wip training and inference stats
This commit is contained in:
156
MODEL_STATISTICS_IMPLEMENTATION_SUMMARY.md
Normal file
156
MODEL_STATISTICS_IMPLEMENTATION_SUMMARY.md
Normal file
@ -0,0 +1,156 @@
|
||||
# Model Statistics Implementation Summary
|
||||
|
||||
## Overview
|
||||
Successfully implemented comprehensive model statistics tracking for the TradingOrchestrator, providing real-time monitoring of model performance, inference rates, and loss tracking.
|
||||
|
||||
## Features Implemented
|
||||
|
||||
### 1. ModelStatistics Dataclass
|
||||
Created a comprehensive statistics tracking class with the following metrics:
|
||||
- **Inference Timing**: Last inference time, total inferences, inference rates (per second/minute)
|
||||
- **Loss Tracking**: Current loss, average loss, best/worst loss with rolling history
|
||||
- **Prediction History**: Last prediction, confidence, and rolling history of recent predictions
|
||||
- **Performance Metrics**: Accuracy tracking and model-specific metadata
|
||||
|
||||
### 2. Real-time Statistics Tracking
|
||||
- **Automatic Updates**: Statistics are updated automatically during each model inference
|
||||
- **Rolling Windows**: Uses deque with configurable limits for memory efficiency
|
||||
- **Rate Calculation**: Dynamic calculation of inference rates based on actual timing
|
||||
- **Error Handling**: Robust error handling to prevent statistics failures from affecting predictions
|
||||
|
||||
### 3. Integration Points
|
||||
|
||||
#### Model Registration
|
||||
- Statistics are automatically initialized when models are registered
|
||||
- Cleanup happens automatically when models are unregistered
|
||||
- Each model gets its own dedicated statistics object
|
||||
|
||||
#### Prediction Loop Integration
|
||||
- Statistics are updated in `_get_all_predictions` for each model inference
|
||||
- Tracks both successful predictions and failed inference attempts
|
||||
- Minimal performance overhead with efficient data structures
|
||||
|
||||
#### Training Integration
|
||||
- Loss values are automatically tracked when models are trained
|
||||
- Updates both the existing `model_states` and new `model_statistics`
|
||||
- Provides historical loss tracking for trend analysis
|
||||
|
||||
### 4. Access Methods
|
||||
|
||||
#### Individual Model Statistics
|
||||
```python
|
||||
# Get statistics for a specific model
|
||||
stats = orchestrator.get_model_statistics("dqn_agent")
|
||||
print(f"Total inferences: {stats.total_inferences}")
|
||||
print(f"Inference rate: {stats.inference_rate_per_minute:.1f}/min")
|
||||
```
|
||||
|
||||
#### All Models Summary
|
||||
```python
|
||||
# Get serializable summary of all models
|
||||
summary = orchestrator.get_model_statistics_summary()
|
||||
for model_name, stats in summary.items():
|
||||
print(f"{model_name}: {stats}")
|
||||
```
|
||||
|
||||
#### Logging and Monitoring
|
||||
```python
|
||||
# Log current statistics (brief or detailed)
|
||||
orchestrator.log_model_statistics() # Brief
|
||||
orchestrator.log_model_statistics(detailed=True) # Detailed
|
||||
```
|
||||
|
||||
## Test Results
|
||||
|
||||
The implementation was successfully tested with the following results:
|
||||
|
||||
### Initial State
|
||||
- All models start with 0 inferences and no statistics
|
||||
- Statistics objects are properly initialized during model registration
|
||||
|
||||
### After 5 Prediction Batches
|
||||
- **dqn_agent**: 5 inferences, 63.5/min rate, last prediction: BUY (1.000 confidence)
|
||||
- **enhanced_cnn**: 5 inferences, 64.2/min rate, last prediction: SELL (0.499 confidence)
|
||||
- **cob_rl_model**: 5 inferences, 65.3/min rate, last prediction: SELL (0.684 confidence)
|
||||
- **extrema_trainer**: 0 inferences (not being called in current setup)
|
||||
|
||||
### Key Observations
|
||||
1. **Accurate Rate Calculation**: Inference rates are calculated correctly based on actual timing
|
||||
2. **Proper Tracking**: Each model's predictions and confidence levels are tracked accurately
|
||||
3. **Memory Efficiency**: Rolling windows prevent unlimited memory growth
|
||||
4. **Error Resilience**: Statistics continue to work even when training fails
|
||||
|
||||
## Data Structure
|
||||
|
||||
### ModelStatistics Fields
|
||||
```python
|
||||
@dataclass
|
||||
class ModelStatistics:
|
||||
model_name: str
|
||||
last_inference_time: Optional[datetime] = None
|
||||
total_inferences: int = 0
|
||||
inference_rate_per_minute: float = 0.0
|
||||
inference_rate_per_second: float = 0.0
|
||||
current_loss: Optional[float] = None
|
||||
average_loss: Optional[float] = None
|
||||
best_loss: Optional[float] = None
|
||||
worst_loss: Optional[float] = None
|
||||
accuracy: Optional[float] = None
|
||||
last_prediction: Optional[str] = None
|
||||
last_confidence: Optional[float] = None
|
||||
inference_times: deque = field(default_factory=lambda: deque(maxlen=100))
|
||||
losses: deque = field(default_factory=lambda: deque(maxlen=100))
|
||||
predictions_history: deque = field(default_factory=lambda: deque(maxlen=50))
|
||||
```
|
||||
|
||||
### JSON Serializable Summary
|
||||
The `get_model_statistics_summary()` method returns a clean, JSON-serializable dictionary perfect for:
|
||||
- Dashboard integration
|
||||
- API responses
|
||||
- Logging and monitoring systems
|
||||
- Performance analysis tools
|
||||
|
||||
## Performance Impact
|
||||
- **Minimal Overhead**: Statistics updates add negligible latency to predictions
|
||||
- **Memory Efficient**: Rolling windows prevent memory leaks
|
||||
- **Non-blocking**: Statistics failures don't affect model predictions
|
||||
- **Scalable**: Supports unlimited number of models
|
||||
|
||||
## Future Enhancements
|
||||
1. **Accuracy Calculation**: Implement prediction accuracy tracking based on market outcomes
|
||||
2. **Performance Alerts**: Add thresholds for inference rate drops or loss spikes
|
||||
3. **Historical Analysis**: Export statistics for long-term performance analysis
|
||||
4. **Dashboard Integration**: Real-time statistics display in trading dashboard
|
||||
5. **Model Comparison**: Comparative analysis tools for model performance
|
||||
|
||||
## Usage Examples
|
||||
|
||||
### Basic Monitoring
|
||||
```python
|
||||
# Log current status
|
||||
orchestrator.log_model_statistics()
|
||||
|
||||
# Get specific model performance
|
||||
dqn_stats = orchestrator.get_model_statistics("dqn_agent")
|
||||
if dqn_stats.inference_rate_per_minute < 10:
|
||||
logger.warning("DQN inference rate is low!")
|
||||
```
|
||||
|
||||
### Dashboard Integration
|
||||
```python
|
||||
# Get all statistics for dashboard
|
||||
stats_summary = orchestrator.get_model_statistics_summary()
|
||||
dashboard.update_model_metrics(stats_summary)
|
||||
```
|
||||
|
||||
### Performance Analysis
|
||||
```python
|
||||
# Analyze model performance trends
|
||||
for model_name, stats in orchestrator.model_statistics.items():
|
||||
recent_losses = list(stats.losses)
|
||||
if len(recent_losses) > 10:
|
||||
trend = "improving" if recent_losses[-1] < recent_losses[0] else "degrading"
|
||||
print(f"{model_name} loss trend: {trend}")
|
||||
```
|
||||
|
||||
This implementation provides comprehensive model monitoring capabilities while maintaining the system's performance and reliability.
|
Reference in New Issue
Block a user