Files
cpuminer-opt-gpu/algo/sha/sha256-hash-4way.c
Jay D Dee e6fd9b1d69 v3.19.0
2021-11-10 21:33:44 -05:00

1521 lines
58 KiB
C

#if defined(__SSE2__)
#include <stddef.h>
#include <string.h>
#include "sha-hash-4way.h"
// SHA-256 32 bit
/*
static const uint32_t H256[8] =
{
0x6A09E667, 0xBB67AE85, 0x3C6EF372, 0xA54FF53A,
0x510E527F, 0x9B05688C, 0x1F83D9AB, 0x5BE0CD19
};
*/
static const uint32_t K256[64] =
{
0x428A2F98, 0x71374491, 0xB5C0FBCF, 0xE9B5DBA5,
0x3956C25B, 0x59F111F1, 0x923F82A4, 0xAB1C5ED5,
0xD807AA98, 0x12835B01, 0x243185BE, 0x550C7DC3,
0x72BE5D74, 0x80DEB1FE, 0x9BDC06A7, 0xC19BF174,
0xE49B69C1, 0xEFBE4786, 0x0FC19DC6, 0x240CA1CC,
0x2DE92C6F, 0x4A7484AA, 0x5CB0A9DC, 0x76F988DA,
0x983E5152, 0xA831C66D, 0xB00327C8, 0xBF597FC7,
0xC6E00BF3, 0xD5A79147, 0x06CA6351, 0x14292967,
0x27B70A85, 0x2E1B2138, 0x4D2C6DFC, 0x53380D13,
0x650A7354, 0x766A0ABB, 0x81C2C92E, 0x92722C85,
0xA2BFE8A1, 0xA81A664B, 0xC24B8B70, 0xC76C51A3,
0xD192E819, 0xD6990624, 0xF40E3585, 0x106AA070,
0x19A4C116, 0x1E376C08, 0x2748774C, 0x34B0BCB5,
0x391C0CB3, 0x4ED8AA4A, 0x5B9CCA4F, 0x682E6FF3,
0x748F82EE, 0x78A5636F, 0x84C87814, 0x8CC70208,
0x90BEFFFA, 0xA4506CEB, 0xBEF9A3F7, 0xC67178F2
};
// SHA-256 4 way SSE2
#define CHs(X, Y, Z) \
_mm_xor_si128( _mm_and_si128( _mm_xor_si128( Y, Z ), X ), Z )
#define MAJs(X, Y, Z) \
_mm_xor_si128( Y, _mm_and_si128( X_xor_Y = _mm_xor_si128( X, Y ), \
Y_xor_Z ) )
#define BSG2_0(x) \
_mm_xor_si128( _mm_xor_si128( \
mm128_ror_32(x, 2), mm128_ror_32(x, 13) ), mm128_ror_32( x, 22) )
#define BSG2_1(x) \
_mm_xor_si128( _mm_xor_si128( \
mm128_ror_32(x, 6), mm128_ror_32(x, 11) ), mm128_ror_32( x, 25) )
#define SSG2_0(x) \
_mm_xor_si128( _mm_xor_si128( \
mm128_ror_32(x, 7), mm128_ror_32(x, 18) ), _mm_srli_epi32(x, 3) )
#define SSG2_1(x) \
_mm_xor_si128( _mm_xor_si128( \
mm128_ror_32(x, 17), mm128_ror_32(x, 19) ), _mm_srli_epi32(x, 10) )
#define SHA2s_MEXP( a, b, c, d ) \
mm128_add4_32( SSG2_1( a ), b, SSG2_0( c ), d );
#define SHA256x4_MSG_EXPANSION( W ) \
W[ 0] = SHA2s_MEXP( W[14], W[ 9], W[ 1], W[ 0] ); \
W[ 1] = SHA2s_MEXP( W[15], W[10], W[ 2], W[ 1] ); \
W[ 2] = SHA2s_MEXP( W[ 0], W[11], W[ 3], W[ 2] ); \
W[ 3] = SHA2s_MEXP( W[ 1], W[12], W[ 4], W[ 3] ); \
W[ 4] = SHA2s_MEXP( W[ 2], W[13], W[ 5], W[ 4] ); \
W[ 5] = SHA2s_MEXP( W[ 3], W[14], W[ 6], W[ 5] ); \
W[ 6] = SHA2s_MEXP( W[ 4], W[15], W[ 7], W[ 6] ); \
W[ 7] = SHA2s_MEXP( W[ 5], W[ 0], W[ 8], W[ 7] ); \
W[ 8] = SHA2s_MEXP( W[ 6], W[ 1], W[ 9], W[ 8] ); \
W[ 9] = SHA2s_MEXP( W[ 7], W[ 2], W[10], W[ 9] ); \
W[10] = SHA2s_MEXP( W[ 8], W[ 3], W[11], W[10] ); \
W[11] = SHA2s_MEXP( W[ 9], W[ 4], W[12], W[11] ); \
W[12] = SHA2s_MEXP( W[10], W[ 5], W[13], W[12] ); \
W[13] = SHA2s_MEXP( W[11], W[ 6], W[14], W[13] ); \
W[14] = SHA2s_MEXP( W[12], W[ 7], W[15], W[14] ); \
W[15] = SHA2s_MEXP( W[13], W[ 8], W[ 0], W[15] );
#define SHA2s_4WAY_STEP(A, B, C, D, E, F, G, H, i, j) \
do { \
__m128i T1, T2; \
__m128i K = _mm_set1_epi32( K256[( (j)+(i) )] ); \
T1 = _mm_add_epi32( H, mm128_add4_32( BSG2_1(E), CHs(E, F, G), \
K, W[i] ) ); \
T2 = _mm_add_epi32( BSG2_0(A), MAJs(A, B, C) ); \
Y_xor_Z = X_xor_Y; \
D = _mm_add_epi32( D, T1 ); \
H = _mm_add_epi32( T1, T2 ); \
} while (0)
#define SHA256x4_16ROUNDS( A, B, C, D, E, F, G, H, j ) \
{ \
__m128i X_xor_Y, Y_xor_Z = _mm_xor_si128( B, C ); \
SHA2s_4WAY_STEP( A, B, C, D, E, F, G, H, 0, j ); \
SHA2s_4WAY_STEP( H, A, B, C, D, E, F, G, 1, j ); \
SHA2s_4WAY_STEP( G, H, A, B, C, D, E, F, 2, j ); \
SHA2s_4WAY_STEP( F, G, H, A, B, C, D, E, 3, j ); \
SHA2s_4WAY_STEP( E, F, G, H, A, B, C, D, 4, j ); \
SHA2s_4WAY_STEP( D, E, F, G, H, A, B, C, 5, j ); \
SHA2s_4WAY_STEP( C, D, E, F, G, H, A, B, 6, j ); \
SHA2s_4WAY_STEP( B, C, D, E, F, G, H, A, 7, j ); \
SHA2s_4WAY_STEP( A, B, C, D, E, F, G, H, 8, j ); \
SHA2s_4WAY_STEP( H, A, B, C, D, E, F, G, 9, j ); \
SHA2s_4WAY_STEP( G, H, A, B, C, D, E, F, 10, j ); \
SHA2s_4WAY_STEP( F, G, H, A, B, C, D, E, 11, j ); \
SHA2s_4WAY_STEP( E, F, G, H, A, B, C, D, 12, j ); \
SHA2s_4WAY_STEP( D, E, F, G, H, A, B, C, 13, j ); \
SHA2s_4WAY_STEP( C, D, E, F, G, H, A, B, 14, j ); \
SHA2s_4WAY_STEP( B, C, D, E, F, G, H, A, 15, j ); \
}
// LE data, no need to byte swap
static inline void SHA256_4WAY_TRANSFORM( __m128i *out, __m128i *W,
const __m128i *in )
{
__m128i A, B, C, D, E, F, G, H;
A = in[0];
B = in[1];
C = in[2];
D = in[3];
E = in[4];
F = in[5];
G = in[6];
H = in[7];
SHA256x4_16ROUNDS( A, B, C, D, E, F, G, H, 0 );
SHA256x4_MSG_EXPANSION( W );
SHA256x4_16ROUNDS( A, B, C, D, E, F, G, H, 16 );
SHA256x4_MSG_EXPANSION( W );
SHA256x4_16ROUNDS( A, B, C, D, E, F, G, H, 32 );
SHA256x4_MSG_EXPANSION( W );
SHA256x4_16ROUNDS( A, B, C, D, E, F, G, H, 48 );
out[0] = _mm_add_epi32( in[0], A );
out[1] = _mm_add_epi32( in[1], B );
out[2] = _mm_add_epi32( in[2], C );
out[3] = _mm_add_epi32( in[3], D );
out[4] = _mm_add_epi32( in[4], E );
out[5] = _mm_add_epi32( in[5], F );
out[6] = _mm_add_epi32( in[6], G );
out[7] = _mm_add_epi32( in[7], H );
}
// LE data, no need to byte swap
void sha256_4way_transform_le( __m128i *state_out, const __m128i *data,
const __m128i *state_in )
{
__m128i W[16];
memcpy_128( W, data, 16 );
SHA256_4WAY_TRANSFORM( state_out, W, state_in );
}
// BE data, need to byte swap input data
void sha256_4way_transform_be( __m128i *state_out, const __m128i *data,
const __m128i *state_in )
{
__m128i W[16];
mm128_block_bswap_32( W, data );
mm128_block_bswap_32( W+8, data+8 );
SHA256_4WAY_TRANSFORM( state_out, W, state_in );
}
void sha256_4way_prehash_3rounds( __m128i *state_mid, __m128i *X,
const __m128i *W, const __m128i *state_in )
{
__m128i A, B, C, D, E, F, G, H;
// precalculate constant part msg expansion for second iteration.
X[ 0] = SHA2s_MEXP( W[14], W[ 9], W[ 1], W[ 0] );
X[ 1] = SHA2s_MEXP( W[15], W[10], W[ 2], W[ 1] );
X[ 2] = _mm_add_epi32( _mm_add_epi32( SSG2_1( X[ 0] ), W[11] ),
W[ 2] );
X[ 3] = _mm_add_epi32( _mm_add_epi32( SSG2_1( X[ 1] ), W[12] ),
SSG2_0( W[ 4] ) );
X[ 4] = _mm_add_epi32( _mm_add_epi32( W[13], SSG2_0( W[ 5] ) ),
W[ 4] );
X[ 5] = _mm_add_epi32( _mm_add_epi32( W[14], SSG2_0( W[ 6] ) ),
W[ 5] );
X [6] = _mm_add_epi32( _mm_add_epi32( W[15], SSG2_0( W[ 7] ) ),
W[ 6] );
X[ 7] = _mm_add_epi32( _mm_add_epi32( X[ 0], SSG2_0( W[ 8] ) ),
W[ 7] );
X[ 8] = _mm_add_epi32( _mm_add_epi32( X[ 1], SSG2_0( W[ 9] ) ),
W[ 8] );
X[ 9] = _mm_add_epi32( SSG2_0( W[10] ), W[ 9] );
X[10] = _mm_add_epi32( SSG2_0( W[11] ), W[10] );
X[11] = _mm_add_epi32( SSG2_0( W[12] ), W[11] );
X[12] = _mm_add_epi32( SSG2_0( W[13] ), W[12] );
X[13] = _mm_add_epi32( SSG2_0( W[14] ), W[13] );
X[14] = _mm_add_epi32( SSG2_0( W[15] ), W[14] );
X[15] = _mm_add_epi32( SSG2_0( X[ 0] ), W[15] );
A = _mm_load_si128( state_in );
B = _mm_load_si128( state_in + 1 );
C = _mm_load_si128( state_in + 2 );
D = _mm_load_si128( state_in + 3 );
E = _mm_load_si128( state_in + 4 );
F = _mm_load_si128( state_in + 5 );
G = _mm_load_si128( state_in + 6 );
H = _mm_load_si128( state_in + 7 );
__m128i X_xor_Y, Y_xor_Z = _mm_xor_si128( B, C );
SHA2s_4WAY_STEP( A, B, C, D, E, F, G, H, 0, 0 );
SHA2s_4WAY_STEP( H, A, B, C, D, E, F, G, 1, 0 );
SHA2s_4WAY_STEP( G, H, A, B, C, D, E, F, 2, 0 );
_mm_store_si128( state_mid , A );
_mm_store_si128( state_mid + 1, B );
_mm_store_si128( state_mid + 2, C );
_mm_store_si128( state_mid + 3, D );
_mm_store_si128( state_mid + 4, E );
_mm_store_si128( state_mid + 5, F );
_mm_store_si128( state_mid + 6, G );
_mm_store_si128( state_mid + 7, H );
}
void sha256_4way_final_rounds( __m128i *state_out, const __m128i *data,
const __m128i *state_in, const __m128i *state_mid, const __m128i *X )
{
__m128i A, B, C, D, E, F, G, H;
__m128i W[16];
memcpy_128( W, data, 16 );
A = _mm_load_si128( state_mid );
B = _mm_load_si128( state_mid + 1 );
C = _mm_load_si128( state_mid + 2 );
D = _mm_load_si128( state_mid + 3 );
E = _mm_load_si128( state_mid + 4 );
F = _mm_load_si128( state_mid + 5 );
G = _mm_load_si128( state_mid + 6 );
H = _mm_load_si128( state_mid + 7 );
__m128i X_xor_Y, Y_xor_Z = _mm_xor_si128( G, H );
SHA2s_4WAY_STEP( F, G, H, A, B, C, D, E, 3, 0 );
SHA2s_4WAY_STEP( E, F, G, H, A, B, C, D, 4, 0 );
SHA2s_4WAY_STEP( D, E, F, G, H, A, B, C, 5, 0 );
SHA2s_4WAY_STEP( C, D, E, F, G, H, A, B, 6, 0 );
SHA2s_4WAY_STEP( B, C, D, E, F, G, H, A, 7, 0 );
SHA2s_4WAY_STEP( A, B, C, D, E, F, G, H, 8, 0 );
SHA2s_4WAY_STEP( H, A, B, C, D, E, F, G, 9, 0 );
SHA2s_4WAY_STEP( G, H, A, B, C, D, E, F, 10, 0 );
SHA2s_4WAY_STEP( F, G, H, A, B, C, D, E, 11, 0 );
SHA2s_4WAY_STEP( E, F, G, H, A, B, C, D, 12, 0 );
SHA2s_4WAY_STEP( D, E, F, G, H, A, B, C, 13, 0 );
SHA2s_4WAY_STEP( C, D, E, F, G, H, A, B, 14, 0 );
SHA2s_4WAY_STEP( B, C, D, E, F, G, H, A, 15, 0 );
// update precalculated msg expansion with new nonce: W[3].
W[ 0] = X[ 0];
W[ 1] = X[ 1];
W[ 2] = _mm_add_epi32( X[ 2], SSG2_0( W[ 3] ) );
W[ 3] = _mm_add_epi32( X[ 3], W[ 3] );
W[ 4] = _mm_add_epi32( X[ 4], SSG2_1( W[ 2] ) );
W[ 5] = _mm_add_epi32( X[ 5], SSG2_1( W[ 3] ) );
W[ 6] = _mm_add_epi32( X[ 6], SSG2_1( W[ 4] ) );
W[ 7] = _mm_add_epi32( X[ 7], SSG2_1( W[ 5] ) );
W[ 8] = _mm_add_epi32( X[ 8], SSG2_1( W[ 6] ) );
W[ 9] = _mm_add_epi32( X[ 9], _mm_add_epi32( SSG2_1( W[ 7] ),
W[ 2] ) );
W[10] = _mm_add_epi32( X[10], _mm_add_epi32( SSG2_1( W[ 8] ),
W[ 3] ) );
W[11] = _mm_add_epi32( X[11], _mm_add_epi32( SSG2_1( W[ 9] ),
W[ 4] ) );
W[12] = _mm_add_epi32( X[12], _mm_add_epi32( SSG2_1( W[10] ),
W[ 5] ) );
W[13] = _mm_add_epi32( X[13], _mm_add_epi32( SSG2_1( W[11] ),
W[ 6] ) );
W[14] = _mm_add_epi32( X[14], _mm_add_epi32( SSG2_1( W[12] ),
W[ 7] ) );
W[15] = _mm_add_epi32( X[15], _mm_add_epi32( SSG2_1( W[13] ),
W[ 8] ) );
SHA256x4_16ROUNDS( A, B, C, D, E, F, G, H, 16 );
SHA256x4_MSG_EXPANSION( W );
SHA256x4_16ROUNDS( A, B, C, D, E, F, G, H, 32 );
SHA256x4_MSG_EXPANSION( W );
SHA256x4_16ROUNDS( A, B, C, D, E, F, G, H, 48 );
A = _mm_add_epi32( A, _mm_load_si128( state_in ) );
B = _mm_add_epi32( B, _mm_load_si128( state_in + 1 ) );
C = _mm_add_epi32( C, _mm_load_si128( state_in + 2 ) );
D = _mm_add_epi32( D, _mm_load_si128( state_in + 3 ) );
E = _mm_add_epi32( E, _mm_load_si128( state_in + 4 ) );
F = _mm_add_epi32( F, _mm_load_si128( state_in + 5 ) );
G = _mm_add_epi32( G, _mm_load_si128( state_in + 6 ) );
H = _mm_add_epi32( H, _mm_load_si128( state_in + 7 ) );
_mm_store_si128( state_out , A );
_mm_store_si128( state_out + 1, B );
_mm_store_si128( state_out + 2, C );
_mm_store_si128( state_out + 3, D );
_mm_store_si128( state_out + 4, E );
_mm_store_si128( state_out + 5, F );
_mm_store_si128( state_out + 6, G );
_mm_store_si128( state_out + 7, H );
}
// returns 0 if hash aborted early and invalid.
int sha256_4way_transform_le_short( __m128i *state_out, const __m128i *data,
const __m128i *state_in )
{
__m128i A, B, C, D, E, F, G, H;
__m128i W[16]; memcpy_128( W, data, 16 );
// Value required by H after round 60 to produce valid final hash
const __m128i H_ = m128_const1_32( 0x136032ED );
A = _mm_load_si128( state_in );
B = _mm_load_si128( state_in+1 );
C = _mm_load_si128( state_in+2 );
D = _mm_load_si128( state_in+3 );
E = _mm_load_si128( state_in+4 );
F = _mm_load_si128( state_in+5 );
G = _mm_load_si128( state_in+6 );
H = _mm_load_si128( state_in+7 );
SHA256x4_16ROUNDS( A, B, C, D, E, F, G, H, 0 );
SHA256x4_MSG_EXPANSION( W );
SHA256x4_16ROUNDS( A, B, C, D, E, F, G, H, 16 );
SHA256x4_MSG_EXPANSION( W );
SHA256x4_16ROUNDS( A, B, C, D, E, F, G, H, 32 );
W[ 0] = SHA2s_MEXP( W[14], W[ 9], W[ 1], W[ 0] );
W[ 1] = SHA2s_MEXP( W[15], W[10], W[ 2], W[ 1] );
W[ 2] = SHA2s_MEXP( W[ 0], W[11], W[ 3], W[ 2] );
W[ 3] = SHA2s_MEXP( W[ 1], W[12], W[ 4], W[ 3] );
W[ 4] = SHA2s_MEXP( W[ 2], W[13], W[ 5], W[ 4] );
W[ 5] = SHA2s_MEXP( W[ 3], W[14], W[ 6], W[ 5] );
W[ 6] = SHA2s_MEXP( W[ 4], W[15], W[ 7], W[ 6] );
W[ 7] = SHA2s_MEXP( W[ 5], W[ 0], W[ 8], W[ 7] );
W[ 8] = SHA2s_MEXP( W[ 6], W[ 1], W[ 9], W[ 8] );
W[ 9] = SHA2s_MEXP( W[ 7], W[ 2], W[10], W[ 9] );
W[10] = SHA2s_MEXP( W[ 8], W[ 3], W[11], W[10] );
W[11] = SHA2s_MEXP( W[ 9], W[ 4], W[12], W[11] );
W[12] = SHA2s_MEXP( W[10], W[ 5], W[13], W[12] );
__m128i X_xor_Y, Y_xor_Z = _mm_xor_si128( B, C );
SHA2s_4WAY_STEP( A, B, C, D, E, F, G, H, 0, 48 );
SHA2s_4WAY_STEP( H, A, B, C, D, E, F, G, 1, 48 );
SHA2s_4WAY_STEP( G, H, A, B, C, D, E, F, 2, 48 );
SHA2s_4WAY_STEP( F, G, H, A, B, C, D, E, 3, 48 );
SHA2s_4WAY_STEP( E, F, G, H, A, B, C, D, 4, 48 );
SHA2s_4WAY_STEP( D, E, F, G, H, A, B, C, 5, 48 );
SHA2s_4WAY_STEP( C, D, E, F, G, H, A, B, 6, 48 );
SHA2s_4WAY_STEP( B, C, D, E, F, G, H, A, 7, 48 );
SHA2s_4WAY_STEP( A, B, C, D, E, F, G, H, 8, 48 );
__m128i T1_57 = _mm_add_epi32( G,
mm128_add4_32( BSG2_1( D ), CHs( D, E, F ),
_mm_set1_epi32( K256[57] ), W[ 9] ) );
C = _mm_add_epi32( C, T1_57 );
__m128i T1_58 = _mm_add_epi32( F,
mm128_add4_32( BSG2_1( C ), CHs( C, D, E ),
_mm_set1_epi32( K256[58] ), W[10] ) );
B = _mm_add_epi32( B, T1_58 );
__m128i T1_59 = _mm_add_epi32( E,
mm128_add4_32( BSG2_1( B ), CHs( B, C, D ),
_mm_set1_epi32( K256[59] ), W[11] ) );
A = _mm_add_epi32( A, T1_59 );
__m128i T1_60 = mm128_add4_32( D, BSG2_1( A ), CHs( A, B, C ), W[12] );
H = _mm_add_epi32( H, T1_60 );
if ( _mm_movemask_ps( (__m128)_mm_cmpeq_epi32( H, H_ ) ) == 0 )
return 0;
__m128i K60 = _mm_set1_epi32( K256[60] );
H = _mm_add_epi32( H, K60 );
G = _mm_add_epi32( T1_57, _mm_add_epi32( BSG2_0( H ),
MAJs( H, A, B ) ) );
F = _mm_add_epi32( T1_58, _mm_add_epi32( BSG2_0( G ),
MAJs( G, H, A ) ) );
E = _mm_add_epi32( T1_59, _mm_add_epi32( BSG2_0( F ),
MAJs( F, G, H ) ) );
D = mm128_add4_32( T1_60, BSG2_0( E ), MAJs( E, F, G ), K60 );
W[13] = SHA2s_MEXP( W[11], W[ 6], W[14], W[13] );
W[14] = SHA2s_MEXP( W[12], W[ 7], W[15], W[14] );
W[15] = SHA2s_MEXP( W[13], W[ 8], W[ 0], W[15] );
SHA2s_4WAY_STEP( D, E, F, G, H, A, B, C, 13, 48 );
SHA2s_4WAY_STEP( C, D, E, F, G, H, A, B, 14, 48 );
SHA2s_4WAY_STEP( B, C, D, E, F, G, H, A, 15, 48 );
state_out[0] = _mm_add_epi32( state_in[0], A );
state_out[1] = _mm_add_epi32( state_in[1], B );
state_out[2] = _mm_add_epi32( state_in[2], C );
state_out[3] = _mm_add_epi32( state_in[3], D );
state_out[4] = _mm_add_epi32( state_in[4], E );
state_out[5] = _mm_add_epi32( state_in[5], F );
state_out[6] = _mm_add_epi32( state_in[6], G );
state_out[7] = _mm_add_epi32( state_in[7], H );
return 1;
}
void sha256_4way_init( sha256_4way_context *sc )
{
sc->count_high = sc->count_low = 0;
sc->val[0] = m128_const1_64( 0x6A09E6676A09E667 );
sc->val[1] = m128_const1_64( 0xBB67AE85BB67AE85 );
sc->val[2] = m128_const1_64( 0x3C6EF3723C6EF372 );
sc->val[3] = m128_const1_64( 0xA54FF53AA54FF53A );
sc->val[4] = m128_const1_64( 0x510E527F510E527F );
sc->val[5] = m128_const1_64( 0x9B05688C9B05688C );
sc->val[6] = m128_const1_64( 0x1F83D9AB1F83D9AB );
sc->val[7] = m128_const1_64( 0x5BE0CD195BE0CD19 );
}
void sha256_4way_update( sha256_4way_context *sc, const void *data, size_t len )
{
__m128i *vdata = (__m128i*)data;
size_t ptr;
const int buf_size = 64;
ptr = (unsigned)sc->count_low & (buf_size - 1U);
while ( len > 0 )
{
size_t clen;
uint32_t clow, clow2;
clen = buf_size - ptr;
if ( clen > len )
clen = len;
memcpy_128( sc->buf + (ptr>>2), vdata, clen>>2 );
vdata = vdata + (clen>>2);
ptr += clen;
len -= clen;
if ( ptr == buf_size )
{
sha256_4way_transform_be( sc->val, sc->buf, sc->val );
ptr = 0;
}
clow = sc->count_low;
clow2 = clow + clen;
sc->count_low = clow2;
if ( clow2 < clow )
sc->count_high++;
}
}
void sha256_4way_close( sha256_4way_context *sc, void *dst )
{
unsigned ptr;
uint32_t low, high;
const int buf_size = 64;
const int pad = buf_size - 8;
ptr = (unsigned)sc->count_low & (buf_size - 1U);
sc->buf[ ptr>>2 ] = m128_const1_64( 0x0000008000000080 );
ptr += 4;
if ( ptr > pad )
{
memset_zero_128( sc->buf + (ptr>>2), (buf_size - ptr) >> 2 );
sha256_4way_transform_be( sc->val, sc->buf, sc->val );
memset_zero_128( sc->buf, pad >> 2 );
}
else
memset_zero_128( sc->buf + (ptr>>2), (pad - ptr) >> 2 );
low = sc->count_low;
high = (sc->count_high << 3) | (low >> 29);
low = low << 3;
sc->buf[ pad >> 2 ] = m128_const1_32( bswap_32( high ) );
sc->buf[( pad+4 ) >> 2 ] = m128_const1_32( bswap_32( low ) );
sha256_4way_transform_be( sc->val, sc->buf, sc->val );
mm128_block_bswap_32( dst, sc->val );
}
void sha256_4way_full( void *dst, const void *data, size_t len )
{
sha256_4way_context ctx;
sha256_4way_init( &ctx );
sha256_4way_update( &ctx, data, len );
sha256_4way_close( &ctx, dst );
}
#if defined(__AVX2__)
// SHA-256 8 way
#define BSG2_0x(x) \
_mm256_xor_si256( _mm256_xor_si256( mm256_ror_32( x, 2 ), \
mm256_ror_32( x, 13 ) ), \
mm256_ror_32( x, 22 ) )
#define BSG2_1x(x) \
_mm256_xor_si256( _mm256_xor_si256( mm256_ror_32( x, 6 ), \
mm256_ror_32( x, 11 ) ), \
mm256_ror_32( x, 25 ) )
#define SSG2_0x(x) \
_mm256_xor_si256( _mm256_xor_si256( mm256_ror_32( x, 7 ), \
mm256_ror_32( x, 18 ) ), \
_mm256_srli_epi32( x, 3 ) )
#define SSG2_1x(x) \
_mm256_xor_si256( _mm256_xor_si256( mm256_ror_32( x, 17 ), \
mm256_ror_32( x, 19 ) ), \
_mm256_srli_epi32( x, 10 ) )
#define SHA2x_MEXP( a, b, c, d ) \
mm256_add4_32( SSG2_1x( a ), b, SSG2_0x( c ), d );
#define SHA256x8_MSG_EXPANSION( W ) \
W[ 0] = SHA2x_MEXP( W[14], W[ 9], W[ 1], W[ 0] ); \
W[ 1] = SHA2x_MEXP( W[15], W[10], W[ 2], W[ 1] ); \
W[ 2] = SHA2x_MEXP( W[ 0], W[11], W[ 3], W[ 2] ); \
W[ 3] = SHA2x_MEXP( W[ 1], W[12], W[ 4], W[ 3] ); \
W[ 4] = SHA2x_MEXP( W[ 2], W[13], W[ 5], W[ 4] ); \
W[ 5] = SHA2x_MEXP( W[ 3], W[14], W[ 6], W[ 5] ); \
W[ 6] = SHA2x_MEXP( W[ 4], W[15], W[ 7], W[ 6] ); \
W[ 7] = SHA2x_MEXP( W[ 5], W[ 0], W[ 8], W[ 7] ); \
W[ 8] = SHA2x_MEXP( W[ 6], W[ 1], W[ 9], W[ 8] ); \
W[ 9] = SHA2x_MEXP( W[ 7], W[ 2], W[10], W[ 9] ); \
W[10] = SHA2x_MEXP( W[ 8], W[ 3], W[11], W[10] ); \
W[11] = SHA2x_MEXP( W[ 9], W[ 4], W[12], W[11] ); \
W[12] = SHA2x_MEXP( W[10], W[ 5], W[13], W[12] ); \
W[13] = SHA2x_MEXP( W[11], W[ 6], W[14], W[13] ); \
W[14] = SHA2x_MEXP( W[12], W[ 7], W[15], W[14] ); \
W[15] = SHA2x_MEXP( W[13], W[ 8], W[ 0], W[15] );
// With AVX512VL ternary logic optimizations are available.
// If not optimize by forwarding the result of X^Y in MAJ to the next round
// to avoid recalculating it as Y^Z. This optimization is not applicable
// when MAJ is optimized with ternary logic.
#if defined(__AVX512VL__)
#define CHx(X, Y, Z) _mm256_ternarylogic_epi32( X, Y, Z, 0xca )
#define MAJx(X, Y, Z) _mm256_ternarylogic_epi32( X, Y, Z, 0xe8 )
#define SHA2s_8WAY_STEP( A, B, C, D, E, F, G, H, i, j ) \
do { \
__m256i T0 = _mm256_add_epi32( _mm256_set1_epi32( K256[ (j)+(i) ] ), \
W[ i ] ); \
__m256i T1 = BSG2_1x( E ); \
__m256i T2 = BSG2_0x( A ); \
T0 = _mm256_add_epi32( T0, CHx( E, F, G ) ); \
T1 = _mm256_add_epi32( T1, H ); \
T2 = _mm256_add_epi32( T2, MAJx( A, B, C ) ); \
T1 = _mm256_add_epi32( T1, T0 ); \
D = _mm256_add_epi32( D, T1 ); \
H = _mm256_add_epi32( T1, T2 ); \
} while (0)
#define SHA256x8_16ROUNDS( A, B, C, D, E, F, G, H, j ) \
SHA2s_8WAY_STEP( A, B, C, D, E, F, G, H, 0, j ); \
SHA2s_8WAY_STEP( H, A, B, C, D, E, F, G, 1, j ); \
SHA2s_8WAY_STEP( G, H, A, B, C, D, E, F, 2, j ); \
SHA2s_8WAY_STEP( F, G, H, A, B, C, D, E, 3, j ); \
SHA2s_8WAY_STEP( E, F, G, H, A, B, C, D, 4, j ); \
SHA2s_8WAY_STEP( D, E, F, G, H, A, B, C, 5, j ); \
SHA2s_8WAY_STEP( C, D, E, F, G, H, A, B, 6, j ); \
SHA2s_8WAY_STEP( B, C, D, E, F, G, H, A, 7, j ); \
SHA2s_8WAY_STEP( A, B, C, D, E, F, G, H, 8, j ); \
SHA2s_8WAY_STEP( H, A, B, C, D, E, F, G, 9, j ); \
SHA2s_8WAY_STEP( G, H, A, B, C, D, E, F, 10, j ); \
SHA2s_8WAY_STEP( F, G, H, A, B, C, D, E, 11, j ); \
SHA2s_8WAY_STEP( E, F, G, H, A, B, C, D, 12, j ); \
SHA2s_8WAY_STEP( D, E, F, G, H, A, B, C, 13, j ); \
SHA2s_8WAY_STEP( C, D, E, F, G, H, A, B, 14, j ); \
SHA2s_8WAY_STEP( B, C, D, E, F, G, H, A, 15, j );
#else // AVX2
#define CHx(X, Y, Z) \
_mm256_xor_si256( _mm256_and_si256( _mm256_xor_si256( Y, Z ), X ), Z )
// Use saved X_xor_Y from previous round, now called Y_xor_Z,
// and save new X_xor_Y, for next round.
#define MAJx(X, Y, Z) \
_mm256_xor_si256( Y, _mm256_and_si256( X_xor_Y = _mm256_xor_si256( X, Y ), \
Y_xor_Z ) )
#define SHA2s_8WAY_STEP( A, B, C, D, E, F, G, H, i, j ) \
do { \
__m256i T0 = _mm256_add_epi32( _mm256_set1_epi32( K256[(j)+(i)] ), W[i] ); \
__m256i T1 = BSG2_1x( E ); \
__m256i T2 = BSG2_0x( A ); \
T0 = _mm256_add_epi32( T0, CHx( E, F, G ) ); \
T1 = _mm256_add_epi32( T1, H ); \
T2 = _mm256_add_epi32( T2, MAJx( A, B, C ) ); \
T1 = _mm256_add_epi32( T1, T0 ); \
Y_xor_Z = X_xor_Y; \
D = _mm256_add_epi32( D, T1 ); \
H = _mm256_add_epi32( T1, T2 ); \
} while (0)
// read Y_xor_Z, update X_xor_Y
#define MAJ_2step(X, Y, Z, X_xor_Y, Y_xor_Z ) \
_mm256_xor_si256( Y, _mm256_and_si256( X_xor_Y = _mm256_xor_si256( X, Y ), \
Y_xor_Z ) )
// start with toc initialized to y^z: toc = B ^ C
// First round reads toc as Y_xor_Z and saves X_xor_Y as tic.
// Second round reads tic as Y_xor_Z and saves X_xor_Y as toc.
#define SHA256_8WAY_2STEP( A, B, C, D, E, F, G, H, i0, i1, j ) \
do { \
__m256i T0 = _mm256_add_epi32( _mm256_set1_epi32( K256[ (j)+(i0) ] ), \
W[ i0 ] ); \
__m256i T1 = BSG2_1x( E ); \
__m256i T2 = BSG2_0x( A ); \
T0 = _mm256_add_epi32( T0, CHx( E, F, G ) ); \
T1 = _mm256_add_epi32( T1, H ); \
T2 = _mm256_add_epi32( T2, MAJ_2step( A, B, C, tic, toc ) ); \
T1 = _mm256_add_epi32( T1, T0 ); \
D = _mm256_add_epi32( D, T1 ); \
H = _mm256_add_epi32( T1, T2 ); \
\
T0 = _mm256_add_epi32( _mm256_set1_epi32( K256[ (j)+(i1) ] ), \
W[ (i1) ] ); \
T1 = BSG2_1x( D ); \
T2 = BSG2_0x( H ); \
T0 = _mm256_add_epi32( T0, CHx( D, E, F ) ); \
T1 = _mm256_add_epi32( T1, G ); \
T2 = _mm256_add_epi32( T2, MAJ_2step( H, A, B, toc, tic ) ); \
T1 = _mm256_add_epi32( T1, T0 ); \
C = _mm256_add_epi32( C, T1 ); \
G = _mm256_add_epi32( T1, T2 ); \
} while (0)
#define SHA256x8_16ROUNDS( A, B, C, D, E, F, G, H, j ) \
{ \
__m256i tic, toc = _mm256_xor_si256( B, C ); \
SHA256_8WAY_2STEP( A, B, C, D, E, F, G, H, 0, 1, j ); \
SHA256_8WAY_2STEP( G, H, A, B, C, D, E, F, 2, 3, j ); \
SHA256_8WAY_2STEP( E, F, G, H, A, B, C, D, 4, 5, j ); \
SHA256_8WAY_2STEP( C, D, E, F, G, H, A, B, 6, 7, j ); \
SHA256_8WAY_2STEP( A, B, C, D, E, F, G, H, 8, 9, j ); \
SHA256_8WAY_2STEP( G, H, A, B, C, D, E, F, 10, 11, j ); \
SHA256_8WAY_2STEP( E, F, G, H, A, B, C, D, 12, 13, j ); \
SHA256_8WAY_2STEP( C, D, E, F, G, H, A, B, 14, 15, j ); \
}
#endif // AVX512VL else AVX2
static inline void SHA256_8WAY_TRANSFORM( __m256i *out, __m256i *W,
const __m256i *in ) \
{
__m256i A, B, C, D, E, F, G, H;
A = _mm256_load_si256( in );
B = _mm256_load_si256( in+1 );
C = _mm256_load_si256( in+2 );
D = _mm256_load_si256( in+3 );
E = _mm256_load_si256( in+4 );
F = _mm256_load_si256( in+5 );
G = _mm256_load_si256( in+6 );
H = _mm256_load_si256( in+7 );
SHA256x8_16ROUNDS( A, B, C, D, E, F, G, H, 0 );
for ( int j = 16; j < 64; j += 16 )
{
SHA256x8_MSG_EXPANSION( W );
SHA256x8_16ROUNDS( A, B, C, D, E, F, G, H, j );
}
out[0] = _mm256_add_epi32( in[0], A );
out[1] = _mm256_add_epi32( in[1], B );
out[2] = _mm256_add_epi32( in[2], C );
out[3] = _mm256_add_epi32( in[3], D );
out[4] = _mm256_add_epi32( in[4], E );
out[5] = _mm256_add_epi32( in[5], F );
out[6] = _mm256_add_epi32( in[6], G );
out[7] = _mm256_add_epi32( in[7], H );
}
// accepts LE input data
void sha256_8way_transform_le( __m256i *state_out, const __m256i *data,
const __m256i *state_in )
{
__m256i W[16];
memcpy_256( W, data, 16 );
SHA256_8WAY_TRANSFORM( state_out, W, state_in );
}
// Accepts BE input data, need to bswap
void sha256_8way_transform_be( __m256i *state_out, const __m256i *data,
const __m256i *state_in )
{
__m256i W[16];
mm256_block_bswap_32( W , data );
mm256_block_bswap_32( W+8, data+8 );
SHA256_8WAY_TRANSFORM( state_out, W, state_in );
}
// Aggressive prehashing, LE byte order
void sha256_8way_prehash_3rounds( __m256i *state_mid, __m256i *X,
const __m256i *W, const __m256i *state_in )
{
__m256i A, B, C, D, E, F, G, H;
X[ 0] = SHA2x_MEXP( W[14], W[ 9], W[ 1], W[ 0] );
X[ 1] = SHA2x_MEXP( W[15], W[10], W[ 2], W[ 1] );
X[ 2] = _mm256_add_epi32( _mm256_add_epi32( SSG2_1x( X[ 0] ), W[11] ),
W[ 2] );
X[ 3] = _mm256_add_epi32( _mm256_add_epi32( SSG2_1x( X[ 1] ), W[12] ),
SSG2_0x( W[ 4] ) );
X[ 4] = _mm256_add_epi32( _mm256_add_epi32( W[13], SSG2_0x( W[ 5] ) ),
W[ 4] );
X[ 5] = _mm256_add_epi32( _mm256_add_epi32( W[14], SSG2_0x( W[ 6] ) ),
W[ 5] );
X [6] = _mm256_add_epi32( _mm256_add_epi32( W[15], SSG2_0x( W[ 7] ) ),
W[ 6] );
X[ 7] = _mm256_add_epi32( _mm256_add_epi32( X[ 0], SSG2_0x( W[ 8] ) ),
W[ 7] );
X[ 8] = _mm256_add_epi32( _mm256_add_epi32( X[ 1], SSG2_0x( W[ 9] ) ),
W[ 8] );
X[ 9] = _mm256_add_epi32( SSG2_0x( W[10] ), W[ 9] );
X[10] = _mm256_add_epi32( SSG2_0x( W[11] ), W[10] );
X[11] = _mm256_add_epi32( SSG2_0x( W[12] ), W[11] );
X[12] = _mm256_add_epi32( SSG2_0x( W[13] ), W[12] );
X[13] = _mm256_add_epi32( SSG2_0x( W[14] ), W[13] );
X[14] = _mm256_add_epi32( SSG2_0x( W[15] ), W[14] );
X[15] = _mm256_add_epi32( SSG2_0x( X[ 0] ), W[15] );
A = _mm256_load_si256( state_in );
B = _mm256_load_si256( state_in + 1 );
C = _mm256_load_si256( state_in + 2 );
D = _mm256_load_si256( state_in + 3 );
E = _mm256_load_si256( state_in + 4 );
F = _mm256_load_si256( state_in + 5 );
G = _mm256_load_si256( state_in + 6 );
H = _mm256_load_si256( state_in + 7 );
#if !defined(__AVX512VL__)
__m256i X_xor_Y, Y_xor_Z = _mm256_xor_si256( B, C );
#endif
SHA2s_8WAY_STEP( A, B, C, D, E, F, G, H, 0, 0 );
SHA2s_8WAY_STEP( H, A, B, C, D, E, F, G, 1, 0 );
SHA2s_8WAY_STEP( G, H, A, B, C, D, E, F, 2, 0 );
_mm256_store_si256( state_mid , A );
_mm256_store_si256( state_mid + 1, B );
_mm256_store_si256( state_mid + 2, C );
_mm256_store_si256( state_mid + 3, D );
_mm256_store_si256( state_mid + 4, E );
_mm256_store_si256( state_mid + 5, F );
_mm256_store_si256( state_mid + 6, G );
_mm256_store_si256( state_mid + 7, H );
}
void sha256_8way_final_rounds( __m256i *state_out, const __m256i *data,
const __m256i *state_in, const __m256i *state_mid, const __m256i *X )
{
__m256i A, B, C, D, E, F, G, H;
__m256i W[16];
memcpy_256( W, data, 16 );
A = _mm256_load_si256( state_mid );
B = _mm256_load_si256( state_mid + 1 );
C = _mm256_load_si256( state_mid + 2 );
D = _mm256_load_si256( state_mid + 3 );
E = _mm256_load_si256( state_mid + 4 );
F = _mm256_load_si256( state_mid + 5 );
G = _mm256_load_si256( state_mid + 6 );
H = _mm256_load_si256( state_mid + 7 );
// SHA2s_8WAY_STEP( A, B, C, D, E, F, G, H, 0, 0 );
// SHA2s_8WAY_STEP( H, A, B, C, D, E, F, G, 1, 0 );
// SHA2s_8WAY_STEP( G, H, A, B, C, D, E, F, 2, 0 );
#if !defined(__AVX512VL__)
__m256i X_xor_Y, Y_xor_Z = _mm256_xor_si256( G, H );
#endif
SHA2s_8WAY_STEP( F, G, H, A, B, C, D, E, 3, 0 );
SHA2s_8WAY_STEP( E, F, G, H, A, B, C, D, 4, 0 );
SHA2s_8WAY_STEP( D, E, F, G, H, A, B, C, 5, 0 );
SHA2s_8WAY_STEP( C, D, E, F, G, H, A, B, 6, 0 );
SHA2s_8WAY_STEP( B, C, D, E, F, G, H, A, 7, 0 );
SHA2s_8WAY_STEP( A, B, C, D, E, F, G, H, 8, 0 );
SHA2s_8WAY_STEP( H, A, B, C, D, E, F, G, 9, 0 );
SHA2s_8WAY_STEP( G, H, A, B, C, D, E, F, 10, 0 );
SHA2s_8WAY_STEP( F, G, H, A, B, C, D, E, 11, 0 );
SHA2s_8WAY_STEP( E, F, G, H, A, B, C, D, 12, 0 );
SHA2s_8WAY_STEP( D, E, F, G, H, A, B, C, 13, 0 );
SHA2s_8WAY_STEP( C, D, E, F, G, H, A, B, 14, 0 );
SHA2s_8WAY_STEP( B, C, D, E, F, G, H, A, 15, 0 );
W[ 0] = X[ 0];
W[ 1] = X[ 1];
W[ 2] = _mm256_add_epi32( X[ 2], SSG2_0x( W[ 3] ) );
W[ 3] = _mm256_add_epi32( X[ 3], W[ 3] );
W[ 4] = _mm256_add_epi32( X[ 4], SSG2_1x( W[ 2] ) );
W[ 5] = _mm256_add_epi32( X[ 5], SSG2_1x( W[ 3] ) );
W[ 6] = _mm256_add_epi32( X[ 6], SSG2_1x( W[ 4] ) );
W[ 7] = _mm256_add_epi32( X[ 7], SSG2_1x( W[ 5] ) );
W[ 8] = _mm256_add_epi32( X[ 8], SSG2_1x( W[ 6] ) );
W[ 9] = _mm256_add_epi32( X[ 9], _mm256_add_epi32( SSG2_1x( W[ 7] ),
W[ 2] ) );
W[10] = _mm256_add_epi32( X[10], _mm256_add_epi32( SSG2_1x( W[ 8] ),
W[ 3] ) );
W[11] = _mm256_add_epi32( X[11], _mm256_add_epi32( SSG2_1x( W[ 9] ),
W[ 4] ) );
W[12] = _mm256_add_epi32( X[12], _mm256_add_epi32( SSG2_1x( W[10] ),
W[ 5] ) );
W[13] = _mm256_add_epi32( X[13], _mm256_add_epi32( SSG2_1x( W[11] ),
W[ 6] ) );
W[14] = _mm256_add_epi32( X[14], _mm256_add_epi32( SSG2_1x( W[12] ),
W[ 7] ) );
W[15] = _mm256_add_epi32( X[15], _mm256_add_epi32( SSG2_1x( W[13] ),
W[ 8] ) );
SHA256x8_16ROUNDS( A, B, C, D, E, F, G, H, 16 );
SHA256x8_MSG_EXPANSION( W );
SHA256x8_16ROUNDS( A, B, C, D, E, F, G, H, 32 );
SHA256x8_MSG_EXPANSION( W );
SHA256x8_16ROUNDS( A, B, C, D, E, F, G, H, 48 );
A = _mm256_add_epi32( A, _mm256_load_si256( state_in ) );
B = _mm256_add_epi32( B, _mm256_load_si256( state_in + 1 ) );
C = _mm256_add_epi32( C, _mm256_load_si256( state_in + 2 ) );
D = _mm256_add_epi32( D, _mm256_load_si256( state_in + 3 ) );
E = _mm256_add_epi32( E, _mm256_load_si256( state_in + 4 ) );
F = _mm256_add_epi32( F, _mm256_load_si256( state_in + 5 ) );
G = _mm256_add_epi32( G, _mm256_load_si256( state_in + 6 ) );
H = _mm256_add_epi32( H, _mm256_load_si256( state_in + 7 ) );
_mm256_store_si256( state_out , A );
_mm256_store_si256( state_out + 1, B );
_mm256_store_si256( state_out + 2, C );
_mm256_store_si256( state_out + 3, D );
_mm256_store_si256( state_out + 4, E );
_mm256_store_si256( state_out + 5, F );
_mm256_store_si256( state_out + 6, G );
_mm256_store_si256( state_out + 7, H );
}
int sha256_8way_transform_le_short( __m256i *state_out, const __m256i *data,
const __m256i *state_in )
{
__m256i A, B, C, D, E, F, G, H;
__m256i W[16]; memcpy_256( W, data, 16 );
const __m256i H_ = m256_const1_32( 0x136032ED );
A = _mm256_load_si256( state_in );
B = _mm256_load_si256( state_in+1 );
C = _mm256_load_si256( state_in+2 );
D = _mm256_load_si256( state_in+3 );
E = _mm256_load_si256( state_in+4 );
F = _mm256_load_si256( state_in+5 );
G = _mm256_load_si256( state_in+6 );
H = _mm256_load_si256( state_in+7 );
SHA256x8_16ROUNDS( A, B, C, D, E, F, G, H, 0 );
for ( int j = 16; j < 48; j += 16 )
{
SHA256x8_MSG_EXPANSION( W );
SHA256x8_16ROUNDS( A, B, C, D, E, F, G, H, j );
}
W[ 0] = SHA2x_MEXP( W[14], W[ 9], W[ 1], W[ 0] );
W[ 1] = SHA2x_MEXP( W[15], W[10], W[ 2], W[ 1] );
W[ 2] = SHA2x_MEXP( W[ 0], W[11], W[ 3], W[ 2] );
W[ 3] = SHA2x_MEXP( W[ 1], W[12], W[ 4], W[ 3] );
W[ 4] = SHA2x_MEXP( W[ 2], W[13], W[ 5], W[ 4] );
W[ 5] = SHA2x_MEXP( W[ 3], W[14], W[ 6], W[ 5] );
W[ 6] = SHA2x_MEXP( W[ 4], W[15], W[ 7], W[ 6] );
W[ 7] = SHA2x_MEXP( W[ 5], W[ 0], W[ 8], W[ 7] );
W[ 8] = SHA2x_MEXP( W[ 6], W[ 1], W[ 9], W[ 8] );
W[ 9] = SHA2x_MEXP( W[ 7], W[ 2], W[10], W[ 9] );
W[10] = SHA2x_MEXP( W[ 8], W[ 3], W[11], W[10] );
W[11] = SHA2x_MEXP( W[ 9], W[ 4], W[12], W[11] );
W[12] = SHA2x_MEXP( W[10], W[ 5], W[13], W[12] );
#if !defined(__AVX512VL__)
__m256i X_xor_Y, Y_xor_Z = _mm256_xor_si256( B, C );
#endif
SHA2s_8WAY_STEP( A, B, C, D, E, F, G, H, 0, 48 );
SHA2s_8WAY_STEP( H, A, B, C, D, E, F, G, 1, 48 );
SHA2s_8WAY_STEP( G, H, A, B, C, D, E, F, 2, 48 );
SHA2s_8WAY_STEP( F, G, H, A, B, C, D, E, 3, 48 );
SHA2s_8WAY_STEP( E, F, G, H, A, B, C, D, 4, 48 );
SHA2s_8WAY_STEP( D, E, F, G, H, A, B, C, 5, 48 );
SHA2s_8WAY_STEP( C, D, E, F, G, H, A, B, 6, 48 );
SHA2s_8WAY_STEP( B, C, D, E, F, G, H, A, 7, 48 );
SHA2s_8WAY_STEP( A, B, C, D, E, F, G, H, 8, 48 );
__m256i T1_57 = _mm256_add_epi32( G,
mm256_add4_32( BSG2_1x( D ), CHx( D, E, F ),
_mm256_set1_epi32( K256[57] ), W[ 9] ) );
C = _mm256_add_epi32( C, T1_57 );
__m256i T1_58 = _mm256_add_epi32( F,
mm256_add4_32( BSG2_1x( C ), CHx( C, D, E ),
_mm256_set1_epi32( K256[58] ), W[10] ) );
B = _mm256_add_epi32( B, T1_58 );
__m256i T1_59 = _mm256_add_epi32( E,
mm256_add4_32( BSG2_1x( B ), CHx( B, C, D ),
_mm256_set1_epi32( K256[59] ), W[11] ) );
A = _mm256_add_epi32( A, T1_59 );
__m256i T1_60 = mm256_add4_32( D, BSG2_1x( A ), CHx( A, B, C ), W[12] );
H = _mm256_add_epi32( H, T1_60 );
if ( _mm256_movemask_ps( (__m256)_mm256_cmpeq_epi32( H, H_ ) ) == 0 )
return 0;
__m256i K60 = _mm256_set1_epi32( K256[60] );
H = _mm256_add_epi32( H, K60 );
G = _mm256_add_epi32( T1_57, _mm256_add_epi32( BSG2_0x( H ),
MAJx( H, A, B ) ) );
#if !defined(__AVX512VL__)
Y_xor_Z = X_xor_Y;
#endif
F = _mm256_add_epi32( T1_58, _mm256_add_epi32( BSG2_0x( G ),
MAJx( G, H, A ) ) );
#if !defined(__AVX512VL__)
Y_xor_Z = X_xor_Y;
#endif
E = _mm256_add_epi32( T1_59, _mm256_add_epi32( BSG2_0x( F ),
MAJx( F, G, H ) ) );
#if !defined(__AVX512VL__)
Y_xor_Z = X_xor_Y;
#endif
D = mm256_add4_32( T1_60, BSG2_0x( E ), MAJx( E, F, G ), K60 );
#if !defined(__AVX512VL__)
Y_xor_Z = X_xor_Y;
#endif
W[13] = SHA2x_MEXP( W[11], W[6], W[14], W[13] );
W[14] = SHA2x_MEXP( W[12], W[7], W[15], W[14] );
W[15] = SHA2x_MEXP( W[13], W[8], W[ 0], W[15] );
SHA2s_8WAY_STEP( D, E, F, G, H, A, B, C, 13, 48 );
SHA2s_8WAY_STEP( C, D, E, F, G, H, A, B, 14, 48 );
SHA2s_8WAY_STEP( B, C, D, E, F, G, H, A, 15, 48 );
state_out[0] = _mm256_add_epi32( state_in[0], A );
state_out[1] = _mm256_add_epi32( state_in[1], B );
state_out[2] = _mm256_add_epi32( state_in[2], C );
state_out[3] = _mm256_add_epi32( state_in[3], D );
state_out[4] = _mm256_add_epi32( state_in[4], E );
state_out[5] = _mm256_add_epi32( state_in[5], F );
state_out[6] = _mm256_add_epi32( state_in[6], G );
state_out[7] = _mm256_add_epi32( state_in[7], H );
return 1;
}
void sha256_8way_init( sha256_8way_context *sc )
{
sc->count_high = sc->count_low = 0;
sc->val[0] = m256_const1_64( 0x6A09E6676A09E667 );
sc->val[1] = m256_const1_64( 0xBB67AE85BB67AE85 );
sc->val[2] = m256_const1_64( 0x3C6EF3723C6EF372 );
sc->val[3] = m256_const1_64( 0xA54FF53AA54FF53A );
sc->val[4] = m256_const1_64( 0x510E527F510E527F );
sc->val[5] = m256_const1_64( 0x9B05688C9B05688C );
sc->val[6] = m256_const1_64( 0x1F83D9AB1F83D9AB );
sc->val[7] = m256_const1_64( 0x5BE0CD195BE0CD19 );
}
// need to handle odd byte length for yespower.
// Assume only last update is odd.
void sha256_8way_update( sha256_8way_context *sc, const void *data, size_t len )
{
__m256i *vdata = (__m256i*)data;
size_t ptr;
const int buf_size = 64;
ptr = (unsigned)sc->count_low & (buf_size - 1U);
while ( len > 0 )
{
size_t clen;
uint32_t clow, clow2;
clen = buf_size - ptr;
if ( clen > len )
clen = len;
memcpy_256( sc->buf + (ptr>>2), vdata, clen>>2 );
vdata = vdata + (clen>>2);
ptr += clen;
len -= clen;
if ( ptr == buf_size )
{
sha256_8way_transform_be( sc->val, sc->buf, sc->val );
ptr = 0;
}
clow = sc->count_low;
clow2 = clow + clen;
sc->count_low = clow2;
if ( clow2 < clow )
sc->count_high++;
}
}
void sha256_8way_close( sha256_8way_context *sc, void *dst )
{
unsigned ptr;
uint32_t low, high;
const int buf_size = 64;
const int pad = buf_size - 8;
ptr = (unsigned)sc->count_low & (buf_size - 1U);
sc->buf[ ptr>>2 ] = m256_const1_64( 0x0000008000000080 );
ptr += 4;
if ( ptr > pad )
{
memset_zero_256( sc->buf + (ptr>>2), (buf_size - ptr) >> 2 );
sha256_8way_transform_be( sc->val, sc->buf, sc->val );
memset_zero_256( sc->buf, pad >> 2 );
}
else
memset_zero_256( sc->buf + (ptr>>2), (pad - ptr) >> 2 );
low = sc->count_low;
high = (sc->count_high << 3) | (low >> 29);
low = low << 3;
sc->buf[ pad >> 2 ] = m256_const1_32( bswap_32( high ) );
sc->buf[ ( pad+4 ) >> 2 ] = m256_const1_32( bswap_32( low ) );
sha256_8way_transform_be( sc->val, sc->buf, sc->val );
mm256_block_bswap_32( dst, sc->val );
}
void sha256_8way_full( void *dst, const void *data, size_t len )
{
sha256_8way_context ctx;
sha256_8way_init( &ctx );
sha256_8way_update( &ctx, data, len );
sha256_8way_close( &ctx, dst );
}
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
// SHA-256 16 way
#define CHx16(X, Y, Z) _mm512_ternarylogic_epi32( X, Y, Z, 0xca )
#define MAJx16(X, Y, Z) _mm512_ternarylogic_epi32( X, Y, Z, 0xe8 )
#define BSG2_0x16(x) mm512_xor3( _mm512_ror_epi32( x, 2 ), \
_mm512_ror_epi32( x, 13 ), \
_mm512_ror_epi32( x, 22 ) )
#define BSG2_1x16(x) mm512_xor3( _mm512_ror_epi32( x, 6 ), \
_mm512_ror_epi32( x, 11 ), \
_mm512_ror_epi32( x, 25 ) )
#define SSG2_0x16(x) mm512_xor3( _mm512_ror_epi32( x, 7 ), \
_mm512_ror_epi32( x, 18 ), \
_mm512_srli_epi32( x, 3 ) )
#define SSG2_1x16(x) mm512_xor3( _mm512_ror_epi32( x, 17 ), \
_mm512_ror_epi32( x, 19 ), \
_mm512_srli_epi32( x, 10 ) )
#define SHA2x16_MEXP( a, b, c, d ) \
mm512_add4_32( SSG2_1x16( a ), b, SSG2_0x16( c ), d );
#define SHA256x16_MSG_EXPANSION( W ) \
W[ 0] = SHA2x16_MEXP( W[14], W[ 9], W[ 1], W[ 0] ); \
W[ 1] = SHA2x16_MEXP( W[15], W[10], W[ 2], W[ 1] ); \
W[ 2] = SHA2x16_MEXP( W[ 0], W[11], W[ 3], W[ 2] ); \
W[ 3] = SHA2x16_MEXP( W[ 1], W[12], W[ 4], W[ 3] ); \
W[ 4] = SHA2x16_MEXP( W[ 2], W[13], W[ 5], W[ 4] ); \
W[ 5] = SHA2x16_MEXP( W[ 3], W[14], W[ 6], W[ 5] ); \
W[ 6] = SHA2x16_MEXP( W[ 4], W[15], W[ 7], W[ 6] ); \
W[ 7] = SHA2x16_MEXP( W[ 5], W[ 0], W[ 8], W[ 7] ); \
W[ 8] = SHA2x16_MEXP( W[ 6], W[ 1], W[ 9], W[ 8] ); \
W[ 9] = SHA2x16_MEXP( W[ 7], W[ 2], W[10], W[ 9] ); \
W[10] = SHA2x16_MEXP( W[ 8], W[ 3], W[11], W[10] ); \
W[11] = SHA2x16_MEXP( W[ 9], W[ 4], W[12], W[11] ); \
W[12] = SHA2x16_MEXP( W[10], W[ 5], W[13], W[12] ); \
W[13] = SHA2x16_MEXP( W[11], W[ 6], W[14], W[13] ); \
W[14] = SHA2x16_MEXP( W[12], W[ 7], W[15], W[14] ); \
W[15] = SHA2x16_MEXP( W[13], W[ 8], W[ 0], W[15] );
#define SHA2s_16WAY_STEP( A, B, C, D, E, F, G, H, i, j ) \
do { \
__m512i T0 = _mm512_add_epi32( _mm512_set1_epi32( K256[(j)+(i)] ), W[i] ); \
__m512i T1 = BSG2_1x16( E ); \
__m512i T2 = BSG2_0x16( A ); \
T0 = _mm512_add_epi32( T0, CHx16( E, F, G ) ); \
T1 = _mm512_add_epi32( T1, H ); \
T2 = _mm512_add_epi32( T2, MAJx16( A, B, C ) ); \
T1 = _mm512_add_epi32( T1, T0 ); \
D = _mm512_add_epi32( D, T1 ); \
H = _mm512_add_epi32( T1, T2 ); \
} while (0)
/*
#define SHA2s_16WAY_STEP(A, B, C, D, E, F, G, H, i, j) \
do { \
__m512i T1, T2; \
__m512i K = _mm512_set1_epi32( K256[( (j)+(i) )] ); \
T1 = _mm512_add_epi32( H, mm512_add4_32( BSG2_1x16(E), CHx16(E, F, G), \
K, W[i] ) ); \
T2 = _mm512_add_epi32( BSG2_0x16(A), MAJx16(A, B, C) ); \
D = _mm512_add_epi32( D, T1 ); \
H = _mm512_add_epi32( T1, T2 ); \
} while (0)
*/
#define SHA256x16_16ROUNDS( A, B, C, D, E, F, G, H, j ) \
SHA2s_16WAY_STEP( A, B, C, D, E, F, G, H, 0, j ); \
SHA2s_16WAY_STEP( H, A, B, C, D, E, F, G, 1, j ); \
SHA2s_16WAY_STEP( G, H, A, B, C, D, E, F, 2, j ); \
SHA2s_16WAY_STEP( F, G, H, A, B, C, D, E, 3, j ); \
SHA2s_16WAY_STEP( E, F, G, H, A, B, C, D, 4, j ); \
SHA2s_16WAY_STEP( D, E, F, G, H, A, B, C, 5, j ); \
SHA2s_16WAY_STEP( C, D, E, F, G, H, A, B, 6, j ); \
SHA2s_16WAY_STEP( B, C, D, E, F, G, H, A, 7, j ); \
SHA2s_16WAY_STEP( A, B, C, D, E, F, G, H, 8, j ); \
SHA2s_16WAY_STEP( H, A, B, C, D, E, F, G, 9, j ); \
SHA2s_16WAY_STEP( G, H, A, B, C, D, E, F, 10, j ); \
SHA2s_16WAY_STEP( F, G, H, A, B, C, D, E, 11, j ); \
SHA2s_16WAY_STEP( E, F, G, H, A, B, C, D, 12, j ); \
SHA2s_16WAY_STEP( D, E, F, G, H, A, B, C, 13, j ); \
SHA2s_16WAY_STEP( C, D, E, F, G, H, A, B, 14, j ); \
SHA2s_16WAY_STEP( B, C, D, E, F, G, H, A, 15, j );
static inline void SHA256_16WAY_TRANSFORM( __m512i *out, __m512i *W,
const __m512i *in ) \
{
__m512i A, B, C, D, E, F, G, H;
A = _mm512_load_si512( in );
B = _mm512_load_si512( in+1 );
C = _mm512_load_si512( in+2 );
D = _mm512_load_si512( in+3 );
E = _mm512_load_si512( in+4 );
F = _mm512_load_si512( in+5 );
G = _mm512_load_si512( in+6 );
H = _mm512_load_si512( in+7 );
SHA256x16_16ROUNDS( A, B, C, D, E, F, G, H, 0 );
SHA256x16_MSG_EXPANSION( W );
SHA256x16_16ROUNDS( A, B, C, D, E, F, G, H, 16 );
SHA256x16_MSG_EXPANSION( W );
SHA256x16_16ROUNDS( A, B, C, D, E, F, G, H, 32 );
SHA256x16_MSG_EXPANSION( W );
SHA256x16_16ROUNDS( A, B, C, D, E, F, G, H, 48 );
out[0] = _mm512_add_epi32( in[0], A );
out[1] = _mm512_add_epi32( in[1], B );
out[2] = _mm512_add_epi32( in[2], C );
out[3] = _mm512_add_epi32( in[3], D );
out[4] = _mm512_add_epi32( in[4], E );
out[5] = _mm512_add_epi32( in[5], F );
out[6] = _mm512_add_epi32( in[6], G );
out[7] = _mm512_add_epi32( in[7], H );
}
// accepts LE input data
void sha256_16way_transform_le( __m512i *state_out, const __m512i *data,
const __m512i *state_in )
{
__m512i W[16];
memcpy_512( W, data, 16 );
SHA256_16WAY_TRANSFORM( state_out, W, state_in );
}
// Accepts BE input data, need to bswap
void sha256_16way_transform_be( __m512i *state_out, const __m512i *data,
const __m512i *state_in )
{
__m512i W[16];
mm512_block_bswap_32( W , data );
mm512_block_bswap_32( W+8, data+8 );
SHA256_16WAY_TRANSFORM( state_out, W, state_in );
}
// Aggressive prehashing, LE byte order
void sha256_16way_prehash_3rounds( __m512i *state_mid, __m512i *X,
const __m512i *W, const __m512i *state_in )
{
__m512i A, B, C, D, E, F, G, H;
// precalculate constant part msg expansion for second iteration.
X[ 0] = SHA2x16_MEXP( W[14], W[ 9], W[ 1], W[ 0] );
X[ 1] = SHA2x16_MEXP( W[15], W[10], W[ 2], W[ 1] );
X[ 2] = _mm512_add_epi32( _mm512_add_epi32( SSG2_1x16( X[ 0] ), W[11] ),
W[ 2] );
X[ 3] = _mm512_add_epi32( _mm512_add_epi32( SSG2_1x16( X[ 1] ), W[12] ),
SSG2_0x16( W[ 4] ) );
X[ 4] = _mm512_add_epi32( _mm512_add_epi32( W[13], SSG2_0x16( W[ 5] ) ),
W[ 4] );
X[ 5] = _mm512_add_epi32( _mm512_add_epi32( W[14], SSG2_0x16( W[ 6] ) ),
W[ 5] );
X [6] = _mm512_add_epi32( _mm512_add_epi32( W[15], SSG2_0x16( W[ 7] ) ),
W[ 6] );
X[ 7] = _mm512_add_epi32( _mm512_add_epi32( X[ 0], SSG2_0x16( W[ 8] ) ),
W[ 7] );
X[ 8] = _mm512_add_epi32( _mm512_add_epi32( X[ 1], SSG2_0x16( W[ 9] ) ),
W[ 8] );
X[ 9] = _mm512_add_epi32( SSG2_0x16( W[10] ), W[ 9] );
X[10] = _mm512_add_epi32( SSG2_0x16( W[11] ), W[10] );
X[11] = _mm512_add_epi32( SSG2_0x16( W[12] ), W[11] );
X[12] = _mm512_add_epi32( SSG2_0x16( W[13] ), W[12] );
X[13] = _mm512_add_epi32( SSG2_0x16( W[14] ), W[13] );
X[14] = _mm512_add_epi32( SSG2_0x16( W[15] ), W[14] );
X[15] = _mm512_add_epi32( SSG2_0x16( X[ 0] ), W[15] );
A = _mm512_load_si512( state_in );
B = _mm512_load_si512( state_in + 1 );
C = _mm512_load_si512( state_in + 2 );
D = _mm512_load_si512( state_in + 3 );
E = _mm512_load_si512( state_in + 4 );
F = _mm512_load_si512( state_in + 5 );
G = _mm512_load_si512( state_in + 6 );
H = _mm512_load_si512( state_in + 7 );
SHA2s_16WAY_STEP( A, B, C, D, E, F, G, H, 0, 0 );
SHA2s_16WAY_STEP( H, A, B, C, D, E, F, G, 1, 0 );
SHA2s_16WAY_STEP( G, H, A, B, C, D, E, F, 2, 0 );
_mm512_store_si512( state_mid , A );
_mm512_store_si512( state_mid + 1, B );
_mm512_store_si512( state_mid + 2, C );
_mm512_store_si512( state_mid + 3, D );
_mm512_store_si512( state_mid + 4, E );
_mm512_store_si512( state_mid + 5, F );
_mm512_store_si512( state_mid + 6, G );
_mm512_store_si512( state_mid + 7, H );
}
void sha256_16way_final_rounds( __m512i *state_out, const __m512i *data,
const __m512i *state_in, const __m512i *state_mid, const __m512i *X )
{
__m512i A, B, C, D, E, F, G, H;
__m512i W[16];
memcpy_512( W, data, 16 );
A = _mm512_load_si512( state_mid );
B = _mm512_load_si512( state_mid + 1 );
C = _mm512_load_si512( state_mid + 2 );
D = _mm512_load_si512( state_mid + 3 );
E = _mm512_load_si512( state_mid + 4 );
F = _mm512_load_si512( state_mid + 5 );
G = _mm512_load_si512( state_mid + 6 );
H = _mm512_load_si512( state_mid + 7 );
SHA2s_16WAY_STEP( F, G, H, A, B, C, D, E, 3, 0 );
SHA2s_16WAY_STEP( E, F, G, H, A, B, C, D, 4, 0 );
SHA2s_16WAY_STEP( D, E, F, G, H, A, B, C, 5, 0 );
SHA2s_16WAY_STEP( C, D, E, F, G, H, A, B, 6, 0 );
SHA2s_16WAY_STEP( B, C, D, E, F, G, H, A, 7, 0 );
SHA2s_16WAY_STEP( A, B, C, D, E, F, G, H, 8, 0 );
SHA2s_16WAY_STEP( H, A, B, C, D, E, F, G, 9, 0 );
SHA2s_16WAY_STEP( G, H, A, B, C, D, E, F, 10, 0 );
SHA2s_16WAY_STEP( F, G, H, A, B, C, D, E, 11, 0 );
SHA2s_16WAY_STEP( E, F, G, H, A, B, C, D, 12, 0 );
SHA2s_16WAY_STEP( D, E, F, G, H, A, B, C, 13, 0 );
SHA2s_16WAY_STEP( C, D, E, F, G, H, A, B, 14, 0 );
SHA2s_16WAY_STEP( B, C, D, E, F, G, H, A, 15, 0 );
// update precalculated msg expansion with new nonce: W[3].
W[ 0] = X[ 0];
W[ 1] = X[ 1];
W[ 2] = _mm512_add_epi32( X[ 2], SSG2_0x16( W[ 3] ) );
W[ 3] = _mm512_add_epi32( X[ 3], W[ 3] );
W[ 4] = _mm512_add_epi32( X[ 4], SSG2_1x16( W[ 2] ) );
W[ 5] = _mm512_add_epi32( X[ 5], SSG2_1x16( W[ 3] ) );
W[ 6] = _mm512_add_epi32( X[ 6], SSG2_1x16( W[ 4] ) );
W[ 7] = _mm512_add_epi32( X[ 7], SSG2_1x16( W[ 5] ) );
W[ 8] = _mm512_add_epi32( X[ 8], SSG2_1x16( W[ 6] ) );
W[ 9] = _mm512_add_epi32( X[ 9], _mm512_add_epi32( SSG2_1x16( W[ 7] ),
W[ 2] ) );
W[10] = _mm512_add_epi32( X[10], _mm512_add_epi32( SSG2_1x16( W[ 8] ),
W[ 3] ) );
W[11] = _mm512_add_epi32( X[11], _mm512_add_epi32( SSG2_1x16( W[ 9] ),
W[ 4] ) );
W[12] = _mm512_add_epi32( X[12], _mm512_add_epi32( SSG2_1x16( W[10] ),
W[ 5] ) );
W[13] = _mm512_add_epi32( X[13], _mm512_add_epi32( SSG2_1x16( W[11] ),
W[ 6] ) );
W[14] = _mm512_add_epi32( X[14], _mm512_add_epi32( SSG2_1x16( W[12] ),
W[ 7] ) );
W[15] = _mm512_add_epi32( X[15], _mm512_add_epi32( SSG2_1x16( W[13] ),
W[ 8] ) );
SHA256x16_16ROUNDS( A, B, C, D, E, F, G, H, 16 );
SHA256x16_MSG_EXPANSION( W );
SHA256x16_16ROUNDS( A, B, C, D, E, F, G, H, 32 );
SHA256x16_MSG_EXPANSION( W );
SHA256x16_16ROUNDS( A, B, C, D, E, F, G, H, 48 );
A = _mm512_add_epi32( A, _mm512_load_si512( state_in ) );
B = _mm512_add_epi32( B, _mm512_load_si512( state_in + 1 ) );
C = _mm512_add_epi32( C, _mm512_load_si512( state_in + 2 ) );
D = _mm512_add_epi32( D, _mm512_load_si512( state_in + 3 ) );
E = _mm512_add_epi32( E, _mm512_load_si512( state_in + 4 ) );
F = _mm512_add_epi32( F, _mm512_load_si512( state_in + 5 ) );
G = _mm512_add_epi32( G, _mm512_load_si512( state_in + 6 ) );
H = _mm512_add_epi32( H, _mm512_load_si512( state_in + 7 ) );
_mm512_store_si512( state_out , A );
_mm512_store_si512( state_out + 1, B );
_mm512_store_si512( state_out + 2, C );
_mm512_store_si512( state_out + 3, D );
_mm512_store_si512( state_out + 4, E );
_mm512_store_si512( state_out + 5, F );
_mm512_store_si512( state_out + 6, G );
_mm512_store_si512( state_out + 7, H );
}
// returns 0 if hash aborted early and invalid.
int sha256_16way_transform_le_short( __m512i *state_out, const __m512i *data,
const __m512i *state_in )
{
__m512i A, B, C, D, E, F, G, H;
__m512i W[16]; memcpy_512( W, data, 16 );
// Value for H at round 60, before adding K, to produce valid final hash
//where H == 0.
// H_ = -( H256[7] + K256[60] );
const __m512i H_ = m512_const1_32( 0x136032ED );
A = _mm512_load_si512( state_in );
B = _mm512_load_si512( state_in+1 );
C = _mm512_load_si512( state_in+2 );
D = _mm512_load_si512( state_in+3 );
E = _mm512_load_si512( state_in+4 );
F = _mm512_load_si512( state_in+5 );
G = _mm512_load_si512( state_in+6 );
H = _mm512_load_si512( state_in+7 );
SHA256x16_16ROUNDS( A, B, C, D, E, F, G, H, 0 );
SHA256x16_MSG_EXPANSION( W );
SHA256x16_16ROUNDS( A, B, C, D, E, F, G, H, 16 );
SHA256x16_MSG_EXPANSION( W );
SHA256x16_16ROUNDS( A, B, C, D, E, F, G, H, 32 );
W[ 0] = SHA2x16_MEXP( W[14], W[ 9], W[ 1], W[ 0] );
W[ 1] = SHA2x16_MEXP( W[15], W[10], W[ 2], W[ 1] );
W[ 2] = SHA2x16_MEXP( W[ 0], W[11], W[ 3], W[ 2] );
W[ 3] = SHA2x16_MEXP( W[ 1], W[12], W[ 4], W[ 3] );
W[ 4] = SHA2x16_MEXP( W[ 2], W[13], W[ 5], W[ 4] );
W[ 5] = SHA2x16_MEXP( W[ 3], W[14], W[ 6], W[ 5] );
W[ 6] = SHA2x16_MEXP( W[ 4], W[15], W[ 7], W[ 6] );
W[ 7] = SHA2x16_MEXP( W[ 5], W[ 0], W[ 8], W[ 7] );
W[ 8] = SHA2x16_MEXP( W[ 6], W[ 1], W[ 9], W[ 8] );
W[ 9] = SHA2x16_MEXP( W[ 7], W[ 2], W[10], W[ 9] );
W[10] = SHA2x16_MEXP( W[ 8], W[ 3], W[11], W[10] );
W[11] = SHA2x16_MEXP( W[ 9], W[ 4], W[12], W[11] );
W[12] = SHA2x16_MEXP( W[10], W[ 5], W[13], W[12] );
// Rounds 48 to 56
SHA2s_16WAY_STEP( A, B, C, D, E, F, G, H, 0, 48 );
SHA2s_16WAY_STEP( H, A, B, C, D, E, F, G, 1, 48 );
SHA2s_16WAY_STEP( G, H, A, B, C, D, E, F, 2, 48 );
SHA2s_16WAY_STEP( F, G, H, A, B, C, D, E, 3, 48 );
SHA2s_16WAY_STEP( E, F, G, H, A, B, C, D, 4, 48 );
SHA2s_16WAY_STEP( D, E, F, G, H, A, B, C, 5, 48 );
SHA2s_16WAY_STEP( C, D, E, F, G, H, A, B, 6, 48 );
SHA2s_16WAY_STEP( B, C, D, E, F, G, H, A, 7, 48 );
SHA2s_16WAY_STEP( A, B, C, D, E, F, G, H, 8, 48 );
// Rounds 57 to 60 part 1
__m512i T1_57 = _mm512_add_epi32( _mm512_set1_epi32( K256[57] ),
mm512_add4_32( BSG2_1x16( D ), CHx16( D, E, F ), W[ 9], G ) );
C = _mm512_add_epi32( C, T1_57 );
__m512i T1_58 = _mm512_add_epi32( _mm512_set1_epi32( K256[58] ),
mm512_add4_32( BSG2_1x16( C ), CHx16( C, D, E ), W[10], F ) );
B = _mm512_add_epi32( B, T1_58 );
__m512i T1_59 = _mm512_add_epi32( _mm512_set1_epi32( K256[59] ),
mm512_add4_32( BSG2_1x16( B ), CHx16( B, C, D ), W[11], E ) );
A = _mm512_add_epi32( A, T1_59 );
__m512i T1_60 = mm512_add4_32( BSG2_1x16( A ), CHx16( A, B, C ), W[12], D );
H = _mm512_add_epi32( H, T1_60 );
// give up?
if ( _mm512_cmpeq_epi32_mask( H, H_ ) == 0 ) return 0;
// Rounds 57 to 60 part 2
__m512i K60 = _mm512_set1_epi32( K256[60] );
H = _mm512_add_epi32( H, K60 );
G = _mm512_add_epi32( T1_57, _mm512_add_epi32( BSG2_0x16( H ),
MAJx16( H, A, B ) ) );
F = _mm512_add_epi32( T1_58, _mm512_add_epi32( BSG2_0x16( G ),
MAJx16( G, H, A ) ) );
E = _mm512_add_epi32( T1_59, _mm512_add_epi32( BSG2_0x16( F ),
MAJx16( F, G, H ) ) );
D = mm512_add4_32( T1_60, BSG2_0x16( E ), MAJx16( E, F, G ), K60 );
// Rounds 61 to 63
W[13] = SHA2x16_MEXP( W[11], W[ 6], W[14], W[13] );
W[14] = SHA2x16_MEXP( W[12], W[ 7], W[15], W[14] );
W[15] = SHA2x16_MEXP( W[13], W[ 8], W[ 0], W[15] );
SHA2s_16WAY_STEP( D, E, F, G, H, A, B, C, 13, 48 );
SHA2s_16WAY_STEP( C, D, E, F, G, H, A, B, 14, 48 );
SHA2s_16WAY_STEP( B, C, D, E, F, G, H, A, 15, 48 );
state_out[0] = _mm512_add_epi32( state_in[0], A );
state_out[1] = _mm512_add_epi32( state_in[1], B );
state_out[2] = _mm512_add_epi32( state_in[2], C );
state_out[3] = _mm512_add_epi32( state_in[3], D );
state_out[4] = _mm512_add_epi32( state_in[4], E );
state_out[5] = _mm512_add_epi32( state_in[5], F );
state_out[6] = _mm512_add_epi32( state_in[6], G );
state_out[7] = _mm512_add_epi32( state_in[7], H );
return 1;
}
void sha256_16way_init( sha256_16way_context *sc )
{
sc->count_high = sc->count_low = 0;
sc->val[0] = m512_const1_64( 0x6A09E6676A09E667 );
sc->val[1] = m512_const1_64( 0xBB67AE85BB67AE85 );
sc->val[2] = m512_const1_64( 0x3C6EF3723C6EF372 );
sc->val[3] = m512_const1_64( 0xA54FF53AA54FF53A );
sc->val[4] = m512_const1_64( 0x510E527F510E527F );
sc->val[5] = m512_const1_64( 0x9B05688C9B05688C );
sc->val[6] = m512_const1_64( 0x1F83D9AB1F83D9AB );
sc->val[7] = m512_const1_64( 0x5BE0CD195BE0CD19 );
}
void sha256_16way_update( sha256_16way_context *sc, const void *data,
size_t len )
{
__m512i *vdata = (__m512i*)data;
size_t ptr;
const int buf_size = 64;
ptr = (unsigned)sc->count_low & (buf_size - 1U);
while ( len > 0 )
{
size_t clen;
uint32_t clow, clow2;
clen = buf_size - ptr;
if ( clen > len )
clen = len;
memcpy_512( sc->buf + (ptr>>2), vdata, clen>>2 );
vdata = vdata + (clen>>2);
ptr += clen;
len -= clen;
if ( ptr == buf_size )
{
sha256_16way_transform_be( sc->val, sc->buf, sc->val );
ptr = 0;
}
clow = sc->count_low;
clow2 = clow + clen;
sc->count_low = clow2;
if ( clow2 < clow )
sc->count_high++;
}
}
void sha256_16way_close( sha256_16way_context *sc, void *dst )
{
unsigned ptr;
uint32_t low, high;
const int buf_size = 64;
const int pad = buf_size - 8;
ptr = (unsigned)sc->count_low & (buf_size - 1U);
sc->buf[ ptr>>2 ] = m512_const1_64( 0x0000008000000080 );
ptr += 4;
if ( ptr > pad )
{
memset_zero_512( sc->buf + (ptr>>2), (buf_size - ptr) >> 2 );
sha256_16way_transform_be( sc->val, sc->buf, sc->val );
memset_zero_512( sc->buf, pad >> 2 );
}
else
memset_zero_512( sc->buf + (ptr>>2), (pad - ptr) >> 2 );
low = sc->count_low;
high = (sc->count_high << 3) | (low >> 29);
low = low << 3;
sc->buf[ pad >> 2 ] = m512_const1_32( bswap_32( high ) );
sc->buf[ ( pad+4 ) >> 2 ] = m512_const1_32( bswap_32( low ) );
sha256_16way_transform_be( sc->val, sc->buf, sc->val );
mm512_block_bswap_32( dst, sc->val );
}
void sha256_16way_full( void *dst, const void *data, size_t len )
{
sha256_16way_context ctx;
sha256_16way_init( &ctx );
sha256_16way_update( &ctx, data, len );
sha256_16way_close( &ctx, dst );
}
#endif // AVX512
#endif // __AVX2__
#endif // __SSE2__