pivot points option in UI

This commit is contained in:
Dobromir Popov
2025-08-13 02:24:12 +03:00
parent 9c1ba6dbe2
commit 6ef1a63054
4 changed files with 124 additions and 106 deletions

View File

@@ -584,7 +584,6 @@ class TradingOrchestrator:
return alias_to_canonical.get(name, name)
except Exception:
return name
def _initialize_ml_models(self):
"""Initialize ML models for enhanced trading"""
try:
@@ -738,45 +737,42 @@ class TradingOrchestrator:
checkpoint_metadata = db_manager.get_best_checkpoint_metadata(
"enhanced_cnn"
)
if checkpoint_metadata:
self.model_states["cnn"]["initial_loss"] = 0.412
self.model_states["cnn"]["current_loss"] = (
checkpoint_metadata.performance_metrics.get("loss", 0.0187)
)
self.model_states["cnn"]["best_loss"] = (
checkpoint_metadata.performance_metrics.get("loss", 0.0134)
)
self.model_states["cnn"]["checkpoint_loaded"] = True
self.model_states["cnn"][
"checkpoint_filename"
] = checkpoint_metadata.checkpoint_id
checkpoint_loaded = True
loss_str = f"{checkpoint_metadata.performance_metrics.get('loss', 0.0):.4f}"
logger.info(
f"CNN checkpoint loaded: {checkpoint_metadata.checkpoint_id} (loss={loss_str})"
)
if checkpoint_metadata and os.path.exists(checkpoint_metadata.file_path):
try:
saved = torch.load(checkpoint_metadata.file_path, map_location=self.device)
if saved and saved.get("model_state_dict"):
self.cnn_model.load_state_dict(saved["model_state_dict"], strict=False)
checkpoint_loaded = True
except Exception as load_ex:
logger.warning(f"CNN checkpoint load_state_dict failed: {load_ex}")
if not checkpoint_loaded:
# Filesystem fallback
from utils.checkpoint_manager import load_best_checkpoint as _load_best_ckpt
result = _load_best_ckpt("enhanced_cnn")
if result:
ckpt_path, meta = result
try:
saved = torch.load(ckpt_path, map_location=self.device)
if saved and saved.get("model_state_dict"):
self.cnn_model.load_state_dict(saved["model_state_dict"], strict=False)
checkpoint_loaded = True
self.model_states["cnn"]["checkpoint_filename"] = getattr(meta, "checkpoint_id", os.path.basename(ckpt_path))
except Exception as e_load:
logger.warning(f"Failed loading CNN weights from {ckpt_path}: {e_load}")
# Update model_states flags after attempts
self.model_states["cnn"]["checkpoint_loaded"] = checkpoint_loaded
except Exception as e:
logger.warning(f"Error loading CNN checkpoint: {e}")
# Filesystem fallback
try:
from utils.checkpoint_manager import get_checkpoint_manager
cm = get_checkpoint_manager()
result = cm.load_best_checkpoint("enhanced_cnn")
if result:
model_path, meta = result
self.model_states["cnn"]["checkpoint_loaded"] = True
self.model_states["cnn"]["checkpoint_filename"] = getattr(meta, 'checkpoint_id', None)
checkpoint_loaded = True
logger.info(f"CNN checkpoint (fs) detected: {getattr(meta, 'checkpoint_id', 'unknown')}")
except Exception:
pass
checkpoint_loaded = False
if not checkpoint_loaded:
# New model - no synthetic data
self.model_states["cnn"]["initial_loss"] = None
self.model_states["cnn"]["current_loss"] = None
self.model_states["cnn"]["best_loss"] = None
logger.info("CNN starting fresh - no checkpoint found")
self.model_states["cnn"]["checkpoint_loaded"] = False
logger.info("CNN starting fresh - no checkpoint found or failed to load")
else:
logger.info("CNN weights loaded from checkpoint successfully")
logger.info("Enhanced CNN model initialized directly")
except ImportError:
@@ -1339,7 +1335,6 @@ class TradingOrchestrator:
}
return stats
def clear_session_data(self):
"""Clear all session-related data for fresh start"""
try:
@@ -2122,7 +2117,6 @@ class TradingOrchestrator:
except Exception as e:
logger.error(f"Error registering model {model.name}: {e}")
return False
def unregister_model(self, model_name: str) -> bool:
"""Unregister a model"""
try:
@@ -3540,7 +3534,6 @@ class TradingOrchestrator:
except Exception as e:
logger.error(f"Error in immediate training for {model_name}: {e}")
async def _evaluate_and_train_on_record(self, record: Dict, current_price: float):
"""Evaluate prediction outcome and train model"""
try:
@@ -5779,7 +5772,6 @@ class TradingOrchestrator:
if symbol in self.recent_decisions:
return self.recent_decisions[symbol][-limit:]
return []
def get_performance_metrics(self) -> Dict[str, Any]:
"""Get performance metrics for the orchestrator"""
return {
@@ -6579,7 +6571,6 @@ class TradingOrchestrator:
except Exception as e:
logger.error(f"Error adding decision fusion training sample: {e}")
def _train_decision_fusion_network(self):
"""Train the decision fusion network on collected data"""
try:
@@ -8133,7 +8124,6 @@ class TradingOrchestrator:
except Exception as e:
logger.error(f"Error initializing checkpoint manager: {e}")
self.checkpoint_manager = None
def autosave_models(self):
"""Attempt to autosave best model checkpoints periodically."""
try:
@@ -8990,4 +8980,4 @@ class TradingOrchestrator:
except Exception as e:
logger.error(f"Error in fallback data strategy: {e}")
return False
return False

View File

@@ -1280,13 +1280,15 @@ class CleanTradingDashboard:
@self.app.callback(
Output('price-chart', 'figure'),
[Input('interval-component', 'n_intervals')],
[Input('interval-component', 'n_intervals'),
Input('show-pivots-switch', 'value')],
[State('price-chart', 'relayoutData')]
)
def update_price_chart(n, relayout_data):
def update_price_chart(n, pivots_value, relayout_data):
"""Update price chart every second, persisting user zoom/pan"""
try:
fig = self._create_price_chart('ETH/USDT')
show_pivots = bool(pivots_value and 'enabled' in pivots_value)
fig = self._create_price_chart('ETH/USDT', show_pivots=show_pivots)
if relayout_data:
if 'xaxis.range[0]' in relayout_data and 'xaxis.range[1]' in relayout_data:
@@ -1300,6 +1302,15 @@ class CleanTradingDashboard:
return go.Figure().add_annotation(text=f"Chart Error: {str(e)}",
xref="paper", yref="paper",
x=0.5, y=0.5, showarrow=False)
# Display state label for pivots toggle
@self.app.callback(
Output('pivots-display', 'children'),
[Input('show-pivots-switch', 'value')]
)
def update_pivots_display(value):
enabled = bool(value and 'enabled' in value)
return "ON" if enabled else "OFF"
@self.app.callback(
Output('closed-trades-table', 'children'),
@@ -1651,7 +1662,7 @@ class CleanTradingDashboard:
elif hasattr(panel, 'render'):
panel_content = panel.render()
else:
panel_content = html.Div([html.Div("Training panel not available", className="text-muted small")])
panel_content = [html.Div("Training panel not available", className="text-muted small")]
logger.info("Successfully created training metrics panel")
return panel_content
@@ -1663,10 +1674,10 @@ class CleanTradingDashboard:
logger.error(f"Error updating training metrics with new panel: {e}")
import traceback
logger.error(f"Traceback: {traceback.format_exc()}")
return html.Div([
return [
html.P("Error loading training panel", className="text-danger small"),
html.P(f"Details: {str(e)}", className="text-muted small")
], id="training-metrics")
]
# Universal model toggle callback using pattern matching
@self.app.callback(
@@ -2234,7 +2245,7 @@ class CleanTradingDashboard:
# Return None if absolutely nothing available
return None
def _create_price_chart(self, symbol: str) -> go.Figure:
def _create_price_chart(self, symbol: str, show_pivots: bool = True) -> go.Figure:
"""Create 1-minute main chart with 1-second mini chart - Updated every second"""
try:
# FIXED: Always get fresh data on startup to avoid gaps
@@ -2404,63 +2415,64 @@ class CleanTradingDashboard:
self._add_trades_to_chart(fig, symbol, df_main, row=1)
# ADD PIVOT POINTS TO MAIN CHART (overlay on 1m)
try:
pivots_input = None
if hasattr(self.data_provider, 'get_base_data_input'):
bdi = self.data_provider.get_base_data_input(symbol)
if bdi and getattr(bdi, 'pivot_points', None):
pivots_input = bdi.pivot_points
if pivots_input:
# Filter pivots within the visible time range of df_main
start_ts = df_main.index.min()
end_ts = df_main.index.max()
xs_high = []
ys_high = []
xs_low = []
ys_low = []
for p in pivots_input:
ts = getattr(p, 'timestamp', None)
price = getattr(p, 'price', None)
ptype = getattr(p, 'type', 'low')
if ts is None or price is None:
continue
# Convert pivot timestamp to local tz and make tz-naive to match chart axes
try:
if hasattr(ts, 'tzinfo') and ts.tzinfo is not None:
pt = ts.astimezone(_local_tz) if _local_tz else ts
else:
# Assume UTC then convert
pt = ts.replace(tzinfo=timezone.utc)
pt = pt.astimezone(_local_tz) if _local_tz else pt
# Drop tzinfo for plotting
if show_pivots:
try:
pivots_input = None
if hasattr(self.data_provider, 'get_base_data_input'):
bdi = self.data_provider.get_base_data_input(symbol)
if bdi and getattr(bdi, 'pivot_points', None):
pivots_input = bdi.pivot_points
if pivots_input:
# Filter pivots within the visible time range of df_main
start_ts = df_main.index.min()
end_ts = df_main.index.max()
xs_high = []
ys_high = []
xs_low = []
ys_low = []
for p in pivots_input:
ts = getattr(p, 'timestamp', None)
price = getattr(p, 'price', None)
ptype = getattr(p, 'type', 'low')
if ts is None or price is None:
continue
# Convert pivot timestamp to local tz and make tz-naive to match chart axes
try:
pt = pt.replace(tzinfo=None)
if hasattr(ts, 'tzinfo') and ts.tzinfo is not None:
pt = ts.astimezone(_local_tz) if _local_tz else ts
else:
# Assume UTC then convert
pt = ts.replace(tzinfo=timezone.utc)
pt = pt.astimezone(_local_tz) if _local_tz else pt
# Drop tzinfo for plotting
try:
pt = pt.replace(tzinfo=None)
except Exception:
pass
except Exception:
pass
except Exception:
pt = ts
if start_ts <= pt <= end_ts:
if str(ptype).lower() == 'high':
xs_high.append(pt)
ys_high.append(price)
else:
xs_low.append(pt)
ys_low.append(price)
if xs_high or xs_low:
fig.add_trace(
go.Scatter(x=xs_high, y=ys_high, mode='markers', name='Pivot High',
marker=dict(color='#ff7043', size=7, symbol='triangle-up'),
hoverinfo='skip'),
row=1, col=1
)
fig.add_trace(
go.Scatter(x=xs_low, y=ys_low, mode='markers', name='Pivot Low',
marker=dict(color='#42a5f5', size=7, symbol='triangle-down'),
hoverinfo='skip'),
row=1, col=1
)
except Exception as e:
logger.debug(f"Error overlaying pivot points: {e}")
pt = ts
if start_ts <= pt <= end_ts:
if str(ptype).lower() == 'high':
xs_high.append(pt)
ys_high.append(price)
else:
xs_low.append(pt)
ys_low.append(price)
if xs_high or xs_low:
fig.add_trace(
go.Scatter(x=xs_high, y=ys_high, mode='markers', name='Pivot High',
marker=dict(color='#ff7043', size=7, symbol='triangle-up'),
hoverinfo='skip'),
row=1, col=1
)
fig.add_trace(
go.Scatter(x=xs_low, y=ys_low, mode='markers', name='Pivot Low',
marker=dict(color='#42a5f5', size=7, symbol='triangle-down'),
hoverinfo='skip'),
row=1, col=1
)
except Exception as e:
logger.debug(f"Error overlaying pivot points: {e}")
# Mini 1-second chart (if available)
if has_mini_chart and ws_data_1s is not None:

View File

@@ -226,6 +226,21 @@ class DashboardLayoutManager:
html.Hr(className="my-2"),
# Leverage Control
html.Div([
html.Label([
html.I(className="fas fa-compass me-1"),
"Show Pivot Points: ",
html.Span(id="pivots-display", children="ON", className="fw-bold text-success")
], className="form-label small mb-1"),
dcc.Checklist(
id='show-pivots-switch',
options=[{'label': '', 'value': 'enabled'}],
value=['enabled'],
className="form-check-input"
),
html.Small("Toggle pivot overlays on the chart", className="text-muted d-block")
], className="mb-2"),
html.Div([
html.Label([
html.I(className="fas fa-sliders-h me-1"),

View File

@@ -21,7 +21,7 @@ class ModelsTrainingPanel:
def __init__(self, orchestrator=None):
self.orchestrator = orchestrator
def create_panel(self) -> html.Div:
def create_panel(self) -> Any:
try:
data = self._gather_data()
@@ -34,12 +34,13 @@ class ModelsTrainingPanel:
if data.get("system_metrics"):
content.append(self._create_system_metrics_section(data["system_metrics"]))
return html.Div(content, id="training-metrics")
# Return children (to be assigned to 'training-metrics' container)
return content
except Exception as e:
logger.error(f"Error creating models training panel: {e}")
return html.Div([
return [
html.P(f"Error loading training panel: {str(e)}", className="text-danger small")
], id="training-metrics")
]
def _gather_data(self) -> Dict[str, Any]:
result: Dict[str, Any] = {"models": {}, "training_status": {}, "system_metrics": {}}