Files
gogo2/TESTCASES/web/app.py
2025-10-18 16:37:13 +03:00

401 lines
14 KiB
Python

"""
Manual Trade Annotation UI - Main Application
A web-based interface for manually marking profitable buy/sell signals on historical
market data to generate training test cases for machine learning models.
"""
import os
import sys
from pathlib import Path
# Add parent directory to path for imports
parent_dir = Path(__file__).parent.parent.parent
sys.path.insert(0, str(parent_dir))
from flask import Flask, render_template, request, jsonify, send_file
from dash import Dash, html
import logging
from datetime import datetime
import json
# Import core components from main system
try:
from core.data_provider import DataProvider
from core.orchestrator import TradingOrchestrator
from core.config import get_config
except ImportError as e:
print(f"Warning: Could not import main system components: {e}")
print("Running in standalone mode with limited functionality")
DataProvider = None
TradingOrchestrator = None
get_config = lambda: {}
# Import TESTCASES modules
testcases_dir = Path(__file__).parent.parent
sys.path.insert(0, str(testcases_dir))
try:
from core.annotation_manager import AnnotationManager
from core.training_simulator import TrainingSimulator
except ImportError:
# Try alternative import path
import importlib.util
# Load annotation_manager
ann_spec = importlib.util.spec_from_file_location(
"annotation_manager",
testcases_dir / "core" / "annotation_manager.py"
)
ann_module = importlib.util.module_from_spec(ann_spec)
ann_spec.loader.exec_module(ann_module)
AnnotationManager = ann_module.AnnotationManager
# Load training_simulator
train_spec = importlib.util.spec_from_file_location(
"training_simulator",
testcases_dir / "core" / "training_simulator.py"
)
train_module = importlib.util.module_from_spec(train_spec)
train_spec.loader.exec_module(train_module)
TrainingSimulator = train_module.TrainingSimulator
# Setup logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
class AnnotationDashboard:
"""Main annotation dashboard application"""
def __init__(self):
"""Initialize the dashboard"""
# Load configuration
self.config = get_config() if get_config else {}
# Initialize Flask app
self.server = Flask(
__name__,
template_folder='templates',
static_folder='static'
)
# Initialize Dash app
self.app = Dash(
__name__,
server=self.server,
url_base_pathname='/dash/',
external_stylesheets=[
'https://cdn.jsdelivr.net/npm/bootstrap@5.1.3/dist/css/bootstrap.min.css',
'https://cdnjs.cloudflare.com/ajax/libs/font-awesome/6.0.0/css/all.min.css'
]
)
# Initialize core components
self.data_provider = DataProvider() if DataProvider else None
self.orchestrator = TradingOrchestrator(
data_provider=self.data_provider
) if TradingOrchestrator and self.data_provider else None
# Initialize TESTCASES components
self.annotation_manager = AnnotationManager()
self.training_simulator = TrainingSimulator(self.orchestrator) if self.orchestrator else None
# Setup routes
self._setup_routes()
logger.info("Annotation Dashboard initialized")
def _setup_routes(self):
"""Setup Flask routes"""
@self.server.route('/')
def index():
"""Main dashboard page"""
# Get current annotations
annotations = self.annotation_manager.get_annotations()
# Prepare template data
template_data = {
'current_symbol': 'ETH/USDT',
'timeframes': ['1s', '1m', '1h', '1d'],
'annotations': [ann.__dict__ if hasattr(ann, '__dict__') else ann
for ann in annotations]
}
return render_template('annotation_dashboard.html', **template_data)
@self.server.route('/api/chart-data', methods=['POST'])
def get_chart_data():
"""Get chart data for specified symbol and timeframes"""
try:
data = request.get_json()
symbol = data.get('symbol', 'ETH/USDT')
timeframes = data.get('timeframes', ['1s', '1m', '1h', '1d'])
start_time = data.get('start_time')
end_time = data.get('end_time')
if not self.data_provider:
return jsonify({
'success': False,
'error': {
'code': 'DATA_PROVIDER_UNAVAILABLE',
'message': 'Data provider not available'
}
})
# Fetch data for each timeframe
chart_data = {}
for timeframe in timeframes:
df = self.data_provider.get_historical_data(
symbol=symbol,
timeframe=timeframe,
limit=500
)
if df is not None and not df.empty:
# Convert to format suitable for Plotly
chart_data[timeframe] = {
'timestamps': df.index.strftime('%Y-%m-%d %H:%M:%S').tolist(),
'open': df['open'].tolist(),
'high': df['high'].tolist(),
'low': df['low'].tolist(),
'close': df['close'].tolist(),
'volume': df['volume'].tolist()
}
return jsonify({
'success': True,
'chart_data': chart_data
})
except Exception as e:
logger.error(f"Error fetching chart data: {e}")
return jsonify({
'success': False,
'error': {
'code': 'CHART_DATA_ERROR',
'message': str(e)
}
})
@self.server.route('/api/save-annotation', methods=['POST'])
def save_annotation():
"""Save a new annotation"""
try:
data = request.get_json()
# Create annotation
annotation = self.annotation_manager.create_annotation(
entry_point=data['entry'],
exit_point=data['exit'],
symbol=data['symbol'],
timeframe=data['timeframe']
)
# Save annotation
self.annotation_manager.save_annotation(annotation)
return jsonify({
'success': True,
'annotation': annotation.__dict__ if hasattr(annotation, '__dict__') else annotation
})
except Exception as e:
logger.error(f"Error saving annotation: {e}")
return jsonify({
'success': False,
'error': {
'code': 'SAVE_ANNOTATION_ERROR',
'message': str(e)
}
})
@self.server.route('/api/delete-annotation', methods=['POST'])
def delete_annotation():
"""Delete an annotation"""
try:
data = request.get_json()
annotation_id = data['annotation_id']
self.annotation_manager.delete_annotation(annotation_id)
return jsonify({'success': True})
except Exception as e:
logger.error(f"Error deleting annotation: {e}")
return jsonify({
'success': False,
'error': {
'code': 'DELETE_ANNOTATION_ERROR',
'message': str(e)
}
})
@self.server.route('/api/generate-test-case', methods=['POST'])
def generate_test_case():
"""Generate test case from annotation"""
try:
data = request.get_json()
annotation_id = data['annotation_id']
# Get annotation
annotations = self.annotation_manager.get_annotations()
annotation = next((a for a in annotations
if (a.annotation_id if hasattr(a, 'annotation_id')
else a.get('annotation_id')) == annotation_id), None)
if not annotation:
return jsonify({
'success': False,
'error': {
'code': 'ANNOTATION_NOT_FOUND',
'message': 'Annotation not found'
}
})
# Generate test case
test_case = self.annotation_manager.generate_test_case(annotation)
return jsonify({
'success': True,
'test_case': test_case
})
except Exception as e:
logger.error(f"Error generating test case: {e}")
return jsonify({
'success': False,
'error': {
'code': 'GENERATE_TESTCASE_ERROR',
'message': str(e)
}
})
@self.server.route('/api/export-annotations', methods=['POST'])
def export_annotations():
"""Export annotations to file"""
try:
data = request.get_json()
symbol = data.get('symbol')
format_type = data.get('format', 'json')
# Get annotations
annotations = self.annotation_manager.get_annotations(symbol=symbol)
# Export to file
output_path = self.annotation_manager.export_annotations(
annotations=annotations,
format_type=format_type
)
return send_file(output_path, as_attachment=True)
except Exception as e:
logger.error(f"Error exporting annotations: {e}")
return jsonify({
'success': False,
'error': {
'code': 'EXPORT_ERROR',
'message': str(e)
}
})
@self.server.route('/api/train-model', methods=['POST'])
def train_model():
"""Start model training with annotations"""
try:
if not self.training_simulator:
return jsonify({
'success': False,
'error': {
'code': 'TRAINING_UNAVAILABLE',
'message': 'Training simulator not available'
}
})
data = request.get_json()
model_name = data['model_name']
annotation_ids = data['annotation_ids']
# Get annotations
annotations = self.annotation_manager.get_annotations()
selected_annotations = [a for a in annotations
if (a.annotation_id if hasattr(a, 'annotation_id')
else a.get('annotation_id')) in annotation_ids]
# Generate test cases
test_cases = [self.annotation_manager.generate_test_case(ann)
for ann in selected_annotations]
# Start training
training_id = self.training_simulator.start_training(
model_name=model_name,
test_cases=test_cases
)
return jsonify({
'success': True,
'training_id': training_id
})
except Exception as e:
logger.error(f"Error starting training: {e}")
return jsonify({
'success': False,
'error': {
'code': 'TRAINING_ERROR',
'message': str(e)
}
})
@self.server.route('/api/training-progress', methods=['POST'])
def get_training_progress():
"""Get training progress"""
try:
if not self.training_simulator:
return jsonify({
'success': False,
'error': {
'code': 'TRAINING_UNAVAILABLE',
'message': 'Training simulator not available'
}
})
data = request.get_json()
training_id = data['training_id']
progress = self.training_simulator.get_training_progress(training_id)
return jsonify({
'success': True,
'progress': progress
})
except Exception as e:
logger.error(f"Error getting training progress: {e}")
return jsonify({
'success': False,
'error': {
'code': 'PROGRESS_ERROR',
'message': str(e)
}
})
def run(self, host='127.0.0.1', port=8051, debug=False):
"""Run the application"""
logger.info(f"Starting Annotation Dashboard on http://{host}:{port}")
self.server.run(host=host, port=port, debug=debug)
def main():
"""Main entry point"""
dashboard = AnnotationDashboard()
dashboard.run(debug=True)
if __name__ == '__main__':
main()