def get_cob_snapshot(self, symbol: str) -> Optional[COBSnapshot]:
"""Get latest COB snapshot for a symbol"""
return self.latest_cob_data.get(symbol)
try:
# First try to get from COB integration (live data)
if self.cob_integration:
snapshot = self.cob_integration.get_cob_snapshot(symbol)
if snapshot:
return snapshot
# Fallback to cached data if COB integration not available
return self.latest_cob_data.get(symbol)
except Exception as e:
logger.warning(f"Error getting COB snapshot for {symbol}: {e}")
return None
def get_cob_feature_matrix(self, symbol: str, sequence_length: int = 60) -> Optional[np.ndarray]:
"""
@ -1325,12 +1343,25 @@ class TradingOrchestrator:
if state is None:
return None
# Get RL agent's action and confidence - use the actual underlying model
# Get RL agent's action, confidence, and q_values from the underlying model
if hasattr(model.model, 'act_with_confidence'):
action_idx, confidence = model.model.act_with_confidence(state)
# Call act_with_confidence and handle different return formats
result = model.model.act_with_confidence(state)
if len(result) == 3:
# EnhancedCNN format: (action, confidence, q_values)
action_idx, confidence, raw_q_values = result
elif len(result) == 2:
# DQN format: (action, confidence)
action_idx, confidence = result
raw_q_values = None
else:
logger.error(f"Unexpected return format from act_with_confidence: {len(result)} values")
return None
elif hasattr(model.model, 'act'):
action_idx = model.model.act(state, explore=False)
confidence = 0.7 # Default confidence for basic act method
raw_q_values = None # No raw q_values from simple act
else:
logger.error(f"RL model {model.name} has no act method")
return None
@ -1338,11 +1369,19 @@ class TradingOrchestrator:
action_names = ['SELL', 'HOLD', 'BUY']
action = action_names[action_idx]
# Convert raw_q_values to list if they are a tensor
q_values_for_capture = None
if raw_q_values is not None and hasattr(raw_q_values, 'tolist'):
q_values_for_capture = raw_q_values.tolist()
elif raw_q_values is not None and isinstance(raw_q_values, list):
q_values_for_capture = raw_q_values
# Create prediction object
prediction = Prediction(
action=action,
confidence=float(confidence),
probabilities={action: float(confidence), 'HOLD': 1.0 - float(confidence)},
# Use actual q_values if available, otherwise default probabilities
probabilities={action_names[i]: float(q_values_for_capture[i]) if q_values_for_capture else (1.0 / len(action_names)) for i in range(len(action_names))},
timeframe='mixed', # RL uses mixed timeframes
timestamp=datetime.now(),
model_name=model.name,
@ -1352,17 +1391,9 @@ class TradingOrchestrator:
# Capture DQN prediction for dashboard visualization
current_price = self._get_current_price(symbol)
if current_price:
# Get Q-values if available
q_values = [0.33, 0.33, 0.34] # Default
if hasattr(model, 'get_q_values'):
try:
q_values = model.get_q_values(state)
if hasattr(q_values, 'tolist'):
q_values = q_values.tolist()
except:
pass
self.capture_dqn_prediction(symbol, action_idx, float(confidence), current_price, q_values)
# Only pass q_values if they exist, otherwise pass empty list
q_values_to_pass = q_values_for_capture if q_values_for_capture is not None else []
self.capture_dqn_prediction(symbol, action_idx, float(confidence), current_price, q_values_to_pass)
return prediction
@ -2434,11 +2465,11 @@ class TradingOrchestrator:
self.decision_fusion_network = DecisionFusionNet()
logger.info("Decision fusion network initialized")
except Exception as e:
logger.warning(f"Decision fusion initialization failed: {e}")
self.decision_fusion_enabled = False
def _initialize_enhanced_training_system(self):
"""Initialize the enhanced real-time training system"""
try:
@ -2599,7 +2630,7 @@ class TradingOrchestrator:
if self.enhanced_training_system:
self.enhanced_training_system.dashboard = dashboard
logger.info("Dashboard reference set for enhanced training system")
except Exception as e:
logger.error(f"Error setting training dashboard: {e}")

View File

@ -13,6 +13,9 @@ import logging
from datetime import datetime
from typing import Dict, List, Any, Optional
import numpy as np
from utils.reward_calculator import RewardCalculator
import threading
import time
logger = logging.getLogger(__name__)
@ -21,8 +24,16 @@ class TrainingIntegration:
def __init__(self, orchestrator=None):
self.orchestrator = orchestrator
self.reward_calculator = RewardCalculator()
self.training_sessions = {}
self.min_confidence_threshold = 0.15 # Lowered from 0.3 for more aggressive training
self.training_active = False
self.trainer_thread = None
self.stop_event = threading.Event()
self.training_lock = threading.Lock()
self.last_training_time = 0.0 if orchestrator is None else time.time()
self.training_interval = 300 # 5 minutes between training sessions
self.min_data_points = 100 # Minimum data points required to trigger training
logger.info("TrainingIntegration initialized")
@ -347,46 +358,32 @@ class TrainingIntegration:
return False
def get_training_status(self) -> Dict[str, Any]:
"""Get current training integration status"""
"""Get current training status"""
try:
status = {
'orchestrator_available': self.orchestrator is not None,
'training_sessions': len(self.training_sessions),
'last_update': datetime.now().isoformat()
'active': self.training_active,
'last_training_time': self.last_training_time,
'training_sessions': self.training_sessions if self.training_sessions else {}
}
if self.orchestrator:
status['dqn_available'] = hasattr(self.orchestrator, 'dqn_agent') and self.orchestrator.dqn_agent is not None
status['cnn_available'] = hasattr(self.orchestrator, 'williams_cnn') and self.orchestrator.williams_cnn is not None
status['cob_available'] = hasattr(self.orchestrator, 'cob_integration') and self.orchestrator.cob_integration is not None
return status
except Exception as e:
logger.error(f"Error getting training status: {e}")
return {'error': str(e)}
return {}
def start_training_session(self, session_name: str, config: Dict[str, Any] = None) -> str:
"""Start a new training session"""
try:
session_id = f"{session_name}_{datetime.now().strftime('%Y%m%d_%H%M%S')}"
session_data = {
'session_id': session_id,
'session_name': session_name,
'start_time': datetime.now().isoformat(),
'config': config or {},
self.training_sessions[session_id] = {
'name': session_name,
'start_time': datetime.now(),
'config': config if config else {},
'trades_processed': 0,
'successful_trainings': 0,
'failed_trainings': 0
'training_attempts': 0,
'successful_trainings': 0
}
self.training_sessions[session_id] = session_data
logger.info(f"Started training session: {session_id}")
return session_id
except Exception as e:
logger.error(f"Error starting training session: {e}")
return ""

View File

@ -1,53 +0,0 @@
#!/usr/bin/env python3
"""
Simple callback debug script to see exact error
"""
import requests
import json
def test_simple_callback():
"""Test a simple callback to see the exact error"""
try:
# Test the simplest possible callback
callback_data = {
"output": "current-balance.children",
"inputs": [
{
"id": "ultra-fast-interval",
"property": "n_intervals",
"value": 1
}
]
}
print("Sending callback request...")
response = requests.post(
'http://127.0.0.1:8051/_dash-update-component',
json=callback_data,
timeout=15,
headers={'Content-Type': 'application/json'}
)
print(f"Status Code: {response.status_code}")
print(f"Response Headers: {dict(response.headers)}")
print(f"Response Text (first 1000 chars):")
print(response.text[:1000])
print("=" * 50)
if response.status_code == 500:
# Try to extract error from HTML
if "Traceback" in response.text:
lines = response.text.split('\n')
for i, line in enumerate(lines):
if "Traceback" in line:
# Print next 20 lines for error details
for j in range(i, min(i+20, len(lines))):
print(lines[j])
break
except Exception as e:
print(f"Request failed: {e}")
if __name__ == "__main__":
test_simple_callback()

View File

@ -1,111 +0,0 @@
#!/usr/bin/env python3
"""
Debug Dashboard - Minimal version to test callback functionality
"""
import logging
import sys
from pathlib import Path
from datetime import datetime
# Add project root to path
project_root = Path(__file__).parent
sys.path.insert(0, str(project_root))
import dash
from dash import dcc, html, Input, Output
import plotly.graph_objects as go
# Setup logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
def create_debug_dashboard():
"""Create minimal debug dashboard"""
app = dash.Dash(__name__)
app.layout = html.Div([
html.H1("🔧 Debug Dashboard - Callback Test", className="text-center"),
html.Div([
html.H3(id="debug-time", className="text-center"),
html.H4(id="debug-counter", className="text-center"),
html.P(id="debug-status", className="text-center"),
dcc.Graph(id="debug-chart")
]),
dcc.Interval(
id='debug-interval',
interval=2000, # 2 seconds
n_intervals=0
)
])
@app.callback(
[
Output('debug-time', 'children'),
Output('debug-counter', 'children'),
Output('debug-status', 'children'),
Output('debug-chart', 'figure')
],
[Input('debug-interval', 'n_intervals')]
)
def update_debug_dashboard(n_intervals):
"""Debug callback function"""
try:
logger.info(f"🔧 DEBUG: Callback triggered, interval: {n_intervals}")
current_time = datetime.now().strftime("%H:%M:%S")
counter = f"Updates: {n_intervals}"
status = f"Callback working! Last update: {current_time}"
# Create simple test chart
fig = go.Figure()
fig.add_trace(go.Scatter(
x=list(range(max(0, n_intervals-10), n_intervals + 1)),
y=[i**2 for i in range(max(0, n_intervals-10), n_intervals + 1)],
mode='lines+markers',
name='Debug Data',
line=dict(color='#00ff88')
))
fig.update_layout(
title=f"Debug Chart - Update #{n_intervals}",
template="plotly_dark",
paper_bgcolor='#1e1e1e',
plot_bgcolor='#1e1e1e'
)
logger.info(f"✅ DEBUG: Returning data - time={current_time}, counter={counter}")
return current_time, counter, status, fig
except Exception as e:
logger.error(f"❌ DEBUG: Error in callback: {e}")
import traceback
logger.error(f"Traceback: {traceback.format_exc()}")
return "Error", "Error", "Callback failed", {}
return app
def main():
"""Run the debug dashboard"""
logger.info("🔧 Starting debug dashboard...")
try:
app = create_debug_dashboard()
logger.info("✅ Debug dashboard created")
logger.info("🚀 Starting debug dashboard on http://127.0.0.1:8053")
logger.info("This will test if Dash callbacks work at all")
logger.info("Press Ctrl+C to stop")
app.run(host='127.0.0.1', port=8053, debug=True)
except KeyboardInterrupt:
logger.info("Debug dashboard stopped by user")
except Exception as e:
logger.error(f"❌ Error: {e}")
import traceback
traceback.print_exc()
if __name__ == "__main__":
main()

View File

@ -1,321 +0,0 @@
#!/usr/bin/env python3
"""
Debug Dashboard - Enhanced error logging to identify 500 errors
"""
import logging
import sys
import traceback
from pathlib import Path
from datetime import datetime
import pandas as pd
# Add project root to path
project_root = Path(__file__).parent
sys.path.insert(0, str(project_root))
import dash
from dash import dcc, html, Input, Output
import plotly.graph_objects as go
from core.config import setup_logging
from core.data_provider import DataProvider
# Setup logging without emojis
logging.basicConfig(
level=logging.DEBUG,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[
logging.StreamHandler(sys.stdout),
logging.FileHandler('debug_dashboard.log')
]
)
logger = logging.getLogger(__name__)
class DebugDashboard:
"""Debug dashboard with enhanced error logging"""
def __init__(self):
logger.info("Initializing debug dashboard...")
try:
self.data_provider = DataProvider()
logger.info("Data provider initialized successfully")
except Exception as e:
logger.error(f"Error initializing data provider: {e}")
logger.error(f"Traceback: {traceback.format_exc()}")
raise
# Initialize app
self.app = dash.Dash(__name__)
logger.info("Dash app created")
# Setup layout and callbacks
try:
self._setup_layout()
logger.info("Layout setup completed")
except Exception as e:
logger.error(f"Error setting up layout: {e}")
logger.error(f"Traceback: {traceback.format_exc()}")
raise
try:
self._setup_callbacks()
logger.info("Callbacks setup completed")
except Exception as e:
logger.error(f"Error setting up callbacks: {e}")
logger.error(f"Traceback: {traceback.format_exc()}")
raise
logger.info("Debug dashboard initialized successfully")
def _setup_layout(self):
"""Setup minimal layout for debugging"""
logger.info("Setting up layout...")
self.app.layout = html.Div([
html.H1("Debug Dashboard - 500 Error Investigation", className="text-center"),
# Simple metrics
html.Div([
html.Div([
html.H3(id="current-time", children="Loading..."),
html.P("Current Time")
], className="col-md-3"),
html.Div([
html.H3(id="update-counter", children="0"),
html.P("Update Count")
], className="col-md-3"),
html.Div([
html.H3(id="status", children="Starting..."),
html.P("Status")
], className="col-md-3"),
html.Div([
html.H3(id="error-count", children="0"),
html.P("Error Count")
], className="col-md-3")
], className="row mb-4"),
# Error log
html.Div([
html.H4("Error Log"),
html.Div(id="error-log", children="No errors yet...")
], className="mb-4"),
# Simple chart
html.Div([
dcc.Graph(id="debug-chart", style={"height": "300px"})
]),
# Interval component
dcc.Interval(
id='debug-interval',
interval=2000, # 2 seconds for easier debugging
n_intervals=0
)
], className="container-fluid")
logger.info("Layout setup completed")
def _setup_callbacks(self):
"""Setup callbacks with extensive error handling"""
logger.info("Setting up callbacks...")
# Store reference to self
dashboard_instance = self
error_count = 0
error_log = []
@self.app.callback(
[
Output('current-time', 'children'),
Output('update-counter', 'children'),
Output('status', 'children'),
Output('error-count', 'children'),
Output('error-log', 'children'),
Output('debug-chart', 'figure')
],
[Input('debug-interval', 'n_intervals')]
)
def update_debug_dashboard(n_intervals):
"""Debug callback with extensive error handling"""
nonlocal error_count, error_log
logger.info(f"=== CALLBACK START - Interval {n_intervals} ===")
try:
# Current time
current_time = datetime.now().strftime("%H:%M:%S")
logger.info(f"Current time: {current_time}")
# Update counter
counter = f"Updates: {n_intervals}"
logger.info(f"Counter: {counter}")
# Status
status = "Running OK" if n_intervals > 0 else "Starting"
logger.info(f"Status: {status}")
# Error count
error_count_str = f"Errors: {error_count}"
logger.info(f"Error count: {error_count_str}")
# Error log display
if error_log:
error_display = html.Div([
html.P(f"Error {i+1}: {error}", className="text-danger")
for i, error in enumerate(error_log[-5:]) # Show last 5 errors
])
else:
error_display = "No errors yet..."
# Create chart
logger.info("Creating chart...")
try:
chart = dashboard_instance._create_debug_chart(n_intervals)
logger.info("Chart created successfully")
except Exception as chart_error:
logger.error(f"Error creating chart: {chart_error}")
logger.error(f"Chart error traceback: {traceback.format_exc()}")
error_count += 1
error_log.append(f"Chart error: {str(chart_error)}")
chart = dashboard_instance._create_error_chart(str(chart_error))
logger.info("=== CALLBACK SUCCESS ===")
return current_time, counter, status, error_count_str, error_display, chart
except Exception as e:
error_count += 1
error_msg = f"Callback error: {str(e)}"
error_log.append(error_msg)
logger.error(f"=== CALLBACK ERROR ===")
logger.error(f"Error: {e}")
logger.error(f"Error type: {type(e)}")
logger.error(f"Traceback: {traceback.format_exc()}")
# Return safe fallback values
error_chart = dashboard_instance._create_error_chart(str(e))
error_display = html.Div([
html.P(f"CALLBACK ERROR: {str(e)}", className="text-danger"),
html.P(f"Error count: {error_count}", className="text-warning")
])
return "ERROR", f"Errors: {error_count}", "FAILED", f"Errors: {error_count}", error_display, error_chart
logger.info("Callbacks setup completed")
def _create_debug_chart(self, n_intervals):
"""Create a simple debug chart"""
logger.info(f"Creating debug chart for interval {n_intervals}")
try:
# Try to get real data every 5 intervals
if n_intervals % 5 == 0:
logger.info("Attempting to fetch real data...")
try:
df = self.data_provider.get_historical_data('ETH/USDT', '1m', limit=20)
if df is not None and not df.empty:
logger.info(f"Fetched {len(df)} real candles")
self.chart_data = df
else:
logger.warning("No real data returned")
except Exception as data_error:
logger.error(f"Error fetching real data: {data_error}")
logger.error(f"Data fetch traceback: {traceback.format_exc()}")
# Create chart
fig = go.Figure()
if hasattr(self, 'chart_data') and not self.chart_data.empty:
logger.info("Using real data for chart")
fig.add_trace(go.Scatter(
x=self.chart_data['timestamp'],
y=self.chart_data['close'],
mode='lines',
name='ETH/USDT Real',
line=dict(color='#00ff88')
))
title = f"ETH/USDT Real Data - Update #{n_intervals}"
else:
logger.info("Using mock data for chart")
# Simple mock data
x_data = list(range(max(0, n_intervals-10), n_intervals + 1))
y_data = [3500 + 50 * (i % 5) for i in x_data]
fig.add_trace(go.Scatter(
x=x_data,
y=y_data,
mode='lines',
name='Mock Data',
line=dict(color='#ff8800')
))
title = f"Mock Data - Update #{n_intervals}"
fig.update_layout(
title=title,
template="plotly_dark",
paper_bgcolor='#1e1e1e',
plot_bgcolor='#1e1e1e',
showlegend=False,
height=300
)
logger.info("Chart created successfully")
return fig
except Exception as e:
logger.error(f"Error in _create_debug_chart: {e}")
logger.error(f"Chart creation traceback: {traceback.format_exc()}")
raise
def _create_error_chart(self, error_msg):
"""Create error chart"""
logger.info(f"Creating error chart: {error_msg}")
fig = go.Figure()
fig.add_annotation(
text=f"Chart Error: {error_msg}",
xref="paper", yref="paper",
x=0.5, y=0.5, showarrow=False,
font=dict(size=14, color="#ff4444")
)
fig.update_layout(
template="plotly_dark",
paper_bgcolor='#1e1e1e',
plot_bgcolor='#1e1e1e',
height=300
)
return fig
def run(self, host='127.0.0.1', port=8053, debug=True):
"""Run the debug dashboard"""
logger.info(f"Starting debug dashboard at http://{host}:{port}")
logger.info("This dashboard has enhanced error logging to identify 500 errors")
try:
self.app.run(host=host, port=port, debug=debug)
except Exception as e:
logger.error(f"Error running dashboard: {e}")
logger.error(f"Run error traceback: {traceback.format_exc()}")
raise
def main():
"""Main function"""
logger.info("Starting debug dashboard main...")
try:
dashboard = DebugDashboard()
dashboard.run()
except KeyboardInterrupt:
logger.info("Dashboard stopped by user")
except Exception as e:
logger.error(f"Fatal error: {e}")
logger.error(f"Fatal traceback: {traceback.format_exc()}")
if __name__ == "__main__":
main()

View File

@ -1,142 +0,0 @@
#!/usr/bin/env python3
"""
Debug Dashboard Data Flow
Check if the dashboard is receiving data and updating properly.
"""
import sys
import logging
import time
import requests
import json
from pathlib import Path
# Add project root to path
project_root = Path(__file__).parent
sys.path.insert(0, str(project_root))
from core.config import get_config, setup_logging
from core.data_provider import DataProvider
# Setup logging
setup_logging()
logger = logging.getLogger(__name__)
def test_data_provider():
"""Test if data provider is working"""
logger.info("=== TESTING DATA PROVIDER ===")
try:
# Test data provider
data_provider = DataProvider()
# Test current price
logger.info("Testing current price retrieval...")
current_price = data_provider.get_current_price('ETH/USDT')
logger.info(f"Current ETH/USDT price: ${current_price}")
# Test historical data
logger.info("Testing historical data retrieval...")
df = data_provider.get_historical_data('ETH/USDT', '1m', limit=5, refresh=True)
if df is not None and not df.empty:
logger.info(f"Historical data: {len(df)} rows")
logger.info(f"Latest price: ${df['close'].iloc[-1]:.2f}")
logger.info(f"Latest timestamp: {df.index[-1]}")
else:
logger.error("No historical data available!")
return True
except Exception as e:
logger.error(f"Data provider test failed: {e}")
return False
def test_dashboard_api():
"""Test if dashboard API is responding"""
logger.info("=== TESTING DASHBOARD API ===")
try:
# Test main dashboard page
response = requests.get("http://127.0.0.1:8050", timeout=5)
logger.info(f"Dashboard main page status: {response.status_code}")
if response.status_code == 200:
logger.info("Dashboard is responding")
# Check if there are any JavaScript errors in the page
content = response.text
if 'error' in content.lower():
logger.warning("Possible errors found in dashboard HTML")
return True
else:
logger.error(f"Dashboard returned status {response.status_code}")
return False
except Exception as e:
logger.error(f"Dashboard API test failed: {e}")
return False
def test_dashboard_callbacks():
"""Test dashboard callback updates"""
logger.info("=== TESTING DASHBOARD CALLBACKS ===")
try:
# Test the callback endpoint (this would need to be exposed)
# For now, just check if the dashboard is serving content
# Wait a bit and check again
time.sleep(2)
response = requests.get("http://127.0.0.1:8050", timeout=5)
if response.status_code == 200:
logger.info("Dashboard callbacks appear to be working")
return True
else:
logger.error("Dashboard callbacks may be stuck")
return False
except Exception as e:
logger.error(f"Dashboard callback test failed: {e}")
return False
def main():
"""Run all diagnostic tests"""
logger.info("DASHBOARD DIAGNOSTIC TOOL")
logger.info("=" * 50)
results = {
'data_provider': test_data_provider(),
'dashboard_api': test_dashboard_api(),
'dashboard_callbacks': test_dashboard_callbacks()
}
logger.info("=" * 50)
logger.info("DIAGNOSTIC RESULTS:")
for test_name, result in results.items():
status = "PASS" if result else "FAIL"
logger.info(f" {test_name}: {status}")
if all(results.values()):
logger.info("All tests passed - issue may be browser-side")
logger.info("Try refreshing the dashboard at http://127.0.0.1:8050")
else:
logger.error("Issues detected - check logs above")
logger.info("Recommendations:")
if not results['data_provider']:
logger.info(" - Check internet connection")
logger.info(" - Verify Binance API is accessible")
if not results['dashboard_api']:
logger.info(" - Restart the dashboard")
logger.info(" - Check if port 8050 is blocked")
if not results['dashboard_callbacks']:
logger.info(" - Dashboard may be frozen")
logger.info(" - Consider restarting")
if __name__ == "__main__":
main()

View File

@ -1,149 +0,0 @@
#!/usr/bin/env python3
"""
Debug script for MEXC API authentication
"""
import os
import hmac
import hashlib
import time
import requests
from urllib.parse import urlencode
from dotenv import load_dotenv
# Load environment variables
load_dotenv()
def debug_mexc_auth():
"""Debug MEXC API authentication step by step"""
api_key = os.getenv('MEXC_API_KEY')
api_secret = os.getenv('MEXC_SECRET_KEY')
print("="*60)
print("MEXC API AUTHENTICATION DEBUG")
print("="*60)
print(f"API Key: {api_key}")
print(f"API Secret: {api_secret[:10]}...{api_secret[-10:]}")
print()
# Test 1: Public API (no auth required)
print("1. Testing Public API (ping)...")
try:
response = requests.get("https://api.mexc.com/api/v3/ping")
print(f" Status: {response.status_code}")
print(f" Response: {response.json()}")
print(" ✅ Public API works")
except Exception as e:
print(f" ❌ Public API failed: {e}")
return
print()
# Test 2: Get server time
print("2. Testing Server Time...")
try:
response = requests.get("https://api.mexc.com/api/v3/time")
server_time_data = response.json()
server_time = server_time_data['serverTime']
print(f" Server Time: {server_time}")
print(" ✅ Server time retrieved")
except Exception as e:
print(f" ❌ Server time failed: {e}")
return
print()
# Test 3: Manual signature generation and account request
print("3. Testing Authentication (manual signature)...")
# Get server time for accurate timestamp
try:
server_response = requests.get("https://api.mexc.com/api/v3/time")
server_time = server_response.json()['serverTime']
print(f" Using Server Time: {server_time}")
except:
server_time = int(time.time() * 1000)
print(f" Using Local Time: {server_time}")
# Parameters for account endpoint
params = {
'timestamp': server_time,
'recvWindow': 10000 # Increased receive window
}
print(f" Timestamp: {server_time}")
print(f" Params: {params}")
# Generate signature manually
# According to MEXC documentation, parameters should be sorted
sorted_params = sorted(params.items())
query_string = urlencode(sorted_params)
print(f" Query String: {query_string}")
# MEXC documentation shows signature in lowercase
signature = hmac.new(
api_secret.encode('utf-8'),
query_string.encode('utf-8'),
hashlib.sha256
).hexdigest()
print(f" Generated Signature (hex): {signature}")
print(f" API Secret used: {api_secret[:5]}...{api_secret[-5:]}")
print(f" Query string length: {len(query_string)}")
print(f" Signature length: {len(signature)}")
print(f" Generated Signature: {signature}")
# Add signature to params
params['signature'] = signature
# Make the request
headers = {
'X-MEXC-APIKEY': api_key
}
print(f" Headers: {headers}")
print(f" Final Params: {params}")
try:
response = requests.get(
"https://api.mexc.com/api/v3/account",
params=params,
headers=headers
)
print(f" Status Code: {response.status_code}")
print(f" Response Headers: {dict(response.headers)}")
if response.status_code == 200:
account_data = response.json()
print(f" ✅ Authentication successful!")
print(f" Account Type: {account_data.get('accountType', 'N/A')}")
print(f" Can Trade: {account_data.get('canTrade', 'N/A')}")
print(f" Can Withdraw: {account_data.get('canWithdraw', 'N/A')}")
print(f" Can Deposit: {account_data.get('canDeposit', 'N/A')}")
print(f" Number of balances: {len(account_data.get('balances', []))}")
# Show USDT balance
for balance in account_data.get('balances', []):
if balance['asset'] == 'USDT':
print(f" 💰 USDT Balance: {balance['free']} (locked: {balance['locked']})")
break
else:
print(f" ❌ Authentication failed!")
print(f" Response: {response.text}")
# Try to parse error
try:
error_data = response.json()
print(f" Error Code: {error_data.get('code', 'N/A')}")
print(f" Error Message: {error_data.get('msg', 'N/A')}")
except:
pass
except Exception as e:
print(f" ❌ Request failed: {e}")
if __name__ == "__main__":
debug_mexc_auth()

View File

@ -1,77 +0,0 @@
#!/usr/bin/env python3
"""
Debug Orchestrator Methods - Test enhanced orchestrator method availability
"""
import sys
from pathlib import Path
project_root = Path(__file__).parent
sys.path.insert(0, str(project_root))
def debug_orchestrator_methods():
"""Debug orchestrator method availability"""
print("=== DEBUGGING ORCHESTRATOR METHODS ===")
try:
# Import the classes we need
from core.enhanced_orchestrator import EnhancedTradingOrchestrator
from core.data_provider import DataProvider
from core.orchestrator import TradingOrchestrator
print("✓ Imports successful")
# Create basic data provider (no async)
dp = DataProvider()
print("✓ DataProvider created")
# Create basic orchestrator first
basic_orch = TradingOrchestrator(dp)
print("✓ Basic TradingOrchestrator created")
# Test basic orchestrator methods
basic_methods = ['calculate_enhanced_pivot_reward', 'build_comprehensive_rl_state']
print("\nBasic TradingOrchestrator methods:")
for method in basic_methods:
available = hasattr(basic_orch, method)
print(f" {method}: {'' if available else ''}")
# Now test Enhanced orchestrator class methods (not instantiated)
print("\nEnhancedTradingOrchestrator class methods:")
for method in basic_methods:
available = hasattr(EnhancedTradingOrchestrator, method)
print(f" {method}: {'' if available else ''}")
# Check what methods are actually in the EnhancedTradingOrchestrator
print(f"\nEnhancedTradingOrchestrator all methods:")
all_methods = [m for m in dir(EnhancedTradingOrchestrator) if not m.startswith('_')]
enhanced_methods = [m for m in all_methods if 'enhanced' in m.lower() or 'comprehensive' in m.lower() or 'pivot' in m.lower()]
print(f" Total methods: {len(all_methods)}")
print(f" Enhanced/comprehensive/pivot methods: {enhanced_methods}")
# Test specific methods we're looking for
target_methods = [
'calculate_enhanced_pivot_reward',
'build_comprehensive_rl_state',
'_get_symbol_correlation'
]
print(f"\nTarget methods in EnhancedTradingOrchestrator:")
for method in target_methods:
if hasattr(EnhancedTradingOrchestrator, method):
print(f"{method}: Found")
else:
print(f"{method}: Missing")
# Check if it's a similar name
similar = [m for m in all_methods if method.replace('_', '').lower() in m.replace('_', '').lower()]
if similar:
print(f" Similar: {similar}")
print("\n=== DEBUG COMPLETE ===")
except Exception as e:
print(f"✗ Debug failed: {e}")
import traceback
traceback.print_exc()
if __name__ == "__main__":
debug_orchestrator_methods()

View File

@ -1,44 +0,0 @@
#!/usr/bin/env python3
"""
Debug simple callback to see exact error
"""
import requests
import json
def debug_simple_callback():
"""Debug the simple callback"""
try:
callback_data = {
"output": "test-output.children",
"inputs": [
{
"id": "test-interval",
"property": "n_intervals",
"value": 1
}
]
}
print("Testing simple dashboard callback...")
response = requests.post(
'http://127.0.0.1:8052/_dash-update-component',
json=callback_data,
timeout=15,
headers={'Content-Type': 'application/json'}
)
print(f"Status Code: {response.status_code}")
if response.status_code == 500:
print("Error response:")
print(response.text)
else:
print("Success response:")
print(response.text[:500])
except Exception as e:
print(f"Request failed: {e}")
if __name__ == "__main__":
debug_simple_callback()

View File

@ -1,186 +0,0 @@
#!/usr/bin/env python3
"""
Trading Activity Diagnostic Script
Debug why no trades are happening after 6 hours
"""
import logging
import asyncio
from datetime import datetime, timedelta
import pandas as pd
import numpy as np
# Setup logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
async def diagnose_trading_system():
"""Comprehensive diagnosis of trading system"""
logger.info("=== TRADING SYSTEM DIAGNOSTIC ===")
try:
# Import core components
from core.config import get_config
from core.data_provider import DataProvider
from core.enhanced_orchestrator import EnhancedTradingOrchestrator
# Initialize components
config = get_config()
data_provider = DataProvider()
orchestrator = EnhancedTradingOrchestrator(
data_provider=data_provider,
symbols=['ETH/USDT', 'BTC/USDT'],
enhanced_rl_training=True
)
logger.info("✅ Components initialized successfully")
# 1. Check data availability
logger.info("\n=== DATA AVAILABILITY CHECK ===")
for symbol in ['ETH/USDT', 'BTC/USDT']:
for timeframe in ['1m', '5m', '1h']:
try:
data = data_provider.get_historical_data(symbol, timeframe, limit=10)
if data is not None and not data.empty:
logger.info(f"{symbol} {timeframe}: {len(data)} bars available")
logger.info(f" Last price: ${data['close'].iloc[-1]:.2f}")
else:
logger.error(f"{symbol} {timeframe}: NO DATA")
except Exception as e:
logger.error(f"{symbol} {timeframe}: ERROR - {e}")
# 2. Check model status
logger.info("\n=== MODEL STATUS CHECK ===")
model_status = orchestrator.get_loaded_models_status() if hasattr(orchestrator, 'get_loaded_models_status') else {}
logger.info(f"Loaded models: {model_status}")
# 3. Check confidence thresholds
logger.info("\n=== CONFIDENCE THRESHOLD CHECK ===")
logger.info(f"Entry threshold: {getattr(orchestrator, 'confidence_threshold_open', 'UNKNOWN')}")
logger.info(f"Exit threshold: {getattr(orchestrator, 'confidence_threshold_close', 'UNKNOWN')}")
logger.info(f"Config threshold: {config.orchestrator.get('confidence_threshold', 'UNKNOWN')}")
# 4. Test decision making
logger.info("\n=== DECISION MAKING TEST ===")
try:
decisions = await orchestrator.make_coordinated_decisions()
logger.info(f"Generated {len(decisions)} decisions")
for symbol, decision in decisions.items():
if decision:
logger.info(f"{symbol}: {decision.action} "
f"(confidence: {decision.confidence:.3f}, "
f"price: ${decision.price:.2f})")
else:
logger.warning(f"{symbol}: No decision generated")
except Exception as e:
logger.error(f"❌ Decision making failed: {e}")
# 5. Test cold start predictions
logger.info("\n=== COLD START PREDICTIONS TEST ===")
try:
await orchestrator.ensure_predictions_available()
logger.info("✅ Cold start predictions system working")
except Exception as e:
logger.error(f"❌ Cold start predictions failed: {e}")
# 6. Check cross-asset signals
logger.info("\n=== CROSS-ASSET SIGNALS TEST ===")
try:
from core.unified_data_stream import UniversalDataStream
# Create mock universal stream for testing
mock_stream = type('MockStream', (), {})()
mock_stream.get_latest_data = lambda symbol: {'price': 2500.0 if 'ETH' in symbol else 35000.0}
mock_stream.get_market_structure = lambda symbol: {'trend': 'NEUTRAL', 'strength': 0.5}
mock_stream.get_cob_data = lambda symbol: {'imbalance': 0.0, 'depth': 'BALANCED'}
btc_analysis = await orchestrator._analyze_btc_price_action(mock_stream)
logger.info(f"BTC analysis result: {btc_analysis}")
eth_decision = await orchestrator._make_eth_decision_from_btc_signals(
{'signal': 'NEUTRAL', 'strength': 0.5},
{'signal': 'NEUTRAL', 'imbalance': 0.0}
)
logger.info(f"ETH decision result: {eth_decision}")
except Exception as e:
logger.error(f"❌ Cross-asset signals failed: {e}")
# 7. Simulate trade with lower thresholds
logger.info("\n=== SIMULATED TRADE TEST ===")
try:
# Create mock prediction with low confidence
from core.enhanced_orchestrator import EnhancedPrediction
mock_prediction = EnhancedPrediction(
model_name="TEST",
timeframe="1m",
action="BUY",
confidence=0.30, # Lower confidence
overall_action="BUY",
overall_confidence=0.30,
timeframe_predictions=[],
reasoning="Test prediction"
)
# Test if this would generate a trade
current_price = 2500.0
quantity = 0.01
logger.info(f"Mock prediction: {mock_prediction.action} "
f"(confidence: {mock_prediction.confidence:.3f})")
if mock_prediction.confidence > 0.25: # Our new lower threshold
logger.info("✅ Would generate trade with new threshold")
else:
logger.warning("❌ Still below threshold")
except Exception as e:
logger.error(f"❌ Simulated trade test failed: {e}")
# 8. Check RL reward functions
logger.info("\n=== RL REWARD FUNCTION TEST ===")
try:
# Test reward calculation
mock_trade = {
'action': 'BUY',
'confidence': 0.75,
'price': 2500.0,
'timestamp': datetime.now()
}
mock_outcome = {
'net_pnl': 25.0, # $25 profit
'exit_price': 2525.0,
'duration': timedelta(minutes=15)
}
mock_market_data = {
'volatility': 0.03,
'order_flow_direction': 'bullish',
'order_flow_strength': 0.8
}
if hasattr(orchestrator, 'calculate_enhanced_pivot_reward'):
reward = orchestrator.calculate_enhanced_pivot_reward(
mock_trade, mock_market_data, mock_outcome
)
logger.info(f"✅ RL reward for profitable trade: {reward:.3f}")
else:
logger.warning("❌ Enhanced pivot reward function not available")
except Exception as e:
logger.error(f"❌ RL reward test failed: {e}")
logger.info("\n=== DIAGNOSTIC COMPLETE ===")
logger.info("Check results above to identify trading bottlenecks")
except Exception as e:
logger.error(f"Diagnostic failed: {e}")
import traceback
traceback.print_exc()
if __name__ == "__main__":
asyncio.run(diagnose_trading_system())

View File

@ -36,8 +36,8 @@ class EnhancedRealtimeTrainingSystem:
self.training_config = {
'dqn_training_interval': 5, # Train DQN every 5 seconds
'cnn_training_interval': 10, # Train CNN every 10 seconds
'batch_size': 64, # Larger batch size for stability
'memory_size': 10000, # Larger memory for diversity
'batch_size': 640, # Larger batch size for stability (increased 10x)
'memory_size': 100000, # Larger memory for diversity (increased 10x)
'validation_interval': 60, # Validate every minute
'adaptation_threshold': 0.1, # Adapt if performance drops 10%
'min_training_samples': 100 # Minimum samples before training

View File

@ -1,93 +0,0 @@
#!/usr/bin/env python3
"""
Test script to check Binance data availability
"""
import sys
import logging
from datetime import datetime
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
def test_binance_data():
"""Test Binance data fetching"""
print("="*60)
print("BINANCE DATA TEST")
print("="*60)
try:
print("1. Testing DataProvider import...")
from core.data_provider import DataProvider
print(" ✅ DataProvider imported successfully")
print("\n2. Creating DataProvider instance...")
dp = DataProvider()
print(f" ✅ DataProvider created")
print(f" Symbols: {dp.symbols}")
print(f" Timeframes: {dp.timeframes}")
print("\n3. Testing historical data fetch...")
try:
data = dp.get_historical_data('ETH/USDT', '1m', 10)
if data is not None:
print(f" ✅ Historical data fetched: {data.shape}")
print(f" Latest price: ${data['close'].iloc[-1]:.2f}")
print(f" Data range: {data.index[0]} to {data.index[-1]}")
else:
print(" ❌ No historical data returned")
except Exception as e:
print(f" ❌ Error fetching historical data: {e}")
print("\n4. Testing current price...")
try:
price = dp.get_current_price('ETH/USDT')
if price:
print(f" ✅ Current price: ${price:.2f}")
else:
print(" ❌ No current price available")
except Exception as e:
print(f" ❌ Error getting current price: {e}")
print("\n5. Testing real-time streaming setup...")
try:
# Check if streaming can be initialized
print(f" Streaming status: {dp.is_streaming}")
print(" ✅ Real-time streaming setup ready")
except Exception as e:
print(f" ❌ Real-time streaming error: {e}")
except Exception as e:
print(f"❌ Failed to import or create DataProvider: {e}")
import traceback
traceback.print_exc()
def test_dashboard_connection():
"""Test if dashboard can connect to data"""
print("\n" + "="*60)
print("DASHBOARD CONNECTION TEST")
print("="*60)
try:
print("1. Testing dashboard imports...")
from web.old_archived.scalping_dashboard import ScalpingDashboard
print(" ✅ ScalpingDashboard imported")
print("\n2. Testing data provider connection...")
# Check if the dashboard can create a data provider
dashboard = ScalpingDashboard()
if hasattr(dashboard, 'data_provider'):
print(" ✅ Dashboard has data_provider")
print(f" Data provider symbols: {dashboard.data_provider.symbols}")
else:
print(" ❌ Dashboard missing data_provider")
except Exception as e:
print(f"❌ Dashboard connection error: {e}")
import traceback
traceback.print_exc()
if __name__ == "__main__":
test_binance_data()
test_dashboard_connection()

View File

@ -1,221 +0,0 @@
#!/usr/bin/env python3
"""
Test callback registration to identify the issue
"""
import logging
import sys
from pathlib import Path
# Add project root to path
project_root = Path(__file__).parent
sys.path.insert(0, str(project_root))
import dash
from dash import dcc, html, Input, Output
# Setup logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
def test_simple_callback():
"""Test a simple callback registration"""
logger.info("Testing simple callback registration...")
app = dash.Dash(__name__)
app.layout = html.Div([
html.H1("Callback Registration Test"),
html.Div(id="output", children="Initial"),
dcc.Interval(id="interval", interval=1000, n_intervals=0)
])
@app.callback(
Output('output', 'children'),
Input('interval', 'n_intervals')
)
def update_output(n_intervals):
logger.info(f"Callback triggered: {n_intervals}")
return f"Update #{n_intervals}"
logger.info("Simple callback registered successfully")
# Check if callback is in the callback map
logger.info(f"Callback map keys: {list(app.callback_map.keys())}")
return app
def test_complex_callback():
"""Test a complex callback like the dashboard"""
logger.info("Testing complex callback registration...")
app = dash.Dash(__name__)
app.layout = html.Div([
html.H1("Complex Callback Test"),
html.Div(id="current-balance", children="$100.00"),
html.Div(id="session-duration", children="00:00:00"),
html.Div(id="status", children="Starting"),
dcc.Graph(id="chart"),
dcc.Interval(id="ultra-fast-interval", interval=1000, n_intervals=0)
])
@app.callback(
[
Output('current-balance', 'children'),
Output('session-duration', 'children'),
Output('status', 'children'),
Output('chart', 'figure')
],
[Input('ultra-fast-interval', 'n_intervals')]
)
def update_dashboard(n_intervals):
logger.info(f"Complex callback triggered: {n_intervals}")
import plotly.graph_objects as go
fig = go.Figure()
fig.add_trace(go.Scatter(x=[1, 2, 3], y=[1, 2, 3], mode='lines'))
fig.update_layout(template="plotly_dark")
return f"${100 + n_intervals:.2f}", f"00:00:{n_intervals:02d}", "Running", fig
logger.info("Complex callback registered successfully")
# Check if callback is in the callback map
logger.info(f"Callback map keys: {list(app.callback_map.keys())}")
return app
def test_dashboard_callback():
"""Test the exact dashboard callback structure"""
logger.info("Testing dashboard callback structure...")
try:
from core.data_provider import DataProvider
from core.enhanced_orchestrator import EnhancedTradingOrchestrator
app = dash.Dash(__name__)
# Minimal layout with dashboard elements
app.layout = html.Div([
html.H1("Dashboard Callback Test"),
html.Div(id="current-balance", children="$100.00"),
html.Div(id="session-duration", children="00:00:00"),
html.Div(id="open-positions", children="0"),
html.Div(id="live-pnl", children="$0.00"),
html.Div(id="win-rate", children="0%"),
html.Div(id="total-trades", children="0"),
html.Div(id="last-action", children="WAITING"),
html.Div(id="eth-price", children="Loading..."),
html.Div(id="btc-price", children="Loading..."),
dcc.Graph(id="main-eth-1s-chart"),
dcc.Graph(id="eth-1m-chart"),
dcc.Graph(id="eth-1h-chart"),
dcc.Graph(id="eth-1d-chart"),
dcc.Graph(id="btc-1s-chart"),
html.Div(id="actions-log", children="No actions yet"),
html.Div(id="debug-status", children="Debug info"),
dcc.Interval(id="ultra-fast-interval", interval=1000, n_intervals=0)
])
@app.callback(
[
Output('current-balance', 'children'),
Output('session-duration', 'children'),
Output('open-positions', 'children'),
Output('live-pnl', 'children'),
Output('win-rate', 'children'),
Output('total-trades', 'children'),
Output('last-action', 'children'),
Output('eth-price', 'children'),
Output('btc-price', 'children'),
Output('main-eth-1s-chart', 'figure'),
Output('eth-1m-chart', 'figure'),
Output('eth-1h-chart', 'figure'),
Output('eth-1d-chart', 'figure'),
Output('btc-1s-chart', 'figure'),
Output('actions-log', 'children'),
Output('debug-status', 'children')
],
[Input('ultra-fast-interval', 'n_intervals')]
)
def update_dashboard_test(n_intervals):
logger.info(f"Dashboard callback triggered: {n_intervals}")
import plotly.graph_objects as go
from datetime import datetime
# Create empty figure
empty_fig = go.Figure()
empty_fig.update_layout(template="plotly_dark")
debug_status = html.Div([
html.P(f"Test Callback #{n_intervals} at {datetime.now().strftime('%H:%M:%S')}")
])
return (
f"${100 + n_intervals:.2f}", # current-balance
f"00:00:{n_intervals:02d}", # session-duration
"0", # open-positions
f"${n_intervals:+.2f}", # live-pnl
"75%", # win-rate
str(n_intervals), # total-trades
"TEST", # last-action
"$3500.00", # eth-price
"$65000.00", # btc-price
empty_fig, # main-eth-1s-chart
empty_fig, # eth-1m-chart
empty_fig, # eth-1h-chart
empty_fig, # eth-1d-chart
empty_fig, # btc-1s-chart
f"Test action #{n_intervals}", # actions-log
debug_status # debug-status
)
logger.info("Dashboard callback registered successfully")
logger.info(f"Callback map keys: {list(app.callback_map.keys())}")
return app
except Exception as e:
logger.error(f"Error testing dashboard callback: {e}")
import traceback
logger.error(f"Traceback: {traceback.format_exc()}")
return None
def main():
"""Main test function"""
logger.info("Starting callback registration tests...")
# Test 1: Simple callback
try:
simple_app = test_simple_callback()
logger.info("✅ Simple callback test passed")
except Exception as e:
logger.error(f"❌ Simple callback test failed: {e}")
# Test 2: Complex callback
try:
complex_app = test_complex_callback()
logger.info("✅ Complex callback test passed")
except Exception as e:
logger.error(f"❌ Complex callback test failed: {e}")
# Test 3: Dashboard callback
try:
dashboard_app = test_dashboard_callback()
if dashboard_app:
logger.info("✅ Dashboard callback test passed")
# Run the dashboard test
logger.info("Starting dashboard test server on port 8054...")
dashboard_app.run(host='127.0.0.1', port=8054, debug=True)
else:
logger.error("❌ Dashboard callback test failed")
except Exception as e:
logger.error(f"❌ Dashboard callback test failed: {e}")
import traceback
logger.error(f"Traceback: {traceback.format_exc()}")
if __name__ == "__main__":
main()

View File

@ -1,22 +0,0 @@
import requests
import json
def test_callback():
try:
url = 'http://127.0.0.1:8051/_dash-update-component'
data = {
"output": "current-balance.children",
"inputs": [{"id": "ultra-fast-interval", "property": "n_intervals", "value": 1}],
"changedPropIds": ["ultra-fast-interval.n_intervals"],
"state": []
}
response = requests.post(url, json=data, timeout=10)
print(f"Status: {response.status_code}")
print(f"Response: {response.text[:1000]}")
except Exception as e:
print(f"Error: {e}")
if __name__ == "__main__":
test_callback()

View File

@ -1,75 +0,0 @@
#!/usr/bin/env python3
"""
Test callback structure to verify it works
"""
import dash
from dash import dcc, html, Input, Output
import plotly.graph_objects as go
from datetime import datetime
import logging
# Setup logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Create Dash app
app = dash.Dash(__name__)
# Simple layout matching the enhanced dashboard structure
app.layout = html.Div([
html.H1("Callback Structure Test"),
html.Div(id="test-output-1"),
html.Div(id="test-output-2"),
html.Div(id="test-output-3"),
dcc.Graph(id="test-chart"),
dcc.Interval(id='test-interval', interval=3000, n_intervals=0)
])
# Callback using the EXACT same structure as enhanced dashboard
@app.callback(
[
Output('test-output-1', 'children'),
Output('test-output-2', 'children'),
Output('test-output-3', 'children'),
Output('test-chart', 'figure')
],
[Input('test-interval', 'n_intervals')]
)
def update_test_dashboard(n_intervals):
"""Test callback with same structure as enhanced dashboard"""
try:
logger.info(f"Test callback triggered: {n_intervals}")
# Simple outputs
output1 = f"Output 1: {n_intervals}"
output2 = f"Output 2: {datetime.now().strftime('%H:%M:%S')}"
output3 = f"Output 3: Working"
# Simple chart
fig = go.Figure()
fig.add_trace(go.Scatter(
x=[1, 2, 3, 4, 5],
y=[n_intervals, n_intervals+1, n_intervals+2, n_intervals+1, n_intervals],
mode='lines',
name='Test Data'
))
fig.update_layout(
title=f"Test Chart - Update {n_intervals}",
template="plotly_dark"
)
logger.info(f"Returning: {output1}, {output2}, {output3}, <Figure>")
return output1, output2, output3, fig
except Exception as e:
logger.error(f"Error in test callback: {e}")
import traceback
logger.error(f"Traceback: {traceback.format_exc()}")
# Return safe fallback
return f"Error: {str(e)}", "Error", "Error", go.Figure()
if __name__ == "__main__":
logger.info("Starting callback structure test on port 8053...")
app.run(host='127.0.0.1', port=8053, debug=True)

View File

@ -1,101 +0,0 @@
#!/usr/bin/env python3
"""
Test Dashboard Callback - Simple test to verify Dash callbacks work
"""
import logging
import sys
from pathlib import Path
# Add project root to path
project_root = Path(__file__).parent
sys.path.insert(0, str(project_root))
import dash
from dash import dcc, html, Input, Output
import plotly.graph_objects as go
from datetime import datetime
# Setup logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
def create_test_dashboard():
"""Create a simple test dashboard to verify callbacks work"""
app = dash.Dash(__name__)
app.layout = html.Div([
html.H1("🧪 Test Dashboard - Callback Verification", className="text-center"),
html.Div([
html.H3(id="current-time", className="text-center"),
html.H4(id="counter", className="text-center"),
dcc.Graph(id="test-chart")
]),
dcc.Interval(
id='test-interval',
interval=1000, # 1 second
n_intervals=0
)
])
@app.callback(
[
Output('current-time', 'children'),
Output('counter', 'children'),
Output('test-chart', 'figure')
],
[Input('test-interval', 'n_intervals')]
)
def update_test_dashboard(n_intervals):
"""Test callback function"""
try:
logger.info(f"🔄 Test callback triggered, interval: {n_intervals}")
current_time = datetime.now().strftime("%H:%M:%S")
counter = f"Updates: {n_intervals}"
# Create simple test chart
fig = go.Figure()
fig.add_trace(go.Scatter(
x=list(range(n_intervals + 1)),
y=[i**2 for i in range(n_intervals + 1)],
mode='lines+markers',
name='Test Data'
))
fig.update_layout(
title=f"Test Chart - Update #{n_intervals}",
template="plotly_dark"
)
return current_time, counter, fig
except Exception as e:
logger.error(f"Error in test callback: {e}")
return "Error", "Error", {}
return app
def main():
"""Run the test dashboard"""
logger.info("🧪 Starting test dashboard...")
try:
app = create_test_dashboard()
logger.info("✅ Test dashboard created")
logger.info("🚀 Starting test dashboard on http://127.0.0.1:8052")
logger.info("If you see updates every second, callbacks are working!")
logger.info("Press Ctrl+C to stop")
app.run(host='127.0.0.1', port=8052, debug=True)
except KeyboardInterrupt:
logger.info("Test dashboard stopped by user")
except Exception as e:
logger.error(f"❌ Error: {e}")
import traceback
traceback.print_exc()
if __name__ == "__main__":
main()

View File

@ -1,110 +0,0 @@
#!/usr/bin/env python3
"""
Test script to make direct requests to the dashboard's callback endpoint
"""
import requests
import json
import time
def test_dashboard_callback():
"""Test the dashboard callback endpoint directly"""
dashboard_url = "http://127.0.0.1:8054"
callback_url = f"{dashboard_url}/_dash-update-component"
print(f"Testing dashboard at {dashboard_url}")
# First, check if dashboard is running
try:
response = requests.get(dashboard_url, timeout=5)
print(f"Dashboard status: {response.status_code}")
if response.status_code != 200:
print("Dashboard not responding properly")
return
except Exception as e:
print(f"Error connecting to dashboard: {e}")
return
# Test callback request for dashboard test
callback_data = {
"output": "current-balance.children",
"outputs": [
{"id": "current-balance", "property": "children"},
{"id": "session-duration", "property": "children"},
{"id": "open-positions", "property": "children"},
{"id": "live-pnl", "property": "children"},
{"id": "win-rate", "property": "children"},
{"id": "total-trades", "property": "children"},
{"id": "last-action", "property": "children"},
{"id": "eth-price", "property": "children"},
{"id": "btc-price", "property": "children"},
{"id": "main-eth-1s-chart", "property": "figure"},
{"id": "eth-1m-chart", "property": "figure"},
{"id": "eth-1h-chart", "property": "figure"},
{"id": "eth-1d-chart", "property": "figure"},
{"id": "btc-1s-chart", "property": "figure"},
{"id": "actions-log", "property": "children"},
{"id": "debug-status", "property": "children"}
],
"inputs": [
{"id": "ultra-fast-interval", "property": "n_intervals", "value": 1}
],
"changedPropIds": ["ultra-fast-interval.n_intervals"],
"state": []
}
headers = {
'Content-Type': 'application/json',
'Accept': 'application/json'
}
print("\nTesting callback request...")
try:
response = requests.post(
callback_url,
data=json.dumps(callback_data),
headers=headers,
timeout=10
)
print(f"Callback response status: {response.status_code}")
print(f"Response headers: {dict(response.headers)}")
if response.status_code == 200:
try:
response_data = response.json()
print(f"Response data keys: {list(response_data.keys()) if isinstance(response_data, dict) else 'Not a dict'}")
print(f"Response data type: {type(response_data)}")
if isinstance(response_data, dict) and 'response' in response_data:
print(f"Response contains {len(response_data['response'])} items")
for i, item in enumerate(response_data['response'][:3]): # Show first 3 items
print(f" Item {i}: {type(item)} - {str(item)[:100]}...")
else:
print(f"Full response: {str(response_data)[:500]}...")
except json.JSONDecodeError as e:
print(f"Error parsing JSON response: {e}")
print(f"Raw response: {response.text[:500]}...")
else:
print(f"Error response: {response.text}")
except Exception as e:
print(f"Error making callback request: {e}")
def monitor_dashboard():
"""Monitor dashboard callback requests"""
print("Monitoring dashboard callback requests...")
print("Press Ctrl+C to stop")
try:
for i in range(10): # Test 10 times
print(f"\n--- Test {i+1} ---")
test_dashboard_callback()
time.sleep(2)
except KeyboardInterrupt:
print("\nMonitoring stopped")
if __name__ == "__main__":
monitor_dashboard()

View File

@ -1,103 +0,0 @@
#!/usr/bin/env python3
"""
Simple Dashboard Test - Isolate dashboard startup issues
"""
import os
# Fix OpenMP library conflicts before importing other modules
os.environ['KMP_DUPLICATE_LIB_OK'] = 'TRUE'
os.environ['OMP_NUM_THREADS'] = '4'
import sys
import logging
from pathlib import Path
# Add project root to path
project_root = Path(__file__).parent
sys.path.insert(0, str(project_root))
# Setup basic logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
def test_dashboard_startup():
"""Test dashboard creation and startup"""
try:
logger.info("=" * 50)
logger.info("TESTING DASHBOARD STARTUP")
logger.info("=" * 50)
# Test imports first
logger.info("Step 1: Testing imports...")
from core.config import get_config, setup_logging
from core.data_provider import DataProvider
from core.orchestrator import TradingOrchestrator
from core.trading_executor import TradingExecutor
logger.info("✓ Core imports successful")
from web.clean_dashboard import CleanTradingDashboard as TradingDashboard
logger.info("✓ Dashboard import successful")
# Test configuration
logger.info("Step 2: Testing configuration...")
setup_logging()
config = get_config()
logger.info("✓ Configuration loaded")
# Test core component creation
logger.info("Step 3: Testing core component creation...")
data_provider = DataProvider()
logger.info("✓ DataProvider created")
orchestrator = TradingOrchestrator(data_provider=data_provider)
logger.info("✓ TradingOrchestrator created")
trading_executor = TradingExecutor()
logger.info("✓ TradingExecutor created")
# Test dashboard creation
logger.info("Step 4: Testing dashboard creation...")
dashboard = TradingDashboard(
data_provider=data_provider,
orchestrator=orchestrator,
trading_executor=trading_executor
)
logger.info("✓ TradingDashboard created successfully")
# Test dashboard startup
logger.info("Step 5: Testing dashboard server startup...")
logger.info("Dashboard will start on http://127.0.0.1:8052")
logger.info("Press Ctrl+C to stop the test")
# Run the dashboard
dashboard.app.run(
host='127.0.0.1',
port=8052,
debug=False,
use_reloader=False
)
except Exception as e:
logger.error(f"❌ Dashboard test failed: {e}")
import traceback
logger.error(traceback.format_exc())
return False
return True
if __name__ == "__main__":
try:
success = test_dashboard_startup()
if success:
logger.info("✓ Dashboard test completed successfully")
else:
logger.error("❌ Dashboard test failed")
sys.exit(1)
except KeyboardInterrupt:
logger.info("Dashboard test interrupted by user")
except Exception as e:
logger.error(f"Fatal error in dashboard test: {e}")
sys.exit(1)

View File

@ -1,66 +0,0 @@
#!/usr/bin/env python3
"""
Test Dashboard Startup - Debug the scalping dashboard startup issue
"""
import logging
import sys
from pathlib import Path
# Add project root to path
project_root = Path(__file__).parent
sys.path.insert(0, str(project_root))
# Setup logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
def test_dashboard_startup():
"""Test dashboard startup with detailed error reporting"""
try:
logger.info("Testing dashboard startup...")
# Test imports
logger.info("Testing imports...")
from core.data_provider import DataProvider
from core.enhanced_orchestrator import EnhancedTradingOrchestrator
from web.old_archived.scalping_dashboard import create_scalping_dashboard
logger.info("✅ All imports successful")
# Test data provider
logger.info("Creating data provider...")
dp = DataProvider()
logger.info("✅ Data provider created")
# Test orchestrator
logger.info("Creating orchestrator...")
orch = EnhancedTradingOrchestrator(dp)
logger.info("✅ Orchestrator created")
# Test dashboard creation
logger.info("Creating dashboard...")
dashboard = create_scalping_dashboard(dp, orch)
logger.info("✅ Dashboard created successfully")
# Test data fetching
logger.info("Testing data fetching...")
test_data = dp.get_historical_data('ETH/USDT', '1m', limit=5)
if test_data is not None and not test_data.empty:
logger.info(f"✅ Data fetching works: {len(test_data)} candles")
else:
logger.warning("⚠️ No data returned from data provider")
# Start dashboard
logger.info("Starting dashboard on http://127.0.0.1:8051")
logger.info("Press Ctrl+C to stop")
dashboard.run(host='127.0.0.1', port=8051, debug=True)
except KeyboardInterrupt:
logger.info("Dashboard stopped by user")
except Exception as e:
logger.error(f"❌ Error: {e}")
import traceback
traceback.print_exc()
if __name__ == "__main__":
test_dashboard_startup()

View File

@ -1,201 +0,0 @@
#!/usr/bin/env python3
"""
Test Enhanced COB Integration with RL and CNN Models
This script tests the integration of Consolidated Order Book (COB) data
with the real-time RL and CNN training pipeline.
"""
import asyncio
import logging
import sys
from pathlib import Path
import numpy as np
import time
from datetime import datetime
# Add project root to path
project_root = Path(__file__).parent
sys.path.insert(0, str(project_root))
from core.config import setup_logging
from core.data_provider import DataProvider
from core.enhanced_orchestrator import EnhancedTradingOrchestrator
from core.cob_integration import COBIntegration
# Setup logging
setup_logging()
logger = logging.getLogger(__name__)
class COBMLIntegrationTester:
"""Test COB integration with ML models"""
def __init__(self):
self.symbols = ['BTC/USDT', 'ETH/USDT']
self.data_provider = DataProvider()
self.test_results = {}
async def test_cob_ml_integration(self):
"""Test full COB integration with ML pipeline"""
logger.info("=" * 60)
logger.info("TESTING COB INTEGRATION WITH RL AND CNN MODELS")
logger.info("=" * 60)
try:
# Initialize enhanced orchestrator with COB integration
logger.info("1. Initializing Enhanced Trading Orchestrator with COB...")
orchestrator = EnhancedTradingOrchestrator(
data_provider=self.data_provider,
symbols=self.symbols,
enhanced_rl_training=True,
model_registry={}
)
# Start COB integration
logger.info("2. Starting COB Integration...")
await orchestrator.start_cob_integration()
await asyncio.sleep(5) # Allow startup and data collection
# Test COB feature generation
logger.info("3. Testing COB feature generation...")
await self._test_cob_features(orchestrator)
# Test market state with COB data
logger.info("4. Testing market state with COB data...")
await self._test_market_state_cob(orchestrator)
# Test real-time COB callbacks
logger.info("5. Testing real-time COB callbacks...")
await self._test_realtime_callbacks(orchestrator)
# Stop COB integration
await orchestrator.stop_cob_integration()
# Print results
self._print_test_results()
except Exception as e:
logger.error(f"Error in COB ML integration test: {e}")
import traceback
logger.error(traceback.format_exc())
async def _test_cob_features(self, orchestrator):
"""Test COB feature availability"""
try:
for symbol in self.symbols:
# Check if COB features are available
cob_features = orchestrator.latest_cob_features.get(symbol)
cob_state = orchestrator.latest_cob_state.get(symbol)
if cob_features is not None:
logger.info(f"{symbol}: COB CNN features available - shape: {cob_features.shape}")
self.test_results[f'{symbol}_cob_cnn_features'] = True
else:
logger.warning(f"⚠️ {symbol}: COB CNN features not available")
self.test_results[f'{symbol}_cob_cnn_features'] = False
if cob_state is not None:
logger.info(f"{symbol}: COB DQN state available - shape: {cob_state.shape}")
self.test_results[f'{symbol}_cob_dqn_state'] = True
else:
logger.warning(f"⚠️ {symbol}: COB DQN state not available")
self.test_results[f'{symbol}_cob_dqn_state'] = False
except Exception as e:
logger.error(f"Error testing COB features: {e}")
async def _test_market_state_cob(self, orchestrator):
"""Test market state includes COB data"""
try:
# Generate market states with COB data
from core.universal_data_adapter import UniversalDataAdapter
adapter = UniversalDataAdapter(self.data_provider)
universal_stream = await adapter.get_universal_stream(['BTC/USDT', 'ETH/USDT'])
market_states = await orchestrator._get_all_market_states_universal(universal_stream)
for symbol in self.symbols:
if symbol in market_states:
state = market_states[symbol]
# Check COB integration in market state
tests = [
('cob_features', state.cob_features is not None),
('cob_state', state.cob_state is not None),
('order_book_imbalance', hasattr(state, 'order_book_imbalance')),
('liquidity_depth', hasattr(state, 'liquidity_depth')),
('exchange_diversity', hasattr(state, 'exchange_diversity')),
('market_impact_estimate', hasattr(state, 'market_impact_estimate'))
]
for test_name, passed in tests:
status = "" if passed else ""
logger.info(f"{status} {symbol}: {test_name} - {passed}")
self.test_results[f'{symbol}_market_state_{test_name}'] = passed
# Log COB metrics if available
if hasattr(state, 'order_book_imbalance'):
logger.info(f"📊 {symbol} COB Metrics:")
logger.info(f" Order Book Imbalance: {state.order_book_imbalance:.4f}")
logger.info(f" Liquidity Depth: ${state.liquidity_depth:,.0f}")
logger.info(f" Exchange Diversity: {state.exchange_diversity}")
logger.info(f" Market Impact (10k): {state.market_impact_estimate:.4f}%")
except Exception as e:
logger.error(f"Error testing market state COB: {e}")
async def _test_realtime_callbacks(self, orchestrator):
"""Test real-time COB callbacks"""
try:
# Monitor COB callbacks for 10 seconds
initial_features = {s: len(orchestrator.cob_feature_history[s]) for s in self.symbols}
logger.info("Monitoring COB callbacks for 10 seconds...")
await asyncio.sleep(10)
final_features = {s: len(orchestrator.cob_feature_history[s]) for s in self.symbols}
for symbol in self.symbols:
updates = final_features[symbol] - initial_features[symbol]
if updates > 0:
logger.info(f"{symbol}: Received {updates} COB feature updates")
self.test_results[f'{symbol}_realtime_callbacks'] = True
else:
logger.warning(f"⚠️ {symbol}: No COB feature updates received")
self.test_results[f'{symbol}_realtime_callbacks'] = False
except Exception as e:
logger.error(f"Error testing realtime callbacks: {e}")
def _print_test_results(self):
"""Print comprehensive test results"""
logger.info("=" * 60)
logger.info("COB ML INTEGRATION TEST RESULTS")
logger.info("=" * 60)
passed = sum(1 for result in self.test_results.values() if result)
total = len(self.test_results)
logger.info(f"Overall: {passed}/{total} tests passed ({passed/total*100:.1f}%)")
logger.info("")
for test_name, result in self.test_results.items():
status = "✅ PASS" if result else "❌ FAIL"
logger.info(f"{status}: {test_name}")
logger.info("=" * 60)
if passed == total:
logger.info("🎉 ALL TESTS PASSED - COB ML INTEGRATION WORKING!")
elif passed > total * 0.8:
logger.info("⚠️ MOSTLY WORKING - Some minor issues detected")
else:
logger.warning("🚨 INTEGRATION ISSUES - Significant problems detected")
async def main():
"""Run COB ML integration tests"""
tester = COBMLIntegrationTester()
await tester.test_cob_ml_integration()
if __name__ == "__main__":
asyncio.run(main())

View File

@ -1,83 +0,0 @@
#!/usr/bin/env python3
"""
Test script for enhanced trading dashboard with WebSocket support
"""
import sys
import logging
from datetime import datetime
# Setup logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
def test_dashboard():
"""Test the enhanced dashboard functionality"""
try:
print("="*60)
print("TESTING ENHANCED TRADING DASHBOARD")
print("="*60)
# Import dashboard
from web.clean_dashboard import CleanTradingDashboard as TradingDashboard
WEBSOCKET_AVAILABLE = True
print(f"✓ Dashboard module imported successfully")
print(f"✓ WebSocket support available: {WEBSOCKET_AVAILABLE}")
# Create dashboard instance
dashboard = TradingDashboard()
print(f"✓ Dashboard instance created")
print(f"✓ Tick cache capacity: {dashboard.tick_cache.maxlen} ticks (15 min)")
print(f"✓ 1s bars capacity: {dashboard.one_second_bars.maxlen} bars (15 min)")
print(f"✓ WebSocket streaming: {dashboard.is_streaming}")
print(f"✓ Min confidence threshold: {dashboard.min_confidence_threshold}")
print(f"✓ Signal cooldown: {dashboard.signal_cooldown}s")
# Test tick cache methods
tick_cache = dashboard.get_tick_cache_for_training(minutes=5)
print(f"✓ Tick cache method works: {len(tick_cache)} ticks")
# Test 1s bars method
bars_df = dashboard.get_one_second_bars(count=100)
print(f"✓ 1s bars method works: {len(bars_df)} bars")
# Test chart creation
try:
chart = dashboard._create_price_chart("ETH/USDT")
print(f"✓ Price chart creation works")
except Exception as e:
print(f"⚠ Price chart creation: {e}")
print("\n" + "="*60)
print("ENHANCED DASHBOARD FEATURES:")
print("="*60)
print("✓ Real-time WebSocket tick streaming (when websocket-client installed)")
print("✓ 1-second bar charts with volume")
print("✓ 15-minute tick cache for model training")
print("✓ Confidence-based signal execution")
print("✓ Clear signal vs execution distinction")
print("✓ Real-time unrealized P&L display")
print("✓ Compact layout with system status icon")
print("✓ Scalping-optimized signal generation")
print("\n" + "="*60)
print("TO START THE DASHBOARD:")
print("="*60)
print("1. Install WebSocket support: pip install websocket-client")
print("2. Run: python -c \"from web.dashboard import TradingDashboard; TradingDashboard().run()\"")
print("3. Open browser: http://127.0.0.1:8050")
print("="*60)
return True
except Exception as e:
print(f"❌ Error testing dashboard: {e}")
import traceback
traceback.print_exc()
return False
if __name__ == "__main__":
success = test_dashboard()
sys.exit(0 if success else 1)

View File

@ -1,305 +0,0 @@
#!/usr/bin/env python3
"""
Test Enhanced Dashboard Integration with RL Training Pipeline
This script tests the integration between the dashboard and the enhanced RL training pipeline
to verify that:
1. Unified data stream is properly initialized
2. Dashboard receives training data from the enhanced pipeline
3. Data flows correctly between components
4. Enhanced RL training receives comprehensive data
"""
import asyncio
import logging
import time
import sys
from datetime import datetime
from pathlib import Path
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler('test_enhanced_dashboard_integration.log'),
logging.StreamHandler(sys.stdout)
]
)
logger = logging.getLogger(__name__)
# Import components
from core.config import get_config
from core.data_provider import DataProvider
from core.enhanced_orchestrator import EnhancedTradingOrchestrator
from core.universal_data_adapter import UniversalDataAdapter, UniversalDataStream
from web.old_archived.scalping_dashboard import RealTimeScalpingDashboard
class EnhancedDashboardIntegrationTest:
"""Test enhanced dashboard integration with RL training pipeline"""
def __init__(self):
"""Initialize test components"""
self.config = get_config()
self.data_provider = None
self.orchestrator = None
self.unified_stream = None
self.dashboard = None
# Test results
self.test_results = {
'data_provider_init': False,
'orchestrator_init': False,
'unified_stream_init': False,
'dashboard_init': False,
'data_flow_test': False,
'training_integration_test': False,
'ui_data_test': False,
'stream_stats_test': False
}
logger.info("Enhanced Dashboard Integration Test initialized")
async def run_tests(self):
"""Run all integration tests"""
logger.info("Starting enhanced dashboard integration tests...")
try:
# Test 1: Initialize components
await self.test_component_initialization()
# Test 2: Test data flow
await self.test_data_flow()
# Test 3: Test training integration
await self.test_training_integration()
# Test 4: Test UI data flow
await self.test_ui_data_flow()
# Test 5: Test stream statistics
await self.test_stream_statistics()
# Generate test report
self.generate_test_report()
except Exception as e:
logger.error(f"Test execution failed: {e}")
raise
async def test_component_initialization(self):
"""Test component initialization"""
logger.info("Testing component initialization...")
try:
# Initialize data provider
self.data_provider = DataProvider(
symbols=['ETH/USDT', 'BTC/USDT'],
timeframes=['1s', '1m', '1h', '1d']
)
self.test_results['data_provider_init'] = True
logger.info("✓ Data provider initialized")
# Initialize orchestrator
self.orchestrator = EnhancedTradingOrchestrator(self.data_provider)
self.test_results['orchestrator_init'] = True
logger.info("✓ Enhanced orchestrator initialized")
# Initialize unified stream
self.unified_stream = UnifiedDataStream(self.data_provider, self.orchestrator)
self.test_results['unified_stream_init'] = True
logger.info("✓ Unified data stream initialized")
# Initialize dashboard
self.dashboard = RealTimeScalpingDashboard(
data_provider=self.data_provider,
orchestrator=self.orchestrator
)
self.test_results['dashboard_init'] = True
logger.info("✓ Dashboard initialized with unified stream integration")
except Exception as e:
logger.error(f"Component initialization failed: {e}")
raise
async def test_data_flow(self):
"""Test data flow through unified stream"""
logger.info("Testing data flow through unified stream...")
try:
# Start unified streaming
await self.unified_stream.start_streaming()
# Wait for data collection
logger.info("Waiting for data collection...")
await asyncio.sleep(10)
# Check if data is flowing
stream_stats = self.unified_stream.get_stream_stats()
if stream_stats['tick_cache_size'] > 0:
logger.info(f"✓ Tick data flowing: {stream_stats['tick_cache_size']} ticks")
self.test_results['data_flow_test'] = True
else:
logger.warning("⚠ No tick data detected")
if stream_stats['one_second_bars_count'] > 0:
logger.info(f"✓ 1s bars generated: {stream_stats['one_second_bars_count']} bars")
else:
logger.warning("⚠ No 1s bars generated")
logger.info(f"Stream statistics: {stream_stats}")
except Exception as e:
logger.error(f"Data flow test failed: {e}")
raise
async def test_training_integration(self):
"""Test training data integration"""
logger.info("Testing training data integration...")
try:
# Get latest training data
training_data = self.unified_stream.get_latest_training_data()
if training_data:
logger.info("✓ Training data packet available")
logger.info(f" Tick cache: {len(training_data.tick_cache)} ticks")
logger.info(f" 1s bars: {len(training_data.one_second_bars)} bars")
logger.info(f" Multi-timeframe data: {len(training_data.multi_timeframe_data)} symbols")
logger.info(f" CNN features: {'Available' if training_data.cnn_features else 'Not available'}")
logger.info(f" CNN predictions: {'Available' if training_data.cnn_predictions else 'Not available'}")
logger.info(f" Market state: {'Available' if training_data.market_state else 'Not available'}")
logger.info(f" Universal stream: {'Available' if training_data.universal_stream else 'Not available'}")
# Check if dashboard can access training data
if hasattr(self.dashboard, 'latest_training_data') and self.dashboard.latest_training_data:
logger.info("✓ Dashboard has access to training data")
self.test_results['training_integration_test'] = True
else:
logger.warning("⚠ Dashboard does not have training data access")
else:
logger.warning("⚠ No training data available")
except Exception as e:
logger.error(f"Training integration test failed: {e}")
raise
async def test_ui_data_flow(self):
"""Test UI data flow"""
logger.info("Testing UI data flow...")
try:
# Get latest UI data
ui_data = self.unified_stream.get_latest_ui_data()
if ui_data:
logger.info("✓ UI data packet available")
logger.info(f" Current prices: {ui_data.current_prices}")
logger.info(f" Tick cache size: {ui_data.tick_cache_size}")
logger.info(f" 1s bars count: {ui_data.one_second_bars_count}")
logger.info(f" Streaming status: {ui_data.streaming_status}")
logger.info(f" Training data available: {ui_data.training_data_available}")
# Check if dashboard can access UI data
if hasattr(self.dashboard, 'latest_ui_data') and self.dashboard.latest_ui_data:
logger.info("✓ Dashboard has access to UI data")
self.test_results['ui_data_test'] = True
else:
logger.warning("⚠ Dashboard does not have UI data access")
else:
logger.warning("⚠ No UI data available")
except Exception as e:
logger.error(f"UI data flow test failed: {e}")
raise
async def test_stream_statistics(self):
"""Test stream statistics"""
logger.info("Testing stream statistics...")
try:
# Get comprehensive stream stats
stream_stats = self.unified_stream.get_stream_stats()
logger.info("Stream Statistics:")
logger.info(f" Total ticks processed: {stream_stats.get('total_ticks_processed', 0)}")
logger.info(f" Total packets sent: {stream_stats.get('total_packets_sent', 0)}")
logger.info(f" Consumers served: {stream_stats.get('consumers_served', 0)}")
logger.info(f" Active consumers: {stream_stats.get('active_consumers', 0)}")
logger.info(f" Total consumers: {stream_stats.get('total_consumers', 0)}")
logger.info(f" Processing errors: {stream_stats.get('processing_errors', 0)}")
logger.info(f" Data quality score: {stream_stats.get('data_quality_score', 0.0)}")
if stream_stats.get('active_consumers', 0) > 0:
logger.info("✓ Stream has active consumers")
self.test_results['stream_stats_test'] = True
else:
logger.warning("⚠ No active consumers detected")
except Exception as e:
logger.error(f"Stream statistics test failed: {e}")
raise
def generate_test_report(self):
"""Generate comprehensive test report"""
logger.info("Generating test report...")
total_tests = len(self.test_results)
passed_tests = sum(self.test_results.values())
logger.info("=" * 60)
logger.info("ENHANCED DASHBOARD INTEGRATION TEST REPORT")
logger.info("=" * 60)
logger.info(f"Test Date: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}")
logger.info(f"Total Tests: {total_tests}")
logger.info(f"Passed Tests: {passed_tests}")
logger.info(f"Failed Tests: {total_tests - passed_tests}")
logger.info(f"Success Rate: {(passed_tests / total_tests) * 100:.1f}%")
logger.info("")
logger.info("Test Results:")
for test_name, result in self.test_results.items():
status = "✓ PASS" if result else "✗ FAIL"
logger.info(f" {test_name}: {status}")
logger.info("")
if passed_tests == total_tests:
logger.info("🎉 ALL TESTS PASSED! Enhanced dashboard integration is working correctly.")
logger.info("The dashboard now properly integrates with the enhanced RL training pipeline.")
else:
logger.warning("⚠ Some tests failed. Please review the integration.")
logger.info("=" * 60)
async def cleanup(self):
"""Cleanup test resources"""
logger.info("Cleaning up test resources...")
try:
if self.unified_stream:
await self.unified_stream.stop_streaming()
if self.dashboard:
self.dashboard.stop_streaming()
logger.info("✓ Cleanup completed")
except Exception as e:
logger.error(f"Cleanup failed: {e}")
async def main():
"""Main test execution"""
test = EnhancedDashboardIntegrationTest()
try:
await test.run_tests()
except Exception as e:
logger.error(f"Test execution failed: {e}")
finally:
await test.cleanup()
if __name__ == "__main__":
asyncio.run(main())

View File

@ -1,95 +0,0 @@
#!/usr/bin/env python3
"""
Test script to verify enhanced fee tracking with maker/taker fees
"""
import sys
import os
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
import logging
from datetime import datetime, timezone
from web.clean_dashboard import CleanTradingDashboard as TradingDashboard
from core.data_provider import DataProvider
# Setup logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
def test_enhanced_fee_tracking():
"""Test enhanced fee tracking with maker/taker fees"""
logger.info("Testing enhanced fee tracking...")
# Create dashboard instance
data_provider = DataProvider()
dashboard = TradingDashboard(data_provider=data_provider)
# Create test trading decisions with different fee types
test_decisions = [
{
'action': 'BUY',
'symbol': 'ETH/USDT',
'price': 3500.0,
'confidence': 0.8,
'timestamp': datetime.now(timezone.utc),
'order_type': 'market', # Should use taker fee
'filled_as_maker': False
},
{
'action': 'SELL',
'symbol': 'ETH/USDT',
'price': 3520.0,
'confidence': 0.9,
'timestamp': datetime.now(timezone.utc),
'order_type': 'limit', # Should use maker fee if filled as maker
'filled_as_maker': True
}
]
# Process the trading decisions
for i, decision in enumerate(test_decisions):
logger.info(f"Processing decision {i+1}: {decision['action']} @ ${decision['price']}")
dashboard._process_trading_decision(decision)
# Check session trades
if dashboard.session_trades:
latest_trade = dashboard.session_trades[-1]
fee_type = latest_trade.get('fee_type', 'unknown')
fee_rate = latest_trade.get('fee_rate', 0)
fees = latest_trade.get('fees', 0)
logger.info(f" Trade recorded: {latest_trade.get('position_action', 'unknown')}")
logger.info(f" Fee Type: {fee_type}")
logger.info(f" Fee Rate: {fee_rate*100:.3f}%")
logger.info(f" Fee Amount: ${fees:.4f}")
# Check closed trades
if dashboard.closed_trades:
logger.info(f"\nClosed trades: {len(dashboard.closed_trades)}")
for trade in dashboard.closed_trades:
logger.info(f" Trade #{trade['trade_id']}: {trade['side']}")
logger.info(f" Fee Type: {trade.get('fee_type', 'unknown')}")
logger.info(f" Fee Rate: {trade.get('fee_rate', 0)*100:.3f}%")
logger.info(f" Total Fees: ${trade.get('fees', 0):.4f}")
logger.info(f" Net P&L: ${trade.get('net_pnl', 0):.2f}")
# Test session performance with fee breakdown
logger.info("\nTesting session performance display...")
performance = dashboard._create_session_performance()
logger.info(f"Session performance components: {len(performance)}")
# Test closed trades table
logger.info("\nTesting enhanced trades table...")
table_components = dashboard._create_closed_trades_table()
logger.info(f"Table components: {len(table_components)}")
logger.info("Enhanced fee tracking test completed!")
return True
if __name__ == "__main__":
test_enhanced_fee_tracking()

View File

@ -1,243 +0,0 @@
#!/usr/bin/env python3
"""
Test Enhanced Trading System Improvements
This script tests:
1. Color-coded position display ([LONG] green, [SHORT] red)
2. Enhanced model training detection and retrospective learning
3. Lower confidence thresholds for closing positions (0.25 vs 0.6 for opening)
4. Perfect opportunity detection and learning
"""
import asyncio
import logging
import time
from datetime import datetime, timedelta
from core.data_provider import DataProvider
from core.enhanced_orchestrator import EnhancedTradingOrchestrator, TradingAction
from web.old_archived.scalping_dashboard import RealTimeScalpingDashboard, TradingSession
# Setup logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
def test_color_coded_positions():
"""Test color-coded position display functionality"""
logger.info("=== Testing Color-Coded Position Display ===")
# Create trading session
session = TradingSession()
# Simulate some positions
session.positions = {
'ETH/USDT': {
'side': 'LONG',
'size': 0.1,
'entry_price': 2558.15
},
'BTC/USDT': {
'side': 'SHORT',
'size': 0.05,
'entry_price': 45123.45
}
}
logger.info("Created test positions:")
logger.info(f"ETH/USDT: LONG 0.1 @ $2558.15")
logger.info(f"BTC/USDT: SHORT 0.05 @ $45123.45")
# Test position display logic (simulating dashboard logic)
live_prices = {'ETH/USDT': 2565.30, 'BTC/USDT': 45050.20}
for symbol, pos in session.positions.items():
side = pos['side']
size = pos['size']
entry_price = pos['entry_price']
current_price = live_prices.get(symbol, entry_price)
# Calculate unrealized P&L
if side == 'LONG':
unrealized_pnl = (current_price - entry_price) * size
color_class = "text-success" # Green for LONG
side_display = "[LONG]"
else: # SHORT
unrealized_pnl = (entry_price - current_price) * size
color_class = "text-danger" # Red for SHORT
side_display = "[SHORT]"
position_text = f"{side_display} {size:.3f} @ ${entry_price:.2f} | P&L: ${unrealized_pnl:+.2f}"
logger.info(f"Position Display: {position_text} (Color: {color_class})")
logger.info("✅ Color-coded position display test completed")
def test_confidence_thresholds():
"""Test different confidence thresholds for opening vs closing"""
logger.info("=== Testing Confidence Thresholds ===")
# Create orchestrator
data_provider = DataProvider()
orchestrator = EnhancedTradingOrchestrator(data_provider)
logger.info(f"Opening threshold: {orchestrator.confidence_threshold_open}")
logger.info(f"Closing threshold: {orchestrator.confidence_threshold_close}")
# Test opening action with medium confidence
test_confidence = 0.45
logger.info(f"\nTesting opening action with confidence {test_confidence}")
if test_confidence >= orchestrator.confidence_threshold_open:
logger.info("✅ Would OPEN position (confidence above opening threshold)")
else:
logger.info("❌ Would NOT open position (confidence below opening threshold)")
# Test closing action with same confidence
logger.info(f"Testing closing action with confidence {test_confidence}")
if test_confidence >= orchestrator.confidence_threshold_close:
logger.info("✅ Would CLOSE position (confidence above closing threshold)")
else:
logger.info("❌ Would NOT close position (confidence below closing threshold)")
logger.info("✅ Confidence threshold test completed")
def test_retrospective_learning():
"""Test retrospective learning and perfect opportunity detection"""
logger.info("=== Testing Retrospective Learning ===")
# Create orchestrator
data_provider = DataProvider()
orchestrator = EnhancedTradingOrchestrator(data_provider)
# Simulate perfect moves
from core.enhanced_orchestrator import PerfectMove
perfect_move = PerfectMove(
symbol='ETH/USDT',
timeframe='1m',
timestamp=datetime.now(),
optimal_action='BUY',
actual_outcome=0.025, # 2.5% price increase
market_state_before=None,
market_state_after=None,
confidence_should_have_been=0.85
)
orchestrator.perfect_moves.append(perfect_move)
orchestrator.retrospective_learning_active = True
logger.info(f"Added perfect move: {perfect_move.optimal_action} {perfect_move.symbol}")
logger.info(f"Outcome: {perfect_move.actual_outcome*100:+.2f}%")
logger.info(f"Confidence should have been: {perfect_move.confidence_should_have_been:.3f}")
# Test performance metrics
metrics = orchestrator.get_performance_metrics()
retro_metrics = metrics['retrospective_learning']
logger.info(f"Retrospective learning active: {retro_metrics['active']}")
logger.info(f"Recent perfect moves: {retro_metrics['perfect_moves_recent']}")
logger.info(f"Average confidence needed: {retro_metrics['avg_confidence_needed']:.3f}")
logger.info("✅ Retrospective learning test completed")
async def test_tick_pattern_detection():
"""Test tick pattern detection for violent moves"""
logger.info("=== Testing Tick Pattern Detection ===")
# Create orchestrator
data_provider = DataProvider()
orchestrator = EnhancedTradingOrchestrator(data_provider)
# Simulate violent tick
from core.tick_aggregator import RawTick
violent_tick = RawTick(
timestamp=datetime.now(),
price=2560.0,
volume=1000.0,
quantity=0.5,
side='buy',
trade_id='test123',
time_since_last=25.0, # Very fast tick (25ms)
price_change=5.0, # $5 price jump
volume_intensity=3.5 # High volume
)
# Add symbol attribute for testing
violent_tick.symbol = 'ETH/USDT'
logger.info(f"Simulating violent tick:")
logger.info(f"Price change: ${violent_tick.price_change:+.2f}")
logger.info(f"Time since last: {violent_tick.time_since_last:.0f}ms")
logger.info(f"Volume intensity: {violent_tick.volume_intensity:.1f}x")
# Process the tick
orchestrator._handle_raw_tick(violent_tick)
# Check if perfect move was created
if orchestrator.perfect_moves:
latest_move = orchestrator.perfect_moves[-1]
logger.info(f"✅ Perfect move detected: {latest_move.optimal_action}")
logger.info(f"Confidence: {latest_move.confidence_should_have_been:.3f}")
else:
logger.info("❌ No perfect move detected")
logger.info("✅ Tick pattern detection test completed")
def test_dashboard_integration():
"""Test dashboard integration with new features"""
logger.info("=== Testing Dashboard Integration ===")
# Create components
data_provider = DataProvider()
orchestrator = EnhancedTradingOrchestrator(data_provider)
# Test model training status
metrics = orchestrator.get_performance_metrics()
logger.info("Model Training Metrics:")
logger.info(f"Perfect moves: {metrics['perfect_moves']}")
logger.info(f"RL queue size: {metrics['rl_queue_size']}")
logger.info(f"Retrospective learning: {metrics['retrospective_learning']}")
logger.info(f"Position tracking: {metrics['position_tracking']}")
logger.info(f"Thresholds: {metrics['thresholds']}")
logger.info("✅ Dashboard integration test completed")
async def main():
"""Run all tests"""
logger.info("🚀 Starting Enhanced Trading System Tests")
logger.info("=" * 60)
try:
# Run tests
test_color_coded_positions()
print()
test_confidence_thresholds()
print()
test_retrospective_learning()
print()
await test_tick_pattern_detection()
print()
test_dashboard_integration()
print()
logger.info("=" * 60)
logger.info("🎉 All tests completed successfully!")
logger.info("Key improvements verified:")
logger.info("✅ Color-coded positions ([LONG] green, [SHORT] red)")
logger.info("✅ Lower closing thresholds (0.25 vs 0.6)")
logger.info("✅ Retrospective learning on perfect opportunities")
logger.info("✅ Enhanced model training detection")
logger.info("✅ Violent move pattern detection")
except Exception as e:
logger.error(f"❌ Test failed: {e}")
import traceback
logger.error(traceback.format_exc())
if __name__ == "__main__":
asyncio.run(main())

View File

@ -1,133 +0,0 @@
#!/usr/bin/env python3
"""
Test Enhanced Orchestrator - Bypass COB Integration Issues
Simple test to verify enhanced orchestrator methods work
and the dashboard can use them for comprehensive RL training.
"""
import sys
import os
from pathlib import Path
project_root = Path(__file__).parent
sys.path.insert(0, str(project_root))
def test_enhanced_orchestrator_bypass_cob():
"""Test enhanced orchestrator without COB integration"""
print("=" * 60)
print("TESTING ENHANCED ORCHESTRATOR (BYPASS COB INTEGRATION)")
print("=" * 60)
try:
# Import required modules
from core.data_provider import DataProvider
from core.orchestrator import TradingOrchestrator
print("✓ Basic imports successful")
# Create basic orchestrator first
dp = DataProvider()
basic_orch = TradingOrchestrator(dp)
print("✓ Basic TradingOrchestrator created")
# Test basic orchestrator methods
basic_methods = ['build_comprehensive_rl_state', 'calculate_enhanced_pivot_reward']
print("\nBasic TradingOrchestrator methods:")
for method in basic_methods:
has_method = hasattr(basic_orch, method)
print(f" {method}: {'' if has_method else ''}")
# Now test by manually adding the missing methods to basic orchestrator
print("\n" + "-" * 50)
print("ADDING MISSING METHODS TO BASIC ORCHESTRATOR")
print("-" * 50)
# Add the missing methods manually
def build_comprehensive_rl_state_fallback(self, symbol: str) -> list:
"""Fallback comprehensive RL state builder"""
try:
# Create a comprehensive state with ~13,400 features
comprehensive_features = []
# ETH Tick Features (3000)
comprehensive_features.extend([0.0] * 3000)
# ETH Multi-timeframe OHLCV (8000)
comprehensive_features.extend([0.0] * 8000)
# BTC Reference Data (1000)
comprehensive_features.extend([0.0] * 1000)
# CNN Hidden Features (1000)
comprehensive_features.extend([0.0] * 1000)
# Pivot Analysis (300)
comprehensive_features.extend([0.0] * 300)
# Market Microstructure (100)
comprehensive_features.extend([0.0] * 100)
print(f"✓ Built comprehensive RL state: {len(comprehensive_features)} features")
return comprehensive_features
except Exception as e:
print(f"✗ Error building comprehensive RL state: {e}")
return None
def calculate_enhanced_pivot_reward_fallback(self, trade_decision, market_data, trade_outcome) -> float:
"""Fallback enhanced pivot reward calculation"""
try:
# Calculate enhanced reward based on trade metrics
base_pnl = trade_outcome.get('net_pnl', 0)
base_reward = base_pnl / 100.0 # Normalize
# Add pivot analysis bonus
pivot_bonus = 0.1 if base_pnl > 0 else -0.05
enhanced_reward = base_reward + pivot_bonus
print(f"✓ Enhanced pivot reward calculated: {enhanced_reward:.4f}")
return enhanced_reward
except Exception as e:
print(f"✗ Error calculating enhanced pivot reward: {e}")
return 0.0
# Bind methods to the orchestrator instance
import types
basic_orch.build_comprehensive_rl_state = types.MethodType(build_comprehensive_rl_state_fallback, basic_orch)
basic_orch.calculate_enhanced_pivot_reward = types.MethodType(calculate_enhanced_pivot_reward_fallback, basic_orch)
print("\n✓ Enhanced methods added to basic orchestrator")
# Test the enhanced methods
print("\nTesting enhanced methods:")
# Test comprehensive RL state building
state = basic_orch.build_comprehensive_rl_state('ETH/USDT')
print(f" Comprehensive RL state: {'' if state and len(state) > 10000 else ''} ({len(state) if state else 0} features)")
# Test enhanced reward calculation
mock_trade = {'net_pnl': 50.0}
reward = basic_orch.calculate_enhanced_pivot_reward({}, {}, mock_trade)
print(f" Enhanced pivot reward: {'' if reward != 0 else ''} (reward: {reward})")
print("\n" + "=" * 60)
print("✅ ENHANCED ORCHESTRATOR METHODS WORKING")
print("✅ COMPREHENSIVE RL STATE: 13,400+ FEATURES")
print("✅ ENHANCED PIVOT REWARDS: FUNCTIONAL")
print("✅ DASHBOARD CAN NOW USE ENHANCED FEATURES")
print("=" * 60)
return True
except Exception as e:
print(f"\n❌ ERROR: {e}")
import traceback
traceback.print_exc()
return False
if __name__ == "__main__":
success = test_enhanced_orchestrator_bypass_cob()
if success:
print("\n🎉 PIPELINE FIXES VERIFIED - READY FOR REAL-TIME TRAINING!")
else:
print("\n💥 PIPELINE FIXES NEED MORE WORK")

View File

@ -1,318 +0,0 @@
#!/usr/bin/env python3
"""
Test Enhanced Order Flow Integration
Tests the enhanced order flow analysis capabilities including:
- Aggressive vs passive participant ratios
- Institutional vs retail trade detection
- Market maker vs taker flow analysis
- Order flow intensity measurements
- Liquidity consumption and price impact analysis
- Block trade and iceberg order detection
- High-frequency trading activity detection
Usage:
python test_enhanced_order_flow_integration.py
"""
import asyncio
import logging
import time
import json
from datetime import datetime, timedelta
from core.bookmap_integration import BookmapIntegration
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s',
handlers=[
logging.StreamHandler(),
logging.FileHandler('enhanced_order_flow_test.log')
]
)
logger = logging.getLogger(__name__)
class EnhancedOrderFlowTester:
"""Test enhanced order flow analysis features"""
def __init__(self):
self.bookmap = None
self.symbols = ['ETHUSDT', 'BTCUSDT']
self.test_duration = 300 # 5 minutes
self.metrics_history = []
async def setup_integration(self):
"""Initialize the Bookmap integration"""
try:
logger.info("Setting up Enhanced Order Flow Integration...")
self.bookmap = BookmapIntegration(symbols=self.symbols)
# Add callbacks for testing
self.bookmap.add_cnn_callback(self._cnn_callback)
self.bookmap.add_dqn_callback(self._dqn_callback)
logger.info(f"Integration setup complete for symbols: {self.symbols}")
return True
except Exception as e:
logger.error(f"Failed to setup integration: {e}")
return False
def _cnn_callback(self, symbol: str, features: dict):
"""CNN callback for testing"""
logger.debug(f"CNN features received for {symbol}: {len(features.get('features', []))} dimensions")
def _dqn_callback(self, symbol: str, state: dict):
"""DQN callback for testing"""
logger.debug(f"DQN state received for {symbol}: {len(state.get('state', []))} dimensions")
async def start_streaming(self):
"""Start real-time data streaming"""
try:
logger.info("Starting enhanced order flow streaming...")
await self.bookmap.start_streaming()
logger.info("Streaming started successfully")
return True
except Exception as e:
logger.error(f"Failed to start streaming: {e}")
return False
async def monitor_order_flow(self):
"""Monitor and analyze order flow for test duration"""
logger.info(f"Monitoring enhanced order flow for {self.test_duration} seconds...")
start_time = time.time()
iteration = 0
while time.time() - start_time < self.test_duration:
try:
iteration += 1
# Test each symbol
for symbol in self.symbols:
await self._analyze_symbol_flow(symbol, iteration)
# Wait 10 seconds between analyses
await asyncio.sleep(10)
except Exception as e:
logger.error(f"Error during monitoring iteration {iteration}: {e}")
await asyncio.sleep(5)
logger.info("Order flow monitoring completed")
async def _analyze_symbol_flow(self, symbol: str, iteration: int):
"""Analyze order flow for a specific symbol"""
try:
# Get enhanced order flow metrics
flow_metrics = self.bookmap.get_enhanced_order_flow_metrics(symbol)
if not flow_metrics:
logger.warning(f"No flow metrics available for {symbol}")
return
# Log key metrics
aggressive_passive = flow_metrics['aggressive_passive']
institutional_retail = flow_metrics['institutional_retail']
flow_intensity = flow_metrics['flow_intensity']
price_impact = flow_metrics['price_impact']
maker_taker = flow_metrics['maker_taker_flow']
logger.info(f"\n=== {symbol} Order Flow Analysis (Iteration {iteration}) ===")
logger.info(f"Aggressive Ratio: {aggressive_passive['aggressive_ratio']:.2%}")
logger.info(f"Passive Ratio: {aggressive_passive['passive_ratio']:.2%}")
logger.info(f"Institutional Ratio: {institutional_retail['institutional_ratio']:.2%}")
logger.info(f"Retail Ratio: {institutional_retail['retail_ratio']:.2%}")
logger.info(f"Flow Intensity: {flow_intensity['current_intensity']:.2f} ({flow_intensity['intensity_category']})")
logger.info(f"Price Impact: {price_impact['avg_impact']:.2f} bps ({price_impact['impact_category']})")
logger.info(f"Buy Pressure: {maker_taker['buy_pressure']:.2%}")
logger.info(f"Sell Pressure: {maker_taker['sell_pressure']:.2%}")
# Trade size analysis
size_dist = flow_metrics['size_distribution']
total_trades = sum(size_dist.values())
if total_trades > 0:
logger.info(f"Trade Size Distribution (last 100 trades):")
logger.info(f" Micro (<$1K): {size_dist.get('micro', 0)} ({size_dist.get('micro', 0)/total_trades:.1%})")
logger.info(f" Small ($1K-$10K): {size_dist.get('small', 0)} ({size_dist.get('small', 0)/total_trades:.1%})")
logger.info(f" Medium ($10K-$50K): {size_dist.get('medium', 0)} ({size_dist.get('medium', 0)/total_trades:.1%})")
logger.info(f" Large ($50K-$100K): {size_dist.get('large', 0)} ({size_dist.get('large', 0)/total_trades:.1%})")
logger.info(f" Block (>$100K): {size_dist.get('block', 0)} ({size_dist.get('block', 0)/total_trades:.1%})")
# Volume analysis
if 'volume_stats' in flow_metrics and flow_metrics['volume_stats']:
volume_stats = flow_metrics['volume_stats']
logger.info(f"24h Volume: {volume_stats.get('volume_24h', 0):,.0f}")
logger.info(f"24h Quote Volume: ${volume_stats.get('quote_volume_24h', 0):,.0f}")
# Store metrics for analysis
self.metrics_history.append({
'timestamp': datetime.now(),
'symbol': symbol,
'iteration': iteration,
'metrics': flow_metrics
})
# Test CNN and DQN features
await self._test_model_features(symbol)
except Exception as e:
logger.error(f"Error analyzing flow for {symbol}: {e}")
async def _test_model_features(self, symbol: str):
"""Test CNN and DQN feature extraction"""
try:
# Test CNN features
cnn_features = self.bookmap.get_cnn_features(symbol)
if cnn_features is not None:
logger.info(f"CNN Features: {len(cnn_features)} dimensions")
logger.info(f" Order book features: {cnn_features[:80].mean():.4f} (avg)")
logger.info(f" Liquidity metrics: {cnn_features[80:90].mean():.4f} (avg)")
logger.info(f" Imbalance features: {cnn_features[90:95].mean():.4f} (avg)")
logger.info(f" Enhanced flow features: {cnn_features[95:].mean():.4f} (avg)")
# Test DQN features
dqn_features = self.bookmap.get_dqn_state_features(symbol)
if dqn_features is not None:
logger.info(f"DQN State: {len(dqn_features)} dimensions")
logger.info(f" Order book state: {dqn_features[:20].mean():.4f} (avg)")
logger.info(f" Market indicators: {dqn_features[20:30].mean():.4f} (avg)")
logger.info(f" Enhanced flow state: {dqn_features[30:].mean():.4f} (avg)")
# Test dashboard data
dashboard_data = self.bookmap.get_dashboard_data(symbol)
if dashboard_data and 'enhanced_order_flow' in dashboard_data:
logger.info("Dashboard data includes enhanced order flow metrics")
except Exception as e:
logger.error(f"Error testing model features for {symbol}: {e}")
async def stop_streaming(self):
"""Stop data streaming"""
try:
logger.info("Stopping order flow streaming...")
await self.bookmap.stop_streaming()
logger.info("Streaming stopped")
except Exception as e:
logger.error(f"Error stopping streaming: {e}")
def generate_summary_report(self):
"""Generate a summary report of the test"""
try:
logger.info("\n" + "="*60)
logger.info("ENHANCED ORDER FLOW ANALYSIS SUMMARY")
logger.info("="*60)
if not self.metrics_history:
logger.warning("No metrics data collected during test")
return
# Group by symbol
symbol_data = {}
for entry in self.metrics_history:
symbol = entry['symbol']
if symbol not in symbol_data:
symbol_data[symbol] = []
symbol_data[symbol].append(entry)
# Analyze each symbol
for symbol, data in symbol_data.items():
logger.info(f"\n--- {symbol} Analysis ---")
logger.info(f"Data points collected: {len(data)}")
if len(data) > 0:
# Calculate averages
avg_aggressive = sum(d['metrics']['aggressive_passive']['aggressive_ratio'] for d in data) / len(data)
avg_institutional = sum(d['metrics']['institutional_retail']['institutional_ratio'] for d in data) / len(data)
avg_intensity = sum(d['metrics']['flow_intensity']['current_intensity'] for d in data) / len(data)
avg_impact = sum(d['metrics']['price_impact']['avg_impact'] for d in data) / len(data)
logger.info(f"Average Aggressive Ratio: {avg_aggressive:.2%}")
logger.info(f"Average Institutional Ratio: {avg_institutional:.2%}")
logger.info(f"Average Flow Intensity: {avg_intensity:.2f}")
logger.info(f"Average Price Impact: {avg_impact:.2f} bps")
# Detect trends
first_half = data[:len(data)//2] if len(data) > 1 else data
second_half = data[len(data)//2:] if len(data) > 1 else data
if len(first_half) > 0 and len(second_half) > 0:
first_aggressive = sum(d['metrics']['aggressive_passive']['aggressive_ratio'] for d in first_half) / len(first_half)
second_aggressive = sum(d['metrics']['aggressive_passive']['aggressive_ratio'] for d in second_half) / len(second_half)
trend = "increasing" if second_aggressive > first_aggressive else "decreasing"
logger.info(f"Aggressive trading trend: {trend}")
logger.info("\n" + "="*60)
logger.info("Test completed successfully!")
logger.info("Enhanced order flow analysis is working correctly.")
logger.info("="*60)
except Exception as e:
logger.error(f"Error generating summary report: {e}")
async def run_enhanced_order_flow_test():
"""Run the complete enhanced order flow test"""
tester = EnhancedOrderFlowTester()
try:
# Setup
logger.info("Starting Enhanced Order Flow Integration Test")
logger.info("This test will demonstrate:")
logger.info("- Aggressive vs Passive participant analysis")
logger.info("- Institutional vs Retail trade detection")
logger.info("- Order flow intensity measurements")
logger.info("- Price impact and liquidity consumption analysis")
logger.info("- Block trade and iceberg order detection")
logger.info("- Enhanced CNN and DQN feature extraction")
if not await tester.setup_integration():
logger.error("Failed to setup integration")
return False
# Start streaming
if not await tester.start_streaming():
logger.error("Failed to start streaming")
return False
# Wait for initial data
logger.info("Waiting 30 seconds for initial data...")
await asyncio.sleep(30)
# Monitor order flow
await tester.monitor_order_flow()
# Generate report
tester.generate_summary_report()
return True
except Exception as e:
logger.error(f"Test failed: {e}")
return False
finally:
# Cleanup
try:
await tester.stop_streaming()
except Exception as e:
logger.error(f"Error during cleanup: {e}")
if __name__ == "__main__":
try:
# Run the test
success = asyncio.run(run_enhanced_order_flow_test())
if success:
print("\n✅ Enhanced Order Flow Integration Test PASSED")
print("All enhanced order flow analysis features are working correctly!")
else:
print("\n❌ Enhanced Order Flow Integration Test FAILED")
print("Check the logs for details.")
except KeyboardInterrupt:
print("\n⚠️ Test interrupted by user")
except Exception as e:
print(f"\n💥 Test crashed: {e}")

View File

@ -1,320 +0,0 @@
"""
Test Enhanced Pivot-Based RL System
Tests the new system with:
- Different thresholds for entry vs exit
- Pivot-based rewards
- CNN predictions for early pivot detection
- Uninvested rewards
"""
import logging
import sys
import numpy as np
import pandas as pd
from datetime import datetime, timedelta
from typing import Dict, Any
# Setup logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s [%(levelname)s] %(name)s: %(message)s',
stream=sys.stdout
)
logger = logging.getLogger(__name__)
# Add project root to Python path
import os
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
from core.data_provider import DataProvider
from core.enhanced_orchestrator import EnhancedTradingOrchestrator
from training.enhanced_pivot_rl_trainer import EnhancedPivotRLTrainer, create_enhanced_pivot_trainer
def test_enhanced_pivot_thresholds():
"""Test the enhanced pivot-based threshold system"""
logger.info("=== Testing Enhanced Pivot-Based Thresholds ===")
try:
# Create components
data_provider = DataProvider()
orchestrator = EnhancedTradingOrchestrator(
data_provider=data_provider,
enhanced_rl_training=True
)
# Test threshold initialization
thresholds = orchestrator.pivot_rl_trainer.get_current_thresholds()
logger.info(f"Initial thresholds:")
logger.info(f" Entry: {thresholds['entry_threshold']:.3f}")
logger.info(f" Exit: {thresholds['exit_threshold']:.3f}")
logger.info(f" Uninvested: {thresholds['uninvested_threshold']:.3f}")
# Verify entry threshold is higher than exit threshold
assert thresholds['entry_threshold'] > thresholds['exit_threshold'], "Entry threshold should be higher than exit"
logger.info("✅ Entry threshold correctly higher than exit threshold")
return True
except Exception as e:
logger.error(f"Error testing thresholds: {e}")
return False
def test_pivot_reward_calculation():
"""Test the pivot-based reward calculation"""
logger.info("=== Testing Pivot-Based Reward Calculation ===")
try:
# Create enhanced pivot trainer
data_provider = DataProvider()
pivot_trainer = create_enhanced_pivot_trainer(data_provider)
# Create mock trade decision and outcome
trade_decision = {
'action': 'BUY',
'confidence': 0.75,
'price': 2500.0,
'timestamp': datetime.now()
}
trade_outcome = {
'net_pnl': 15.50, # Profitable trade
'exit_price': 2515.0,
'duration': timedelta(minutes=45)
}
# Create mock market data
market_data = pd.DataFrame({
'open': np.random.normal(2500, 10, 100),
'high': np.random.normal(2510, 10, 100),
'low': np.random.normal(2490, 10, 100),
'close': np.random.normal(2500, 10, 100),
'volume': np.random.normal(1000, 100, 100)
})
market_data.index = pd.date_range(start=datetime.now() - timedelta(hours=2), periods=100, freq='1min')
# Calculate reward
reward = pivot_trainer.calculate_pivot_based_reward(
trade_decision, market_data, trade_outcome
)
logger.info(f"Calculated pivot-based reward: {reward:.3f}")
# Test should return a reasonable reward for profitable trade
assert -15.0 <= reward <= 10.0, f"Reward {reward} outside expected range"
logger.info("✅ Pivot-based reward calculation working")
# Test uninvested reward
low_conf_decision = {
'action': 'HOLD',
'confidence': 0.35, # Below uninvested threshold
'price': 2500.0,
'timestamp': datetime.now()
}
uninvested_reward = pivot_trainer._calculate_uninvested_rewards(low_conf_decision, 0.35)
logger.info(f"Uninvested reward for low confidence: {uninvested_reward:.3f}")
assert uninvested_reward > 0, "Should get positive reward for staying uninvested with low confidence"
logger.info("✅ Uninvested rewards working correctly")
return True
except Exception as e:
logger.error(f"Error testing pivot rewards: {e}")
return False
def test_confidence_adjustment():
"""Test confidence-based reward adjustments"""
logger.info("=== Testing Confidence-Based Adjustments ===")
try:
pivot_trainer = create_enhanced_pivot_trainer()
# Test overconfidence penalty on loss
high_conf_loss = {
'action': 'BUY',
'confidence': 0.85, # High confidence
'price': 2500.0,
'timestamp': datetime.now()
}
loss_outcome = {
'net_pnl': -25.0, # Loss
'exit_price': 2475.0,
'duration': timedelta(hours=3)
}
confidence_adjustment = pivot_trainer._calculate_confidence_adjustment(
high_conf_loss, loss_outcome
)
logger.info(f"Confidence adjustment for overconfident loss: {confidence_adjustment:.3f}")
assert confidence_adjustment < 0, "Should penalize overconfidence on losses"
# Test underconfidence penalty on win
low_conf_win = {
'action': 'BUY',
'confidence': 0.35, # Low confidence
'price': 2500.0,
'timestamp': datetime.now()
}
win_outcome = {
'net_pnl': 20.0, # Profit
'exit_price': 2520.0,
'duration': timedelta(minutes=30)
}
confidence_adjustment_2 = pivot_trainer._calculate_confidence_adjustment(
low_conf_win, win_outcome
)
logger.info(f"Confidence adjustment for underconfident win: {confidence_adjustment_2:.3f}")
# Should be small penalty or zero
logger.info("✅ Confidence adjustments working correctly")
return True
except Exception as e:
logger.error(f"Error testing confidence adjustments: {e}")
return False
def test_dynamic_threshold_updates():
"""Test dynamic threshold updating based on performance"""
logger.info("=== Testing Dynamic Threshold Updates ===")
try:
pivot_trainer = create_enhanced_pivot_trainer()
# Get initial thresholds
initial_thresholds = pivot_trainer.get_current_thresholds()
logger.info(f"Initial thresholds: {initial_thresholds}")
# Simulate some poor performance (low win rate)
for i in range(25):
outcome = {
'timestamp': datetime.now(),
'action': 'BUY',
'confidence': 0.6,
'net_pnl': -5.0 if i < 20 else 10.0, # 20% win rate
'reward': -1.0 if i < 20 else 2.0,
'duration': timedelta(hours=2)
}
pivot_trainer.trade_outcomes.append(outcome)
# Update thresholds
pivot_trainer.update_thresholds_based_on_performance()
# Get updated thresholds
updated_thresholds = pivot_trainer.get_current_thresholds()
logger.info(f"Updated thresholds after poor performance: {updated_thresholds}")
# Entry threshold should increase (more selective) after poor performance
assert updated_thresholds['entry_threshold'] >= initial_thresholds['entry_threshold'], \
"Entry threshold should increase after poor performance"
logger.info("✅ Dynamic threshold updates working correctly")
return True
except Exception as e:
logger.error(f"Error testing dynamic thresholds: {e}")
return False
def test_cnn_integration():
"""Test CNN integration for pivot predictions"""
logger.info("=== Testing CNN Integration ===")
try:
data_provider = DataProvider()
orchestrator = EnhancedTradingOrchestrator(
data_provider=data_provider,
enhanced_rl_training=True
)
# Check if Williams structure is initialized with CNN
williams = orchestrator.pivot_rl_trainer.williams
logger.info(f"Williams CNN enabled: {williams.enable_cnn_feature}")
logger.info(f"Williams CNN model available: {williams.cnn_model is not None}")
# Test CNN threshold adjustment
from core.enhanced_orchestrator import MarketState
from datetime import datetime
mock_market_state = MarketState(
symbol='ETH/USDT',
timestamp=datetime.now(),
prices={'1s': 2500.0},
features={'1s': np.array([])},
volatility=0.02,
volume=1000.0,
trend_strength=0.5,
market_regime='normal',
universal_data=None
)
cnn_adjustment = orchestrator._get_cnn_threshold_adjustment(
'ETH/USDT', 'BUY', mock_market_state
)
logger.info(f"CNN threshold adjustment: {cnn_adjustment:.3f}")
assert 0.0 <= cnn_adjustment <= 0.1, "CNN adjustment should be reasonable"
logger.info("✅ CNN integration working correctly")
return True
except Exception as e:
logger.error(f"Error testing CNN integration: {e}")
return False
def run_all_tests():
"""Run all enhanced pivot RL system tests"""
logger.info("🚀 Starting Enhanced Pivot RL System Tests")
tests = [
test_enhanced_pivot_thresholds,
test_pivot_reward_calculation,
test_confidence_adjustment,
test_dynamic_threshold_updates,
test_cnn_integration
]
passed = 0
total = len(tests)
for test_func in tests:
try:
if test_func():
passed += 1
logger.info(f"{test_func.__name__} PASSED")
else:
logger.error(f"{test_func.__name__} FAILED")
except Exception as e:
logger.error(f"{test_func.__name__} ERROR: {e}")
logger.info(f"\n📊 Test Results: {passed}/{total} tests passed")
if passed == total:
logger.info("🎉 All Enhanced Pivot RL System tests PASSED!")
return True
else:
logger.error(f"⚠️ {total - passed} tests FAILED")
return False
if __name__ == "__main__":
success = run_all_tests()
if success:
logger.info("\n🔥 Enhanced Pivot RL System is ready for deployment!")
logger.info("Key improvements:")
logger.info(" ✅ Higher entry threshold than exit threshold")
logger.info(" ✅ Pivot-based reward calculation")
logger.info(" ✅ CNN predictions for early pivot detection")
logger.info(" ✅ Rewards for staying uninvested when uncertain")
logger.info(" ✅ Confidence-based reward adjustments")
logger.info(" ✅ Dynamic threshold learning from performance")
else:
logger.error("\n❌ Enhanced Pivot RL System has issues that need fixing")
sys.exit(0 if success else 1)

View File

@ -1,83 +0,0 @@
#!/usr/bin/env python3
"""
Test Enhanced RL Fix - Verify comprehensive state building and reward calculation
"""
import sys
from pathlib import Path
project_root = Path(__file__).parent
sys.path.insert(0, str(project_root))
def test_enhanced_orchestrator():
"""Test enhanced orchestrator methods"""
print("=== TESTING ENHANCED RL FIXES ===")
try:
from core.enhanced_orchestrator import EnhancedTradingOrchestrator
from core.data_provider import DataProvider
print("✓ Enhanced orchestrator imported successfully")
# Create orchestrator with enhanced RL enabled
dp = DataProvider()
eo = EnhancedTradingOrchestrator(
data_provider=dp,
enhanced_rl_training=True,
symbols=['ETH/USDT', 'BTC/USDT']
)
print("✓ Enhanced orchestrator created")
# Test method availability
methods = ['build_comprehensive_rl_state', 'calculate_enhanced_pivot_reward', '_get_symbol_correlation']
print("\nMethod availability:")
for method in methods:
available = hasattr(eo, method)
print(f" {method}: {'' if available else ''}")
# Test comprehensive state building
print("\nTesting comprehensive state building...")
state = eo.build_comprehensive_rl_state('ETH/USDT')
if state is not None:
print(f"✓ Comprehensive state built: {len(state)} features")
print(f" State type: {type(state)}")
print(f" State shape: {state.shape if hasattr(state, 'shape') else 'No shape'}")
else:
print("✗ Comprehensive state returned None")
# Debug why state is None
print("\nDEBUGGING STATE BUILDING...")
print(f" Williams enabled: {hasattr(eo, 'williams_enabled')}")
print(f" COB integration active: {hasattr(eo, 'cob_integration_active')}")
print(f" Enhanced RL training: {getattr(eo, 'enhanced_rl_training', 'Not set')}")
# Test enhanced reward calculation
print("\nTesting enhanced reward calculation...")
trade_decision = {
'action': 'BUY',
'confidence': 0.75,
'price': 2500.0,
'timestamp': '2023-01-01 00:00:00'
}
trade_outcome = {
'net_pnl': 50.0,
'exit_price': 2550.0,
'duration': '00:15:00'
}
market_data = {'symbol': 'ETH/USDT'}
try:
reward = eo.calculate_enhanced_pivot_reward(trade_decision, market_data, trade_outcome)
print(f"✓ Enhanced reward calculated: {reward}")
except Exception as e:
print(f"✗ Enhanced reward failed: {e}")
import traceback
traceback.print_exc()
print("\n=== TEST COMPLETE ===")
except Exception as e:
print(f"✗ Test failed: {e}")
import traceback
traceback.print_exc()
if __name__ == "__main__":
test_enhanced_orchestrator()

View File

@ -1,346 +0,0 @@
#!/usr/bin/env python3
"""
Test Enhanced Williams Market Structure with CNN Integration
This script demonstrates the multi-timeframe, multi-symbol CNN-enabled
Williams Market Structure that predicts pivot points using TrainingDataPacket.
Features tested:
- Multi-timeframe data integration (1s, 1m, 1h)
- Multi-symbol support (ETH, BTC)
- Tick data aggregation
- 1h-based normalization strategy
- Multi-level pivot prediction (5 levels, type + price)
"""
import numpy as np
import logging
from datetime import datetime, timedelta
from typing import Dict, List, Optional, Any
from dataclasses import dataclass
# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# Mock TrainingDataPacket for testing
@dataclass
class MockTrainingDataPacket:
"""Mock TrainingDataPacket for testing CNN integration"""
timestamp: datetime
symbol: str
tick_cache: List[Dict[str, Any]]
one_second_bars: List[Dict[str, Any]]
multi_timeframe_data: Dict[str, List[Dict[str, Any]]]
cnn_features: Optional[Dict[str, np.ndarray]] = None
cnn_predictions: Optional[Dict[str, np.ndarray]] = None
market_state: Optional[Any] = None
universal_stream: Optional[Any] = None
class MockTrainingDataProvider:
"""Mock provider that supplies TrainingDataPacket for testing"""
def __init__(self):
self.training_data_buffer = []
self._generate_mock_data()
def _generate_mock_data(self):
"""Generate comprehensive mock market data"""
current_time = datetime.now()
# Generate ETH data for different timeframes
eth_1s_data = self._generate_ohlcv_data(2400.0, 900, '1s', current_time) # 15 min of 1s data
eth_1m_data = self._generate_ohlcv_data(2400.0, 900, '1m', current_time) # 15 hours of 1m data
eth_1h_data = self._generate_ohlcv_data(2400.0, 24, '1h', current_time) # 24 hours of 1h data
# Generate BTC data
btc_1s_data = self._generate_ohlcv_data(45000.0, 300, '1s', current_time) # 5 min of 1s data
# Generate tick data
tick_data = self._generate_tick_data(current_time)
# Create comprehensive TrainingDataPacket
training_packet = MockTrainingDataPacket(
timestamp=current_time,
symbol='ETH/USDT',
tick_cache=tick_data,
one_second_bars=eth_1s_data[-300:], # Last 5 minutes
multi_timeframe_data={
'ETH/USDT': {
'1s': eth_1s_data,
'1m': eth_1m_data,
'1h': eth_1h_data
},
'BTC/USDT': {
'1s': btc_1s_data
}
}
)
self.training_data_buffer.append(training_packet)
logger.info(f"Generated mock training data: {len(eth_1s_data)} 1s bars, {len(eth_1m_data)} 1m bars, {len(eth_1h_data)} 1h bars")
logger.info(f"ETH 1h price range: {min(bar['low'] for bar in eth_1h_data):.2f} - {max(bar['high'] for bar in eth_1h_data):.2f}")
def _generate_ohlcv_data(self, base_price: float, count: int, timeframe: str, end_time: datetime) -> List[Dict[str, Any]]:
"""Generate realistic OHLCV data with indicators"""
data = []
# Calculate time delta based on timeframe
if timeframe == '1s':
delta = timedelta(seconds=1)
elif timeframe == '1m':
delta = timedelta(minutes=1)
elif timeframe == '1h':
delta = timedelta(hours=1)
else:
delta = timedelta(minutes=1)
current_price = base_price
for i in range(count):
timestamp = end_time - delta * (count - i - 1)
# Generate realistic price movement
price_change = np.random.normal(0, base_price * 0.001) # 0.1% volatility
current_price = max(current_price + price_change, base_price * 0.8) # Floor at 80% of base
# Generate OHLCV
open_price = current_price
high_price = open_price * (1 + abs(np.random.normal(0, 0.002)))
low_price = open_price * (1 - abs(np.random.normal(0, 0.002)))
close_price = low_price + (high_price - low_price) * np.random.random()
volume = np.random.exponential(1000)
current_price = close_price
# Calculate basic indicators (placeholders)
sma_20 = close_price * (1 + np.random.normal(0, 0.001))
ema_20 = close_price * (1 + np.random.normal(0, 0.0005))
rsi_14 = 30 + np.random.random() * 40 # RSI between 30-70
macd = np.random.normal(0, 0.1)
bb_upper = high_price * 1.02
bar = {
'timestamp': timestamp,
'open': open_price,
'high': high_price,
'low': low_price,
'close': close_price,
'volume': volume,
'sma_20': sma_20,
'ema_20': ema_20,
'rsi_14': rsi_14,
'macd': macd,
'bb_upper': bb_upper
}
data.append(bar)
return data
def _generate_tick_data(self, end_time: datetime) -> List[Dict[str, Any]]:
"""Generate realistic tick data for last 5 minutes"""
ticks = []
# Generate ETH ticks
for i in range(300): # 5 minutes * 60 seconds
tick_time = end_time - timedelta(seconds=300 - i)
# 2-5 ticks per second
ticks_per_second = np.random.randint(2, 6)
for j in range(ticks_per_second):
tick = {
'symbol': 'ETH/USDT',
'timestamp': tick_time + timedelta(milliseconds=j * 200),
'price': 2400.0 + np.random.normal(0, 5),
'volume': np.random.exponential(0.5),
'quantity': np.random.exponential(1.0),
'side': 'buy' if np.random.random() > 0.5 else 'sell'
}
ticks.append(tick)
# Generate BTC ticks
for i in range(300): # 5 minutes * 60 seconds
tick_time = end_time - timedelta(seconds=300 - i)
ticks_per_second = np.random.randint(1, 4)
for j in range(ticks_per_second):
tick = {
'symbol': 'BTC/USDT',
'timestamp': tick_time + timedelta(milliseconds=j * 300),
'price': 45000.0 + np.random.normal(0, 100),
'volume': np.random.exponential(0.1),
'quantity': np.random.exponential(0.5),
'side': 'buy' if np.random.random() > 0.5 else 'sell'
}
ticks.append(tick)
return ticks
def get_latest_training_data(self):
"""Return the latest TrainingDataPacket"""
return self.training_data_buffer[-1] if self.training_data_buffer else None
def test_enhanced_williams_cnn():
"""Test the enhanced Williams Market Structure with CNN integration"""
try:
from training.williams_market_structure import WilliamsMarketStructure, SwingType
logger.info("=" * 80)
logger.info("TESTING ENHANCED WILLIAMS MARKET STRUCTURE WITH CNN INTEGRATION")
logger.info("=" * 80)
# Create mock data provider
data_provider = MockTrainingDataProvider()
# Initialize Williams Market Structure with CNN
williams = WilliamsMarketStructure(
swing_strengths=[2, 3, 5], # Reduced for testing
cnn_input_shape=(900, 50), # 900 timesteps, 50 features
cnn_output_size=10, # 5 levels * 2 outputs (type + price)
enable_cnn_feature=True, # Enable CNN features
training_data_provider=data_provider
)
logger.info(f"CNN enabled: {williams.enable_cnn_feature}")
logger.info(f"Training data provider available: {williams.training_data_provider is not None}")
# Generate test OHLCV data for Williams calculation
test_ohlcv = generate_test_ohlcv_data()
logger.info(f"Generated test OHLCV data: {len(test_ohlcv)} bars")
# Test Williams calculation with CNN integration
logger.info("\n" + "=" * 60)
logger.info("RUNNING WILLIAMS PIVOT CALCULATION WITH CNN INTEGRATION")
logger.info("=" * 60)
structure_levels = williams.calculate_recursive_pivot_points(test_ohlcv)
# Display results
logger.info(f"\nWilliams Structure Analysis Results:")
logger.info(f"Calculated levels: {len(structure_levels)}")
for level_key, level_data in structure_levels.items():
swing_count = len(level_data.swing_points)
logger.info(f"{level_key}: {swing_count} swing points, "
f"trend: {level_data.trend_analysis.direction.value}, "
f"bias: {level_data.current_bias.value}")
if swing_count > 0:
latest_swing = level_data.swing_points[-1]
logger.info(f" Latest swing: {latest_swing.swing_type.name} @ {latest_swing.price:.2f}")
# Test CNN input preparation directly
logger.info("\n" + "=" * 60)
logger.info("TESTING CNN INPUT PREPARATION")
logger.info("=" * 60)
if williams.enable_cnn_feature and structure_levels['level_0'].swing_points:
test_pivot = structure_levels['level_0'].swing_points[-1]
logger.info(f"Testing CNN input for pivot: {test_pivot.swing_type.name} @ {test_pivot.price:.2f}")
# Test input preparation
cnn_input = williams._prepare_cnn_input(
current_pivot=test_pivot,
ohlcv_data_context=test_ohlcv,
previous_pivot_details=None
)
logger.info(f"CNN input shape: {cnn_input.shape}")
logger.info(f"CNN input range: [{cnn_input.min():.4f}, {cnn_input.max():.4f}]")
logger.info(f"CNN input mean: {cnn_input.mean():.4f}, std: {cnn_input.std():.4f}")
# Test ground truth preparation
if len(structure_levels['level_0'].swing_points) >= 2:
prev_pivot = structure_levels['level_0'].swing_points[-2]
current_pivot = structure_levels['level_0'].swing_points[-1]
prev_details = {'pivot': prev_pivot}
ground_truth = williams._get_cnn_ground_truth(prev_details, current_pivot)
logger.info(f"Ground truth shape: {ground_truth.shape}")
logger.info(f"Ground truth (first 4 values): {ground_truth[:4]}")
logger.info(f"Level 0 prediction: type={ground_truth[0]:.2f}, price={ground_truth[1]:.4f}")
# Test normalization
logger.info("\n" + "=" * 60)
logger.info("TESTING 1H-BASED NORMALIZATION")
logger.info("=" * 60)
training_packet = data_provider.get_latest_training_data()
if training_packet:
# Test normalization with sample data
sample_features = np.random.normal(2400, 50, (100, 10)) # ETH-like prices
normalized = williams._normalize_features_by_1h_range(sample_features, training_packet)
logger.info(f"Original features range: [{sample_features.min():.2f}, {sample_features.max():.2f}]")
logger.info(f"Normalized features range: [{normalized.min():.4f}, {normalized.max():.4f}]")
# Check if 1h data is being used for normalization
eth_1h = training_packet.multi_timeframe_data.get('ETH/USDT', {}).get('1h', [])
if eth_1h:
h1_prices = []
for bar in eth_1h[-24:]:
h1_prices.extend([bar['open'], bar['high'], bar['low'], bar['close']])
h1_range = max(h1_prices) - min(h1_prices)
logger.info(f"1h price range used for normalization: {h1_range:.2f}")
logger.info("\n" + "=" * 80)
logger.info("ENHANCED WILLIAMS CNN INTEGRATION TEST COMPLETED SUCCESSFULLY")
logger.info("=" * 80)
return True
except ImportError as e:
logger.error(f"Import error - some dependencies missing: {e}")
logger.info("This is expected if TensorFlow or other dependencies are not installed")
return False
except Exception as e:
logger.error(f"Test failed with error: {e}", exc_info=True)
return False
def generate_test_ohlcv_data(bars=200, base_price=2400.0):
"""Generate test OHLCV data for Williams calculation"""
data = []
current_price = base_price
current_time = datetime.now()
for i in range(bars):
timestamp = current_time - timedelta(seconds=bars - i)
# Generate price movement
price_change = np.random.normal(0, base_price * 0.002)
current_price = max(current_price + price_change, base_price * 0.9)
open_price = current_price
high_price = open_price * (1 + abs(np.random.normal(0, 0.003)))
low_price = open_price * (1 - abs(np.random.normal(0, 0.003)))
close_price = low_price + (high_price - low_price) * np.random.random()
volume = np.random.exponential(1000)
current_price = close_price
bar = [
timestamp.timestamp(),
open_price,
high_price,
low_price,
close_price,
volume
]
data.append(bar)
return np.array(data)
if __name__ == "__main__":
success = test_enhanced_williams_cnn()
if success:
print("\n✅ All tests passed! Enhanced Williams CNN integration is working.")
else:
print("\n❌ Some tests failed. Check logs for details.")

View File

@ -1,115 +0,0 @@
#!/usr/bin/env python3
"""
Essential Test Suite - Core functionality tests
This file contains the most important tests to verify core functionality:
- Data loading and processing
- Basic model operations
- Trading signal generation
- Critical utility functions
"""
import sys
import os
import unittest
import logging
from pathlib import Path
# Add project root to path
project_root = Path(__file__).parent.parent
sys.path.insert(0, str(project_root))
logger = logging.getLogger(__name__)
class TestEssentialFunctionality(unittest.TestCase):
"""Essential tests for core trading system functionality"""
def test_imports(self):
"""Test that all critical modules can be imported"""
try:
from core.config import get_config
from core.data_provider import DataProvider
from utils.model_utils import robust_save, robust_load
logger.info("✅ All critical imports successful")
except ImportError as e:
self.fail(f"Critical import failed: {e}")
def test_config_loading(self):
"""Test configuration loading"""
try:
from core.config import get_config
config = get_config()
self.assertIsNotNone(config, "Config should be loaded")
logger.info("✅ Configuration loading successful")
except Exception as e:
self.fail(f"Config loading failed: {e}")
def test_data_provider_initialization(self):
"""Test DataProvider can be initialized"""
try:
from core.data_provider import DataProvider
data_provider = DataProvider(['ETH/USDT'], ['1m'])
self.assertIsNotNone(data_provider, "DataProvider should initialize")
logger.info("✅ DataProvider initialization successful")
except Exception as e:
self.fail(f"DataProvider initialization failed: {e}")
def test_model_utils(self):
"""Test model utility functions"""
try:
from utils.model_utils import get_model_info
import tempfile
# Test with non-existent file
info = get_model_info("non_existent_file.pt")
self.assertFalse(info['exists'], "Should report file doesn't exist")
logger.info("✅ Model utils test successful")
except Exception as e:
self.fail(f"Model utils test failed: {e}")
def test_signal_generation_logic(self):
"""Test basic signal generation logic"""
import numpy as np
# Test signal distribution calculation
predictions = np.array([0, 1, 2, 1, 0, 2, 1, 1, 2, 0]) # SELL, HOLD, BUY
buy_count = np.sum(predictions == 2)
sell_count = np.sum(predictions == 0)
hold_count = np.sum(predictions == 1)
total = len(predictions)
distribution = {
"BUY": buy_count / total,
"SELL": sell_count / total,
"HOLD": hold_count / total
}
# Verify calculations
self.assertAlmostEqual(distribution["BUY"], 0.3, places=1)
self.assertAlmostEqual(distribution["SELL"], 0.3, places=1)
self.assertAlmostEqual(distribution["HOLD"], 0.4, places=1)
self.assertAlmostEqual(sum(distribution.values()), 1.0, places=1)
logger.info("✅ Signal generation logic test successful")
def run_essential_tests():
"""Run essential tests only"""
suite = unittest.TestLoader().loadTestsFromTestCase(TestEssentialFunctionality)
runner = unittest.TextTestRunner(verbosity=2)
result = runner.run(suite)
return result.wasSuccessful()
if __name__ == "__main__":
logging.basicConfig(level=logging.INFO)
logger.info("Running essential functionality tests...")
success = run_essential_tests()
if success:
logger.info("✅ All essential tests passed!")
sys.exit(0)
else:
logger.error("❌ Essential tests failed!")
sys.exit(1)

View File

@ -1,508 +0,0 @@
#!/usr/bin/env python3
"""
Enhanced Extrema Training Test Suite
Tests the complete extrema training system including:
1. 200-candle 1m context data loading
2. Local extrema detection (bottoms and tops)
3. Training on not-so-perfect opportunities
4. Dashboard integration with extrema information
5. Reusable functionality across different dashboards
This test suite verifies all components work together correctly.
"""
import sys
import os
import asyncio
import logging
import numpy as np
import pandas as pd
from datetime import datetime, timedelta
from typing import Dict, List, Any
import time
# Add project root to path
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
def test_extrema_trainer_initialization():
"""Test 1: Extrema trainer initialization and basic functionality"""
print("\n" + "="*60)
print("TEST 1: Extrema Trainer Initialization")
print("="*60)
try:
from core.extrema_trainer import ExtremaTrainer
from core.data_provider import DataProvider
# Initialize components
data_provider = DataProvider()
symbols = ['ETHUSDT', 'BTCUSDT']
# Create extrema trainer
extrema_trainer = ExtremaTrainer(
data_provider=data_provider,
symbols=symbols,
window_size=10
)
# Verify initialization
assert extrema_trainer.symbols == symbols
assert extrema_trainer.window_size == 10
assert len(extrema_trainer.detected_extrema) == len(symbols)
assert len(extrema_trainer.context_data) == len(symbols)
print("✅ Extrema trainer initialized successfully")
print(f" - Symbols: {symbols}")
print(f" - Window size: {extrema_trainer.window_size}")
print(f" - Context data containers: {len(extrema_trainer.context_data)}")
print(f" - Extrema containers: {len(extrema_trainer.detected_extrema)}")
return True, extrema_trainer
except Exception as e:
print(f"❌ Extrema trainer initialization failed: {e}")
return False, None
def test_context_data_loading(extrema_trainer):
"""Test 2: 200-candle 1m context data loading"""
print("\n" + "="*60)
print("TEST 2: 200-Candle 1m Context Data Loading")
print("="*60)
try:
# Initialize context data
start_time = time.time()
results = extrema_trainer.initialize_context_data()
load_time = time.time() - start_time
# Verify results
successful_loads = sum(1 for success in results.values() if success)
total_symbols = len(extrema_trainer.symbols)
print(f"✅ Context data loading completed in {load_time:.2f} seconds")
print(f" - Success rate: {successful_loads}/{total_symbols} symbols")
# Check context data details
for symbol in extrema_trainer.symbols:
context = extrema_trainer.context_data[symbol]
candles_loaded = len(context.candles)
features_available = context.features is not None
print(f" - {symbol}: {candles_loaded} candles, features: {'' if features_available else ''}")
if features_available:
print(f" Features shape: {context.features.shape}")
# Test context feature retrieval
for symbol in extrema_trainer.symbols:
features = extrema_trainer.get_context_features_for_model(symbol)
if features is not None:
print(f" - {symbol} model features: {features.shape}")
else:
print(f" - {symbol} model features: Not available")
return successful_loads > 0
except Exception as e:
print(f"❌ Context data loading failed: {e}")
return False
def test_extrema_detection(extrema_trainer):
"""Test 3: Local extrema detection (bottoms and tops)"""
print("\n" + "="*60)
print("TEST 3: Local Extrema Detection")
print("="*60)
try:
# Run batch extrema detection
start_time = time.time()
detection_results = extrema_trainer.run_batch_detection()
detection_time = time.time() - start_time
# Analyze results
total_extrema = sum(len(extrema_list) for extrema_list in detection_results.values())
print(f"✅ Extrema detection completed in {detection_time:.2f} seconds")
print(f" - Total extrema detected: {total_extrema}")
# Detailed breakdown by symbol
for symbol, extrema_list in detection_results.items():
if extrema_list:
bottoms = len([e for e in extrema_list if e.extrema_type == 'bottom'])
tops = len([e for e in extrema_list if e.extrema_type == 'top'])
avg_confidence = np.mean([e.confidence for e in extrema_list])
print(f" - {symbol}: {len(extrema_list)} extrema (bottoms: {bottoms}, tops: {tops})")
print(f" Average confidence: {avg_confidence:.3f}")
# Show recent extrema details
for extrema in extrema_list[-2:]: # Last 2 extrema
print(f" {extrema.extrema_type.upper()} @ ${extrema.price:.2f} "
f"(confidence: {extrema.confidence:.3f}, action: {extrema.optimal_action})")
# Test perfect moves for CNN
perfect_moves = extrema_trainer.get_perfect_moves_for_cnn(count=20)
print(f" - Perfect moves for CNN training: {len(perfect_moves)}")
if perfect_moves:
for move in perfect_moves[:3]: # Show first 3
print(f" {move['optimal_action']} {move['symbol']} @ {move['timestamp'].strftime('%H:%M:%S')} "
f"(outcome: {move['actual_outcome']:.3f}, confidence: {move['confidence_should_have_been']:.3f})")
return total_extrema > 0
except Exception as e:
print(f"❌ Extrema detection failed: {e}")
return False
def test_context_data_updates(extrema_trainer):
"""Test 4: Context data updates and continuous extrema detection"""
print("\n" + "="*60)
print("TEST 4: Context Data Updates and Continuous Detection")
print("="*60)
try:
# Test single symbol update
symbol = extrema_trainer.symbols[0]
print(f"Testing context update for {symbol}...")
start_time = time.time()
update_results = extrema_trainer.update_context_data(symbol)
update_time = time.time() - start_time
print(f"✅ Context update completed in {update_time:.2f} seconds")
print(f" - Update result for {symbol}: {'' if update_results.get(symbol, False) else ''}")
# Test all symbols update
print("Testing context update for all symbols...")
start_time = time.time()
all_update_results = extrema_trainer.update_context_data()
all_update_time = time.time() - start_time
successful_updates = sum(1 for success in all_update_results.values() if success)
print(f"✅ All symbols update completed in {all_update_time:.2f} seconds")
print(f" - Success rate: {successful_updates}/{len(extrema_trainer.symbols)} symbols")
# Check for new extrema after updates
new_extrema = extrema_trainer.run_batch_detection()
new_total = sum(len(extrema_list) for extrema_list in new_extrema.values())
print(f" - New extrema detected after update: {new_total}")
return successful_updates > 0
except Exception as e:
print(f"❌ Context data updates failed: {e}")
return False
def test_extrema_stats_and_training_data(extrema_trainer):
"""Test 5: Extrema statistics and training data retrieval"""
print("\n" + "="*60)
print("TEST 5: Extrema Statistics and Training Data")
print("="*60)
try:
# Get comprehensive stats
stats = extrema_trainer.get_extrema_stats()
print("✅ Extrema statistics retrieved successfully")
print(f" - Total extrema detected: {stats.get('total_extrema_detected', 0)}")
print(f" - Training queue size: {stats.get('training_queue_size', 0)}")
print(f" - Window size: {stats.get('window_size', 0)}")
# Confidence thresholds
thresholds = stats.get('confidence_thresholds', {})
print(f" - Confidence thresholds: min={thresholds.get('min', 0):.2f}, max={thresholds.get('max', 0):.2f}")
# Context data status
context_status = stats.get('context_data_status', {})
for symbol, status in context_status.items():
candles = status.get('candles_loaded', 0)
features = status.get('features_available', False)
last_update = status.get('last_update', 'Unknown')
print(f" - {symbol}: {candles} candles, features: {'' if features else ''}, updated: {last_update}")
# Recent extrema breakdown
recent_extrema = stats.get('recent_extrema', {})
if recent_extrema:
print(f" - Recent extrema: {recent_extrema.get('bottoms', 0)} bottoms, {recent_extrema.get('tops', 0)} tops")
print(f" - Average confidence: {recent_extrema.get('avg_confidence', 0):.3f}")
print(f" - Average outcome: {recent_extrema.get('avg_outcome', 0):.3f}")
# Test training data retrieval
training_data = extrema_trainer.get_extrema_training_data(count=10, min_confidence=0.4)
print(f" - Training data (min confidence 0.4): {len(training_data)} cases")
if training_data:
high_confidence_cases = len([case for case in training_data if case.confidence > 0.7])
print(f" - High confidence cases (>0.7): {high_confidence_cases}")
return True
except Exception as e:
print(f"❌ Extrema statistics retrieval failed: {e}")
return False
def test_enhanced_orchestrator_integration():
"""Test 6: Enhanced orchestrator integration with extrema trainer"""
print("\n" + "="*60)
print("TEST 6: Enhanced Orchestrator Integration")
print("="*60)
try:
from core.enhanced_orchestrator import EnhancedTradingOrchestrator
from core.data_provider import DataProvider
# Initialize orchestrator (should include extrema trainer)
data_provider = DataProvider()
orchestrator = EnhancedTradingOrchestrator(data_provider)
# Verify extrema trainer integration
assert hasattr(orchestrator, 'extrema_trainer')
assert orchestrator.extrema_trainer is not None
print("✅ Enhanced orchestrator initialized with extrema trainer")
print(f" - Extrema trainer symbols: {orchestrator.extrema_trainer.symbols}")
# Test extrema stats retrieval through orchestrator
extrema_stats = orchestrator.get_extrema_stats()
print(f" - Extrema stats available: {'' if extrema_stats else ''}")
if extrema_stats:
print(f" - Total extrema: {extrema_stats.get('total_extrema_detected', 0)}")
print(f" - Training queue: {extrema_stats.get('training_queue_size', 0)}")
# Test context features retrieval
for symbol in orchestrator.symbols[:2]: # Test first 2 symbols
context_features = orchestrator.get_context_features_for_model(symbol)
if context_features is not None:
print(f" - {symbol} context features: {context_features.shape}")
else:
print(f" - {symbol} context features: Not available")
# Test perfect moves for CNN
perfect_moves = orchestrator.get_perfect_moves_for_cnn(count=10)
print(f" - Perfect moves for CNN: {len(perfect_moves)}")
return True, orchestrator
except Exception as e:
print(f"❌ Enhanced orchestrator integration failed: {e}")
return False, None
def test_dashboard_integration(orchestrator):
"""Test 7: Dashboard integration with extrema information"""
print("\n" + "="*60)
print("TEST 7: Dashboard Integration")
print("="*60)
try:
from web.old_archived.scalping_dashboard import RealTimeScalpingDashboard
# Initialize dashboard with enhanced orchestrator
dashboard = RealTimeScalpingDashboard(orchestrator=orchestrator)
print("✅ Dashboard initialized with enhanced orchestrator")
# Test sensitivity learning info (should include extrema stats)
sensitivity_info = dashboard._get_sensitivity_learning_info()
print("✅ Sensitivity learning info retrieved")
print(f" - Info structure: {list(sensitivity_info.keys())}")
# Check for extrema information
if 'extrema' in sensitivity_info:
extrema_info = sensitivity_info['extrema']
print(f" - Extrema info available: ✅")
print(f" - Total extrema detected: {extrema_info.get('total_extrema_detected', 0)}")
print(f" - Training queue size: {extrema_info.get('training_queue_size', 0)}")
recent_extrema = extrema_info.get('recent_extrema', {})
if recent_extrema:
print(f" - Recent bottoms: {recent_extrema.get('bottoms', 0)}")
print(f" - Recent tops: {recent_extrema.get('tops', 0)}")
print(f" - Average confidence: {recent_extrema.get('avg_confidence', 0):.3f}")
# Check for context data information
if 'context_data' in sensitivity_info:
context_info = sensitivity_info['context_data']
print(f" - Context data info available: ✅")
print(f" - Symbols with context: {len(context_info)}")
for symbol, status in list(context_info.items())[:2]: # Show first 2
candles = status.get('candles_loaded', 0)
features = status.get('features_available', False)
print(f" - {symbol}: {candles} candles, features: {'' if features else ''}")
# Test model training status creation
try:
training_status = dashboard._create_model_training_status()
print("✅ Model training status created successfully")
print(f" - Status type: {type(training_status)}")
except Exception as e:
print(f"⚠️ Model training status creation had issues: {e}")
return True
except Exception as e:
print(f"❌ Dashboard integration failed: {e}")
return False
def test_reusability_across_dashboards():
"""Test 8: Reusability of extrema trainer across different dashboards"""
print("\n" + "="*60)
print("TEST 8: Reusability Across Different Dashboards")
print("="*60)
try:
from core.extrema_trainer import ExtremaTrainer
from core.data_provider import DataProvider
# Create shared extrema trainer
data_provider = DataProvider()
shared_extrema_trainer = ExtremaTrainer(
data_provider=data_provider,
symbols=['ETHUSDT'],
window_size=8 # Different window size
)
# Initialize context data
shared_extrema_trainer.initialize_context_data()
print("✅ Shared extrema trainer created")
print(f" - Window size: {shared_extrema_trainer.window_size}")
print(f" - Symbols: {shared_extrema_trainer.symbols}")
# Simulate usage by multiple dashboard types
dashboard_types = ['scalping', 'swing', 'analysis']
for dashboard_type in dashboard_types:
print(f"\n Testing {dashboard_type} dashboard usage:")
# Get extrema stats (reusable method)
stats = shared_extrema_trainer.get_extrema_stats()
print(f" - {dashboard_type}: Extrema stats retrieved ✅")
# Get context features (reusable method)
features = shared_extrema_trainer.get_context_features_for_model('ETHUSDT')
if features is not None:
print(f" - {dashboard_type}: Context features available ✅ {features.shape}")
else:
print(f" - {dashboard_type}: Context features not available ❌")
# Get training data (reusable method)
training_data = shared_extrema_trainer.get_extrema_training_data(count=5)
print(f" - {dashboard_type}: Training data retrieved ✅ ({len(training_data)} cases)")
# Get perfect moves (reusable method)
perfect_moves = shared_extrema_trainer.get_perfect_moves_for_cnn(count=5)
print(f" - {dashboard_type}: Perfect moves retrieved ✅ ({len(perfect_moves)} moves)")
print("\n✅ Extrema trainer successfully reused across different dashboard types")
return True
except Exception as e:
print(f"❌ Reusability test failed: {e}")
return False
def run_comprehensive_test_suite():
"""Run the complete test suite"""
print("🚀 ENHANCED EXTREMA TRAINING TEST SUITE")
print("="*80)
print("Testing 200-candle context data, extrema detection, and dashboard integration")
print("="*80)
test_results = []
extrema_trainer = None
orchestrator = None
# Test 1: Extrema trainer initialization
success, extrema_trainer = test_extrema_trainer_initialization()
test_results.append(("Extrema Trainer Initialization", success))
if success and extrema_trainer:
# Test 2: Context data loading
success = test_context_data_loading(extrema_trainer)
test_results.append(("200-Candle Context Data Loading", success))
# Test 3: Extrema detection
success = test_extrema_detection(extrema_trainer)
test_results.append(("Local Extrema Detection", success))
# Test 4: Context data updates
success = test_context_data_updates(extrema_trainer)
test_results.append(("Context Data Updates", success))
# Test 5: Stats and training data
success = test_extrema_stats_and_training_data(extrema_trainer)
test_results.append(("Extrema Stats and Training Data", success))
# Test 6: Enhanced orchestrator integration
success, orchestrator = test_enhanced_orchestrator_integration()
test_results.append(("Enhanced Orchestrator Integration", success))
if success and orchestrator:
# Test 7: Dashboard integration
success = test_dashboard_integration(orchestrator)
test_results.append(("Dashboard Integration", success))
# Test 8: Reusability
success = test_reusability_across_dashboards()
test_results.append(("Reusability Across Dashboards", success))
# Print final results
print("\n" + "="*80)
print("🏁 TEST SUITE RESULTS")
print("="*80)
passed = 0
total = len(test_results)
for test_name, success in test_results:
status = "✅ PASSED" if success else "❌ FAILED"
print(f"{test_name:<40} {status}")
if success:
passed += 1
print("="*80)
print(f"OVERALL RESULT: {passed}/{total} tests passed ({passed/total*100:.1f}%)")
if passed == total:
print("🎉 ALL TESTS PASSED! Enhanced extrema training system is working correctly.")
elif passed >= total * 0.8:
print("✅ MOSTLY SUCCESSFUL! System is functional with minor issues.")
else:
print("⚠️ SIGNIFICANT ISSUES DETECTED! Please review failed tests.")
print("="*80)
return passed, total
if __name__ == "__main__":
try:
passed, total = run_comprehensive_test_suite()
# Exit with appropriate code
if passed == total:
sys.exit(0) # Success
else:
sys.exit(1) # Some failures
except KeyboardInterrupt:
print("\n\n⚠️ Test suite interrupted by user")
sys.exit(2)
except Exception as e:
print(f"\n\n❌ Test suite crashed: {e}")
import traceback
traceback.print_exc()
sys.exit(3)

View File

@ -1,210 +0,0 @@
"""
Test script for automatic fee synchronization with MEXC API
This script demonstrates how the system can automatically sync trading fees
from the MEXC API to the local configuration file.
"""
import os
import sys
import logging
from dotenv import load_dotenv
# Add NN directory to path
sys.path.append(os.path.join(os.path.dirname(__file__), 'NN'))
from NN.exchanges.mexc_interface import MEXCInterface
from core.config_sync import ConfigSynchronizer
from core.trading_executor import TradingExecutor
# Setup logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
def test_mexc_fee_retrieval():
"""Test retrieving fees directly from MEXC API"""
logger.info("=== Testing MEXC Fee Retrieval ===")
# Load environment variables
load_dotenv()
# Initialize MEXC interface
api_key = os.getenv('MEXC_API_KEY')
api_secret = os.getenv('MEXC_SECRET_KEY')
if not api_key or not api_secret:
logger.error("MEXC API credentials not found in environment variables")
return None
try:
mexc = MEXCInterface(api_key=api_key, api_secret=api_secret, test_mode=False)
# Test connection
if mexc.connect():
logger.info("MEXC: Connection successful")
else:
logger.error("MEXC: Connection failed")
return None
# Get trading fees
logger.info("MEXC: Fetching trading fees...")
fees = mexc.get_trading_fees()
if fees:
logger.info(f"MEXC Trading Fees Retrieved:")
logger.info(f" Maker Rate: {fees.get('maker_rate', 0)*100:.3f}%")
logger.info(f" Taker Rate: {fees.get('taker_rate', 0)*100:.3f}%")
logger.info(f" Source: {fees.get('source', 'unknown')}")
if fees.get('source') == 'mexc_api':
logger.info(f" Raw Commission Rates:")
logger.info(f" Maker: {fees.get('maker_commission', 0)} basis points")
logger.info(f" Taker: {fees.get('taker_commission', 0)} basis points")
else:
logger.warning("Using fallback fee values - API may not be working")
else:
logger.error("Failed to retrieve trading fees")
return fees
except Exception as e:
logger.error(f"Error testing MEXC fee retrieval: {e}")
return None
def test_config_synchronization():
"""Test automatic config synchronization"""
logger.info("\n=== Testing Config Synchronization ===")
# Load environment variables
load_dotenv()
try:
# Initialize MEXC interface
api_key = os.getenv('MEXC_API_KEY')
api_secret = os.getenv('MEXC_SECRET_KEY')
if not api_key or not api_secret:
logger.error("MEXC API credentials not found")
return False
mexc = MEXCInterface(api_key=api_key, api_secret=api_secret, test_mode=False)
# Initialize config synchronizer
config_sync = ConfigSynchronizer(
config_path="config.yaml",
mexc_interface=mexc
)
# Get current sync status
logger.info("Current sync status:")
status = config_sync.get_sync_status()
for key, value in status.items():
if key != 'latest_sync_result':
logger.info(f" {key}: {value}")
# Perform manual sync
logger.info("\nPerforming manual fee synchronization...")
sync_result = config_sync.sync_trading_fees(force=True)
logger.info(f"Sync Result:")
logger.info(f" Status: {sync_result.get('status')}")
logger.info(f" Changes Made: {sync_result.get('changes_made', False)}")
if sync_result.get('changes'):
logger.info(" Fee Changes:")
for fee_type, change in sync_result['changes'].items():
logger.info(f" {fee_type}: {change['old']:.6f} -> {change['new']:.6f}")
if sync_result.get('errors'):
logger.warning(f" Errors: {sync_result['errors']}")
# Test auto-sync
logger.info("\nTesting auto-sync...")
auto_sync_success = config_sync.auto_sync_fees()
logger.info(f"Auto-sync result: {'Success' if auto_sync_success else 'Failed/Skipped'}")
return sync_result.get('status') in ['success', 'no_changes']
except Exception as e:
logger.error(f"Error testing config synchronization: {e}")
return False
def test_trading_executor_integration():
"""Test fee sync integration in TradingExecutor"""
logger.info("\n=== Testing TradingExecutor Integration ===")
try:
# Initialize trading executor (this should trigger automatic fee sync)
logger.info("Initializing TradingExecutor with auto fee sync...")
executor = TradingExecutor("config.yaml")
# Check if config synchronizer was initialized
if hasattr(executor, 'config_synchronizer') and executor.config_synchronizer:
logger.info("Config synchronizer successfully initialized")
# Get sync status
sync_status = executor.get_fee_sync_status()
logger.info("Fee sync status:")
for key, value in sync_status.items():
if key not in ['latest_sync_result']:
logger.info(f" {key}: {value}")
# Test manual sync through executor
logger.info("\nTesting manual sync through TradingExecutor...")
manual_sync = executor.sync_fees_with_api(force=True)
logger.info(f"Manual sync result: {manual_sync.get('status')}")
# Test auto sync
logger.info("Testing auto sync...")
auto_sync = executor.auto_sync_fees_if_needed()
logger.info(f"Auto sync result: {'Success' if auto_sync else 'Skipped/Failed'}")
return True
else:
logger.error("Config synchronizer not initialized in TradingExecutor")
return False
except Exception as e:
logger.error(f"Error testing TradingExecutor integration: {e}")
return False
def main():
"""Run all tests"""
logger.info("Starting Fee Synchronization Tests")
logger.info("=" * 50)
# Test 1: Direct API fee retrieval
fees = test_mexc_fee_retrieval()
# Test 2: Config synchronization
if fees:
sync_success = test_config_synchronization()
else:
logger.warning("Skipping config sync test due to API failure")
sync_success = False
# Test 3: TradingExecutor integration
if sync_success:
integration_success = test_trading_executor_integration()
else:
logger.warning("Skipping TradingExecutor test due to sync failure")
integration_success = False
# Summary
logger.info("\n" + "=" * 50)
logger.info("TEST SUMMARY:")
logger.info(f" MEXC API Fee Retrieval: {'PASS' if fees else 'FAIL'}")
logger.info(f" Config Synchronization: {'PASS' if sync_success else 'FAIL'}")
logger.info(f" TradingExecutor Integration: {'PASS' if integration_success else 'FAIL'}")
if fees and sync_success and integration_success:
logger.info("\nALL TESTS PASSED! Fee synchronization is working correctly.")
logger.info("Your system will now automatically sync trading fees from MEXC API.")
else:
logger.warning("\nSome tests failed. Check the logs above for details.")
if __name__ == "__main__":
main()

View File

@ -1,108 +0,0 @@
#!/usr/bin/env python3
"""
Final Test - Verify Enhanced Orchestrator Methods Work
"""
import sys
from pathlib import Path
project_root = Path(__file__).parent
sys.path.insert(0, str(project_root))
def test_final_fixes():
"""Test that the enhanced orchestrator methods are working"""
print("=" * 60)
print("FINAL TEST - ENHANCED RL PIPELINE FIXES")
print("=" * 60)
try:
# Import and test basic orchestrator
from core.orchestrator import TradingOrchestrator
from core.data_provider import DataProvider
print("✓ Imports successful")
# Create orchestrator
dp = DataProvider()
orch = TradingOrchestrator(dp)
print("✓ TradingOrchestrator created")
# Test enhanced methods
methods = ['build_comprehensive_rl_state', 'calculate_enhanced_pivot_reward']
print("\nTesting enhanced methods:")
for method in methods:
has_method = hasattr(orch, method)
print(f" {method}: {'' if has_method else ''}")
# Test comprehensive RL state building
print("\nTesting comprehensive RL state building:")
state = orch.build_comprehensive_rl_state('ETH/USDT')
if state and len(state) >= 13000:
print(f"✅ Comprehensive RL state: {len(state)} features (AUDIT FIXED)")
else:
print(f"❌ Comprehensive RL state: {len(state) if state else 0} features")
# Test enhanced reward calculation
print("\nTesting enhanced pivot reward:")
mock_trade_outcome = {'net_pnl': 25.0, 'hold_time_seconds': 300}
mock_market_data = {'current_price': 3500.0, 'trend_strength': 0.8, 'volatility': 0.1}
mock_trade_decision = {'price': 3495.0}
reward = orch.calculate_enhanced_pivot_reward(
mock_trade_decision,
mock_market_data,
mock_trade_outcome
)
print(f"✅ Enhanced pivot reward: {reward:.4f}")
# Test dashboard integration
print("\nTesting dashboard integration:")
from web.clean_dashboard import CleanTradingDashboard as TradingDashboard
# Create dashboard with basic orchestrator (should work now)
dashboard = TradingDashboard(data_provider=dp, orchestrator=orch)
print("✓ Dashboard created with enhanced orchestrator")
# Test dashboard can access enhanced methods
dashboard_has_enhanced = hasattr(dashboard.orchestrator, 'build_comprehensive_rl_state')
print(f" Dashboard has enhanced methods: {'' if dashboard_has_enhanced else ''}")
if dashboard_has_enhanced:
dashboard_state = dashboard.orchestrator.build_comprehensive_rl_state('ETH/USDT')
print(f" Dashboard comprehensive state: {len(dashboard_state) if dashboard_state else 0} features")
print("\n" + "=" * 60)
print("🎉 COMPREHENSIVE RL TRAINING PIPELINE FIXES COMPLETE!")
print("=" * 60)
print("✅ AUDIT ISSUE #1: INPUT DATA GAP FIXED")
print(" - Comprehensive RL state: 13,400+ features")
print(" - ETH tick data, multi-timeframe OHLCV, BTC reference")
print(" - CNN features, pivot analysis, microstructure")
print("")
print("✅ AUDIT ISSUE #2: ENHANCED REWARD CALCULATION FIXED")
print(" - Pivot-based reward system operational")
print(" - Market structure analysis integrated")
print(" - Trade execution quality assessment")
print("")
print("✅ AUDIT ISSUE #3: ORCHESTRATOR INTEGRATION FIXED")
print(" - Dashboard can access enhanced methods")
print(" - No async/sync conflicts")
print(" - Real-time training data collection ready")
print("")
print("🚀 READY FOR REAL-TIME TRAINING WITH RETROSPECTIVE SETUPS!")
print("=" * 60)
return True
except Exception as e:
print(f"\n❌ ERROR: {e}")
import traceback
traceback.print_exc()
return False
if __name__ == "__main__":
success = test_final_fixes()
if success:
print("\n✅ All pipeline fixes verified and working!")
else:
print("\n❌ Pipeline fixes need more work")

View File

@ -1,301 +0,0 @@
#!/usr/bin/env python3
"""
Test GPU Training - Check if our models actually train and use GPU
"""
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import time
import logging
from pathlib import Path
import sys
# Add project root to path
project_root = Path(__file__).parent
sys.path.insert(0, str(project_root))
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
def test_gpu_availability():
"""Test if GPU is available and working"""
logger.info("=== GPU AVAILABILITY TEST ===")
print(f"PyTorch version: {torch.__version__}")
print(f"CUDA available: {torch.cuda.is_available()}")
if torch.cuda.is_available():
print(f"CUDA version: {torch.version.cuda}")
print(f"GPU count: {torch.cuda.device_count()}")
for i in range(torch.cuda.device_count()):
print(f"GPU {i}: {torch.cuda.get_device_name(i)}")
print(f" Memory: {torch.cuda.get_device_properties(i).total_memory / 1024**3:.1f} GB")
# Test GPU operations
try:
device = torch.device('cuda:0')
x = torch.randn(100, 100, device=device)
y = torch.randn(100, 100, device=device)
z = torch.mm(x, y)
print(f"✅ GPU operations working: {z.device}")
return True
except Exception as e:
print(f"❌ GPU operations failed: {e}")
return False
else:
print("❌ No CUDA available")
return False
def test_simple_training():
"""Test if a simple neural network actually trains"""
logger.info("=== SIMPLE TRAINING TEST ===")
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(f"Using device: {device}")
# Create a simple model
class SimpleNet(nn.Module):
def __init__(self):
super().__init__()
self.layers = nn.Sequential(
nn.Linear(10, 64),
nn.ReLU(),
nn.Linear(64, 32),
nn.ReLU(),
nn.Linear(32, 3)
)
def forward(self, x):
return self.layers(x)
model = SimpleNet().to(device)
optimizer = optim.Adam(model.parameters(), lr=0.001)
criterion = nn.CrossEntropyLoss()
# Generate some dummy data
X = torch.randn(1000, 10, device=device)
y = torch.randint(0, 3, (1000,), device=device)
print(f"Model parameters: {sum(p.numel() for p in model.parameters()):,}")
print(f"Data shape: {X.shape}, Labels shape: {y.shape}")
# Training loop
initial_loss = None
losses = []
print("Training for 100 steps...")
start_time = time.time()
for step in range(100):
# Forward pass
outputs = model(X)
loss = criterion(outputs, y)
# Backward pass
optimizer.zero_grad()
loss.backward()
optimizer.step()
loss_val = loss.item()
losses.append(loss_val)
if step == 0:
initial_loss = loss_val
if step % 20 == 0:
print(f"Step {step}: Loss = {loss_val:.4f}")
end_time = time.time()
final_loss = losses[-1]
print(f"Training completed in {end_time - start_time:.2f} seconds")
print(f"Initial loss: {initial_loss:.4f}")
print(f"Final loss: {final_loss:.4f}")
print(f"Loss reduction: {initial_loss - final_loss:.4f}")
# Check if training actually happened
if final_loss < initial_loss * 0.9: # At least 10% reduction
print("✅ Training is working - loss decreased significantly")
return True
else:
print("❌ Training may not be working - loss didn't decrease much")
return False
def test_our_models():
"""Test if our actual models can train"""
logger.info("=== OUR MODELS TEST ===")
try:
# Test DQN Agent
from NN.models.dqn_agent import DQNAgent
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(f"Testing DQN Agent on {device}")
# Create agent
state_shape = (100,) # Simple state
agent = DQNAgent(
state_shape=state_shape,
n_actions=3,
learning_rate=0.001,
device=device
)
print(f"✅ DQN Agent created successfully")
print(f" Device: {agent.device}")
print(f" Policy net device: {next(agent.policy_net.parameters()).device}")
# Test training step
state = np.random.randn(100).astype(np.float32)
action = 1
reward = 0.5
next_state = np.random.randn(100).astype(np.float32)
done = False
# Add experience and train
agent.remember(state, action, reward, next_state, done)
# Add more experiences
for _ in range(200): # Need enough for batch
s = np.random.randn(100).astype(np.float32)
a = np.random.randint(0, 3)
r = np.random.randn() * 0.1
ns = np.random.randn(100).astype(np.float32)
d = np.random.random() < 0.1
agent.remember(s, a, r, ns, d)
# Test training
print("Testing training step...")
initial_loss = None
for i in range(10):
loss = agent.replay()
if loss > 0:
if initial_loss is None:
initial_loss = loss
print(f" Step {i}: Loss = {loss:.4f}")
if initial_loss is not None:
print("✅ DQN training is working")
else:
print("❌ DQN training returned no loss")
return True
except Exception as e:
print(f"❌ Error testing our models: {e}")
import traceback
traceback.print_exc()
return False
def test_cnn_model():
"""Test CNN model training"""
logger.info("=== CNN MODEL TEST ===")
try:
from NN.models.enhanced_cnn import EnhancedCNN
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(f"Testing Enhanced CNN on {device}")
# Create model
state_dim = (3, 20, 26) # 3 timeframes, 20 window, 26 features
n_actions = 3
model = EnhancedCNN(state_dim, n_actions).to(device)
optimizer = optim.Adam(model.parameters(), lr=0.001)
criterion = nn.CrossEntropyLoss()
print(f"✅ Enhanced CNN created successfully")
print(f" Parameters: {sum(p.numel() for p in model.parameters()):,}")
# Test forward pass
batch_size = 32
x = torch.randn(batch_size, 3, 20, 26, device=device)
print("Testing forward pass...")
outputs = model(x)
if isinstance(outputs, tuple):
action_probs, extrema_pred, price_pred, features, advanced_pred = outputs
print(f"✅ Forward pass successful")
print(f" Action probs shape: {action_probs.shape}")
print(f" Features shape: {features.shape}")
else:
print(f"❌ Unexpected output format: {type(outputs)}")
return False
# Test training step
y = torch.randint(0, 3, (batch_size,), device=device)
print("Testing training step...")
loss = criterion(action_probs, y)
optimizer.zero_grad()
loss.backward()
optimizer.step()
print(f"✅ CNN training step successful, loss: {loss.item():.4f}")
return True
except Exception as e:
print(f"❌ Error testing CNN model: {e}")
import traceback
traceback.print_exc()
return False
def main():
"""Run all tests"""
print("=" * 60)
print("TESTING GPU TRAINING FUNCTIONALITY")
print("=" * 60)
results = {}
# Test 1: GPU availability
results['gpu'] = test_gpu_availability()
print()
# Test 2: Simple training
results['simple_training'] = test_simple_training()
print()
# Test 3: Our DQN models
results['dqn_models'] = test_our_models()
print()
# Test 4: CNN models
results['cnn_models'] = test_cnn_model()
print()
# Summary
print("=" * 60)
print("TEST RESULTS SUMMARY")
print("=" * 60)
for test_name, passed in results.items():
status = "✅ PASS" if passed else "❌ FAIL"
print(f"{test_name.upper()}: {status}")
all_passed = all(results.values())
if all_passed:
print("\n🎉 ALL TESTS PASSED - Your training should work with GPU!")
else:
print("\n⚠️ SOME TESTS FAILED - Check the issues above")
if not results['gpu']:
print(" → GPU not available or not working")
if not results['simple_training']:
print(" → Basic training loop not working")
if not results['dqn_models']:
print(" → DQN models have issues")
if not results['cnn_models']:
print(" → CNN models have issues")
return 0 if all_passed else 1
if __name__ == "__main__":
exit_code = main()
sys.exit(exit_code)

View File

@ -1,402 +0,0 @@
#!/usr/bin/env python3
"""
Comprehensive Indicators and Signals Test Suite
This module consolidates testing functionality for:
- Technical indicators (from test_indicators.py)
- Signal interpretation and processing (from test_signal_interpreter.py)
- Market data analysis
- Trading signal validation
"""
import sys
import os
import unittest
import logging
import numpy as np
import tempfile
from pathlib import Path
# Add project root to path
project_root = Path(__file__).parent.parent
sys.path.insert(0, str(project_root))
from core.config import setup_logging
from core.data_provider import DataProvider
logger = logging.getLogger(__name__)
class TestTechnicalIndicators(unittest.TestCase):
"""Test suite for technical indicators functionality"""
def setUp(self):
"""Set up test fixtures"""
setup_logging()
self.data_provider = DataProvider(['ETH/USDT'], ['1h'])
def test_indicator_calculation(self):
"""Test that indicators are calculated correctly"""
logger.info("Testing technical indicators calculation...")
try:
# Fetch data with indicators
df = self.data_provider.get_historical_data('ETH/USDT', '1h', refresh=True, limit=100)
self.assertIsNotNone(df, "Should fetch data successfully")
self.assertGreater(len(df), 0, "Should have data rows")
# Check basic OHLCV columns
basic_cols = ['timestamp', 'open', 'high', 'low', 'close', 'volume']
for col in basic_cols:
self.assertIn(col, df.columns, f"Should have {col} column")
# Check that indicators are calculated
indicator_cols = [col for col in df.columns if col not in basic_cols]
self.assertGreater(len(indicator_cols), 0, "Should have technical indicators")
logger.info(f"✅ Successfully calculated {len(indicator_cols)} indicators")
except Exception as e:
logger.warning(f"Indicator test failed: {e}")
self.skipTest("Data or indicators not available")
def test_indicator_categorization(self):
"""Test categorization of different indicator types"""
logger.info("Testing indicator categorization...")
try:
df = self.data_provider.get_historical_data('ETH/USDT', '1h', refresh=True, limit=100)
if df is not None:
basic_cols = ['timestamp', 'open', 'high', 'low', 'close', 'volume']
indicator_cols = [col for col in df.columns if col not in basic_cols]
# Categorize indicators
trend_indicators = [col for col in indicator_cols if any(x in col.lower() for x in ['sma', 'ema', 'macd', 'adx', 'psar'])]
momentum_indicators = [col for col in indicator_cols if any(x in col.lower() for x in ['rsi', 'stoch', 'williams', 'cci'])]
volatility_indicators = [col for col in indicator_cols if any(x in col.lower() for x in ['bb_', 'atr', 'keltner'])]
volume_indicators = [col for col in indicator_cols if any(x in col.lower() for x in ['volume', 'obv', 'vpt', 'mfi', 'ad_line', 'vwap'])]
# Check we have indicators in each category
total_categorized = len(trend_indicators) + len(momentum_indicators) + len(volatility_indicators) + len(volume_indicators)
logger.info(f"Indicator categories:")
logger.info(f" Trend: {len(trend_indicators)}")
logger.info(f" Momentum: {len(momentum_indicators)}")
logger.info(f" Volatility: {len(volatility_indicators)}")
logger.info(f" Volume: {len(volume_indicators)}")
logger.info(f" Total categorized: {total_categorized}/{len(indicator_cols)}")
self.assertGreater(total_categorized, 0, "Should have categorized indicators")
else:
self.skipTest("Could not fetch data for categorization test")
except Exception as e:
logger.warning(f"Categorization test failed: {e}")
self.skipTest("Indicator categorization not available")
def test_feature_matrix_creation(self):
"""Test multi-timeframe feature matrix creation"""
logger.info("Testing feature matrix creation...")
try:
# Test feature matrix with multiple timeframes
feature_matrix = self.data_provider.get_feature_matrix('ETH/USDT', ['1h'], window_size=20)
if feature_matrix is not None:
self.assertEqual(len(feature_matrix.shape), 3, "Should be 3D matrix")
self.assertGreater(feature_matrix.shape[2], 0, "Should have features")
logger.info(f"✅ Feature matrix shape: {feature_matrix.shape}")
else:
self.skipTest("Could not create feature matrix")
except Exception as e:
logger.warning(f"Feature matrix test failed: {e}")
self.skipTest("Feature matrix creation not available")
class TestSignalProcessing(unittest.TestCase):
"""Test suite for signal interpretation and processing"""
def test_signal_distribution_calculation(self):
"""Test signal distribution calculation"""
logger.info("Testing signal distribution calculation...")
# Mock predictions (SELL=0, HOLD=1, BUY=2)
predictions = np.array([0, 1, 2, 1, 0, 2, 1, 1, 2, 0])
buy_count = np.sum(predictions == 2)
sell_count = np.sum(predictions == 0)
hold_count = np.sum(predictions == 1)
total = len(predictions)
distribution = {
"BUY": buy_count / total,
"SELL": sell_count / total,
"HOLD": hold_count / total
}
# Verify calculations
self.assertAlmostEqual(distribution["BUY"], 0.3, places=2)
self.assertAlmostEqual(distribution["SELL"], 0.3, places=2)
self.assertAlmostEqual(distribution["HOLD"], 0.4, places=2)
self.assertAlmostEqual(sum(distribution.values()), 1.0, places=2)
logger.info("✅ Signal distribution calculation test passed")
def test_basic_signal_interpretation(self):
"""Test basic signal interpretation logic"""
logger.info("Testing basic signal interpretation...")
# Test cases with different probability distributions
test_cases = [
{
'probs': [0.8, 0.1, 0.1], # Strong SELL
'expected_action': 'SELL',
'expected_confidence': 'high'
},
{
'probs': [0.1, 0.1, 0.8], # Strong BUY
'expected_action': 'BUY',
'expected_confidence': 'high'
},
{
'probs': [0.1, 0.8, 0.1], # Strong HOLD
'expected_action': 'HOLD',
'expected_confidence': 'high'
},
{
'probs': [0.4, 0.3, 0.3], # Uncertain - should prefer SELL (index 0)
'expected_action': 'SELL',
'expected_confidence': 'low'
},
{
'probs': [0.33, 0.33, 0.34], # Very uncertain - slight BUY preference
'expected_action': 'BUY',
'expected_confidence': 'low'
}
]
for i, test_case in enumerate(test_cases):
probs = np.array(test_case['probs'])
expected_action = test_case['expected_action']
# Simple signal interpretation (argmax)
predicted_action_idx = np.argmax(probs)
action_map = {0: 'SELL', 1: 'HOLD', 2: 'BUY'}
predicted_action = action_map[predicted_action_idx]
# Calculate confidence (max probability)
confidence = np.max(probs)
confidence_level = 'high' if confidence > 0.7 else 'medium' if confidence > 0.5 else 'low'
# Verify predictions
self.assertEqual(predicted_action, expected_action,
f"Test case {i+1}: Expected {expected_action}, got {predicted_action}")
logger.info(f"Test case {i+1}: {probs} -> {predicted_action} ({confidence_level} confidence)")
logger.info("✅ Basic signal interpretation test passed")
def test_signal_filtering_logic(self):
"""Test signal filtering and validation logic"""
logger.info("Testing signal filtering logic...")
# Test threshold-based filtering
buy_threshold = 0.6
sell_threshold = 0.6
hold_threshold = 0.7
test_signals = [
{
'probs': [0.8, 0.1, 0.1], # Strong SELL (above threshold)
'should_pass': True,
'expected': 'SELL'
},
{
'probs': [0.5, 0.3, 0.2], # Weak SELL (below threshold)
'should_pass': False,
'expected': 'HOLD'
},
{
'probs': [0.1, 0.2, 0.7], # Strong BUY (above threshold)
'should_pass': True,
'expected': 'BUY'
},
{
'probs': [0.2, 0.8, 0.0], # Strong HOLD (above threshold)
'should_pass': True,
'expected': 'HOLD'
}
]
for i, test in enumerate(test_signals):
probs = np.array(test['probs'])
sell_prob, hold_prob, buy_prob = probs
# Apply threshold filtering
if sell_prob >= sell_threshold:
filtered_action = 'SELL'
passed_filter = True
elif buy_prob >= buy_threshold:
filtered_action = 'BUY'
passed_filter = True
elif hold_prob >= hold_threshold:
filtered_action = 'HOLD'
passed_filter = True
else:
filtered_action = 'HOLD' # Default to HOLD if no threshold met
passed_filter = False
# Verify filtering
expected_pass = test['should_pass']
expected_action = test['expected']
self.assertEqual(passed_filter, expected_pass,
f"Test {i+1}: Filter pass expectation failed")
self.assertEqual(filtered_action, expected_action,
f"Test {i+1}: Expected {expected_action}, got {filtered_action}")
logger.info(f"Test {i+1}: {probs} -> {filtered_action} (passed: {passed_filter})")
logger.info("✅ Signal filtering logic test passed")
def test_signal_sequence_validation(self):
"""Test signal sequence validation and oscillation prevention"""
logger.info("Testing signal sequence validation...")
# Simulate a sequence of signals that might oscillate
signal_sequence = ['BUY', 'SELL', 'BUY', 'SELL', 'HOLD', 'BUY']
# Simple oscillation detection
oscillation_count = 0
for i in range(1, len(signal_sequence)):
if (signal_sequence[i-1] == 'BUY' and signal_sequence[i] == 'SELL') or \
(signal_sequence[i-1] == 'SELL' and signal_sequence[i] == 'BUY'):
oscillation_count += 1
# Count consecutive non-HOLD signals
consecutive_trades = 0
max_consecutive = 0
for signal in signal_sequence:
if signal != 'HOLD':
consecutive_trades += 1
max_consecutive = max(max_consecutive, consecutive_trades)
else:
consecutive_trades = 0
# Verify oscillation detection
self.assertGreater(oscillation_count, 0, "Should detect oscillations in test sequence")
self.assertGreater(max_consecutive, 1, "Should detect consecutive trades")
logger.info(f"Detected {oscillation_count} oscillations and max {max_consecutive} consecutive trades")
logger.info("✅ Signal sequence validation test passed")
class TestMarketDataAnalysis(unittest.TestCase):
"""Test suite for market data analysis functionality"""
def test_price_movement_calculation(self):
"""Test price movement and trend calculation"""
logger.info("Testing price movement calculation...")
# Mock price data
prices = np.array([100.0, 101.0, 102.5, 101.8, 103.2, 102.9, 104.1])
# Calculate price movements
price_changes = np.diff(prices)
percentage_changes = (price_changes / prices[:-1]) * 100
# Calculate simple trend
recent_trend = np.mean(percentage_changes[-3:]) # Last 3 changes
trend_direction = 'uptrend' if recent_trend > 0.1 else 'downtrend' if recent_trend < -0.1 else 'sideways'
# Verify calculations
self.assertEqual(len(price_changes), len(prices) - 1, "Should have n-1 price changes")
self.assertEqual(len(percentage_changes), len(prices) - 1, "Should have n-1 percentage changes")
# Verify trend detection makes sense
self.assertIn(trend_direction, ['uptrend', 'downtrend', 'sideways'], "Should detect valid trend")
logger.info(f"Price sequence: {prices}")
logger.info(f"Recent trend: {trend_direction} ({recent_trend:.2f}%)")
logger.info("✅ Price movement calculation test passed")
def test_volatility_measurement(self):
"""Test volatility measurement"""
logger.info("Testing volatility measurement...")
# Mock price data with different volatility
stable_prices = np.array([100.0, 100.1, 99.9, 100.2, 99.8, 100.0])
volatile_prices = np.array([100.0, 105.0, 95.0, 110.0, 90.0, 115.0])
# Calculate volatility (standard deviation of returns)
def calculate_volatility(prices):
returns = np.diff(prices) / prices[:-1]
return np.std(returns) * 100 # As percentage
stable_vol = calculate_volatility(stable_prices)
volatile_vol = calculate_volatility(volatile_prices)
# Verify volatility measurements
self.assertLess(stable_vol, volatile_vol, "Stable prices should have lower volatility")
self.assertGreater(volatile_vol, 5.0, "Volatile prices should have significant volatility")
logger.info(f"Stable volatility: {stable_vol:.2f}%")
logger.info(f"Volatile volatility: {volatile_vol:.2f}%")
logger.info("✅ Volatility measurement test passed")
def run_indicator_tests():
"""Run indicator tests only"""
suite = unittest.TestLoader().loadTestsFromTestCase(TestTechnicalIndicators)
runner = unittest.TextTestRunner(verbosity=2)
result = runner.run(suite)
return result.wasSuccessful()
def run_signal_tests():
"""Run signal processing tests only"""
test_suites = [
unittest.TestLoader().loadTestsFromTestCase(TestSignalProcessing),
unittest.TestLoader().loadTestsFromTestCase(TestMarketDataAnalysis),
]
combined_suite = unittest.TestSuite(test_suites)
runner = unittest.TextTestRunner(verbosity=2)
result = runner.run(combined_suite)
return result.wasSuccessful()
def run_all_tests():
"""Run all indicator and signal tests"""
test_suites = [
unittest.TestLoader().loadTestsFromTestCase(TestTechnicalIndicators),
unittest.TestLoader().loadTestsFromTestCase(TestSignalProcessing),
unittest.TestLoader().loadTestsFromTestCase(TestMarketDataAnalysis),
]
combined_suite = unittest.TestSuite(test_suites)
runner = unittest.TextTestRunner(verbosity=2)
result = runner.run(combined_suite)
return result.wasSuccessful()
if __name__ == "__main__":
setup_logging()
logger.info("Running indicators and signals test suite...")
if len(sys.argv) > 1:
test_type = sys.argv[1]
if test_type == "indicators":
success = run_indicator_tests()
elif test_type == "signals":
success = run_signal_tests()
else:
success = run_all_tests()
else:
success = run_all_tests()
if success:
logger.info("✅ All indicator and signal tests passed!")
sys.exit(0)
else:
logger.error("❌ Some tests failed!")
sys.exit(1)

View File

@ -1,176 +0,0 @@
#!/usr/bin/env python3
"""
Test Leverage Slider Functionality
This script tests the leverage slider integration in the dashboard:
- Verifies slider range (1x to 100x)
- Tests risk level calculation
- Checks leverage multiplier updates
"""
import sys
import os
from pathlib import Path
# Add project root to path
project_root = Path(__file__).parent
sys.path.insert(0, str(project_root))
from core.config import setup_logging
from core.data_provider import DataProvider
from core.enhanced_orchestrator import EnhancedTradingOrchestrator
from web.clean_dashboard import CleanTradingDashboard as TradingDashboard
# Setup logging
setup_logging()
import logging
logger = logging.getLogger(__name__)
def test_leverage_calculations():
"""Test leverage risk calculations"""
logger.info("=" * 50)
logger.info("TESTING LEVERAGE CALCULATIONS")
logger.info("=" * 50)
test_cases = [
{'leverage': 1, 'expected_risk': 'Low Risk'},
{'leverage': 5, 'expected_risk': 'Low Risk'},
{'leverage': 10, 'expected_risk': 'Medium Risk'},
{'leverage': 25, 'expected_risk': 'Medium Risk'},
{'leverage': 30, 'expected_risk': 'High Risk'},
{'leverage': 50, 'expected_risk': 'High Risk'},
{'leverage': 75, 'expected_risk': 'Extreme Risk'},
{'leverage': 100, 'expected_risk': 'Extreme Risk'},
]
for test_case in test_cases:
leverage = test_case['leverage']
expected_risk = test_case['expected_risk']
# Calculate risk level using same logic as dashboard
if leverage <= 5:
actual_risk = "Low Risk"
elif leverage <= 25:
actual_risk = "Medium Risk"
elif leverage <= 50:
actual_risk = "High Risk"
else:
actual_risk = "Extreme Risk"
status = "PASS" if actual_risk == expected_risk else "FAIL"
logger.info(f" {leverage:3d}x leverage -> {actual_risk:13s} (expected: {expected_risk:13s}) [{status}]")
if status == "FAIL":
logger.error(f"Test failed for {leverage}x leverage!")
return False
logger.info("All leverage calculation tests PASSED!")
return True
def test_leverage_reward_amplification():
"""Test how different leverage levels amplify rewards"""
logger.info("\n" + "=" * 50)
logger.info("TESTING LEVERAGE REWARD AMPLIFICATION")
logger.info("=" * 50)
base_price = 3000.0
price_changes = [0.001, 0.002, 0.005, 0.01] # 0.1%, 0.2%, 0.5%, 1.0%
leverage_levels = [1, 5, 10, 25, 50, 100]
logger.info("Price Change | " + " | ".join([f"{lev:3d}x" for lev in leverage_levels]))
logger.info("-" * 70)
for price_change_pct in price_changes:
results = []
for leverage in leverage_levels:
# Calculate amplified return
amplified_return = price_change_pct * leverage * 100 # Convert to percentage
results.append(f"{amplified_return:6.1f}%")
logger.info(f" {price_change_pct*100:4.1f}% | " + " | ".join(results))
logger.info("\nKey insights:")
logger.info("- 1x leverage: Traditional trading returns")
logger.info("- 50x leverage: Our current default for enhanced learning")
logger.info("- 100x leverage: Maximum risk/reward amplification")
return True
def test_dashboard_integration():
"""Test dashboard integration"""
logger.info("\n" + "=" * 50)
logger.info("TESTING DASHBOARD INTEGRATION")
logger.info("=" * 50)
try:
# Initialize components
logger.info("Creating data provider...")
data_provider = DataProvider()
logger.info("Creating enhanced orchestrator...")
orchestrator = EnhancedTradingOrchestrator(data_provider)
logger.info("Creating trading dashboard...")
dashboard = TradingDashboard(data_provider, orchestrator)
# Test leverage settings
logger.info(f"Initial leverage: {dashboard.leverage_multiplier}x")
logger.info(f"Leverage range: {dashboard.min_leverage}x to {dashboard.max_leverage}x")
logger.info(f"Leverage step: {dashboard.leverage_step}x")
# Test leverage updates
test_leverages = [10, 25, 50, 75]
for test_leverage in test_leverages:
dashboard.leverage_multiplier = test_leverage
logger.info(f"Set leverage to {dashboard.leverage_multiplier}x")
logger.info("Dashboard integration test PASSED!")
return True
except Exception as e:
logger.error(f"Dashboard integration test FAILED: {e}")
return False
def main():
"""Run all leverage tests"""
logger.info("LEVERAGE SLIDER FUNCTIONALITY TEST")
logger.info("Testing the 50x leverage system with adjustable slider")
all_passed = True
# Test 1: Leverage calculations
if not test_leverage_calculations():
all_passed = False
# Test 2: Reward amplification
if not test_leverage_reward_amplification():
all_passed = False
# Test 3: Dashboard integration
if not test_dashboard_integration():
all_passed = False
# Final result
logger.info("\n" + "=" * 50)
if all_passed:
logger.info("ALL TESTS PASSED!")
logger.info("Leverage slider functionality is working correctly.")
logger.info("\nTo use:")
logger.info("1. Run: python run_clean_dashboard.py")
logger.info("2. Open: http://127.0.0.1:8050")
logger.info("3. Find the leverage slider in the System & Leverage panel")
logger.info("4. Adjust leverage from 1x to 100x")
logger.info("5. Watch risk levels update automatically")
else:
logger.error("SOME TESTS FAILED!")
logger.error("Check the error messages above.")
return 0 if all_passed else 1
if __name__ == "__main__":
exit_code = main()
sys.exit(exit_code)

View File

@ -1,88 +0,0 @@
#!/usr/bin/env python3
"""
Test script for manual trading buttons functionality
"""
import requests
import json
import time
from datetime import datetime
def test_manual_trading():
"""Test the manual trading buttons functionality"""
print("Testing manual trading buttons...")
# Check if dashboard is running
try:
response = requests.get("http://127.0.0.1:8050", timeout=5)
if response.status_code == 200:
print("✅ Dashboard is running on port 8050")
else:
print(f"❌ Dashboard returned status code: {response.status_code}")
return
except Exception as e:
print(f"❌ Dashboard not accessible: {e}")
return
# Check if trades file exists
try:
with open('closed_trades_history.json', 'r') as f:
trades = json.load(f)
print(f"📊 Current trades in history: {len(trades)}")
if trades:
latest_trade = trades[-1]
print(f" Latest trade: {latest_trade.get('side')} at ${latest_trade.get('exit_price', latest_trade.get('entry_price'))}")
except FileNotFoundError:
print("📊 No trades history file found (this is normal for fresh start)")
except Exception as e:
print(f"❌ Error reading trades file: {e}")
print("\n🎯 Manual Trading Test Instructions:")
print("1. Open dashboard at http://127.0.0.1:8050")
print("2. Look for the 'MANUAL BUY' and 'MANUAL SELL' buttons")
print("3. Click 'MANUAL BUY' to create a test long position")
print("4. Wait a few seconds, then click 'MANUAL SELL' to close and create short")
print("5. Check the chart for green triangles showing trade entry/exit points")
print("6. Check the 'Closed Trades' table for trade records")
print("\n📈 Expected Results:")
print("- Green triangles should appear on the price chart at trade execution times")
print("- Dashed lines should connect entry and exit points")
print("- Trade records should appear in the closed trades table")
print("- Session P&L should update with trade profits/losses")
print("\n🔍 Monitoring trades file...")
initial_count = 0
try:
with open('closed_trades_history.json', 'r') as f:
initial_count = len(json.load(f))
except:
pass
print(f"Initial trade count: {initial_count}")
print("Watching for new trades... (Press Ctrl+C to stop)")
try:
while True:
time.sleep(2)
try:
with open('closed_trades_history.json', 'r') as f:
current_trades = json.load(f)
current_count = len(current_trades)
if current_count > initial_count:
new_trades = current_trades[initial_count:]
for trade in new_trades:
print(f"🆕 NEW TRADE: {trade.get('side')} | Entry: ${trade.get('entry_price'):.2f} | Exit: ${trade.get('exit_price'):.2f} | P&L: ${trade.get('net_pnl'):.2f}")
initial_count = current_count
except FileNotFoundError:
pass
except Exception as e:
print(f"Error monitoring trades: {e}")
except KeyboardInterrupt:
print("\n✅ Test monitoring stopped")
if __name__ == "__main__":
test_manual_trading()

View File

@ -1,64 +0,0 @@
import os
import logging
import sys
# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# Add project root to path
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..')))
from NN.exchanges.mexc_interface import MEXCInterface
from core.config import get_config
def test_mexc_private_api():
"""Test MEXC private API endpoints"""
# Load configuration
config = get_config('config.yaml')
mexc_config = config.get('mexc_trading', {})
# Get API credentials
api_key = os.getenv('MEXC_API_KEY', mexc_config.get('api_key', ''))
api_secret = os.getenv('MEXC_SECRET_KEY', mexc_config.get('api_secret', ''))
if not api_key or not api_secret:
logger.error("API key or secret not found. Please set MEXC_API_KEY and MEXC_SECRET_KEY environment variables.")
return
# Initialize MEXC interface in test mode
mexc = MEXCInterface(api_key=api_key, api_secret=api_secret, test_mode=True, trading_mode='simulation')
# Test connection
if not mexc.connect():
logger.error("Failed to connect to MEXC API")
return
# Test getting account information
logger.info("Testing account information retrieval...")
account_info = mexc.get_account_info()
if account_info:
logger.info(f"Account info retrieved: {account_info}")
else:
logger.error("Failed to retrieve account info")
# Test getting balance for a specific asset
asset = "USDT"
logger.info(f"Testing balance retrieval for {asset}...")
balance = mexc.get_balance(asset)
logger.info(f"Balance for {asset}: {balance}")
# Test placing a simulated order (in test mode)
symbol = "ETH/USDT"
side = "buy"
order_type = "market"
quantity = 0.01 # Small quantity for testing
logger.info(f"Testing order placement for {symbol} ({side}, {order_type}, qty: {quantity})...")
order_result = mexc.place_order(symbol=symbol, side=side, order_type=order_type, quantity=quantity)
if order_result:
logger.info(f"Order placed successfully: {order_result}")
else:
logger.error("Failed to place order")
if __name__ == "__main__":
test_mexc_private_api()

View File

@ -1,59 +0,0 @@
import logging
import os
from NN.exchanges.mexc_interface import MEXCInterface
# Set up logging to see debug info
logging.basicConfig(level=logging.INFO)
# Load API credentials from environment variables or a configuration file
# For testing, prioritize environment variables for CI/CD or sensitive data
# Fallback to a placeholder or configuration reading if env vars are not set
api_key = os.getenv('MEXC_API_KEY', '')
api_secret = os.getenv('MEXC_SECRET_KEY', '')
# If using a config file, you might do something like:
# from core.config import get_config
# config = get_config('config.yaml')
# mexc_config = config.get('mexc_trading', {})
# api_key = mexc_config.get('api_key', api_key)
# api_secret = mexc_config.get('api_secret', api_secret)
if not api_key or not api_secret:
logging.error("API keys are not set. Please set MEXC_API_KEY and MEXC_SECRET_KEY environment variables or configure config.yaml")
exit(1)
# Create interface with API credentials
mexc = MEXCInterface(
api_key=api_key,
api_secret=api_secret,
trading_mode='simulation'
)
print('MEXC Interface created successfully')
# Test signature generation
import time
timestamp = int(time.time() * 1000)
test_params = 'quantity=1&price=11&symbol=BTCUSDT&side=BUY&type=LIMIT&timestamp=' + str(timestamp)
signature = mexc._generate_signature(timestamp, test_params)
print(f'Generated signature: {signature}')
# Test account info
print('Testing account info...')
account_info = mexc.get_account_info()
print(f'Account info result: {account_info}')
# Test ticker data
print('Testing ticker data...')
ticker = mexc.get_ticker('ETH/USDT')
print(f'ETH/USDT ticker: {ticker}')
# Test balance retrieval
print('Testing balance retrieval...')
usdt_balance = mexc.get_balance('USDT')
print(f'USDT balance: {usdt_balance}')
# Test a small order placement (simulation mode)
print('Testing order placement in simulation mode...')
order_result = mexc.place_order('ETH/USDT', 'buy', 'market', 0.001)
print(f'Order result: {order_result}')

View File

@ -1,222 +0,0 @@
#!/usr/bin/env python3
"""
Test script for MEXC balance retrieval and $1 order execution
"""
import sys
import os
import logging
from pathlib import Path
# Add project root to path
sys.path.insert(0, os.path.abspath('.'))
from core.trading_executor import TradingExecutor
from core.data_provider import DataProvider
# Setup logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
def test_mexc_balance():
"""Test MEXC balance retrieval"""
print("="*60)
print("TESTING MEXC BALANCE RETRIEVAL")
print("="*60)
try:
# Initialize trading executor
executor = TradingExecutor()
# Check if trading is enabled
print(f"Trading enabled: {executor.trading_enabled}")
print(f"Dry run mode: {executor.dry_run}")
if not executor.trading_enabled:
print("❌ Trading not enabled - check config.yaml and API keys")
return False
# Test balance retrieval
print("\n📊 Retrieving account balance...")
balances = executor.get_account_balance()
if not balances:
print("❌ No balances retrieved - check API connectivity")
return False
print(f"✅ Retrieved balances for {len(balances)} assets:")
for asset, balance_info in balances.items():
free = balance_info['free']
locked = balance_info['locked']
total = balance_info['total']
print(f" {asset}: Free: {free:.6f}, Locked: {locked:.6f}, Total: {total:.6f}")
# Check USDT balance specifically
if 'USDT' in balances:
usdt_free = balances['USDT']['free']
print(f"\n💰 USDT available for trading: ${usdt_free:.2f}")
if usdt_free >= 2.0: # Need at least $2 for testing
print("✅ Sufficient USDT balance for $1 order testing")
return True
else:
print(f"⚠️ Insufficient USDT balance for testing (need $2+, have ${usdt_free:.2f})")
return False
else:
print("❌ No USDT balance found")
return False
except Exception as e:
logger.error(f"Error testing MEXC balance: {e}")
return False
def test_mexc_order_execution():
"""Test $1 order execution (dry run)"""
print("\n" + "="*60)
print("TESTING $1 ORDER EXECUTION (DRY RUN)")
print("="*60)
try:
# Initialize components
executor = TradingExecutor()
data_provider = DataProvider()
if not executor.trading_enabled:
print("❌ Trading not enabled - cannot test order execution")
return False
# Test symbol
symbol = "ETH/USDT"
# Get current price
print(f"\n📈 Getting current price for {symbol}...")
ticker_data = data_provider.get_historical_data(symbol, '1m', limit=1, refresh=True)
if ticker_data is None or ticker_data.empty:
print(f"❌ Could not get price data for {symbol}")
return False
current_price = float(ticker_data['close'].iloc[-1])
print(f"✅ Current {symbol} price: ${current_price:.2f}")
# Calculate order size for $1
usd_amount = 1.0
crypto_amount = usd_amount / current_price
print(f"💱 $1 USD = {crypto_amount:.6f} ETH")
# Test buy signal execution
print(f"\n🛒 Testing BUY signal execution...")
buy_success = executor.execute_signal(
symbol=symbol,
action='BUY',
confidence=0.75,
current_price=current_price
)
if buy_success:
print("✅ BUY signal executed successfully")
# Check position
positions = executor.get_positions()
if symbol in positions:
position = positions[symbol]
print(f"📍 Position opened: {position.quantity:.6f} {symbol} @ ${position.entry_price:.2f}")
# Test sell signal execution
print(f"\n💰 Testing SELL signal execution...")
sell_success = executor.execute_signal(
symbol=symbol,
action='SELL',
confidence=0.80,
current_price=current_price * 1.001 # Simulate small price increase
)
if sell_success:
print("✅ SELL signal executed successfully")
# Check trade history
trades = executor.get_trade_history()
if trades:
last_trade = trades[-1]
print(f"📊 Trade completed: P&L = ${last_trade.pnl:.4f}")
return True
else:
print("❌ SELL signal failed")
return False
else:
print("❌ No position found after BUY signal")
return False
else:
print("❌ BUY signal failed")
return False
except Exception as e:
logger.error(f"Error testing order execution: {e}")
return False
def test_dashboard_balance_integration():
"""Test dashboard balance integration"""
print("\n" + "="*60)
print("TESTING DASHBOARD BALANCE INTEGRATION")
print("="*60)
try:
from web.clean_dashboard import CleanTradingDashboard as TradingDashboard
# Create dashboard with trading executor
executor = TradingExecutor()
dashboard = TradingDashboard(trading_executor=executor)
print(f"Dashboard starting balance: ${dashboard.starting_balance:.2f}")
if dashboard.starting_balance > 0:
print("✅ Dashboard successfully retrieved starting balance")
return True
else:
print("⚠️ Dashboard using default balance (MEXC not connected)")
return False
except Exception as e:
logger.error(f"Error testing dashboard integration: {e}")
return False
def main():
"""Run all tests"""
print("🚀 MEXC INTEGRATION TESTING")
print("Testing balance retrieval and $1 order execution")
# Test 1: Balance retrieval
balance_test = test_mexc_balance()
# Test 2: Order execution (only if balance test passes)
if balance_test:
order_test = test_mexc_order_execution()
else:
print("\n⏭️ Skipping order execution test (balance test failed)")
order_test = False
# Test 3: Dashboard integration
dashboard_test = test_dashboard_balance_integration()
# Summary
print("\n" + "="*60)
print("TEST SUMMARY")
print("="*60)
print(f"Balance Retrieval: {'✅ PASS' if balance_test else '❌ FAIL'}")
print(f"Order Execution: {'✅ PASS' if order_test else '❌ FAIL'}")
print(f"Dashboard Integration: {'✅ PASS' if dashboard_test else '❌ FAIL'}")
if balance_test and order_test and dashboard_test:
print("\n🎉 ALL TESTS PASSED - Ready for live $1 testing!")
return True
else:
print("\n⚠️ Some tests failed - check configuration and API keys")
return False
if __name__ == "__main__":
success = main()
sys.exit(0 if success else 1)

View File

@ -1 +0,0 @@

View File

@ -1,117 +0,0 @@
#!/usr/bin/env python3
"""
Test script for MEXC API with new credentials
"""
import os
import sys
from dotenv import load_dotenv
# Load environment variables
load_dotenv()
def test_api_credentials():
"""Test MEXC API credentials step by step"""
print("="*60)
print("MEXC API CREDENTIALS TEST")
print("="*60)
# Check environment variables
api_key = os.getenv('MEXC_API_KEY')
api_secret = os.getenv('MEXC_SECRET_KEY')
print(f"1. Environment Variables:")
print(f" API Key: {api_key[:5]}...{api_key[-5:] if api_key else 'None'}")
print(f" API Secret: {api_secret[:5]}...{api_secret[-5:] if api_secret else 'None'}")
print(f" API Key Length: {len(api_key) if api_key else 0}")
print(f" API Secret Length: {len(api_secret) if api_secret else 0}")
if not api_key or not api_secret:
print("❌ API credentials not found in environment")
return False
# Test public API first
print(f"\n2. Testing Public API (no authentication):")
try:
from NN.exchanges.mexc_interface import MEXCInterface
api = MEXCInterface('dummy', 'dummy', test_mode=False)
ticker = api.get_ticker('ETHUSDT')
if ticker:
print(f" ✅ Public API works: ETH/USDT = ${ticker.get('last', 'N/A')}")
else:
print(f" ❌ Public API failed")
return False
except Exception as e:
print(f" ❌ Public API error: {e}")
return False
# Test private API with actual credentials
print(f"\n3. Testing Private API (with authentication):")
try:
api_auth = MEXCInterface(api_key, api_secret, test_mode=False)
# Try to get account info
account_info = api_auth.get_account_info()
if account_info:
print(f" ✅ Private API works: Account info retrieved")
print(f" 📊 Account Type: {account_info.get('accountType', 'N/A')}")
# Try to get USDT balance
usdt_balance = api_auth.get_balance('USDT')
print(f" 💰 USDT Balance: {usdt_balance}")
return True
else:
print(f" ❌ Private API failed: Could not get account info")
return False
except Exception as e:
print(f" ❌ Private API error: {e}")
return False
def test_api_permissions():
"""Test specific API permissions"""
print(f"\n4. Testing API Permissions:")
api_key = os.getenv('MEXC_API_KEY')
api_secret = os.getenv('MEXC_SECRET_KEY')
try:
from NN.exchanges.mexc_interface import MEXCInterface
api = MEXCInterface(api_key, api_secret, test_mode=False)
# Test spot trading permissions
print(" Testing spot trading permissions...")
# Try to get open orders (requires spot trading permission)
try:
orders = api.get_open_orders('ETHUSDT')
print(" ✅ Spot trading permission: OK")
except Exception as e:
print(f" ❌ Spot trading permission: {e}")
return False
return True
except Exception as e:
print(f" ❌ Permission test error: {e}")
return False
def main():
"""Main test function"""
success = test_api_credentials()
if success:
test_api_permissions()
print(f"\n✅ MEXC API SETUP COMPLETE")
print("The trading system should now work with live MEXC spot trading")
else:
print(f"\n❌ MEXC API SETUP FAILED")
print("Possible issues:")
print("1. API key or secret incorrect")
print("2. API key not activated yet")
print("3. Insufficient permissions (need spot trading)")
print("4. IP address not whitelisted")
print("5. Account verification incomplete")
if __name__ == "__main__":
main()

View File

@ -1,362 +0,0 @@
"""
MEXC Order Execution Debug Script
This script tests MEXC order execution step by step to identify any issues
with the trading integration.
"""
import os
import sys
import logging
import time
from datetime import datetime
from typing import Dict, Any
from dotenv import load_dotenv
# Add paths for imports
sys.path.append(os.path.join(os.path.dirname(__file__), 'core'))
sys.path.append(os.path.join(os.path.dirname(__file__), 'NN'))
from core.trading_executor import TradingExecutor
from core.data_provider import DataProvider
from NN.exchanges.mexc_interface import MEXCInterface
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler("mexc_order_debug.log"),
logging.StreamHandler()
]
)
logger = logging.getLogger("mexc_debug")
class MEXCOrderDebugger:
"""Debug MEXC order execution step by step"""
def __init__(self):
self.test_symbol = 'ETH/USDC' # ETH with USDC (supported by MEXC API)
self.test_quantity = 0.15 # $0.15 worth of ETH for testing (within our balance)
# Load environment variables
load_dotenv()
self.api_key = os.getenv('MEXC_API_KEY')
self.api_secret = os.getenv('MEXC_SECRET_KEY')
def run_comprehensive_test(self):
"""Run comprehensive MEXC order execution test"""
print("="*80)
print("MEXC ORDER EXECUTION DEBUG TEST")
print("="*80)
# Step 1: Test environment variables
print("\n1. Testing Environment Variables...")
if not self.test_environment_variables():
return False
# Step 2: Test MEXC interface creation
print("\n2. Testing MEXC Interface Creation...")
mexc = self.test_mexc_interface_creation()
if not mexc:
return False
# Step 3: Test connection
print("\n3. Testing MEXC Connection...")
if not self.test_mexc_connection(mexc):
return False
# Step 4: Test account info
print("\n4. Testing Account Information...")
if not self.test_account_info(mexc):
return False
# Step 5: Test ticker data
print("\n5. Testing Ticker Data...")
current_price = self.test_ticker_data(mexc)
if not current_price:
return False
# Step 6: Test trading executor
print("\n6. Testing Trading Executor...")
executor = self.test_trading_executor_creation()
if not executor:
return False
# Step 7: Test order placement (simulation)
print("\n7. Testing Order Placement...")
if not self.test_order_placement(executor, current_price):
return False
# Step 8: Test order parameters
print("\n8. Testing Order Parameters...")
if not self.test_order_parameters(mexc, current_price):
return False
print("\n" + "="*80)
print("✅ ALL TESTS COMPLETED SUCCESSFULLY!")
print("MEXC order execution system appears to be working correctly.")
print("="*80)
return True
def test_environment_variables(self) -> bool:
"""Test environment variables"""
try:
api_key = os.getenv('MEXC_API_KEY')
api_secret = os.getenv('MEXC_SECRET_KEY')
if not api_key:
print("❌ MEXC_API_KEY environment variable not set")
return False
if not api_secret:
print("❌ MEXC_SECRET_KEY environment variable not set")
return False
print(f"✅ MEXC_API_KEY: {api_key[:8]}...{api_key[-4:]} (length: {len(api_key)})")
print(f"✅ MEXC_SECRET_KEY: {api_secret[:8]}...{api_secret[-4:]} (length: {len(api_secret)})")
return True
except Exception as e:
print(f"❌ Error checking environment variables: {e}")
return False
def test_mexc_interface_creation(self) -> MEXCInterface:
"""Test MEXC interface creation"""
try:
api_key = os.getenv('MEXC_API_KEY')
api_secret = os.getenv('MEXC_SECRET_KEY')
mexc = MEXCInterface(
api_key=api_key,
api_secret=api_secret,
test_mode=True # Use testnet for safety
)
print(f"✅ MEXC Interface created successfully")
print(f" - Test mode: {mexc.test_mode}")
print(f" - Base URL: {mexc.base_url}")
return mexc
except Exception as e:
print(f"❌ Error creating MEXC interface: {e}")
return None
def test_mexc_connection(self, mexc: MEXCInterface) -> bool:
"""Test MEXC connection"""
try:
# Test ping
ping_result = mexc.ping()
print(f"✅ MEXC Ping successful: {ping_result}")
# Test server time
server_time = mexc.get_server_time()
print(f"✅ MEXC Server time: {server_time}")
# Test connection method
connected = mexc.connect()
print(f"✅ MEXC Connection: {connected}")
return True
except Exception as e:
print(f"❌ Error testing MEXC connection: {e}")
logger.error(f"MEXC connection error: {e}", exc_info=True)
return False
def test_account_info(self, mexc: MEXCInterface) -> bool:
"""Test account information retrieval"""
try:
account_info = mexc.get_account_info()
print(f"✅ Account info retrieved successfully")
print(f" - Can trade: {account_info.get('canTrade', 'Unknown')}")
print(f" - Can withdraw: {account_info.get('canWithdraw', 'Unknown')}")
print(f" - Can deposit: {account_info.get('canDeposit', 'Unknown')}")
print(f" - Account type: {account_info.get('accountType', 'Unknown')}")
# Test balance retrieval
balances = account_info.get('balances', [])
usdc_balance = 0
usdt_balance = 0
for balance in balances:
if balance.get('asset') == 'USDC':
usdc_balance = float(balance.get('free', 0))
elif balance.get('asset') == 'USDT':
usdt_balance = float(balance.get('free', 0))
print(f" - USDC Balance: {usdc_balance}")
print(f" - USDT Balance: {usdt_balance}")
if usdc_balance < self.test_quantity:
print(f"⚠️ Warning: USDC balance ({usdc_balance}) is less than test amount ({self.test_quantity})")
if usdt_balance >= self.test_quantity:
print(f"💡 Note: You have sufficient USDT ({usdt_balance}), but we need USDC for ETH/USDC trading")
return True
except Exception as e:
print(f"❌ Error retrieving account info: {e}")
logger.error(f"Account info error: {e}", exc_info=True)
return False
def test_ticker_data(self, mexc: MEXCInterface) -> float:
"""Test ticker data retrieval"""
try:
ticker = mexc.get_ticker(self.test_symbol)
if not ticker:
print(f"❌ Failed to get ticker for {self.test_symbol}")
return None
current_price = ticker['last']
print(f"✅ Ticker data retrieved for {self.test_symbol}")
print(f" - Last price: ${current_price:.2f}")
print(f" - Bid: ${ticker.get('bid', 0):.2f}")
print(f" - Ask: ${ticker.get('ask', 0):.2f}")
print(f" - Volume: {ticker.get('volume', 0)}")
return current_price
except Exception as e:
print(f"❌ Error retrieving ticker data: {e}")
logger.error(f"Ticker data error: {e}", exc_info=True)
return None
def test_trading_executor_creation(self) -> TradingExecutor:
"""Test trading executor creation"""
try:
executor = TradingExecutor()
print(f"✅ Trading Executor created successfully")
print(f" - Trading enabled: {executor.trading_enabled}")
print(f" - Trading mode: {executor.trading_mode}")
print(f" - Simulation mode: {executor.simulation_mode}")
return executor
except Exception as e:
print(f"❌ Error creating trading executor: {e}")
logger.error(f"Trading executor error: {e}", exc_info=True)
return None
def test_order_placement(self, executor: TradingExecutor, current_price: float) -> bool:
"""Test order placement through executor"""
try:
print(f"Testing BUY signal execution...")
# Test BUY signal
buy_success = executor.execute_signal(
symbol=self.test_symbol,
action='BUY',
confidence=0.75,
current_price=current_price
)
print(f"✅ BUY signal execution: {'SUCCESS' if buy_success else 'FAILED'}")
if buy_success:
# Check positions
positions = executor.get_positions()
if self.test_symbol in positions:
position = positions[self.test_symbol]
print(f" - Position created: {position.side} {position.quantity:.6f} @ ${position.entry_price:.2f}")
# Test SELL signal
print(f"Testing SELL signal execution...")
sell_success = executor.execute_signal(
symbol=self.test_symbol,
action='SELL',
confidence=0.80,
current_price=current_price * 1.001 # Simulate small price increase
)
print(f"✅ SELL signal execution: {'SUCCESS' if sell_success else 'FAILED'}")
if sell_success:
# Check trade history
trades = executor.get_trade_history()
if trades:
last_trade = trades[-1]
print(f" - Trade P&L: ${last_trade.pnl:.4f}")
return sell_success
else:
print("❌ No position found after BUY signal")
return False
return buy_success
except Exception as e:
print(f"❌ Error testing order placement: {e}")
logger.error(f"Order placement error: {e}", exc_info=True)
return False
def test_order_parameters(self, mexc: MEXCInterface, current_price: float) -> bool:
"""Test order parameters and validation"""
try:
print("Testing order parameter calculation...")
# Calculate test order size
crypto_quantity = self.test_quantity / current_price
print(f" - USD amount: ${self.test_quantity}")
print(f" - Current price: ${current_price:.2f}")
print(f" - Crypto quantity: {crypto_quantity:.6f} ETH")
# Test order parameters formatting
mexc_symbol = self.test_symbol.replace('/', '')
print(f" - MEXC symbol format: {mexc_symbol}")
order_params = {
'symbol': mexc_symbol,
'side': 'BUY',
'type': 'MARKET',
'quantity': str(crypto_quantity),
'recvWindow': 5000
}
print(f" - Order parameters: {order_params}")
# Test signature generation (without actually placing order)
print("Testing signature generation...")
test_params = order_params.copy()
test_params['timestamp'] = int(time.time() * 1000)
try:
signature = mexc._generate_signature(test_params)
print(f"✅ Signature generated successfully (length: {len(signature)})")
except Exception as e:
print(f"❌ Signature generation failed: {e}")
return False
print("✅ Order parameters validation successful")
return True
except Exception as e:
print(f"❌ Error testing order parameters: {e}")
logger.error(f"Order parameters error: {e}", exc_info=True)
return False
def main():
"""Main test function"""
try:
debugger = MEXCOrderDebugger()
success = debugger.run_comprehensive_test()
if success:
print("\n🎉 MEXC order execution system is working correctly!")
print("You can now safely execute live trades.")
else:
print("\n🚨 MEXC order execution has issues that need to be resolved.")
print("Check the logs above for specific error details.")
return success
except Exception as e:
logger.error(f"Error in main test: {e}", exc_info=True)
print(f"\n❌ Critical error during testing: {e}")
return False
if __name__ == "__main__":
main()

View File

@ -1,205 +0,0 @@
"""
Test MEXC Order Size Requirements
This script tests different order sizes to identify minimum order requirements
and understand why order placement is failing.
"""
import os
import sys
import logging
import time
# Add paths for imports
sys.path.append(os.path.join(os.path.dirname(__file__), 'NN'))
from NN.exchanges.mexc_interface import MEXCInterface
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger("mexc_order_test")
def test_order_sizes():
"""Test different order sizes to find minimum requirements"""
print("="*60)
print("MEXC ORDER SIZE REQUIREMENTS TEST")
print("="*60)
api_key = os.getenv('MEXC_API_KEY')
api_secret = os.getenv('MEXC_SECRET_KEY')
if not api_key or not api_secret:
print("❌ Missing API credentials")
return False
mexc = MEXCInterface(api_key=api_key, api_secret=api_secret, test_mode=True)
# Get current ETH price
ticker = mexc.get_ticker('ETH/USDT')
if not ticker:
print("❌ Failed to get ETH price")
return False
current_price = ticker['last']
print(f"Current ETH price: ${current_price:.2f}")
# Test different USD amounts
test_amounts_usd = [0.1, 0.5, 1.0, 5.0, 10.0, 20.0]
print(f"\nTesting different order sizes...")
print(f"{'USD Amount':<12} {'ETH Quantity':<15} {'Min ETH?':<10} {'Min USD?':<10}")
print("-" * 50)
for usd_amount in test_amounts_usd:
eth_quantity = usd_amount / current_price
# Check if quantity meets common minimum requirements
min_eth_ok = eth_quantity >= 0.001 # 0.001 ETH common minimum
min_usd_ok = usd_amount >= 5.0 # $5 common minimum
print(f"${usd_amount:<11.2f} {eth_quantity:<15.6f} {'' if min_eth_ok else '':<9} {'' if min_usd_ok else '':<9}")
# Test actual order parameter validation
print(f"\nTesting order parameter validation...")
# Test small order (likely to fail)
small_usd = 1.0
small_eth = small_usd / current_price
print(f"\n1. Testing small order: ${small_usd} (${small_eth:.6f} ETH)")
success = test_order_validation(mexc, 'ETHUSDT', 'BUY', 'MARKET', small_eth)
# Test medium order (might work)
medium_usd = 10.0
medium_eth = medium_usd / current_price
print(f"\n2. Testing medium order: ${medium_usd} (${medium_eth:.6f} ETH)")
success = test_order_validation(mexc, 'ETHUSDT', 'BUY', 'MARKET', medium_eth)
# Test with rounded quantities
print(f"\n3. Testing with rounded quantities...")
# Test 0.001 ETH (common minimum)
print(f" Testing 0.001 ETH (${0.001 * current_price:.2f})")
success = test_order_validation(mexc, 'ETHUSDT', 'BUY', 'MARKET', 0.001)
# Test 0.01 ETH
print(f" Testing 0.01 ETH (${0.01 * current_price:.2f})")
success = test_order_validation(mexc, 'ETHUSDT', 'BUY', 'MARKET', 0.01)
return True
def test_order_validation(mexc: MEXCInterface, symbol: str, side: str, order_type: str, quantity: float) -> bool:
"""Test order parameter validation without actually placing the order"""
try:
# Prepare order parameters
params = {
'symbol': symbol,
'side': side,
'type': order_type,
'quantity': str(quantity),
'recvWindow': 5000,
'timestamp': int(time.time() * 1000)
}
# Generate signature
signature = mexc._generate_signature(params)
params['signature'] = signature
print(f" Params: {params}")
# Try to validate parameters by making the request but catching the specific error
headers = {'X-MEXC-APIKEY': mexc.api_key}
url = f"{mexc.base_url}/{mexc.api_version}/order"
import requests
# Make the request to see what specific error we get
response = requests.post(url, params=params, headers=headers, timeout=30)
if response.status_code == 200:
print(" ✅ Order would be accepted (parameters valid)")
return True
else:
response_data = response.json() if response.headers.get('content-type', '').startswith('application/json') else {'msg': response.text}
error_code = response_data.get('code', 'Unknown')
error_msg = response_data.get('msg', 'Unknown error')
print(f" ❌ Error {error_code}: {error_msg}")
# Analyze specific error codes
if error_code == 400001:
print(" → Invalid parameter format")
elif error_code == 700002:
print(" → Invalid signature")
elif error_code == 70016:
print(" → Order size too small")
elif error_code == 70015:
print(" → Insufficient balance")
elif 'LOT_SIZE' in error_msg:
print(" → Lot size violation (quantity precision/minimum)")
elif 'MIN_NOTIONAL' in error_msg:
print(" → Minimum notional value not met")
return False
except Exception as e:
print(f" ❌ Exception: {e}")
return False
def get_symbol_info():
"""Get symbol trading rules and limits"""
print("\nGetting symbol trading rules...")
try:
api_key = os.getenv('MEXC_API_KEY')
api_secret = os.getenv('MEXC_SECRET_KEY')
mexc = MEXCInterface(api_key=api_key, api_secret=api_secret, test_mode=True)
# Try to get exchange info
import requests
url = f"{mexc.base_url}/{mexc.api_version}/exchangeInfo"
response = requests.get(url, timeout=30)
if response.status_code == 200:
exchange_info = response.json()
# Find ETHUSDT symbol info
for symbol_info in exchange_info.get('symbols', []):
if symbol_info.get('symbol') == 'ETHUSDT':
print(f"Found ETHUSDT trading rules:")
print(f" Status: {symbol_info.get('status')}")
print(f" Base asset: {symbol_info.get('baseAsset')}")
print(f" Quote asset: {symbol_info.get('quoteAsset')}")
# Check filters
for filter_info in symbol_info.get('filters', []):
filter_type = filter_info.get('filterType')
if filter_type == 'LOT_SIZE':
print(f" Lot Size Filter:")
print(f" Min Qty: {filter_info.get('minQty')}")
print(f" Max Qty: {filter_info.get('maxQty')}")
print(f" Step Size: {filter_info.get('stepSize')}")
elif filter_type == 'MIN_NOTIONAL':
print(f" Min Notional Filter:")
print(f" Min Notional: {filter_info.get('minNotional')}")
elif filter_type == 'PRICE_FILTER':
print(f" Price Filter:")
print(f" Min Price: {filter_info.get('minPrice')}")
print(f" Max Price: {filter_info.get('maxPrice')}")
print(f" Tick Size: {filter_info.get('tickSize')}")
break
else:
print("❌ ETHUSDT symbol not found in exchange info")
else:
print(f"❌ Failed to get exchange info: {response.status_code}")
except Exception as e:
print(f"❌ Error getting symbol info: {e}")
if __name__ == "__main__":
get_symbol_info()
test_order_sizes()

View File

@ -1,71 +0,0 @@
#!/usr/bin/env python3
"""
Test script for MEXC public API endpoints
"""
import sys
import os
import logging
# Add project root to path
sys.path.insert(0, os.path.abspath('.'))
from NN.exchanges.mexc_interface import MEXCInterface
# Setup logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
def test_mexc_public_api():
"""Test MEXC public API endpoints"""
print("="*60)
print("TESTING MEXC PUBLIC API")
print("="*60)
try:
# Initialize MEXC interface without API keys (public access only)
mexc = MEXCInterface()
print("\n1. Testing server connectivity...")
try:
# Test ping
ping_result = mexc.ping()
print(f"✅ Ping successful: {ping_result}")
except Exception as e:
print(f"❌ Ping failed: {e}")
print("\n2. Testing server time...")
try:
# Test server time
time_result = mexc.get_server_time()
print(f"✅ Server time: {time_result}")
except Exception as e:
print(f"❌ Server time failed: {e}")
print("\n3. Testing ticker data...")
symbols_to_test = ['BTC/USDT', 'ETH/USDT']
for symbol in symbols_to_test:
try:
ticker = mexc.get_ticker(symbol)
if ticker:
print(f"{symbol}: ${ticker['last']:.2f} (bid: ${ticker['bid']:.2f}, ask: ${ticker['ask']:.2f})")
else:
print(f"{symbol}: No data returned")
except Exception as e:
print(f"{symbol}: Error - {e}")
print("\n" + "="*60)
print("PUBLIC API TEST COMPLETED")
print("="*60)
except Exception as e:
print(f"❌ Error initializing MEXC interface: {e}")
import traceback
traceback.print_exc()
if __name__ == "__main__":
test_mexc_public_api()

View File

@ -1,321 +0,0 @@
"""
Test MEXC Signature Generation
This script tests the MEXC signature generation to ensure it's correct
according to the MEXC API documentation.
"""
import os
import sys
import hashlib
import hmac
from urllib.parse import urlencode
import time
import requests
# Add paths for imports
sys.path.append(os.path.join(os.path.dirname(__file__), 'NN'))
from NN.exchanges.mexc_interface import MEXCInterface
def test_signature_generation():
"""Test MEXC signature generation with known examples"""
print("="*60)
print("MEXC SIGNATURE GENERATION TEST")
print("="*60)
api_key = os.getenv('MEXC_API_KEY')
api_secret = os.getenv('MEXC_SECRET_KEY')
if not api_key or not api_secret:
print("❌ Missing API credentials")
return False
print(f"API Key: {api_key[:8]}...{api_key[-4:]}")
print(f"API Secret: {api_secret[:8]}...{api_secret[-4:]}")
# Test 1: Simple signature generation
print("\n1. Testing basic signature generation...")
test_params = {
'symbol': 'ETHUSDT',
'side': 'BUY',
'type': 'MARKET',
'quantity': '0.001',
'timestamp': 1640995200000,
'recvWindow': 5000
}
# Generate signature manually
sorted_params = sorted(test_params.items())
query_string = urlencode(sorted_params)
expected_signature = hmac.new(
api_secret.encode('utf-8'),
query_string.encode('utf-8'),
hashlib.sha256
).hexdigest()
print(f"Query string: {query_string}")
print(f"Expected signature: {expected_signature}")
# Generate signature using MEXC interface
mexc = MEXCInterface(api_key=api_key, api_secret=api_secret, test_mode=True)
actual_signature = mexc._generate_signature(test_params)
print(f"Actual signature: {actual_signature}")
if expected_signature == actual_signature:
print("✅ Signature generation matches expected")
else:
print("❌ Signature generation mismatch")
return False
# Test 2: Real order parameters
print("\n2. Testing with real order parameters...")
current_timestamp = int(time.time() * 1000)
real_params = {
'symbol': 'ETHUSDT',
'side': 'BUY',
'type': 'MARKET',
'quantity': '0.001',
'timestamp': current_timestamp,
'recvWindow': 5000
}
real_signature = mexc._generate_signature(real_params)
sorted_real_params = sorted(real_params.items())
real_query_string = urlencode(sorted_real_params)
print(f"Real timestamp: {current_timestamp}")
print(f"Real query string: {real_query_string}")
print(f"Real signature: {real_signature}")
# Test 3: Verify parameter ordering
print("\n3. Testing parameter ordering sensitivity...")
# Test with parameters in different order
unordered_params = {
'timestamp': current_timestamp,
'symbol': 'ETHUSDT',
'recvWindow': 5000,
'type': 'MARKET',
'side': 'BUY',
'quantity': '0.001'
}
unordered_signature = mexc._generate_signature(unordered_params)
if real_signature == unordered_signature:
print("✅ Parameter ordering handled correctly")
else:
print("❌ Parameter ordering issue")
return False
# Test 4: Check for common issues
print("\n4. Checking for common signature issues...")
# Check if any parameters need special encoding
special_params = {
'symbol': 'ETHUSDT',
'side': 'BUY',
'type': 'MARKET',
'quantity': '0.0028417810009889397', # Full precision from error log
'timestamp': current_timestamp,
'recvWindow': 5000
}
special_signature = mexc._generate_signature(special_params)
special_sorted = sorted(special_params.items())
special_query = urlencode(special_sorted)
print(f"Special quantity: {special_params['quantity']}")
print(f"Special query: {special_query}")
print(f"Special signature: {special_signature}")
# Test 5: Compare with error log signature
print("\n5. Comparing with error log...")
# From the error log, we have this signature:
error_log_signature = "2a52436039e24b593ab0ab20ac1a67e2323654dc14190ee2c2cde341930d27d4"
error_timestamp = 1748349875981
error_params = {
'symbol': 'ETHUSDT',
'side': 'BUY',
'type': 'MARKET',
'quantity': '0.0028417810009889397',
'recvWindow': 5000,
'timestamp': error_timestamp
}
recreated_signature = mexc._generate_signature(error_params)
print(f"Error log signature: {error_log_signature}")
print(f"Recreated signature: {recreated_signature}")
if error_log_signature == recreated_signature:
print("✅ Signature recreation matches error log")
else:
print("❌ Signature recreation doesn't match - potential algorithm issue")
# Debug the query string
debug_sorted = sorted(error_params.items())
debug_query = urlencode(debug_sorted)
print(f"Debug query string: {debug_query}")
# Try manual HMAC
manual_sig = hmac.new(
api_secret.encode('utf-8'),
debug_query.encode('utf-8'),
hashlib.sha256
).hexdigest()
print(f"Manual signature: {manual_sig}")
print("\n" + "="*60)
print("SIGNATURE TEST COMPLETED")
print("="*60)
return True
def test_mexc_api_call():
"""Test a simple authenticated API call to verify signature works"""
print("\n6. Testing authenticated API call...")
try:
api_key = os.getenv('MEXC_API_KEY')
api_secret = os.getenv('MEXC_SECRET_KEY')
mexc = MEXCInterface(api_key=api_key, api_secret=api_secret, test_mode=True)
# Test account info (this should work if signature is correct)
account_info = mexc.get_account_info()
print("✅ Account info call successful - signature is working")
print(f" Account type: {account_info.get('accountType', 'Unknown')}")
print(f" Can trade: {account_info.get('canTrade', 'Unknown')}")
return True
except Exception as e:
print(f"❌ Account info call failed: {e}")
return False
# Test exact signature generation for MEXC order placement
def test_mexc_order_signature():
api_key = os.getenv('MEXC_API_KEY')
api_secret = os.getenv('MEXC_SECRET_KEY')
if not api_key or not api_secret:
print("❌ MEXC API keys not found")
return
print("=== MEXC ORDER SIGNATURE DEBUG ===")
print(f"API Key: {api_key[:8]}...{api_key[-4:]}")
print(f"Secret Key: {api_secret[:8]}...{api_secret[-4:]}")
print()
# Get server time first
try:
time_resp = requests.get('https://api.mexc.com/api/v3/time')
server_time = time_resp.json()['serverTime']
print(f"✅ Server time: {server_time}")
except Exception as e:
print(f"❌ Failed to get server time: {e}")
server_time = int(time.time() * 1000)
print(f"Using local time: {server_time}")
# Test order parameters (from MEXC documentation example)
params = {
'symbol': 'MXUSDT', # Changed to API-supported symbol
'side': 'BUY',
'type': 'MARKET',
'quantity': '1', # Small test quantity (1 MX token)
'timestamp': server_time
}
print("\n=== Testing Different Signature Methods ===")
# Method 1: Sorted parameters with & separator (current approach)
print("\n1. Current approach (sorted with &):")
sorted_params = sorted(params.items())
query_string1 = '&'.join([f"{key}={value}" for key, value in sorted_params])
signature1 = hmac.new(
api_secret.encode('utf-8'),
query_string1.encode('utf-8'),
hashlib.sha256
).hexdigest()
print(f"Query: {query_string1}")
print(f"Signature: {signature1}")
# Method 2: URL encoded (like account info that works)
print("\n2. URL encoded approach:")
sorted_params = sorted(params.items())
query_string2 = urlencode(sorted_params)
signature2 = hmac.new(
api_secret.encode('utf-8'),
query_string2.encode('utf-8'),
hashlib.sha256
).hexdigest()
print(f"Query: {query_string2}")
print(f"Signature: {signature2}")
# Method 3: MEXC documentation example format
print("\n3. MEXC docs example format:")
# From MEXC docs: symbol=BTCUSDT&side=BUY&type=LIMIT&quantity=1&price=11&recvWindow=5000&timestamp=1644489390087
query_string3 = f"symbol={params['symbol']}&side={params['side']}&type={params['type']}&quantity={params['quantity']}&timestamp={params['timestamp']}"
signature3 = hmac.new(
api_secret.encode('utf-8'),
query_string3.encode('utf-8'),
hashlib.sha256
).hexdigest()
print(f"Query: {query_string3}")
print(f"Signature: {signature3}")
# Test all methods by making actual requests
print("\n=== Testing Actual Requests ===")
methods = [
("Current approach", signature1, params),
("URL encoded", signature2, params),
("MEXC docs format", signature3, params)
]
for method_name, signature, test_params in methods:
print(f"\n{method_name}:")
test_params_copy = test_params.copy()
test_params_copy['signature'] = signature
headers = {'X-MEXC-APIKEY': api_key}
try:
response = requests.post(
'https://api.mexc.com/api/v3/order',
params=test_params_copy,
headers=headers,
timeout=10
)
print(f"Status: {response.status_code}")
print(f"Response: {response.text[:200]}...")
if response.status_code == 200:
print("✅ SUCCESS!")
break
elif "Signature for this request is not valid" in response.text:
print("❌ Invalid signature")
else:
print(f"❌ Other error: {response.status_code}")
except Exception as e:
print(f"❌ Request failed: {e}")
if __name__ == "__main__":
success = test_signature_generation()
if success:
success = test_mexc_api_call()
if success:
test_mexc_order_signature()
print("\n🎉 All signature tests passed!")
else:
print("\n🚨 Signature tests failed - check the output above")

View File

@ -1,185 +0,0 @@
"""
MEXC Timestamp and Signature Debug
This script tests different timestamp and recvWindow combinations to fix the signature validation.
"""
import os
import sys
import time
import hashlib
import hmac
from urllib.parse import urlencode
import requests
# Add paths for imports
sys.path.append(os.path.join(os.path.dirname(__file__), 'NN'))
def test_mexc_timestamp_debug():
"""Test different timestamp strategies"""
print("="*60)
print("MEXC TIMESTAMP AND SIGNATURE DEBUG")
print("="*60)
api_key = os.getenv('MEXC_API_KEY')
api_secret = os.getenv('MEXC_SECRET_KEY')
if not api_key or not api_secret:
print("❌ Missing API credentials")
return False
base_url = "https://api.mexc.com"
api_version = "api/v3"
# Test 1: Get server time directly
print("1. Getting server time...")
try:
response = requests.get(f"{base_url}/{api_version}/time", timeout=10)
if response.status_code == 200:
server_time_data = response.json()
server_time = server_time_data['serverTime']
local_time = int(time.time() * 1000)
time_diff = server_time - local_time
print(f" Server time: {server_time}")
print(f" Local time: {local_time}")
print(f" Difference: {time_diff}ms")
else:
print(f" ❌ Failed to get server time: {response.status_code}")
return False
except Exception as e:
print(f" ❌ Error getting server time: {e}")
return False
# Test 2: Try different timestamp strategies
strategies = [
("Server time exactly", server_time),
("Server time - 500ms", server_time - 500),
("Server time - 1000ms", server_time - 1000),
("Server time - 2000ms", server_time - 2000),
("Local time", local_time),
("Local time - 1000ms", local_time - 1000),
]
# Test with different recvWindow values
recv_windows = [5000, 10000, 30000, 60000]
print(f"\n2. Testing different timestamp strategies and recvWindow values...")
for strategy_name, timestamp in strategies:
print(f"\n Strategy: {strategy_name} (timestamp: {timestamp})")
for recv_window in recv_windows:
print(f" Testing recvWindow: {recv_window}ms")
# Test account info request
params = {
'timestamp': timestamp,
'recvWindow': recv_window
}
# Generate signature
sorted_params = sorted(params.items())
query_string = urlencode(sorted_params)
signature = hmac.new(
api_secret.encode('utf-8'),
query_string.encode('utf-8'),
hashlib.sha256
).hexdigest()
params['signature'] = signature
# Make request
headers = {'X-MEXC-APIKEY': api_key}
url = f"{base_url}/{api_version}/account"
try:
response = requests.get(url, params=params, headers=headers, timeout=10)
if response.status_code == 200:
print(f" ✅ SUCCESS")
account_data = response.json()
print(f" Account type: {account_data.get('accountType', 'Unknown')}")
return True # Found working combination
else:
error_data = response.json() if 'application/json' in response.headers.get('content-type', '') else {'msg': response.text}
error_code = error_data.get('code', 'Unknown')
error_msg = error_data.get('msg', 'Unknown')
print(f" ❌ Error {error_code}: {error_msg}")
except Exception as e:
print(f" ❌ Exception: {e}")
print(f"\n❌ No working timestamp/recvWindow combination found")
return False
def test_minimal_signature():
"""Test with minimal parameters to isolate signature issues"""
print(f"\n3. Testing minimal signature generation...")
api_key = os.getenv('MEXC_API_KEY')
api_secret = os.getenv('MEXC_SECRET_KEY')
base_url = "https://api.mexc.com"
api_version = "api/v3"
# Get fresh server time
try:
response = requests.get(f"{base_url}/{api_version}/time", timeout=10)
server_time = response.json()['serverTime']
print(f" Fresh server time: {server_time}")
except Exception as e:
print(f" ❌ Failed to get server time: {e}")
return False
# Test with absolute minimal parameters
minimal_params = {
'timestamp': server_time
}
# Generate signature with minimal params
sorted_params = sorted(minimal_params.items())
query_string = urlencode(sorted_params)
signature = hmac.new(
api_secret.encode('utf-8'),
query_string.encode('utf-8'),
hashlib.sha256
).hexdigest()
minimal_params['signature'] = signature
print(f" Minimal params: {minimal_params}")
print(f" Query string: {query_string}")
print(f" Signature: {signature}")
# Test account request with minimal params
headers = {'X-MEXC-APIKEY': api_key}
url = f"{base_url}/{api_version}/account"
try:
response = requests.get(url, params=minimal_params, headers=headers, timeout=10)
if response.status_code == 200:
print(f" ✅ Minimal signature works!")
return True
else:
error_data = response.json() if 'application/json' in response.headers.get('content-type', '') else {'msg': response.text}
print(f" ❌ Minimal signature failed: {error_data.get('code', 'Unknown')} - {error_data.get('msg', 'Unknown')}")
return False
except Exception as e:
print(f" ❌ Exception with minimal signature: {e}")
return False
if __name__ == "__main__":
success = test_mexc_timestamp_debug()
if not success:
success = test_minimal_signature()
if success:
print(f"\n🎉 Found working MEXC configuration!")
else:
print(f"\n🚨 MEXC signature/timestamp issue persists")

View File

@ -1,384 +0,0 @@
"""
Test MEXC Trading Integration
This script tests the integration between the enhanced orchestrator and MEXC trading executor.
It verifies that trading signals can be executed through the MEXC API with proper risk management.
"""
import asyncio
import logging
import os
import sys
import time
from datetime import datetime
# Add core directory to path
sys.path.append(os.path.join(os.path.dirname(__file__), 'core'))
from core.trading_executor import TradingExecutor, Position, TradeRecord
from core.enhanced_orchestrator import EnhancedTradingOrchestrator
from core.data_provider import DataProvider
from core.config import get_config
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler("test_mexc_trading.log"),
logging.StreamHandler()
]
)
logger = logging.getLogger("mexc_trading_test")
class TradingIntegrationTest:
"""Test class for MEXC trading integration"""
def __init__(self):
"""Initialize the test environment"""
self.config = get_config()
self.data_provider = DataProvider()
self.orchestrator = EnhancedTradingOrchestrator(self.data_provider)
self.trading_executor = TradingExecutor()
# Test configuration
self.test_symbol = 'ETH/USDT'
self.test_confidence = 0.75
def test_trading_executor_initialization(self):
"""Test that the trading executor initializes correctly"""
logger.info("Testing trading executor initialization...")
try:
# Check configuration
assert self.trading_executor.mexc_config is not None
logger.info("✅ MEXC configuration loaded")
# Check dry run mode
assert self.trading_executor.dry_run == True
logger.info("✅ Dry run mode enabled for safety")
# Check position limits
max_position_value = self.trading_executor.mexc_config.get('max_position_value_usd', 1.0)
assert max_position_value == 1.0
logger.info(f"✅ Max position value set to ${max_position_value}")
# Check safety features
assert self.trading_executor.mexc_config.get('emergency_stop', False) == False
logger.info("✅ Emergency stop not active")
return True
except Exception as e:
logger.error(f"❌ Trading executor initialization test failed: {e}")
return False
def test_exchange_connection(self):
"""Test connection to MEXC exchange"""
logger.info("Testing MEXC exchange connection...")
try:
# Test ticker retrieval
ticker = self.trading_executor.exchange.get_ticker(self.test_symbol)
if ticker:
logger.info(f"✅ Successfully retrieved ticker for {self.test_symbol}")
logger.info(f" Current price: ${ticker['last']:.2f}")
logger.info(f" Bid: ${ticker['bid']:.2f}, Ask: ${ticker['ask']:.2f}")
return True
else:
logger.error(f"❌ Failed to retrieve ticker for {self.test_symbol}")
return False
except Exception as e:
logger.error(f"❌ Exchange connection test failed: {e}")
return False
def test_position_size_calculation(self):
"""Test position size calculation with different confidence levels"""
logger.info("Testing position size calculation...")
try:
test_price = 2500.0
test_cases = [
(0.5, "Medium confidence"),
(0.75, "High confidence"),
(0.9, "Very high confidence"),
(0.3, "Low confidence")
]
for confidence, description in test_cases:
position_value = self.trading_executor._calculate_position_size(confidence, test_price)
quantity = position_value / test_price
logger.info(f" {description} ({confidence:.1f}): ${position_value:.2f} = {quantity:.6f} ETH")
# Verify position value is within limits
max_value = self.trading_executor.mexc_config.get('max_position_value_usd', 1.0)
min_value = self.trading_executor.mexc_config.get('min_position_value_usd', 0.1)
assert min_value <= position_value <= max_value
logger.info("✅ Position size calculation working correctly")
return True
except Exception as e:
logger.error(f"❌ Position size calculation test failed: {e}")
return False
def test_dry_run_trading(self):
"""Test dry run trading execution"""
logger.info("Testing dry run trading execution...")
try:
# Get current price
ticker = self.trading_executor.exchange.get_ticker(self.test_symbol)
if not ticker:
logger.error("Cannot get current price for testing")
return False
current_price = ticker['last']
# Test BUY signal
logger.info(f"Testing BUY signal for {self.test_symbol} at ${current_price:.2f}")
buy_success = self.trading_executor.execute_signal(
symbol=self.test_symbol,
action='BUY',
confidence=self.test_confidence,
current_price=current_price
)
if buy_success:
logger.info("✅ BUY signal executed successfully in dry run mode")
# Check position was created
positions = self.trading_executor.get_positions()
assert self.test_symbol in positions
position = positions[self.test_symbol]
logger.info(f" Position created: {position.side} {position.quantity:.6f} @ ${position.entry_price:.2f}")
else:
logger.error("❌ BUY signal execution failed")
return False
# Wait a moment
time.sleep(1)
# Test SELL signal
logger.info(f"Testing SELL signal for {self.test_symbol}")
sell_success = self.trading_executor.execute_signal(
symbol=self.test_symbol,
action='SELL',
confidence=self.test_confidence,
current_price=current_price * 1.01 # Simulate 1% price increase
)
if sell_success:
logger.info("✅ SELL signal executed successfully in dry run mode")
# Check position was closed
positions = self.trading_executor.get_positions()
assert self.test_symbol not in positions
# Check trade history
trade_history = self.trading_executor.get_trade_history()
assert len(trade_history) > 0
last_trade = trade_history[-1]
logger.info(f" Trade completed: P&L ${last_trade.pnl:.2f}")
else:
logger.error("❌ SELL signal execution failed")
return False
logger.info("✅ Dry run trading test completed successfully")
return True
except Exception as e:
logger.error(f"❌ Dry run trading test failed: {e}")
return False
def test_safety_conditions(self):
"""Test safety condition checks"""
logger.info("Testing safety condition checks...")
try:
# Test symbol allowlist
disallowed_symbol = 'DOGE/USDT'
result = self.trading_executor._check_safety_conditions(disallowed_symbol, 'BUY')
if disallowed_symbol not in self.trading_executor.mexc_config.get('allowed_symbols', []):
assert result == False
logger.info("✅ Symbol allowlist check working")
# Test trade interval
# First trade should succeed
current_price = 2500.0
self.trading_executor.execute_signal(self.test_symbol, 'BUY', 0.7, current_price)
# Immediate second trade should fail due to interval
result = self.trading_executor._check_safety_conditions(self.test_symbol, 'BUY')
# Note: This might pass if interval is very short, which is fine for testing
logger.info("✅ Safety condition checks working")
return True
except Exception as e:
logger.error(f"❌ Safety condition test failed: {e}")
return False
def test_daily_statistics(self):
"""Test daily statistics tracking"""
logger.info("Testing daily statistics tracking...")
try:
stats = self.trading_executor.get_daily_stats()
required_keys = ['daily_trades', 'daily_loss', 'total_pnl', 'winning_trades',
'losing_trades', 'win_rate', 'positions_count']
for key in required_keys:
assert key in stats
logger.info("✅ Daily statistics structure correct")
logger.info(f" Daily trades: {stats['daily_trades']}")
logger.info(f" Total P&L: ${stats['total_pnl']:.2f}")
logger.info(f" Win rate: {stats['win_rate']:.1%}")
return True
except Exception as e:
logger.error(f"❌ Daily statistics test failed: {e}")
return False
async def test_orchestrator_integration(self):
"""Test integration with enhanced orchestrator"""
logger.info("Testing orchestrator integration...")
try:
# Test that orchestrator can make decisions
decisions = await self.orchestrator.make_coordinated_decisions()
logger.info(f"✅ Orchestrator made decisions for {len(decisions)} symbols")
for symbol, decision in decisions.items():
if decision:
logger.info(f" {symbol}: {decision.action} (confidence: {decision.confidence:.3f})")
# Test executing the decision through trading executor
if decision.action != 'HOLD':
success = self.trading_executor.execute_signal(
symbol=symbol,
action=decision.action,
confidence=decision.confidence,
current_price=decision.price
)
if success:
logger.info(f" ✅ Successfully executed {decision.action} for {symbol}")
else:
logger.info(f" ⚠️ Trade execution blocked by safety conditions for {symbol}")
return True
except Exception as e:
logger.error(f"❌ Orchestrator integration test failed: {e}")
return False
def test_emergency_stop(self):
"""Test emergency stop functionality"""
logger.info("Testing emergency stop functionality...")
try:
# Create a test position first
current_price = 2500.0
self.trading_executor.execute_signal(self.test_symbol, 'BUY', 0.7, current_price)
# Verify position exists
positions_before = self.trading_executor.get_positions()
logger.info(f" Positions before emergency stop: {len(positions_before)}")
# Trigger emergency stop
self.trading_executor.emergency_stop()
# Verify trading is disabled
assert self.trading_executor.trading_enabled == False
logger.info("✅ Trading disabled after emergency stop")
# In dry run mode, positions should still be closed
positions_after = self.trading_executor.get_positions()
logger.info(f" Positions after emergency stop: {len(positions_after)}")
return True
except Exception as e:
logger.error(f"❌ Emergency stop test failed: {e}")
return False
async def run_all_tests(self):
"""Run all integration tests"""
logger.info("🚀 Starting MEXC Trading Integration Tests")
logger.info("=" * 60)
tests = [
("Trading Executor Initialization", self.test_trading_executor_initialization),
("Exchange Connection", self.test_exchange_connection),
("Position Size Calculation", self.test_position_size_calculation),
("Dry Run Trading", self.test_dry_run_trading),
("Safety Conditions", self.test_safety_conditions),
("Daily Statistics", self.test_daily_statistics),
("Orchestrator Integration", self.test_orchestrator_integration),
("Emergency Stop", self.test_emergency_stop),
]
passed = 0
failed = 0
for test_name, test_func in tests:
logger.info(f"\n📋 Running test: {test_name}")
logger.info("-" * 40)
try:
if asyncio.iscoroutinefunction(test_func):
result = await test_func()
else:
result = test_func()
if result:
passed += 1
logger.info(f"{test_name} PASSED")
else:
failed += 1
logger.error(f"{test_name} FAILED")
except Exception as e:
failed += 1
logger.error(f"{test_name} FAILED with exception: {e}")
logger.info("\n" + "=" * 60)
logger.info("🏁 Test Results Summary")
logger.info(f"✅ Passed: {passed}")
logger.info(f"❌ Failed: {failed}")
logger.info(f"📊 Success Rate: {passed/(passed+failed)*100:.1f}%")
if failed == 0:
logger.info("🎉 All tests passed! MEXC trading integration is ready.")
else:
logger.warning(f"⚠️ {failed} test(s) failed. Please review and fix issues before live trading.")
return failed == 0
async def main():
"""Main test function"""
test_runner = TradingIntegrationTest()
success = await test_runner.run_all_tests()
if success:
logger.info("\n🔧 Next Steps:")
logger.info("1. Set up your MEXC API keys in .env file")
logger.info("2. Update config.yaml to enable trading (mexc_trading.enabled: true)")
logger.info("3. Consider disabling dry_run_mode for live trading")
logger.info("4. Start with small position sizes for initial live testing")
logger.info("5. Monitor the system closely during initial live trading")
return success
if __name__ == "__main__":
asyncio.run(main())

View File

@ -1,109 +0,0 @@
#!/usr/bin/env python3
"""
Minimal Dashboard Test - Debug startup issues
"""
import logging
import sys
import traceback
# Setup logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
def test_imports():
"""Test all required imports"""
try:
logger.info("Testing imports...")
# Core imports
from core.config import get_config
logger.info("✓ core.config imported")
from core.data_provider import DataProvider
logger.info("✓ core.data_provider imported")
# Dashboard imports
import dash
from dash import dcc, html
import plotly.graph_objects as go
logger.info("✓ Dash imports successful")
# Try to import the dashboard
from web.old_archived.scalping_dashboard import RealTimeScalpingDashboard
logger.info("✓ RealTimeScalpingDashboard imported")
return True
except Exception as e:
logger.error(f"Import error: {e}")
traceback.print_exc()
return False
def test_dashboard_creation():
"""Test dashboard creation"""
try:
logger.info("Testing dashboard creation...")
from web.old_archived.scalping_dashboard import RealTimeScalpingDashboard
from core.data_provider import DataProvider
# Create data provider
data_provider = DataProvider()
logger.info("✓ DataProvider created")
# Create dashboard
dashboard = RealTimeScalpingDashboard(data_provider=data_provider)
logger.info("✓ Dashboard created successfully")
return dashboard
except Exception as e:
logger.error(f"Dashboard creation error: {e}")
traceback.print_exc()
return None
def test_dashboard_run():
"""Test dashboard run"""
try:
logger.info("Testing dashboard run...")
dashboard = test_dashboard_creation()
if not dashboard:
return False
# Try to run dashboard
logger.info("Starting dashboard on port 8052...")
dashboard.run(host='127.0.0.1', port=8052, debug=True)
return True
except Exception as e:
logger.error(f"Dashboard run error: {e}")
traceback.print_exc()
return False
def main():
"""Main test function"""
logger.info("=== MINIMAL DASHBOARD TEST ===")
# Test 1: Imports
if not test_imports():
logger.error("Import test failed!")
sys.exit(1)
# Test 2: Dashboard creation
dashboard = test_dashboard_creation()
if not dashboard:
logger.error("Dashboard creation test failed!")
sys.exit(1)
# Test 3: Dashboard run
logger.info("All tests passed! Starting dashboard...")
test_dashboard_run()
if __name__ == "__main__":
main()

View File

@ -1,127 +0,0 @@
#!/usr/bin/env python3
"""
Minimal Trading Test
Test basic trading functionality with simplified decision logic
"""
import logging
import asyncio
from datetime import datetime
import pandas as pd
import numpy as np
# Setup logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
async def test_minimal_trading():
"""Test minimal trading with lowered thresholds"""
logger.info("=== MINIMAL TRADING TEST ===")
try:
from core.config import get_config
from core.data_provider import DataProvider
from core.trading_executor import TradingExecutor
# Initialize with minimal components
config = get_config()
data_provider = DataProvider()
trading_executor = TradingExecutor()
logger.info("✅ Basic components initialized")
# Test data availability
symbol = 'ETH/USDT'
data = data_provider.get_historical_data(symbol, '1m', limit=20)
if data is None or data.empty:
logger.error("❌ No data available for minimal test")
return
current_price = float(data['close'].iloc[-1])
logger.info(f"✅ Current {symbol} price: ${current_price:.2f}")
# Generate simple trading signal
price_change = data['close'].pct_change().iloc[-5:].mean()
# Simple momentum signal
if price_change > 0.001: # 0.1% positive momentum
action = 'BUY'
confidence = 0.6 # Above 35% threshold
reason = f"Positive momentum: {price_change:.1%}"
elif price_change < -0.001: # 0.1% negative momentum
action = 'SELL'
confidence = 0.6 # Above 35% threshold
reason = f"Negative momentum: {price_change:.1%}"
else:
action = 'HOLD'
confidence = 0.3
reason = "Neutral momentum"
logger.info(f"📈 Signal: {action} with {confidence:.1%} confidence - {reason}")
# Test if we would execute this trade
if confidence > 0.35: # Our new threshold
logger.info("✅ Signal WOULD trigger trade execution")
# Simulate position sizing
position_size = 0.01 # 0.01 ETH
estimated_value = position_size * current_price
logger.info(f"📊 Would trade {position_size} ETH (~${estimated_value:.2f})")
# Test trading executor (simulation mode)
if hasattr(trading_executor, 'simulation_mode'):
trading_executor.simulation_mode = True
logger.info("🎯 Trading signal meets threshold - system operational")
else:
logger.warning(f"❌ Signal below threshold ({confidence:.1%} < 35%)")
# Test multiple timeframes
logger.info("\n=== MULTI-TIMEFRAME TEST ===")
timeframes = ['1m', '5m', '1h']
signals = []
for tf in timeframes:
try:
tf_data = data_provider.get_historical_data(symbol, tf, limit=10)
if tf_data is not None and not tf_data.empty:
tf_change = tf_data['close'].pct_change().iloc[-3:].mean()
tf_confidence = min(0.8, abs(tf_change) * 100)
signals.append({
'timeframe': tf,
'change': tf_change,
'confidence': tf_confidence
})
logger.info(f" {tf}: {tf_change:.2%} change, {tf_confidence:.1%} confidence")
except Exception as e:
logger.warning(f" {tf}: Error - {e}")
# Combined signal
if signals:
avg_confidence = np.mean([s['confidence'] for s in signals])
logger.info(f"📊 Average multi-timeframe confidence: {avg_confidence:.1%}")
if avg_confidence > 0.35:
logger.info("✅ Multi-timeframe signal would trigger trade")
else:
logger.warning("❌ Multi-timeframe signal below threshold")
logger.info("\n=== RECOMMENDATIONS ===")
logger.info("1. ✅ Data flow is working correctly")
logger.info("2. ✅ Price data is fresh and accurate")
logger.info("3. ✅ Confidence thresholds are now more reasonable (35%)")
logger.info("4. ⚠️ Complex cross-asset logic has bugs - use simple momentum")
logger.info("5. 🎯 System can generate trading signals - test with real orchestrator")
except Exception as e:
logger.error(f"❌ Minimal trading test failed: {e}")
import traceback
traceback.print_exc()
if __name__ == "__main__":
asyncio.run(test_minimal_trading())

View File

@ -1,274 +0,0 @@
#!/usr/bin/env python
"""
Comprehensive test suite for model persistence and training functionality
"""
import os
import sys
import unittest
import tempfile
import logging
import torch
import numpy as np
from pathlib import Path
# Add project root to path
project_root = Path(__file__).parent.parent
sys.path.insert(0, str(project_root))
from utils.model_utils import robust_save, robust_load, get_model_info, verify_save_load_cycle
# Configure logging for tests
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
class MockAgent:
"""Mock agent class for testing model persistence"""
def __init__(self, state_size=64, action_size=4, hidden_size=256):
self.state_size = state_size
self.action_size = action_size
self.hidden_size = hidden_size
self.epsilon = 0.1
# Create simple mock networks
self.policy_net = torch.nn.Sequential(
torch.nn.Linear(state_size, hidden_size),
torch.nn.ReLU(),
torch.nn.Linear(hidden_size, action_size)
)
self.target_net = torch.nn.Sequential(
torch.nn.Linear(state_size, hidden_size),
torch.nn.ReLU(),
torch.nn.Linear(hidden_size, action_size)
)
self.optimizer = torch.optim.Adam(self.policy_net.parameters(), lr=0.001)
class TestModelPersistence(unittest.TestCase):
"""Test suite for model saving and loading functionality"""
def setUp(self):
"""Set up test fixtures"""
self.temp_dir = tempfile.mkdtemp()
self.test_agent = MockAgent()
def tearDown(self):
"""Clean up test fixtures"""
import shutil
shutil.rmtree(self.temp_dir, ignore_errors=True)
def test_robust_save_basic(self):
"""Test basic robust save functionality"""
save_path = os.path.join(self.temp_dir, "test_model.pt")
success = robust_save(self.test_agent, save_path)
self.assertTrue(success, "Robust save should succeed")
self.assertTrue(os.path.exists(save_path), "Model file should exist")
self.assertGreater(os.path.getsize(save_path), 0, "Model file should not be empty")
def test_robust_save_without_optimizer(self):
"""Test robust save without optimizer state"""
save_path = os.path.join(self.temp_dir, "test_model_no_opt.pt")
success = robust_save(self.test_agent, save_path, include_optimizer=False)
self.assertTrue(success, "Robust save without optimizer should succeed")
# Verify that optimizer state is not included
checkpoint = torch.load(save_path, map_location='cpu')
self.assertNotIn('optimizer', checkpoint, "Optimizer state should not be saved")
self.assertIn('policy_net', checkpoint, "Policy network should be saved")
def test_robust_load_basic(self):
"""Test basic robust load functionality"""
save_path = os.path.join(self.temp_dir, "test_model.pt")
# Save first
success = robust_save(self.test_agent, save_path)
self.assertTrue(success, "Save should succeed")
# Create new agent and load
new_agent = MockAgent()
success = robust_load(new_agent, save_path)
self.assertTrue(success, "Load should succeed")
# Verify epsilon was loaded
self.assertEqual(new_agent.epsilon, self.test_agent.epsilon, "Epsilon should match")
def test_get_model_info(self):
"""Test model info extraction"""
save_path = os.path.join(self.temp_dir, "test_model.pt")
# Test non-existent file
info = get_model_info(save_path)
self.assertFalse(info['exists'], "Non-existent file should return exists=False")
# Save model and test info
robust_save(self.test_agent, save_path)
info = get_model_info(save_path)
self.assertTrue(info['exists'], "Existing file should return exists=True")
self.assertGreater(info['size_bytes'], 0, "File size should be greater than 0")
self.assertTrue(info['has_optimizer'], "Should detect optimizer in checkpoint")
self.assertEqual(info['parameters']['state_size'], self.test_agent.state_size)
self.assertEqual(info['parameters']['action_size'], self.test_agent.action_size)
def test_save_load_cycle_verification(self):
"""Test save/load cycle verification"""
test_path = os.path.join(self.temp_dir, "cycle_test.pt")
success = verify_save_load_cycle(self.test_agent, test_path)
self.assertTrue(success, "Save/load cycle should succeed")
# File should be cleaned up after verification
self.assertFalse(os.path.exists(test_path), "Test file should be cleaned up")
def test_multiple_save_methods(self):
"""Test that different save methods all work"""
methods = ['regular', 'no_optimizer', 'pickle2']
for method in methods:
with self.subTest(method=method):
save_path = os.path.join(self.temp_dir, f"test_{method}.pt")
if method == 'regular':
success = robust_save(self.test_agent, save_path)
elif method == 'no_optimizer':
success = robust_save(self.test_agent, save_path, include_optimizer=False)
elif method == 'pickle2':
# This would be tested by the robust_save fallback mechanism
success = robust_save(self.test_agent, save_path)
self.assertTrue(success, f"{method} save should succeed")
self.assertTrue(os.path.exists(save_path), f"{method} save should create file")
class TestTrainingMetrics(unittest.TestCase):
"""Test suite for training metrics and monitoring functionality"""
def test_signal_distribution_calculation(self):
"""Test signal distribution calculation"""
# Mock predictions
predictions = np.array([0, 1, 2, 1, 0, 2, 1, 1, 2, 0]) # SELL, HOLD, BUY
buy_count = np.sum(predictions == 2)
sell_count = np.sum(predictions == 0)
hold_count = np.sum(predictions == 1)
total = len(predictions)
distribution = {
"BUY": buy_count / total,
"SELL": sell_count / total,
"HOLD": hold_count / total
}
self.assertAlmostEqual(distribution["BUY"], 0.3, places=2)
self.assertAlmostEqual(distribution["SELL"], 0.3, places=2)
self.assertAlmostEqual(distribution["HOLD"], 0.4, places=2)
self.assertAlmostEqual(sum(distribution.values()), 1.0, places=2)
def test_metrics_tracking_structure(self):
"""Test metrics history structure for training monitoring"""
metrics_history = {
"epoch": [],
"train_loss": [],
"val_loss": [],
"train_acc": [],
"val_acc": [],
"train_pnl": [],
"val_pnl": [],
"train_win_rate": [],
"val_win_rate": [],
"signal_distribution": []
}
# Simulate adding metrics for one epoch
metrics_history["epoch"].append(1)
metrics_history["train_loss"].append(0.5)
metrics_history["val_loss"].append(0.6)
metrics_history["train_acc"].append(0.7)
metrics_history["val_acc"].append(0.65)
metrics_history["train_pnl"].append(0.1)
metrics_history["val_pnl"].append(0.08)
metrics_history["train_win_rate"].append(0.6)
metrics_history["val_win_rate"].append(0.55)
metrics_history["signal_distribution"].append({"BUY": 0.3, "SELL": 0.3, "HOLD": 0.4})
# Verify structure
self.assertEqual(len(metrics_history["epoch"]), 1)
self.assertEqual(metrics_history["epoch"][0], 1)
self.assertIsInstance(metrics_history["signal_distribution"][0], dict)
self.assertIn("BUY", metrics_history["signal_distribution"][0])
class TestModelArchitecture(unittest.TestCase):
"""Test suite for model architecture verification"""
def test_model_parameter_consistency(self):
"""Test that model parameters are consistent after save/load"""
agent = MockAgent(state_size=32, action_size=3, hidden_size=128)
with tempfile.TemporaryDirectory() as temp_dir:
save_path = os.path.join(temp_dir, "consistency_test.pt")
# Save model
robust_save(agent, save_path)
# Load into new model with same architecture
new_agent = MockAgent(state_size=32, action_size=3, hidden_size=128)
robust_load(new_agent, save_path)
# Verify parameters match
self.assertEqual(new_agent.state_size, agent.state_size)
self.assertEqual(new_agent.action_size, agent.action_size)
self.assertEqual(new_agent.hidden_size, agent.hidden_size)
self.assertEqual(new_agent.epsilon, agent.epsilon)
def test_model_forward_pass(self):
"""Test that model can perform forward pass after load"""
agent = MockAgent()
with tempfile.TemporaryDirectory() as temp_dir:
save_path = os.path.join(temp_dir, "forward_test.pt")
# Create test input
test_input = torch.randn(1, agent.state_size)
# Get original output
original_output = agent.policy_net(test_input)
# Save and load
robust_save(agent, save_path)
new_agent = MockAgent()
robust_load(new_agent, save_path)
# Test forward pass works
new_output = new_agent.policy_net(test_input)
self.assertEqual(new_output.shape, original_output.shape)
# Outputs should be identical since we loaded the same weights
torch.testing.assert_close(new_output, original_output)
def run_all_tests():
"""Run all test suites"""
test_suites = [
unittest.TestLoader().loadTestsFromTestCase(TestModelPersistence),
unittest.TestLoader().loadTestsFromTestCase(TestTrainingMetrics),
unittest.TestLoader().loadTestsFromTestCase(TestModelArchitecture)
]
combined_suite = unittest.TestSuite(test_suites)
runner = unittest.TextTestRunner(verbosity=2)
result = runner.run(combined_suite)
return result.wasSuccessful()
if __name__ == "__main__":
logger.info("Running comprehensive model persistence and training tests...")
success = run_all_tests()
if success:
logger.info("All tests passed!")
sys.exit(0)
else:
logger.error("Some tests failed!")
sys.exit(1)

View File

@ -1,327 +0,0 @@
"""
Test Multi-Exchange Consolidated Order Book (COB) Provider
This script demonstrates the functionality of the new multi-exchange COB data provider:
1. Real-time order book aggregation from multiple exchanges
2. Fine-grain price bucket generation
3. CNN/DQN feature generation
4. Dashboard integration
5. Market analysis and signal generation
Run this to test the COB provider with live data streams.
"""
import asyncio
import logging
import time
from datetime import datetime
from core.multi_exchange_cob_provider import MultiExchangeCOBProvider
from core.cob_integration import COBIntegration
from core.data_provider import DataProvider
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
class COBTester:
"""Test harness for Multi-Exchange COB Provider"""
def __init__(self):
self.symbols = ['BTC/USDT', 'ETH/USDT']
self.data_provider = None
self.cob_integration = None
self.test_duration = 300 # 5 minutes
# Statistics tracking
self.stats = {
'cob_updates_received': 0,
'bucket_updates_received': 0,
'cnn_features_generated': 0,
'dqn_features_generated': 0,
'signals_generated': 0,
'start_time': None
}
async def run_test(self):
"""Run comprehensive COB provider test"""
logger.info("Starting Multi-Exchange COB Provider Test")
logger.info(f"Testing symbols: {self.symbols}")
logger.info(f"Test duration: {self.test_duration} seconds")
try:
# Initialize components
await self._initialize_components()
# Run test scenarios
await self._run_basic_functionality_test()
await self._run_feature_generation_test()
await self._run_dashboard_integration_test()
await self._run_signal_analysis_test()
# Monitor for specified duration
await self._monitor_live_data()
# Generate final report
self._generate_test_report()
except Exception as e:
logger.error(f"Test failed: {e}")
finally:
await self._cleanup()
async def _initialize_components(self):
"""Initialize COB provider and integration components"""
logger.info("Initializing COB components...")
# Create data provider (optional - for integration testing)
self.data_provider = DataProvider(symbols=self.symbols)
# Create COB integration
self.cob_integration = COBIntegration(
data_provider=self.data_provider,
symbols=self.symbols
)
# Register test callbacks
self.cob_integration.add_cnn_callback(self._cnn_callback)
self.cob_integration.add_dqn_callback(self._dqn_callback)
self.cob_integration.add_dashboard_callback(self._dashboard_callback)
# Start COB integration
await self.cob_integration.start()
# Allow time for connections
await asyncio.sleep(5)
self.stats['start_time'] = datetime.now()
logger.info("COB components initialized successfully")
async def _run_basic_functionality_test(self):
"""Test basic COB provider functionality"""
logger.info("Testing basic COB functionality...")
# Wait for order book data
await asyncio.sleep(10)
for symbol in self.symbols:
# Test consolidated order book retrieval
cob_snapshot = self.cob_integration.get_cob_snapshot(symbol)
if cob_snapshot:
logger.info(f"{symbol} COB Status:")
logger.info(f" Exchanges active: {cob_snapshot.exchanges_active}")
logger.info(f" Volume weighted mid: ${cob_snapshot.volume_weighted_mid:.2f}")
logger.info(f" Spread: {cob_snapshot.spread_bps:.2f} bps")
logger.info(f" Bid liquidity: ${cob_snapshot.total_bid_liquidity:,.0f}")
logger.info(f" Ask liquidity: ${cob_snapshot.total_ask_liquidity:,.0f}")
logger.info(f" Liquidity imbalance: {cob_snapshot.liquidity_imbalance:.3f}")
# Test price buckets
price_buckets = self.cob_integration.get_price_buckets(symbol)
if price_buckets:
bid_buckets = len(price_buckets.get('bids', {}))
ask_buckets = len(price_buckets.get('asks', {}))
logger.info(f" Price buckets: {bid_buckets} bids, {ask_buckets} asks")
# Test exchange breakdown
exchange_breakdown = self.cob_integration.get_exchange_breakdown(symbol)
if exchange_breakdown:
logger.info(f" Exchange breakdown:")
for exchange, data in exchange_breakdown.items():
market_share = data.get('market_share', 0) * 100
logger.info(f" {exchange}: {market_share:.1f}% market share")
else:
logger.warning(f"No COB data available for {symbol}")
logger.info("Basic functionality test completed")
async def _run_feature_generation_test(self):
"""Test CNN and DQN feature generation"""
logger.info("Testing feature generation...")
for symbol in self.symbols:
# Test CNN features
cnn_features = self.cob_integration.get_cob_features(symbol)
if cnn_features is not None:
logger.info(f"{symbol} CNN features: shape={cnn_features.shape}, "
f"min={cnn_features.min():.4f}, max={cnn_features.max():.4f}")
else:
logger.warning(f"No CNN features available for {symbol}")
# Test market depth analysis
depth_analysis = self.cob_integration.get_market_depth_analysis(symbol)
if depth_analysis:
logger.info(f"{symbol} Market Depth Analysis:")
logger.info(f" Depth levels: {depth_analysis['depth_analysis']['bid_levels']} bids, "
f"{depth_analysis['depth_analysis']['ask_levels']} asks")
dominant_exchanges = depth_analysis['depth_analysis'].get('dominant_exchanges', {})
logger.info(f" Dominant exchanges: {dominant_exchanges}")
logger.info("Feature generation test completed")
async def _run_dashboard_integration_test(self):
"""Test dashboard data generation"""
logger.info("Testing dashboard integration...")
# Dashboard integration is tested via callbacks
# Statistics are tracked in the callback functions
await asyncio.sleep(5)
logger.info("Dashboard integration test completed")
async def _run_signal_analysis_test(self):
"""Test signal generation and analysis"""
logger.info("Testing signal analysis...")
for symbol in self.symbols:
# Get recent signals
recent_signals = self.cob_integration.get_recent_signals(symbol, count=10)
logger.info(f"{symbol} recent signals: {len(recent_signals)} generated")
for signal in recent_signals[-3:]: # Show last 3 signals
logger.info(f" Signal: {signal.get('type')} - {signal.get('side')} - "
f"Confidence: {signal.get('confidence', 0):.3f}")
logger.info("Signal analysis test completed")
async def _monitor_live_data(self):
"""Monitor live data for the specified duration"""
logger.info(f"Monitoring live data for {self.test_duration} seconds...")
start_time = time.time()
last_stats_time = start_time
while time.time() - start_time < self.test_duration:
# Print periodic statistics
current_time = time.time()
if current_time - last_stats_time >= 30: # Every 30 seconds
self._print_periodic_stats()
last_stats_time = current_time
await asyncio.sleep(1)
logger.info("Live data monitoring completed")
def _print_periodic_stats(self):
"""Print periodic statistics during monitoring"""
elapsed = (datetime.now() - self.stats['start_time']).total_seconds()
logger.info("Periodic Statistics:")
logger.info(f" Elapsed time: {elapsed:.0f} seconds")
logger.info(f" COB updates: {self.stats['cob_updates_received']}")
logger.info(f" Bucket updates: {self.stats['bucket_updates_received']}")
logger.info(f" CNN features: {self.stats['cnn_features_generated']}")
logger.info(f" DQN features: {self.stats['dqn_features_generated']}")
logger.info(f" Signals: {self.stats['signals_generated']}")
# Calculate rates
if elapsed > 0:
cob_rate = self.stats['cob_updates_received'] / elapsed
logger.info(f" COB update rate: {cob_rate:.2f}/sec")
def _generate_test_report(self):
"""Generate final test report"""
elapsed = (datetime.now() - self.stats['start_time']).total_seconds()
logger.info("=" * 60)
logger.info("MULTI-EXCHANGE COB PROVIDER TEST REPORT")
logger.info("=" * 60)
logger.info(f"Test Duration: {elapsed:.0f} seconds")
logger.info(f"Symbols Tested: {', '.join(self.symbols)}")
logger.info("")
# Data Reception Statistics
logger.info("Data Reception:")
logger.info(f" COB Updates Received: {self.stats['cob_updates_received']}")
logger.info(f" Bucket Updates Received: {self.stats['bucket_updates_received']}")
logger.info(f" Average COB Rate: {self.stats['cob_updates_received'] / elapsed:.2f}/sec")
logger.info("")
# Feature Generation Statistics
logger.info("Feature Generation:")
logger.info(f" CNN Features Generated: {self.stats['cnn_features_generated']}")
logger.info(f" DQN Features Generated: {self.stats['dqn_features_generated']}")
logger.info("")
# Signal Generation Statistics
logger.info("Signal Analysis:")
logger.info(f" Signals Generated: {self.stats['signals_generated']}")
logger.info("")
# Component Statistics
cob_stats = self.cob_integration.get_statistics()
logger.info("Component Statistics:")
logger.info(f" Active Exchanges: {', '.join(cob_stats.get('active_exchanges', []))}")
logger.info(f" Streaming Status: {cob_stats.get('is_streaming', False)}")
logger.info(f" Bucket Size: {cob_stats.get('bucket_size_bps', 0)} bps")
logger.info(f" Average Processing Time: {cob_stats.get('avg_processing_time_ms', 0):.2f} ms")
logger.info("")
# Per-Symbol Analysis
logger.info("Per-Symbol Analysis:")
for symbol in self.symbols:
cob_snapshot = self.cob_integration.get_cob_snapshot(symbol)
if cob_snapshot:
logger.info(f" {symbol}:")
logger.info(f" Active Exchanges: {len(cob_snapshot.exchanges_active)}")
logger.info(f" Spread: {cob_snapshot.spread_bps:.2f} bps")
logger.info(f" Total Liquidity: ${(cob_snapshot.total_bid_liquidity + cob_snapshot.total_ask_liquidity):,.0f}")
recent_signals = self.cob_integration.get_recent_signals(symbol)
logger.info(f" Signals Generated: {len(recent_signals)}")
logger.info("=" * 60)
logger.info("Test completed successfully!")
async def _cleanup(self):
"""Cleanup resources"""
logger.info("Cleaning up resources...")
if self.cob_integration:
await self.cob_integration.stop()
if self.data_provider and hasattr(self.data_provider, 'stop_real_time_streaming'):
await self.data_provider.stop_real_time_streaming()
logger.info("Cleanup completed")
# Callback functions for testing
def _cnn_callback(self, symbol: str, data: dict):
"""CNN feature callback for testing"""
self.stats['cnn_features_generated'] += 1
if self.stats['cnn_features_generated'] % 100 == 0:
logger.debug(f"CNN features generated: {self.stats['cnn_features_generated']}")
def _dqn_callback(self, symbol: str, data: dict):
"""DQN feature callback for testing"""
self.stats['dqn_features_generated'] += 1
if self.stats['dqn_features_generated'] % 100 == 0:
logger.debug(f"DQN features generated: {self.stats['dqn_features_generated']}")
def _dashboard_callback(self, symbol: str, data: dict):
"""Dashboard data callback for testing"""
self.stats['cob_updates_received'] += 1
# Check for signals in dashboard data
signals = data.get('recent_signals', [])
self.stats['signals_generated'] += len(signals)
async def main():
"""Main test function"""
logger.info("Multi-Exchange COB Provider Test Starting...")
try:
tester = COBTester()
await tester.run_test()
except KeyboardInterrupt:
logger.info("Test interrupted by user")
except Exception as e:
logger.error(f"Test failed with error: {e}")
raise
if __name__ == "__main__":
asyncio.run(main())

View File

@ -1,213 +0,0 @@
#!/usr/bin/env python3
"""
Test script for negative case training functionality
This script tests:
1. Negative case trainer initialization
2. Adding losing trades for intensive training
3. Storage in testcases/negative folder
4. Simultaneous inference and training
5. 500x leverage training case generation
"""
import logging
import time
from datetime import datetime
from core.negative_case_trainer import NegativeCaseTrainer, NegativeCase
from core.trading_action import TradingAction
# Setup logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
def test_negative_case_trainer():
"""Test negative case trainer functionality"""
print("🔴 Testing Negative Case Trainer for Intensive Training on Losses")
print("=" * 70)
# Test 1: Initialize trainer
print("\n1. Initializing Negative Case Trainer...")
trainer = NegativeCaseTrainer()
print(f"✅ Trainer initialized with storage at: {trainer.storage_dir}")
print(f"✅ Background training thread started: {trainer.training_thread.is_alive()}")
# Test 2: Create a losing trade scenario
print("\n2. Creating losing trade scenarios...")
# Scenario 1: Small loss (1% with 500x leverage = 500% loss)
trade_info_1 = {
'timestamp': datetime.now(),
'symbol': 'ETH/USDT',
'action': 'BUY',
'price': 3000.0,
'size': 0.1,
'value': 300.0,
'confidence': 0.8,
'pnl': -3.0 # $3 loss on $300 position = 1% loss
}
market_data_1 = {
'exit_price': 2970.0, # 1% drop
'state_before': {
'volatility': 2.5,
'momentum': 0.5,
'volume_ratio': 1.2
},
'state_after': {
'volatility': 3.0,
'momentum': -1.0,
'volume_ratio': 0.8
},
'tick_data': [],
'technical_indicators': {
'rsi': 65,
'macd': 0.5
}
}
case_id_1 = trainer.add_losing_trade(trade_info_1, market_data_1)
print(f"✅ Added small loss case: {case_id_1}")
# Scenario 2: Large loss (5% with 500x leverage = 2500% loss)
trade_info_2 = {
'timestamp': datetime.now(),
'symbol': 'ETH/USDT',
'action': 'SELL',
'price': 3000.0,
'size': 0.2,
'value': 600.0,
'confidence': 0.9,
'pnl': -30.0 # $30 loss on $600 position = 5% loss
}
market_data_2 = {
'exit_price': 3150.0, # 5% rise (bad for short)
'state_before': {
'volatility': 1.8,
'momentum': -0.3,
'volume_ratio': 0.9
},
'state_after': {
'volatility': 4.2,
'momentum': 2.5,
'volume_ratio': 1.8
},
'tick_data': [],
'technical_indicators': {
'rsi': 35,
'macd': -0.8
}
}
case_id_2 = trainer.add_losing_trade(trade_info_2, market_data_2)
print(f"✅ Added large loss case: {case_id_2}")
# Test 3: Check training stats
print("\n3. Checking training statistics...")
stats = trainer.get_training_stats()
print(f"✅ Total negative cases: {stats['total_negative_cases']}")
print(f"✅ Cases in training queue: {stats['cases_in_queue']}")
print(f"✅ High priority cases: {stats['high_priority_cases']}")
print(f"✅ Training active: {stats['training_active']}")
print(f"✅ Storage directory: {stats['storage_directory']}")
# Test 4: Check recent lessons
print("\n4. Recent lessons learned...")
lessons = trainer.get_recent_lessons(3)
for i, lesson in enumerate(lessons, 1):
print(f"✅ Lesson {i}: {lesson}")
# Test 5: Test simultaneous inference capability
print("\n5. Testing simultaneous inference and training...")
for i in range(5):
can_inference = trainer.can_inference_proceed()
print(f"✅ Inference check {i+1}: {'ALLOWED' if can_inference else 'BLOCKED'}")
time.sleep(0.5)
# Test 6: Wait for some training to complete
print("\n6. Waiting for intensive training to process cases...")
time.sleep(3) # Wait for background training
# Check updated stats
updated_stats = trainer.get_training_stats()
print(f"✅ Cases processed: {updated_stats['total_cases_processed']}")
print(f"✅ Total training time: {updated_stats['total_training_time']:.2f}s")
print(f"✅ Avg accuracy improvement: {updated_stats['avg_accuracy_improvement']:.1%}")
# Test 7: 500x leverage training case analysis
print("\n7. 500x Leverage Training Case Analysis...")
print("💡 With 0% fees, any move >0.1% is profitable at 500x leverage:")
test_moves = [0.05, 0.1, 0.15, 0.2, 0.5, 1.0] # Price change percentages
for move_pct in test_moves:
leverage_profit = move_pct * 500
profitable = move_pct >= 0.1
status = "✅ PROFITABLE" if profitable else "❌ TOO SMALL"
print(f" {move_pct:+.2f}% move = {leverage_profit:+.1f}% @ 500x leverage - {status}")
print("\n🔴 PRIORITY: Losing trades trigger intensive RL retraining")
print("🚀 System optimized for fast trading with 500x leverage and 0% fees")
print("⚡ Training cases generated for all moves >0.1% to maximize profit")
return trainer
def test_integration_with_enhanced_dashboard():
"""Test integration with enhanced dashboard"""
print("\n" + "=" * 70)
print("🔗 Testing Integration with Enhanced Dashboard")
print("=" * 70)
try:
from web.old_archived.enhanced_scalping_dashboard import EnhancedScalpingDashboard
from core.data_provider import DataProvider
from core.enhanced_orchestrator import EnhancedTradingOrchestrator
# Create components
data_provider = DataProvider()
orchestrator = EnhancedTradingOrchestrator(data_provider)
dashboard = EnhancedScalpingDashboard(data_provider, orchestrator)
print("✅ Enhanced dashboard created successfully")
print(f"✅ Orchestrator has negative case trainer: {hasattr(orchestrator, 'negative_case_trainer')}")
print(f"✅ Trading session has orchestrator reference: {hasattr(dashboard.trading_session, 'orchestrator')}")
# Test negative case trainer access
if hasattr(orchestrator, 'negative_case_trainer'):
trainer_stats = orchestrator.negative_case_trainer.get_training_stats()
print(f"✅ Negative case trainer accessible with {trainer_stats['total_negative_cases']} cases")
return True
except Exception as e:
print(f"❌ Integration test failed: {e}")
return False
if __name__ == "__main__":
print("🔴 NEGATIVE CASE TRAINING TEST SUITE")
print("Focus: Learning from losses to prevent future mistakes")
print("Features: 500x leverage optimization, 0% fee advantage, intensive retraining")
try:
# Test negative case trainer
trainer = test_negative_case_trainer()
# Test integration
integration_success = test_integration_with_enhanced_dashboard()
print("\n" + "=" * 70)
print("📊 TEST SUMMARY")
print("=" * 70)
print("✅ Negative case trainer: WORKING")
print("✅ Intensive training on losses: ACTIVE")
print("✅ Storage in testcases/negative: WORKING")
print("✅ Simultaneous inference/training: SUPPORTED")
print("✅ 500x leverage optimization: IMPLEMENTED")
print(f"✅ Enhanced dashboard integration: {'WORKING' if integration_success else 'NEEDS ATTENTION'}")
print("\n🎯 SYSTEM READY FOR INTENSIVE LOSS-BASED LEARNING")
print("💪 Every losing trade makes the system stronger!")
except Exception as e:
print(f"\n❌ Test suite failed: {e}")
import traceback
traceback.print_exc()

View File

@ -1,201 +0,0 @@
#!/usr/bin/env python3
"""
Test NN-Driven Trading System
Demonstrates how the system now makes decisions using Neural Networks instead of algorithms
"""
import logging
import asyncio
from datetime import datetime
import numpy as np
# Setup logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
async def test_nn_driven_system():
"""Test the NN-driven trading system"""
logger.info("=== TESTING NN-DRIVEN TRADING SYSTEM ===")
try:
# Import core components
from core.config import get_config
from core.data_provider import DataProvider
from core.enhanced_orchestrator import EnhancedTradingOrchestrator
from core.nn_decision_fusion import ModelPrediction, MarketContext
# Initialize components
config = get_config()
data_provider = DataProvider()
# Initialize NN-driven orchestrator
orchestrator = EnhancedTradingOrchestrator(
data_provider=data_provider,
symbols=['ETH/USDT', 'BTC/USDT'],
enhanced_rl_training=True
)
logger.info("✅ NN-driven orchestrator initialized")
# Test 1: Add mock CNN prediction
cnn_prediction = ModelPrediction(
model_name="williams_cnn",
prediction_type="direction",
value=0.6, # Bullish signal
confidence=0.8,
timestamp=datetime.now(),
metadata={'timeframe': '1h', 'feature_importance': [0.2, 0.3, 0.5]}
)
orchestrator.neural_fusion.add_prediction(cnn_prediction)
logger.info("🔮 Added CNN prediction: BULLISH (0.6) with 80% confidence")
# Test 2: Add mock RL prediction
rl_prediction = ModelPrediction(
model_name="dqn_agent",
prediction_type="action",
value=0.4, # Moderate buy signal
confidence=0.7,
timestamp=datetime.now(),
metadata={'action_probs': [0.4, 0.2, 0.4]} # [BUY, SELL, HOLD]
)
orchestrator.neural_fusion.add_prediction(rl_prediction)
logger.info("🔮 Added RL prediction: MODERATE_BUY (0.4) with 70% confidence")
# Test 3: Add mock COB RL prediction
cob_prediction = ModelPrediction(
model_name="cob_rl",
prediction_type="direction",
value=0.3, # Slightly bullish
confidence=0.85,
timestamp=datetime.now(),
metadata={'cob_imbalance': 0.1, 'liquidity_depth': 150000}
)
orchestrator.neural_fusion.add_prediction(cob_prediction)
logger.info("🔮 Added COB RL prediction: SLIGHT_BULLISH (0.3) with 85% confidence")
# Test 4: Create market context
market_context = MarketContext(
symbol='ETH/USDT',
current_price=2441.50,
price_change_1m=0.002, # 0.2% up in 1m
price_change_5m=0.008, # 0.8% up in 5m
volume_ratio=1.2, # 20% above average volume
volatility=0.015, # 1.5% volatility
timestamp=datetime.now()
)
logger.info(f"📊 Market Context: ETH/USDT at ${market_context.current_price}")
logger.info(f" 📈 Price changes: 1m: {market_context.price_change_1m:.3f}, 5m: {market_context.price_change_5m:.3f}")
logger.info(f" 📊 Volume ratio: {market_context.volume_ratio:.2f}, Volatility: {market_context.volatility:.3f}")
# Test 5: Make NN decision
fusion_decision = orchestrator.neural_fusion.make_decision(
symbol='ETH/USDT',
market_context=market_context,
min_confidence=0.25
)
if fusion_decision:
logger.info("🧠 === NN DECISION RESULT ===")
logger.info(f" Action: {fusion_decision.action}")
logger.info(f" Confidence: {fusion_decision.confidence:.3f}")
logger.info(f" Expected Return: {fusion_decision.expected_return:.3f}")
logger.info(f" Risk Score: {fusion_decision.risk_score:.3f}")
logger.info(f" Position Size: {fusion_decision.position_size:.4f} ETH")
logger.info(f" Reasoning: {fusion_decision.reasoning}")
logger.info(" Model Contributions:")
for model, contribution in fusion_decision.model_contributions.items():
logger.info(f" - {model}: {contribution:.1%}")
else:
logger.warning("❌ No NN decision generated")
# Test 6: Test coordinated decisions
logger.info("\n🎯 Testing coordinated NN decisions...")
decisions = await orchestrator.make_coordinated_decisions()
if decisions:
logger.info(f"✅ Generated {len(decisions)} NN-driven trading decisions:")
for i, decision in enumerate(decisions):
logger.info(f" Decision {i+1}: {decision.symbol} {decision.action} "
f"({decision.confidence:.3f} confidence, "
f"{decision.quantity:.4f} size)")
if hasattr(decision, 'metadata') and decision.metadata:
if decision.metadata.get('nn_driven'):
logger.info(f" 🧠 NN-DRIVEN: {decision.metadata.get('reasoning', 'No reasoning')}")
else:
logger.info(" No trading decisions generated (insufficient confidence)")
# Test 7: Check NN system status
nn_status = orchestrator.neural_fusion.get_status()
logger.info("\n📊 NN System Status:")
logger.info(f" Device: {nn_status['device']}")
logger.info(f" Training Mode: {nn_status['training_mode']}")
logger.info(f" Registered Models: {nn_status['registered_models']}")
logger.info(f" Recent Predictions: {nn_status['recent_predictions']}")
logger.info(f" Model Parameters: {nn_status['model_parameters']:,}")
# Test 8: Demonstrate different confidence scenarios
logger.info("\n🔬 Testing different confidence scenarios...")
# Low confidence scenario
low_conf_prediction = ModelPrediction(
model_name="williams_cnn",
prediction_type="direction",
value=0.1, # Weak signal
confidence=0.2, # Low confidence
timestamp=datetime.now()
)
orchestrator.neural_fusion.add_prediction(low_conf_prediction)
low_conf_decision = orchestrator.neural_fusion.make_decision(
symbol='ETH/USDT',
market_context=market_context,
min_confidence=0.25
)
if low_conf_decision:
logger.info(f" Low confidence result: {low_conf_decision.action} (should be HOLD)")
else:
logger.info(" ✅ Low confidence correctly resulted in no decision")
# High confidence scenario
high_conf_prediction = ModelPrediction(
model_name="williams_cnn",
prediction_type="direction",
value=0.8, # Strong signal
confidence=0.95, # Very high confidence
timestamp=datetime.now()
)
orchestrator.neural_fusion.add_prediction(high_conf_prediction)
high_conf_decision = orchestrator.neural_fusion.make_decision(
symbol='ETH/USDT',
market_context=market_context,
min_confidence=0.25
)
if high_conf_decision:
logger.info(f" High confidence result: {high_conf_decision.action} "
f"(conf: {high_conf_decision.confidence:.3f}, "
f"size: {high_conf_decision.position_size:.4f})")
logger.info("\n✅ NN-DRIVEN TRADING SYSTEM TEST COMPLETE")
logger.info("🎯 Key Benefits Demonstrated:")
logger.info(" 1. Multiple NN models provide predictions")
logger.info(" 2. Central NN fusion makes final decisions")
logger.info(" 3. Market context influences decisions")
logger.info(" 4. Confidence thresholds prevent bad trades")
logger.info(" 5. Position sizing based on NN outputs")
logger.info(" 6. Clear reasoning for every decision")
logger.info(" 7. Model contribution tracking")
except Exception as e:
logger.error(f"Error in NN-driven system test: {e}")
import traceback
traceback.print_exc()
if __name__ == "__main__":
asyncio.run(test_nn_driven_system())

View File

@ -1,305 +0,0 @@
#!/usr/bin/env python3
"""
Test Pivot-Based Normalization System
This script tests the comprehensive pivot-based normalization system:
1. Monthly 1s data collection with pagination
2. Williams Market Structure pivot analysis
3. Pivot bounds extraction and caching
4. Pivot-based feature normalization
5. Integration with model training pipeline
"""
import sys
import os
import logging
from datetime import datetime, timedelta
# Add project root to path
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
from core.data_provider import DataProvider
from core.config import get_config
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
def test_pivot_normalization_system():
"""Test the complete pivot-based normalization system"""
print("="*80)
print("TESTING PIVOT-BASED NORMALIZATION SYSTEM")
print("="*80)
# Initialize data provider
symbols = ['ETH/USDT'] # Test with ETH only
timeframes = ['1s']
logger.info("Initializing DataProvider with pivot-based normalization...")
data_provider = DataProvider(symbols=symbols, timeframes=timeframes)
# Test 1: Monthly Data Collection
print("\n" + "="*60)
print("TEST 1: MONTHLY 1S DATA COLLECTION")
print("="*60)
symbol = 'ETH/USDT'
try:
# This will trigger monthly data collection and pivot analysis
logger.info(f"Testing monthly data collection for {symbol}...")
monthly_data = data_provider._collect_monthly_1m_data(symbol)
if monthly_data is not None:
print(f"✅ Monthly data collection SUCCESS")
print(f" 📊 Collected {len(monthly_data):,} 1m candles")
print(f" 📅 Period: {monthly_data['timestamp'].min()} to {monthly_data['timestamp'].max()}")
print(f" 💰 Price range: ${monthly_data['low'].min():.2f} - ${monthly_data['high'].max():.2f}")
print(f" 📈 Volume range: {monthly_data['volume'].min():.2f} - {monthly_data['volume'].max():.2f}")
else:
print("❌ Monthly data collection FAILED")
return False
except Exception as e:
print(f"❌ Monthly data collection ERROR: {e}")
return False
# Test 2: Pivot Bounds Extraction
print("\n" + "="*60)
print("TEST 2: PIVOT BOUNDS EXTRACTION")
print("="*60)
try:
logger.info("Testing pivot bounds extraction...")
bounds = data_provider._extract_pivot_bounds_from_monthly_data(symbol, monthly_data)
if bounds is not None:
print(f"✅ Pivot bounds extraction SUCCESS")
print(f" 💰 Price bounds: ${bounds.price_min:.2f} - ${bounds.price_max:.2f}")
print(f" 📊 Volume bounds: {bounds.volume_min:.2f} - {bounds.volume_max:.2f}")
print(f" 🔸 Support levels: {len(bounds.pivot_support_levels)}")
print(f" 🔹 Resistance levels: {len(bounds.pivot_resistance_levels)}")
print(f" 📈 Candles analyzed: {bounds.total_candles_analyzed:,}")
print(f" ⏰ Created: {bounds.created_timestamp}")
# Store bounds for next tests
data_provider.pivot_bounds[symbol] = bounds
else:
print("❌ Pivot bounds extraction FAILED")
return False
except Exception as e:
print(f"❌ Pivot bounds extraction ERROR: {e}")
return False
# Test 3: Pivot Context Features
print("\n" + "="*60)
print("TEST 3: PIVOT CONTEXT FEATURES")
print("="*60)
try:
logger.info("Testing pivot context features...")
# Get recent data for testing
recent_data = data_provider.get_historical_data(symbol, '1m', limit=100)
if recent_data is not None and not recent_data.empty:
# Add pivot context features
with_pivot_features = data_provider._add_pivot_context_features(recent_data, symbol)
# Check if pivot features were added
pivot_features = [col for col in with_pivot_features.columns if 'pivot' in col]
if pivot_features:
print(f"✅ Pivot context features SUCCESS")
print(f" 🎯 Added features: {pivot_features}")
# Show sample values
latest_row = with_pivot_features.iloc[-1]
print(f" 📊 Latest values:")
for feature in pivot_features:
print(f" {feature}: {latest_row[feature]:.4f}")
else:
print("❌ No pivot context features added")
return False
else:
print("❌ Could not get recent data for testing")
return False
except Exception as e:
print(f"❌ Pivot context features ERROR: {e}")
return False
# Test 4: Pivot-Based Normalization
print("\n" + "="*60)
print("TEST 4: PIVOT-BASED NORMALIZATION")
print("="*60)
try:
logger.info("Testing pivot-based normalization...")
# Get data with technical indicators
data_with_indicators = data_provider.get_historical_data(symbol, '1m', limit=50)
if data_with_indicators is not None and not data_with_indicators.empty:
# Test traditional vs pivot normalization
traditional_norm = data_provider._normalize_features(data_with_indicators.tail(10))
pivot_norm = data_provider._normalize_features(data_with_indicators.tail(10), symbol=symbol)
print(f"✅ Pivot-based normalization SUCCESS")
print(f" 📊 Traditional normalization shape: {traditional_norm.shape}")
print(f" 🎯 Pivot normalization shape: {pivot_norm.shape}")
# Compare price normalization
if 'close' in pivot_norm.columns:
trad_close_range = traditional_norm['close'].max() - traditional_norm['close'].min()
pivot_close_range = pivot_norm['close'].max() - pivot_norm['close'].min()
print(f" 💰 Traditional close range: {trad_close_range:.6f}")
print(f" 🎯 Pivot close range: {pivot_close_range:.6f}")
# Pivot normalization should be better bounded
if 0 <= pivot_norm['close'].min() and pivot_norm['close'].max() <= 1:
print(f" ✅ Pivot normalization properly bounded [0,1]")
else:
print(f" ⚠️ Pivot normalization outside [0,1] bounds")
else:
print("❌ Could not get data for normalization testing")
return False
except Exception as e:
print(f"❌ Pivot-based normalization ERROR: {e}")
return False
# Test 5: Feature Matrix with Pivot Normalization
print("\n" + "="*60)
print("TEST 5: FEATURE MATRIX WITH PIVOT NORMALIZATION")
print("="*60)
try:
logger.info("Testing feature matrix with pivot normalization...")
# Create feature matrix using pivot normalization
feature_matrix = data_provider.get_feature_matrix(symbol, timeframes=['1m'], window_size=20)
if feature_matrix is not None:
print(f"✅ Feature matrix with pivot normalization SUCCESS")
print(f" 📊 Matrix shape: {feature_matrix.shape}")
print(f" 🎯 Data range: [{feature_matrix.min():.4f}, {feature_matrix.max():.4f}]")
print(f" 📈 Mean: {feature_matrix.mean():.4f}")
print(f" 📊 Std: {feature_matrix.std():.4f}")
# Check for proper normalization
if feature_matrix.min() >= -5 and feature_matrix.max() <= 5: # Reasonable bounds
print(f" ✅ Feature matrix reasonably bounded")
else:
print(f" ⚠️ Feature matrix may have extreme values")
else:
print("❌ Feature matrix creation FAILED")
return False
except Exception as e:
print(f"❌ Feature matrix ERROR: {e}")
return False
# Test 6: Caching System
print("\n" + "="*60)
print("TEST 6: CACHING SYSTEM")
print("="*60)
try:
logger.info("Testing caching system...")
# Test pivot bounds caching
original_bounds = data_provider.pivot_bounds[symbol]
data_provider._save_pivot_bounds_to_cache(symbol, original_bounds)
# Clear from memory and reload
del data_provider.pivot_bounds[symbol]
loaded_bounds = data_provider._load_pivot_bounds_from_cache(symbol)
if loaded_bounds is not None:
print(f"✅ Pivot bounds caching SUCCESS")
print(f" 💾 Original price range: ${original_bounds.price_min:.2f} - ${original_bounds.price_max:.2f}")
print(f" 💾 Loaded price range: ${loaded_bounds.price_min:.2f} - ${loaded_bounds.price_max:.2f}")
# Restore bounds
data_provider.pivot_bounds[symbol] = loaded_bounds
else:
print("❌ Pivot bounds caching FAILED")
return False
except Exception as e:
print(f"❌ Caching system ERROR: {e}")
return False
# Test 7: Public API Methods
print("\n" + "="*60)
print("TEST 7: PUBLIC API METHODS")
print("="*60)
try:
logger.info("Testing public API methods...")
# Test get_pivot_bounds
api_bounds = data_provider.get_pivot_bounds(symbol)
if api_bounds is not None:
print(f"✅ get_pivot_bounds() SUCCESS")
print(f" 📊 Returned bounds for {api_bounds.symbol}")
# Test get_pivot_normalized_features
test_data = data_provider.get_historical_data(symbol, '1m', limit=10)
if test_data is not None:
normalized_data = data_provider.get_pivot_normalized_features(symbol, test_data)
if normalized_data is not None:
print(f"✅ get_pivot_normalized_features() SUCCESS")
print(f" 📊 Normalized data shape: {normalized_data.shape}")
else:
print("❌ get_pivot_normalized_features() FAILED")
return False
except Exception as e:
print(f"❌ Public API methods ERROR: {e}")
return False
# Final Summary
print("\n" + "="*80)
print("🎉 PIVOT-BASED NORMALIZATION SYSTEM TEST COMPLETE")
print("="*80)
print("✅ All tests PASSED successfully!")
print("\n📋 System Features Verified:")
print(" ✅ Monthly 1s data collection with pagination")
print(" ✅ Williams Market Structure pivot analysis")
print(" ✅ Pivot bounds extraction and validation")
print(" ✅ Pivot context features generation")
print(" ✅ Pivot-based feature normalization")
print(" ✅ Feature matrix creation with pivot bounds")
print(" ✅ Comprehensive caching system")
print(" ✅ Public API methods")
print(f"\n🎯 Ready for model training with pivot-normalized features!")
return True
if __name__ == "__main__":
try:
success = test_pivot_normalization_system()
if success:
print("\n🚀 Pivot-based normalization system ready for production!")
sys.exit(0)
else:
print("\n❌ Pivot-based normalization system has issues!")
sys.exit(1)
except KeyboardInterrupt:
print("\n⏹️ Test interrupted by user")
sys.exit(1)
except Exception as e:
print(f"\n💥 Unexpected error: {e}")
import traceback
traceback.print_exc()
sys.exit(1)

View File

@ -1,80 +0,0 @@
#!/usr/bin/env python3
"""
Test PnL Tracking System
This script demonstrates the ultra-fast scalping PnL tracking system
"""
import time
import logging
from run_scalping_dashboard import UltraFastScalpingRunner
# Setup logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
def test_pnl_tracking():
"""Test the PnL tracking system"""
print("🔥 TESTING ULTRA-FAST SCALPING PnL TRACKING 🔥")
print("="*60)
# Create runner
runner = UltraFastScalpingRunner()
print(f"💰 Starting Balance: ${runner.balance:.2f}")
print(f"📊 Leverage: {runner.leverage}x")
print(f"💳 Trading Fee: {runner.trading_fee*100:.3f}% per trade")
print("⚡ Starting simulation for 30 seconds...")
print("="*60)
# Start simulation
runner.start_ultra_fast_simulation()
try:
# Run for 30 seconds
time.sleep(30)
except KeyboardInterrupt:
print("\n🛑 Stopping simulation...")
# Stop simulation
runner.running = False
# Wait for threads to finish
if runner.simulation_thread:
runner.simulation_thread.join(timeout=2)
if runner.exit_monitor_thread:
runner.exit_monitor_thread.join(timeout=2)
# Print final results
print("\n" + "="*60)
print("💼 FINAL PnL TRACKING RESULTS:")
print("="*60)
print(f"📊 Total Trades: {len(runner.closed_trades)}")
print(f"🎯 Total PnL: ${runner.total_pnl:+.2f}")
print(f"💳 Total Fees: ${runner.total_fees:.2f}")
print(f"🟢 Wins: {runner.win_count} | 🔴 Losses: {runner.loss_count}")
if runner.win_count + runner.loss_count > 0:
win_rate = runner.win_count / (runner.win_count + runner.loss_count)
print(f"📈 Win Rate: {win_rate*100:.1f}%")
print(f"💰 Starting Balance: ${runner.balance:.2f}")
print(f"💰 Final Balance: ${runner.balance + runner.total_pnl:.2f}")
if runner.balance > 0:
return_pct = ((runner.balance + runner.total_pnl) / runner.balance - 1) * 100
print(f"📊 Return: {return_pct:+.2f}%")
print(f"📋 Open Positions: {len(runner.open_positions)}")
print("="*60)
# Show sample of closed trades
if runner.closed_trades:
print("\n📈 SAMPLE CLOSED TRADES:")
print("-" * 40)
for i, trade in enumerate(runner.closed_trades[-5:]): # Last 5 trades
duration = (trade.exit_time - trade.entry_time).total_seconds()
pnl_color = "🟢" if trade.pnl > 0 else "🔴"
print(f"{pnl_color} Trade #{trade.trade_id}: {trade.action} {trade.symbol}")
print(f" Entry: ${trade.entry_price:.2f} → Exit: ${trade.exit_price:.2f}")
print(f" Duration: {duration:.1f}s | PnL: ${trade.pnl:+.2f}")
print("\n✅ PnL Tracking Test Complete!")
if __name__ == "__main__":
test_pnl_tracking()

View File

@ -1,134 +0,0 @@
#!/usr/bin/env python3
"""
Test script for enhanced PnL tracking with position flipping and color coding
"""
import sys
import logging
from datetime import datetime, timezone
# Setup logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
def test_enhanced_pnl_tracking():
"""Test the enhanced PnL tracking with position flipping"""
try:
print("="*60)
print("TESTING ENHANCED PnL TRACKING & POSITION COLOR CODING")
print("="*60)
# Import dashboard
from web.clean_dashboard import CleanTradingDashboard as TradingDashboard
# Create dashboard instance
dashboard = TradingDashboard()
print(f"✓ Dashboard created")
print(f"✓ Initial position: {dashboard.current_position}")
print(f"✓ Initial realized PnL: ${dashboard.total_realized_pnl:.2f}")
print(f"✓ Initial session trades: {len(dashboard.session_trades)}")
# Test sequence of trades with position flipping
test_trades = [
{'action': 'BUY', 'price': 3000.0, 'size': 0.1, 'confidence': 0.75}, # Open LONG
{'action': 'SELL', 'price': 3050.0, 'size': 0.1, 'confidence': 0.80}, # Close LONG (+$5 profit)
{'action': 'SELL', 'price': 3040.0, 'size': 0.1, 'confidence': 0.70}, # Open SHORT
{'action': 'BUY', 'price': 3020.0, 'size': 0.1, 'confidence': 0.85}, # Close SHORT (+$2 profit) & flip to LONG
{'action': 'SELL', 'price': 3010.0, 'size': 0.1, 'confidence': 0.65}, # Close LONG (-$1 loss)
]
print("\n" + "="*60)
print("EXECUTING TEST TRADE SEQUENCE:")
print("="*60)
for i, trade in enumerate(test_trades, 1):
print(f"\n--- Trade {i}: {trade['action']} @ ${trade['price']:.2f} ---")
# Add required fields
trade['symbol'] = 'ETH/USDT'
trade['timestamp'] = datetime.now(timezone.utc)
trade['reason'] = f'Test trade {i}'
# Process the trade
dashboard._process_trading_decision(trade)
# Show results
print(f"Current position: {dashboard.current_position}")
print(f"Realized PnL: ${dashboard.total_realized_pnl:.2f}")
print(f"Total trades: {len(dashboard.session_trades)}")
print(f"Recent decisions: {len(dashboard.recent_decisions)}")
# Test unrealized PnL calculation
if dashboard.current_position:
current_price = trade['price'] + 5.0 # Simulate price movement
unrealized_pnl = dashboard._calculate_unrealized_pnl(current_price)
print(f"Unrealized PnL @ ${current_price:.2f}: ${unrealized_pnl:.2f}")
print("\n" + "="*60)
print("FINAL RESULTS:")
print("="*60)
print(f"✓ Total realized PnL: ${dashboard.total_realized_pnl:.2f}")
print(f"✓ Total fees paid: ${dashboard.total_fees:.2f}")
print(f"✓ Total trades executed: {len(dashboard.session_trades)}")
print(f"✓ Final position: {dashboard.current_position}")
# Test session performance calculation
print("\n" + "="*60)
print("SESSION PERFORMANCE TEST:")
print("="*60)
try:
session_perf = dashboard._create_session_performance()
print(f"✓ Session performance component created successfully")
print(f"✓ Performance items count: {len(session_perf)}")
except Exception as e:
print(f"❌ Session performance error: {e}")
# Test decisions list with PnL info
print("\n" + "="*60)
print("DECISIONS LIST WITH PnL TEST:")
print("="*60)
try:
decisions_list = dashboard._create_decisions_list()
print(f"✓ Decisions list created successfully")
print(f"✓ Decisions items count: {len(decisions_list)}")
# Check for PnL information in closed trades
closed_trades = [t for t in dashboard.session_trades if 'pnl' in t]
print(f"✓ Closed trades with PnL: {len(closed_trades)}")
for trade in closed_trades:
action = trade.get('position_action', 'UNKNOWN')
pnl = trade.get('pnl', 0)
entry_price = trade.get('entry_price', 0)
exit_price = trade.get('price', 0)
print(f" - {action}: Entry ${entry_price:.2f} -> Exit ${exit_price:.2f} = PnL ${pnl:.2f}")
except Exception as e:
print(f"❌ Decisions list error: {e}")
print("\n" + "="*60)
print("ENHANCED FEATURES VERIFIED:")
print("="*60)
print("✓ Position flipping (LONG -> SHORT -> LONG)")
print("✓ PnL calculation for closed trades")
print("✓ Color coding for positions based on side and P&L")
print("✓ Entry/exit price tracking")
print("✓ Real-time unrealized PnL calculation")
print("✓ ASCII indicators (no Unicode for Windows compatibility)")
print("✓ Enhanced trade logging with PnL information")
print("✓ Session performance metrics with PnL breakdown")
return True
except Exception as e:
print(f"❌ Error testing enhanced PnL tracking: {e}")
import traceback
traceback.print_exc()
return False
if __name__ == "__main__":
success = test_enhanced_pnl_tracking()
sys.exit(0 if success else 1)

View File

@ -1,92 +0,0 @@
#!/usr/bin/env python3
"""
Test script for real-time COB functionality
"""
import asyncio
import aiohttp
import json
import time
from datetime import datetime
async def test_realtime_cob():
"""Test real-time COB data streaming"""
# Test API endpoints
base_url = "http://localhost:8053"
async with aiohttp.ClientSession() as session:
print("Testing COB Dashboard API endpoints...")
# Test symbols endpoint
try:
async with session.get(f"{base_url}/api/symbols") as response:
if response.status == 200:
data = await response.json()
print(f"✓ Symbols: {data}")
else:
print(f"✗ Symbols endpoint failed: {response.status}")
except Exception as e:
print(f"✗ Error testing symbols endpoint: {e}")
# Test real-time stats for BTC/USDT
try:
async with session.get(f"{base_url}/api/realtime/BTC/USDT") as response:
if response.status == 200:
data = await response.json()
print(f"✓ Real-time stats for BTC/USDT:")
print(f" Current mid price: {data.get('current', {}).get('mid_price', 'N/A')}")
print(f" 1s window updates: {data.get('1s_window', {}).get('update_count', 'N/A')}")
print(f" 5s window updates: {data.get('5s_window', {}).get('update_count', 'N/A')}")
else:
print(f"✗ Real-time stats endpoint failed: {response.status}")
error_data = await response.text()
print(f" Error: {error_data}")
except Exception as e:
print(f"✗ Error testing real-time stats endpoint: {e}")
# Test WebSocket connection
print("\nTesting WebSocket connection...")
try:
async with session.ws_connect(f"{base_url.replace('http', 'ws')}/ws") as ws:
print("✓ WebSocket connected")
# Wait for some data
message_count = 0
start_time = time.time()
async for msg in ws:
if msg.type == aiohttp.WSMsgType.TEXT:
data = json.loads(msg.data)
message_count += 1
if data.get('type') == 'cob_update':
symbol = data.get('data', {}).get('stats', {}).get('symbol', 'Unknown')
mid_price = data.get('data', {}).get('stats', {}).get('mid_price', 0)
print(f"✓ Received COB update for {symbol}: ${mid_price:.2f}")
# Check for real-time stats
if 'realtime_1s' in data.get('data', {}).get('stats', {}):
print(f" ✓ Real-time 1s stats available")
if 'realtime_5s' in data.get('data', {}).get('stats', {}):
print(f" ✓ Real-time 5s stats available")
# Stop after 5 messages or 10 seconds
if message_count >= 5 or (time.time() - start_time) > 10:
break
elif msg.type == aiohttp.WSMsgType.ERROR:
print(f"✗ WebSocket error: {ws.exception()}")
break
print(f"✓ Received {message_count} WebSocket messages")
except Exception as e:
print(f"✗ WebSocket connection failed: {e}")
if __name__ == "__main__":
print("Testing Real-time COB Dashboard")
print("=" * 40)
asyncio.run(test_realtime_cob())
print("\nTest completed!")

View File

@ -1,555 +0,0 @@
#!/usr/bin/env python3
"""
Test Script for Real-time RL COB Trader
This script tests the real-time reinforcement learning system to ensure:
1. Proper model initialization and parameter count (~1B parameters)
2. COB data integration and feature extraction
3. Real-time inference pipeline
4. Signal accumulation and consensus
5. Training loop functionality
6. Trade execution integration
Run this before deploying the live system.
"""
import asyncio
import logging
import numpy as np
import torch
import time
import json
from datetime import datetime
from typing import Dict, Any
# Local imports
from core.realtime_rl_cob_trader import RealtimeRLCOBTrader, MassiveRLNetwork, PredictionResult
from core.trading_executor import TradingExecutor
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
class RealtimeRLTester:
"""
Comprehensive tester for Real-time RL COB Trader
"""
def __init__(self):
self.test_results = {}
self.trader = None
self.trading_executor = None
async def run_all_tests(self):
"""Run all tests and generate report"""
logger.info("=" * 60)
logger.info("REAL-TIME RL COB TRADER TESTING SUITE")
logger.info("=" * 60)
tests = [
self.test_model_initialization,
self.test_model_parameter_count,
self.test_feature_extraction,
self.test_inference_performance,
self.test_signal_accumulation,
self.test_training_pipeline,
self.test_trading_integration,
self.test_performance_monitoring
]
for test in tests:
try:
await test()
except Exception as e:
logger.error(f"Test {test.__name__} failed: {e}")
self.test_results[test.__name__] = {'status': 'FAILED', 'error': str(e)}
await self.generate_test_report()
async def test_model_initialization(self):
"""Test model initialization and architecture"""
logger.info("🧠 Testing Model Initialization...")
try:
# Test model creation
model = MassiveRLNetwork(input_size=2000, hidden_size=4096, num_layers=12)
# Check if CUDA is available
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = model.to(device)
# Test forward pass
batch_size = 4
test_input = torch.randn(batch_size, 2000).to(device)
with torch.no_grad():
outputs = model(test_input)
# Verify outputs
assert 'price_logits' in outputs
assert 'value' in outputs
assert 'confidence' in outputs
assert 'features' in outputs
assert outputs['price_logits'].shape == (batch_size, 3) # DOWN, SIDEWAYS, UP
assert outputs['value'].shape == (batch_size, 1)
assert outputs['confidence'].shape == (batch_size, 1)
self.test_results['test_model_initialization'] = {
'status': 'PASSED',
'device': str(device),
'output_shapes': {k: list(v.shape) for k, v in outputs.items()}
}
logger.info("✅ Model initialization test PASSED")
except Exception as e:
self.test_results['test_model_initialization'] = {'status': 'FAILED', 'error': str(e)}
raise
async def test_model_parameter_count(self):
"""Test that model has approximately 400M parameters"""
logger.info("🔢 Testing Model Parameter Count...")
try:
model = MassiveRLNetwork(input_size=2000, hidden_size=2048, num_layers=8)
total_params = sum(p.numel() for p in model.parameters())
trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
logger.info(f"Total parameters: {total_params:,}")
logger.info(f"Trainable parameters: {trainable_params:,}")
# Check if parameters are approximately 400M (350M - 450M range)
target_400m = total_params >= 350_000_000 and total_params <= 450_000_000
self.test_results['test_model_parameter_count'] = {
'status': 'PASSED' if target_400m else 'WARNING',
'total_parameters': total_params,
'trainable_parameters': trainable_params,
'parameter_size_gb': (total_params * 4) / (1024**3), # 4 bytes per float32
'is_optimized': target_400m, # Around 400M parameters for faster startup
'target_range': '350M - 450M parameters'
}
logger.info(f"✅ Model has {total_params:,} parameters ({total_params/1e6:.0f}M)")
if target_400m:
logger.info("✅ Parameter count within 400M target range for fast startup")
else:
logger.warning(f"⚠️ Parameter count outside 400M target range: {total_params/1e6:.0f}M")
except Exception as e:
self.test_results['test_model_parameter_count'] = {'status': 'FAILED', 'error': str(e)}
raise
async def test_feature_extraction(self):
"""Test feature extraction from COB data"""
logger.info("🔍 Testing Feature Extraction...")
try:
# Initialize trader
self.trading_executor = TradingExecutor(simulation_mode=True)
self.trader = RealtimeRLCOBTrader(
symbols=['BTC/USDT'],
trading_executor=self.trading_executor,
inference_interval_ms=1000 # Slower for testing
)
# Create mock COB data
mock_cob_data = {
'state': np.random.randn(1500), # Mock state features
'timestamp': datetime.now(),
'type': 'cob_state'
}
# Test feature extraction
features = self.trader._extract_features('BTC/USDT', mock_cob_data)
assert features is not None
assert len(features) == 2000 # Target feature size
assert features.dtype == np.float32
assert not np.any(np.isnan(features))
assert not np.any(np.isinf(features))
# Test normalization
assert np.abs(np.mean(features)) < 1.0 # Roughly normalized
assert np.std(features) < 10.0 # Not too spread out
self.test_results['test_feature_extraction'] = {
'status': 'PASSED',
'feature_size': len(features),
'feature_range': [float(np.min(features)), float(np.max(features))],
'feature_stats': {
'mean': float(np.mean(features)),
'std': float(np.std(features)),
'median': float(np.median(features))
}
}
logger.info("✅ Feature extraction test PASSED")
except Exception as e:
self.test_results['test_feature_extraction'] = {'status': 'FAILED', 'error': str(e)}
raise
async def test_inference_performance(self):
"""Test inference speed and quality"""
logger.info("⚡ Testing Inference Performance...")
try:
if not self.trader:
self.trading_executor = TradingExecutor(simulation_mode=True)
self.trader = RealtimeRLCOBTrader(
symbols=['BTC/USDT'],
trading_executor=self.trading_executor
)
# Test multiple inferences
num_tests = 10
inference_times = []
for i in range(num_tests):
# Create test features
test_features = np.random.randn(2000).astype(np.float32)
test_features = self.trader._normalize_features(test_features)
# Time inference
start_time = time.time()
prediction = self.trader._predict('BTC/USDT', test_features)
inference_time = (time.time() - start_time) * 1000
inference_times.append(inference_time)
# Verify prediction structure
assert 'direction' in prediction
assert 'confidence' in prediction
assert 'change' in prediction
assert 'value' in prediction
assert 0 <= prediction['direction'] <= 2
assert 0.0 <= prediction['confidence'] <= 1.0
assert isinstance(prediction['change'], float)
assert isinstance(prediction['value'], float)
avg_inference_time = np.mean(inference_times)
max_inference_time = np.max(inference_times)
# Check if inference is fast enough (target: <50ms per inference)
inference_target_ms = 50.0
self.test_results['test_inference_performance'] = {
'status': 'PASSED' if avg_inference_time < inference_target_ms else 'WARNING',
'average_inference_time_ms': float(avg_inference_time),
'max_inference_time_ms': float(max_inference_time),
'target_time_ms': inference_target_ms,
'meets_target': avg_inference_time < inference_target_ms,
'inferences_per_second': 1000.0 / avg_inference_time
}
logger.info(f"✅ Average inference time: {avg_inference_time:.2f}ms")
logger.info(f"✅ Max inference time: {max_inference_time:.2f}ms")
logger.info(f"✅ Inferences per second: {1000.0/avg_inference_time:.1f}")
except Exception as e:
self.test_results['test_inference_performance'] = {'status': 'FAILED', 'error': str(e)}
raise
async def test_signal_accumulation(self):
"""Test signal accumulation and consensus logic"""
logger.info("🎯 Testing Signal Accumulation...")
try:
if not self.trader:
self.trading_executor = TradingExecutor(simulation_mode=True)
self.trader = RealtimeRLCOBTrader(
symbols=['BTC/USDT'],
trading_executor=self.trading_executor,
required_confident_predictions=3
)
symbol = 'BTC/USDT'
accumulator = self.trader.signal_accumulators[symbol]
# Test adding signals
test_predictions = []
for i in range(5):
prediction = PredictionResult(
timestamp=datetime.now(),
symbol=symbol,
predicted_direction=2, # UP
confidence=0.8,
predicted_change=0.001,
features=np.random.randn(2000).astype(np.float32)
)
test_predictions.append(prediction)
self.trader._add_signal(symbol, prediction)
# Check accumulator state
assert len(accumulator.signals) == 5
assert accumulator.confidence_sum == 5 * 0.8
assert accumulator.total_predictions == 5
# Test consensus logic (simulate processing)
recent_signals = list(accumulator.signals)[-3:]
directions = [signal.predicted_direction for signal in recent_signals]
# All should be direction 2 (UP)
direction_counts = {0: 0, 1: 0, 2: 0}
for direction in directions:
direction_counts[direction] += 1
dominant_direction = max(direction_counts, key=direction_counts.get)
consensus_count = direction_counts[dominant_direction]
assert dominant_direction == 2
assert consensus_count == 3
self.test_results['test_signal_accumulation'] = {
'status': 'PASSED',
'signals_added': len(accumulator.signals),
'confidence_sum': accumulator.confidence_sum,
'consensus_direction': dominant_direction,
'consensus_count': consensus_count
}
logger.info("✅ Signal accumulation test PASSED")
except Exception as e:
self.test_results['test_signal_accumulation'] = {'status': 'FAILED', 'error': str(e)}
raise
async def test_training_pipeline(self):
"""Test training pipeline functionality"""
logger.info("🧠 Testing Training Pipeline...")
try:
if not self.trader:
self.trading_executor = TradingExecutor(simulation_mode=True)
self.trader = RealtimeRLCOBTrader(
symbols=['BTC/USDT'],
trading_executor=self.trading_executor
)
symbol = 'BTC/USDT'
# Create mock training data
test_predictions = []
for i in range(10):
prediction = PredictionResult(
timestamp=datetime.now(),
symbol=symbol,
predicted_direction=np.random.randint(0, 3),
confidence=np.random.uniform(0.5, 1.0),
predicted_change=np.random.uniform(-0.001, 0.001),
features=np.random.randn(2000).astype(np.float32),
actual_direction=np.random.randint(0, 3),
actual_change=np.random.uniform(-0.001, 0.001),
reward=np.random.uniform(-1.0, 1.0)
)
test_predictions.append(prediction)
# Test training batch
loss = await self.trader._train_batch(symbol, test_predictions)
assert isinstance(loss, float)
assert not np.isnan(loss)
assert not np.isinf(loss)
assert loss >= 0.0 # Loss should be non-negative
self.test_results['test_training_pipeline'] = {
'status': 'PASSED',
'training_loss': float(loss),
'batch_size': len(test_predictions),
'training_successful': True
}
logger.info(f"✅ Training pipeline test PASSED (loss: {loss:.6f})")
except Exception as e:
self.test_results['test_training_pipeline'] = {'status': 'FAILED', 'error': str(e)}
raise
async def test_trading_integration(self):
"""Test integration with trading executor"""
logger.info("💰 Testing Trading Integration...")
try:
# Initialize with simulation mode
trading_executor = TradingExecutor(simulation_mode=True)
# Test signal execution
success = trading_executor.execute_signal(
symbol='BTC/USDT',
action='BUY',
confidence=0.8,
current_price=50000.0
)
# In simulation mode, this should always succeed
assert success == True
# Check positions
positions = trading_executor.get_positions()
assert 'BTC/USDT' in positions
# Test sell signal
success = trading_executor.execute_signal(
symbol='BTC/USDT',
action='SELL',
confidence=0.8,
current_price=50100.0
)
assert success == True
# Check trade history
trade_history = trading_executor.get_trade_history()
assert len(trade_history) > 0
last_trade = trade_history[-1]
assert last_trade.symbol == 'BTC/USDT'
assert last_trade.pnl != 0 # Should have some P&L
self.test_results['test_trading_integration'] = {
'status': 'PASSED',
'simulation_mode': True,
'trades_executed': len(trade_history),
'last_trade_pnl': float(last_trade.pnl)
}
logger.info("✅ Trading integration test PASSED")
except Exception as e:
self.test_results['test_trading_integration'] = {'status': 'FAILED', 'error': str(e)}
raise
async def test_performance_monitoring(self):
"""Test performance monitoring and statistics"""
logger.info("📊 Testing Performance Monitoring...")
try:
if not self.trader:
self.trading_executor = TradingExecutor(simulation_mode=True)
self.trader = RealtimeRLCOBTrader(
symbols=['BTC/USDT', 'ETH/USDT'],
trading_executor=self.trading_executor
)
# Get performance stats
stats = self.trader.get_performance_stats()
# Verify structure
assert 'symbols' in stats
assert 'training_stats' in stats
assert 'inference_stats' in stats
assert 'signal_stats' in stats
assert 'model_info' in stats
# Check symbols
assert 'BTC/USDT' in stats['symbols']
assert 'ETH/USDT' in stats['symbols']
# Check model info
for symbol in stats['symbols']:
assert symbol in stats['model_info']
model_info = stats['model_info'][symbol]
assert 'total_parameters' in model_info
assert 'trainable_parameters' in model_info
assert model_info['total_parameters'] > 0
self.test_results['test_performance_monitoring'] = {
'status': 'PASSED',
'stats_structure_valid': True,
'symbols_tracked': len(stats['symbols']),
'model_info_available': len(stats['model_info'])
}
logger.info("✅ Performance monitoring test PASSED")
except Exception as e:
self.test_results['test_performance_monitoring'] = {'status': 'FAILED', 'error': str(e)}
raise
async def generate_test_report(self):
"""Generate comprehensive test report"""
logger.info("=" * 60)
logger.info("REAL-TIME RL COB TRADER TEST REPORT")
logger.info("=" * 60)
total_tests = len(self.test_results)
passed_tests = sum(1 for result in self.test_results.values() if result['status'] == 'PASSED')
failed_tests = sum(1 for result in self.test_results.values() if result['status'] == 'FAILED')
warning_tests = sum(1 for result in self.test_results.values() if result['status'] == 'WARNING')
logger.info(f"📊 Test Summary:")
logger.info(f" Total Tests: {total_tests}")
logger.info(f" ✅ Passed: {passed_tests}")
logger.info(f" ⚠️ Warnings: {warning_tests}")
logger.info(f" ❌ Failed: {failed_tests}")
success_rate = (passed_tests / total_tests) * 100 if total_tests > 0 else 0
logger.info(f" Success Rate: {success_rate:.1f}%")
logger.info("\n📋 Detailed Results:")
for test_name, result in self.test_results.items():
status_icon = "" if result['status'] == 'PASSED' else "⚠️" if result['status'] == 'WARNING' else ""
logger.info(f" {status_icon} {test_name}: {result['status']}")
if result['status'] == 'FAILED':
logger.error(f" Error: {result.get('error', 'Unknown error')}")
# System readiness assessment
logger.info("\n🎯 System Readiness Assessment:")
if failed_tests == 0:
if warning_tests == 0:
logger.info(" 🟢 SYSTEM READY FOR DEPLOYMENT")
logger.info(" All tests passed. The real-time RL COB trader is ready for live operation.")
else:
logger.info(" 🟡 SYSTEM READY WITH WARNINGS")
logger.info(" System is functional but some performance warnings exist.")
else:
logger.info(" 🔴 SYSTEM NOT READY")
logger.info(" Critical issues found. Fix errors before deployment.")
# Save detailed report
report_data = {
'timestamp': datetime.now().isoformat(),
'test_summary': {
'total_tests': total_tests,
'passed_tests': passed_tests,
'warning_tests': warning_tests,
'failed_tests': failed_tests,
'success_rate': success_rate
},
'test_results': self.test_results,
'system_readiness': 'READY' if failed_tests == 0 else 'NOT_READY'
}
report_file = f"test_reports/realtime_rl_test_report_{datetime.now().strftime('%Y%m%d_%H%M%S')}.json"
import os
os.makedirs('test_reports', exist_ok=True)
with open(report_file, 'w') as f:
json.dump(report_data, f, indent=2, default=str)
logger.info(f"\n📄 Detailed report saved to: {report_file}")
logger.info("=" * 60)
async def main():
"""Main test entry point"""
logger.info("Starting Real-time RL COB Trader Test Suite...")
tester = RealtimeRLTester()
await tester.run_all_tests()
if __name__ == "__main__":
# Set event loop policy for Windows compatibility
if hasattr(asyncio, 'WindowsProactorEventLoopPolicy'):
asyncio.set_event_loop_policy(asyncio.WindowsProactorEventLoopPolicy())
asyncio.run(main())

View File

@ -1,279 +0,0 @@
#!/usr/bin/env python3
"""
Test Real-Time Tick Processor
This script tests the Neural Network Real-Time Tick Processing Module
to ensure it properly processes tick data with volume information and
feeds processed features to models in real-time.
"""
import asyncio
import logging
import sys
import time
from pathlib import Path
# Add project root to path
project_root = Path(__file__).parent
sys.path.insert(0, str(project_root))
from core.realtime_tick_processor import RealTimeTickProcessor, ProcessedTickFeatures, create_realtime_tick_processor
from core.enhanced_orchestrator import EnhancedTradingOrchestrator
from core.data_provider import DataProvider
from core.config import get_config
# Setup logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
async def test_realtime_tick_processor():
"""Test the real-time tick processor functionality"""
logger.info("="*80)
logger.info("🧪 TESTING REAL-TIME TICK PROCESSOR")
logger.info("="*80)
try:
# Test 1: Create tick processor
logger.info("\n📊 TEST 1: Creating Real-Time Tick Processor")
logger.info("-" * 40)
symbols = ['ETH/USDT', 'BTC/USDT']
tick_processor = create_realtime_tick_processor(symbols)
logger.info("✅ Tick processor created successfully")
logger.info(f" Symbols: {tick_processor.symbols}")
logger.info(f" Device: {tick_processor.device}")
logger.info(f" Buffer size: {tick_processor.tick_buffer_size}")
# Test 2: Feature subscriber
logger.info("\n📡 TEST 2: Feature Subscriber Integration")
logger.info("-" * 40)
received_features = []
def test_callback(symbol: str, features: ProcessedTickFeatures):
"""Test callback to receive processed features"""
received_features.append((symbol, features))
logger.info(f"Received features for {symbol}: confidence={features.confidence:.3f}")
logger.info(f" Neural features shape: {features.neural_features.shape}")
logger.info(f" Volume features shape: {features.volume_features.shape}")
logger.info(f" Price features shape: {features.price_features.shape}")
logger.info(f" Microstructure features shape: {features.microstructure_features.shape}")
tick_processor.add_feature_subscriber(test_callback)
logger.info("✅ Feature subscriber added")
# Test 3: Start processing (short duration)
logger.info("\n🚀 TEST 3: Start Real-Time Processing")
logger.info("-" * 40)
logger.info("Starting tick processing for 30 seconds...")
await tick_processor.start_processing()
# Let it run for 30 seconds to collect some data
start_time = time.time()
while time.time() - start_time < 30:
await asyncio.sleep(1)
# Check stats every 5 seconds
if int(time.time() - start_time) % 5 == 0:
stats = tick_processor.get_processing_stats()
logger.info(f"Processing stats: {stats.get('tick_counts', {})}")
if stats.get('processing_performance'):
perf = stats['processing_performance']
logger.info(f"Performance: avg={perf['avg_time_ms']:.2f}ms, "
f"min={perf['min_time_ms']:.2f}ms, max={perf['max_time_ms']:.2f}ms")
logger.info("✅ Real-time processing test completed")
# Test 4: Check received features
logger.info("\n📈 TEST 4: Analyze Received Features")
logger.info("-" * 40)
if received_features:
logger.info(f"✅ Received {len(received_features)} feature sets")
# Analyze feature quality
high_confidence_count = sum(1 for _, features in received_features if features.confidence > 0.7)
avg_confidence = sum(features.confidence for _, features in received_features) / len(received_features)
logger.info(f" Average confidence: {avg_confidence:.3f}")
logger.info(f" High confidence features (>0.7): {high_confidence_count}")
# Show latest features
if received_features:
symbol, latest_features = received_features[-1]
logger.info(f" Latest features for {symbol}:")
logger.info(f" Timestamp: {latest_features.timestamp}")
logger.info(f" Confidence: {latest_features.confidence:.3f}")
logger.info(f" Neural features sample: {latest_features.neural_features[:5]}")
logger.info(f" Volume features sample: {latest_features.volume_features[:3]}")
else:
logger.warning("⚠️ No features received - this may be normal if markets are closed")
# Test 5: Integration with orchestrator
logger.info("\n🎯 TEST 5: Integration with Enhanced Orchestrator")
logger.info("-" * 40)
try:
config = get_config()
data_provider = DataProvider(config)
orchestrator = EnhancedTradingOrchestrator(data_provider)
# Check if tick processor is integrated
if hasattr(orchestrator, 'tick_processor'):
logger.info("✅ Tick processor integrated with orchestrator")
logger.info(f" Orchestrator symbols: {orchestrator.symbols}")
logger.info(f" Tick processor symbols: {orchestrator.tick_processor.symbols}")
# Test real-time processing start
await orchestrator.start_realtime_processing()
logger.info("✅ Orchestrator real-time processing started")
# Brief test
await asyncio.sleep(5)
# Get stats
tick_stats = orchestrator.get_realtime_tick_stats()
logger.info(f" Orchestrator tick stats: {tick_stats}")
await orchestrator.stop_realtime_processing()
logger.info("✅ Orchestrator real-time processing stopped")
else:
logger.error("❌ Tick processor not found in orchestrator")
except Exception as e:
logger.error(f"❌ Orchestrator integration test failed: {e}")
# Test 6: Stop processing
logger.info("\n🛑 TEST 6: Stop Processing")
logger.info("-" * 40)
await tick_processor.stop_processing()
logger.info("✅ Tick processing stopped")
# Final stats
final_stats = tick_processor.get_processing_stats()
logger.info(f"Final stats: {final_stats}")
# Test 7: Neural Network Features
logger.info("\n🧠 TEST 7: Neural Network Feature Quality")
logger.info("-" * 40)
if received_features:
# Analyze neural network output quality
neural_feature_sizes = [len(features.neural_features) for _, features in received_features]
confidence_scores = [features.confidence for _, features in received_features]
logger.info(f" Neural feature dimensions: {set(neural_feature_sizes)}")
logger.info(f" Confidence range: {min(confidence_scores):.3f} - {max(confidence_scores):.3f}")
logger.info(f" Average confidence: {sum(confidence_scores)/len(confidence_scores):.3f}")
# Check for feature consistency
if len(set(neural_feature_sizes)) == 1:
logger.info("✅ Neural features have consistent dimensions")
else:
logger.warning("⚠️ Neural feature dimensions are inconsistent")
# Summary
logger.info("\n" + "="*80)
logger.info("🎉 REAL-TIME TICK PROCESSOR TEST SUMMARY")
logger.info("="*80)
logger.info("✅ All core tests PASSED!")
logger.info("")
logger.info("📋 VERIFIED FUNCTIONALITY:")
logger.info(" ✓ Real-time tick data ingestion")
logger.info(" ✓ Neural network feature extraction")
logger.info(" ✓ Volume and microstructure analysis")
logger.info(" ✓ Ultra-low latency processing")
logger.info(" ✓ Feature subscriber system")
logger.info(" ✓ Integration with orchestrator")
logger.info(" ✓ Performance monitoring")
logger.info("")
logger.info("🎯 NEURAL DPS ALTERNATIVE ACTIVE:")
logger.info(" • Real-time tick processing ✓")
logger.info(" • Volume-weighted analysis ✓")
logger.info(" • Neural feature extraction ✓")
logger.info(" • Sub-millisecond latency ✓")
logger.info(" • Model integration ready ✓")
logger.info("")
logger.info("🚀 Your real-time tick processor is working as a Neural DPS alternative!")
logger.info("="*80)
return True
except Exception as e:
logger.error(f"❌ Real-time tick processor test failed: {e}")
import traceback
logger.error(traceback.format_exc())
return False
async def test_dqn_integration():
"""Test DQN integration with real-time tick features"""
logger.info("\n🤖 TESTING DQN INTEGRATION WITH TICK FEATURES")
logger.info("-" * 50)
try:
from NN.models.dqn_agent import DQNAgent
import numpy as np
# Create DQN agent
state_shape = (3, 5) # 3 timeframes, 5 features
dqn = DQNAgent(state_shape=state_shape, n_actions=3)
logger.info("✅ DQN agent created")
logger.info(f" Tick feature weight: {dqn.tick_feature_weight}")
# Test state enhancement
test_state = np.random.rand(3, 5)
# Simulate tick features
mock_tick_features = {
'neural_features': np.random.rand(64),
'volume_features': np.random.rand(8),
'microstructure_features': np.random.rand(4),
'confidence': 0.85
}
# Update DQN with tick features
dqn.update_realtime_tick_features(mock_tick_features)
logger.info("✅ DQN updated with mock tick features")
# Test enhanced action selection
action = dqn.act(test_state, explore=False)
logger.info(f"✅ DQN action with tick features: {action}")
# Test without tick features
dqn.realtime_tick_features = None
action_without = dqn.act(test_state, explore=False)
logger.info(f"✅ DQN action without tick features: {action_without}")
logger.info("✅ DQN integration test completed successfully")
except Exception as e:
logger.error(f"❌ DQN integration test failed: {e}")
async def main():
"""Main test function"""
logger.info("🚀 Starting Real-Time Tick Processor Tests...")
# Test the tick processor
success = await test_realtime_tick_processor()
if success:
# Test DQN integration
await test_dqn_integration()
logger.info("\n🎉 All tests passed! Your Neural DPS alternative is ready.")
logger.info("The real-time tick processor provides ultra-low latency processing")
logger.info("with volume information and neural network feature extraction.")
else:
logger.error("\n💥 Tests failed! Please check the implementation.")
sys.exit(1)
if __name__ == "__main__":
asyncio.run(main())

View File

@ -1 +0,0 @@

View File

@ -1,372 +0,0 @@
#!/usr/bin/env python3
"""
Test DQN RL-based Sensitivity Learning and 300s Data Preloading
This script tests:
1. DQN RL-based sensitivity learning from completed trades
2. 300s data preloading on first load
3. Dynamic threshold adjustment based on sensitivity levels
4. Color-coded position display integration
5. Enhanced model training status with sensitivity info
Usage:
python test_sensitivity_learning.py
"""
import asyncio
import logging
import time
import numpy as np
from datetime import datetime, timedelta
from core.data_provider import DataProvider
from core.enhanced_orchestrator import EnhancedTradingOrchestrator, TradingAction
from web.old_archived.scalping_dashboard import RealTimeScalpingDashboard
from NN.models.dqn_agent import DQNAgent
# Setup logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
class SensitivityLearningTester:
"""Test class for sensitivity learning features"""
def __init__(self):
self.data_provider = DataProvider()
self.orchestrator = EnhancedTradingOrchestrator(self.data_provider)
self.dashboard = None
async def test_300s_data_preloading(self):
"""Test 300s data preloading functionality"""
logger.info("=== Testing 300s Data Preloading ===")
# Test preloading for all symbols and timeframes
start_time = time.time()
preload_results = self.data_provider.preload_all_symbols_data(['1s', '1m', '5m', '15m', '1h'])
end_time = time.time()
logger.info(f"Preloading completed in {end_time - start_time:.2f} seconds")
# Verify results
total_pairs = 0
successful_pairs = 0
for symbol, timeframe_results in preload_results.items():
for timeframe, success in timeframe_results.items():
total_pairs += 1
if success:
successful_pairs += 1
# Verify data was actually loaded
data = self.data_provider.get_historical_data(symbol, timeframe, limit=50)
if data is not None and len(data) > 0:
logger.info(f"{symbol} {timeframe}: {len(data)} candles loaded")
else:
logger.warning(f"{symbol} {timeframe}: No data despite success flag")
else:
logger.warning(f"{symbol} {timeframe}: Failed to preload")
success_rate = (successful_pairs / total_pairs) * 100 if total_pairs > 0 else 0
logger.info(f"Preloading success rate: {success_rate:.1f}% ({successful_pairs}/{total_pairs})")
return success_rate > 80 # Consider test passed if >80% success rate
def test_sensitivity_learning_initialization(self):
"""Test sensitivity learning system initialization"""
logger.info("=== Testing Sensitivity Learning Initialization ===")
# Check if sensitivity learning is enabled
if hasattr(self.orchestrator, 'sensitivity_learning_enabled'):
logger.info(f"✅ Sensitivity learning enabled: {self.orchestrator.sensitivity_learning_enabled}")
else:
logger.warning("❌ Sensitivity learning not found in orchestrator")
return False
# Check sensitivity levels configuration
if hasattr(self.orchestrator, 'sensitivity_levels'):
levels = self.orchestrator.sensitivity_levels
logger.info(f"✅ Sensitivity levels configured: {len(levels)} levels")
for level, config in levels.items():
logger.info(f" Level {level}: {config['name']} - Open: {config['open_threshold_multiplier']:.2f}, Close: {config['close_threshold_multiplier']:.2f}")
else:
logger.warning("❌ Sensitivity levels not configured")
return False
# Check DQN agent initialization
if hasattr(self.orchestrator, 'sensitivity_dqn_agent'):
if self.orchestrator.sensitivity_dqn_agent is not None:
logger.info("✅ DQN agent initialized")
stats = self.orchestrator.sensitivity_dqn_agent.get_stats()
logger.info(f" Device: {stats['device']}")
logger.info(f" Memory size: {stats['memory_size']}")
logger.info(f" Epsilon: {stats['epsilon']:.3f}")
else:
logger.info("⏳ DQN agent not yet initialized (will be created on first use)")
# Check learning queues
if hasattr(self.orchestrator, 'sensitivity_learning_queue'):
logger.info(f"✅ Sensitivity learning queue initialized: {len(self.orchestrator.sensitivity_learning_queue)} items")
if hasattr(self.orchestrator, 'completed_trades'):
logger.info(f"✅ Completed trades tracking initialized: {len(self.orchestrator.completed_trades)} trades")
if hasattr(self.orchestrator, 'active_trades'):
logger.info(f"✅ Active trades tracking initialized: {len(self.orchestrator.active_trades)} active")
return True
def simulate_trading_scenario(self):
"""Simulate a trading scenario to test sensitivity learning"""
logger.info("=== Simulating Trading Scenario ===")
# Simulate some trades to test the learning system
test_trades = [
{
'symbol': 'ETH/USDT',
'action': 'BUY',
'price': 2500.0,
'confidence': 0.7,
'timestamp': datetime.now() - timedelta(minutes=10)
},
{
'symbol': 'ETH/USDT',
'action': 'SELL',
'price': 2510.0,
'confidence': 0.6,
'timestamp': datetime.now() - timedelta(minutes=5)
},
{
'symbol': 'ETH/USDT',
'action': 'BUY',
'price': 2505.0,
'confidence': 0.8,
'timestamp': datetime.now() - timedelta(minutes=3)
},
{
'symbol': 'ETH/USDT',
'action': 'SELL',
'price': 2495.0,
'confidence': 0.9,
'timestamp': datetime.now()
}
]
# Process each trade through the orchestrator
for i, trade_data in enumerate(test_trades):
action = TradingAction(
symbol=trade_data['symbol'],
action=trade_data['action'],
quantity=0.1,
confidence=trade_data['confidence'],
price=trade_data['price'],
timestamp=trade_data['timestamp'],
reasoning={'test': f'simulated_trade_{i}'},
timeframe_analysis=[]
)
# Update position tracking (this should trigger sensitivity learning)
self.orchestrator._update_position_tracking(trade_data['symbol'], action)
logger.info(f"Processed trade {i+1}: {trade_data['action']} @ ${trade_data['price']:.2f}")
# Check if learning cases were created
if hasattr(self.orchestrator, 'sensitivity_learning_queue'):
queue_size = len(self.orchestrator.sensitivity_learning_queue)
logger.info(f"✅ Learning queue now has {queue_size} cases")
if hasattr(self.orchestrator, 'completed_trades'):
completed_count = len(self.orchestrator.completed_trades)
logger.info(f"✅ Completed trades: {completed_count}")
return True
def test_threshold_adjustment(self):
"""Test dynamic threshold adjustment based on sensitivity"""
logger.info("=== Testing Threshold Adjustment ===")
# Test different sensitivity levels
for level in range(5): # 0-4 sensitivity levels
if hasattr(self.orchestrator, 'current_sensitivity_level'):
self.orchestrator.current_sensitivity_level = level
if hasattr(self.orchestrator, '_update_thresholds_from_sensitivity'):
self.orchestrator._update_thresholds_from_sensitivity()
open_threshold = getattr(self.orchestrator, 'confidence_threshold_open', 0.6)
close_threshold = getattr(self.orchestrator, 'confidence_threshold_close', 0.25)
logger.info(f"Level {level}: Open={open_threshold:.3f}, Close={close_threshold:.3f}")
return True
def test_dashboard_integration(self):
"""Test dashboard integration with sensitivity learning"""
logger.info("=== Testing Dashboard Integration ===")
try:
# Create dashboard instance
self.dashboard = RealTimeScalpingDashboard(
data_provider=self.data_provider,
orchestrator=self.orchestrator
)
# Test sensitivity learning info retrieval
sensitivity_info = self.dashboard._get_sensitivity_learning_info()
logger.info("✅ Dashboard sensitivity info:")
logger.info(f" Level: {sensitivity_info['level_name']}")
logger.info(f" Completed trades: {sensitivity_info['completed_trades']}")
logger.info(f" Learning queue: {sensitivity_info['learning_queue_size']}")
logger.info(f" Open threshold: {sensitivity_info['open_threshold']:.3f}")
logger.info(f" Close threshold: {sensitivity_info['close_threshold']:.3f}")
return True
except Exception as e:
logger.error(f"❌ Dashboard integration test failed: {e}")
return False
def test_dqn_training_simulation(self):
"""Test DQN training with simulated data"""
logger.info("=== Testing DQN Training Simulation ===")
try:
# Initialize DQN agent if not already done
if not hasattr(self.orchestrator, 'sensitivity_dqn_agent') or self.orchestrator.sensitivity_dqn_agent is None:
self.orchestrator._initialize_sensitivity_dqn()
if self.orchestrator.sensitivity_dqn_agent is None:
logger.warning("❌ Could not initialize DQN agent")
return False
# Create some mock learning cases
for i in range(10):
# Create mock market state
mock_state = np.random.random(self.orchestrator.sensitivity_state_size)
action = np.random.randint(0, self.orchestrator.sensitivity_action_space)
reward = np.random.random() - 0.5 # Random reward between -0.5 and 0.5
next_state = np.random.random(self.orchestrator.sensitivity_state_size)
done = True
# Add to learning queue
learning_case = {
'state': mock_state,
'action': action,
'reward': reward,
'next_state': next_state,
'done': done,
'optimal_action': action,
'trade_outcome': reward * 0.02, # Convert to percentage
'trade_duration': 300 + np.random.randint(-100, 100),
'symbol': 'ETH/USDT'
}
self.orchestrator.sensitivity_learning_queue.append(learning_case)
# Trigger training
initial_queue_size = len(self.orchestrator.sensitivity_learning_queue)
self.orchestrator._train_sensitivity_dqn()
logger.info(f"✅ DQN training completed")
logger.info(f" Initial queue size: {initial_queue_size}")
logger.info(f" Final queue size: {len(self.orchestrator.sensitivity_learning_queue)}")
# Check agent stats
if self.orchestrator.sensitivity_dqn_agent:
stats = self.orchestrator.sensitivity_dqn_agent.get_stats()
logger.info(f" Training steps: {stats['training_step']}")
logger.info(f" Memory size: {stats['memory_size']}")
logger.info(f" Epsilon: {stats['epsilon']:.3f}")
return True
except Exception as e:
logger.error(f"❌ DQN training simulation failed: {e}")
return False
async def run_all_tests(self):
"""Run all sensitivity learning tests"""
logger.info("🚀 Starting Sensitivity Learning Test Suite")
logger.info("=" * 60)
test_results = {}
# Test 1: 300s Data Preloading
test_results['preloading'] = await self.test_300s_data_preloading()
# Test 2: Sensitivity Learning Initialization
test_results['initialization'] = self.test_sensitivity_learning_initialization()
# Test 3: Trading Scenario Simulation
test_results['trading_simulation'] = self.simulate_trading_scenario()
# Test 4: Threshold Adjustment
test_results['threshold_adjustment'] = self.test_threshold_adjustment()
# Test 5: Dashboard Integration
test_results['dashboard_integration'] = self.test_dashboard_integration()
# Test 6: DQN Training Simulation
test_results['dqn_training'] = self.test_dqn_training_simulation()
# Summary
logger.info("=" * 60)
logger.info("🏁 Test Suite Results:")
passed_tests = 0
total_tests = len(test_results)
for test_name, result in test_results.items():
status = "✅ PASSED" if result else "❌ FAILED"
logger.info(f" {test_name}: {status}")
if result:
passed_tests += 1
success_rate = (passed_tests / total_tests) * 100
logger.info(f"Overall success rate: {success_rate:.1f}% ({passed_tests}/{total_tests})")
if success_rate >= 80:
logger.info("🎉 Test suite PASSED! Sensitivity learning system is working correctly.")
else:
logger.warning("⚠️ Test suite FAILED! Some issues need to be addressed.")
return success_rate >= 80
async def main():
"""Main test function"""
tester = SensitivityLearningTester()
try:
success = await tester.run_all_tests()
if success:
logger.info("✅ All tests passed! The sensitivity learning system is ready for production.")
else:
logger.error("❌ Some tests failed. Please review the issues above.")
return success
except Exception as e:
logger.error(f"Test suite failed with exception: {e}")
return False
if __name__ == "__main__":
# Run the test suite
result = asyncio.run(main())
if result:
print("\n🎯 SENSITIVITY LEARNING SYSTEM READY!")
print("Features verified:")
print(" ✅ DQN RL-based sensitivity learning from completed trades")
print(" ✅ 300s data preloading for faster initial performance")
print(" ✅ Dynamic threshold adjustment (lower for closing positions)")
print(" ✅ Color-coded position display ([LONG] green, [SHORT] red)")
print(" ✅ Enhanced model training status with sensitivity info")
print("\nYou can now run the dashboard with these enhanced features!")
else:
print("\n❌ SOME TESTS FAILED")
print("Please review the test output above and fix any issues.")
exit(0 if result else 1)

View File

@ -1 +0,0 @@

View File

@ -1,130 +0,0 @@
#!/usr/bin/env python3
"""
Test script to verify tick caching with timestamp serialization
"""
import logging
import sys
import os
import pandas as pd
from datetime import datetime
# Add the project root to the path
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
from dataprovider_realtime import TickStorage
# Set up logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
def test_tick_caching():
"""Test tick caching with pandas Timestamps"""
logger.info("Testing tick caching with timestamp serialization...")
try:
# Create tick storage
tick_storage = TickStorage("TEST/SYMBOL", ["1s", "1m"])
# Clear any existing cache
if os.path.exists(tick_storage.cache_path):
os.remove(tick_storage.cache_path)
logger.info("Cleared existing cache file")
# Add some test ticks with different timestamp formats
test_ticks = [
{
'price': 100.0,
'quantity': 1.0,
'timestamp': pd.Timestamp.now()
},
{
'price': 101.0,
'quantity': 1.5,
'timestamp': datetime.now()
},
{
'price': 102.0,
'quantity': 2.0,
'timestamp': int(datetime.now().timestamp() * 1000) # milliseconds
}
]
# Add ticks
for i, tick in enumerate(test_ticks):
logger.info(f"Adding tick {i+1}: price=${tick['price']}, timestamp type={type(tick['timestamp'])}")
tick_storage.add_tick(tick)
logger.info(f"Total ticks in storage: {len(tick_storage.ticks)}")
# Force save to cache
tick_storage._save_to_cache()
logger.info("Saved ticks to cache")
# Verify cache file exists
if os.path.exists(tick_storage.cache_path):
logger.info(f"✅ Cache file created: {tick_storage.cache_path}")
# Check file content
with open(tick_storage.cache_path, 'r') as f:
import json
cache_content = json.load(f)
logger.info(f"Cache contains {len(cache_content)} ticks")
# Show first tick to verify format
if cache_content:
first_tick = cache_content[0]
logger.info(f"First tick in cache: {first_tick}")
logger.info(f"Timestamp type in cache: {type(first_tick['timestamp'])}")
else:
logger.error("❌ Cache file was not created")
return False
# Create new tick storage instance to test loading
logger.info("Creating new TickStorage instance to test loading...")
new_tick_storage = TickStorage("TEST/SYMBOL", ["1s", "1m"])
# Load from cache
cache_loaded = new_tick_storage._load_from_cache()
if cache_loaded:
logger.info(f"✅ Successfully loaded {len(new_tick_storage.ticks)} ticks from cache")
# Verify timestamps are properly converted back to pandas Timestamps
for i, tick in enumerate(new_tick_storage.ticks):
logger.info(f"Loaded tick {i+1}: price=${tick['price']}, timestamp={tick['timestamp']}, type={type(tick['timestamp'])}")
if not isinstance(tick['timestamp'], pd.Timestamp):
logger.error(f"❌ Timestamp not properly converted back to pandas.Timestamp: {type(tick['timestamp'])}")
return False
logger.info("✅ All timestamps properly converted back to pandas.Timestamp")
return True
else:
logger.error("❌ Failed to load ticks from cache")
return False
except Exception as e:
logger.error(f"❌ Error in tick caching test: {str(e)}")
import traceback
logger.error(traceback.format_exc())
return False
def main():
"""Run the test"""
logger.info("🧪 Starting tick caching test...")
logger.info("=" * 50)
success = test_tick_caching()
logger.info("\n" + "=" * 50)
if success:
logger.info("🎉 Tick caching test PASSED!")
else:
logger.error("❌ Tick caching test FAILED!")
return success
if __name__ == "__main__":
success = main()
sys.exit(0 if success else 1)

View File

@ -1,310 +0,0 @@
#!/usr/bin/env python3
"""
Final Real-Time Tick Processor Test
This script demonstrates that the Neural Network Real-Time Tick Processing Module
is working correctly as a DPS alternative for processing tick data with volume information.
"""
import logging
import sys
import numpy as np
from pathlib import Path
from datetime import datetime
# Add project root to path
project_root = Path(__file__).parent
sys.path.insert(0, str(project_root))
from core.realtime_tick_processor import (
RealTimeTickProcessor,
ProcessedTickFeatures,
TickData,
create_realtime_tick_processor
)
# Setup logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
def demonstrate_neural_dps_alternative():
"""Demonstrate the Neural DPS alternative functionality"""
logger.info("="*80)
logger.info("🚀 NEURAL DPS ALTERNATIVE DEMONSTRATION")
logger.info("="*80)
try:
# Create tick processor
logger.info("\n📊 STEP 1: Initialize Neural DPS Alternative")
logger.info("-" * 50)
symbols = ['ETH/USDT', 'BTC/USDT']
tick_processor = create_realtime_tick_processor(symbols)
logger.info("✅ Neural DPS Alternative initialized successfully")
logger.info(f" Symbols: {tick_processor.symbols}")
logger.info(f" Processing device: {tick_processor.device}")
logger.info(f" Neural network architecture: TickProcessingNN")
logger.info(f" Input features per tick: 9")
logger.info(f" Output neural features: 64")
logger.info(f" Processing window: {tick_processor.processing_window} ticks")
# Generate realistic market tick data
logger.info("\n📈 STEP 2: Generate Realistic Market Tick Data")
logger.info("-" * 50)
def generate_realistic_ticks(symbol: str, count: int = 100):
"""Generate realistic tick data with volume information"""
ticks = []
base_price = 3500.0 if 'ETH' in symbol else 65000.0
base_time = datetime.now()
for i in range(count):
# Simulate realistic price movement with micro-trends
if i % 20 < 10: # Uptrend phase
price_change = np.random.normal(0.0002, 0.0008)
else: # Downtrend phase
price_change = np.random.normal(-0.0002, 0.0008)
price = base_price * (1 + price_change)
# Simulate realistic volume distribution
if abs(price_change) > 0.001: # Large price moves get more volume
volume = np.random.exponential(0.5)
else:
volume = np.random.exponential(0.1)
# Market maker vs taker dynamics
side = 'buy' if price_change > 0 else 'sell'
if np.random.random() < 0.3: # 30% chance to flip
side = 'sell' if side == 'buy' else 'buy'
tick = TickData(
timestamp=base_time,
price=price,
volume=volume,
side=side,
trade_id=f"{symbol}_{i}"
)
ticks.append(tick)
base_price = price
return ticks
# Generate ticks for both symbols
eth_ticks = generate_realistic_ticks('ETH/USDT', 100)
btc_ticks = generate_realistic_ticks('BTC/USDT', 100)
logger.info(f"✅ Generated realistic market data:")
logger.info(f" ETH/USDT: {len(eth_ticks)} ticks")
logger.info(f" Price range: ${min(t.price for t in eth_ticks):.2f} - ${max(t.price for t in eth_ticks):.2f}")
logger.info(f" Volume range: {min(t.volume for t in eth_ticks):.4f} - {max(t.volume for t in eth_ticks):.4f}")
logger.info(f" BTC/USDT: {len(btc_ticks)} ticks")
logger.info(f" Price range: ${min(t.price for t in btc_ticks):.2f} - ${max(t.price for t in btc_ticks):.2f}")
# Process ticks through Neural DPS
logger.info("\n🧠 STEP 3: Neural Network Processing")
logger.info("-" * 50)
# Add ticks to processor buffers
with tick_processor.data_lock:
for tick in eth_ticks:
tick_processor.tick_buffers['ETH/USDT'].append(tick)
for tick in btc_ticks:
tick_processor.tick_buffers['BTC/USDT'].append(tick)
# Process through neural network
eth_features = tick_processor._extract_neural_features('ETH/USDT')
btc_features = tick_processor._extract_neural_features('BTC/USDT')
logger.info("✅ Neural network processing completed:")
if eth_features:
logger.info(f" ETH/USDT processed features:")
logger.info(f" Neural features: {eth_features.neural_features.shape} (confidence: {eth_features.confidence:.3f})")
logger.info(f" Price features: {eth_features.price_features.shape}")
logger.info(f" Volume features: {eth_features.volume_features.shape}")
logger.info(f" Microstructure features: {eth_features.microstructure_features.shape}")
if btc_features:
logger.info(f" BTC/USDT processed features:")
logger.info(f" Neural features: {btc_features.neural_features.shape} (confidence: {btc_features.confidence:.3f})")
logger.info(f" Price features: {btc_features.price_features.shape}")
logger.info(f" Volume features: {btc_features.volume_features.shape}")
logger.info(f" Microstructure features: {btc_features.microstructure_features.shape}")
# Demonstrate volume analysis
logger.info("\n💰 STEP 4: Volume Analysis Capabilities")
logger.info("-" * 50)
if eth_features:
volume_features = eth_features.volume_features
logger.info("✅ Volume analysis extracted:")
logger.info(f" Total volume: {volume_features[0]:.4f}")
logger.info(f" Average volume: {volume_features[1]:.4f}")
logger.info(f" Volume volatility: {volume_features[2]:.4f}")
logger.info(f" Buy volume: {volume_features[3]:.4f}")
logger.info(f" Sell volume: {volume_features[4]:.4f}")
logger.info(f" Volume imbalance: {volume_features[5]:.4f}")
logger.info(f" VWAP deviation: {volume_features[6]:.4f}")
# Demonstrate microstructure analysis
logger.info("\n🔬 STEP 5: Market Microstructure Analysis")
logger.info("-" * 50)
if eth_features:
micro_features = eth_features.microstructure_features
logger.info("✅ Microstructure analysis extracted:")
logger.info(f" Trade frequency: {micro_features[0]:.2f} trades/sec")
logger.info(f" Price impact: {micro_features[1]:.6f}")
logger.info(f" Bid-ask spread proxy: {micro_features[2]:.6f}")
logger.info(f" Order flow imbalance: {micro_features[3]:.4f}")
# Demonstrate real-time feature streaming
logger.info("\n📡 STEP 6: Real-Time Feature Streaming")
logger.info("-" * 50)
received_features = []
def feature_callback(symbol: str, features: ProcessedTickFeatures):
"""Callback to receive real-time features"""
received_features.append((symbol, features))
logger.info(f"📨 Received real-time features for {symbol}")
logger.info(f" Confidence: {features.confidence:.3f}")
logger.info(f" Neural features: {len(features.neural_features)} dimensions")
logger.info(f" Timestamp: {features.timestamp}")
# Add subscriber and simulate feature streaming
tick_processor.add_feature_subscriber(feature_callback)
# Manually trigger feature processing to simulate streaming
tick_processor._notify_feature_subscribers('ETH/USDT', eth_features)
tick_processor._notify_feature_subscribers('BTC/USDT', btc_features)
logger.info(f"✅ Feature streaming demonstrated: {len(received_features)} features received")
# Performance metrics
logger.info("\n⚡ STEP 7: Performance Metrics")
logger.info("-" * 50)
stats = tick_processor.get_processing_stats()
logger.info("✅ Performance metrics:")
logger.info(f" Symbols processed: {len(stats['symbols'])}")
logger.info(f" Buffer utilization: {stats['buffer_sizes']}")
logger.info(f" Feature subscribers: {stats['subscribers']}")
logger.info(f" Neural network device: {tick_processor.device}")
# Demonstrate integration readiness
logger.info("\n🔗 STEP 8: Model Integration Readiness")
logger.info("-" * 50)
logger.info("✅ Integration capabilities verified:")
logger.info(" ✓ Feature subscriber system for real-time streaming")
logger.info(" ✓ Standardized ProcessedTickFeatures format")
logger.info(" ✓ Neural network feature extraction (64 dimensions)")
logger.info(" ✓ Volume-weighted analysis")
logger.info(" ✓ Market microstructure detection")
logger.info(" ✓ Confidence scoring for feature quality")
logger.info(" ✓ Multi-symbol processing")
logger.info(" ✓ Thread-safe data handling")
return True
except Exception as e:
logger.error(f"❌ Neural DPS demonstration failed: {e}")
import traceback
logger.error(traceback.format_exc())
return False
def demonstrate_dqn_compatibility():
"""Demonstrate compatibility with DQN models"""
logger.info("\n🤖 STEP 9: DQN Model Compatibility")
logger.info("-" * 50)
try:
# Create mock tick features in the format DQN expects
mock_tick_features = {
'neural_features': np.random.rand(64) * 0.1,
'volume_features': np.array([1.2, 0.8, 0.15, 850.5, 720.3, 0.05, 0.02]),
'microstructure_features': np.array([12.5, 0.3, 0.001, 0.1]),
'confidence': 0.85
}
logger.info("✅ DQN-compatible feature format created:")
logger.info(f" Neural features: {len(mock_tick_features['neural_features'])} dimensions")
logger.info(f" Volume features: {len(mock_tick_features['volume_features'])} dimensions")
logger.info(f" Microstructure features: {len(mock_tick_features['microstructure_features'])} dimensions")
logger.info(f" Confidence score: {mock_tick_features['confidence']}")
# Demonstrate feature integration
logger.info("\n✅ Ready for DQN integration:")
logger.info(" ✓ update_realtime_tick_features() method available")
logger.info(" ✓ State enhancement with tick features")
logger.info(" ✓ Weighted feature integration (configurable weight)")
logger.info(" ✓ Real-time decision enhancement")
return True
except Exception as e:
logger.error(f"❌ DQN compatibility test failed: {e}")
return False
def main():
"""Main demonstration function"""
logger.info("🚀 Starting Neural DPS Alternative Demonstration...")
# Demonstrate core functionality
neural_success = demonstrate_neural_dps_alternative()
# Demonstrate DQN compatibility
dqn_success = demonstrate_dqn_compatibility()
# Final summary
logger.info("\n" + "="*80)
logger.info("🎉 NEURAL DPS ALTERNATIVE DEMONSTRATION COMPLETE")
logger.info("="*80)
if neural_success and dqn_success:
logger.info("✅ ALL DEMONSTRATIONS SUCCESSFUL!")
logger.info("")
logger.info("🎯 NEURAL DPS ALTERNATIVE VERIFIED:")
logger.info(" ✓ Real-time tick data processing with volume information")
logger.info(" ✓ Neural network feature extraction (64-dimensional)")
logger.info(" ✓ Volume-weighted price analysis")
logger.info(" ✓ Market microstructure pattern detection")
logger.info(" ✓ Ultra-low latency processing capability")
logger.info(" ✓ Real-time feature streaming to models")
logger.info(" ✓ Multi-symbol processing (ETH/USDT, BTC/USDT)")
logger.info(" ✓ DQN model integration ready")
logger.info("")
logger.info("🚀 YOUR NEURAL DPS ALTERNATIVE IS FULLY OPERATIONAL!")
logger.info("")
logger.info("📋 WHAT THIS SYSTEM PROVIDES:")
logger.info(" • Replaces traditional DPS with neural network processing")
logger.info(" • Processes real-time tick streams with volume information")
logger.info(" • Extracts sophisticated features for trading models")
logger.info(" • Provides ultra-low latency for high-frequency trading")
logger.info(" • Integrates seamlessly with your DQN agents")
logger.info(" • Supports WebSocket streaming from exchanges")
logger.info(" • Includes confidence scoring for feature quality")
logger.info("")
logger.info("🎯 NEXT STEPS:")
logger.info(" 1. Connect to live WebSocket feeds (Binance, etc.)")
logger.info(" 2. Start real-time processing with tick_processor.start_processing()")
logger.info(" 3. Your DQN models will receive enhanced tick features automatically")
logger.info(" 4. Monitor performance with get_processing_stats()")
else:
logger.error("❌ SOME DEMONSTRATIONS FAILED!")
logger.error(f" Neural DPS: {'' if neural_success else ''}")
logger.error(f" DQN Compatibility: {'' if dqn_success else ''}")
sys.exit(1)
logger.info("="*80)
if __name__ == "__main__":
main()

View File

@ -1,311 +0,0 @@
#!/usr/bin/env python3
"""
Simple Real-Time Tick Processor Test
This script tests the core Neural Network functionality of the Real-Time Tick Processing Module
without requiring live WebSocket connections.
"""
import logging
import sys
import numpy as np
from pathlib import Path
from datetime import datetime
# Add project root to path
project_root = Path(__file__).parent
sys.path.insert(0, str(project_root))
from core.realtime_tick_processor import (
RealTimeTickProcessor,
ProcessedTickFeatures,
TickData,
create_realtime_tick_processor
)
# Setup logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
def test_neural_network_functionality():
"""Test the neural network processing without WebSocket connections"""
logger.info("="*80)
logger.info("🧪 TESTING NEURAL NETWORK TICK PROCESSING")
logger.info("="*80)
try:
# Test 1: Create tick processor
logger.info("\n📊 TEST 1: Creating Real-Time Tick Processor")
logger.info("-" * 40)
symbols = ['ETH/USDT', 'BTC/USDT']
tick_processor = create_realtime_tick_processor(symbols)
logger.info("✅ Tick processor created successfully")
logger.info(f" Symbols: {tick_processor.symbols}")
logger.info(f" Device: {tick_processor.device}")
logger.info(f" Neural network input size: 9")
# Test 2: Generate mock tick data
logger.info("\n📈 TEST 2: Generating Mock Tick Data")
logger.info("-" * 40)
# Create realistic mock tick data
mock_ticks = []
base_price = 3500.0 # ETH price
base_time = datetime.now()
for i in range(50): # Generate 50 ticks
# Simulate price movement
price_change = np.random.normal(0, 0.001) # Small random changes
price = base_price * (1 + price_change)
# Simulate volume
volume = np.random.exponential(0.1) # Exponential distribution for volume
# Random buy/sell
side = 'buy' if np.random.random() > 0.5 else 'sell'
tick = TickData(
timestamp=base_time,
price=price,
volume=volume,
side=side,
trade_id=f"trade_{i}"
)
mock_ticks.append(tick)
base_price = price # Update base price for next tick
logger.info(f"✅ Generated {len(mock_ticks)} mock ticks")
logger.info(f" Price range: {min(t.price for t in mock_ticks):.2f} - {max(t.price for t in mock_ticks):.2f}")
logger.info(f" Volume range: {min(t.volume for t in mock_ticks):.4f} - {max(t.volume for t in mock_ticks):.4f}")
# Test 3: Add ticks to processor buffer
logger.info("\n💾 TEST 3: Adding Ticks to Processor Buffer")
logger.info("-" * 40)
symbol = 'ETH/USDT'
with tick_processor.data_lock:
for tick in mock_ticks:
tick_processor.tick_buffers[symbol].append(tick)
buffer_size = len(tick_processor.tick_buffers[symbol])
logger.info(f"✅ Added ticks to buffer: {buffer_size} ticks")
# Test 4: Extract neural features
logger.info("\n🧠 TEST 4: Neural Network Feature Extraction")
logger.info("-" * 40)
features = tick_processor._extract_neural_features(symbol)
if features is not None:
logger.info("✅ Neural features extracted successfully")
logger.info(f" Timestamp: {features.timestamp}")
logger.info(f" Confidence: {features.confidence:.3f}")
logger.info(f" Neural features shape: {features.neural_features.shape}")
logger.info(f" Price features shape: {features.price_features.shape}")
logger.info(f" Volume features shape: {features.volume_features.shape}")
logger.info(f" Microstructure features shape: {features.microstructure_features.shape}")
# Show sample values
logger.info(f" Neural features sample: {features.neural_features[:5]}")
logger.info(f" Price features sample: {features.price_features[:3]}")
logger.info(f" Volume features sample: {features.volume_features[:3]}")
else:
logger.error("❌ Failed to extract neural features")
return False
# Test 5: Test feature conversion methods
logger.info("\n🔧 TEST 5: Feature Conversion Methods")
logger.info("-" * 40)
# Test tick-to-features conversion
tick_features = tick_processor._ticks_to_features(mock_ticks)
logger.info(f"✅ Tick features converted: shape {tick_features.shape}")
logger.info(f" Expected shape: ({tick_processor.processing_window}, 9)")
# Test individual feature extraction
price_features = tick_processor._extract_price_features(mock_ticks)
volume_features = tick_processor._extract_volume_features(mock_ticks)
microstructure_features = tick_processor._extract_microstructure_features(mock_ticks)
logger.info(f"✅ Price features: {len(price_features)} features")
logger.info(f"✅ Volume features: {len(volume_features)} features")
logger.info(f"✅ Microstructure features: {len(microstructure_features)} features")
# Test 6: Neural network forward pass
logger.info("\n⚡ TEST 6: Neural Network Forward Pass")
logger.info("-" * 40)
import torch
# Test direct neural network inference
tick_tensor = torch.FloatTensor(tick_features).unsqueeze(0).to(tick_processor.device)
with torch.no_grad():
neural_features, confidence = tick_processor.tick_nn(tick_tensor)
logger.info("✅ Neural network forward pass successful")
logger.info(f" Input shape: {tick_tensor.shape}")
logger.info(f" Output features shape: {neural_features.shape}")
logger.info(f" Confidence shape: {confidence.shape}")
logger.info(f" Confidence value: {confidence.item():.3f}")
return True
except Exception as e:
logger.error(f"❌ Neural network test failed: {e}")
import traceback
logger.error(traceback.format_exc())
return False
def test_dqn_integration():
"""Test DQN integration with real-time tick features"""
logger.info("\n🤖 TESTING DQN INTEGRATION WITH TICK FEATURES")
logger.info("-" * 50)
try:
from NN.models.dqn_agent import DQNAgent
import numpy as np
# Create DQN agent
state_shape = (3, 5) # 3 timeframes, 5 features
dqn = DQNAgent(state_shape=state_shape, n_actions=3)
logger.info("✅ DQN agent created")
logger.info(f" State shape: {state_shape}")
logger.info(f" Actions: {dqn.n_actions}")
logger.info(f" Device: {dqn.device}")
logger.info(f" Tick feature weight: {dqn.tick_feature_weight}")
# Test state enhancement
test_state = np.random.rand(3, 5)
logger.info(f" Test state shape: {test_state.shape}")
# Simulate realistic tick features
mock_tick_features = {
'neural_features': np.random.rand(64) * 0.1, # Small neural features
'volume_features': np.array([1.2, 0.8, 0.15, 850.5, 720.3, 0.05, 0.02]), # Realistic volume features
'microstructure_features': np.array([12.5, 0.3, 0.001, 0.1]), # Realistic microstructure
'confidence': 0.85
}
# Update DQN with tick features
dqn.update_realtime_tick_features(mock_tick_features)
logger.info("✅ DQN updated with mock tick features")
# Test enhanced action selection
action_with_ticks = dqn.act(test_state, explore=False)
logger.info(f"✅ DQN action with tick features: {action_with_ticks}")
# Test without tick features
dqn.realtime_tick_features = None
action_without_ticks = dqn.act(test_state, explore=False)
logger.info(f"✅ DQN action without tick features: {action_without_ticks}")
# Test state enhancement method directly
dqn.realtime_tick_features = mock_tick_features
enhanced_state = dqn._enhance_state_with_tick_features(test_state)
logger.info(f"✅ State enhancement test:")
logger.info(f" Original state shape: {test_state.shape}")
logger.info(f" Enhanced state shape: {enhanced_state.shape}")
logger.info("✅ DQN integration test completed successfully")
return True
except Exception as e:
logger.error(f"❌ DQN integration test failed: {e}")
import traceback
logger.error(traceback.format_exc())
return False
def test_performance_metrics():
"""Test performance and statistics functionality"""
logger.info("\n📊 TESTING PERFORMANCE METRICS")
logger.info("-" * 40)
try:
tick_processor = create_realtime_tick_processor(['ETH/USDT'])
# Test stats without processing
stats = tick_processor.get_processing_stats()
logger.info("✅ Basic stats retrieved")
logger.info(f" Symbols: {stats['symbols']}")
logger.info(f" Streaming: {stats['streaming']}")
logger.info(f" Tick counts: {stats['tick_counts']}")
logger.info(f" Buffer sizes: {stats['buffer_sizes']}")
logger.info(f" Subscribers: {stats['subscribers']}")
# Test feature subscriber
received_features = []
def test_callback(symbol: str, features: ProcessedTickFeatures):
received_features.append((symbol, features))
tick_processor.add_feature_subscriber(test_callback)
logger.info("✅ Feature subscriber added")
# Test subscriber removal
tick_processor.remove_feature_subscriber(test_callback)
logger.info("✅ Feature subscriber removed")
return True
except Exception as e:
logger.error(f"❌ Performance metrics test failed: {e}")
return False
def main():
"""Main test function"""
logger.info("🚀 Starting Simple Real-Time Tick Processor Tests...")
# Test neural network functionality
nn_success = test_neural_network_functionality()
# Test DQN integration
dqn_success = test_dqn_integration()
# Test performance metrics
perf_success = test_performance_metrics()
# Summary
logger.info("\n" + "="*80)
logger.info("🎉 SIMPLE TICK PROCESSOR TEST SUMMARY")
logger.info("="*80)
if nn_success and dqn_success and perf_success:
logger.info("✅ ALL TESTS PASSED!")
logger.info("")
logger.info("📋 VERIFIED FUNCTIONALITY:")
logger.info(" ✓ Neural network tick processing")
logger.info(" ✓ Feature extraction (price, volume, microstructure)")
logger.info(" ✓ DQN integration with tick features")
logger.info(" ✓ State enhancement for RL models")
logger.info(" ✓ Performance monitoring")
logger.info("")
logger.info("🎯 NEURAL DPS ALTERNATIVE READY:")
logger.info(" • Real-time tick processing ✓")
logger.info(" • Volume-weighted analysis ✓")
logger.info(" • Neural feature extraction ✓")
logger.info(" • Model integration ready ✓")
logger.info("")
logger.info("🚀 Your Neural DPS alternative is working correctly!")
logger.info(" The system can now process real-time tick data with volume")
logger.info(" information and feed enhanced features to your DQN models.")
else:
logger.error("❌ SOME TESTS FAILED!")
logger.error(f" Neural Network: {'' if nn_success else ''}")
logger.error(f" DQN Integration: {'' if dqn_success else ''}")
logger.error(f" Performance: {'' if perf_success else ''}")
sys.exit(1)
logger.info("="*80)
if __name__ == "__main__":
main()

View File

@ -9,215 +9,166 @@ rewards for successful holding of positions.
import numpy as np
from datetime import datetime, timedelta
from collections import deque
import logging
class ImprovedRewardCalculator:
def __init__(self,
max_drawdown_pct=0.1, # Maximum drawdown %
risk_reward_ratio=1.5, # Risk-reward ratio
base_fee_rate=0.0002, # 0.02% per transaction
max_frequency_penalty=0.005, # Maximum 0.5% penalty for frequent trading
holding_reward_rate=0.0001, # Small reward for holding profitable positions
risk_adjusted=True, # Use Sharpe ratio for risk adjustment
base_reward=1.0, # Base reward scale
profit_factor=2.0, # Profit reward multiplier
loss_factor=1.0, # Loss penalty multiplier
trade_frequency_penalty=0.3, # Penalty for frequent trading
position_duration_factor=0.05 # Reward for longer positions
):
logger = logging.getLogger(__name__)
class RewardCalculator:
def __init__(self, base_fee_rate=0.001, reward_scaling=10.0, risk_aversion=0.1):
self.base_fee_rate = base_fee_rate
self.max_frequency_penalty = max_frequency_penalty
self.holding_reward_rate = holding_reward_rate
self.risk_adjusted = risk_adjusted
# New parameters
self.base_reward = base_reward
self.profit_factor = profit_factor
self.loss_factor = loss_factor
self.trade_frequency_penalty = trade_frequency_penalty
self.position_duration_factor = position_duration_factor
# Keep track of recent trades
self.recent_trades = deque(maxlen=1000)
self.trade_pnls = deque(maxlen=100) # For risk adjustment
# Additional tracking metrics
self.total_trades = 0
self.profitable_trades = 0
self.total_pnl = 0.0
self.daily_pnl = {}
self.hourly_pnl = {}
def record_trade(self, timestamp=None, action=None, price=None):
"""Record a trade for frequency tracking"""
if timestamp is None:
timestamp = datetime.now()
self.recent_trades.append({
'timestamp': timestamp,
'action': action,
'price': price
})
self.reward_scaling = reward_scaling
self.risk_aversion = risk_aversion
self.trade_pnls = []
self.returns = []
self.trade_timestamps = []
self.frequency_threshold = 10 # Trades per minute threshold for penalty
self.max_frequency_penalty = 0.05
def record_pnl(self, pnl):
"""Record a PnL result for risk adjustment and tracking metrics"""
"""Record P&L for risk adjustment calculations"""
self.trade_pnls.append(pnl)
# Update overall metrics
self.total_trades += 1
self.total_pnl += pnl
if pnl > 0:
self.profitable_trades += 1
# Track daily and hourly PnL
now = datetime.now()
day_key = now.strftime('%Y-%m-%d')
hour_key = now.strftime('%Y-%m-%d %H:00')
# Update daily PnL
if day_key not in self.daily_pnl:
self.daily_pnl[day_key] = 0.0
self.daily_pnl[day_key] += pnl
# Update hourly PnL
if hour_key not in self.hourly_pnl:
self.hourly_pnl[hour_key] = 0.0
self.hourly_pnl[hour_key] += pnl
if len(self.trade_pnls) > 100:
self.trade_pnls.pop(0)
def record_trade(self, action):
"""Record trade action for frequency penalty calculations"""
from time import time
self.trade_timestamps.append(time())
if len(self.trade_timestamps) > 100:
self.trade_timestamps.pop(0)
def _calculate_frequency_penalty(self):
"""Calculate penalty for trading too frequently"""
if len(self.recent_trades) < 2:
"""Calculate penalty for high-frequency trading"""
if len(self.trade_timestamps) < 2:
return 0.0
# Count trades in the last minute
now = datetime.now()
one_minute_ago = now - timedelta(minutes=1)
trades_last_minute = sum(1 for trade in self.recent_trades
if trade['timestamp'] > one_minute_ago)
# Apply progressive penalty (more severe as frequency increases)
if trades_last_minute <= 1:
return 0.0 # No penalty for normal trading rate
# Progressive penalty based on trade frequency
penalty = min(self.max_frequency_penalty,
self.base_fee_rate * trades_last_minute)
return penalty
def _calculate_holding_reward(self, position_held_time, price_change_pct):
"""Calculate reward for holding a position for some time"""
if position_held_time <= 0 or price_change_pct <= 0:
return 0.0 # No reward for unprofitable holds
# Cap at 100 time units (seconds, minutes, etc.)
capped_time = min(position_held_time, 100)
# Scale reward by both time and price change
reward = self.holding_reward_rate * capped_time * price_change_pct
return reward
time_span = self.trade_timestamps[-1] - self.trade_timestamps[0]
if time_span <= 0:
return 0.0
trades_per_minute = (len(self.trade_timestamps) / time_span) * 60
if trades_per_minute > self.frequency_threshold:
penalty = min(self.max_frequency_penalty, (trades_per_minute - self.frequency_threshold) * 0.001)
return penalty
return 0.0
def _calculate_risk_adjustment(self, reward):
"""Adjust rewards based on risk (simple Sharpe ratio implementation)"""
if len(self.trade_pnls) < 5:
return reward # Not enough data for adjustment
# Calculate mean and standard deviation of returns
return reward
pnl_array = np.array(self.trade_pnls)
mean_return = np.mean(pnl_array)
std_return = np.std(pnl_array)
if std_return == 0:
return reward # Avoid division by zero
# Simplified Sharpe ratio
return reward
sharpe = mean_return / std_return
# Scale reward by Sharpe ratio (normalized to be around 1.0)
adjustment_factor = np.clip(1.0 + 0.5 * sharpe, 0.5, 2.0)
return reward * adjustment_factor
def calculate_reward(self, action, price_change, position_held_time=0,
volatility=None, is_profitable=False):
"""
Calculate the improved reward
Args:
action (int): 0 = Buy, 1 = Sell, 2 = Hold
price_change (float): Percent price change for the trade
position_held_time (int): Time position was held (in time units)
volatility (float, optional): Market volatility measure
is_profitable (bool): Whether current position is profitable
Returns:
float: Calculated reward value
"""
# Calculate trading fee
def _calculate_holding_reward(self, position_held_time, price_change):
"""Calculate reward for holding a position"""
base_holding_reward = 0.0005 * (position_held_time / 60.0)
if price_change > 0:
return base_holding_reward * 2
elif price_change < 0:
return base_holding_reward * 0.5
return base_holding_reward
def calculate_basic_reward(self, pnl, confidence):
"""Calculate basic training reward based on P&L and confidence"""
try:
base_reward = pnl
if pnl < 0 and confidence > 0.7:
confidence_adjustment = -confidence * 2
elif pnl > 0 and confidence > 0.7:
confidence_adjustment = confidence * 1.5
else:
confidence_adjustment = 0
final_reward = base_reward + confidence_adjustment
normalized_reward = np.tanh(final_reward / 10.0)
logger.debug(f"Basic reward calculation: P&L={pnl:.4f}, confidence={confidence:.2f}, reward={normalized_reward:.4f}")
return float(normalized_reward)
except Exception as e:
logger.error(f"Error calculating basic reward: {e}")
return 0.0
def calculate_enhanced_reward(self, action, price_change, position_held_time=0, volatility=None, is_profitable=False, confidence=0.0, predicted_change=0.0, actual_change=0.0, current_pnl=0.0, symbol='UNKNOWN'):
"""Calculate enhanced reward for trading actions"""
fee = self.base_fee_rate
# Calculate frequency penalty
frequency_penalty = self._calculate_frequency_penalty()
# Base reward calculation
if action == 0: # Buy
# Small penalty for transaction plus frequency penalty
reward = -fee - frequency_penalty
elif action == 1: # Sell
# Calculate profit percentage minus fees (both entry and exit)
profit_pct = price_change
net_profit = profit_pct - (fee * 2)
# Scale reward and apply frequency penalty
reward = net_profit * 10 # Scale reward
reward = net_profit * self.reward_scaling
reward -= frequency_penalty
# Record PnL for risk adjustment
self.record_pnl(net_profit)
else: # Hold
# Small reward for holding a profitable position, small cost otherwise
if is_profitable:
reward = self._calculate_holding_reward(position_held_time, price_change)
else:
reward = -0.0001 # Very small negative reward
# Apply risk adjustment if enabled
if self.risk_adjusted:
reward = self._calculate_risk_adjustment(reward)
# Record this action for future frequency calculations
self.record_trade(action=action)
reward = -0.0001
if action in [0, 1] and predicted_change != 0:
if (action == 0 and actual_change > 0) or (action == 1 and actual_change < 0):
reward += abs(actual_change) * 5.0
else:
reward -= abs(predicted_change) * 2.0
reward += current_pnl * 0.1
if volatility is not None:
reward -= abs(volatility) * 100
if self.risk_aversion > 0 and len(self.returns) > 1:
returns_std = np.std(self.returns)
reward -= returns_std * self.risk_aversion
self.record_trade(action)
return reward
def calculate_prediction_reward(self, symbol, predicted_direction, actual_direction, confidence, predicted_change, actual_change, current_pnl=0.0, position_duration=0.0):
"""Calculate reward for prediction accuracy"""
reward = 0.0
if predicted_direction == actual_direction:
reward += 1.0 * confidence
else:
reward -= 0.5
if predicted_direction == actual_direction and abs(predicted_change) > 0.001:
reward += abs(actual_change) * 5.0
if predicted_direction != actual_direction and abs(predicted_change) > 0.001:
reward -= abs(predicted_change) * 2.0
reward += current_pnl * 0.1
# Dynamic adjustment based on recent PnL (loss cutting incentive)
if hasattr(self, 'pnl_history') and symbol in self.pnl_history and self.pnl_history[symbol]:
latest_pnl_entry = self.pnl_history[symbol][-1]
latest_pnl_value = latest_pnl_entry.get('pnl', 0.0) if isinstance(latest_pnl_entry, dict) else 0.0
if latest_pnl_value < 0 and position_duration > 60:
reward -= (abs(latest_pnl_value) * 0.2)
pnl_values = [entry.get('pnl', 0.0) for entry in self.pnl_history[symbol] if isinstance(entry, dict)]
best_pnl = max(pnl_values) if pnl_values else 0.0
if best_pnl < 0.0:
reward -= 0.1
return reward
# Example usage:
if __name__ == "__main__":
# Create calculator instance
reward_calc = ImprovedRewardCalculator()
reward_calc = RewardCalculator()
# Example reward for a buy action
buy_reward = reward_calc.calculate_reward(action=0, price_change=0)
buy_reward = reward_calc.calculate_enhanced_reward(action=0, price_change=0)
print(f"Buy action reward: {buy_reward:.5f}")
# Record a trade for frequency tracking
reward_calc.record_trade(action=0)
reward_calc.record_trade(0)
# Wait a bit and make another trade to test frequency penalty
import time
time.sleep(0.1)
# Example reward for a sell action with profit
sell_reward = reward_calc.calculate_reward(action=1, price_change=0.015, position_held_time=60)
sell_reward = reward_calc.calculate_enhanced_reward(action=1, price_change=0.015, position_held_time=60)
print(f"Sell action reward (with profit): {sell_reward:.5f}")
# Example reward for a hold action on profitable position
hold_reward = reward_calc.calculate_reward(action=2, price_change=0.01, position_held_time=30, is_profitable=True)
hold_reward = reward_calc.calculate_enhanced_reward(action=2, price_change=0.01, position_held_time=30, is_profitable=True)
print(f"Hold action reward (profitable): {hold_reward:.5f}")
# Example reward for a hold action on unprofitable position
hold_reward_neg = reward_calc.calculate_reward(action=2, price_change=-0.01, position_held_time=30, is_profitable=False)
hold_reward_neg = reward_calc.calculate_enhanced_reward(action=2, price_change=-0.01, position_held_time=30, is_profitable=False)
print(f"Hold action reward (unprofitable): {hold_reward_neg:.5f}")

View File

@ -5426,9 +5426,24 @@ class CleanTradingDashboard:
confidence_target_tensor = torch.FloatTensor([confidence_target]).to(device)
network.train()
action_logits, predicted_confidence = network(features_tensor)
network_output = network(features_tensor)
# Handle different return formats from network
if isinstance(network_output, tuple) and len(network_output) == 2:
action_logits, predicted_confidence = network_output
elif hasattr(network_output, 'dim'):
# Single tensor output - assume it's action logits
action_logits = network_output
predicted_confidence = torch.tensor(0.5, device=device) # Default confidence
else:
logger.debug(f"Unexpected network output format: {type(network_output)}")
continue
# Ensure predicted_confidence is a tensor with proper dimensions
if not hasattr(predicted_confidence, 'dim'):
# If it's not a tensor, convert it
predicted_confidence = torch.tensor(float(predicted_confidence), device=device)
# Ensure predicted_confidence has a batch dimension if it doesn't already
if predicted_confidence.dim() == 0:
predicted_confidence = predicted_confidence.unsqueeze(0)
@ -6048,4 +6063,7 @@ def create_clean_dashboard(data_provider: Optional[DataProvider] = None, orchest
data_provider=data_provider,
orchestrator=orchestrator,
trading_executor=trading_executor
)
)
# test edit

View File

@ -275,18 +275,28 @@ class DashboardComponentManager:
def format_cob_data(self, cob_snapshot, symbol, cumulative_imbalance_stats=None):
"""Format COB data into a split view with summary, imbalance stats, and a compact ladder."""
try:
if not cob_snapshot or not hasattr(cob_snapshot, 'stats'):
if not cob_snapshot:
return html.Div([
html.H6(f"{symbol} COB", className="mb-2"),
html.P("No COB data available", className="text-muted small")
])
stats = cob_snapshot.stats if hasattr(cob_snapshot, 'stats') else {}
mid_price = stats.get('mid_price', 0)
spread_bps = stats.get('spread_bps', 0)
imbalance = stats.get('imbalance', 0)
bids = getattr(cob_snapshot, 'consolidated_bids', [])
asks = getattr(cob_snapshot, 'consolidated_asks', [])
# Handle both old format (with stats attribute) and new format (direct attributes)
if hasattr(cob_snapshot, 'stats'):
# Old format with stats attribute
stats = cob_snapshot.stats
mid_price = stats.get('mid_price', 0)
spread_bps = stats.get('spread_bps', 0)
imbalance = stats.get('imbalance', 0)
bids = getattr(cob_snapshot, 'consolidated_bids', [])
asks = getattr(cob_snapshot, 'consolidated_asks', [])
else:
# New COBSnapshot format with direct attributes
mid_price = getattr(cob_snapshot, 'volume_weighted_mid', 0)
spread_bps = getattr(cob_snapshot, 'spread_bps', 0)
imbalance = getattr(cob_snapshot, 'liquidity_imbalance', 0)
bids = getattr(cob_snapshot, 'consolidated_bids', [])
asks = getattr(cob_snapshot, 'consolidated_asks', [])
if mid_price == 0 or not bids or not asks:
return html.Div([
@ -294,6 +304,17 @@ class DashboardComponentManager:
html.P("Awaiting valid order book data...", className="text-muted small")
])
# Create stats dict for compatibility with existing code
stats = {
'mid_price': mid_price,
'spread_bps': spread_bps,
'imbalance': imbalance,
'total_bid_liquidity': getattr(cob_snapshot, 'total_bid_liquidity', 0),
'total_ask_liquidity': getattr(cob_snapshot, 'total_ask_liquidity', 0),
'bid_levels': len(bids),
'ask_levels': len(asks)
}
# --- Left Panel: Overview and Stats ---
overview_panel = self._create_cob_overview_panel(symbol, stats, cumulative_imbalance_stats)
@ -381,10 +402,19 @@ class DashboardComponentManager:
def aggregate_buckets(orders):
buckets = {}
for order in orders:
price = order.get('price', 0)
# Handle both old format (size) and new format (total_size)
size = order.get('total_size', order.get('size', 0))
volume_usd = order.get('total_volume_usd', size * price)
# Handle both dictionary format and ConsolidatedOrderBookLevel objects
if hasattr(order, 'price'):
# ConsolidatedOrderBookLevel object
price = order.price
size = order.total_size
volume_usd = order.total_volume_usd
else:
# Dictionary format (legacy)
price = order.get('price', 0)
# Handle both old format (size) and new format (total_size)
size = order.get('total_size', order.get('size', 0))
volume_usd = order.get('total_volume_usd', size * price)
if price > 0:
bucket_key = round(price / bucket_size) * bucket_size
if bucket_key not in buckets: