new NN sub-proj

This commit is contained in:
Dobromir Popov 2025-02-01 23:19:08 +02:00
parent 69241b1498
commit 773b1b6b76
2 changed files with 231 additions and 0 deletions

231
crypto/brian/index.py Normal file
View File

@ -0,0 +1,231 @@
#!/usr/bin/env python3
import torch
import torch.nn as nn
import torch.optim as optim
import asyncio
from collections import deque
import numpy as np
# ------------------------------
# Neural Network Architecture
# ------------------------------
class TradingModel(nn.Module):
def __init__(self, input_dim, hidden_dim, output_dim):
super(TradingModel, self).__init__()
# This is a simplified network template.
# A production-grade 8B model would involve model parallelism and a deep transformer or other architecture.
self.net = nn.Sequential(
nn.Linear(input_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, output_dim)
)
def forward(self, x):
return self.net(x)
# ------------------------------
# Replay Buffer for Continuous Learning
# ------------------------------
class ReplayBuffer:
def __init__(self, capacity=10000):
self.buffer = deque(maxlen=capacity)
def add(self, experience):
self.buffer.append(experience)
def sample(self, batch_size):
indices = np.random.choice(len(self.buffer), size=batch_size, replace=False)
return [self.buffer[i] for i in indices]
def __len__(self):
return len(self.buffer)
# ------------------------------
# Feature Engineering & Indicator Calculation
# ------------------------------
def compute_indicators(candle, additional_data):
"""
Combine candle data (H, L, O, C, V) with additional indicators.
In production, use proper TA libraries (e.g., TA-Lib) to compute RSI, stochastic oscillator, etc.
"""
features = []
# Base candlestick features:
features.extend([
candle.get('open', 0.0),
candle.get('high', 0.0),
candle.get('low', 0.0),
candle.get('close', 0.0),
candle.get('volume', 0.0)
])
# Append additional indicator values (e.g., sentiment score, news volume, etc.)
for key, value in additional_data.items():
features.append(value)
return np.array(features, dtype=np.float32)
# ------------------------------
# Simulated Live Data Streams
# ------------------------------
async def get_live_candle_data():
"""
This function should connect to your live data feed.
For demonstration purposes, we simulate new candlestick data.
"""
await asyncio.sleep(1) # simulate network/data latency
return {
'open': np.random.rand(),
'high': np.random.rand(),
'low': np.random.rand(),
'close': np.random.rand(),
'volume': np.random.rand()
}
async def get_sentiment_data():
"""
Simulate fetching live sentiment data from external sources.
Replace this with integration to actual X feeds or news APIs.
"""
await asyncio.sleep(1)
return {
'sentiment_score': np.random.rand(), # e.g., normalized sentiment between 0 and 1
'news_volume': np.random.rand(),
'social_engagement': np.random.rand()
}
# ------------------------------
# RL Agent with Continuous Training
# ------------------------------
class ContinuousRLAgent:
def __init__(self, model, optimizer, replay_buffer, batch_size=32):
self.model = model
self.optimizer = optimizer
self.replay_buffer = replay_buffer
self.batch_size = batch_size
# Placeholder loss function; a real-world RL agent often has a more complex loss (e.g., Q-learning loss)
self.loss_fn = nn.MSELoss()
def act(self, state):
"""
Compute the action given the latest state.
In production, the network output should map to a confidence or Q-values for actions.
Action mapping (for example): 0: SELL, 1: HOLD, 2: BUY.
"""
state_tensor = torch.tensor(state, dtype=torch.float32).unsqueeze(0)
with torch.no_grad():
output = self.model(state_tensor)
action = torch.argmax(output, dim=1).item()
return action
def train_step(self):
"""
Perform one training step using a batch sampled from the replay buffer.
In RL, targets are computed from rewards and estimated future returns.
"""
if len(self.replay_buffer) < self.batch_size:
return
batch = self.replay_buffer.sample(self.batch_size)
states, rewards, next_states, dones = [], [], [], []
for experience in batch:
state, reward, next_state, done = experience
states.append(state)
rewards.append(reward)
next_states.append(next_state)
dones.append(done)
states_tensor = torch.tensor(states, dtype=torch.float32)
targets_tensor = torch.tensor(rewards, dtype=torch.float32).unsqueeze(1)
outputs = self.model(states_tensor)
# For simplicity, assume we use a single output value to represent the signal.
predictions = outputs[:, 0].unsqueeze(1)
loss = self.loss_fn(predictions, targets_tensor)
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
# ------------------------------
# Trading Bot: Integration with Jupiter API (Solana)
# ------------------------------
class TradingBot:
def __init__(self, rl_agent):
self.rl_agent = rl_agent
# Initialize Jupiter API client for Solana trading
# Hypothetical client initialization (substitute with an actual library/client):
# self.jupiter_client = JupiterClient(api_key='YOUR_API_KEY')
async def execute_trade(self, action):
"""
Translate the agent's selected action into a trade order.
Action mapping example: 0 => SELL, 1 => HOLD, 2 => BUY.
"""
if action == 0:
print("Executing SELL order")
# self.jupiter_client.sell(...actual trade parameters...)
elif action == 2:
print("Executing BUY order")
# self.jupiter_client.buy(...actual trade parameters...)
else:
print("Holding position")
async def trading_loop(self):
"""
Main trading loop:
Ingest live data.
Compute features.
Let the agent decide on an action.
Execute trades.
Store experience and train continuously.
"""
while True:
# Fetch latest data (you might aggregate data for different time frames)
candle = await get_live_candle_data()
sentiment = await get_sentiment_data()
# In practice, merge technical indicators computed on candle data with sentiment data.
indicators = sentiment # For demo, sentiment is our extra feature set.
# Compute state features
state = compute_indicators(candle, indicators)
# Get an action from the RL agent (0: Sell, 1: Hold, 2: Buy)
action = self.rl_agent.act(state)
await self.execute_trade(action)
# Simulate reward computation (in reality, your reward function should be based on trading performance)
reward = np.random.rand()
next_state = state # For demonstration, we reuse the state; in practice, next_state is computed after action execution.
done = False # Flag to indicate episode termination if needed
# Store the experience in the replay buffer
self.rl_agent.replay_buffer.add((state, reward, next_state, done))
# Run a training step to update the network continuously
self.rl_agent.train_step()
# Sleep to conform to the data frequency (adjust the delay as needed)
await asyncio.sleep(0.5)
# ------------------------------
# Main Orchestration Loop
# ------------------------------
async def main_loop():
# Define dimensions. For instance: 5 for basic candlestick data + additional channels (e.g., 3 here; expand as necessary)
input_dim = 5 + 3 # Adjust this to support up to 100 additional indicator channels
hidden_dim = 128 # Placeholder; for an 8B parameter model, this will be much larger and distributed.
output_dim = 3 # Action space: Sell, Hold, Buy
model = TradingModel(input_dim, hidden_dim, output_dim)
optimizer = optim.Adam(model.parameters(), lr=1e-4)
replay_buffer = ReplayBuffer(capacity=10000)
rl_agent = ContinuousRLAgent(model, optimizer, replay_buffer, batch_size=32)
trading_bot = TradingBot(rl_agent)
# Start the continuous trading loop
await trading_bot.trading_loop()
if __name__ == "__main__":
asyncio.run(main_loop())

0
web/prisma/dev.db Normal file
View File