added backtest
This commit is contained in:
parent
015b79c395
commit
b66fafb06f
@ -1,6 +1,7 @@
|
||||
#!/usr/bin/env python3
|
||||
import asyncio
|
||||
import os
|
||||
import time
|
||||
import ccxt.async_support as ccxt
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
@ -8,14 +9,13 @@ import torch.optim as optim
|
||||
import numpy as np
|
||||
from collections import deque
|
||||
|
||||
# ------------------------------
|
||||
# Neural Network Architecture
|
||||
# ------------------------------
|
||||
# -------------------------------------
|
||||
# Neural Network Architecture Definition
|
||||
# -------------------------------------
|
||||
class TradingModel(nn.Module):
|
||||
def __init__(self, input_dim, hidden_dim, output_dim):
|
||||
super(TradingModel, self).__init__()
|
||||
# This is a simplified feed-forward model.
|
||||
# A production-grade 8B parameter model would need a distributed strategy.
|
||||
# This is a minimal feed-forward network.
|
||||
self.net = nn.Sequential(
|
||||
nn.Linear(input_dim, hidden_dim),
|
||||
nn.ReLU(),
|
||||
@ -27,9 +27,9 @@ class TradingModel(nn.Module):
|
||||
def forward(self, x):
|
||||
return self.net(x)
|
||||
|
||||
# ------------------------------
|
||||
# Replay Buffer for Continuous Learning
|
||||
# ------------------------------
|
||||
# -------------------------------------
|
||||
# Replay Buffer for Experience Storage
|
||||
# -------------------------------------
|
||||
class ReplayBuffer:
|
||||
def __init__(self, capacity=10000):
|
||||
self.buffer = deque(maxlen=capacity)
|
||||
@ -44,17 +44,16 @@ class ReplayBuffer:
|
||||
def __len__(self):
|
||||
return len(self.buffer)
|
||||
|
||||
# ------------------------------
|
||||
# Feature Engineering & Indicator Calculation
|
||||
# ------------------------------
|
||||
# -------------------------------------
|
||||
# A Simple Indicator and Feature Preparation Function
|
||||
# -------------------------------------
|
||||
def compute_indicators(candle, additional_data):
|
||||
"""
|
||||
Combine basic OHLCV candle data with additional sentiment/indicator data.
|
||||
In production, you might use dedicated libraries (like TA‑Lib) to calculate RSI, stochastic,
|
||||
and support up to 100 channels.
|
||||
Combine OHLCV candle data with extra indicator information.
|
||||
Base features: open, high, low, close, volume.
|
||||
Additional channels (e.g. sentiment score, news volume, etc.) are appended.
|
||||
"""
|
||||
features = []
|
||||
# Base candle features: open, high, low, close, volume
|
||||
features.extend([
|
||||
candle.get('open', 0.0),
|
||||
candle.get('high', 0.0),
|
||||
@ -62,83 +61,37 @@ def compute_indicators(candle, additional_data):
|
||||
candle.get('close', 0.0),
|
||||
candle.get('volume', 0.0)
|
||||
])
|
||||
|
||||
# Append additional indicators (e.g., sentiment, news volume, etc.)
|
||||
# Append additional indicators (e.g., simulated sentiment here)
|
||||
for key, value in additional_data.items():
|
||||
features.append(value)
|
||||
|
||||
return np.array(features, dtype=np.float32)
|
||||
|
||||
# ------------------------------
|
||||
# Data Ingestion from MEXC: Live Candle Data
|
||||
# ------------------------------
|
||||
async def get_live_candle_data(exchange, symbol, timeframe='1m'):
|
||||
"""
|
||||
Fetch the latest OHLCV candle for the given symbol and timeframe.
|
||||
MEXC (or other exchanges via ccxt) returns a list of candles:
|
||||
[ timestamp, open, high, low, close, volume ]
|
||||
We use limit=1 to get the last candle.
|
||||
"""
|
||||
try:
|
||||
ohlcv = await exchange.fetch_ohlcv(symbol, timeframe=timeframe, limit=1)
|
||||
if ohlcv and len(ohlcv) > 0:
|
||||
ts, open_, high, low, close, volume = ohlcv[-1]
|
||||
candle = {
|
||||
'timestamp': ts,
|
||||
'open': open_,
|
||||
'high': high,
|
||||
'low': low,
|
||||
'close': close,
|
||||
'volume': volume
|
||||
}
|
||||
return candle
|
||||
return None
|
||||
except Exception as e:
|
||||
print("Error fetching candle data:", e)
|
||||
return None
|
||||
|
||||
# ------------------------------
|
||||
# Simulated Sentiment Data
|
||||
# ------------------------------
|
||||
async def get_sentiment_data():
|
||||
"""
|
||||
Simulate fetching live sentiment data.
|
||||
In production, integrate sentiment analysis from social media, news APIs, etc.
|
||||
"""
|
||||
await asyncio.sleep(0.1) # Simulated latency
|
||||
return {
|
||||
'sentiment_score': np.random.rand(), # Example: normalized between 0 and 1
|
||||
'news_volume': np.random.rand(),
|
||||
'social_engagement': np.random.rand()
|
||||
}
|
||||
|
||||
# ------------------------------
|
||||
# RL Agent with Continuous Learning
|
||||
# ------------------------------
|
||||
# -------------------------------------
|
||||
# RL Agent that Uses the Neural Network
|
||||
# -------------------------------------
|
||||
class ContinuousRLAgent:
|
||||
def __init__(self, model, optimizer, replay_buffer, batch_size=32):
|
||||
self.model = model
|
||||
self.optimizer = optimizer
|
||||
self.replay_buffer = replay_buffer
|
||||
self.batch_size = batch_size
|
||||
# For demonstration, we use a basic MSE loss.
|
||||
self.loss_fn = nn.MSELoss()
|
||||
self.loss_fn = nn.MSELoss() # Using a simple MSE loss for demonstration.
|
||||
|
||||
def act(self, state):
|
||||
"""
|
||||
Given the latest state, decide on an action.
|
||||
Mapping: 0: SELL, 1: HOLD, 2: BUY.
|
||||
Given state features, output an action.
|
||||
Mapping: 0 -> SELL, 1 -> HOLD, 2 -> BUY.
|
||||
"""
|
||||
state_tensor = torch.tensor(state, dtype=torch.float32).unsqueeze(0)
|
||||
with torch.no_grad():
|
||||
output = self.model(state_tensor)
|
||||
action = torch.argmax(output, dim=1).item()
|
||||
action = torch.argmax(output, dim=1).item()
|
||||
return action
|
||||
|
||||
def train_step(self):
|
||||
"""
|
||||
Perform one training step using a sample from the replay buffer.
|
||||
Note: A true RL implementation would incorporate rewards and discounted returns.
|
||||
Sample a batch from the replay buffer and update the network.
|
||||
(Note: A real RL algorithm will have a more-complex target calculation.)
|
||||
"""
|
||||
if len(self.replay_buffer) < self.batch_size:
|
||||
return # Not enough samples yet
|
||||
@ -156,7 +109,7 @@ class ContinuousRLAgent:
|
||||
targets_tensor = torch.tensor(rewards, dtype=torch.float32).unsqueeze(1)
|
||||
|
||||
outputs = self.model(states_tensor)
|
||||
# For demonstration, we use the first output as our estimation.
|
||||
# For this simple demonstration we use the first output as the value estimate.
|
||||
predictions = outputs[:, 0].unsqueeze(1)
|
||||
loss = self.loss_fn(predictions, targets_tensor)
|
||||
|
||||
@ -164,105 +117,187 @@ class ContinuousRLAgent:
|
||||
loss.backward()
|
||||
self.optimizer.step()
|
||||
|
||||
# ------------------------------
|
||||
# Trading Bot: Execution with MEXC API
|
||||
# ------------------------------
|
||||
class TradingBot:
|
||||
def __init__(self, rl_agent, exchange, symbol='BTC/USDT', trade_amount=0.001):
|
||||
self.rl_agent = rl_agent
|
||||
self.exchange = exchange
|
||||
self.symbol = symbol
|
||||
self.trade_amount = trade_amount # Amount to trade (in base currency)
|
||||
|
||||
async def execute_trade(self, action):
|
||||
"""
|
||||
Convert the RL agent's decision into a market order.
|
||||
Action mapping: 0 => SELL, 1 => HOLD, 2 => BUY.
|
||||
"""
|
||||
if action == 0:
|
||||
print("Executing SELL order")
|
||||
await self.place_market_order('sell')
|
||||
elif action == 2:
|
||||
print("Executing BUY order")
|
||||
await self.place_market_order('buy')
|
||||
else:
|
||||
print("Holding position - no order executed")
|
||||
|
||||
async def place_market_order(self, side):
|
||||
"""
|
||||
Place a market order on MEXC using ccxt.
|
||||
"""
|
||||
# -------------------------------------
|
||||
# Historical Data Fetching Function
|
||||
# -------------------------------------
|
||||
async def fetch_historical_data(exchange, symbol, timeframe, since, end_time, batch_size=500):
|
||||
"""
|
||||
Fetch historical OHLCV data for the given symbol and timeframe.
|
||||
The "since" and "end_time" parameters are in milliseconds.
|
||||
"""
|
||||
candles = []
|
||||
since_ms = since
|
||||
while True:
|
||||
try:
|
||||
order = await self.exchange.create_order(self.symbol, 'market', side, self.trade_amount, None)
|
||||
print(f"Order executed: {order}")
|
||||
batch = await exchange.fetch_ohlcv(symbol, timeframe=timeframe, since=since_ms, limit=batch_size)
|
||||
except Exception as e:
|
||||
print(f"Error executing {side} order:", e)
|
||||
|
||||
async def trading_loop(self, timeframe='1m'):
|
||||
"""
|
||||
Main loop:
|
||||
- Fetch live candlestick and sentiment data.
|
||||
- Compute state features.
|
||||
- Let the RL agent decide an action.
|
||||
- Execute market orders.
|
||||
- Store experience and perform continuous training.
|
||||
"""
|
||||
while True:
|
||||
candle = await get_live_candle_data(self.exchange, self.symbol, timeframe)
|
||||
if candle is None:
|
||||
await asyncio.sleep(1)
|
||||
continue
|
||||
|
||||
sentiment = await get_sentiment_data()
|
||||
state = compute_indicators(candle, sentiment)
|
||||
action = self.rl_agent.act(state)
|
||||
await self.execute_trade(action)
|
||||
|
||||
# Simulate reward computation. In production, use trading performance to compute reward.
|
||||
reward = np.random.rand()
|
||||
next_state = state # In a real system, this would be updated after the trade.
|
||||
done = False
|
||||
self.rl_agent.replay_buffer.add((state, reward, next_state, done))
|
||||
self.rl_agent.train_step()
|
||||
|
||||
# Wait to match the candle timeframe (for a 1m candle, sleep 60 seconds)
|
||||
await asyncio.sleep(60)
|
||||
print("Error fetching historical data:", e)
|
||||
break
|
||||
if not batch:
|
||||
break
|
||||
# Convert each candle from a list to a dict.
|
||||
for c in batch:
|
||||
candle_dict = {
|
||||
'timestamp': c[0],
|
||||
'open': c[1],
|
||||
'high': c[2],
|
||||
'low': c[3],
|
||||
'close': c[4],
|
||||
'volume': c[5]
|
||||
}
|
||||
candles.append(candle_dict)
|
||||
last_timestamp = batch[-1][0]
|
||||
if last_timestamp >= end_time:
|
||||
break
|
||||
since_ms = last_timestamp + 1
|
||||
print(f"Fetched {len(candles)} candles.")
|
||||
return candles
|
||||
|
||||
# ------------------------------
|
||||
# Main Execution Loop
|
||||
# ------------------------------
|
||||
async def main_loop():
|
||||
# Retrieve MEXC API credentials from environment variables or replace with your keys.
|
||||
# -------------------------------------
|
||||
# Backtest Environment Class Definition
|
||||
# -------------------------------------
|
||||
class BacktestEnvironment:
|
||||
def __init__(self, candles):
|
||||
self.candles = candles
|
||||
self.current_index = 0
|
||||
self.position = None # Will hold a dict once a BUY is simulated.
|
||||
|
||||
def reset(self):
|
||||
self.current_index = 0
|
||||
self.position = None
|
||||
return self.get_state(self.current_index)
|
||||
|
||||
def get_state(self, index):
|
||||
candle = self.candles[index]
|
||||
# Simulate additional sentiment features.
|
||||
sentiment = {
|
||||
'sentiment_score': np.random.rand(),
|
||||
'news_volume': np.random.rand(),
|
||||
'social_engagement': np.random.rand()
|
||||
}
|
||||
return compute_indicators(candle, sentiment)
|
||||
|
||||
def step(self, action):
|
||||
"""
|
||||
Simulate a trading step.
|
||||
• Uses the current candle as state.
|
||||
• Decides on an action:
|
||||
- If not in a position and action is BUY (2), we buy at the next candle's open.
|
||||
- If in position and action is SELL (0), we sell at the next candle's open.
|
||||
- Otherwise, no trade is executed.
|
||||
• Returns: (state, reward, next_state, done)
|
||||
"""
|
||||
if self.current_index >= len(self.candles) - 1:
|
||||
# End of the historical data.
|
||||
return self.get_state(self.current_index), 0, None, True
|
||||
|
||||
state = self.get_state(self.current_index)
|
||||
next_index = self.current_index + 1
|
||||
next_state = self.get_state(next_index)
|
||||
current_candle = self.candles[self.current_index]
|
||||
next_candle = self.candles[next_index]
|
||||
reward = 0.0
|
||||
|
||||
# Action mapping: 0 -> SELL, 1 -> HOLD, 2 -> BUY.
|
||||
if self.position is None:
|
||||
if action == 2: # BUY signal: enter a long position.
|
||||
# Buy at the next candle's open price.
|
||||
entry_price = next_candle['open']
|
||||
self.position = {'entry_price': entry_price, 'entry_index': self.current_index}
|
||||
# No immediate reward on entry.
|
||||
else:
|
||||
if action == 0: # SELL signal: exit the long position.
|
||||
sell_price = next_candle['open']
|
||||
reward = sell_price - self.position['entry_price']
|
||||
self.position = None
|
||||
self.current_index = next_index
|
||||
done = (self.current_index >= len(self.candles) - 1)
|
||||
return state, reward, next_state, done
|
||||
|
||||
# -------------------------------------
|
||||
# Training Loop Over Historical Data (Backtest)
|
||||
# -------------------------------------
|
||||
def train_on_historical_data(env, rl_agent, num_epochs=10):
|
||||
"""
|
||||
For each epoch, run through the historical data episode.
|
||||
At every step, let the agent decide an action and simulate a trade.
|
||||
The experience (state, reward, next_state, done) is stored and used to update the network.
|
||||
"""
|
||||
for epoch in range(num_epochs):
|
||||
state = env.reset()
|
||||
done = False
|
||||
total_reward = 0.0
|
||||
steps = 0
|
||||
while not done:
|
||||
action = rl_agent.act(state)
|
||||
state_next, reward, next_state, done = env.step(action)
|
||||
if next_state is None:
|
||||
next_state = np.zeros_like(state)
|
||||
rl_agent.replay_buffer.add((state, reward, next_state, done))
|
||||
rl_agent.train_step()
|
||||
state = next_state
|
||||
total_reward += reward
|
||||
steps += 1
|
||||
print(f"Epoch {epoch+1}/{num_epochs} completed, total reward: {total_reward:.4f} over {steps} steps.")
|
||||
|
||||
# -------------------------------------
|
||||
# Main Asynchronous Function for Backtest Training
|
||||
# -------------------------------------
|
||||
async def main_backtest():
|
||||
# Define symbol, timeframe, and historical period.
|
||||
symbol = 'BTC/USDT'
|
||||
timeframe = '1m'
|
||||
now = int(time.time() * 1000)
|
||||
one_day_ms = 24 * 60 * 60 * 1000
|
||||
# For example, fetch a 1-day period from 2 days ago until 1 day ago.
|
||||
since = now - one_day_ms * 2
|
||||
end_time = now - one_day_ms
|
||||
|
||||
# Initialize the exchange (using MEXC in this example).
|
||||
mexc_api_key = os.environ.get('MEXC_API_KEY', 'YOUR_API_KEY')
|
||||
mexc_api_secret = os.environ.get('MEXC_API_SECRET', 'YOUR_SECRET_KEY')
|
||||
|
||||
# Create the MEXC exchange instance (ccxt asynchronous)
|
||||
exchange = ccxt.mexc({
|
||||
'apiKey': mexc_api_key,
|
||||
'secret': mexc_api_secret,
|
||||
'enableRateLimit': True,
|
||||
})
|
||||
|
||||
# Define the model input dimensions.
|
||||
# Base candle features (5: open, high, low, close, volume) + simulated 3 sentiment features
|
||||
input_dim = 8
|
||||
print("Fetching historical data...")
|
||||
candles = await fetch_historical_data(exchange, symbol, timeframe, since, end_time)
|
||||
if not candles:
|
||||
print("No historical data fetched.")
|
||||
await exchange.close()
|
||||
return
|
||||
|
||||
# Initialize the backtest environment with the historical candles.
|
||||
env = BacktestEnvironment(candles)
|
||||
|
||||
# Model dimensions:
|
||||
# 5 base OHLCV features + 3 simulated sentiment features.
|
||||
input_dim = 5 + 3
|
||||
hidden_dim = 128
|
||||
output_dim = 3 # SELL, HOLD, BUY
|
||||
output_dim = 3 # SELL, HOLD, BUY
|
||||
|
||||
model = TradingModel(input_dim, hidden_dim, output_dim)
|
||||
optimizer = optim.Adam(model.parameters(), lr=1e-4)
|
||||
replay_buffer = ReplayBuffer(capacity=10000)
|
||||
rl_agent = ContinuousRLAgent(model, optimizer, replay_buffer, batch_size=32)
|
||||
|
||||
trading_bot = TradingBot(rl_agent, exchange, symbol='BTC/USDT', trade_amount=0.001)
|
||||
# Train the RL agent via backtesting.
|
||||
num_epochs = 10 # Adjust number of epochs as needed.
|
||||
train_on_historical_data(env, rl_agent, num_epochs=num_epochs)
|
||||
|
||||
try:
|
||||
# Begin the continuous trading loop (using 1-minute candles)
|
||||
await trading_bot.trading_loop(timeframe='1m')
|
||||
except Exception as e:
|
||||
print("Error in trading loop:", e)
|
||||
finally:
|
||||
await exchange.close()
|
||||
# Optionally, perform a final test episode to simulate trading with the trained model.
|
||||
state = env.reset()
|
||||
done = False
|
||||
cumulative_reward = 0.0
|
||||
while not done:
|
||||
action = rl_agent.act(state)
|
||||
state, reward, next_state, done = env.step(action)
|
||||
cumulative_reward += reward
|
||||
print("Final backtest simulation cumulative profit:", cumulative_reward)
|
||||
|
||||
await exchange.close()
|
||||
|
||||
if __name__ == "__main__":
|
||||
asyncio.run(main_loop())
|
||||
asyncio.run(main_backtest())
|
Loading…
x
Reference in New Issue
Block a user