pivot points option in UI

This commit is contained in:
Dobromir Popov
2025-08-13 02:24:12 +03:00
parent 9c1ba6dbe2
commit 6ef1a63054
4 changed files with 124 additions and 106 deletions

View File

@@ -584,7 +584,6 @@ class TradingOrchestrator:
return alias_to_canonical.get(name, name) return alias_to_canonical.get(name, name)
except Exception: except Exception:
return name return name
def _initialize_ml_models(self): def _initialize_ml_models(self):
"""Initialize ML models for enhanced trading""" """Initialize ML models for enhanced trading"""
try: try:
@@ -738,45 +737,42 @@ class TradingOrchestrator:
checkpoint_metadata = db_manager.get_best_checkpoint_metadata( checkpoint_metadata = db_manager.get_best_checkpoint_metadata(
"enhanced_cnn" "enhanced_cnn"
) )
if checkpoint_metadata: if checkpoint_metadata and os.path.exists(checkpoint_metadata.file_path):
self.model_states["cnn"]["initial_loss"] = 0.412 try:
self.model_states["cnn"]["current_loss"] = ( saved = torch.load(checkpoint_metadata.file_path, map_location=self.device)
checkpoint_metadata.performance_metrics.get("loss", 0.0187) if saved and saved.get("model_state_dict"):
) self.cnn_model.load_state_dict(saved["model_state_dict"], strict=False)
self.model_states["cnn"]["best_loss"] = ( checkpoint_loaded = True
checkpoint_metadata.performance_metrics.get("loss", 0.0134) except Exception as load_ex:
) logger.warning(f"CNN checkpoint load_state_dict failed: {load_ex}")
self.model_states["cnn"]["checkpoint_loaded"] = True if not checkpoint_loaded:
self.model_states["cnn"][ # Filesystem fallback
"checkpoint_filename" from utils.checkpoint_manager import load_best_checkpoint as _load_best_ckpt
] = checkpoint_metadata.checkpoint_id result = _load_best_ckpt("enhanced_cnn")
checkpoint_loaded = True if result:
loss_str = f"{checkpoint_metadata.performance_metrics.get('loss', 0.0):.4f}" ckpt_path, meta = result
logger.info( try:
f"CNN checkpoint loaded: {checkpoint_metadata.checkpoint_id} (loss={loss_str})" saved = torch.load(ckpt_path, map_location=self.device)
) if saved and saved.get("model_state_dict"):
self.cnn_model.load_state_dict(saved["model_state_dict"], strict=False)
checkpoint_loaded = True
self.model_states["cnn"]["checkpoint_filename"] = getattr(meta, "checkpoint_id", os.path.basename(ckpt_path))
except Exception as e_load:
logger.warning(f"Failed loading CNN weights from {ckpt_path}: {e_load}")
# Update model_states flags after attempts
self.model_states["cnn"]["checkpoint_loaded"] = checkpoint_loaded
except Exception as e: except Exception as e:
logger.warning(f"Error loading CNN checkpoint: {e}") logger.warning(f"Error loading CNN checkpoint: {e}")
# Filesystem fallback checkpoint_loaded = False
try:
from utils.checkpoint_manager import get_checkpoint_manager
cm = get_checkpoint_manager()
result = cm.load_best_checkpoint("enhanced_cnn")
if result:
model_path, meta = result
self.model_states["cnn"]["checkpoint_loaded"] = True
self.model_states["cnn"]["checkpoint_filename"] = getattr(meta, 'checkpoint_id', None)
checkpoint_loaded = True
logger.info(f"CNN checkpoint (fs) detected: {getattr(meta, 'checkpoint_id', 'unknown')}")
except Exception:
pass
if not checkpoint_loaded: if not checkpoint_loaded:
# New model - no synthetic data # New model - no synthetic data
self.model_states["cnn"]["initial_loss"] = None self.model_states["cnn"]["initial_loss"] = None
self.model_states["cnn"]["current_loss"] = None self.model_states["cnn"]["current_loss"] = None
self.model_states["cnn"]["best_loss"] = None self.model_states["cnn"]["best_loss"] = None
logger.info("CNN starting fresh - no checkpoint found") self.model_states["cnn"]["checkpoint_loaded"] = False
logger.info("CNN starting fresh - no checkpoint found or failed to load")
else:
logger.info("CNN weights loaded from checkpoint successfully")
logger.info("Enhanced CNN model initialized directly") logger.info("Enhanced CNN model initialized directly")
except ImportError: except ImportError:
@@ -1339,7 +1335,6 @@ class TradingOrchestrator:
} }
return stats return stats
def clear_session_data(self): def clear_session_data(self):
"""Clear all session-related data for fresh start""" """Clear all session-related data for fresh start"""
try: try:
@@ -2122,7 +2117,6 @@ class TradingOrchestrator:
except Exception as e: except Exception as e:
logger.error(f"Error registering model {model.name}: {e}") logger.error(f"Error registering model {model.name}: {e}")
return False return False
def unregister_model(self, model_name: str) -> bool: def unregister_model(self, model_name: str) -> bool:
"""Unregister a model""" """Unregister a model"""
try: try:
@@ -3540,7 +3534,6 @@ class TradingOrchestrator:
except Exception as e: except Exception as e:
logger.error(f"Error in immediate training for {model_name}: {e}") logger.error(f"Error in immediate training for {model_name}: {e}")
async def _evaluate_and_train_on_record(self, record: Dict, current_price: float): async def _evaluate_and_train_on_record(self, record: Dict, current_price: float):
"""Evaluate prediction outcome and train model""" """Evaluate prediction outcome and train model"""
try: try:
@@ -5779,7 +5772,6 @@ class TradingOrchestrator:
if symbol in self.recent_decisions: if symbol in self.recent_decisions:
return self.recent_decisions[symbol][-limit:] return self.recent_decisions[symbol][-limit:]
return [] return []
def get_performance_metrics(self) -> Dict[str, Any]: def get_performance_metrics(self) -> Dict[str, Any]:
"""Get performance metrics for the orchestrator""" """Get performance metrics for the orchestrator"""
return { return {
@@ -6579,7 +6571,6 @@ class TradingOrchestrator:
except Exception as e: except Exception as e:
logger.error(f"Error adding decision fusion training sample: {e}") logger.error(f"Error adding decision fusion training sample: {e}")
def _train_decision_fusion_network(self): def _train_decision_fusion_network(self):
"""Train the decision fusion network on collected data""" """Train the decision fusion network on collected data"""
try: try:
@@ -8133,7 +8124,6 @@ class TradingOrchestrator:
except Exception as e: except Exception as e:
logger.error(f"Error initializing checkpoint manager: {e}") logger.error(f"Error initializing checkpoint manager: {e}")
self.checkpoint_manager = None self.checkpoint_manager = None
def autosave_models(self): def autosave_models(self):
"""Attempt to autosave best model checkpoints periodically.""" """Attempt to autosave best model checkpoints periodically."""
try: try:
@@ -8990,4 +8980,4 @@ class TradingOrchestrator:
except Exception as e: except Exception as e:
logger.error(f"Error in fallback data strategy: {e}") logger.error(f"Error in fallback data strategy: {e}")
return False return False

View File

@@ -1280,13 +1280,15 @@ class CleanTradingDashboard:
@self.app.callback( @self.app.callback(
Output('price-chart', 'figure'), Output('price-chart', 'figure'),
[Input('interval-component', 'n_intervals')], [Input('interval-component', 'n_intervals'),
Input('show-pivots-switch', 'value')],
[State('price-chart', 'relayoutData')] [State('price-chart', 'relayoutData')]
) )
def update_price_chart(n, relayout_data): def update_price_chart(n, pivots_value, relayout_data):
"""Update price chart every second, persisting user zoom/pan""" """Update price chart every second, persisting user zoom/pan"""
try: try:
fig = self._create_price_chart('ETH/USDT') show_pivots = bool(pivots_value and 'enabled' in pivots_value)
fig = self._create_price_chart('ETH/USDT', show_pivots=show_pivots)
if relayout_data: if relayout_data:
if 'xaxis.range[0]' in relayout_data and 'xaxis.range[1]' in relayout_data: if 'xaxis.range[0]' in relayout_data and 'xaxis.range[1]' in relayout_data:
@@ -1300,6 +1302,15 @@ class CleanTradingDashboard:
return go.Figure().add_annotation(text=f"Chart Error: {str(e)}", return go.Figure().add_annotation(text=f"Chart Error: {str(e)}",
xref="paper", yref="paper", xref="paper", yref="paper",
x=0.5, y=0.5, showarrow=False) x=0.5, y=0.5, showarrow=False)
# Display state label for pivots toggle
@self.app.callback(
Output('pivots-display', 'children'),
[Input('show-pivots-switch', 'value')]
)
def update_pivots_display(value):
enabled = bool(value and 'enabled' in value)
return "ON" if enabled else "OFF"
@self.app.callback( @self.app.callback(
Output('closed-trades-table', 'children'), Output('closed-trades-table', 'children'),
@@ -1651,7 +1662,7 @@ class CleanTradingDashboard:
elif hasattr(panel, 'render'): elif hasattr(panel, 'render'):
panel_content = panel.render() panel_content = panel.render()
else: else:
panel_content = html.Div([html.Div("Training panel not available", className="text-muted small")]) panel_content = [html.Div("Training panel not available", className="text-muted small")]
logger.info("Successfully created training metrics panel") logger.info("Successfully created training metrics panel")
return panel_content return panel_content
@@ -1663,10 +1674,10 @@ class CleanTradingDashboard:
logger.error(f"Error updating training metrics with new panel: {e}") logger.error(f"Error updating training metrics with new panel: {e}")
import traceback import traceback
logger.error(f"Traceback: {traceback.format_exc()}") logger.error(f"Traceback: {traceback.format_exc()}")
return html.Div([ return [
html.P("Error loading training panel", className="text-danger small"), html.P("Error loading training panel", className="text-danger small"),
html.P(f"Details: {str(e)}", className="text-muted small") html.P(f"Details: {str(e)}", className="text-muted small")
], id="training-metrics") ]
# Universal model toggle callback using pattern matching # Universal model toggle callback using pattern matching
@self.app.callback( @self.app.callback(
@@ -2234,7 +2245,7 @@ class CleanTradingDashboard:
# Return None if absolutely nothing available # Return None if absolutely nothing available
return None return None
def _create_price_chart(self, symbol: str) -> go.Figure: def _create_price_chart(self, symbol: str, show_pivots: bool = True) -> go.Figure:
"""Create 1-minute main chart with 1-second mini chart - Updated every second""" """Create 1-minute main chart with 1-second mini chart - Updated every second"""
try: try:
# FIXED: Always get fresh data on startup to avoid gaps # FIXED: Always get fresh data on startup to avoid gaps
@@ -2404,63 +2415,64 @@ class CleanTradingDashboard:
self._add_trades_to_chart(fig, symbol, df_main, row=1) self._add_trades_to_chart(fig, symbol, df_main, row=1)
# ADD PIVOT POINTS TO MAIN CHART (overlay on 1m) # ADD PIVOT POINTS TO MAIN CHART (overlay on 1m)
try: if show_pivots:
pivots_input = None try:
if hasattr(self.data_provider, 'get_base_data_input'): pivots_input = None
bdi = self.data_provider.get_base_data_input(symbol) if hasattr(self.data_provider, 'get_base_data_input'):
if bdi and getattr(bdi, 'pivot_points', None): bdi = self.data_provider.get_base_data_input(symbol)
pivots_input = bdi.pivot_points if bdi and getattr(bdi, 'pivot_points', None):
if pivots_input: pivots_input = bdi.pivot_points
# Filter pivots within the visible time range of df_main if pivots_input:
start_ts = df_main.index.min() # Filter pivots within the visible time range of df_main
end_ts = df_main.index.max() start_ts = df_main.index.min()
xs_high = [] end_ts = df_main.index.max()
ys_high = [] xs_high = []
xs_low = [] ys_high = []
ys_low = [] xs_low = []
for p in pivots_input: ys_low = []
ts = getattr(p, 'timestamp', None) for p in pivots_input:
price = getattr(p, 'price', None) ts = getattr(p, 'timestamp', None)
ptype = getattr(p, 'type', 'low') price = getattr(p, 'price', None)
if ts is None or price is None: ptype = getattr(p, 'type', 'low')
continue if ts is None or price is None:
# Convert pivot timestamp to local tz and make tz-naive to match chart axes continue
try: # Convert pivot timestamp to local tz and make tz-naive to match chart axes
if hasattr(ts, 'tzinfo') and ts.tzinfo is not None:
pt = ts.astimezone(_local_tz) if _local_tz else ts
else:
# Assume UTC then convert
pt = ts.replace(tzinfo=timezone.utc)
pt = pt.astimezone(_local_tz) if _local_tz else pt
# Drop tzinfo for plotting
try: try:
pt = pt.replace(tzinfo=None) if hasattr(ts, 'tzinfo') and ts.tzinfo is not None:
pt = ts.astimezone(_local_tz) if _local_tz else ts
else:
# Assume UTC then convert
pt = ts.replace(tzinfo=timezone.utc)
pt = pt.astimezone(_local_tz) if _local_tz else pt
# Drop tzinfo for plotting
try:
pt = pt.replace(tzinfo=None)
except Exception:
pass
except Exception: except Exception:
pass pt = ts
except Exception: if start_ts <= pt <= end_ts:
pt = ts if str(ptype).lower() == 'high':
if start_ts <= pt <= end_ts: xs_high.append(pt)
if str(ptype).lower() == 'high': ys_high.append(price)
xs_high.append(pt) else:
ys_high.append(price) xs_low.append(pt)
else: ys_low.append(price)
xs_low.append(pt) if xs_high or xs_low:
ys_low.append(price) fig.add_trace(
if xs_high or xs_low: go.Scatter(x=xs_high, y=ys_high, mode='markers', name='Pivot High',
fig.add_trace( marker=dict(color='#ff7043', size=7, symbol='triangle-up'),
go.Scatter(x=xs_high, y=ys_high, mode='markers', name='Pivot High', hoverinfo='skip'),
marker=dict(color='#ff7043', size=7, symbol='triangle-up'), row=1, col=1
hoverinfo='skip'), )
row=1, col=1 fig.add_trace(
) go.Scatter(x=xs_low, y=ys_low, mode='markers', name='Pivot Low',
fig.add_trace( marker=dict(color='#42a5f5', size=7, symbol='triangle-down'),
go.Scatter(x=xs_low, y=ys_low, mode='markers', name='Pivot Low', hoverinfo='skip'),
marker=dict(color='#42a5f5', size=7, symbol='triangle-down'), row=1, col=1
hoverinfo='skip'), )
row=1, col=1 except Exception as e:
) logger.debug(f"Error overlaying pivot points: {e}")
except Exception as e:
logger.debug(f"Error overlaying pivot points: {e}")
# Mini 1-second chart (if available) # Mini 1-second chart (if available)
if has_mini_chart and ws_data_1s is not None: if has_mini_chart and ws_data_1s is not None:

View File

@@ -226,6 +226,21 @@ class DashboardLayoutManager:
html.Hr(className="my-2"), html.Hr(className="my-2"),
# Leverage Control # Leverage Control
html.Div([
html.Label([
html.I(className="fas fa-compass me-1"),
"Show Pivot Points: ",
html.Span(id="pivots-display", children="ON", className="fw-bold text-success")
], className="form-label small mb-1"),
dcc.Checklist(
id='show-pivots-switch',
options=[{'label': '', 'value': 'enabled'}],
value=['enabled'],
className="form-check-input"
),
html.Small("Toggle pivot overlays on the chart", className="text-muted d-block")
], className="mb-2"),
html.Div([ html.Div([
html.Label([ html.Label([
html.I(className="fas fa-sliders-h me-1"), html.I(className="fas fa-sliders-h me-1"),

View File

@@ -21,7 +21,7 @@ class ModelsTrainingPanel:
def __init__(self, orchestrator=None): def __init__(self, orchestrator=None):
self.orchestrator = orchestrator self.orchestrator = orchestrator
def create_panel(self) -> html.Div: def create_panel(self) -> Any:
try: try:
data = self._gather_data() data = self._gather_data()
@@ -34,12 +34,13 @@ class ModelsTrainingPanel:
if data.get("system_metrics"): if data.get("system_metrics"):
content.append(self._create_system_metrics_section(data["system_metrics"])) content.append(self._create_system_metrics_section(data["system_metrics"]))
return html.Div(content, id="training-metrics") # Return children (to be assigned to 'training-metrics' container)
return content
except Exception as e: except Exception as e:
logger.error(f"Error creating models training panel: {e}") logger.error(f"Error creating models training panel: {e}")
return html.Div([ return [
html.P(f"Error loading training panel: {str(e)}", className="text-danger small") html.P(f"Error loading training panel: {str(e)}", className="text-danger small")
], id="training-metrics") ]
def _gather_data(self) -> Dict[str, Any]: def _gather_data(self) -> Dict[str, Any]:
result: Dict[str, Any] = {"models": {}, "training_status": {}, "system_metrics": {}} result: Dict[str, Any] = {"models": {}, "training_status": {}, "system_metrics": {}}