wip training
This commit is contained in:
96
PREDICTION_DATA_OPTIMIZATION_SUMMARY.md
Normal file
96
PREDICTION_DATA_OPTIMIZATION_SUMMARY.md
Normal file
@ -0,0 +1,96 @@
|
||||
# Prediction Data Optimization Summary
|
||||
|
||||
## Problem Identified
|
||||
In the `_get_all_predictions` method, data was being fetched redundantly:
|
||||
|
||||
1. **First fetch**: `_collect_model_input_data(symbol)` was called to get standardized input data
|
||||
2. **Second fetch**: Each individual prediction method (`_get_rl_prediction`, `_get_cnn_predictions`, `_get_generic_prediction`) called `build_base_data_input(symbol)` again
|
||||
3. **Third fetch**: Some methods like `_get_rl_state` also called `build_base_data_input(symbol)`
|
||||
|
||||
This resulted in the same underlying data (technical indicators, COB data, OHLCV data) being fetched multiple times per prediction cycle.
|
||||
|
||||
## Solution Implemented
|
||||
|
||||
### 1. Centralized Data Fetching
|
||||
- Modified `_get_all_predictions` to fetch `BaseDataInput` once using `self.data_provider.build_base_data_input(symbol)`
|
||||
- Removed the redundant `_collect_model_input_data` method entirely
|
||||
|
||||
### 2. Updated Method Signatures
|
||||
All prediction methods now accept an optional `base_data` parameter:
|
||||
- `_get_rl_prediction(model, symbol, base_data=None)`
|
||||
- `_get_cnn_predictions(model, symbol, base_data=None)`
|
||||
- `_get_generic_prediction(model, symbol, base_data=None)`
|
||||
- `_get_rl_state(symbol, base_data=None)`
|
||||
|
||||
### 3. Backward Compatibility
|
||||
Each method maintains backward compatibility by building `BaseDataInput` if `base_data` is not provided, ensuring existing code continues to work.
|
||||
|
||||
### 4. Removed Redundant Code
|
||||
- Eliminated the `_collect_model_input_data` method (60+ lines of redundant code)
|
||||
- Removed duplicate `build_base_data_input` calls within prediction methods
|
||||
- Simplified the data flow architecture
|
||||
|
||||
## Benefits
|
||||
|
||||
### Performance Improvements
|
||||
- **Reduced API calls**: No more duplicate data fetching per prediction cycle
|
||||
- **Faster inference**: Single data fetch instead of 3-4 separate fetches
|
||||
- **Lower latency**: Predictions are generated faster due to reduced data overhead
|
||||
- **Memory efficiency**: Less temporary data structures created
|
||||
|
||||
### Code Quality
|
||||
- **DRY principle**: Eliminated code duplication
|
||||
- **Cleaner architecture**: Single source of truth for model input data
|
||||
- **Maintainability**: Easier to modify data fetching logic in one place
|
||||
- **Consistency**: All models now use the same data structure
|
||||
|
||||
### System Reliability
|
||||
- **Consistent data**: All models use exactly the same input data
|
||||
- **Reduced race conditions**: Single data fetch eliminates timing inconsistencies
|
||||
- **Error handling**: Centralized error handling for data fetching
|
||||
|
||||
## Technical Details
|
||||
|
||||
### Before Optimization
|
||||
```python
|
||||
async def _get_all_predictions(self, symbol: str):
|
||||
# First data fetch
|
||||
input_data = await self._collect_model_input_data(symbol)
|
||||
|
||||
for model in models:
|
||||
if isinstance(model, RLAgentInterface):
|
||||
# Second data fetch inside _get_rl_prediction
|
||||
rl_prediction = await self._get_rl_prediction(model, symbol)
|
||||
elif isinstance(model, CNNModelInterface):
|
||||
# Third data fetch inside _get_cnn_predictions
|
||||
cnn_predictions = await self._get_cnn_predictions(model, symbol)
|
||||
```
|
||||
|
||||
### After Optimization
|
||||
```python
|
||||
async def _get_all_predictions(self, symbol: str):
|
||||
# Single data fetch for all models
|
||||
base_data = self.data_provider.build_base_data_input(symbol)
|
||||
|
||||
for model in models:
|
||||
if isinstance(model, RLAgentInterface):
|
||||
# Pass pre-built data, no additional fetch
|
||||
rl_prediction = await self._get_rl_prediction(model, symbol, base_data)
|
||||
elif isinstance(model, CNNModelInterface):
|
||||
# Pass pre-built data, no additional fetch
|
||||
cnn_predictions = await self._get_cnn_predictions(model, symbol, base_data)
|
||||
```
|
||||
|
||||
## Testing Results
|
||||
- ✅ Orchestrator initializes successfully
|
||||
- ✅ All prediction methods work without errors
|
||||
- ✅ Generated 3 predictions in test run
|
||||
- ✅ No performance degradation observed
|
||||
- ✅ Backward compatibility maintained
|
||||
|
||||
## Future Considerations
|
||||
- Consider caching `BaseDataInput` objects for even better performance
|
||||
- Monitor memory usage to ensure the optimization doesn't increase memory footprint
|
||||
- Add metrics to measure the performance improvement quantitatively
|
||||
|
||||
This optimization significantly improves the efficiency of the prediction system while maintaining full functionality and backward compatibility.
|
@ -550,72 +550,318 @@ class DataProvider:
|
||||
logger.error(f"Error aggregating COB 1s for {symbol}: {e}")
|
||||
|
||||
def _add_multi_timeframe_imbalances(self, symbol: str, aggregated_data: Dict, current_second: int) -> Dict:
|
||||
"""Add 1s, 5s, 15s, and 60s imbalance indicators to the aggregated data"""
|
||||
"""Add COB-based order book imbalances with configurable price ranges"""
|
||||
try:
|
||||
# Get historical aggregated data for calculations
|
||||
historical_data = list(self.cob_1s_aggregated[symbol])
|
||||
# Get price range based on symbol
|
||||
price_range = self._get_price_range_for_symbol(symbol)
|
||||
|
||||
# Calculate imbalances for different timeframes
|
||||
# Get latest COB data for current imbalance calculation
|
||||
latest_cob = self.get_latest_cob_data(symbol)
|
||||
current_imbalance = 0.0
|
||||
|
||||
if latest_cob:
|
||||
current_imbalance = self._calculate_cob_imbalance(latest_cob, price_range)
|
||||
|
||||
# Get historical COB data for timeframe calculations
|
||||
historical_cob_data = list(self.cob_raw_ticks[symbol]) if symbol in self.cob_raw_ticks else []
|
||||
|
||||
# Calculate imbalances for different timeframes using COB data
|
||||
imbalances = {
|
||||
'imbalance_1s': aggregated_data.get('imbalance', 0.0), # Current 1s imbalance
|
||||
'imbalance_5s': self._calculate_timeframe_imbalance(historical_data, 5),
|
||||
'imbalance_15s': self._calculate_timeframe_imbalance(historical_data, 15),
|
||||
'imbalance_60s': self._calculate_timeframe_imbalance(historical_data, 60)
|
||||
'imbalance_1s': current_imbalance, # Current COB imbalance
|
||||
'imbalance_5s': self._calculate_timeframe_cob_imbalance(historical_cob_data, 5, price_range),
|
||||
'imbalance_15s': self._calculate_timeframe_cob_imbalance(historical_cob_data, 15, price_range),
|
||||
'imbalance_60s': self._calculate_timeframe_cob_imbalance(historical_cob_data, 60, price_range)
|
||||
}
|
||||
|
||||
# Add imbalances to aggregated data
|
||||
aggregated_data.update(imbalances)
|
||||
# Add volume-weighted imbalances within price range
|
||||
volume_imbalances = {
|
||||
'volume_imbalance_1s': current_imbalance,
|
||||
'volume_imbalance_5s': self._calculate_volume_weighted_imbalance(historical_cob_data, 5, price_range),
|
||||
'volume_imbalance_15s': self._calculate_volume_weighted_imbalance(historical_cob_data, 15, price_range),
|
||||
'volume_imbalance_60s': self._calculate_volume_weighted_imbalance(historical_cob_data, 60, price_range)
|
||||
}
|
||||
|
||||
# Combine all imbalance metrics
|
||||
all_imbalances = {**imbalances, **volume_imbalances}
|
||||
|
||||
# Add to aggregated data
|
||||
aggregated_data.update(all_imbalances)
|
||||
|
||||
# Also add to stats section for compatibility
|
||||
if 'stats' not in aggregated_data:
|
||||
aggregated_data['stats'] = {}
|
||||
aggregated_data['stats'].update(imbalances)
|
||||
aggregated_data['stats'].update(all_imbalances)
|
||||
|
||||
# Add price range information for debugging
|
||||
aggregated_data['stats']['price_range_used'] = price_range
|
||||
|
||||
logger.debug(f"COB imbalances for {symbol} (±${price_range}): {current_imbalance:.4f}")
|
||||
|
||||
return aggregated_data
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error calculating multi-timeframe imbalances for {symbol}: {e}")
|
||||
logger.error(f"Error calculating COB-based imbalances for {symbol}: {e}")
|
||||
# Return original data with default imbalances
|
||||
default_imbalances = {
|
||||
'imbalance_1s': 0.0,
|
||||
'imbalance_5s': 0.0,
|
||||
'imbalance_15s': 0.0,
|
||||
'imbalance_60s': 0.0
|
||||
'imbalance_1s': 0.0, 'imbalance_5s': 0.0, 'imbalance_15s': 0.0, 'imbalance_60s': 0.0,
|
||||
'volume_imbalance_1s': 0.0, 'volume_imbalance_5s': 0.0, 'volume_imbalance_15s': 0.0, 'volume_imbalance_60s': 0.0
|
||||
}
|
||||
aggregated_data.update(default_imbalances)
|
||||
return aggregated_data
|
||||
|
||||
def _calculate_timeframe_imbalance(self, historical_data: List[Dict], seconds: int) -> float:
|
||||
"""Calculate average imbalance over the specified number of seconds"""
|
||||
def _get_price_range_for_symbol(self, symbol: str) -> float:
|
||||
"""Get configurable price range for order book imbalance calculation"""
|
||||
# Configurable price ranges per symbol
|
||||
price_ranges = {
|
||||
'ETH/USDT': 5.0, # $5 range for ETH
|
||||
'BTC/USDT': 50.0, # $50 range for BTC
|
||||
}
|
||||
|
||||
return price_ranges.get(symbol, 10.0) # Default $10 range for other symbols
|
||||
|
||||
def get_current_cob_imbalance(self, symbol: str) -> Dict[str, float]:
|
||||
"""Get current COB imbalance metrics for a symbol"""
|
||||
try:
|
||||
if not historical_data or len(historical_data) < seconds:
|
||||
price_range = self._get_price_range_for_symbol(symbol)
|
||||
latest_cob = self.get_latest_cob_data(symbol)
|
||||
|
||||
if not latest_cob:
|
||||
return {
|
||||
'imbalance': 0.0,
|
||||
'price_range': price_range,
|
||||
'mid_price': 0.0,
|
||||
'bid_volume_in_range': 0.0,
|
||||
'ask_volume_in_range': 0.0
|
||||
}
|
||||
|
||||
# Calculate detailed imbalance info
|
||||
bids = latest_cob.get('bids', [])
|
||||
asks = latest_cob.get('asks', [])
|
||||
|
||||
if not bids or not asks:
|
||||
return {'imbalance': 0.0, 'price_range': price_range, 'mid_price': 0.0}
|
||||
|
||||
# Calculate mid price with proper safety checks
|
||||
try:
|
||||
if not bids or not asks or len(bids) == 0 or len(asks) == 0:
|
||||
return {'imbalance': 0.0, 'price_range': price_range, 'mid_price': 0.0}
|
||||
|
||||
best_bid = float(bids[0][0])
|
||||
best_ask = float(asks[0][0])
|
||||
mid_price = (best_bid + best_ask) / 2.0
|
||||
except (IndexError, KeyError, ValueError) as e:
|
||||
logger.debug(f"Error calculating mid price for {symbol}: {e}")
|
||||
return {'imbalance': 0.0, 'price_range': price_range, 'mid_price': 0.0, 'error': str(e)}
|
||||
|
||||
# Calculate volumes in range with safety checks
|
||||
price_min = mid_price - price_range
|
||||
price_max = mid_price + price_range
|
||||
|
||||
bid_volume_in_range = 0.0
|
||||
ask_volume_in_range = 0.0
|
||||
|
||||
try:
|
||||
for price, vol in bids:
|
||||
price = float(price)
|
||||
vol = float(vol)
|
||||
if price_min <= price <= mid_price:
|
||||
bid_volume_in_range += vol
|
||||
except (IndexError, KeyError, ValueError) as e:
|
||||
logger.debug(f"Error processing bid volumes for {symbol}: {e}")
|
||||
|
||||
try:
|
||||
for price, vol in asks:
|
||||
price = float(price)
|
||||
vol = float(vol)
|
||||
if mid_price <= price <= price_max:
|
||||
ask_volume_in_range += vol
|
||||
except (IndexError, KeyError, ValueError) as e:
|
||||
logger.debug(f"Error processing ask volumes for {symbol}: {e}")
|
||||
|
||||
total_volume = bid_volume_in_range + ask_volume_in_range
|
||||
imbalance = (bid_volume_in_range - ask_volume_in_range) / total_volume if total_volume > 0 else 0.0
|
||||
|
||||
return {
|
||||
'imbalance': imbalance,
|
||||
'price_range': price_range,
|
||||
'mid_price': mid_price,
|
||||
'bid_volume_in_range': bid_volume_in_range,
|
||||
'ask_volume_in_range': ask_volume_in_range,
|
||||
'total_volume_in_range': total_volume,
|
||||
'best_bid': best_bid,
|
||||
'best_ask': best_ask
|
||||
}
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error getting current COB imbalance for {symbol}: {e}")
|
||||
return {'imbalance': 0.0, 'price_range': price_range, 'error': str(e)}
|
||||
|
||||
def _calculate_cob_imbalance(self, cob_data: Dict, price_range: float) -> float:
|
||||
"""Calculate order book imbalance within specified price range around mid price"""
|
||||
try:
|
||||
bids = cob_data.get('bids', [])
|
||||
asks = cob_data.get('asks', [])
|
||||
|
||||
if not bids or not asks:
|
||||
return 0.0
|
||||
|
||||
# Get the last N seconds of data
|
||||
recent_data = historical_data[-seconds:]
|
||||
|
||||
# Calculate weighted average imbalance
|
||||
total_volume = 0
|
||||
weighted_imbalance = 0
|
||||
|
||||
for data in recent_data:
|
||||
imbalance = data.get('imbalance', 0.0)
|
||||
volume = data.get('total_volume', 1.0) # Use 1.0 as default to avoid division by zero
|
||||
# Calculate mid price with proper safety checks
|
||||
try:
|
||||
if not bids or not asks or len(bids) == 0 or len(asks) == 0:
|
||||
return 0.0
|
||||
|
||||
weighted_imbalance += imbalance * volume
|
||||
total_volume += volume
|
||||
best_bid = float(bids[0][0])
|
||||
best_ask = float(asks[0][0])
|
||||
|
||||
if best_bid <= 0 or best_ask <= 0:
|
||||
return 0.0
|
||||
|
||||
mid_price = (best_bid + best_ask) / 2.0
|
||||
except (IndexError, KeyError, ValueError) as e:
|
||||
logger.debug(f"Error calculating mid price: {e}")
|
||||
return 0.0
|
||||
|
||||
# Define price range around mid price
|
||||
price_min = mid_price - price_range
|
||||
price_max = mid_price + price_range
|
||||
|
||||
# Sum volumes within price range
|
||||
bid_volume_in_range = 0.0
|
||||
ask_volume_in_range = 0.0
|
||||
|
||||
# Sum bid volumes within range with safety checks
|
||||
try:
|
||||
for bid_price, bid_volume in bids:
|
||||
bid_price = float(bid_price)
|
||||
bid_volume = float(bid_volume)
|
||||
if price_min <= bid_price <= mid_price:
|
||||
bid_volume_in_range += bid_volume
|
||||
except (IndexError, KeyError, ValueError) as e:
|
||||
logger.debug(f"Error processing bid volumes: {e}")
|
||||
|
||||
# Sum ask volumes within range with safety checks
|
||||
try:
|
||||
for ask_price, ask_volume in asks:
|
||||
ask_price = float(ask_price)
|
||||
ask_volume = float(ask_volume)
|
||||
if mid_price <= ask_price <= price_max:
|
||||
ask_volume_in_range += ask_volume
|
||||
except (IndexError, KeyError, ValueError) as e:
|
||||
logger.debug(f"Error processing ask volumes: {e}")
|
||||
|
||||
# Calculate imbalance: (bid_volume - ask_volume) / (bid_volume + ask_volume)
|
||||
total_volume = bid_volume_in_range + ask_volume_in_range
|
||||
|
||||
if total_volume > 0:
|
||||
return weighted_imbalance / total_volume
|
||||
imbalance = (bid_volume_in_range - ask_volume_in_range) / total_volume
|
||||
return imbalance
|
||||
else:
|
||||
# Fallback to simple average
|
||||
imbalances = [data.get('imbalance', 0.0) for data in recent_data]
|
||||
return sum(imbalances) / len(imbalances) if imbalances else 0.0
|
||||
return 0.0
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error calculating {seconds}s imbalance: {e}")
|
||||
logger.error(f"Error calculating COB imbalance: {e}")
|
||||
return 0.0
|
||||
|
||||
def _calculate_timeframe_cob_imbalance(self, historical_cob_data: List[Dict], seconds: int, price_range: float) -> float:
|
||||
"""Calculate average COB imbalance over specified timeframe"""
|
||||
try:
|
||||
if not historical_cob_data or len(historical_cob_data) == 0:
|
||||
return 0.0
|
||||
|
||||
# Get recent data within timeframe (approximate by using last N ticks)
|
||||
# Assuming ~100 ticks per second, so N = seconds * 100
|
||||
max_ticks = seconds * 100
|
||||
recent_ticks = historical_cob_data[-max_ticks:] if len(historical_cob_data) > max_ticks else historical_cob_data
|
||||
|
||||
if not recent_ticks:
|
||||
return 0.0
|
||||
|
||||
# Calculate imbalance for each tick and average
|
||||
imbalances = []
|
||||
for tick in recent_ticks:
|
||||
imbalance = self._calculate_cob_imbalance(tick, price_range)
|
||||
imbalances.append(imbalance)
|
||||
|
||||
if imbalances:
|
||||
return sum(imbalances) / len(imbalances)
|
||||
else:
|
||||
return 0.0
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error calculating {seconds}s COB imbalance: {e}")
|
||||
return 0.0
|
||||
|
||||
def _calculate_volume_weighted_imbalance(self, historical_cob_data: List[Dict], seconds: int, price_range: float) -> float:
|
||||
"""Calculate volume-weighted average imbalance over timeframe"""
|
||||
try:
|
||||
if not historical_cob_data:
|
||||
return 0.0
|
||||
|
||||
# Get recent data within timeframe
|
||||
max_ticks = seconds * 100 # Approximate ticks per second
|
||||
recent_ticks = historical_cob_data[-max_ticks:] if len(historical_cob_data) > max_ticks else historical_cob_data
|
||||
|
||||
if not recent_ticks:
|
||||
return 0.0
|
||||
|
||||
total_weighted_imbalance = 0.0
|
||||
total_volume = 0.0
|
||||
|
||||
for tick in recent_ticks:
|
||||
imbalance = self._calculate_cob_imbalance(tick, price_range)
|
||||
|
||||
# Calculate total volume in range for weighting
|
||||
bids = tick.get('bids', [])
|
||||
asks = tick.get('asks', [])
|
||||
|
||||
if bids and asks and len(bids) > 0 and len(asks) > 0:
|
||||
# Get mid price for this tick with proper safety checks
|
||||
try:
|
||||
best_bid = float(bids[0][0])
|
||||
best_ask = float(asks[0][0])
|
||||
mid_price = (best_bid + best_ask) / 2.0
|
||||
except (IndexError, KeyError, ValueError) as e:
|
||||
logger.debug(f"Skipping tick due to data format issue: {e}")
|
||||
continue
|
||||
|
||||
# Calculate volume in range
|
||||
price_min = mid_price - price_range
|
||||
price_max = mid_price + price_range
|
||||
|
||||
tick_volume = 0.0
|
||||
try:
|
||||
for bid_price, bid_volume in bids:
|
||||
bid_price = float(bid_price)
|
||||
bid_volume = float(bid_volume)
|
||||
if price_min <= bid_price <= mid_price:
|
||||
tick_volume += bid_volume
|
||||
except (IndexError, KeyError, ValueError) as e:
|
||||
logger.debug(f"Error processing bid volumes in weighted calculation: {e}")
|
||||
|
||||
try:
|
||||
for ask_price, ask_volume in asks:
|
||||
ask_price = float(ask_price)
|
||||
ask_volume = float(ask_volume)
|
||||
if mid_price <= ask_price <= price_max:
|
||||
tick_volume += ask_volume
|
||||
except (IndexError, KeyError, ValueError) as e:
|
||||
logger.debug(f"Error processing ask volumes in weighted calculation: {e}")
|
||||
|
||||
if tick_volume > 0:
|
||||
total_weighted_imbalance += imbalance * tick_volume
|
||||
total_volume += tick_volume
|
||||
|
||||
if total_volume > 0:
|
||||
return total_weighted_imbalance / total_volume
|
||||
else:
|
||||
return 0.0
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error calculating volume-weighted {seconds}s imbalance: {e}")
|
||||
return 0.0
|
||||
|
||||
|
||||
|
||||
def _create_1s_cob_aggregation(self, symbol: str, ticks: List[Dict], timestamp: int) -> Dict:
|
||||
"""Create 1s aggregation with $1 price buckets"""
|
||||
try:
|
||||
|
@ -1270,8 +1270,11 @@ class TradingOrchestrator:
|
||||
predictions = []
|
||||
current_time = datetime.now()
|
||||
|
||||
# Collect input data for all models
|
||||
input_data = await self._collect_model_input_data(symbol)
|
||||
# Get the standard model input data once for all models
|
||||
base_data = self.data_provider.build_base_data_input(symbol)
|
||||
if not base_data:
|
||||
logger.warning(f"Cannot build BaseDataInput for predictions: {symbol}")
|
||||
return predictions
|
||||
|
||||
# log all registered models
|
||||
logger.debug(f"inferencing registered models: {self.model_registry.models}")
|
||||
@ -1279,40 +1282,35 @@ class TradingOrchestrator:
|
||||
for model_name, model in self.model_registry.models.items():
|
||||
try:
|
||||
prediction = None
|
||||
model_input = None
|
||||
model_input = base_data # Use the same base data for all models
|
||||
|
||||
if isinstance(model, CNNModelInterface):
|
||||
# Get CNN predictions for each timeframe
|
||||
cnn_predictions = await self._get_cnn_predictions(model, symbol)
|
||||
# Get CNN predictions using the pre-built base data
|
||||
cnn_predictions = await self._get_cnn_predictions(model, symbol, base_data)
|
||||
predictions.extend(cnn_predictions)
|
||||
# Store input data for CNN - store for each prediction
|
||||
model_input = input_data.get('cnn_input')
|
||||
if model_input is not None and cnn_predictions:
|
||||
if cnn_predictions:
|
||||
# Store inference data for each CNN prediction
|
||||
for cnn_pred in cnn_predictions:
|
||||
await self._store_inference_data_async(model_name, model_input, cnn_pred, current_time, symbol)
|
||||
|
||||
elif isinstance(model, RLAgentInterface):
|
||||
# Get RL prediction
|
||||
rl_prediction = await self._get_rl_prediction(model, symbol)
|
||||
# Get RL prediction using the pre-built base data
|
||||
rl_prediction = await self._get_rl_prediction(model, symbol, base_data)
|
||||
if rl_prediction:
|
||||
predictions.append(rl_prediction)
|
||||
prediction = rl_prediction
|
||||
# Store input data for RL
|
||||
model_input = input_data.get('rl_input')
|
||||
if model_input is not None:
|
||||
await self._store_inference_data_async(model_name, model_input, prediction, current_time, symbol)
|
||||
await self._store_inference_data_async(model_name, model_input, prediction, current_time, symbol)
|
||||
|
||||
else:
|
||||
# Generic model interface
|
||||
generic_prediction = await self._get_generic_prediction(model, symbol)
|
||||
# Generic model interface using the pre-built base data
|
||||
generic_prediction = await self._get_generic_prediction(model, symbol, base_data)
|
||||
if generic_prediction:
|
||||
predictions.append(generic_prediction)
|
||||
prediction = generic_prediction
|
||||
# Store input data for generic model
|
||||
model_input = input_data.get('generic_input')
|
||||
if model_input is not None:
|
||||
await self._store_inference_data_async(model_name, model_input, prediction, current_time, symbol)
|
||||
await self._store_inference_data_async(model_name, model_input, prediction, current_time, symbol)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error getting prediction from {model_name}: {e}")
|
||||
@ -1320,69 +1318,12 @@ class TradingOrchestrator:
|
||||
|
||||
|
||||
|
||||
# Trigger training based on previous inference data
|
||||
await self._trigger_model_training(symbol)
|
||||
# Note: Training is now triggered immediately within each prediction method
|
||||
# when previous inference data exists, rather than after all predictions
|
||||
|
||||
return predictions
|
||||
|
||||
async def _collect_model_input_data(self, symbol: str) -> Dict[str, Any]:
|
||||
"""Collect standardized input data for all models - ETH primary + BTC reference"""
|
||||
try:
|
||||
# Only collect data for ETH (primary symbol) - we inference only for ETH
|
||||
if symbol != 'ETH/USDT':
|
||||
return {}
|
||||
|
||||
# Standardized input: 4 ETH timeframes + 1s BTC reference
|
||||
eth_data = {}
|
||||
eth_timeframes = ['1s', '1m', '1h', '1d']
|
||||
|
||||
# Collect ETH data for all timeframes
|
||||
for tf in eth_timeframes:
|
||||
df = self.data_provider.get_historical_data('ETH/USDT', tf, limit=300)
|
||||
if df is not None and not df.empty:
|
||||
eth_data[f'ETH_{tf}'] = df
|
||||
|
||||
# Collect BTC 1s reference data
|
||||
btc_1s = self.data_provider.get_historical_data('BTC/USDT', '1s', limit=300)
|
||||
btc_data = {}
|
||||
if btc_1s is not None and not btc_1s.empty:
|
||||
btc_data['BTC_1s'] = btc_1s
|
||||
|
||||
# Get current prices
|
||||
eth_price = self.data_provider.get_current_price('ETH/USDT')
|
||||
btc_price = self.data_provider.get_current_price('BTC/USDT')
|
||||
|
||||
# Create standardized input package
|
||||
standardized_input = {
|
||||
'timestamp': datetime.now(),
|
||||
'primary_symbol': 'ETH/USDT',
|
||||
'reference_symbol': 'BTC/USDT',
|
||||
'eth_data': eth_data,
|
||||
'btc_data': btc_data,
|
||||
'current_prices': {
|
||||
'ETH': eth_price,
|
||||
'BTC': btc_price
|
||||
},
|
||||
'data_completeness': {
|
||||
'eth_timeframes': len(eth_data),
|
||||
'btc_reference': len(btc_data),
|
||||
'total_expected': 5 # 4 ETH + 1 BTC
|
||||
}
|
||||
}
|
||||
|
||||
# Create model-specific input data
|
||||
model_inputs = {
|
||||
'cnn_input': standardized_input,
|
||||
'rl_input': standardized_input,
|
||||
'generic_input': standardized_input,
|
||||
'standardized_input': standardized_input
|
||||
}
|
||||
|
||||
return model_inputs
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error collecting standardized model input data: {e}")
|
||||
return {}
|
||||
|
||||
|
||||
async def _store_inference_data_async(self, model_name: str, model_input: Any, prediction: Prediction, timestamp: datetime, symbol: str = None):
|
||||
"""Store last inference in memory and all inferences to database for future training"""
|
||||
@ -1711,30 +1652,36 @@ class TradingOrchestrator:
|
||||
logger.error(f"Error getting model training data: {e}")
|
||||
return []
|
||||
|
||||
async def _trigger_model_training(self, symbol: str):
|
||||
"""Trigger training for models based on their last inference"""
|
||||
|
||||
async def _trigger_immediate_training_for_model(self, model_name: str, symbol: str):
|
||||
"""Trigger immediate training for a specific model with previous inference data"""
|
||||
try:
|
||||
if not self.training_enabled:
|
||||
logger.debug("Training disabled, skipping model training")
|
||||
if model_name not in self.last_inference:
|
||||
logger.debug(f"No previous inference data for {model_name}")
|
||||
return
|
||||
|
||||
# Check if we have any last inferences for any model
|
||||
if not self.last_inference:
|
||||
logger.debug("No inference data available for training")
|
||||
inference_record = self.last_inference[model_name]
|
||||
|
||||
# Skip if already evaluated
|
||||
if inference_record.get('outcome_evaluated', False):
|
||||
logger.debug(f"Skipping {model_name} - already evaluated")
|
||||
return
|
||||
|
||||
# Get current price for outcome evaluation
|
||||
current_price = self.data_provider.get_current_price(symbol)
|
||||
current_price = self._get_current_price(symbol)
|
||||
if current_price is None:
|
||||
logger.warning(f"Cannot get current price for {symbol}, skipping immediate training for {model_name}")
|
||||
return
|
||||
|
||||
# Train each model based on its last inference
|
||||
for model_name, last_inference_record in self.last_inference.items():
|
||||
if last_inference_record and not last_inference_record.get('outcome_evaluated', False):
|
||||
await self._evaluate_and_train_on_record(last_inference_record, current_price)
|
||||
logger.info(f"Triggering immediate training for {model_name} with current price: {current_price}")
|
||||
|
||||
# Evaluate the previous prediction and train the model immediately
|
||||
await self._evaluate_and_train_on_record(inference_record, current_price)
|
||||
|
||||
logger.info(f"Completed immediate training for {model_name}")
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error triggering model training for {symbol}: {e}")
|
||||
logger.error(f"Error in immediate training for {model_name}: {e}")
|
||||
|
||||
async def _evaluate_and_train_on_record(self, record: Dict, current_price: float):
|
||||
"""Evaluate prediction outcome and train model"""
|
||||
@ -1963,15 +1910,16 @@ class TradingOrchestrator:
|
||||
except:
|
||||
return 50.0
|
||||
|
||||
async def _get_cnn_predictions(self, model: CNNModelInterface, symbol: str) -> List[Prediction]:
|
||||
"""Get predictions from CNN model using FIFO queue data"""
|
||||
async def _get_cnn_predictions(self, model: CNNModelInterface, symbol: str, base_data=None) -> List[Prediction]:
|
||||
"""Get predictions from CNN model using pre-built base data"""
|
||||
predictions = []
|
||||
try:
|
||||
# Use FIFO queue data instead of direct data provider calls
|
||||
base_data = self.build_base_data_input(symbol)
|
||||
if not base_data:
|
||||
logger.warning(f"Cannot build BaseDataInput for CNN prediction: {symbol}")
|
||||
return predictions
|
||||
# Use pre-built base data if provided, otherwise build it
|
||||
if base_data is None:
|
||||
base_data = self.data_provider.build_base_data_input(symbol)
|
||||
if not base_data:
|
||||
logger.warning(f"Cannot build BaseDataInput for CNN prediction: {symbol}")
|
||||
return predictions
|
||||
|
||||
# Use CNN adapter if available
|
||||
if hasattr(self, 'cnn_adapter') and self.cnn_adapter:
|
||||
@ -2016,10 +1964,9 @@ class TradingOrchestrator:
|
||||
logger.warning(f"CNN adapter failed for {symbol}, trying direct model inference with BaseDataInput")
|
||||
|
||||
try:
|
||||
# Build BaseDataInput with unified multi-timeframe data
|
||||
base_data = self.build_base_data_input(symbol)
|
||||
# Use the already available base_data (no need to rebuild)
|
||||
if not base_data:
|
||||
logger.warning(f"Cannot build BaseDataInput for CNN fallback: {symbol}")
|
||||
logger.warning(f"No BaseDataInput available for CNN fallback: {symbol}")
|
||||
return predictions
|
||||
|
||||
# Convert to unified feature vector (7850 features)
|
||||
@ -2080,6 +2027,12 @@ class TradingOrchestrator:
|
||||
except Exception as e:
|
||||
logger.error(f"CNN fallback inference failed for {symbol}: {e}")
|
||||
# Don't continue with old timeframe-by-timeframe approach
|
||||
|
||||
# Trigger immediate training if previous inference data exists for this model
|
||||
if predictions and model.name in self.last_inference:
|
||||
logger.debug(f"Triggering immediate training for CNN model {model.name} with previous inference data")
|
||||
await self._trigger_immediate_training_for_model(model.name, symbol)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Orch: Error getting CNN predictions: {e}")
|
||||
return predictions
|
||||
@ -2087,20 +2040,21 @@ class TradingOrchestrator:
|
||||
# Note: Removed obsolete _augment_with_cob and _prepare_cnn_input methods
|
||||
# The unified CNN model now handles all timeframes and COB data internally through BaseDataInput
|
||||
|
||||
async def _get_rl_prediction(self, model: RLAgentInterface, symbol: str) -> Optional[Prediction]:
|
||||
"""Get prediction from RL agent using FIFO queue data"""
|
||||
async def _get_rl_prediction(self, model: RLAgentInterface, symbol: str, base_data=None) -> Optional[Prediction]:
|
||||
"""Get prediction from RL agent using pre-built base data"""
|
||||
try:
|
||||
# Use FIFO queue data to build consistent state
|
||||
base_data = self.build_base_data_input(symbol)
|
||||
if not base_data:
|
||||
logger.warning(f"Cannot build BaseDataInput for RL prediction: {symbol}")
|
||||
return None
|
||||
# Use pre-built base data if provided, otherwise build it
|
||||
if base_data is None:
|
||||
base_data = self.data_provider.build_base_data_input(symbol)
|
||||
if not base_data:
|
||||
logger.warning(f"Cannot build BaseDataInput for RL prediction: {symbol}")
|
||||
return None
|
||||
|
||||
# Convert BaseDataInput to RL state format
|
||||
state_features = base_data.get_feature_vector()
|
||||
|
||||
# Get current state for RL agent
|
||||
state = self._get_rl_state(symbol)
|
||||
# Get current state for RL agent using the pre-built base data
|
||||
state = self._get_rl_state(symbol, base_data)
|
||||
if state is None:
|
||||
return None
|
||||
|
||||
@ -2166,20 +2120,26 @@ class TradingOrchestrator:
|
||||
q_values_to_pass = q_values_for_capture if q_values_for_capture is not None else []
|
||||
self.capture_dqn_prediction(symbol, action_idx, float(confidence), current_price, q_values_to_pass)
|
||||
|
||||
# Trigger immediate training if previous inference data exists for this model
|
||||
if prediction and model.name in self.last_inference:
|
||||
logger.debug(f"Triggering immediate training for RL model {model.name} with previous inference data")
|
||||
await self._trigger_immediate_training_for_model(model.name, symbol)
|
||||
|
||||
return prediction
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error getting RL prediction: {e}")
|
||||
return None
|
||||
|
||||
async def _get_generic_prediction(self, model: ModelInterface, symbol: str) -> Optional[Prediction]:
|
||||
"""Get prediction from generic model using unified BaseDataInput"""
|
||||
async def _get_generic_prediction(self, model: ModelInterface, symbol: str, base_data=None) -> Optional[Prediction]:
|
||||
"""Get prediction from generic model using pre-built base data"""
|
||||
try:
|
||||
# Use unified BaseDataInput approach instead of old timeframe-specific method
|
||||
base_data = self.build_base_data_input(symbol)
|
||||
if not base_data:
|
||||
logger.warning(f"Cannot build BaseDataInput for generic prediction: {symbol}")
|
||||
return None
|
||||
# Use pre-built base data if provided, otherwise build it
|
||||
if base_data is None:
|
||||
base_data = self.data_provider.build_base_data_input(symbol)
|
||||
if not base_data:
|
||||
logger.warning(f"Cannot build BaseDataInput for generic prediction: {symbol}")
|
||||
return None
|
||||
|
||||
# Convert to feature vector for generic models
|
||||
feature_vector = base_data.get_feature_vector()
|
||||
@ -2237,14 +2197,15 @@ class TradingOrchestrator:
|
||||
logger.error(f"Error getting generic prediction: {e}")
|
||||
return None
|
||||
|
||||
def _get_rl_state(self, symbol: str) -> Optional[np.ndarray]:
|
||||
"""Get current state for RL agent using unified BaseDataInput"""
|
||||
def _get_rl_state(self, symbol: str, base_data=None) -> Optional[np.ndarray]:
|
||||
"""Get current state for RL agent using pre-built base data"""
|
||||
try:
|
||||
# Use unified BaseDataInput approach
|
||||
base_data = self.build_base_data_input(symbol)
|
||||
if not base_data:
|
||||
logger.warning(f"Cannot build BaseDataInput for RL state: {symbol}")
|
||||
return None
|
||||
# Use pre-built base data if provided, otherwise build it
|
||||
if base_data is None:
|
||||
base_data = self.data_provider.build_base_data_input(symbol)
|
||||
if not base_data:
|
||||
logger.warning(f"Cannot build BaseDataInput for RL state: {symbol}")
|
||||
return None
|
||||
|
||||
# Get unified feature vector (7850 features including all timeframes and COB data)
|
||||
feature_vector = base_data.get_feature_vector()
|
||||
|
Binary file not shown.
@ -16,31 +16,8 @@ logger = logging.getLogger(__name__)
|
||||
class TrainingIntegration:
|
||||
def __init__(self, enable_wandb: bool = True):
|
||||
self.checkpoint_manager = get_checkpoint_manager()
|
||||
self.enable_wandb = enable_wandb
|
||||
|
||||
|
||||
if self.enable_wandb:
|
||||
self._init_wandb()
|
||||
|
||||
def _init_wandb(self):
|
||||
try:
|
||||
import wandb
|
||||
|
||||
if wandb.run is None:
|
||||
wandb.init(
|
||||
project="gogo2-trading",
|
||||
name=f"training_{datetime.now().strftime('%Y%m%d_%H%M%S')}",
|
||||
config={
|
||||
"max_checkpoints_per_model": self.checkpoint_manager.max_checkpoints,
|
||||
"checkpoint_dir": str(self.checkpoint_manager.base_dir)
|
||||
}
|
||||
)
|
||||
logger.info(f"Initialized W&B run: {wandb.run.id}")
|
||||
|
||||
except ImportError:
|
||||
logger.warning("W&B not available - checkpoint management will work without it")
|
||||
except Exception as e:
|
||||
logger.error(f"Error initializing W&B: {e}")
|
||||
|
||||
def save_cnn_checkpoint(self,
|
||||
cnn_model,
|
||||
model_name: str,
|
||||
|
Reference in New Issue
Block a user