anotate ui phase 1
This commit is contained in:
103
TESTCASES/README.md
Normal file
103
TESTCASES/README.md
Normal file
@@ -0,0 +1,103 @@
|
||||
# Manual Trade Annotation UI
|
||||
|
||||
A web-based interface for manually marking profitable buy/sell signals on historical market data to generate training test cases for machine learning models.
|
||||
|
||||
## Overview
|
||||
|
||||
This tool allows traders to:
|
||||
- View multi-timeframe candlestick charts
|
||||
- Navigate through historical data
|
||||
- Mark entry and exit points for trades
|
||||
- Generate test cases in realtime format
|
||||
- Train models with annotated data
|
||||
- Simulate inference to measure model performance
|
||||
|
||||
## Project Structure
|
||||
|
||||
```
|
||||
TESTCASES/
|
||||
├── web/ # Web application
|
||||
│ ├── app.py # Main Flask/Dash application
|
||||
│ ├── templates/ # Jinja2 HTML templates
|
||||
│ │ ├── base_layout.html
|
||||
│ │ ├── annotation_dashboard.html
|
||||
│ │ └── components/
|
||||
│ └── static/ # Static assets
|
||||
│ ├── css/
|
||||
│ ├── js/
|
||||
│ └── images/
|
||||
├── core/ # Core business logic
|
||||
│ ├── annotation_manager.py
|
||||
│ ├── training_simulator.py
|
||||
│ └── data_loader.py
|
||||
├── data/ # Data storage
|
||||
│ ├── annotations/
|
||||
│ ├── test_cases/
|
||||
│ └── training_results/
|
||||
└── tests/ # Test files
|
||||
```
|
||||
|
||||
## Installation
|
||||
|
||||
```bash
|
||||
# Install dependencies (if not already installed)
|
||||
pip install dash plotly pandas numpy
|
||||
|
||||
# Run the application
|
||||
python TESTCASES/web/app.py
|
||||
```
|
||||
|
||||
## Usage
|
||||
|
||||
1. **Start the application**: Run `python TESTCASES/web/app.py`
|
||||
2. **Open browser**: Navigate to `http://localhost:8051`
|
||||
3. **Select symbol and timeframe**: Choose trading pair and timeframes to display
|
||||
4. **Navigate to time period**: Use date picker or scroll to find market conditions
|
||||
5. **Mark trades**: Click on chart to mark entry point, click again for exit
|
||||
6. **Generate test cases**: Click "Generate Test Case" to create training data
|
||||
7. **Train models**: Select model and click "Train" to run training session
|
||||
8. **Simulate inference**: Click "Simulate" to test model performance
|
||||
|
||||
## Features
|
||||
|
||||
- Multi-timeframe synchronized charts (1s, 1m, 1h, 1d)
|
||||
- Interactive trade marking with P&L calculation
|
||||
- Test case generation in realtime format
|
||||
- Model training integration
|
||||
- Inference simulation with performance metrics
|
||||
- Session persistence and auto-save
|
||||
- Dark theme UI
|
||||
|
||||
## Integration with Main System
|
||||
|
||||
This sub-project is designed to be self-contained but can be integrated with the main trading system:
|
||||
|
||||
```python
|
||||
# Import annotation manager in main system
|
||||
from TESTCASES.core.annotation_manager import AnnotationManager
|
||||
|
||||
# Import training simulator
|
||||
from TESTCASES.core.training_simulator import TrainingSimulator
|
||||
|
||||
# Use generated test cases in training
|
||||
test_cases = annotation_manager.get_test_cases()
|
||||
```
|
||||
|
||||
## Configuration
|
||||
|
||||
Configuration is loaded from the main `config.yaml` file. The application uses:
|
||||
- Data provider settings for historical data access
|
||||
- Model paths for training integration
|
||||
- Symbol and timeframe configurations
|
||||
|
||||
## Development
|
||||
|
||||
To add new features:
|
||||
1. Update requirements in `.kiro/specs/manual-trade-annotation-ui/requirements.md`
|
||||
2. Update design in `.kiro/specs/manual-trade-annotation-ui/design.md`
|
||||
3. Add tasks to `.kiro/specs/manual-trade-annotation-ui/tasks.md`
|
||||
4. Implement changes following the task list
|
||||
|
||||
## License
|
||||
|
||||
Part of the AI Trading System project.
|
||||
5
TESTCASES/core/__init__.py
Normal file
5
TESTCASES/core/__init__.py
Normal file
@@ -0,0 +1,5 @@
|
||||
"""
|
||||
TESTCASES Core Module
|
||||
|
||||
Core business logic for the Manual Trade Annotation UI
|
||||
"""
|
||||
239
TESTCASES/core/annotation_manager.py
Normal file
239
TESTCASES/core/annotation_manager.py
Normal file
@@ -0,0 +1,239 @@
|
||||
"""
|
||||
Annotation Manager - Manages trade annotations and test case generation
|
||||
|
||||
Handles storage, retrieval, and test case generation from manual trade annotations.
|
||||
"""
|
||||
|
||||
import json
|
||||
import uuid
|
||||
from pathlib import Path
|
||||
from datetime import datetime
|
||||
from typing import List, Dict, Optional, Any
|
||||
from dataclasses import dataclass, asdict
|
||||
import logging
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
@dataclass
|
||||
class TradeAnnotation:
|
||||
"""Represents a manually marked trade"""
|
||||
annotation_id: str
|
||||
symbol: str
|
||||
timeframe: str
|
||||
entry: Dict[str, Any] # {timestamp, price, index}
|
||||
exit: Dict[str, Any] # {timestamp, price, index}
|
||||
direction: str # 'LONG' or 'SHORT'
|
||||
profit_loss_pct: float
|
||||
notes: str = ""
|
||||
created_at: str = None
|
||||
market_context: Dict[str, Any] = None
|
||||
|
||||
def __post_init__(self):
|
||||
if self.created_at is None:
|
||||
self.created_at = datetime.now().isoformat()
|
||||
if self.market_context is None:
|
||||
self.market_context = {}
|
||||
|
||||
|
||||
class AnnotationManager:
|
||||
"""Manages trade annotations and test case generation"""
|
||||
|
||||
def __init__(self, storage_path: str = "TESTCASES/data/annotations"):
|
||||
"""Initialize annotation manager"""
|
||||
self.storage_path = Path(storage_path)
|
||||
self.storage_path.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
self.annotations_file = self.storage_path / "annotations_db.json"
|
||||
self.test_cases_dir = self.storage_path.parent / "test_cases"
|
||||
self.test_cases_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
self.annotations_db = self._load_annotations()
|
||||
|
||||
logger.info(f"AnnotationManager initialized with storage: {self.storage_path}")
|
||||
|
||||
def _load_annotations(self) -> Dict[str, List[Dict]]:
|
||||
"""Load annotations from storage"""
|
||||
if self.annotations_file.exists():
|
||||
try:
|
||||
with open(self.annotations_file, 'r') as f:
|
||||
data = json.load(f)
|
||||
logger.info(f"Loaded {len(data.get('annotations', []))} annotations")
|
||||
return data
|
||||
except Exception as e:
|
||||
logger.error(f"Error loading annotations: {e}")
|
||||
return {"annotations": [], "metadata": {}}
|
||||
else:
|
||||
return {"annotations": [], "metadata": {}}
|
||||
|
||||
def _save_annotations(self):
|
||||
"""Save annotations to storage"""
|
||||
try:
|
||||
# Update metadata
|
||||
self.annotations_db["metadata"] = {
|
||||
"total_annotations": len(self.annotations_db["annotations"]),
|
||||
"last_updated": datetime.now().isoformat()
|
||||
}
|
||||
|
||||
with open(self.annotations_file, 'w') as f:
|
||||
json.dump(self.annotations_db, f, indent=2)
|
||||
|
||||
logger.info(f"Saved {len(self.annotations_db['annotations'])} annotations")
|
||||
except Exception as e:
|
||||
logger.error(f"Error saving annotations: {e}")
|
||||
raise
|
||||
|
||||
def create_annotation(self, entry_point: Dict, exit_point: Dict,
|
||||
symbol: str, timeframe: str) -> TradeAnnotation:
|
||||
"""Create new trade annotation"""
|
||||
# Calculate direction and P&L
|
||||
entry_price = entry_point['price']
|
||||
exit_price = exit_point['price']
|
||||
|
||||
if exit_price > entry_price:
|
||||
direction = 'LONG'
|
||||
profit_loss_pct = ((exit_price - entry_price) / entry_price) * 100
|
||||
else:
|
||||
direction = 'SHORT'
|
||||
profit_loss_pct = ((entry_price - exit_price) / entry_price) * 100
|
||||
|
||||
annotation = TradeAnnotation(
|
||||
annotation_id=str(uuid.uuid4()),
|
||||
symbol=symbol,
|
||||
timeframe=timeframe,
|
||||
entry=entry_point,
|
||||
exit=exit_point,
|
||||
direction=direction,
|
||||
profit_loss_pct=profit_loss_pct
|
||||
)
|
||||
|
||||
logger.info(f"Created annotation: {annotation.annotation_id} ({direction}, {profit_loss_pct:.2f}%)")
|
||||
return annotation
|
||||
|
||||
def save_annotation(self, annotation: TradeAnnotation):
|
||||
"""Save annotation to storage"""
|
||||
# Convert to dict
|
||||
ann_dict = asdict(annotation)
|
||||
|
||||
# Add to database
|
||||
self.annotations_db["annotations"].append(ann_dict)
|
||||
|
||||
# Save to file
|
||||
self._save_annotations()
|
||||
|
||||
logger.info(f"Saved annotation: {annotation.annotation_id}")
|
||||
|
||||
def get_annotations(self, symbol: str = None,
|
||||
timeframe: str = None) -> List[TradeAnnotation]:
|
||||
"""Retrieve annotations with optional filtering"""
|
||||
annotations = self.annotations_db.get("annotations", [])
|
||||
|
||||
# Filter by symbol
|
||||
if symbol:
|
||||
annotations = [a for a in annotations if a.get('symbol') == symbol]
|
||||
|
||||
# Filter by timeframe
|
||||
if timeframe:
|
||||
annotations = [a for a in annotations if a.get('timeframe') == timeframe]
|
||||
|
||||
# Convert to TradeAnnotation objects
|
||||
result = []
|
||||
for ann_dict in annotations:
|
||||
try:
|
||||
annotation = TradeAnnotation(**ann_dict)
|
||||
result.append(annotation)
|
||||
except Exception as e:
|
||||
logger.error(f"Error converting annotation: {e}")
|
||||
|
||||
return result
|
||||
|
||||
def delete_annotation(self, annotation_id: str):
|
||||
"""Delete annotation"""
|
||||
original_count = len(self.annotations_db["annotations"])
|
||||
self.annotations_db["annotations"] = [
|
||||
a for a in self.annotations_db["annotations"]
|
||||
if a.get('annotation_id') != annotation_id
|
||||
]
|
||||
|
||||
if len(self.annotations_db["annotations"]) < original_count:
|
||||
self._save_annotations()
|
||||
logger.info(f"Deleted annotation: {annotation_id}")
|
||||
else:
|
||||
logger.warning(f"Annotation not found: {annotation_id}")
|
||||
|
||||
def generate_test_case(self, annotation: TradeAnnotation) -> Dict:
|
||||
"""Generate test case from annotation in realtime format"""
|
||||
# This will be populated with actual market data in Task 2
|
||||
test_case = {
|
||||
"test_case_id": f"annotation_{annotation.annotation_id}",
|
||||
"symbol": annotation.symbol,
|
||||
"timestamp": annotation.entry['timestamp'],
|
||||
"action": "BUY" if annotation.direction == "LONG" else "SELL",
|
||||
"market_state": {
|
||||
# Will be populated with BaseDataInput structure
|
||||
"ohlcv_1s": [],
|
||||
"ohlcv_1m": [],
|
||||
"ohlcv_1h": [],
|
||||
"ohlcv_1d": [],
|
||||
"cob_data": {},
|
||||
"technical_indicators": {},
|
||||
"pivot_points": []
|
||||
},
|
||||
"expected_outcome": {
|
||||
"direction": annotation.direction,
|
||||
"profit_loss_pct": annotation.profit_loss_pct,
|
||||
"holding_period_seconds": self._calculate_holding_period(annotation),
|
||||
"exit_price": annotation.exit['price']
|
||||
},
|
||||
"annotation_metadata": {
|
||||
"annotator": "manual",
|
||||
"confidence": 1.0,
|
||||
"notes": annotation.notes,
|
||||
"created_at": annotation.created_at
|
||||
}
|
||||
}
|
||||
|
||||
# Save test case to file
|
||||
test_case_file = self.test_cases_dir / f"{test_case['test_case_id']}.json"
|
||||
with open(test_case_file, 'w') as f:
|
||||
json.dump(test_case, f, indent=2)
|
||||
|
||||
logger.info(f"Generated test case: {test_case['test_case_id']}")
|
||||
return test_case
|
||||
|
||||
def _calculate_holding_period(self, annotation: TradeAnnotation) -> float:
|
||||
"""Calculate holding period in seconds"""
|
||||
try:
|
||||
entry_time = datetime.fromisoformat(annotation.entry['timestamp'].replace('Z', '+00:00'))
|
||||
exit_time = datetime.fromisoformat(annotation.exit['timestamp'].replace('Z', '+00:00'))
|
||||
return (exit_time - entry_time).total_seconds()
|
||||
except Exception as e:
|
||||
logger.error(f"Error calculating holding period: {e}")
|
||||
return 0.0
|
||||
|
||||
def export_annotations(self, annotations: List[TradeAnnotation] = None,
|
||||
format_type: str = 'json') -> Path:
|
||||
"""Export annotations to file"""
|
||||
if annotations is None:
|
||||
annotations = self.get_annotations()
|
||||
|
||||
# Convert to dicts
|
||||
export_data = [asdict(ann) for ann in annotations]
|
||||
|
||||
# Create export file
|
||||
timestamp = datetime.now().strftime('%Y%m%d_%H%M%S')
|
||||
export_file = self.storage_path / f"export_{timestamp}.{format_type}"
|
||||
|
||||
if format_type == 'json':
|
||||
with open(export_file, 'w') as f:
|
||||
json.dump(export_data, f, indent=2)
|
||||
elif format_type == 'csv':
|
||||
import csv
|
||||
with open(export_file, 'w', newline='') as f:
|
||||
if export_data:
|
||||
writer = csv.DictWriter(f, fieldnames=export_data[0].keys())
|
||||
writer.writeheader()
|
||||
writer.writerows(export_data)
|
||||
|
||||
logger.info(f"Exported {len(annotations)} annotations to {export_file}")
|
||||
return export_file
|
||||
166
TESTCASES/core/training_simulator.py
Normal file
166
TESTCASES/core/training_simulator.py
Normal file
@@ -0,0 +1,166 @@
|
||||
"""
|
||||
Training Simulator - Handles model loading, training, and inference simulation
|
||||
|
||||
Integrates with the main system's orchestrator and models for training and testing.
|
||||
"""
|
||||
|
||||
import logging
|
||||
import uuid
|
||||
import time
|
||||
from typing import Dict, List, Optional, Any
|
||||
from dataclasses import dataclass, asdict
|
||||
from datetime import datetime
|
||||
from pathlib import Path
|
||||
import json
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
@dataclass
|
||||
class TrainingResults:
|
||||
"""Results from training session"""
|
||||
training_id: str
|
||||
model_name: str
|
||||
test_cases_used: int
|
||||
epochs_completed: int
|
||||
final_loss: float
|
||||
training_duration_seconds: float
|
||||
checkpoint_path: str
|
||||
metrics: Dict[str, float]
|
||||
status: str = "completed"
|
||||
|
||||
|
||||
@dataclass
|
||||
class InferenceResults:
|
||||
"""Results from inference simulation"""
|
||||
annotation_id: str
|
||||
model_name: str
|
||||
predictions: List[Dict]
|
||||
accuracy: float
|
||||
precision: float
|
||||
recall: float
|
||||
f1_score: float
|
||||
confusion_matrix: Dict
|
||||
prediction_timeline: List[Dict]
|
||||
|
||||
|
||||
class TrainingSimulator:
|
||||
"""Simulates training and inference on annotated data"""
|
||||
|
||||
def __init__(self, orchestrator=None):
|
||||
"""Initialize training simulator"""
|
||||
self.orchestrator = orchestrator
|
||||
self.model_cache = {}
|
||||
self.training_sessions = {}
|
||||
|
||||
# Storage for training results
|
||||
self.results_dir = Path("TESTCASES/data/training_results")
|
||||
self.results_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
logger.info("TrainingSimulator initialized")
|
||||
|
||||
def load_model(self, model_name: str):
|
||||
"""Load model from orchestrator"""
|
||||
if model_name in self.model_cache:
|
||||
return self.model_cache[model_name]
|
||||
|
||||
if not self.orchestrator:
|
||||
logger.error("Orchestrator not available")
|
||||
return None
|
||||
|
||||
# Get model from orchestrator
|
||||
# This will be implemented when we integrate with actual models
|
||||
logger.info(f"Loading model: {model_name}")
|
||||
return None
|
||||
|
||||
def start_training(self, model_name: str, test_cases: List[Dict]) -> str:
|
||||
"""Start training session with test cases"""
|
||||
training_id = str(uuid.uuid4())
|
||||
|
||||
# Create training session
|
||||
self.training_sessions[training_id] = {
|
||||
'status': 'running',
|
||||
'model_name': model_name,
|
||||
'test_cases_count': len(test_cases),
|
||||
'current_epoch': 0,
|
||||
'total_epochs': 50,
|
||||
'current_loss': 0.0,
|
||||
'start_time': time.time()
|
||||
}
|
||||
|
||||
logger.info(f"Started training session: {training_id}")
|
||||
|
||||
# TODO: Implement actual training in background thread
|
||||
# For now, simulate training completion
|
||||
self._simulate_training(training_id)
|
||||
|
||||
return training_id
|
||||
|
||||
def _simulate_training(self, training_id: str):
|
||||
"""Simulate training progress (placeholder)"""
|
||||
import threading
|
||||
|
||||
def train():
|
||||
session = self.training_sessions[training_id]
|
||||
total_epochs = session['total_epochs']
|
||||
|
||||
for epoch in range(total_epochs):
|
||||
time.sleep(0.1) # Simulate training time
|
||||
session['current_epoch'] = epoch + 1
|
||||
session['current_loss'] = 1.0 / (epoch + 1) # Decreasing loss
|
||||
|
||||
# Mark as completed
|
||||
session['status'] = 'completed'
|
||||
session['final_loss'] = session['current_loss']
|
||||
session['duration_seconds'] = time.time() - session['start_time']
|
||||
session['accuracy'] = 0.85
|
||||
|
||||
logger.info(f"Training completed: {training_id}")
|
||||
|
||||
thread = threading.Thread(target=train, daemon=True)
|
||||
thread.start()
|
||||
|
||||
def get_training_progress(self, training_id: str) -> Dict:
|
||||
"""Get training progress"""
|
||||
if training_id not in self.training_sessions:
|
||||
return {
|
||||
'status': 'not_found',
|
||||
'error': 'Training session not found'
|
||||
}
|
||||
|
||||
return self.training_sessions[training_id]
|
||||
|
||||
def simulate_inference(self, annotation_id: str, model_name: str) -> InferenceResults:
|
||||
"""Simulate inference on annotated period"""
|
||||
# Placeholder implementation
|
||||
logger.info(f"Simulating inference for annotation: {annotation_id}")
|
||||
|
||||
# Generate dummy predictions
|
||||
predictions = []
|
||||
for i in range(10):
|
||||
predictions.append({
|
||||
'timestamp': datetime.now().isoformat(),
|
||||
'predicted_action': 'BUY' if i % 2 == 0 else 'SELL',
|
||||
'confidence': 0.7 + (i * 0.02),
|
||||
'actual_action': 'BUY' if i % 2 == 0 else 'SELL',
|
||||
'correct': True
|
||||
})
|
||||
|
||||
results = InferenceResults(
|
||||
annotation_id=annotation_id,
|
||||
model_name=model_name,
|
||||
predictions=predictions,
|
||||
accuracy=0.85,
|
||||
precision=0.82,
|
||||
recall=0.88,
|
||||
f1_score=0.85,
|
||||
confusion_matrix={
|
||||
'tp_buy': 4,
|
||||
'fn_buy': 1,
|
||||
'fp_sell': 1,
|
||||
'tn_sell': 4
|
||||
},
|
||||
prediction_timeline=predictions
|
||||
)
|
||||
|
||||
return results
|
||||
400
TESTCASES/web/app.py
Normal file
400
TESTCASES/web/app.py
Normal file
@@ -0,0 +1,400 @@
|
||||
"""
|
||||
Manual Trade Annotation UI - Main Application
|
||||
|
||||
A web-based interface for manually marking profitable buy/sell signals on historical
|
||||
market data to generate training test cases for machine learning models.
|
||||
"""
|
||||
|
||||
import os
|
||||
import sys
|
||||
from pathlib import Path
|
||||
|
||||
# Add parent directory to path for imports
|
||||
parent_dir = Path(__file__).parent.parent.parent
|
||||
sys.path.insert(0, str(parent_dir))
|
||||
|
||||
from flask import Flask, render_template, request, jsonify, send_file
|
||||
from dash import Dash, html
|
||||
import logging
|
||||
from datetime import datetime
|
||||
import json
|
||||
|
||||
# Import core components from main system
|
||||
try:
|
||||
from core.data_provider import DataProvider
|
||||
from core.orchestrator import TradingOrchestrator
|
||||
from core.config import get_config
|
||||
except ImportError as e:
|
||||
print(f"Warning: Could not import main system components: {e}")
|
||||
print("Running in standalone mode with limited functionality")
|
||||
DataProvider = None
|
||||
TradingOrchestrator = None
|
||||
get_config = lambda: {}
|
||||
|
||||
# Import TESTCASES modules
|
||||
testcases_dir = Path(__file__).parent.parent
|
||||
sys.path.insert(0, str(testcases_dir))
|
||||
|
||||
try:
|
||||
from core.annotation_manager import AnnotationManager
|
||||
from core.training_simulator import TrainingSimulator
|
||||
except ImportError:
|
||||
# Try alternative import path
|
||||
import importlib.util
|
||||
|
||||
# Load annotation_manager
|
||||
ann_spec = importlib.util.spec_from_file_location(
|
||||
"annotation_manager",
|
||||
testcases_dir / "core" / "annotation_manager.py"
|
||||
)
|
||||
ann_module = importlib.util.module_from_spec(ann_spec)
|
||||
ann_spec.loader.exec_module(ann_module)
|
||||
AnnotationManager = ann_module.AnnotationManager
|
||||
|
||||
# Load training_simulator
|
||||
train_spec = importlib.util.spec_from_file_location(
|
||||
"training_simulator",
|
||||
testcases_dir / "core" / "training_simulator.py"
|
||||
)
|
||||
train_module = importlib.util.module_from_spec(train_spec)
|
||||
train_spec.loader.exec_module(train_module)
|
||||
TrainingSimulator = train_module.TrainingSimulator
|
||||
|
||||
# Setup logging
|
||||
logging.basicConfig(
|
||||
level=logging.INFO,
|
||||
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
|
||||
)
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
class AnnotationDashboard:
|
||||
"""Main annotation dashboard application"""
|
||||
|
||||
def __init__(self):
|
||||
"""Initialize the dashboard"""
|
||||
# Load configuration
|
||||
self.config = get_config() if get_config else {}
|
||||
|
||||
# Initialize Flask app
|
||||
self.server = Flask(
|
||||
__name__,
|
||||
template_folder='templates',
|
||||
static_folder='static'
|
||||
)
|
||||
|
||||
# Initialize Dash app
|
||||
self.app = Dash(
|
||||
__name__,
|
||||
server=self.server,
|
||||
url_base_pathname='/dash/',
|
||||
external_stylesheets=[
|
||||
'https://cdn.jsdelivr.net/npm/bootstrap@5.1.3/dist/css/bootstrap.min.css',
|
||||
'https://cdnjs.cloudflare.com/ajax/libs/font-awesome/6.0.0/css/all.min.css'
|
||||
]
|
||||
)
|
||||
|
||||
# Initialize core components
|
||||
self.data_provider = DataProvider() if DataProvider else None
|
||||
self.orchestrator = TradingOrchestrator(
|
||||
data_provider=self.data_provider
|
||||
) if TradingOrchestrator and self.data_provider else None
|
||||
|
||||
# Initialize TESTCASES components
|
||||
self.annotation_manager = AnnotationManager()
|
||||
self.training_simulator = TrainingSimulator(self.orchestrator) if self.orchestrator else None
|
||||
|
||||
# Setup routes
|
||||
self._setup_routes()
|
||||
|
||||
logger.info("Annotation Dashboard initialized")
|
||||
|
||||
def _setup_routes(self):
|
||||
"""Setup Flask routes"""
|
||||
|
||||
@self.server.route('/')
|
||||
def index():
|
||||
"""Main dashboard page"""
|
||||
# Get current annotations
|
||||
annotations = self.annotation_manager.get_annotations()
|
||||
|
||||
# Prepare template data
|
||||
template_data = {
|
||||
'current_symbol': 'ETH/USDT',
|
||||
'timeframes': ['1s', '1m', '1h', '1d'],
|
||||
'annotations': [ann.__dict__ if hasattr(ann, '__dict__') else ann
|
||||
for ann in annotations]
|
||||
}
|
||||
|
||||
return render_template('annotation_dashboard.html', **template_data)
|
||||
|
||||
@self.server.route('/api/chart-data', methods=['POST'])
|
||||
def get_chart_data():
|
||||
"""Get chart data for specified symbol and timeframes"""
|
||||
try:
|
||||
data = request.get_json()
|
||||
symbol = data.get('symbol', 'ETH/USDT')
|
||||
timeframes = data.get('timeframes', ['1s', '1m', '1h', '1d'])
|
||||
start_time = data.get('start_time')
|
||||
end_time = data.get('end_time')
|
||||
|
||||
if not self.data_provider:
|
||||
return jsonify({
|
||||
'success': False,
|
||||
'error': {
|
||||
'code': 'DATA_PROVIDER_UNAVAILABLE',
|
||||
'message': 'Data provider not available'
|
||||
}
|
||||
})
|
||||
|
||||
# Fetch data for each timeframe
|
||||
chart_data = {}
|
||||
for timeframe in timeframes:
|
||||
df = self.data_provider.get_historical_data(
|
||||
symbol=symbol,
|
||||
timeframe=timeframe,
|
||||
limit=500
|
||||
)
|
||||
|
||||
if df is not None and not df.empty:
|
||||
# Convert to format suitable for Plotly
|
||||
chart_data[timeframe] = {
|
||||
'timestamps': df.index.strftime('%Y-%m-%d %H:%M:%S').tolist(),
|
||||
'open': df['open'].tolist(),
|
||||
'high': df['high'].tolist(),
|
||||
'low': df['low'].tolist(),
|
||||
'close': df['close'].tolist(),
|
||||
'volume': df['volume'].tolist()
|
||||
}
|
||||
|
||||
return jsonify({
|
||||
'success': True,
|
||||
'chart_data': chart_data
|
||||
})
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error fetching chart data: {e}")
|
||||
return jsonify({
|
||||
'success': False,
|
||||
'error': {
|
||||
'code': 'CHART_DATA_ERROR',
|
||||
'message': str(e)
|
||||
}
|
||||
})
|
||||
|
||||
@self.server.route('/api/save-annotation', methods=['POST'])
|
||||
def save_annotation():
|
||||
"""Save a new annotation"""
|
||||
try:
|
||||
data = request.get_json()
|
||||
|
||||
# Create annotation
|
||||
annotation = self.annotation_manager.create_annotation(
|
||||
entry_point=data['entry'],
|
||||
exit_point=data['exit'],
|
||||
symbol=data['symbol'],
|
||||
timeframe=data['timeframe']
|
||||
)
|
||||
|
||||
# Save annotation
|
||||
self.annotation_manager.save_annotation(annotation)
|
||||
|
||||
return jsonify({
|
||||
'success': True,
|
||||
'annotation': annotation.__dict__ if hasattr(annotation, '__dict__') else annotation
|
||||
})
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error saving annotation: {e}")
|
||||
return jsonify({
|
||||
'success': False,
|
||||
'error': {
|
||||
'code': 'SAVE_ANNOTATION_ERROR',
|
||||
'message': str(e)
|
||||
}
|
||||
})
|
||||
|
||||
@self.server.route('/api/delete-annotation', methods=['POST'])
|
||||
def delete_annotation():
|
||||
"""Delete an annotation"""
|
||||
try:
|
||||
data = request.get_json()
|
||||
annotation_id = data['annotation_id']
|
||||
|
||||
self.annotation_manager.delete_annotation(annotation_id)
|
||||
|
||||
return jsonify({'success': True})
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error deleting annotation: {e}")
|
||||
return jsonify({
|
||||
'success': False,
|
||||
'error': {
|
||||
'code': 'DELETE_ANNOTATION_ERROR',
|
||||
'message': str(e)
|
||||
}
|
||||
})
|
||||
|
||||
@self.server.route('/api/generate-test-case', methods=['POST'])
|
||||
def generate_test_case():
|
||||
"""Generate test case from annotation"""
|
||||
try:
|
||||
data = request.get_json()
|
||||
annotation_id = data['annotation_id']
|
||||
|
||||
# Get annotation
|
||||
annotations = self.annotation_manager.get_annotations()
|
||||
annotation = next((a for a in annotations
|
||||
if (a.annotation_id if hasattr(a, 'annotation_id')
|
||||
else a.get('annotation_id')) == annotation_id), None)
|
||||
|
||||
if not annotation:
|
||||
return jsonify({
|
||||
'success': False,
|
||||
'error': {
|
||||
'code': 'ANNOTATION_NOT_FOUND',
|
||||
'message': 'Annotation not found'
|
||||
}
|
||||
})
|
||||
|
||||
# Generate test case
|
||||
test_case = self.annotation_manager.generate_test_case(annotation)
|
||||
|
||||
return jsonify({
|
||||
'success': True,
|
||||
'test_case': test_case
|
||||
})
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error generating test case: {e}")
|
||||
return jsonify({
|
||||
'success': False,
|
||||
'error': {
|
||||
'code': 'GENERATE_TESTCASE_ERROR',
|
||||
'message': str(e)
|
||||
}
|
||||
})
|
||||
|
||||
@self.server.route('/api/export-annotations', methods=['POST'])
|
||||
def export_annotations():
|
||||
"""Export annotations to file"""
|
||||
try:
|
||||
data = request.get_json()
|
||||
symbol = data.get('symbol')
|
||||
format_type = data.get('format', 'json')
|
||||
|
||||
# Get annotations
|
||||
annotations = self.annotation_manager.get_annotations(symbol=symbol)
|
||||
|
||||
# Export to file
|
||||
output_path = self.annotation_manager.export_annotations(
|
||||
annotations=annotations,
|
||||
format_type=format_type
|
||||
)
|
||||
|
||||
return send_file(output_path, as_attachment=True)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error exporting annotations: {e}")
|
||||
return jsonify({
|
||||
'success': False,
|
||||
'error': {
|
||||
'code': 'EXPORT_ERROR',
|
||||
'message': str(e)
|
||||
}
|
||||
})
|
||||
|
||||
@self.server.route('/api/train-model', methods=['POST'])
|
||||
def train_model():
|
||||
"""Start model training with annotations"""
|
||||
try:
|
||||
if not self.training_simulator:
|
||||
return jsonify({
|
||||
'success': False,
|
||||
'error': {
|
||||
'code': 'TRAINING_UNAVAILABLE',
|
||||
'message': 'Training simulator not available'
|
||||
}
|
||||
})
|
||||
|
||||
data = request.get_json()
|
||||
model_name = data['model_name']
|
||||
annotation_ids = data['annotation_ids']
|
||||
|
||||
# Get annotations
|
||||
annotations = self.annotation_manager.get_annotations()
|
||||
selected_annotations = [a for a in annotations
|
||||
if (a.annotation_id if hasattr(a, 'annotation_id')
|
||||
else a.get('annotation_id')) in annotation_ids]
|
||||
|
||||
# Generate test cases
|
||||
test_cases = [self.annotation_manager.generate_test_case(ann)
|
||||
for ann in selected_annotations]
|
||||
|
||||
# Start training
|
||||
training_id = self.training_simulator.start_training(
|
||||
model_name=model_name,
|
||||
test_cases=test_cases
|
||||
)
|
||||
|
||||
return jsonify({
|
||||
'success': True,
|
||||
'training_id': training_id
|
||||
})
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error starting training: {e}")
|
||||
return jsonify({
|
||||
'success': False,
|
||||
'error': {
|
||||
'code': 'TRAINING_ERROR',
|
||||
'message': str(e)
|
||||
}
|
||||
})
|
||||
|
||||
@self.server.route('/api/training-progress', methods=['POST'])
|
||||
def get_training_progress():
|
||||
"""Get training progress"""
|
||||
try:
|
||||
if not self.training_simulator:
|
||||
return jsonify({
|
||||
'success': False,
|
||||
'error': {
|
||||
'code': 'TRAINING_UNAVAILABLE',
|
||||
'message': 'Training simulator not available'
|
||||
}
|
||||
})
|
||||
|
||||
data = request.get_json()
|
||||
training_id = data['training_id']
|
||||
|
||||
progress = self.training_simulator.get_training_progress(training_id)
|
||||
|
||||
return jsonify({
|
||||
'success': True,
|
||||
'progress': progress
|
||||
})
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error getting training progress: {e}")
|
||||
return jsonify({
|
||||
'success': False,
|
||||
'error': {
|
||||
'code': 'PROGRESS_ERROR',
|
||||
'message': str(e)
|
||||
}
|
||||
})
|
||||
|
||||
def run(self, host='127.0.0.1', port=8051, debug=False):
|
||||
"""Run the application"""
|
||||
logger.info(f"Starting Annotation Dashboard on http://{host}:{port}")
|
||||
self.server.run(host=host, port=port, debug=debug)
|
||||
|
||||
|
||||
def main():
|
||||
"""Main entry point"""
|
||||
dashboard = AnnotationDashboard()
|
||||
dashboard.run(debug=True)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
334
TESTCASES/web/static/css/annotation_ui.css
Normal file
334
TESTCASES/web/static/css/annotation_ui.css
Normal file
@@ -0,0 +1,334 @@
|
||||
/* Annotation UI Specific Styles */
|
||||
|
||||
/* Main Layout */
|
||||
.main-content {
|
||||
padding-top: 1rem;
|
||||
padding-bottom: 1rem;
|
||||
min-height: calc(100vh - 120px);
|
||||
}
|
||||
|
||||
/* Chart Panel */
|
||||
.chart-panel {
|
||||
height: calc(100vh - 150px);
|
||||
}
|
||||
|
||||
.chart-panel .card-body {
|
||||
height: calc(100% - 60px);
|
||||
overflow: hidden;
|
||||
}
|
||||
|
||||
#chart-container {
|
||||
height: 100%;
|
||||
overflow-y: auto;
|
||||
overflow-x: hidden;
|
||||
}
|
||||
|
||||
.timeframe-chart {
|
||||
margin-bottom: 1rem;
|
||||
border: 1px solid var(--border-color);
|
||||
border-radius: 4px;
|
||||
background-color: var(--bg-tertiary);
|
||||
}
|
||||
|
||||
.chart-header {
|
||||
display: flex;
|
||||
justify-content: space-between;
|
||||
align-items: center;
|
||||
padding: 0.5rem 1rem;
|
||||
background-color: var(--bg-secondary);
|
||||
border-bottom: 1px solid var(--border-color);
|
||||
}
|
||||
|
||||
.timeframe-label {
|
||||
font-weight: 600;
|
||||
font-size: 0.875rem;
|
||||
color: var(--text-primary);
|
||||
}
|
||||
|
||||
.chart-info {
|
||||
font-size: 0.75rem;
|
||||
color: var(--text-secondary);
|
||||
}
|
||||
|
||||
.chart-plot {
|
||||
height: 300px;
|
||||
padding: 0.5rem;
|
||||
}
|
||||
|
||||
.chart-loading {
|
||||
position: absolute;
|
||||
top: 50%;
|
||||
left: 50%;
|
||||
transform: translate(-50%, -50%);
|
||||
text-align: center;
|
||||
z-index: 1000;
|
||||
background-color: rgba(17, 24, 39, 0.9);
|
||||
padding: 2rem;
|
||||
border-radius: 8px;
|
||||
}
|
||||
|
||||
/* Control Panel */
|
||||
.control-panel {
|
||||
position: sticky;
|
||||
top: 1rem;
|
||||
max-height: calc(100vh - 150px);
|
||||
overflow-y: auto;
|
||||
}
|
||||
|
||||
.control-panel .card-body {
|
||||
padding: 1rem;
|
||||
}
|
||||
|
||||
.control-panel .form-label {
|
||||
font-size: 0.875rem;
|
||||
font-weight: 600;
|
||||
margin-bottom: 0.5rem;
|
||||
}
|
||||
|
||||
.control-panel .form-select,
|
||||
.control-panel .form-control {
|
||||
font-size: 0.875rem;
|
||||
}
|
||||
|
||||
.control-panel .btn-group-vertical .btn {
|
||||
text-align: left;
|
||||
}
|
||||
|
||||
/* Annotation List */
|
||||
.annotation-list {
|
||||
position: sticky;
|
||||
top: 1rem;
|
||||
max-height: 400px;
|
||||
}
|
||||
|
||||
.annotation-list .card-body {
|
||||
padding: 0;
|
||||
max-height: 350px;
|
||||
overflow-y: auto;
|
||||
}
|
||||
|
||||
.annotation-list .list-group-item {
|
||||
cursor: pointer;
|
||||
transition: background-color 0.2s;
|
||||
}
|
||||
|
||||
.annotation-list .list-group-item:hover {
|
||||
background-color: var(--bg-tertiary) !important;
|
||||
}
|
||||
|
||||
.annotation-list .btn-group-vertical {
|
||||
min-width: 40px;
|
||||
}
|
||||
|
||||
/* Training Panel */
|
||||
.training-panel {
|
||||
position: sticky;
|
||||
top: 420px;
|
||||
}
|
||||
|
||||
.training-panel .card-body {
|
||||
padding: 1rem;
|
||||
}
|
||||
|
||||
/* Inference Panel */
|
||||
.inference-panel {
|
||||
padding: 1rem;
|
||||
}
|
||||
|
||||
#inference-chart {
|
||||
background-color: var(--bg-tertiary);
|
||||
border-radius: 4px;
|
||||
border: 1px solid var(--border-color);
|
||||
}
|
||||
|
||||
.inference-panel .table-responsive {
|
||||
border: 1px solid var(--border-color);
|
||||
border-radius: 4px;
|
||||
}
|
||||
|
||||
/* Annotation Markers on Charts */
|
||||
.annotation-marker-entry {
|
||||
color: #10b981;
|
||||
font-size: 20px;
|
||||
}
|
||||
|
||||
.annotation-marker-exit {
|
||||
color: #ef4444;
|
||||
font-size: 20px;
|
||||
}
|
||||
|
||||
.annotation-line {
|
||||
stroke: #3b82f6;
|
||||
stroke-width: 2;
|
||||
stroke-dasharray: 5, 5;
|
||||
}
|
||||
|
||||
.annotation-pnl-label {
|
||||
font-size: 12px;
|
||||
font-weight: 600;
|
||||
}
|
||||
|
||||
/* Prediction Markers */
|
||||
.prediction-marker-correct {
|
||||
color: #10b981;
|
||||
font-size: 16px;
|
||||
}
|
||||
|
||||
.prediction-marker-incorrect {
|
||||
color: #ef4444;
|
||||
font-size: 16px;
|
||||
}
|
||||
|
||||
/* Crosshair Cursor */
|
||||
.chart-plot:hover {
|
||||
cursor: crosshair;
|
||||
}
|
||||
|
||||
/* Fullscreen Mode */
|
||||
#chart-container:fullscreen {
|
||||
background-color: var(--bg-primary);
|
||||
padding: 1rem;
|
||||
}
|
||||
|
||||
#chart-container:-webkit-full-screen {
|
||||
background-color: var(--bg-primary);
|
||||
padding: 1rem;
|
||||
}
|
||||
|
||||
#chart-container:-moz-full-screen {
|
||||
background-color: var(--bg-primary);
|
||||
padding: 1rem;
|
||||
}
|
||||
|
||||
/* Responsive Adjustments */
|
||||
@media (max-width: 1200px) {
|
||||
.chart-plot {
|
||||
height: 250px;
|
||||
}
|
||||
}
|
||||
|
||||
@media (max-width: 768px) {
|
||||
.main-content {
|
||||
padding-left: 0.5rem;
|
||||
padding-right: 0.5rem;
|
||||
}
|
||||
|
||||
.chart-plot {
|
||||
height: 200px;
|
||||
}
|
||||
|
||||
.control-panel,
|
||||
.annotation-list,
|
||||
.training-panel {
|
||||
position: relative;
|
||||
top: 0;
|
||||
margin-bottom: 1rem;
|
||||
}
|
||||
}
|
||||
|
||||
/* Animation for Loading States */
|
||||
@keyframes pulse {
|
||||
0%, 100% {
|
||||
opacity: 1;
|
||||
}
|
||||
50% {
|
||||
opacity: 0.5;
|
||||
}
|
||||
}
|
||||
|
||||
.loading-pulse {
|
||||
animation: pulse 2s cubic-bezier(0.4, 0, 0.6, 1) infinite;
|
||||
}
|
||||
|
||||
/* Highlight Effect for Selected Annotation */
|
||||
.annotation-highlighted {
|
||||
animation: highlight-flash 1s ease-in-out;
|
||||
}
|
||||
|
||||
@keyframes highlight-flash {
|
||||
0%, 100% {
|
||||
background-color: var(--bg-secondary);
|
||||
}
|
||||
50% {
|
||||
background-color: rgba(59, 130, 246, 0.3);
|
||||
}
|
||||
}
|
||||
|
||||
/* Status Indicators */
|
||||
.status-indicator {
|
||||
display: inline-block;
|
||||
width: 8px;
|
||||
height: 8px;
|
||||
border-radius: 50%;
|
||||
margin-right: 0.5rem;
|
||||
}
|
||||
|
||||
.status-indicator.active {
|
||||
background-color: var(--accent-success);
|
||||
box-shadow: 0 0 8px var(--accent-success);
|
||||
}
|
||||
|
||||
.status-indicator.inactive {
|
||||
background-color: var(--text-muted);
|
||||
}
|
||||
|
||||
.status-indicator.error {
|
||||
background-color: var(--accent-danger);
|
||||
box-shadow: 0 0 8px var(--accent-danger);
|
||||
}
|
||||
|
||||
/* Metric Cards */
|
||||
.metric-card {
|
||||
transition: transform 0.2s;
|
||||
}
|
||||
|
||||
.metric-card:hover {
|
||||
transform: translateY(-2px);
|
||||
}
|
||||
|
||||
/* Confusion Matrix Styling */
|
||||
.confusion-matrix-cell {
|
||||
font-weight: 600;
|
||||
font-size: 1.25rem;
|
||||
}
|
||||
|
||||
/* Timeline Table Styling */
|
||||
#prediction-timeline-body tr:last-child {
|
||||
background-color: rgba(59, 130, 246, 0.1);
|
||||
}
|
||||
|
||||
/* Custom Scrollbar for Panels */
|
||||
.control-panel::-webkit-scrollbar,
|
||||
.annotation-list .card-body::-webkit-scrollbar,
|
||||
.inference-panel .table-responsive::-webkit-scrollbar {
|
||||
width: 6px;
|
||||
}
|
||||
|
||||
/* Keyboard Shortcut Hints */
|
||||
.keyboard-hint {
|
||||
display: inline-block;
|
||||
padding: 0.25rem 0.5rem;
|
||||
background-color: var(--bg-tertiary);
|
||||
border: 1px solid var(--border-color);
|
||||
border-radius: 4px;
|
||||
font-family: monospace;
|
||||
font-size: 0.75rem;
|
||||
margin: 0 0.25rem;
|
||||
}
|
||||
|
||||
/* Chart Zoom Controls */
|
||||
.chart-zoom-controls {
|
||||
position: absolute;
|
||||
top: 10px;
|
||||
right: 10px;
|
||||
z-index: 100;
|
||||
}
|
||||
|
||||
/* Annotation Mode Indicator */
|
||||
.annotation-mode-active {
|
||||
border: 2px solid var(--accent-success);
|
||||
}
|
||||
|
||||
.annotation-mode-inactive {
|
||||
border: 2px solid var(--text-muted);
|
||||
}
|
||||
265
TESTCASES/web/static/css/dark_theme.css
Normal file
265
TESTCASES/web/static/css/dark_theme.css
Normal file
@@ -0,0 +1,265 @@
|
||||
/* Dark Theme Styles for Manual Trade Annotation UI */
|
||||
|
||||
:root {
|
||||
--bg-primary: #111827;
|
||||
--bg-secondary: #1f2937;
|
||||
--bg-tertiary: #374151;
|
||||
--text-primary: #f8f9fa;
|
||||
--text-secondary: #9ca3af;
|
||||
--text-muted: #6b7280;
|
||||
--border-color: #4b5563;
|
||||
--accent-primary: #3b82f6;
|
||||
--accent-success: #10b981;
|
||||
--accent-danger: #ef4444;
|
||||
--accent-warning: #f59e0b;
|
||||
}
|
||||
|
||||
body {
|
||||
background-color: var(--bg-primary) !important;
|
||||
color: var(--text-primary) !important;
|
||||
font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, 'Helvetica Neue', Arial, sans-serif;
|
||||
}
|
||||
|
||||
/* Cards */
|
||||
.card {
|
||||
background-color: var(--bg-secondary) !important;
|
||||
border: 1px solid var(--border-color) !important;
|
||||
color: var(--text-primary) !important;
|
||||
}
|
||||
|
||||
.card-header {
|
||||
background-color: var(--bg-tertiary) !important;
|
||||
border-bottom: 1px solid var(--border-color) !important;
|
||||
color: var(--text-primary) !important;
|
||||
}
|
||||
|
||||
.card-body {
|
||||
background-color: var(--bg-secondary) !important;
|
||||
}
|
||||
|
||||
/* Tables */
|
||||
.table {
|
||||
color: var(--text-primary) !important;
|
||||
}
|
||||
|
||||
.table-dark {
|
||||
background-color: var(--bg-secondary) !important;
|
||||
--bs-table-bg: var(--bg-secondary);
|
||||
--bs-table-striped-bg: var(--bg-tertiary);
|
||||
--bs-table-hover-bg: var(--bg-tertiary);
|
||||
}
|
||||
|
||||
.table-dark thead th {
|
||||
border-bottom-color: var(--border-color);
|
||||
}
|
||||
|
||||
.table-dark tbody td {
|
||||
border-color: var(--border-color);
|
||||
}
|
||||
|
||||
/* Forms */
|
||||
.form-control,
|
||||
.form-select {
|
||||
background-color: var(--bg-tertiary) !important;
|
||||
border-color: var(--border-color) !important;
|
||||
color: var(--text-primary) !important;
|
||||
}
|
||||
|
||||
.form-control:focus,
|
||||
.form-select:focus {
|
||||
background-color: var(--bg-tertiary) !important;
|
||||
border-color: var(--accent-primary) !important;
|
||||
color: var(--text-primary) !important;
|
||||
box-shadow: 0 0 0 0.25rem rgba(59, 130, 246, 0.25);
|
||||
}
|
||||
|
||||
.form-check-input {
|
||||
background-color: var(--bg-tertiary);
|
||||
border-color: var(--border-color);
|
||||
}
|
||||
|
||||
.form-check-input:checked {
|
||||
background-color: var(--accent-primary);
|
||||
border-color: var(--accent-primary);
|
||||
}
|
||||
|
||||
.form-label {
|
||||
color: var(--text-primary);
|
||||
}
|
||||
|
||||
/* Buttons */
|
||||
.btn-outline-light {
|
||||
color: var(--text-primary);
|
||||
border-color: var(--border-color);
|
||||
}
|
||||
|
||||
.btn-outline-light:hover {
|
||||
background-color: var(--bg-tertiary);
|
||||
border-color: var(--border-color);
|
||||
color: var(--text-primary);
|
||||
}
|
||||
|
||||
.btn-outline-secondary {
|
||||
color: var(--text-secondary);
|
||||
border-color: var(--border-color);
|
||||
}
|
||||
|
||||
.btn-outline-secondary:hover {
|
||||
background-color: var(--bg-tertiary);
|
||||
border-color: var(--border-color);
|
||||
color: var(--text-primary);
|
||||
}
|
||||
|
||||
.btn-outline-primary:hover {
|
||||
background-color: var(--accent-primary);
|
||||
border-color: var(--accent-primary);
|
||||
}
|
||||
|
||||
/* List Groups */
|
||||
.list-group-item {
|
||||
background-color: var(--bg-secondary) !important;
|
||||
border-color: var(--border-color) !important;
|
||||
color: var(--text-primary) !important;
|
||||
}
|
||||
|
||||
.list-group-item-action:hover {
|
||||
background-color: var(--bg-tertiary) !important;
|
||||
}
|
||||
|
||||
/* Alerts */
|
||||
.alert-info {
|
||||
background-color: rgba(59, 130, 246, 0.1);
|
||||
border-color: rgba(59, 130, 246, 0.3);
|
||||
color: #93c5fd;
|
||||
}
|
||||
|
||||
.alert-success {
|
||||
background-color: rgba(16, 185, 129, 0.1);
|
||||
border-color: rgba(16, 185, 129, 0.3);
|
||||
color: #6ee7b7;
|
||||
}
|
||||
|
||||
.alert-danger {
|
||||
background-color: rgba(239, 68, 68, 0.1);
|
||||
border-color: rgba(239, 68, 68, 0.3);
|
||||
color: #fca5a5;
|
||||
}
|
||||
|
||||
.alert-warning {
|
||||
background-color: rgba(245, 158, 11, 0.1);
|
||||
border-color: rgba(245, 158, 11, 0.3);
|
||||
color: #fcd34d;
|
||||
}
|
||||
|
||||
/* Badges */
|
||||
.badge {
|
||||
font-weight: 500;
|
||||
}
|
||||
|
||||
/* Modals */
|
||||
.modal-content {
|
||||
background-color: var(--bg-secondary);
|
||||
border-color: var(--border-color);
|
||||
}
|
||||
|
||||
.modal-header {
|
||||
background-color: var(--bg-tertiary);
|
||||
border-bottom-color: var(--border-color);
|
||||
}
|
||||
|
||||
.modal-footer {
|
||||
border-top-color: var(--border-color);
|
||||
}
|
||||
|
||||
.btn-close {
|
||||
filter: invert(1);
|
||||
}
|
||||
|
||||
/* Progress Bars */
|
||||
.progress {
|
||||
background-color: var(--bg-tertiary);
|
||||
}
|
||||
|
||||
/* Navbar */
|
||||
.navbar-dark {
|
||||
background-color: var(--bg-secondary) !important;
|
||||
border-bottom: 1px solid var(--border-color);
|
||||
}
|
||||
|
||||
/* Footer */
|
||||
.footer {
|
||||
background-color: var(--bg-secondary) !important;
|
||||
border-top: 1px solid var(--border-color);
|
||||
}
|
||||
|
||||
/* Text Colors */
|
||||
.text-muted {
|
||||
color: var(--text-muted) !important;
|
||||
}
|
||||
|
||||
.text-success {
|
||||
color: var(--accent-success) !important;
|
||||
}
|
||||
|
||||
.text-danger {
|
||||
color: var(--accent-danger) !important;
|
||||
}
|
||||
|
||||
.text-warning {
|
||||
color: var(--accent-warning) !important;
|
||||
}
|
||||
|
||||
/* Scrollbar Styling */
|
||||
::-webkit-scrollbar {
|
||||
width: 8px;
|
||||
height: 8px;
|
||||
}
|
||||
|
||||
::-webkit-scrollbar-track {
|
||||
background: var(--bg-secondary);
|
||||
}
|
||||
|
||||
::-webkit-scrollbar-thumb {
|
||||
background: var(--bg-tertiary);
|
||||
border-radius: 4px;
|
||||
}
|
||||
|
||||
::-webkit-scrollbar-thumb:hover {
|
||||
background: var(--border-color);
|
||||
}
|
||||
|
||||
/* Tooltips */
|
||||
.tooltip-inner {
|
||||
background-color: var(--bg-tertiary);
|
||||
color: var(--text-primary);
|
||||
}
|
||||
|
||||
.tooltip.bs-tooltip-top .tooltip-arrow::before {
|
||||
border-top-color: var(--bg-tertiary);
|
||||
}
|
||||
|
||||
.tooltip.bs-tooltip-bottom .tooltip-arrow::before {
|
||||
border-bottom-color: var(--bg-tertiary);
|
||||
}
|
||||
|
||||
/* Spinners */
|
||||
.spinner-border {
|
||||
border-color: var(--accent-primary);
|
||||
border-right-color: transparent;
|
||||
}
|
||||
|
||||
/* Toast Notifications */
|
||||
.toast {
|
||||
background-color: var(--bg-secondary);
|
||||
border-color: var(--border-color);
|
||||
}
|
||||
|
||||
.toast-header {
|
||||
background-color: var(--bg-tertiary);
|
||||
border-bottom-color: var(--border-color);
|
||||
color: var(--text-primary);
|
||||
}
|
||||
|
||||
.toast-body {
|
||||
color: var(--text-primary);
|
||||
}
|
||||
193
TESTCASES/web/static/js/annotation_manager.js
Normal file
193
TESTCASES/web/static/js/annotation_manager.js
Normal file
@@ -0,0 +1,193 @@
|
||||
/**
|
||||
* AnnotationManager - Manages trade marking interactions
|
||||
*/
|
||||
|
||||
class AnnotationManager {
|
||||
constructor(chartManager) {
|
||||
this.chartManager = chartManager;
|
||||
this.pendingAnnotation = null;
|
||||
this.enabled = true;
|
||||
|
||||
console.log('AnnotationManager initialized');
|
||||
}
|
||||
|
||||
/**
|
||||
* Handle chart click for marking entry/exit
|
||||
*/
|
||||
handleChartClick(clickData) {
|
||||
if (!this.enabled) {
|
||||
console.log('Annotation mode disabled');
|
||||
return;
|
||||
}
|
||||
|
||||
if (!this.pendingAnnotation) {
|
||||
// Mark entry point
|
||||
this.markEntry(clickData);
|
||||
} else {
|
||||
// Mark exit point
|
||||
this.markExit(clickData);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Mark entry point
|
||||
*/
|
||||
markEntry(clickData) {
|
||||
this.pendingAnnotation = {
|
||||
symbol: window.appState.currentSymbol,
|
||||
timeframe: clickData.timeframe,
|
||||
entry: {
|
||||
timestamp: clickData.timestamp,
|
||||
price: clickData.price,
|
||||
index: clickData.index
|
||||
}
|
||||
};
|
||||
|
||||
console.log('Entry marked:', this.pendingAnnotation);
|
||||
|
||||
// Show pending annotation status
|
||||
document.getElementById('pending-annotation-status').style.display = 'block';
|
||||
|
||||
// Visual feedback on chart
|
||||
this.showPendingMarker(clickData);
|
||||
}
|
||||
|
||||
/**
|
||||
* Mark exit point
|
||||
*/
|
||||
markExit(clickData) {
|
||||
if (!this.pendingAnnotation) return;
|
||||
|
||||
// Validate exit is after entry
|
||||
const entryTime = new Date(this.pendingAnnotation.entry.timestamp);
|
||||
const exitTime = new Date(clickData.timestamp);
|
||||
|
||||
if (exitTime <= entryTime) {
|
||||
window.showError('Exit time must be after entry time');
|
||||
return;
|
||||
}
|
||||
|
||||
// Complete annotation
|
||||
this.pendingAnnotation.exit = {
|
||||
timestamp: clickData.timestamp,
|
||||
price: clickData.price,
|
||||
index: clickData.index
|
||||
};
|
||||
|
||||
// Calculate P&L
|
||||
const entryPrice = this.pendingAnnotation.entry.price;
|
||||
const exitPrice = this.pendingAnnotation.exit.price;
|
||||
const direction = exitPrice > entryPrice ? 'LONG' : 'SHORT';
|
||||
const profitLossPct = ((exitPrice - entryPrice) / entryPrice) * 100;
|
||||
|
||||
this.pendingAnnotation.direction = direction;
|
||||
this.pendingAnnotation.profit_loss_pct = profitLossPct;
|
||||
|
||||
console.log('Exit marked:', this.pendingAnnotation);
|
||||
|
||||
// Save annotation
|
||||
this.saveAnnotation(this.pendingAnnotation);
|
||||
}
|
||||
|
||||
/**
|
||||
* Save annotation to server
|
||||
*/
|
||||
saveAnnotation(annotation) {
|
||||
fetch('/api/save-annotation', {
|
||||
method: 'POST',
|
||||
headers: {'Content-Type': 'application/json'},
|
||||
body: JSON.stringify(annotation)
|
||||
})
|
||||
.then(response => response.json())
|
||||
.then(data => {
|
||||
if (data.success) {
|
||||
// Add to app state
|
||||
window.appState.annotations.push(data.annotation);
|
||||
|
||||
// Update UI
|
||||
window.renderAnnotationsList(window.appState.annotations);
|
||||
|
||||
// Add to chart
|
||||
this.chartManager.addAnnotation(data.annotation);
|
||||
|
||||
// Clear pending annotation
|
||||
this.pendingAnnotation = null;
|
||||
document.getElementById('pending-annotation-status').style.display = 'none';
|
||||
|
||||
window.showSuccess('Annotation saved successfully');
|
||||
} else {
|
||||
window.showError('Failed to save annotation: ' + data.error.message);
|
||||
}
|
||||
})
|
||||
.catch(error => {
|
||||
window.showError('Network error: ' + error.message);
|
||||
});
|
||||
}
|
||||
|
||||
/**
|
||||
* Show pending marker on chart
|
||||
*/
|
||||
showPendingMarker(clickData) {
|
||||
// TODO: Add visual marker for pending entry
|
||||
console.log('Showing pending marker at:', clickData);
|
||||
}
|
||||
|
||||
/**
|
||||
* Mark current position (for keyboard shortcut)
|
||||
*/
|
||||
markCurrentPosition() {
|
||||
// TODO: Implement marking at current crosshair position
|
||||
console.log('Mark current position');
|
||||
}
|
||||
|
||||
/**
|
||||
* Enable annotation mode
|
||||
*/
|
||||
enable() {
|
||||
this.enabled = true;
|
||||
console.log('Annotation mode enabled');
|
||||
}
|
||||
|
||||
/**
|
||||
* Disable annotation mode
|
||||
*/
|
||||
disable() {
|
||||
this.enabled = false;
|
||||
this.pendingAnnotation = null;
|
||||
document.getElementById('pending-annotation-status').style.display = 'none';
|
||||
console.log('Annotation mode disabled');
|
||||
}
|
||||
|
||||
/**
|
||||
* Calculate profit/loss percentage
|
||||
*/
|
||||
calculateProfitLoss(entryPrice, exitPrice, direction) {
|
||||
if (direction === 'LONG') {
|
||||
return ((exitPrice - entryPrice) / entryPrice) * 100;
|
||||
} else {
|
||||
return ((entryPrice - exitPrice) / entryPrice) * 100;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Validate annotation
|
||||
*/
|
||||
validateAnnotation(annotation) {
|
||||
if (!annotation.entry || !annotation.exit) {
|
||||
return {valid: false, error: 'Missing entry or exit point'};
|
||||
}
|
||||
|
||||
const entryTime = new Date(annotation.entry.timestamp);
|
||||
const exitTime = new Date(annotation.exit.timestamp);
|
||||
|
||||
if (exitTime <= entryTime) {
|
||||
return {valid: false, error: 'Exit time must be after entry time'};
|
||||
}
|
||||
|
||||
if (!annotation.entry.price || !annotation.exit.price) {
|
||||
return {valid: false, error: 'Missing price data'};
|
||||
}
|
||||
|
||||
return {valid: true};
|
||||
}
|
||||
}
|
||||
255
TESTCASES/web/static/js/chart_manager.js
Normal file
255
TESTCASES/web/static/js/chart_manager.js
Normal file
@@ -0,0 +1,255 @@
|
||||
/**
|
||||
* ChartManager - Manages Plotly charts for multi-timeframe visualization
|
||||
*/
|
||||
|
||||
class ChartManager {
|
||||
constructor(containerId, timeframes) {
|
||||
this.containerId = containerId;
|
||||
this.timeframes = timeframes;
|
||||
this.charts = {};
|
||||
this.annotations = {};
|
||||
this.syncedTime = null;
|
||||
|
||||
console.log('ChartManager initialized with timeframes:', timeframes);
|
||||
}
|
||||
|
||||
/**
|
||||
* Initialize charts for all timeframes
|
||||
*/
|
||||
initializeCharts(chartData) {
|
||||
console.log('Initializing charts with data:', chartData);
|
||||
|
||||
this.timeframes.forEach(timeframe => {
|
||||
if (chartData[timeframe]) {
|
||||
this.createChart(timeframe, chartData[timeframe]);
|
||||
}
|
||||
});
|
||||
|
||||
// Enable crosshair
|
||||
this.enableCrosshair();
|
||||
}
|
||||
|
||||
/**
|
||||
* Create a single chart for a timeframe
|
||||
*/
|
||||
createChart(timeframe, data) {
|
||||
const plotId = `plot-${timeframe}`;
|
||||
const plotElement = document.getElementById(plotId);
|
||||
|
||||
if (!plotElement) {
|
||||
console.error(`Plot element not found: ${plotId}`);
|
||||
return;
|
||||
}
|
||||
|
||||
// Create candlestick trace
|
||||
const candlestickTrace = {
|
||||
x: data.timestamps,
|
||||
open: data.open,
|
||||
high: data.high,
|
||||
low: data.low,
|
||||
close: data.close,
|
||||
type: 'candlestick',
|
||||
name: timeframe,
|
||||
increasing: {line: {color: '#10b981'}},
|
||||
decreasing: {line: {color: '#ef4444'}}
|
||||
};
|
||||
|
||||
// Create volume trace
|
||||
const volumeTrace = {
|
||||
x: data.timestamps,
|
||||
y: data.volume,
|
||||
type: 'bar',
|
||||
name: 'Volume',
|
||||
yaxis: 'y2',
|
||||
marker: {color: '#3b82f6', opacity: 0.3}
|
||||
};
|
||||
|
||||
const layout = {
|
||||
title: '',
|
||||
xaxis: {
|
||||
rangeslider: {visible: false},
|
||||
gridcolor: '#374151',
|
||||
color: '#9ca3af'
|
||||
},
|
||||
yaxis: {
|
||||
title: 'Price',
|
||||
gridcolor: '#374151',
|
||||
color: '#9ca3af'
|
||||
},
|
||||
yaxis2: {
|
||||
title: 'Volume',
|
||||
overlaying: 'y',
|
||||
side: 'right',
|
||||
showgrid: false,
|
||||
color: '#9ca3af'
|
||||
},
|
||||
plot_bgcolor: '#1f2937',
|
||||
paper_bgcolor: '#1f2937',
|
||||
font: {color: '#f8f9fa'},
|
||||
margin: {l: 50, r: 50, t: 20, b: 40},
|
||||
hovermode: 'x unified'
|
||||
};
|
||||
|
||||
const config = {
|
||||
responsive: true,
|
||||
displayModeBar: true,
|
||||
modeBarButtonsToRemove: ['lasso2d', 'select2d'],
|
||||
displaylogo: false
|
||||
};
|
||||
|
||||
Plotly.newPlot(plotId, [candlestickTrace, volumeTrace], layout, config);
|
||||
|
||||
// Store chart reference
|
||||
this.charts[timeframe] = {
|
||||
plotId: plotId,
|
||||
data: data,
|
||||
element: plotElement
|
||||
};
|
||||
|
||||
// Add click handler for annotations
|
||||
plotElement.on('plotly_click', (eventData) => {
|
||||
this.handleChartClick(timeframe, eventData);
|
||||
});
|
||||
|
||||
console.log(`Chart created for ${timeframe}`);
|
||||
}
|
||||
|
||||
/**
|
||||
* Handle chart click for annotation
|
||||
*/
|
||||
handleChartClick(timeframe, eventData) {
|
||||
if (!eventData.points || eventData.points.length === 0) return;
|
||||
|
||||
const point = eventData.points[0];
|
||||
const clickData = {
|
||||
timeframe: timeframe,
|
||||
timestamp: point.x,
|
||||
price: point.close || point.y,
|
||||
index: point.pointIndex
|
||||
};
|
||||
|
||||
console.log('Chart clicked:', clickData);
|
||||
|
||||
// Trigger annotation manager
|
||||
if (window.appState && window.appState.annotationManager) {
|
||||
window.appState.annotationManager.handleChartClick(clickData);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Update charts with new data
|
||||
*/
|
||||
updateCharts(newData) {
|
||||
Object.keys(newData).forEach(timeframe => {
|
||||
if (this.charts[timeframe]) {
|
||||
const plotId = this.charts[timeframe].plotId;
|
||||
|
||||
Plotly.react(plotId, [
|
||||
{
|
||||
x: newData[timeframe].timestamps,
|
||||
open: newData[timeframe].open,
|
||||
high: newData[timeframe].high,
|
||||
low: newData[timeframe].low,
|
||||
close: newData[timeframe].close,
|
||||
type: 'candlestick'
|
||||
},
|
||||
{
|
||||
x: newData[timeframe].timestamps,
|
||||
y: newData[timeframe].volume,
|
||||
type: 'bar',
|
||||
yaxis: 'y2'
|
||||
}
|
||||
]);
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
/**
|
||||
* Add annotation to charts
|
||||
*/
|
||||
addAnnotation(annotation) {
|
||||
console.log('Adding annotation to charts:', annotation);
|
||||
|
||||
// Store annotation
|
||||
this.annotations[annotation.annotation_id] = annotation;
|
||||
|
||||
// Add markers to relevant timeframe chart
|
||||
const timeframe = annotation.timeframe;
|
||||
if (this.charts[timeframe]) {
|
||||
// TODO: Add visual markers using Plotly annotations
|
||||
this.updateChartAnnotations(timeframe);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Remove annotation from charts
|
||||
*/
|
||||
removeAnnotation(annotationId) {
|
||||
if (this.annotations[annotationId]) {
|
||||
const annotation = this.annotations[annotationId];
|
||||
delete this.annotations[annotationId];
|
||||
|
||||
// Update chart
|
||||
if (this.charts[annotation.timeframe]) {
|
||||
this.updateChartAnnotations(annotation.timeframe);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Update chart annotations
|
||||
*/
|
||||
updateChartAnnotations(timeframe) {
|
||||
// TODO: Implement annotation rendering on charts
|
||||
console.log(`Updating annotations for ${timeframe}`);
|
||||
}
|
||||
|
||||
/**
|
||||
* Highlight annotation
|
||||
*/
|
||||
highlightAnnotation(annotationId) {
|
||||
console.log('Highlighting annotation:', annotationId);
|
||||
// TODO: Implement highlight effect
|
||||
}
|
||||
|
||||
/**
|
||||
* Enable crosshair cursor
|
||||
*/
|
||||
enableCrosshair() {
|
||||
// Crosshair is enabled via hovermode in layout
|
||||
console.log('Crosshair enabled');
|
||||
}
|
||||
|
||||
/**
|
||||
* Handle zoom
|
||||
*/
|
||||
handleZoom(zoomFactor) {
|
||||
Object.values(this.charts).forEach(chart => {
|
||||
Plotly.relayout(chart.plotId, {
|
||||
'xaxis.range[0]': null,
|
||||
'xaxis.range[1]': null
|
||||
});
|
||||
});
|
||||
}
|
||||
|
||||
/**
|
||||
* Reset zoom
|
||||
*/
|
||||
resetZoom() {
|
||||
Object.values(this.charts).forEach(chart => {
|
||||
Plotly.relayout(chart.plotId, {
|
||||
'xaxis.autorange': true,
|
||||
'yaxis.autorange': true
|
||||
});
|
||||
});
|
||||
}
|
||||
|
||||
/**
|
||||
* Synchronize time navigation across charts
|
||||
*/
|
||||
syncTimeNavigation(timestamp) {
|
||||
this.syncedTime = timestamp;
|
||||
// TODO: Implement time synchronization
|
||||
console.log('Syncing charts to timestamp:', timestamp);
|
||||
}
|
||||
}
|
||||
146
TESTCASES/web/static/js/time_navigator.js
Normal file
146
TESTCASES/web/static/js/time_navigator.js
Normal file
@@ -0,0 +1,146 @@
|
||||
/**
|
||||
* TimeNavigator - Handles time navigation and data loading
|
||||
*/
|
||||
|
||||
class TimeNavigator {
|
||||
constructor(chartManager) {
|
||||
this.chartManager = chartManager;
|
||||
this.currentTime = null;
|
||||
this.timeRange = '1d'; // Default 1 day range
|
||||
|
||||
console.log('TimeNavigator initialized');
|
||||
}
|
||||
|
||||
/**
|
||||
* Navigate to specific time
|
||||
*/
|
||||
navigateToTime(timestamp) {
|
||||
this.currentTime = timestamp;
|
||||
console.log('Navigating to time:', new Date(timestamp));
|
||||
|
||||
// Load data for this time range
|
||||
this.loadDataRange(timestamp);
|
||||
|
||||
// Sync charts
|
||||
this.chartManager.syncTimeNavigation(timestamp);
|
||||
}
|
||||
|
||||
/**
|
||||
* Navigate to current time
|
||||
*/
|
||||
navigateToNow() {
|
||||
const now = Date.now();
|
||||
this.navigateToTime(now);
|
||||
}
|
||||
|
||||
/**
|
||||
* Scroll forward in time
|
||||
*/
|
||||
scrollForward(increment = null) {
|
||||
if (!increment) {
|
||||
increment = this.getIncrementForRange();
|
||||
}
|
||||
|
||||
const newTime = (this.currentTime || Date.now()) + increment;
|
||||
this.navigateToTime(newTime);
|
||||
}
|
||||
|
||||
/**
|
||||
* Scroll backward in time
|
||||
*/
|
||||
scrollBackward(increment = null) {
|
||||
if (!increment) {
|
||||
increment = this.getIncrementForRange();
|
||||
}
|
||||
|
||||
const newTime = (this.currentTime || Date.now()) - increment;
|
||||
this.navigateToTime(newTime);
|
||||
}
|
||||
|
||||
/**
|
||||
* Set time range
|
||||
*/
|
||||
setTimeRange(range) {
|
||||
this.timeRange = range;
|
||||
console.log('Time range set to:', range);
|
||||
|
||||
// Reload data with new range
|
||||
if (this.currentTime) {
|
||||
this.loadDataRange(this.currentTime);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Load data for time range
|
||||
*/
|
||||
loadDataRange(centerTime) {
|
||||
// Show loading indicator
|
||||
const loadingEl = document.getElementById('chart-loading');
|
||||
if (loadingEl) {
|
||||
loadingEl.classList.remove('d-none');
|
||||
}
|
||||
|
||||
// Calculate start and end times based on range
|
||||
const rangeMs = this.getRangeInMs(this.timeRange);
|
||||
const startTime = centerTime - (rangeMs / 2);
|
||||
const endTime = centerTime + (rangeMs / 2);
|
||||
|
||||
// Fetch data
|
||||
fetch('/api/chart-data', {
|
||||
method: 'POST',
|
||||
headers: {'Content-Type': 'application/json'},
|
||||
body: JSON.stringify({
|
||||
symbol: window.appState.currentSymbol,
|
||||
timeframes: window.appState.currentTimeframes,
|
||||
start_time: new Date(startTime).toISOString(),
|
||||
end_time: new Date(endTime).toISOString()
|
||||
})
|
||||
})
|
||||
.then(response => response.json())
|
||||
.then(data => {
|
||||
if (data.success) {
|
||||
this.chartManager.updateCharts(data.chart_data);
|
||||
} else {
|
||||
window.showError('Failed to load chart data: ' + data.error.message);
|
||||
}
|
||||
})
|
||||
.catch(error => {
|
||||
window.showError('Network error: ' + error.message);
|
||||
})
|
||||
.finally(() => {
|
||||
if (loadingEl) {
|
||||
loadingEl.classList.add('d-none');
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
/**
|
||||
* Get increment for current range
|
||||
*/
|
||||
getIncrementForRange() {
|
||||
const rangeMs = this.getRangeInMs(this.timeRange);
|
||||
return rangeMs / 10; // Move by 10% of range
|
||||
}
|
||||
|
||||
/**
|
||||
* Convert range string to milliseconds
|
||||
*/
|
||||
getRangeInMs(range) {
|
||||
const units = {
|
||||
'1h': 60 * 60 * 1000,
|
||||
'4h': 4 * 60 * 60 * 1000,
|
||||
'1d': 24 * 60 * 60 * 1000,
|
||||
'1w': 7 * 24 * 60 * 60 * 1000
|
||||
};
|
||||
|
||||
return units[range] || units['1d'];
|
||||
}
|
||||
|
||||
/**
|
||||
* Setup keyboard shortcuts
|
||||
*/
|
||||
setupKeyboardShortcuts() {
|
||||
// Keyboard shortcuts are handled in the main template
|
||||
console.log('Keyboard shortcuts ready');
|
||||
}
|
||||
}
|
||||
102
TESTCASES/web/static/js/training_controller.js
Normal file
102
TESTCASES/web/static/js/training_controller.js
Normal file
@@ -0,0 +1,102 @@
|
||||
/**
|
||||
* TrainingController - Manages training and inference simulation
|
||||
*/
|
||||
|
||||
class TrainingController {
|
||||
constructor() {
|
||||
this.currentTrainingId = null;
|
||||
this.inferenceState = null;
|
||||
|
||||
console.log('TrainingController initialized');
|
||||
}
|
||||
|
||||
/**
|
||||
* Start training session
|
||||
*/
|
||||
startTraining(modelName, annotationIds) {
|
||||
console.log('Starting training:', modelName, annotationIds);
|
||||
|
||||
// Training is initiated from the training panel
|
||||
// This method can be used for additional training logic
|
||||
}
|
||||
|
||||
/**
|
||||
* Simulate inference on annotations
|
||||
*/
|
||||
simulateInference(modelName, annotations) {
|
||||
console.log('Simulating inference:', modelName, annotations.length, 'annotations');
|
||||
|
||||
// Prepare inference request
|
||||
const annotationIds = annotations.map(a =>
|
||||
a.annotation_id || a.get('annotation_id')
|
||||
);
|
||||
|
||||
// Start inference simulation
|
||||
fetch('/api/simulate-inference', {
|
||||
method: 'POST',
|
||||
headers: {'Content-Type': 'application/json'},
|
||||
body: JSON.stringify({
|
||||
model_name: modelName,
|
||||
annotation_ids: annotationIds
|
||||
})
|
||||
})
|
||||
.then(response => response.json())
|
||||
.then(data => {
|
||||
if (data.success) {
|
||||
this.displayInferenceResults(data.results);
|
||||
} else {
|
||||
window.showError('Failed to simulate inference: ' + data.error.message);
|
||||
}
|
||||
})
|
||||
.catch(error => {
|
||||
window.showError('Network error: ' + error.message);
|
||||
});
|
||||
}
|
||||
|
||||
/**
|
||||
* Display inference results
|
||||
*/
|
||||
displayInferenceResults(results) {
|
||||
console.log('Displaying inference results:', results);
|
||||
|
||||
// Update metrics
|
||||
if (results.metrics) {
|
||||
window.updateMetrics(results.metrics);
|
||||
}
|
||||
|
||||
// Update prediction timeline
|
||||
if (results.predictions) {
|
||||
window.inferenceState = {
|
||||
isPlaying: false,
|
||||
currentIndex: 0,
|
||||
predictions: results.predictions,
|
||||
annotations: window.appState.annotations,
|
||||
speed: 1
|
||||
};
|
||||
}
|
||||
|
||||
window.showSuccess('Inference simulation complete');
|
||||
}
|
||||
|
||||
/**
|
||||
* Get training status
|
||||
*/
|
||||
getTrainingStatus(trainingId) {
|
||||
return fetch('/api/training-progress', {
|
||||
method: 'POST',
|
||||
headers: {'Content-Type': 'application/json'},
|
||||
body: JSON.stringify({training_id: trainingId})
|
||||
})
|
||||
.then(response => response.json());
|
||||
}
|
||||
|
||||
/**
|
||||
* Cancel training
|
||||
*/
|
||||
cancelTraining(trainingId) {
|
||||
console.log('Canceling training:', trainingId);
|
||||
|
||||
// TODO: Implement training cancellation
|
||||
window.showError('Training cancellation not yet implemented');
|
||||
}
|
||||
}
|
||||
173
TESTCASES/web/templates/annotation_dashboard.html
Normal file
173
TESTCASES/web/templates/annotation_dashboard.html
Normal file
@@ -0,0 +1,173 @@
|
||||
{% extends "base_layout.html" %}
|
||||
|
||||
{% block title %}Trade Annotation Dashboard{% endblock %}
|
||||
|
||||
{% block content %}
|
||||
<div class="row mt-3">
|
||||
<!-- Left Sidebar - Controls -->
|
||||
<div class="col-md-2">
|
||||
{% include 'components/control_panel.html' %}
|
||||
</div>
|
||||
|
||||
<!-- Main Chart Area -->
|
||||
<div class="col-md-8">
|
||||
{% include 'components/chart_panel.html' %}
|
||||
</div>
|
||||
|
||||
<!-- Right Sidebar - Annotations & Training -->
|
||||
<div class="col-md-2">
|
||||
{% include 'components/annotation_list.html' %}
|
||||
{% include 'components/training_panel.html' %}
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<!-- Inference Simulation Modal -->
|
||||
<div class="modal fade" id="inferenceModal" tabindex="-1">
|
||||
<div class="modal-dialog modal-xl">
|
||||
<div class="modal-content">
|
||||
<div class="modal-header">
|
||||
<h5 class="modal-title">
|
||||
<i class="fas fa-brain"></i>
|
||||
Inference Simulation
|
||||
</h5>
|
||||
<button type="button" class="btn-close" data-bs-dismiss="modal"></button>
|
||||
</div>
|
||||
<div class="modal-body">
|
||||
{% include 'components/inference_panel.html' %}
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
{% endblock %}
|
||||
|
||||
{% block extra_js %}
|
||||
<script>
|
||||
// Initialize application state
|
||||
const appState = {
|
||||
currentSymbol: '{{ current_symbol }}',
|
||||
currentTimeframes: {{ timeframes | tojson }},
|
||||
annotations: {{ annotations | tojson }},
|
||||
pendingAnnotation: null,
|
||||
chartManager: null,
|
||||
annotationManager: null,
|
||||
timeNavigator: null,
|
||||
trainingController: null
|
||||
};
|
||||
|
||||
// Initialize components when DOM is ready
|
||||
document.addEventListener('DOMContentLoaded', function() {
|
||||
// Initialize chart manager
|
||||
appState.chartManager = new ChartManager('chart-container', appState.currentTimeframes);
|
||||
|
||||
// Initialize annotation manager
|
||||
appState.annotationManager = new AnnotationManager(appState.chartManager);
|
||||
|
||||
// Initialize time navigator
|
||||
appState.timeNavigator = new TimeNavigator(appState.chartManager);
|
||||
|
||||
// Initialize training controller
|
||||
appState.trainingController = new TrainingController();
|
||||
|
||||
// Load initial data
|
||||
loadInitialData();
|
||||
|
||||
// Setup keyboard shortcuts
|
||||
setupKeyboardShortcuts();
|
||||
});
|
||||
|
||||
function loadInitialData() {
|
||||
// Fetch initial chart data
|
||||
fetch('/api/chart-data', {
|
||||
method: 'POST',
|
||||
headers: {'Content-Type': 'application/json'},
|
||||
body: JSON.stringify({
|
||||
symbol: appState.currentSymbol,
|
||||
timeframes: appState.currentTimeframes,
|
||||
start_time: null,
|
||||
end_time: null
|
||||
})
|
||||
})
|
||||
.then(response => response.json())
|
||||
.then(data => {
|
||||
if (data.success) {
|
||||
appState.chartManager.initializeCharts(data.chart_data);
|
||||
|
||||
// Load existing annotations
|
||||
appState.annotations.forEach(annotation => {
|
||||
appState.chartManager.addAnnotation(annotation);
|
||||
});
|
||||
} else {
|
||||
showError('Failed to load chart data: ' + data.error.message);
|
||||
}
|
||||
})
|
||||
.catch(error => {
|
||||
showError('Network error: ' + error.message);
|
||||
});
|
||||
}
|
||||
|
||||
function setupKeyboardShortcuts() {
|
||||
document.addEventListener('keydown', function(e) {
|
||||
// Arrow left - navigate backward
|
||||
if (e.key === 'ArrowLeft') {
|
||||
e.preventDefault();
|
||||
appState.timeNavigator.scrollBackward();
|
||||
}
|
||||
// Arrow right - navigate forward
|
||||
else if (e.key === 'ArrowRight') {
|
||||
e.preventDefault();
|
||||
appState.timeNavigator.scrollForward();
|
||||
}
|
||||
// Space - mark point (if chart is focused)
|
||||
else if (e.key === ' ' && e.target.tagName !== 'INPUT') {
|
||||
e.preventDefault();
|
||||
// Trigger mark at current crosshair position
|
||||
appState.annotationManager.markCurrentPosition();
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
function showError(message) {
|
||||
// Create toast notification
|
||||
const toast = document.createElement('div');
|
||||
toast.className = 'toast align-items-center text-white bg-danger border-0';
|
||||
toast.setAttribute('role', 'alert');
|
||||
toast.innerHTML = `
|
||||
<div class="d-flex">
|
||||
<div class="toast-body">
|
||||
<i class="fas fa-exclamation-circle"></i>
|
||||
${message}
|
||||
</div>
|
||||
<button type="button" class="btn-close btn-close-white me-2 m-auto" data-bs-dismiss="toast"></button>
|
||||
</div>
|
||||
`;
|
||||
|
||||
// Add to page and show
|
||||
document.body.appendChild(toast);
|
||||
const bsToast = new bootstrap.Toast(toast);
|
||||
bsToast.show();
|
||||
|
||||
// Remove after hidden
|
||||
toast.addEventListener('hidden.bs.toast', () => toast.remove());
|
||||
}
|
||||
|
||||
function showSuccess(message) {
|
||||
const toast = document.createElement('div');
|
||||
toast.className = 'toast align-items-center text-white bg-success border-0';
|
||||
toast.setAttribute('role', 'alert');
|
||||
toast.innerHTML = `
|
||||
<div class="d-flex">
|
||||
<div class="toast-body">
|
||||
<i class="fas fa-check-circle"></i>
|
||||
${message}
|
||||
</div>
|
||||
<button type="button" class="btn-close btn-close-white me-2 m-auto" data-bs-dismiss="toast"></button>
|
||||
</div>
|
||||
`;
|
||||
|
||||
document.body.appendChild(toast);
|
||||
const bsToast = new bootstrap.Toast(toast);
|
||||
bsToast.show();
|
||||
toast.addEventListener('hidden.bs.toast', () => toast.remove());
|
||||
}
|
||||
</script>
|
||||
{% endblock %}
|
||||
93
TESTCASES/web/templates/base_layout.html
Normal file
93
TESTCASES/web/templates/base_layout.html
Normal file
@@ -0,0 +1,93 @@
|
||||
<!DOCTYPE html>
|
||||
<html lang="en">
|
||||
<head>
|
||||
<meta charset="UTF-8">
|
||||
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
||||
<title>{% block title %}Manual Trade Annotation{% endblock %}</title>
|
||||
|
||||
<!-- Bootstrap CSS -->
|
||||
<link href="https://cdn.jsdelivr.net/npm/bootstrap@5.1.3/dist/css/bootstrap.min.css" rel="stylesheet">
|
||||
|
||||
<!-- Font Awesome -->
|
||||
<link href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/6.0.0/css/all.min.css" rel="stylesheet">
|
||||
|
||||
<!-- Plotly -->
|
||||
<script src="https://cdn.plot.ly/plotly-2.27.0.min.js"></script>
|
||||
|
||||
<!-- Custom CSS -->
|
||||
<link href="{{ url_for('static', filename='css/dark_theme.css') }}" rel="stylesheet">
|
||||
<link href="{{ url_for('static', filename='css/annotation_ui.css') }}" rel="stylesheet">
|
||||
|
||||
{% block extra_css %}{% endblock %}
|
||||
</head>
|
||||
<body>
|
||||
<!-- Navigation Bar -->
|
||||
<nav class="navbar navbar-dark bg-dark">
|
||||
<div class="container-fluid">
|
||||
<a class="navbar-brand" href="/">
|
||||
<i class="fas fa-chart-line"></i>
|
||||
Manual Trade Annotation
|
||||
</a>
|
||||
<div class="navbar-nav flex-row">
|
||||
<span class="nav-item text-light me-3">
|
||||
<i class="fas fa-database"></i>
|
||||
<span id="annotation-count">0</span> Annotations
|
||||
</span>
|
||||
<span class="nav-item text-light">
|
||||
<i class="fas fa-clock"></i>
|
||||
<span id="current-time">--:--:--</span>
|
||||
</span>
|
||||
</div>
|
||||
</div>
|
||||
</nav>
|
||||
|
||||
<!-- Main Content -->
|
||||
<div class="container-fluid main-content">
|
||||
{% block content %}{% endblock %}
|
||||
</div>
|
||||
|
||||
<!-- Footer -->
|
||||
<footer class="footer mt-auto py-3 bg-dark">
|
||||
<div class="container-fluid">
|
||||
<div class="row">
|
||||
<div class="col-md-6">
|
||||
<span class="text-muted">
|
||||
<i class="fas fa-info-circle"></i>
|
||||
Click on charts to mark entry/exit points
|
||||
</span>
|
||||
</div>
|
||||
<div class="col-md-6 text-end">
|
||||
<span class="text-muted">
|
||||
Keyboard: ← → to navigate, Space to mark
|
||||
</span>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
</footer>
|
||||
|
||||
<!-- Bootstrap JS -->
|
||||
<script src="https://cdn.jsdelivr.net/npm/bootstrap@5.1.3/dist/js/bootstrap.bundle.min.js"></script>
|
||||
|
||||
<!-- jQuery (for convenience) -->
|
||||
<script src="https://code.jquery.com/jquery-3.6.0.min.js"></script>
|
||||
|
||||
<!-- Custom JavaScript -->
|
||||
<script src="{{ url_for('static', filename='js/chart_manager.js') }}"></script>
|
||||
<script src="{{ url_for('static', filename='js/annotation_manager.js') }}"></script>
|
||||
<script src="{{ url_for('static', filename='js/time_navigator.js') }}"></script>
|
||||
<script src="{{ url_for('static', filename='js/training_controller.js') }}"></script>
|
||||
|
||||
{% block extra_js %}{% endblock %}
|
||||
|
||||
<!-- Initialize application -->
|
||||
<script>
|
||||
// Update current time display
|
||||
function updateTime() {
|
||||
const now = new Date();
|
||||
document.getElementById('current-time').textContent = now.toLocaleTimeString();
|
||||
}
|
||||
setInterval(updateTime, 1000);
|
||||
updateTime();
|
||||
</script>
|
||||
</body>
|
||||
</html>
|
||||
188
TESTCASES/web/templates/components/annotation_list.html
Normal file
188
TESTCASES/web/templates/components/annotation_list.html
Normal file
@@ -0,0 +1,188 @@
|
||||
<div class="card annotation-list mb-3">
|
||||
<div class="card-header d-flex justify-content-between align-items-center">
|
||||
<h6 class="mb-0">
|
||||
<i class="fas fa-tags"></i>
|
||||
Annotations
|
||||
</h6>
|
||||
<button class="btn btn-sm btn-outline-light" id="export-annotations-btn" title="Export">
|
||||
<i class="fas fa-download"></i>
|
||||
</button>
|
||||
</div>
|
||||
<div class="card-body p-2">
|
||||
<div class="list-group list-group-flush" id="annotations-list">
|
||||
<!-- Annotations will be dynamically added here -->
|
||||
<div class="text-center text-muted py-3" id="no-annotations-msg">
|
||||
<i class="fas fa-info-circle"></i>
|
||||
<p class="mb-0 small">No annotations yet</p>
|
||||
<p class="mb-0 small">Click on charts to create</p>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<script>
|
||||
// Export annotations
|
||||
document.getElementById('export-annotations-btn').addEventListener('click', function() {
|
||||
fetch('/api/export-annotations', {
|
||||
method: 'POST',
|
||||
headers: {'Content-Type': 'application/json'},
|
||||
body: JSON.stringify({
|
||||
symbol: appState.currentSymbol,
|
||||
format: 'json'
|
||||
})
|
||||
})
|
||||
.then(response => response.blob())
|
||||
.then(blob => {
|
||||
const url = window.URL.createObjectURL(blob);
|
||||
const a = document.createElement('a');
|
||||
a.href = url;
|
||||
a.download = `annotations_${appState.currentSymbol}_${Date.now()}.json`;
|
||||
document.body.appendChild(a);
|
||||
a.click();
|
||||
window.URL.revokeObjectURL(url);
|
||||
a.remove();
|
||||
showSuccess('Annotations exported successfully');
|
||||
})
|
||||
.catch(error => {
|
||||
showError('Failed to export annotations: ' + error.message);
|
||||
});
|
||||
});
|
||||
|
||||
// Function to render annotations list
|
||||
function renderAnnotationsList(annotations) {
|
||||
const listContainer = document.getElementById('annotations-list');
|
||||
const noAnnotationsMsg = document.getElementById('no-annotations-msg');
|
||||
|
||||
if (annotations.length === 0) {
|
||||
noAnnotationsMsg.style.display = 'block';
|
||||
return;
|
||||
}
|
||||
|
||||
noAnnotationsMsg.style.display = 'none';
|
||||
|
||||
// Clear existing items (except the no-annotations message)
|
||||
Array.from(listContainer.children).forEach(child => {
|
||||
if (child.id !== 'no-annotations-msg') {
|
||||
child.remove();
|
||||
}
|
||||
});
|
||||
|
||||
// Add annotation items
|
||||
annotations.forEach(annotation => {
|
||||
const item = document.createElement('div');
|
||||
item.className = 'list-group-item list-group-item-action p-2';
|
||||
item.setAttribute('data-annotation-id', annotation.annotation_id);
|
||||
|
||||
const profitClass = annotation.profit_loss_pct >= 0 ? 'text-success' : 'text-danger';
|
||||
const directionIcon = annotation.direction === 'LONG' ? 'fa-arrow-up' : 'fa-arrow-down';
|
||||
|
||||
item.innerHTML = `
|
||||
<div class="d-flex justify-content-between align-items-start">
|
||||
<div class="flex-grow-1">
|
||||
<div class="d-flex align-items-center mb-1">
|
||||
<i class="fas ${directionIcon} me-1"></i>
|
||||
<strong class="small">${annotation.direction}</strong>
|
||||
<span class="badge bg-secondary ms-2 small">${annotation.timeframe}</span>
|
||||
</div>
|
||||
<div class="small text-muted">
|
||||
${new Date(annotation.entry.timestamp).toLocaleString()}
|
||||
</div>
|
||||
<div class="small ${profitClass} fw-bold">
|
||||
${annotation.profit_loss_pct >= 0 ? '+' : ''}${annotation.profit_loss_pct.toFixed(2)}%
|
||||
</div>
|
||||
</div>
|
||||
<div class="btn-group-vertical btn-group-sm">
|
||||
<button class="btn btn-sm btn-outline-primary view-annotation-btn" title="View">
|
||||
<i class="fas fa-eye"></i>
|
||||
</button>
|
||||
<button class="btn btn-sm btn-outline-success generate-testcase-btn" title="Generate Test Case">
|
||||
<i class="fas fa-file-code"></i>
|
||||
</button>
|
||||
<button class="btn btn-sm btn-outline-danger delete-annotation-btn" title="Delete">
|
||||
<i class="fas fa-trash"></i>
|
||||
</button>
|
||||
</div>
|
||||
</div>
|
||||
`;
|
||||
|
||||
// Add event listeners
|
||||
item.querySelector('.view-annotation-btn').addEventListener('click', function(e) {
|
||||
e.stopPropagation();
|
||||
viewAnnotation(annotation);
|
||||
});
|
||||
|
||||
item.querySelector('.generate-testcase-btn').addEventListener('click', function(e) {
|
||||
e.stopPropagation();
|
||||
generateTestCase(annotation.annotation_id);
|
||||
});
|
||||
|
||||
item.querySelector('.delete-annotation-btn').addEventListener('click', function(e) {
|
||||
e.stopPropagation();
|
||||
deleteAnnotation(annotation.annotation_id);
|
||||
});
|
||||
|
||||
listContainer.appendChild(item);
|
||||
});
|
||||
|
||||
// Update annotation count
|
||||
document.getElementById('annotation-count').textContent = annotations.length;
|
||||
}
|
||||
|
||||
function viewAnnotation(annotation) {
|
||||
// Navigate to annotation time and highlight it
|
||||
if (appState.timeNavigator) {
|
||||
appState.timeNavigator.navigateToTime(new Date(annotation.entry.timestamp).getTime());
|
||||
}
|
||||
if (appState.chartManager) {
|
||||
appState.chartManager.highlightAnnotation(annotation.annotation_id);
|
||||
}
|
||||
}
|
||||
|
||||
function generateTestCase(annotationId) {
|
||||
fetch('/api/generate-test-case', {
|
||||
method: 'POST',
|
||||
headers: {'Content-Type': 'application/json'},
|
||||
body: JSON.stringify({annotation_id: annotationId})
|
||||
})
|
||||
.then(response => response.json())
|
||||
.then(data => {
|
||||
if (data.success) {
|
||||
showSuccess('Test case generated successfully');
|
||||
} else {
|
||||
showError('Failed to generate test case: ' + data.error.message);
|
||||
}
|
||||
})
|
||||
.catch(error => {
|
||||
showError('Network error: ' + error.message);
|
||||
});
|
||||
}
|
||||
|
||||
function deleteAnnotation(annotationId) {
|
||||
if (!confirm('Are you sure you want to delete this annotation?')) {
|
||||
return;
|
||||
}
|
||||
|
||||
fetch('/api/delete-annotation', {
|
||||
method: 'POST',
|
||||
headers: {'Content-Type': 'application/json'},
|
||||
body: JSON.stringify({annotation_id: annotationId})
|
||||
})
|
||||
.then(response => response.json())
|
||||
.then(data => {
|
||||
if (data.success) {
|
||||
// Remove from UI
|
||||
appState.annotations = appState.annotations.filter(a => a.annotation_id !== annotationId);
|
||||
renderAnnotationsList(appState.annotations);
|
||||
if (appState.chartManager) {
|
||||
appState.chartManager.removeAnnotation(annotationId);
|
||||
}
|
||||
showSuccess('Annotation deleted');
|
||||
} else {
|
||||
showError('Failed to delete annotation: ' + data.error.message);
|
||||
}
|
||||
})
|
||||
.catch(error => {
|
||||
showError('Network error: ' + error.message);
|
||||
});
|
||||
}
|
||||
</script>
|
||||
99
TESTCASES/web/templates/components/chart_panel.html
Normal file
99
TESTCASES/web/templates/components/chart_panel.html
Normal file
@@ -0,0 +1,99 @@
|
||||
<div class="card chart-panel">
|
||||
<div class="card-header d-flex justify-content-between align-items-center">
|
||||
<h5 class="mb-0">
|
||||
<i class="fas fa-chart-candlestick"></i>
|
||||
Multi-Timeframe Charts
|
||||
</h5>
|
||||
<div class="btn-group btn-group-sm" role="group">
|
||||
<button type="button" class="btn btn-outline-light" id="zoom-in-btn" title="Zoom In">
|
||||
<i class="fas fa-search-plus"></i>
|
||||
</button>
|
||||
<button type="button" class="btn btn-outline-light" id="zoom-out-btn" title="Zoom Out">
|
||||
<i class="fas fa-search-minus"></i>
|
||||
</button>
|
||||
<button type="button" class="btn btn-outline-light" id="reset-zoom-btn" title="Reset Zoom">
|
||||
<i class="fas fa-expand"></i>
|
||||
</button>
|
||||
<button type="button" class="btn btn-outline-light" id="fullscreen-btn" title="Fullscreen">
|
||||
<i class="fas fa-expand-arrows-alt"></i>
|
||||
</button>
|
||||
</div>
|
||||
</div>
|
||||
<div class="card-body p-2">
|
||||
<!-- Chart container with multiple timeframes -->
|
||||
<div id="chart-container">
|
||||
<!-- Timeframe charts will be dynamically created here -->
|
||||
<div class="timeframe-chart" id="chart-1s">
|
||||
<div class="chart-header">
|
||||
<span class="timeframe-label">1 Second</span>
|
||||
<span class="chart-info" id="info-1s"></span>
|
||||
</div>
|
||||
<div class="chart-plot" id="plot-1s"></div>
|
||||
</div>
|
||||
|
||||
<div class="timeframe-chart" id="chart-1m">
|
||||
<div class="chart-header">
|
||||
<span class="timeframe-label">1 Minute</span>
|
||||
<span class="chart-info" id="info-1m"></span>
|
||||
</div>
|
||||
<div class="chart-plot" id="plot-1m"></div>
|
||||
</div>
|
||||
|
||||
<div class="timeframe-chart" id="chart-1h">
|
||||
<div class="chart-header">
|
||||
<span class="timeframe-label">1 Hour</span>
|
||||
<span class="chart-info" id="info-1h"></span>
|
||||
</div>
|
||||
<div class="chart-plot" id="plot-1h"></div>
|
||||
</div>
|
||||
|
||||
<div class="timeframe-chart" id="chart-1d">
|
||||
<div class="chart-header">
|
||||
<span class="timeframe-label">1 Day</span>
|
||||
<span class="chart-info" id="info-1d"></span>
|
||||
</div>
|
||||
<div class="chart-plot" id="plot-1d"></div>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<!-- Loading overlay -->
|
||||
<div id="chart-loading" class="chart-loading d-none">
|
||||
<div class="spinner-border text-primary" role="status">
|
||||
<span class="visually-hidden">Loading...</span>
|
||||
</div>
|
||||
<p class="mt-2">Loading chart data...</p>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<script>
|
||||
// Chart panel controls
|
||||
document.getElementById('zoom-in-btn').addEventListener('click', function() {
|
||||
if (appState.chartManager) {
|
||||
appState.chartManager.handleZoom(1.5);
|
||||
}
|
||||
});
|
||||
|
||||
document.getElementById('zoom-out-btn').addEventListener('click', function() {
|
||||
if (appState.chartManager) {
|
||||
appState.chartManager.handleZoom(0.67);
|
||||
}
|
||||
});
|
||||
|
||||
document.getElementById('reset-zoom-btn').addEventListener('click', function() {
|
||||
if (appState.chartManager) {
|
||||
appState.chartManager.resetZoom();
|
||||
}
|
||||
});
|
||||
|
||||
document.getElementById('fullscreen-btn').addEventListener('click', function() {
|
||||
const chartContainer = document.getElementById('chart-container');
|
||||
if (chartContainer.requestFullscreen) {
|
||||
chartContainer.requestFullscreen();
|
||||
} else if (chartContainer.webkitRequestFullscreen) {
|
||||
chartContainer.webkitRequestFullscreen();
|
||||
} else if (chartContainer.msRequestFullscreen) {
|
||||
chartContainer.msRequestFullscreen();
|
||||
}
|
||||
});
|
||||
</script>
|
||||
171
TESTCASES/web/templates/components/control_panel.html
Normal file
171
TESTCASES/web/templates/components/control_panel.html
Normal file
@@ -0,0 +1,171 @@
|
||||
<div class="card control-panel mb-3">
|
||||
<div class="card-header">
|
||||
<h6 class="mb-0">
|
||||
<i class="fas fa-sliders-h"></i>
|
||||
Controls
|
||||
</h6>
|
||||
</div>
|
||||
<div class="card-body">
|
||||
<!-- Symbol Selection -->
|
||||
<div class="mb-3">
|
||||
<label for="symbol-select" class="form-label">Symbol</label>
|
||||
<select class="form-select form-select-sm" id="symbol-select">
|
||||
<option value="ETH/USDT" selected>ETH/USDT</option>
|
||||
<option value="BTC/USDT">BTC/USDT</option>
|
||||
</select>
|
||||
</div>
|
||||
|
||||
<!-- Timeframe Selection -->
|
||||
<div class="mb-3">
|
||||
<label class="form-label">Timeframes</label>
|
||||
<div class="form-check">
|
||||
<input class="form-check-input" type="checkbox" id="tf-1s" value="1s" checked>
|
||||
<label class="form-check-label" for="tf-1s">1 Second</label>
|
||||
</div>
|
||||
<div class="form-check">
|
||||
<input class="form-check-input" type="checkbox" id="tf-1m" value="1m" checked>
|
||||
<label class="form-check-label" for="tf-1m">1 Minute</label>
|
||||
</div>
|
||||
<div class="form-check">
|
||||
<input class="form-check-input" type="checkbox" id="tf-1h" value="1h" checked>
|
||||
<label class="form-check-label" for="tf-1h">1 Hour</label>
|
||||
</div>
|
||||
<div class="form-check">
|
||||
<input class="form-check-input" type="checkbox" id="tf-1d" value="1d" checked>
|
||||
<label class="form-check-label" for="tf-1d">1 Day</label>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<!-- Time Navigation -->
|
||||
<div class="mb-3">
|
||||
<label for="date-picker" class="form-label">Navigate to Date</label>
|
||||
<input type="datetime-local" class="form-control form-control-sm" id="date-picker">
|
||||
<button class="btn btn-primary btn-sm w-100 mt-2" id="goto-date-btn">
|
||||
<i class="fas fa-calendar-day"></i>
|
||||
Go to Date
|
||||
</button>
|
||||
</div>
|
||||
|
||||
<!-- Time Range Selector -->
|
||||
<div class="mb-3">
|
||||
<label class="form-label">Quick Range</label>
|
||||
<div class="btn-group-vertical w-100" role="group">
|
||||
<button type="button" class="btn btn-sm btn-outline-secondary" data-range="1h">1 Hour</button>
|
||||
<button type="button" class="btn btn-sm btn-outline-secondary" data-range="4h">4 Hours</button>
|
||||
<button type="button" class="btn btn-sm btn-outline-secondary" data-range="1d">1 Day</button>
|
||||
<button type="button" class="btn btn-sm btn-outline-secondary" data-range="1w">1 Week</button>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<!-- Navigation Buttons -->
|
||||
<div class="mb-3">
|
||||
<label class="form-label">Navigate</label>
|
||||
<div class="btn-group w-100" role="group">
|
||||
<button type="button" class="btn btn-sm btn-outline-primary" id="nav-backward-btn" title="Backward">
|
||||
<i class="fas fa-chevron-left"></i>
|
||||
</button>
|
||||
<button type="button" class="btn btn-sm btn-outline-primary" id="nav-now-btn" title="Now">
|
||||
<i class="fas fa-clock"></i>
|
||||
</button>
|
||||
<button type="button" class="btn btn-sm btn-outline-primary" id="nav-forward-btn" title="Forward">
|
||||
<i class="fas fa-chevron-right"></i>
|
||||
</button>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<!-- Annotation Mode -->
|
||||
<div class="mb-3">
|
||||
<label class="form-label">Annotation Mode</label>
|
||||
<div class="form-check form-switch">
|
||||
<input class="form-check-input" type="checkbox" id="annotation-mode-toggle" checked>
|
||||
<label class="form-check-label" for="annotation-mode-toggle">
|
||||
<span id="annotation-mode-label">Enabled</span>
|
||||
</label>
|
||||
</div>
|
||||
<small class="text-muted">Click charts to mark trades</small>
|
||||
</div>
|
||||
|
||||
<!-- Current Annotation Status -->
|
||||
<div class="mb-3" id="pending-annotation-status" style="display: none;">
|
||||
<div class="alert alert-info py-2 px-2 mb-0">
|
||||
<small>
|
||||
<i class="fas fa-info-circle"></i>
|
||||
<strong>Entry marked</strong><br>
|
||||
Click to mark exit point
|
||||
</small>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<script>
|
||||
// Symbol selection
|
||||
document.getElementById('symbol-select').addEventListener('change', function(e) {
|
||||
appState.currentSymbol = e.target.value;
|
||||
loadInitialData();
|
||||
});
|
||||
|
||||
// Timeframe checkboxes
|
||||
document.querySelectorAll('.form-check-input[id^="tf-"]').forEach(checkbox => {
|
||||
checkbox.addEventListener('change', function() {
|
||||
const timeframes = Array.from(document.querySelectorAll('.form-check-input[id^="tf-"]:checked'))
|
||||
.map(cb => cb.value);
|
||||
appState.currentTimeframes = timeframes;
|
||||
loadInitialData();
|
||||
});
|
||||
});
|
||||
|
||||
// Date picker navigation
|
||||
document.getElementById('goto-date-btn').addEventListener('click', function() {
|
||||
const dateValue = document.getElementById('date-picker').value;
|
||||
if (dateValue && appState.timeNavigator) {
|
||||
const timestamp = new Date(dateValue).getTime();
|
||||
appState.timeNavigator.navigateToTime(timestamp);
|
||||
}
|
||||
});
|
||||
|
||||
// Quick range buttons
|
||||
document.querySelectorAll('[data-range]').forEach(button => {
|
||||
button.addEventListener('click', function() {
|
||||
const range = this.getAttribute('data-range');
|
||||
if (appState.timeNavigator) {
|
||||
appState.timeNavigator.setTimeRange(range);
|
||||
}
|
||||
});
|
||||
});
|
||||
|
||||
// Navigation buttons
|
||||
document.getElementById('nav-backward-btn').addEventListener('click', function() {
|
||||
if (appState.timeNavigator) {
|
||||
appState.timeNavigator.scrollBackward();
|
||||
}
|
||||
});
|
||||
|
||||
document.getElementById('nav-now-btn').addEventListener('click', function() {
|
||||
if (appState.timeNavigator) {
|
||||
appState.timeNavigator.navigateToNow();
|
||||
}
|
||||
});
|
||||
|
||||
document.getElementById('nav-forward-btn').addEventListener('click', function() {
|
||||
if (appState.timeNavigator) {
|
||||
appState.timeNavigator.scrollForward();
|
||||
}
|
||||
});
|
||||
|
||||
// Annotation mode toggle
|
||||
document.getElementById('annotation-mode-toggle').addEventListener('change', function(e) {
|
||||
const label = document.getElementById('annotation-mode-label');
|
||||
if (e.target.checked) {
|
||||
label.textContent = 'Enabled';
|
||||
if (appState.annotationManager) {
|
||||
appState.annotationManager.enable();
|
||||
}
|
||||
} else {
|
||||
label.textContent = 'Disabled';
|
||||
if (appState.annotationManager) {
|
||||
appState.annotationManager.disable();
|
||||
}
|
||||
}
|
||||
});
|
||||
</script>
|
||||
253
TESTCASES/web/templates/components/inference_panel.html
Normal file
253
TESTCASES/web/templates/components/inference_panel.html
Normal file
@@ -0,0 +1,253 @@
|
||||
<div class="inference-panel">
|
||||
<!-- Inference Controls -->
|
||||
<div class="row mb-3">
|
||||
<div class="col-md-8">
|
||||
<h6>Inference Simulation</h6>
|
||||
<p class="text-muted small mb-0">
|
||||
Replay annotated periods with model predictions to measure performance
|
||||
</p>
|
||||
</div>
|
||||
<div class="col-md-4 text-end">
|
||||
<div class="btn-group" role="group">
|
||||
<button class="btn btn-sm btn-outline-primary" id="inference-play-btn">
|
||||
<i class="fas fa-play"></i>
|
||||
</button>
|
||||
<button class="btn btn-sm btn-outline-primary" id="inference-pause-btn" disabled>
|
||||
<i class="fas fa-pause"></i>
|
||||
</button>
|
||||
<button class="btn btn-sm btn-outline-primary" id="inference-stop-btn" disabled>
|
||||
<i class="fas fa-stop"></i>
|
||||
</button>
|
||||
</div>
|
||||
<select class="form-select form-select-sm d-inline-block w-auto ms-2" id="inference-speed-select">
|
||||
<option value="1">1x</option>
|
||||
<option value="2">2x</option>
|
||||
<option value="5">5x</option>
|
||||
<option value="10">10x</option>
|
||||
</select>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<!-- Inference Chart -->
|
||||
<div class="row mb-3">
|
||||
<div class="col-12">
|
||||
<div id="inference-chart" style="height: 400px;"></div>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<!-- Performance Metrics -->
|
||||
<div class="row">
|
||||
<div class="col-md-3">
|
||||
<div class="card bg-dark">
|
||||
<div class="card-body text-center py-2">
|
||||
<div class="small text-muted">Accuracy</div>
|
||||
<div class="h4 mb-0" id="metric-accuracy">--</div>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
<div class="col-md-3">
|
||||
<div class="card bg-dark">
|
||||
<div class="card-body text-center py-2">
|
||||
<div class="small text-muted">Precision</div>
|
||||
<div class="h4 mb-0" id="metric-precision">--</div>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
<div class="col-md-3">
|
||||
<div class="card bg-dark">
|
||||
<div class="card-body text-center py-2">
|
||||
<div class="small text-muted">Recall</div>
|
||||
<div class="h4 mb-0" id="metric-recall">--</div>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
<div class="col-md-3">
|
||||
<div class="card bg-dark">
|
||||
<div class="card-body text-center py-2">
|
||||
<div class="small text-muted">F1 Score</div>
|
||||
<div class="h4 mb-0" id="metric-f1">--</div>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<!-- Prediction Timeline -->
|
||||
<div class="row mt-3">
|
||||
<div class="col-12">
|
||||
<h6>Prediction Timeline</h6>
|
||||
<div class="table-responsive" style="max-height: 300px; overflow-y: auto;">
|
||||
<table class="table table-sm table-dark table-striped">
|
||||
<thead>
|
||||
<tr>
|
||||
<th>Time</th>
|
||||
<th>Prediction</th>
|
||||
<th>Confidence</th>
|
||||
<th>Actual</th>
|
||||
<th>Result</th>
|
||||
</tr>
|
||||
</thead>
|
||||
<tbody id="prediction-timeline-body">
|
||||
<tr>
|
||||
<td colspan="5" class="text-center text-muted">
|
||||
No predictions yet
|
||||
</td>
|
||||
</tr>
|
||||
</tbody>
|
||||
</table>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<!-- Confusion Matrix -->
|
||||
<div class="row mt-3">
|
||||
<div class="col-md-6">
|
||||
<h6>Confusion Matrix</h6>
|
||||
<table class="table table-sm table-dark table-bordered text-center">
|
||||
<thead>
|
||||
<tr>
|
||||
<th></th>
|
||||
<th colspan="2">Predicted</th>
|
||||
</tr>
|
||||
<tr>
|
||||
<th>Actual</th>
|
||||
<th>BUY</th>
|
||||
<th>SELL</th>
|
||||
</tr>
|
||||
</thead>
|
||||
<tbody>
|
||||
<tr>
|
||||
<th>BUY</th>
|
||||
<td id="cm-tp-buy">0</td>
|
||||
<td id="cm-fn-buy">0</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<th>SELL</th>
|
||||
<td id="cm-fp-sell">0</td>
|
||||
<td id="cm-tn-sell">0</td>
|
||||
</tr>
|
||||
</tbody>
|
||||
</table>
|
||||
</div>
|
||||
<div class="col-md-6">
|
||||
<h6>Prediction Distribution</h6>
|
||||
<div id="prediction-distribution-chart" style="height: 200px;"></div>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<script>
|
||||
let inferenceState = {
|
||||
isPlaying: false,
|
||||
currentIndex: 0,
|
||||
predictions: [],
|
||||
annotations: [],
|
||||
speed: 1
|
||||
};
|
||||
|
||||
// Playback controls
|
||||
document.getElementById('inference-play-btn').addEventListener('click', function() {
|
||||
inferenceState.isPlaying = true;
|
||||
this.disabled = true;
|
||||
document.getElementById('inference-pause-btn').disabled = false;
|
||||
document.getElementById('inference-stop-btn').disabled = false;
|
||||
playInference();
|
||||
});
|
||||
|
||||
document.getElementById('inference-pause-btn').addEventListener('click', function() {
|
||||
inferenceState.isPlaying = false;
|
||||
this.disabled = true;
|
||||
document.getElementById('inference-play-btn').disabled = false;
|
||||
});
|
||||
|
||||
document.getElementById('inference-stop-btn').addEventListener('click', function() {
|
||||
inferenceState.isPlaying = false;
|
||||
inferenceState.currentIndex = 0;
|
||||
document.getElementById('inference-play-btn').disabled = false;
|
||||
document.getElementById('inference-pause-btn').disabled = true;
|
||||
this.disabled = true;
|
||||
resetInferenceDisplay();
|
||||
});
|
||||
|
||||
document.getElementById('inference-speed-select').addEventListener('change', function(e) {
|
||||
inferenceState.speed = parseFloat(e.target.value);
|
||||
});
|
||||
|
||||
function playInference() {
|
||||
if (!inferenceState.isPlaying || inferenceState.currentIndex >= inferenceState.predictions.length) {
|
||||
inferenceState.isPlaying = false;
|
||||
document.getElementById('inference-play-btn').disabled = false;
|
||||
document.getElementById('inference-pause-btn').disabled = true;
|
||||
document.getElementById('inference-stop-btn').disabled = true;
|
||||
return;
|
||||
}
|
||||
|
||||
const prediction = inferenceState.predictions[inferenceState.currentIndex];
|
||||
displayPrediction(prediction);
|
||||
|
||||
inferenceState.currentIndex++;
|
||||
|
||||
// Schedule next prediction
|
||||
const delay = 1000 / inferenceState.speed;
|
||||
setTimeout(playInference, delay);
|
||||
}
|
||||
|
||||
function displayPrediction(prediction) {
|
||||
// Add to timeline table
|
||||
const tbody = document.getElementById('prediction-timeline-body');
|
||||
if (tbody.children[0].colSpan === 5) {
|
||||
tbody.innerHTML = ''; // Clear "no predictions" message
|
||||
}
|
||||
|
||||
const row = document.createElement('tr');
|
||||
const resultClass = prediction.correct ? 'text-success' : 'text-danger';
|
||||
const resultIcon = prediction.correct ? 'fa-check' : 'fa-times';
|
||||
|
||||
row.innerHTML = `
|
||||
<td>${new Date(prediction.timestamp).toLocaleTimeString()}</td>
|
||||
<td><span class="badge bg-${prediction.predicted_action === 'BUY' ? 'success' : 'danger'}">${prediction.predicted_action}</span></td>
|
||||
<td>${(prediction.confidence * 100).toFixed(1)}%</td>
|
||||
<td><span class="badge bg-${prediction.actual_action === 'BUY' ? 'success' : 'danger'}">${prediction.actual_action}</span></td>
|
||||
<td class="${resultClass}"><i class="fas ${resultIcon}"></i></td>
|
||||
`;
|
||||
|
||||
tbody.appendChild(row);
|
||||
|
||||
// Scroll to bottom
|
||||
tbody.parentElement.scrollTop = tbody.parentElement.scrollHeight;
|
||||
|
||||
// Update chart (if implemented)
|
||||
updateInferenceChart(prediction);
|
||||
}
|
||||
|
||||
function updateInferenceChart(prediction) {
|
||||
// TODO: Update Plotly chart with prediction marker
|
||||
}
|
||||
|
||||
function resetInferenceDisplay() {
|
||||
document.getElementById('prediction-timeline-body').innerHTML = `
|
||||
<tr>
|
||||
<td colspan="5" class="text-center text-muted">
|
||||
No predictions yet
|
||||
</td>
|
||||
</tr>
|
||||
`;
|
||||
|
||||
document.getElementById('metric-accuracy').textContent = '--';
|
||||
document.getElementById('metric-precision').textContent = '--';
|
||||
document.getElementById('metric-recall').textContent = '--';
|
||||
document.getElementById('metric-f1').textContent = '--';
|
||||
}
|
||||
|
||||
function updateMetrics(metrics) {
|
||||
document.getElementById('metric-accuracy').textContent = (metrics.accuracy * 100).toFixed(1) + '%';
|
||||
document.getElementById('metric-precision').textContent = (metrics.precision * 100).toFixed(1) + '%';
|
||||
document.getElementById('metric-recall').textContent = (metrics.recall * 100).toFixed(1) + '%';
|
||||
document.getElementById('metric-f1').textContent = (metrics.f1_score * 100).toFixed(1) + '%';
|
||||
|
||||
// Update confusion matrix
|
||||
document.getElementById('cm-tp-buy').textContent = metrics.confusion_matrix.tp_buy;
|
||||
document.getElementById('cm-fn-buy').textContent = metrics.confusion_matrix.fn_buy;
|
||||
document.getElementById('cm-fp-sell').textContent = metrics.confusion_matrix.fp_sell;
|
||||
document.getElementById('cm-tn-sell').textContent = metrics.confusion_matrix.tn_sell;
|
||||
}
|
||||
</script>
|
||||
218
TESTCASES/web/templates/components/training_panel.html
Normal file
218
TESTCASES/web/templates/components/training_panel.html
Normal file
@@ -0,0 +1,218 @@
|
||||
<div class="card training-panel">
|
||||
<div class="card-header">
|
||||
<h6 class="mb-0">
|
||||
<i class="fas fa-graduation-cap"></i>
|
||||
Training
|
||||
</h6>
|
||||
</div>
|
||||
<div class="card-body p-2">
|
||||
<!-- Model Selection -->
|
||||
<div class="mb-3">
|
||||
<label for="model-select" class="form-label small">Model</label>
|
||||
<select class="form-select form-select-sm" id="model-select">
|
||||
<option value="StandardizedCNN">CNN Model</option>
|
||||
<option value="DQN">DQN Agent</option>
|
||||
<option value="Transformer">Transformer</option>
|
||||
</select>
|
||||
</div>
|
||||
|
||||
<!-- Training Controls -->
|
||||
<div class="mb-3">
|
||||
<button class="btn btn-primary btn-sm w-100" id="train-model-btn">
|
||||
<i class="fas fa-play"></i>
|
||||
Train Model
|
||||
</button>
|
||||
</div>
|
||||
|
||||
<!-- Training Status -->
|
||||
<div id="training-status" style="display: none;">
|
||||
<div class="alert alert-info py-2 px-2 mb-2">
|
||||
<div class="d-flex align-items-center mb-1">
|
||||
<div class="spinner-border spinner-border-sm me-2" role="status">
|
||||
<span class="visually-hidden">Training...</span>
|
||||
</div>
|
||||
<strong class="small">Training in progress</strong>
|
||||
</div>
|
||||
<div class="progress mb-1" style="height: 10px;">
|
||||
<div class="progress-bar progress-bar-striped progress-bar-animated"
|
||||
id="training-progress-bar"
|
||||
role="progressbar"
|
||||
style="width: 0%"></div>
|
||||
</div>
|
||||
<div class="small">
|
||||
<div>Epoch: <span id="training-epoch">0</span>/<span id="training-total-epochs">0</span></div>
|
||||
<div>Loss: <span id="training-loss">--</span></div>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<!-- Training Results -->
|
||||
<div id="training-results" style="display: none;">
|
||||
<div class="alert alert-success py-2 px-2 mb-2">
|
||||
<strong class="small">
|
||||
<i class="fas fa-check-circle"></i>
|
||||
Training Complete
|
||||
</strong>
|
||||
<div class="small mt-1">
|
||||
<div>Final Loss: <span id="result-loss">--</span></div>
|
||||
<div>Accuracy: <span id="result-accuracy">--</span></div>
|
||||
<div>Duration: <span id="result-duration">--</span></div>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<!-- Inference Simulation -->
|
||||
<div class="mb-3">
|
||||
<button class="btn btn-secondary btn-sm w-100" id="simulate-inference-btn">
|
||||
<i class="fas fa-brain"></i>
|
||||
Simulate Inference
|
||||
</button>
|
||||
</div>
|
||||
|
||||
<!-- Test Case Stats -->
|
||||
<div class="small text-muted">
|
||||
<div class="d-flex justify-content-between">
|
||||
<span>Test Cases:</span>
|
||||
<span id="testcase-count">0</span>
|
||||
</div>
|
||||
<div class="d-flex justify-content-between">
|
||||
<span>Last Training:</span>
|
||||
<span id="last-training-time">Never</span>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<script>
|
||||
// Train model button
|
||||
document.getElementById('train-model-btn').addEventListener('click', function() {
|
||||
const modelName = document.getElementById('model-select').value;
|
||||
|
||||
if (appState.annotations.length === 0) {
|
||||
showError('No annotations available for training');
|
||||
return;
|
||||
}
|
||||
|
||||
// Get annotation IDs
|
||||
const annotationIds = appState.annotations.map(a => a.annotation_id);
|
||||
|
||||
// Start training
|
||||
startTraining(modelName, annotationIds);
|
||||
});
|
||||
|
||||
function startTraining(modelName, annotationIds) {
|
||||
// Show training status
|
||||
document.getElementById('training-status').style.display = 'block';
|
||||
document.getElementById('training-results').style.display = 'none';
|
||||
document.getElementById('train-model-btn').disabled = true;
|
||||
|
||||
// Reset progress
|
||||
document.getElementById('training-progress-bar').style.width = '0%';
|
||||
document.getElementById('training-epoch').textContent = '0';
|
||||
document.getElementById('training-loss').textContent = '--';
|
||||
|
||||
// Start training request
|
||||
fetch('/api/train-model', {
|
||||
method: 'POST',
|
||||
headers: {'Content-Type': 'application/json'},
|
||||
body: JSON.stringify({
|
||||
model_name: modelName,
|
||||
annotation_ids: annotationIds
|
||||
})
|
||||
})
|
||||
.then(response => response.json())
|
||||
.then(data => {
|
||||
if (data.success) {
|
||||
// Start polling for training progress
|
||||
pollTrainingProgress(data.training_id);
|
||||
} else {
|
||||
showError('Failed to start training: ' + data.error.message);
|
||||
document.getElementById('training-status').style.display = 'none';
|
||||
document.getElementById('train-model-btn').disabled = false;
|
||||
}
|
||||
})
|
||||
.catch(error => {
|
||||
showError('Network error: ' + error.message);
|
||||
document.getElementById('training-status').style.display = 'none';
|
||||
document.getElementById('train-model-btn').disabled = false;
|
||||
});
|
||||
}
|
||||
|
||||
function pollTrainingProgress(trainingId) {
|
||||
const pollInterval = setInterval(function() {
|
||||
fetch('/api/training-progress', {
|
||||
method: 'POST',
|
||||
headers: {'Content-Type': 'application/json'},
|
||||
body: JSON.stringify({training_id: trainingId})
|
||||
})
|
||||
.then(response => response.json())
|
||||
.then(data => {
|
||||
if (data.success) {
|
||||
const progress = data.progress;
|
||||
|
||||
// Update progress bar
|
||||
const percentage = (progress.current_epoch / progress.total_epochs) * 100;
|
||||
document.getElementById('training-progress-bar').style.width = percentage + '%';
|
||||
document.getElementById('training-epoch').textContent = progress.current_epoch;
|
||||
document.getElementById('training-total-epochs').textContent = progress.total_epochs;
|
||||
document.getElementById('training-loss').textContent = progress.current_loss.toFixed(4);
|
||||
|
||||
// Check if complete
|
||||
if (progress.status === 'completed') {
|
||||
clearInterval(pollInterval);
|
||||
showTrainingResults(progress);
|
||||
} else if (progress.status === 'failed') {
|
||||
clearInterval(pollInterval);
|
||||
showError('Training failed: ' + progress.error);
|
||||
document.getElementById('training-status').style.display = 'none';
|
||||
document.getElementById('train-model-btn').disabled = false;
|
||||
}
|
||||
}
|
||||
})
|
||||
.catch(error => {
|
||||
clearInterval(pollInterval);
|
||||
showError('Failed to get training progress: ' + error.message);
|
||||
document.getElementById('training-status').style.display = 'none';
|
||||
document.getElementById('train-model-btn').disabled = false;
|
||||
});
|
||||
}, 1000); // Poll every second
|
||||
}
|
||||
|
||||
function showTrainingResults(results) {
|
||||
// Hide training status
|
||||
document.getElementById('training-status').style.display = 'none';
|
||||
|
||||
// Show results
|
||||
document.getElementById('training-results').style.display = 'block';
|
||||
document.getElementById('result-loss').textContent = results.final_loss.toFixed(4);
|
||||
document.getElementById('result-accuracy').textContent = (results.accuracy * 100).toFixed(2) + '%';
|
||||
document.getElementById('result-duration').textContent = results.duration_seconds.toFixed(1) + 's';
|
||||
|
||||
// Update last training time
|
||||
document.getElementById('last-training-time').textContent = new Date().toLocaleTimeString();
|
||||
|
||||
// Re-enable train button
|
||||
document.getElementById('train-model-btn').disabled = false;
|
||||
|
||||
showSuccess('Training completed successfully');
|
||||
}
|
||||
|
||||
// Simulate inference button
|
||||
document.getElementById('simulate-inference-btn').addEventListener('click', function() {
|
||||
const modelName = document.getElementById('model-select').value;
|
||||
|
||||
if (appState.annotations.length === 0) {
|
||||
showError('No annotations available for inference simulation');
|
||||
return;
|
||||
}
|
||||
|
||||
// Open inference modal
|
||||
const modal = new bootstrap.Modal(document.getElementById('inferenceModal'));
|
||||
modal.show();
|
||||
|
||||
// Start inference simulation
|
||||
if (appState.trainingController) {
|
||||
appState.trainingController.simulateInference(modelName, appState.annotations);
|
||||
}
|
||||
});
|
||||
</script>
|
||||
Reference in New Issue
Block a user