brcusd
This commit is contained in:
parent
773b1b6b76
commit
015b79c395
@ -1,10 +1,12 @@
|
||||
#!/usr/bin/env python3
|
||||
import asyncio
|
||||
import os
|
||||
import ccxt.async_support as ccxt
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.optim as optim
|
||||
import asyncio
|
||||
from collections import deque
|
||||
import numpy as np
|
||||
from collections import deque
|
||||
|
||||
# ------------------------------
|
||||
# Neural Network Architecture
|
||||
@ -12,8 +14,8 @@ import numpy as np
|
||||
class TradingModel(nn.Module):
|
||||
def __init__(self, input_dim, hidden_dim, output_dim):
|
||||
super(TradingModel, self).__init__()
|
||||
# This is a simplified network template.
|
||||
# A production-grade 8B model would involve model parallelism and a deep transformer or other architecture.
|
||||
# This is a simplified feed-forward model.
|
||||
# A production-grade 8B parameter model would need a distributed strategy.
|
||||
self.net = nn.Sequential(
|
||||
nn.Linear(input_dim, hidden_dim),
|
||||
nn.ReLU(),
|
||||
@ -47,11 +49,12 @@ class ReplayBuffer:
|
||||
# ------------------------------
|
||||
def compute_indicators(candle, additional_data):
|
||||
"""
|
||||
Combine candle data (H, L, O, C, V) with additional indicators.
|
||||
In production, use proper TA libraries (e.g., TA-Lib) to compute RSI, stochastic oscillator, etc.
|
||||
Combine basic OHLCV candle data with additional sentiment/indicator data.
|
||||
In production, you might use dedicated libraries (like TA‑Lib) to calculate RSI, stochastic,
|
||||
and support up to 100 channels.
|
||||
"""
|
||||
features = []
|
||||
# Base candlestick features:
|
||||
# Base candle features: open, high, low, close, volume
|
||||
features.extend([
|
||||
candle.get('open', 0.0),
|
||||
candle.get('high', 0.0),
|
||||
@ -60,43 +63,57 @@ def compute_indicators(candle, additional_data):
|
||||
candle.get('volume', 0.0)
|
||||
])
|
||||
|
||||
# Append additional indicator values (e.g., sentiment score, news volume, etc.)
|
||||
# Append additional indicators (e.g., sentiment, news volume, etc.)
|
||||
for key, value in additional_data.items():
|
||||
features.append(value)
|
||||
|
||||
return np.array(features, dtype=np.float32)
|
||||
|
||||
# ------------------------------
|
||||
# Simulated Live Data Streams
|
||||
# Data Ingestion from MEXC: Live Candle Data
|
||||
# ------------------------------
|
||||
async def get_live_candle_data():
|
||||
async def get_live_candle_data(exchange, symbol, timeframe='1m'):
|
||||
"""
|
||||
This function should connect to your live data feed.
|
||||
For demonstration purposes, we simulate new candlestick data.
|
||||
Fetch the latest OHLCV candle for the given symbol and timeframe.
|
||||
MEXC (or other exchanges via ccxt) returns a list of candles:
|
||||
[ timestamp, open, high, low, close, volume ]
|
||||
We use limit=1 to get the last candle.
|
||||
"""
|
||||
await asyncio.sleep(1) # simulate network/data latency
|
||||
return {
|
||||
'open': np.random.rand(),
|
||||
'high': np.random.rand(),
|
||||
'low': np.random.rand(),
|
||||
'close': np.random.rand(),
|
||||
'volume': np.random.rand()
|
||||
try:
|
||||
ohlcv = await exchange.fetch_ohlcv(symbol, timeframe=timeframe, limit=1)
|
||||
if ohlcv and len(ohlcv) > 0:
|
||||
ts, open_, high, low, close, volume = ohlcv[-1]
|
||||
candle = {
|
||||
'timestamp': ts,
|
||||
'open': open_,
|
||||
'high': high,
|
||||
'low': low,
|
||||
'close': close,
|
||||
'volume': volume
|
||||
}
|
||||
return candle
|
||||
return None
|
||||
except Exception as e:
|
||||
print("Error fetching candle data:", e)
|
||||
return None
|
||||
|
||||
# ------------------------------
|
||||
# Simulated Sentiment Data
|
||||
# ------------------------------
|
||||
async def get_sentiment_data():
|
||||
"""
|
||||
Simulate fetching live sentiment data from external sources.
|
||||
Replace this with integration to actual X feeds or news APIs.
|
||||
Simulate fetching live sentiment data.
|
||||
In production, integrate sentiment analysis from social media, news APIs, etc.
|
||||
"""
|
||||
await asyncio.sleep(1)
|
||||
await asyncio.sleep(0.1) # Simulated latency
|
||||
return {
|
||||
'sentiment_score': np.random.rand(), # e.g., normalized sentiment between 0 and 1
|
||||
'sentiment_score': np.random.rand(), # Example: normalized between 0 and 1
|
||||
'news_volume': np.random.rand(),
|
||||
'social_engagement': np.random.rand()
|
||||
}
|
||||
|
||||
# ------------------------------
|
||||
# RL Agent with Continuous Training
|
||||
# RL Agent with Continuous Learning
|
||||
# ------------------------------
|
||||
class ContinuousRLAgent:
|
||||
def __init__(self, model, optimizer, replay_buffer, batch_size=32):
|
||||
@ -104,14 +121,13 @@ class ContinuousRLAgent:
|
||||
self.optimizer = optimizer
|
||||
self.replay_buffer = replay_buffer
|
||||
self.batch_size = batch_size
|
||||
# Placeholder loss function; a real-world RL agent often has a more complex loss (e.g., Q-learning loss)
|
||||
# For demonstration, we use a basic MSE loss.
|
||||
self.loss_fn = nn.MSELoss()
|
||||
|
||||
def act(self, state):
|
||||
"""
|
||||
Compute the action given the latest state.
|
||||
In production, the network output should map to a confidence or Q-values for actions.
|
||||
Action mapping (for example): 0: SELL, 1: HOLD, 2: BUY.
|
||||
Given the latest state, decide on an action.
|
||||
Mapping: 0: SELL, 1: HOLD, 2: BUY.
|
||||
"""
|
||||
state_tensor = torch.tensor(state, dtype=torch.float32).unsqueeze(0)
|
||||
with torch.no_grad():
|
||||
@ -121,15 +137,14 @@ class ContinuousRLAgent:
|
||||
|
||||
def train_step(self):
|
||||
"""
|
||||
Perform one training step using a batch sampled from the replay buffer.
|
||||
In RL, targets are computed from rewards and estimated future returns.
|
||||
Perform one training step using a sample from the replay buffer.
|
||||
Note: A true RL implementation would incorporate rewards and discounted returns.
|
||||
"""
|
||||
if len(self.replay_buffer) < self.batch_size:
|
||||
return
|
||||
return # Not enough samples yet
|
||||
|
||||
batch = self.replay_buffer.sample(self.batch_size)
|
||||
states, rewards, next_states, dones = [], [], [], []
|
||||
|
||||
for experience in batch:
|
||||
state, reward, next_state, done = experience
|
||||
states.append(state)
|
||||
@ -141,7 +156,7 @@ class ContinuousRLAgent:
|
||||
targets_tensor = torch.tensor(rewards, dtype=torch.float32).unsqueeze(1)
|
||||
|
||||
outputs = self.model(states_tensor)
|
||||
# For simplicity, assume we use a single output value to represent the signal.
|
||||
# For demonstration, we use the first output as our estimation.
|
||||
predictions = outputs[:, 0].unsqueeze(1)
|
||||
loss = self.loss_fn(predictions, targets_tensor)
|
||||
|
||||
@ -150,82 +165,104 @@ class ContinuousRLAgent:
|
||||
self.optimizer.step()
|
||||
|
||||
# ------------------------------
|
||||
# Trading Bot: Integration with Jupiter API (Solana)
|
||||
# Trading Bot: Execution with MEXC API
|
||||
# ------------------------------
|
||||
class TradingBot:
|
||||
def __init__(self, rl_agent):
|
||||
def __init__(self, rl_agent, exchange, symbol='BTC/USDT', trade_amount=0.001):
|
||||
self.rl_agent = rl_agent
|
||||
# Initialize Jupiter API client for Solana trading
|
||||
# Hypothetical client initialization (substitute with an actual library/client):
|
||||
# self.jupiter_client = JupiterClient(api_key='YOUR_API_KEY')
|
||||
self.exchange = exchange
|
||||
self.symbol = symbol
|
||||
self.trade_amount = trade_amount # Amount to trade (in base currency)
|
||||
|
||||
async def execute_trade(self, action):
|
||||
"""
|
||||
Translate the agent's selected action into a trade order.
|
||||
Action mapping example: 0 => SELL, 1 => HOLD, 2 => BUY.
|
||||
Convert the RL agent's decision into a market order.
|
||||
Action mapping: 0 => SELL, 1 => HOLD, 2 => BUY.
|
||||
"""
|
||||
if action == 0:
|
||||
print("Executing SELL order")
|
||||
# self.jupiter_client.sell(...actual trade parameters...)
|
||||
await self.place_market_order('sell')
|
||||
elif action == 2:
|
||||
print("Executing BUY order")
|
||||
# self.jupiter_client.buy(...actual trade parameters...)
|
||||
await self.place_market_order('buy')
|
||||
else:
|
||||
print("Holding position")
|
||||
print("Holding position - no order executed")
|
||||
|
||||
async def trading_loop(self):
|
||||
async def place_market_order(self, side):
|
||||
"""
|
||||
Main trading loop:
|
||||
• Ingest live data.
|
||||
• Compute features.
|
||||
• Let the agent decide on an action.
|
||||
• Execute trades.
|
||||
• Store experience and train continuously.
|
||||
Place a market order on MEXC using ccxt.
|
||||
"""
|
||||
try:
|
||||
order = await self.exchange.create_order(self.symbol, 'market', side, self.trade_amount, None)
|
||||
print(f"Order executed: {order}")
|
||||
except Exception as e:
|
||||
print(f"Error executing {side} order:", e)
|
||||
|
||||
async def trading_loop(self, timeframe='1m'):
|
||||
"""
|
||||
Main loop:
|
||||
- Fetch live candlestick and sentiment data.
|
||||
- Compute state features.
|
||||
- Let the RL agent decide an action.
|
||||
- Execute market orders.
|
||||
- Store experience and perform continuous training.
|
||||
"""
|
||||
while True:
|
||||
# Fetch latest data (you might aggregate data for different time frames)
|
||||
candle = await get_live_candle_data()
|
||||
sentiment = await get_sentiment_data()
|
||||
# In practice, merge technical indicators computed on candle data with sentiment data.
|
||||
indicators = sentiment # For demo, sentiment is our extra feature set.
|
||||
candle = await get_live_candle_data(self.exchange, self.symbol, timeframe)
|
||||
if candle is None:
|
||||
await asyncio.sleep(1)
|
||||
continue
|
||||
|
||||
# Compute state features
|
||||
state = compute_indicators(candle, indicators)
|
||||
# Get an action from the RL agent (0: Sell, 1: Hold, 2: Buy)
|
||||
sentiment = await get_sentiment_data()
|
||||
state = compute_indicators(candle, sentiment)
|
||||
action = self.rl_agent.act(state)
|
||||
await self.execute_trade(action)
|
||||
|
||||
# Simulate reward computation (in reality, your reward function should be based on trading performance)
|
||||
# Simulate reward computation. In production, use trading performance to compute reward.
|
||||
reward = np.random.rand()
|
||||
next_state = state # For demonstration, we reuse the state; in practice, next_state is computed after action execution.
|
||||
done = False # Flag to indicate episode termination if needed
|
||||
|
||||
# Store the experience in the replay buffer
|
||||
next_state = state # In a real system, this would be updated after the trade.
|
||||
done = False
|
||||
self.rl_agent.replay_buffer.add((state, reward, next_state, done))
|
||||
# Run a training step to update the network continuously
|
||||
self.rl_agent.train_step()
|
||||
|
||||
# Sleep to conform to the data frequency (adjust the delay as needed)
|
||||
await asyncio.sleep(0.5)
|
||||
# Wait to match the candle timeframe (for a 1m candle, sleep 60 seconds)
|
||||
await asyncio.sleep(60)
|
||||
|
||||
# ------------------------------
|
||||
# Main Orchestration Loop
|
||||
# Main Execution Loop
|
||||
# ------------------------------
|
||||
async def main_loop():
|
||||
# Define dimensions. For instance: 5 for basic candlestick data + additional channels (e.g., 3 here; expand as necessary)
|
||||
input_dim = 5 + 3 # Adjust this to support up to 100 additional indicator channels
|
||||
hidden_dim = 128 # Placeholder; for an 8B parameter model, this will be much larger and distributed.
|
||||
output_dim = 3 # Action space: Sell, Hold, Buy
|
||||
# Retrieve MEXC API credentials from environment variables or replace with your keys.
|
||||
mexc_api_key = os.environ.get('MEXC_API_KEY', 'YOUR_API_KEY')
|
||||
mexc_api_secret = os.environ.get('MEXC_API_SECRET', 'YOUR_SECRET_KEY')
|
||||
|
||||
# Create the MEXC exchange instance (ccxt asynchronous)
|
||||
exchange = ccxt.mexc({
|
||||
'apiKey': mexc_api_key,
|
||||
'secret': mexc_api_secret,
|
||||
'enableRateLimit': True,
|
||||
})
|
||||
|
||||
# Define the model input dimensions.
|
||||
# Base candle features (5: open, high, low, close, volume) + simulated 3 sentiment features
|
||||
input_dim = 8
|
||||
hidden_dim = 128
|
||||
output_dim = 3 # SELL, HOLD, BUY
|
||||
|
||||
model = TradingModel(input_dim, hidden_dim, output_dim)
|
||||
optimizer = optim.Adam(model.parameters(), lr=1e-4)
|
||||
replay_buffer = ReplayBuffer(capacity=10000)
|
||||
|
||||
rl_agent = ContinuousRLAgent(model, optimizer, replay_buffer, batch_size=32)
|
||||
trading_bot = TradingBot(rl_agent)
|
||||
|
||||
# Start the continuous trading loop
|
||||
await trading_bot.trading_loop()
|
||||
trading_bot = TradingBot(rl_agent, exchange, symbol='BTC/USDT', trade_amount=0.001)
|
||||
|
||||
try:
|
||||
# Begin the continuous trading loop (using 1-minute candles)
|
||||
await trading_bot.trading_loop(timeframe='1m')
|
||||
except Exception as e:
|
||||
print("Error in trading loop:", e)
|
||||
finally:
|
||||
await exchange.close()
|
||||
|
||||
if __name__ == "__main__":
|
||||
asyncio.run(main_loop())
|
2
crypto/brian/readme.md
Normal file
2
crypto/brian/readme.md
Normal file
@ -0,0 +1,2 @@
|
||||
pip install ccxt torch numpy
|
||||
|
Loading…
x
Reference in New Issue
Block a user