new NN sub-proj
This commit is contained in:
parent
69241b1498
commit
773b1b6b76
231
crypto/brian/index.py
Normal file
231
crypto/brian/index.py
Normal file
@ -0,0 +1,231 @@
|
||||
#!/usr/bin/env python3
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.optim as optim
|
||||
import asyncio
|
||||
from collections import deque
|
||||
import numpy as np
|
||||
|
||||
# ------------------------------
|
||||
# Neural Network Architecture
|
||||
# ------------------------------
|
||||
class TradingModel(nn.Module):
|
||||
def __init__(self, input_dim, hidden_dim, output_dim):
|
||||
super(TradingModel, self).__init__()
|
||||
# This is a simplified network template.
|
||||
# A production-grade 8B model would involve model parallelism and a deep transformer or other architecture.
|
||||
self.net = nn.Sequential(
|
||||
nn.Linear(input_dim, hidden_dim),
|
||||
nn.ReLU(),
|
||||
nn.Linear(hidden_dim, hidden_dim),
|
||||
nn.ReLU(),
|
||||
nn.Linear(hidden_dim, output_dim)
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
return self.net(x)
|
||||
|
||||
# ------------------------------
|
||||
# Replay Buffer for Continuous Learning
|
||||
# ------------------------------
|
||||
class ReplayBuffer:
|
||||
def __init__(self, capacity=10000):
|
||||
self.buffer = deque(maxlen=capacity)
|
||||
|
||||
def add(self, experience):
|
||||
self.buffer.append(experience)
|
||||
|
||||
def sample(self, batch_size):
|
||||
indices = np.random.choice(len(self.buffer), size=batch_size, replace=False)
|
||||
return [self.buffer[i] for i in indices]
|
||||
|
||||
def __len__(self):
|
||||
return len(self.buffer)
|
||||
|
||||
# ------------------------------
|
||||
# Feature Engineering & Indicator Calculation
|
||||
# ------------------------------
|
||||
def compute_indicators(candle, additional_data):
|
||||
"""
|
||||
Combine candle data (H, L, O, C, V) with additional indicators.
|
||||
In production, use proper TA libraries (e.g., TA-Lib) to compute RSI, stochastic oscillator, etc.
|
||||
"""
|
||||
features = []
|
||||
# Base candlestick features:
|
||||
features.extend([
|
||||
candle.get('open', 0.0),
|
||||
candle.get('high', 0.0),
|
||||
candle.get('low', 0.0),
|
||||
candle.get('close', 0.0),
|
||||
candle.get('volume', 0.0)
|
||||
])
|
||||
|
||||
# Append additional indicator values (e.g., sentiment score, news volume, etc.)
|
||||
for key, value in additional_data.items():
|
||||
features.append(value)
|
||||
|
||||
return np.array(features, dtype=np.float32)
|
||||
|
||||
# ------------------------------
|
||||
# Simulated Live Data Streams
|
||||
# ------------------------------
|
||||
async def get_live_candle_data():
|
||||
"""
|
||||
This function should connect to your live data feed.
|
||||
For demonstration purposes, we simulate new candlestick data.
|
||||
"""
|
||||
await asyncio.sleep(1) # simulate network/data latency
|
||||
return {
|
||||
'open': np.random.rand(),
|
||||
'high': np.random.rand(),
|
||||
'low': np.random.rand(),
|
||||
'close': np.random.rand(),
|
||||
'volume': np.random.rand()
|
||||
}
|
||||
|
||||
async def get_sentiment_data():
|
||||
"""
|
||||
Simulate fetching live sentiment data from external sources.
|
||||
Replace this with integration to actual X feeds or news APIs.
|
||||
"""
|
||||
await asyncio.sleep(1)
|
||||
return {
|
||||
'sentiment_score': np.random.rand(), # e.g., normalized sentiment between 0 and 1
|
||||
'news_volume': np.random.rand(),
|
||||
'social_engagement': np.random.rand()
|
||||
}
|
||||
|
||||
# ------------------------------
|
||||
# RL Agent with Continuous Training
|
||||
# ------------------------------
|
||||
class ContinuousRLAgent:
|
||||
def __init__(self, model, optimizer, replay_buffer, batch_size=32):
|
||||
self.model = model
|
||||
self.optimizer = optimizer
|
||||
self.replay_buffer = replay_buffer
|
||||
self.batch_size = batch_size
|
||||
# Placeholder loss function; a real-world RL agent often has a more complex loss (e.g., Q-learning loss)
|
||||
self.loss_fn = nn.MSELoss()
|
||||
|
||||
def act(self, state):
|
||||
"""
|
||||
Compute the action given the latest state.
|
||||
In production, the network output should map to a confidence or Q-values for actions.
|
||||
Action mapping (for example): 0: SELL, 1: HOLD, 2: BUY.
|
||||
"""
|
||||
state_tensor = torch.tensor(state, dtype=torch.float32).unsqueeze(0)
|
||||
with torch.no_grad():
|
||||
output = self.model(state_tensor)
|
||||
action = torch.argmax(output, dim=1).item()
|
||||
return action
|
||||
|
||||
def train_step(self):
|
||||
"""
|
||||
Perform one training step using a batch sampled from the replay buffer.
|
||||
In RL, targets are computed from rewards and estimated future returns.
|
||||
"""
|
||||
if len(self.replay_buffer) < self.batch_size:
|
||||
return
|
||||
|
||||
batch = self.replay_buffer.sample(self.batch_size)
|
||||
states, rewards, next_states, dones = [], [], [], []
|
||||
|
||||
for experience in batch:
|
||||
state, reward, next_state, done = experience
|
||||
states.append(state)
|
||||
rewards.append(reward)
|
||||
next_states.append(next_state)
|
||||
dones.append(done)
|
||||
|
||||
states_tensor = torch.tensor(states, dtype=torch.float32)
|
||||
targets_tensor = torch.tensor(rewards, dtype=torch.float32).unsqueeze(1)
|
||||
|
||||
outputs = self.model(states_tensor)
|
||||
# For simplicity, assume we use a single output value to represent the signal.
|
||||
predictions = outputs[:, 0].unsqueeze(1)
|
||||
loss = self.loss_fn(predictions, targets_tensor)
|
||||
|
||||
self.optimizer.zero_grad()
|
||||
loss.backward()
|
||||
self.optimizer.step()
|
||||
|
||||
# ------------------------------
|
||||
# Trading Bot: Integration with Jupiter API (Solana)
|
||||
# ------------------------------
|
||||
class TradingBot:
|
||||
def __init__(self, rl_agent):
|
||||
self.rl_agent = rl_agent
|
||||
# Initialize Jupiter API client for Solana trading
|
||||
# Hypothetical client initialization (substitute with an actual library/client):
|
||||
# self.jupiter_client = JupiterClient(api_key='YOUR_API_KEY')
|
||||
|
||||
async def execute_trade(self, action):
|
||||
"""
|
||||
Translate the agent's selected action into a trade order.
|
||||
Action mapping example: 0 => SELL, 1 => HOLD, 2 => BUY.
|
||||
"""
|
||||
if action == 0:
|
||||
print("Executing SELL order")
|
||||
# self.jupiter_client.sell(...actual trade parameters...)
|
||||
elif action == 2:
|
||||
print("Executing BUY order")
|
||||
# self.jupiter_client.buy(...actual trade parameters...)
|
||||
else:
|
||||
print("Holding position")
|
||||
|
||||
async def trading_loop(self):
|
||||
"""
|
||||
Main trading loop:
|
||||
• Ingest live data.
|
||||
• Compute features.
|
||||
• Let the agent decide on an action.
|
||||
• Execute trades.
|
||||
• Store experience and train continuously.
|
||||
"""
|
||||
while True:
|
||||
# Fetch latest data (you might aggregate data for different time frames)
|
||||
candle = await get_live_candle_data()
|
||||
sentiment = await get_sentiment_data()
|
||||
# In practice, merge technical indicators computed on candle data with sentiment data.
|
||||
indicators = sentiment # For demo, sentiment is our extra feature set.
|
||||
|
||||
# Compute state features
|
||||
state = compute_indicators(candle, indicators)
|
||||
# Get an action from the RL agent (0: Sell, 1: Hold, 2: Buy)
|
||||
action = self.rl_agent.act(state)
|
||||
await self.execute_trade(action)
|
||||
|
||||
# Simulate reward computation (in reality, your reward function should be based on trading performance)
|
||||
reward = np.random.rand()
|
||||
next_state = state # For demonstration, we reuse the state; in practice, next_state is computed after action execution.
|
||||
done = False # Flag to indicate episode termination if needed
|
||||
|
||||
# Store the experience in the replay buffer
|
||||
self.rl_agent.replay_buffer.add((state, reward, next_state, done))
|
||||
# Run a training step to update the network continuously
|
||||
self.rl_agent.train_step()
|
||||
|
||||
# Sleep to conform to the data frequency (adjust the delay as needed)
|
||||
await asyncio.sleep(0.5)
|
||||
|
||||
# ------------------------------
|
||||
# Main Orchestration Loop
|
||||
# ------------------------------
|
||||
async def main_loop():
|
||||
# Define dimensions. For instance: 5 for basic candlestick data + additional channels (e.g., 3 here; expand as necessary)
|
||||
input_dim = 5 + 3 # Adjust this to support up to 100 additional indicator channels
|
||||
hidden_dim = 128 # Placeholder; for an 8B parameter model, this will be much larger and distributed.
|
||||
output_dim = 3 # Action space: Sell, Hold, Buy
|
||||
|
||||
model = TradingModel(input_dim, hidden_dim, output_dim)
|
||||
optimizer = optim.Adam(model.parameters(), lr=1e-4)
|
||||
replay_buffer = ReplayBuffer(capacity=10000)
|
||||
|
||||
rl_agent = ContinuousRLAgent(model, optimizer, replay_buffer, batch_size=32)
|
||||
trading_bot = TradingBot(rl_agent)
|
||||
|
||||
# Start the continuous trading loop
|
||||
await trading_bot.trading_loop()
|
||||
|
||||
if __name__ == "__main__":
|
||||
asyncio.run(main_loop())
|
0
web/prisma/dev.db
Normal file
0
web/prisma/dev.db
Normal file
Loading…
x
Reference in New Issue
Block a user