pivot points option in UI

This commit is contained in:
Dobromir Popov
2025-08-13 02:24:12 +03:00
parent 9c1ba6dbe2
commit 6ef1a63054
4 changed files with 124 additions and 106 deletions

View File

@@ -584,7 +584,6 @@ class TradingOrchestrator:
return alias_to_canonical.get(name, name)
except Exception:
return name
def _initialize_ml_models(self):
"""Initialize ML models for enhanced trading"""
try:
@@ -738,45 +737,42 @@ class TradingOrchestrator:
checkpoint_metadata = db_manager.get_best_checkpoint_metadata(
"enhanced_cnn"
)
if checkpoint_metadata:
self.model_states["cnn"]["initial_loss"] = 0.412
self.model_states["cnn"]["current_loss"] = (
checkpoint_metadata.performance_metrics.get("loss", 0.0187)
)
self.model_states["cnn"]["best_loss"] = (
checkpoint_metadata.performance_metrics.get("loss", 0.0134)
)
self.model_states["cnn"]["checkpoint_loaded"] = True
self.model_states["cnn"][
"checkpoint_filename"
] = checkpoint_metadata.checkpoint_id
checkpoint_loaded = True
loss_str = f"{checkpoint_metadata.performance_metrics.get('loss', 0.0):.4f}"
logger.info(
f"CNN checkpoint loaded: {checkpoint_metadata.checkpoint_id} (loss={loss_str})"
)
if checkpoint_metadata and os.path.exists(checkpoint_metadata.file_path):
try:
saved = torch.load(checkpoint_metadata.file_path, map_location=self.device)
if saved and saved.get("model_state_dict"):
self.cnn_model.load_state_dict(saved["model_state_dict"], strict=False)
checkpoint_loaded = True
except Exception as load_ex:
logger.warning(f"CNN checkpoint load_state_dict failed: {load_ex}")
if not checkpoint_loaded:
# Filesystem fallback
from utils.checkpoint_manager import load_best_checkpoint as _load_best_ckpt
result = _load_best_ckpt("enhanced_cnn")
if result:
ckpt_path, meta = result
try:
saved = torch.load(ckpt_path, map_location=self.device)
if saved and saved.get("model_state_dict"):
self.cnn_model.load_state_dict(saved["model_state_dict"], strict=False)
checkpoint_loaded = True
self.model_states["cnn"]["checkpoint_filename"] = getattr(meta, "checkpoint_id", os.path.basename(ckpt_path))
except Exception as e_load:
logger.warning(f"Failed loading CNN weights from {ckpt_path}: {e_load}")
# Update model_states flags after attempts
self.model_states["cnn"]["checkpoint_loaded"] = checkpoint_loaded
except Exception as e:
logger.warning(f"Error loading CNN checkpoint: {e}")
# Filesystem fallback
try:
from utils.checkpoint_manager import get_checkpoint_manager
cm = get_checkpoint_manager()
result = cm.load_best_checkpoint("enhanced_cnn")
if result:
model_path, meta = result
self.model_states["cnn"]["checkpoint_loaded"] = True
self.model_states["cnn"]["checkpoint_filename"] = getattr(meta, 'checkpoint_id', None)
checkpoint_loaded = True
logger.info(f"CNN checkpoint (fs) detected: {getattr(meta, 'checkpoint_id', 'unknown')}")
except Exception:
pass
checkpoint_loaded = False
if not checkpoint_loaded:
# New model - no synthetic data
self.model_states["cnn"]["initial_loss"] = None
self.model_states["cnn"]["current_loss"] = None
self.model_states["cnn"]["best_loss"] = None
logger.info("CNN starting fresh - no checkpoint found")
self.model_states["cnn"]["checkpoint_loaded"] = False
logger.info("CNN starting fresh - no checkpoint found or failed to load")
else:
logger.info("CNN weights loaded from checkpoint successfully")
logger.info("Enhanced CNN model initialized directly")
except ImportError:
@@ -1339,7 +1335,6 @@ class TradingOrchestrator:
}
return stats
def clear_session_data(self):
"""Clear all session-related data for fresh start"""
try:
@@ -2122,7 +2117,6 @@ class TradingOrchestrator:
except Exception as e:
logger.error(f"Error registering model {model.name}: {e}")
return False
def unregister_model(self, model_name: str) -> bool:
"""Unregister a model"""
try:
@@ -3540,7 +3534,6 @@ class TradingOrchestrator:
except Exception as e:
logger.error(f"Error in immediate training for {model_name}: {e}")
async def _evaluate_and_train_on_record(self, record: Dict, current_price: float):
"""Evaluate prediction outcome and train model"""
try:
@@ -5779,7 +5772,6 @@ class TradingOrchestrator:
if symbol in self.recent_decisions:
return self.recent_decisions[symbol][-limit:]
return []
def get_performance_metrics(self) -> Dict[str, Any]:
"""Get performance metrics for the orchestrator"""
return {
@@ -6579,7 +6571,6 @@ class TradingOrchestrator:
except Exception as e:
logger.error(f"Error adding decision fusion training sample: {e}")
def _train_decision_fusion_network(self):
"""Train the decision fusion network on collected data"""
try:
@@ -8133,7 +8124,6 @@ class TradingOrchestrator:
except Exception as e:
logger.error(f"Error initializing checkpoint manager: {e}")
self.checkpoint_manager = None
def autosave_models(self):
"""Attempt to autosave best model checkpoints periodically."""
try:
@@ -8990,4 +8980,4 @@ class TradingOrchestrator:
except Exception as e:
logger.error(f"Error in fallback data strategy: {e}")
return False
return False