#if defined(__SSE2__) #include #include #include "sha-hash-4way.h" // SHA-256 32 bit /* static const uint32_t H256[8] = { 0x6A09E667, 0xBB67AE85, 0x3C6EF372, 0xA54FF53A, 0x510E527F, 0x9B05688C, 0x1F83D9AB, 0x5BE0CD19 }; */ static const uint32_t K256[64] = { 0x428A2F98, 0x71374491, 0xB5C0FBCF, 0xE9B5DBA5, 0x3956C25B, 0x59F111F1, 0x923F82A4, 0xAB1C5ED5, 0xD807AA98, 0x12835B01, 0x243185BE, 0x550C7DC3, 0x72BE5D74, 0x80DEB1FE, 0x9BDC06A7, 0xC19BF174, 0xE49B69C1, 0xEFBE4786, 0x0FC19DC6, 0x240CA1CC, 0x2DE92C6F, 0x4A7484AA, 0x5CB0A9DC, 0x76F988DA, 0x983E5152, 0xA831C66D, 0xB00327C8, 0xBF597FC7, 0xC6E00BF3, 0xD5A79147, 0x06CA6351, 0x14292967, 0x27B70A85, 0x2E1B2138, 0x4D2C6DFC, 0x53380D13, 0x650A7354, 0x766A0ABB, 0x81C2C92E, 0x92722C85, 0xA2BFE8A1, 0xA81A664B, 0xC24B8B70, 0xC76C51A3, 0xD192E819, 0xD6990624, 0xF40E3585, 0x106AA070, 0x19A4C116, 0x1E376C08, 0x2748774C, 0x34B0BCB5, 0x391C0CB3, 0x4ED8AA4A, 0x5B9CCA4F, 0x682E6FF3, 0x748F82EE, 0x78A5636F, 0x84C87814, 0x8CC70208, 0x90BEFFFA, 0xA4506CEB, 0xBEF9A3F7, 0xC67178F2 }; // SHA-256 4 way SSE2 #define CHs(X, Y, Z) \ _mm_xor_si128( _mm_and_si128( _mm_xor_si128( Y, Z ), X ), Z ) #define MAJs(X, Y, Z) \ _mm_xor_si128( Y, _mm_and_si128( X_xor_Y = _mm_xor_si128( X, Y ), \ Y_xor_Z ) ) #define BSG2_0(x) \ _mm_xor_si128( _mm_xor_si128( \ mm128_ror_32(x, 2), mm128_ror_32(x, 13) ), mm128_ror_32( x, 22) ) #define BSG2_1(x) \ _mm_xor_si128( _mm_xor_si128( \ mm128_ror_32(x, 6), mm128_ror_32(x, 11) ), mm128_ror_32( x, 25) ) #define SSG2_0(x) \ _mm_xor_si128( _mm_xor_si128( \ mm128_ror_32(x, 7), mm128_ror_32(x, 18) ), _mm_srli_epi32(x, 3) ) #define SSG2_1(x) \ _mm_xor_si128( _mm_xor_si128( \ mm128_ror_32(x, 17), mm128_ror_32(x, 19) ), _mm_srli_epi32(x, 10) ) #define SHA2s_MEXP( a, b, c, d ) \ mm128_add4_32( SSG2_1( a ), b, SSG2_0( c ), d ); #define SHA256x4_MSG_EXPANSION( W ) \ W[ 0] = SHA2s_MEXP( W[14], W[ 9], W[ 1], W[ 0] ); \ W[ 1] = SHA2s_MEXP( W[15], W[10], W[ 2], W[ 1] ); \ W[ 2] = SHA2s_MEXP( W[ 0], W[11], W[ 3], W[ 2] ); \ W[ 3] = SHA2s_MEXP( W[ 1], W[12], W[ 4], W[ 3] ); \ W[ 4] = SHA2s_MEXP( W[ 2], W[13], W[ 5], W[ 4] ); \ W[ 5] = SHA2s_MEXP( W[ 3], W[14], W[ 6], W[ 5] ); \ W[ 6] = SHA2s_MEXP( W[ 4], W[15], W[ 7], W[ 6] ); \ W[ 7] = SHA2s_MEXP( W[ 5], W[ 0], W[ 8], W[ 7] ); \ W[ 8] = SHA2s_MEXP( W[ 6], W[ 1], W[ 9], W[ 8] ); \ W[ 9] = SHA2s_MEXP( W[ 7], W[ 2], W[10], W[ 9] ); \ W[10] = SHA2s_MEXP( W[ 8], W[ 3], W[11], W[10] ); \ W[11] = SHA2s_MEXP( W[ 9], W[ 4], W[12], W[11] ); \ W[12] = SHA2s_MEXP( W[10], W[ 5], W[13], W[12] ); \ W[13] = SHA2s_MEXP( W[11], W[ 6], W[14], W[13] ); \ W[14] = SHA2s_MEXP( W[12], W[ 7], W[15], W[14] ); \ W[15] = SHA2s_MEXP( W[13], W[ 8], W[ 0], W[15] ); #define SHA2s_4WAY_STEP(A, B, C, D, E, F, G, H, i, j) \ do { \ __m128i T1, T2; \ __m128i K = _mm_set1_epi32( K256[( (j)+(i) )] ); \ T1 = _mm_add_epi32( H, mm128_add4_32( BSG2_1(E), CHs(E, F, G), \ K, W[i] ) ); \ T2 = _mm_add_epi32( BSG2_0(A), MAJs(A, B, C) ); \ Y_xor_Z = X_xor_Y; \ D = _mm_add_epi32( D, T1 ); \ H = _mm_add_epi32( T1, T2 ); \ } while (0) #define SHA256x4_16ROUNDS( A, B, C, D, E, F, G, H, j ) \ { \ __m128i X_xor_Y, Y_xor_Z = _mm_xor_si128( B, C ); \ SHA2s_4WAY_STEP( A, B, C, D, E, F, G, H, 0, j ); \ SHA2s_4WAY_STEP( H, A, B, C, D, E, F, G, 1, j ); \ SHA2s_4WAY_STEP( G, H, A, B, C, D, E, F, 2, j ); \ SHA2s_4WAY_STEP( F, G, H, A, B, C, D, E, 3, j ); \ SHA2s_4WAY_STEP( E, F, G, H, A, B, C, D, 4, j ); \ SHA2s_4WAY_STEP( D, E, F, G, H, A, B, C, 5, j ); \ SHA2s_4WAY_STEP( C, D, E, F, G, H, A, B, 6, j ); \ SHA2s_4WAY_STEP( B, C, D, E, F, G, H, A, 7, j ); \ SHA2s_4WAY_STEP( A, B, C, D, E, F, G, H, 8, j ); \ SHA2s_4WAY_STEP( H, A, B, C, D, E, F, G, 9, j ); \ SHA2s_4WAY_STEP( G, H, A, B, C, D, E, F, 10, j ); \ SHA2s_4WAY_STEP( F, G, H, A, B, C, D, E, 11, j ); \ SHA2s_4WAY_STEP( E, F, G, H, A, B, C, D, 12, j ); \ SHA2s_4WAY_STEP( D, E, F, G, H, A, B, C, 13, j ); \ SHA2s_4WAY_STEP( C, D, E, F, G, H, A, B, 14, j ); \ SHA2s_4WAY_STEP( B, C, D, E, F, G, H, A, 15, j ); \ } // LE data, no need to byte swap static inline void SHA256_4WAY_TRANSFORM( __m128i *out, __m128i *W, const __m128i *in ) { __m128i A, B, C, D, E, F, G, H; A = in[0]; B = in[1]; C = in[2]; D = in[3]; E = in[4]; F = in[5]; G = in[6]; H = in[7]; SHA256x4_16ROUNDS( A, B, C, D, E, F, G, H, 0 ); SHA256x4_MSG_EXPANSION( W ); SHA256x4_16ROUNDS( A, B, C, D, E, F, G, H, 16 ); SHA256x4_MSG_EXPANSION( W ); SHA256x4_16ROUNDS( A, B, C, D, E, F, G, H, 32 ); SHA256x4_MSG_EXPANSION( W ); SHA256x4_16ROUNDS( A, B, C, D, E, F, G, H, 48 ); out[0] = _mm_add_epi32( in[0], A ); out[1] = _mm_add_epi32( in[1], B ); out[2] = _mm_add_epi32( in[2], C ); out[3] = _mm_add_epi32( in[3], D ); out[4] = _mm_add_epi32( in[4], E ); out[5] = _mm_add_epi32( in[5], F ); out[6] = _mm_add_epi32( in[6], G ); out[7] = _mm_add_epi32( in[7], H ); } // LE data, no need to byte swap void sha256_4way_transform_le( __m128i *state_out, const __m128i *data, const __m128i *state_in ) { __m128i W[16]; memcpy_128( W, data, 16 ); SHA256_4WAY_TRANSFORM( state_out, W, state_in ); } // BE data, need to byte swap input data void sha256_4way_transform_be( __m128i *state_out, const __m128i *data, const __m128i *state_in ) { __m128i W[16]; mm128_block_bswap_32( W, data ); mm128_block_bswap_32( W+8, data+8 ); SHA256_4WAY_TRANSFORM( state_out, W, state_in ); } void sha256_4way_prehash_3rounds( __m128i *state_mid, __m128i *X, const __m128i *W, const __m128i *state_in ) { __m128i A, B, C, D, E, F, G, H; // precalculate constant part msg expansion for second iteration. X[ 0] = SHA2s_MEXP( W[14], W[ 9], W[ 1], W[ 0] ); X[ 1] = SHA2s_MEXP( W[15], W[10], W[ 2], W[ 1] ); X[ 2] = _mm_add_epi32( _mm_add_epi32( SSG2_1( X[ 0] ), W[11] ), W[ 2] ); X[ 3] = _mm_add_epi32( _mm_add_epi32( SSG2_1( X[ 1] ), W[12] ), SSG2_0( W[ 4] ) ); X[ 4] = _mm_add_epi32( _mm_add_epi32( W[13], SSG2_0( W[ 5] ) ), W[ 4] ); X[ 5] = _mm_add_epi32( _mm_add_epi32( W[14], SSG2_0( W[ 6] ) ), W[ 5] ); X [6] = _mm_add_epi32( _mm_add_epi32( W[15], SSG2_0( W[ 7] ) ), W[ 6] ); X[ 7] = _mm_add_epi32( _mm_add_epi32( X[ 0], SSG2_0( W[ 8] ) ), W[ 7] ); X[ 8] = _mm_add_epi32( _mm_add_epi32( X[ 1], SSG2_0( W[ 9] ) ), W[ 8] ); X[ 9] = _mm_add_epi32( SSG2_0( W[10] ), W[ 9] ); X[10] = _mm_add_epi32( SSG2_0( W[11] ), W[10] ); X[11] = _mm_add_epi32( SSG2_0( W[12] ), W[11] ); X[12] = _mm_add_epi32( SSG2_0( W[13] ), W[12] ); X[13] = _mm_add_epi32( SSG2_0( W[14] ), W[13] ); X[14] = _mm_add_epi32( SSG2_0( W[15] ), W[14] ); X[15] = _mm_add_epi32( SSG2_0( X[ 0] ), W[15] ); A = _mm_load_si128( state_in ); B = _mm_load_si128( state_in + 1 ); C = _mm_load_si128( state_in + 2 ); D = _mm_load_si128( state_in + 3 ); E = _mm_load_si128( state_in + 4 ); F = _mm_load_si128( state_in + 5 ); G = _mm_load_si128( state_in + 6 ); H = _mm_load_si128( state_in + 7 ); __m128i X_xor_Y, Y_xor_Z = _mm_xor_si128( B, C ); SHA2s_4WAY_STEP( A, B, C, D, E, F, G, H, 0, 0 ); SHA2s_4WAY_STEP( H, A, B, C, D, E, F, G, 1, 0 ); SHA2s_4WAY_STEP( G, H, A, B, C, D, E, F, 2, 0 ); _mm_store_si128( state_mid , A ); _mm_store_si128( state_mid + 1, B ); _mm_store_si128( state_mid + 2, C ); _mm_store_si128( state_mid + 3, D ); _mm_store_si128( state_mid + 4, E ); _mm_store_si128( state_mid + 5, F ); _mm_store_si128( state_mid + 6, G ); _mm_store_si128( state_mid + 7, H ); } void sha256_4way_final_rounds( __m128i *state_out, const __m128i *data, const __m128i *state_in, const __m128i *state_mid, const __m128i *X ) { __m128i A, B, C, D, E, F, G, H; __m128i W[16]; memcpy_128( W, data, 16 ); A = _mm_load_si128( state_mid ); B = _mm_load_si128( state_mid + 1 ); C = _mm_load_si128( state_mid + 2 ); D = _mm_load_si128( state_mid + 3 ); E = _mm_load_si128( state_mid + 4 ); F = _mm_load_si128( state_mid + 5 ); G = _mm_load_si128( state_mid + 6 ); H = _mm_load_si128( state_mid + 7 ); __m128i X_xor_Y, Y_xor_Z = _mm_xor_si128( G, H ); SHA2s_4WAY_STEP( F, G, H, A, B, C, D, E, 3, 0 ); SHA2s_4WAY_STEP( E, F, G, H, A, B, C, D, 4, 0 ); SHA2s_4WAY_STEP( D, E, F, G, H, A, B, C, 5, 0 ); SHA2s_4WAY_STEP( C, D, E, F, G, H, A, B, 6, 0 ); SHA2s_4WAY_STEP( B, C, D, E, F, G, H, A, 7, 0 ); SHA2s_4WAY_STEP( A, B, C, D, E, F, G, H, 8, 0 ); SHA2s_4WAY_STEP( H, A, B, C, D, E, F, G, 9, 0 ); SHA2s_4WAY_STEP( G, H, A, B, C, D, E, F, 10, 0 ); SHA2s_4WAY_STEP( F, G, H, A, B, C, D, E, 11, 0 ); SHA2s_4WAY_STEP( E, F, G, H, A, B, C, D, 12, 0 ); SHA2s_4WAY_STEP( D, E, F, G, H, A, B, C, 13, 0 ); SHA2s_4WAY_STEP( C, D, E, F, G, H, A, B, 14, 0 ); SHA2s_4WAY_STEP( B, C, D, E, F, G, H, A, 15, 0 ); // update precalculated msg expansion with new nonce: W[3]. W[ 0] = X[ 0]; W[ 1] = X[ 1]; W[ 2] = _mm_add_epi32( X[ 2], SSG2_0( W[ 3] ) ); W[ 3] = _mm_add_epi32( X[ 3], W[ 3] ); W[ 4] = _mm_add_epi32( X[ 4], SSG2_1( W[ 2] ) ); W[ 5] = _mm_add_epi32( X[ 5], SSG2_1( W[ 3] ) ); W[ 6] = _mm_add_epi32( X[ 6], SSG2_1( W[ 4] ) ); W[ 7] = _mm_add_epi32( X[ 7], SSG2_1( W[ 5] ) ); W[ 8] = _mm_add_epi32( X[ 8], SSG2_1( W[ 6] ) ); W[ 9] = _mm_add_epi32( X[ 9], _mm_add_epi32( SSG2_1( W[ 7] ), W[ 2] ) ); W[10] = _mm_add_epi32( X[10], _mm_add_epi32( SSG2_1( W[ 8] ), W[ 3] ) ); W[11] = _mm_add_epi32( X[11], _mm_add_epi32( SSG2_1( W[ 9] ), W[ 4] ) ); W[12] = _mm_add_epi32( X[12], _mm_add_epi32( SSG2_1( W[10] ), W[ 5] ) ); W[13] = _mm_add_epi32( X[13], _mm_add_epi32( SSG2_1( W[11] ), W[ 6] ) ); W[14] = _mm_add_epi32( X[14], _mm_add_epi32( SSG2_1( W[12] ), W[ 7] ) ); W[15] = _mm_add_epi32( X[15], _mm_add_epi32( SSG2_1( W[13] ), W[ 8] ) ); SHA256x4_16ROUNDS( A, B, C, D, E, F, G, H, 16 ); SHA256x4_MSG_EXPANSION( W ); SHA256x4_16ROUNDS( A, B, C, D, E, F, G, H, 32 ); SHA256x4_MSG_EXPANSION( W ); SHA256x4_16ROUNDS( A, B, C, D, E, F, G, H, 48 ); A = _mm_add_epi32( A, _mm_load_si128( state_in ) ); B = _mm_add_epi32( B, _mm_load_si128( state_in + 1 ) ); C = _mm_add_epi32( C, _mm_load_si128( state_in + 2 ) ); D = _mm_add_epi32( D, _mm_load_si128( state_in + 3 ) ); E = _mm_add_epi32( E, _mm_load_si128( state_in + 4 ) ); F = _mm_add_epi32( F, _mm_load_si128( state_in + 5 ) ); G = _mm_add_epi32( G, _mm_load_si128( state_in + 6 ) ); H = _mm_add_epi32( H, _mm_load_si128( state_in + 7 ) ); _mm_store_si128( state_out , A ); _mm_store_si128( state_out + 1, B ); _mm_store_si128( state_out + 2, C ); _mm_store_si128( state_out + 3, D ); _mm_store_si128( state_out + 4, E ); _mm_store_si128( state_out + 5, F ); _mm_store_si128( state_out + 6, G ); _mm_store_si128( state_out + 7, H ); } // returns 0 if hash aborted early and invalid. int sha256_4way_transform_le_short( __m128i *state_out, const __m128i *data, const __m128i *state_in ) { __m128i A, B, C, D, E, F, G, H; __m128i W[16]; memcpy_128( W, data, 16 ); // Value required by H after round 60 to produce valid final hash const __m128i H_ = m128_const1_32( 0x136032ED ); A = _mm_load_si128( state_in ); B = _mm_load_si128( state_in+1 ); C = _mm_load_si128( state_in+2 ); D = _mm_load_si128( state_in+3 ); E = _mm_load_si128( state_in+4 ); F = _mm_load_si128( state_in+5 ); G = _mm_load_si128( state_in+6 ); H = _mm_load_si128( state_in+7 ); SHA256x4_16ROUNDS( A, B, C, D, E, F, G, H, 0 ); SHA256x4_MSG_EXPANSION( W ); SHA256x4_16ROUNDS( A, B, C, D, E, F, G, H, 16 ); SHA256x4_MSG_EXPANSION( W ); SHA256x4_16ROUNDS( A, B, C, D, E, F, G, H, 32 ); W[ 0] = SHA2s_MEXP( W[14], W[ 9], W[ 1], W[ 0] ); W[ 1] = SHA2s_MEXP( W[15], W[10], W[ 2], W[ 1] ); W[ 2] = SHA2s_MEXP( W[ 0], W[11], W[ 3], W[ 2] ); W[ 3] = SHA2s_MEXP( W[ 1], W[12], W[ 4], W[ 3] ); W[ 4] = SHA2s_MEXP( W[ 2], W[13], W[ 5], W[ 4] ); W[ 5] = SHA2s_MEXP( W[ 3], W[14], W[ 6], W[ 5] ); W[ 6] = SHA2s_MEXP( W[ 4], W[15], W[ 7], W[ 6] ); W[ 7] = SHA2s_MEXP( W[ 5], W[ 0], W[ 8], W[ 7] ); W[ 8] = SHA2s_MEXP( W[ 6], W[ 1], W[ 9], W[ 8] ); W[ 9] = SHA2s_MEXP( W[ 7], W[ 2], W[10], W[ 9] ); W[10] = SHA2s_MEXP( W[ 8], W[ 3], W[11], W[10] ); W[11] = SHA2s_MEXP( W[ 9], W[ 4], W[12], W[11] ); W[12] = SHA2s_MEXP( W[10], W[ 5], W[13], W[12] ); __m128i X_xor_Y, Y_xor_Z = _mm_xor_si128( B, C ); SHA2s_4WAY_STEP( A, B, C, D, E, F, G, H, 0, 48 ); SHA2s_4WAY_STEP( H, A, B, C, D, E, F, G, 1, 48 ); SHA2s_4WAY_STEP( G, H, A, B, C, D, E, F, 2, 48 ); SHA2s_4WAY_STEP( F, G, H, A, B, C, D, E, 3, 48 ); SHA2s_4WAY_STEP( E, F, G, H, A, B, C, D, 4, 48 ); SHA2s_4WAY_STEP( D, E, F, G, H, A, B, C, 5, 48 ); SHA2s_4WAY_STEP( C, D, E, F, G, H, A, B, 6, 48 ); SHA2s_4WAY_STEP( B, C, D, E, F, G, H, A, 7, 48 ); SHA2s_4WAY_STEP( A, B, C, D, E, F, G, H, 8, 48 ); __m128i T1_57 = _mm_add_epi32( G, mm128_add4_32( BSG2_1( D ), CHs( D, E, F ), _mm_set1_epi32( K256[57] ), W[ 9] ) ); C = _mm_add_epi32( C, T1_57 ); __m128i T1_58 = _mm_add_epi32( F, mm128_add4_32( BSG2_1( C ), CHs( C, D, E ), _mm_set1_epi32( K256[58] ), W[10] ) ); B = _mm_add_epi32( B, T1_58 ); __m128i T1_59 = _mm_add_epi32( E, mm128_add4_32( BSG2_1( B ), CHs( B, C, D ), _mm_set1_epi32( K256[59] ), W[11] ) ); A = _mm_add_epi32( A, T1_59 ); __m128i T1_60 = mm128_add4_32( D, BSG2_1( A ), CHs( A, B, C ), W[12] ); H = _mm_add_epi32( H, T1_60 ); if ( _mm_movemask_ps( (__m128)_mm_cmpeq_epi32( H, H_ ) ) == 0 ) return 0; __m128i K60 = _mm_set1_epi32( K256[60] ); H = _mm_add_epi32( H, K60 ); G = _mm_add_epi32( T1_57, _mm_add_epi32( BSG2_0( H ), MAJs( H, A, B ) ) ); F = _mm_add_epi32( T1_58, _mm_add_epi32( BSG2_0( G ), MAJs( G, H, A ) ) ); E = _mm_add_epi32( T1_59, _mm_add_epi32( BSG2_0( F ), MAJs( F, G, H ) ) ); D = mm128_add4_32( T1_60, BSG2_0( E ), MAJs( E, F, G ), K60 ); W[13] = SHA2s_MEXP( W[11], W[ 6], W[14], W[13] ); W[14] = SHA2s_MEXP( W[12], W[ 7], W[15], W[14] ); W[15] = SHA2s_MEXP( W[13], W[ 8], W[ 0], W[15] ); SHA2s_4WAY_STEP( D, E, F, G, H, A, B, C, 13, 48 ); SHA2s_4WAY_STEP( C, D, E, F, G, H, A, B, 14, 48 ); SHA2s_4WAY_STEP( B, C, D, E, F, G, H, A, 15, 48 ); state_out[0] = _mm_add_epi32( state_in[0], A ); state_out[1] = _mm_add_epi32( state_in[1], B ); state_out[2] = _mm_add_epi32( state_in[2], C ); state_out[3] = _mm_add_epi32( state_in[3], D ); state_out[4] = _mm_add_epi32( state_in[4], E ); state_out[5] = _mm_add_epi32( state_in[5], F ); state_out[6] = _mm_add_epi32( state_in[6], G ); state_out[7] = _mm_add_epi32( state_in[7], H ); return 1; } void sha256_4way_init( sha256_4way_context *sc ) { sc->count_high = sc->count_low = 0; sc->val[0] = m128_const1_64( 0x6A09E6676A09E667 ); sc->val[1] = m128_const1_64( 0xBB67AE85BB67AE85 ); sc->val[2] = m128_const1_64( 0x3C6EF3723C6EF372 ); sc->val[3] = m128_const1_64( 0xA54FF53AA54FF53A ); sc->val[4] = m128_const1_64( 0x510E527F510E527F ); sc->val[5] = m128_const1_64( 0x9B05688C9B05688C ); sc->val[6] = m128_const1_64( 0x1F83D9AB1F83D9AB ); sc->val[7] = m128_const1_64( 0x5BE0CD195BE0CD19 ); } void sha256_4way_update( sha256_4way_context *sc, const void *data, size_t len ) { __m128i *vdata = (__m128i*)data; size_t ptr; const int buf_size = 64; ptr = (unsigned)sc->count_low & (buf_size - 1U); while ( len > 0 ) { size_t clen; uint32_t clow, clow2; clen = buf_size - ptr; if ( clen > len ) clen = len; memcpy_128( sc->buf + (ptr>>2), vdata, clen>>2 ); vdata = vdata + (clen>>2); ptr += clen; len -= clen; if ( ptr == buf_size ) { sha256_4way_transform_be( sc->val, sc->buf, sc->val ); ptr = 0; } clow = sc->count_low; clow2 = clow + clen; sc->count_low = clow2; if ( clow2 < clow ) sc->count_high++; } } void sha256_4way_close( sha256_4way_context *sc, void *dst ) { unsigned ptr; uint32_t low, high; const int buf_size = 64; const int pad = buf_size - 8; ptr = (unsigned)sc->count_low & (buf_size - 1U); sc->buf[ ptr>>2 ] = m128_const1_64( 0x0000008000000080 ); ptr += 4; if ( ptr > pad ) { memset_zero_128( sc->buf + (ptr>>2), (buf_size - ptr) >> 2 ); sha256_4way_transform_be( sc->val, sc->buf, sc->val ); memset_zero_128( sc->buf, pad >> 2 ); } else memset_zero_128( sc->buf + (ptr>>2), (pad - ptr) >> 2 ); low = sc->count_low; high = (sc->count_high << 3) | (low >> 29); low = low << 3; sc->buf[ pad >> 2 ] = m128_const1_32( bswap_32( high ) ); sc->buf[( pad+4 ) >> 2 ] = m128_const1_32( bswap_32( low ) ); sha256_4way_transform_be( sc->val, sc->buf, sc->val ); mm128_block_bswap_32( dst, sc->val ); } void sha256_4way_full( void *dst, const void *data, size_t len ) { sha256_4way_context ctx; sha256_4way_init( &ctx ); sha256_4way_update( &ctx, data, len ); sha256_4way_close( &ctx, dst ); } #if defined(__AVX2__) // SHA-256 8 way #define BSG2_0x(x) \ _mm256_xor_si256( _mm256_xor_si256( mm256_ror_32( x, 2 ), \ mm256_ror_32( x, 13 ) ), \ mm256_ror_32( x, 22 ) ) #define BSG2_1x(x) \ _mm256_xor_si256( _mm256_xor_si256( mm256_ror_32( x, 6 ), \ mm256_ror_32( x, 11 ) ), \ mm256_ror_32( x, 25 ) ) #define SSG2_0x(x) \ _mm256_xor_si256( _mm256_xor_si256( mm256_ror_32( x, 7 ), \ mm256_ror_32( x, 18 ) ), \ _mm256_srli_epi32( x, 3 ) ) #define SSG2_1x(x) \ _mm256_xor_si256( _mm256_xor_si256( mm256_ror_32( x, 17 ), \ mm256_ror_32( x, 19 ) ), \ _mm256_srli_epi32( x, 10 ) ) #define SHA2x_MEXP( a, b, c, d ) \ mm256_add4_32( SSG2_1x( a ), b, SSG2_0x( c ), d ); #define SHA256x8_MSG_EXPANSION( W ) \ W[ 0] = SHA2x_MEXP( W[14], W[ 9], W[ 1], W[ 0] ); \ W[ 1] = SHA2x_MEXP( W[15], W[10], W[ 2], W[ 1] ); \ W[ 2] = SHA2x_MEXP( W[ 0], W[11], W[ 3], W[ 2] ); \ W[ 3] = SHA2x_MEXP( W[ 1], W[12], W[ 4], W[ 3] ); \ W[ 4] = SHA2x_MEXP( W[ 2], W[13], W[ 5], W[ 4] ); \ W[ 5] = SHA2x_MEXP( W[ 3], W[14], W[ 6], W[ 5] ); \ W[ 6] = SHA2x_MEXP( W[ 4], W[15], W[ 7], W[ 6] ); \ W[ 7] = SHA2x_MEXP( W[ 5], W[ 0], W[ 8], W[ 7] ); \ W[ 8] = SHA2x_MEXP( W[ 6], W[ 1], W[ 9], W[ 8] ); \ W[ 9] = SHA2x_MEXP( W[ 7], W[ 2], W[10], W[ 9] ); \ W[10] = SHA2x_MEXP( W[ 8], W[ 3], W[11], W[10] ); \ W[11] = SHA2x_MEXP( W[ 9], W[ 4], W[12], W[11] ); \ W[12] = SHA2x_MEXP( W[10], W[ 5], W[13], W[12] ); \ W[13] = SHA2x_MEXP( W[11], W[ 6], W[14], W[13] ); \ W[14] = SHA2x_MEXP( W[12], W[ 7], W[15], W[14] ); \ W[15] = SHA2x_MEXP( W[13], W[ 8], W[ 0], W[15] ); // With AVX512VL ternary logic optimizations are available. // If not optimize by forwarding the result of X^Y in MAJ to the next round // to avoid recalculating it as Y^Z. This optimization is not applicable // when MAJ is optimized with ternary logic. #if defined(__AVX512VL__) #define CHx(X, Y, Z) _mm256_ternarylogic_epi32( X, Y, Z, 0xca ) #define MAJx(X, Y, Z) _mm256_ternarylogic_epi32( X, Y, Z, 0xe8 ) #define SHA2s_8WAY_STEP( A, B, C, D, E, F, G, H, i, j ) \ do { \ __m256i T0 = _mm256_add_epi32( _mm256_set1_epi32( K256[ (j)+(i) ] ), \ W[ i ] ); \ __m256i T1 = BSG2_1x( E ); \ __m256i T2 = BSG2_0x( A ); \ T0 = _mm256_add_epi32( T0, CHx( E, F, G ) ); \ T1 = _mm256_add_epi32( T1, H ); \ T2 = _mm256_add_epi32( T2, MAJx( A, B, C ) ); \ T1 = _mm256_add_epi32( T1, T0 ); \ D = _mm256_add_epi32( D, T1 ); \ H = _mm256_add_epi32( T1, T2 ); \ } while (0) #define SHA256x8_16ROUNDS( A, B, C, D, E, F, G, H, j ) \ SHA2s_8WAY_STEP( A, B, C, D, E, F, G, H, 0, j ); \ SHA2s_8WAY_STEP( H, A, B, C, D, E, F, G, 1, j ); \ SHA2s_8WAY_STEP( G, H, A, B, C, D, E, F, 2, j ); \ SHA2s_8WAY_STEP( F, G, H, A, B, C, D, E, 3, j ); \ SHA2s_8WAY_STEP( E, F, G, H, A, B, C, D, 4, j ); \ SHA2s_8WAY_STEP( D, E, F, G, H, A, B, C, 5, j ); \ SHA2s_8WAY_STEP( C, D, E, F, G, H, A, B, 6, j ); \ SHA2s_8WAY_STEP( B, C, D, E, F, G, H, A, 7, j ); \ SHA2s_8WAY_STEP( A, B, C, D, E, F, G, H, 8, j ); \ SHA2s_8WAY_STEP( H, A, B, C, D, E, F, G, 9, j ); \ SHA2s_8WAY_STEP( G, H, A, B, C, D, E, F, 10, j ); \ SHA2s_8WAY_STEP( F, G, H, A, B, C, D, E, 11, j ); \ SHA2s_8WAY_STEP( E, F, G, H, A, B, C, D, 12, j ); \ SHA2s_8WAY_STEP( D, E, F, G, H, A, B, C, 13, j ); \ SHA2s_8WAY_STEP( C, D, E, F, G, H, A, B, 14, j ); \ SHA2s_8WAY_STEP( B, C, D, E, F, G, H, A, 15, j ); #else // AVX2 #define CHx(X, Y, Z) \ _mm256_xor_si256( _mm256_and_si256( _mm256_xor_si256( Y, Z ), X ), Z ) // Use saved X_xor_Y from previous round, now called Y_xor_Z, // and save new X_xor_Y, for next round. #define MAJx(X, Y, Z) \ _mm256_xor_si256( Y, _mm256_and_si256( X_xor_Y = _mm256_xor_si256( X, Y ), \ Y_xor_Z ) ) #define SHA2s_8WAY_STEP( A, B, C, D, E, F, G, H, i, j ) \ do { \ __m256i T0 = _mm256_add_epi32( _mm256_set1_epi32( K256[(j)+(i)] ), W[i] ); \ __m256i T1 = BSG2_1x( E ); \ __m256i T2 = BSG2_0x( A ); \ T0 = _mm256_add_epi32( T0, CHx( E, F, G ) ); \ T1 = _mm256_add_epi32( T1, H ); \ T2 = _mm256_add_epi32( T2, MAJx( A, B, C ) ); \ T1 = _mm256_add_epi32( T1, T0 ); \ Y_xor_Z = X_xor_Y; \ D = _mm256_add_epi32( D, T1 ); \ H = _mm256_add_epi32( T1, T2 ); \ } while (0) // read Y_xor_Z, update X_xor_Y #define MAJ_2step(X, Y, Z, X_xor_Y, Y_xor_Z ) \ _mm256_xor_si256( Y, _mm256_and_si256( X_xor_Y = _mm256_xor_si256( X, Y ), \ Y_xor_Z ) ) // start with toc initialized to y^z: toc = B ^ C // First round reads toc as Y_xor_Z and saves X_xor_Y as tic. // Second round reads tic as Y_xor_Z and saves X_xor_Y as toc. #define SHA256_8WAY_2STEP( A, B, C, D, E, F, G, H, i0, i1, j ) \ do { \ __m256i T0 = _mm256_add_epi32( _mm256_set1_epi32( K256[ (j)+(i0) ] ), \ W[ i0 ] ); \ __m256i T1 = BSG2_1x( E ); \ __m256i T2 = BSG2_0x( A ); \ T0 = _mm256_add_epi32( T0, CHx( E, F, G ) ); \ T1 = _mm256_add_epi32( T1, H ); \ T2 = _mm256_add_epi32( T2, MAJ_2step( A, B, C, tic, toc ) ); \ T1 = _mm256_add_epi32( T1, T0 ); \ D = _mm256_add_epi32( D, T1 ); \ H = _mm256_add_epi32( T1, T2 ); \ \ T0 = _mm256_add_epi32( _mm256_set1_epi32( K256[ (j)+(i1) ] ), \ W[ (i1) ] ); \ T1 = BSG2_1x( D ); \ T2 = BSG2_0x( H ); \ T0 = _mm256_add_epi32( T0, CHx( D, E, F ) ); \ T1 = _mm256_add_epi32( T1, G ); \ T2 = _mm256_add_epi32( T2, MAJ_2step( H, A, B, toc, tic ) ); \ T1 = _mm256_add_epi32( T1, T0 ); \ C = _mm256_add_epi32( C, T1 ); \ G = _mm256_add_epi32( T1, T2 ); \ } while (0) #define SHA256x8_16ROUNDS( A, B, C, D, E, F, G, H, j ) \ { \ __m256i tic, toc = _mm256_xor_si256( B, C ); \ SHA256_8WAY_2STEP( A, B, C, D, E, F, G, H, 0, 1, j ); \ SHA256_8WAY_2STEP( G, H, A, B, C, D, E, F, 2, 3, j ); \ SHA256_8WAY_2STEP( E, F, G, H, A, B, C, D, 4, 5, j ); \ SHA256_8WAY_2STEP( C, D, E, F, G, H, A, B, 6, 7, j ); \ SHA256_8WAY_2STEP( A, B, C, D, E, F, G, H, 8, 9, j ); \ SHA256_8WAY_2STEP( G, H, A, B, C, D, E, F, 10, 11, j ); \ SHA256_8WAY_2STEP( E, F, G, H, A, B, C, D, 12, 13, j ); \ SHA256_8WAY_2STEP( C, D, E, F, G, H, A, B, 14, 15, j ); \ } #endif // AVX512VL else AVX2 static inline void SHA256_8WAY_TRANSFORM( __m256i *out, __m256i *W, const __m256i *in ) \ { __m256i A, B, C, D, E, F, G, H; A = _mm256_load_si256( in ); B = _mm256_load_si256( in+1 ); C = _mm256_load_si256( in+2 ); D = _mm256_load_si256( in+3 ); E = _mm256_load_si256( in+4 ); F = _mm256_load_si256( in+5 ); G = _mm256_load_si256( in+6 ); H = _mm256_load_si256( in+7 ); SHA256x8_16ROUNDS( A, B, C, D, E, F, G, H, 0 ); for ( int j = 16; j < 64; j += 16 ) { SHA256x8_MSG_EXPANSION( W ); SHA256x8_16ROUNDS( A, B, C, D, E, F, G, H, j ); } out[0] = _mm256_add_epi32( in[0], A ); out[1] = _mm256_add_epi32( in[1], B ); out[2] = _mm256_add_epi32( in[2], C ); out[3] = _mm256_add_epi32( in[3], D ); out[4] = _mm256_add_epi32( in[4], E ); out[5] = _mm256_add_epi32( in[5], F ); out[6] = _mm256_add_epi32( in[6], G ); out[7] = _mm256_add_epi32( in[7], H ); } // accepts LE input data void sha256_8way_transform_le( __m256i *state_out, const __m256i *data, const __m256i *state_in ) { __m256i W[16]; memcpy_256( W, data, 16 ); SHA256_8WAY_TRANSFORM( state_out, W, state_in ); } // Accepts BE input data, need to bswap void sha256_8way_transform_be( __m256i *state_out, const __m256i *data, const __m256i *state_in ) { __m256i W[16]; mm256_block_bswap_32( W , data ); mm256_block_bswap_32( W+8, data+8 ); SHA256_8WAY_TRANSFORM( state_out, W, state_in ); } // Aggressive prehashing, LE byte order void sha256_8way_prehash_3rounds( __m256i *state_mid, __m256i *X, const __m256i *W, const __m256i *state_in ) { __m256i A, B, C, D, E, F, G, H; X[ 0] = SHA2x_MEXP( W[14], W[ 9], W[ 1], W[ 0] ); X[ 1] = SHA2x_MEXP( W[15], W[10], W[ 2], W[ 1] ); X[ 2] = _mm256_add_epi32( _mm256_add_epi32( SSG2_1x( X[ 0] ), W[11] ), W[ 2] ); X[ 3] = _mm256_add_epi32( _mm256_add_epi32( SSG2_1x( X[ 1] ), W[12] ), SSG2_0x( W[ 4] ) ); X[ 4] = _mm256_add_epi32( _mm256_add_epi32( W[13], SSG2_0x( W[ 5] ) ), W[ 4] ); X[ 5] = _mm256_add_epi32( _mm256_add_epi32( W[14], SSG2_0x( W[ 6] ) ), W[ 5] ); X [6] = _mm256_add_epi32( _mm256_add_epi32( W[15], SSG2_0x( W[ 7] ) ), W[ 6] ); X[ 7] = _mm256_add_epi32( _mm256_add_epi32( X[ 0], SSG2_0x( W[ 8] ) ), W[ 7] ); X[ 8] = _mm256_add_epi32( _mm256_add_epi32( X[ 1], SSG2_0x( W[ 9] ) ), W[ 8] ); X[ 9] = _mm256_add_epi32( SSG2_0x( W[10] ), W[ 9] ); X[10] = _mm256_add_epi32( SSG2_0x( W[11] ), W[10] ); X[11] = _mm256_add_epi32( SSG2_0x( W[12] ), W[11] ); X[12] = _mm256_add_epi32( SSG2_0x( W[13] ), W[12] ); X[13] = _mm256_add_epi32( SSG2_0x( W[14] ), W[13] ); X[14] = _mm256_add_epi32( SSG2_0x( W[15] ), W[14] ); X[15] = _mm256_add_epi32( SSG2_0x( X[ 0] ), W[15] ); A = _mm256_load_si256( state_in ); B = _mm256_load_si256( state_in + 1 ); C = _mm256_load_si256( state_in + 2 ); D = _mm256_load_si256( state_in + 3 ); E = _mm256_load_si256( state_in + 4 ); F = _mm256_load_si256( state_in + 5 ); G = _mm256_load_si256( state_in + 6 ); H = _mm256_load_si256( state_in + 7 ); #if !defined(__AVX512VL__) __m256i X_xor_Y, Y_xor_Z = _mm256_xor_si256( B, C ); #endif SHA2s_8WAY_STEP( A, B, C, D, E, F, G, H, 0, 0 ); SHA2s_8WAY_STEP( H, A, B, C, D, E, F, G, 1, 0 ); SHA2s_8WAY_STEP( G, H, A, B, C, D, E, F, 2, 0 ); _mm256_store_si256( state_mid , A ); _mm256_store_si256( state_mid + 1, B ); _mm256_store_si256( state_mid + 2, C ); _mm256_store_si256( state_mid + 3, D ); _mm256_store_si256( state_mid + 4, E ); _mm256_store_si256( state_mid + 5, F ); _mm256_store_si256( state_mid + 6, G ); _mm256_store_si256( state_mid + 7, H ); } void sha256_8way_final_rounds( __m256i *state_out, const __m256i *data, const __m256i *state_in, const __m256i *state_mid, const __m256i *X ) { __m256i A, B, C, D, E, F, G, H; __m256i W[16]; memcpy_256( W, data, 16 ); A = _mm256_load_si256( state_mid ); B = _mm256_load_si256( state_mid + 1 ); C = _mm256_load_si256( state_mid + 2 ); D = _mm256_load_si256( state_mid + 3 ); E = _mm256_load_si256( state_mid + 4 ); F = _mm256_load_si256( state_mid + 5 ); G = _mm256_load_si256( state_mid + 6 ); H = _mm256_load_si256( state_mid + 7 ); // SHA2s_8WAY_STEP( A, B, C, D, E, F, G, H, 0, 0 ); // SHA2s_8WAY_STEP( H, A, B, C, D, E, F, G, 1, 0 ); // SHA2s_8WAY_STEP( G, H, A, B, C, D, E, F, 2, 0 ); #if !defined(__AVX512VL__) __m256i X_xor_Y, Y_xor_Z = _mm256_xor_si256( G, H ); #endif SHA2s_8WAY_STEP( F, G, H, A, B, C, D, E, 3, 0 ); SHA2s_8WAY_STEP( E, F, G, H, A, B, C, D, 4, 0 ); SHA2s_8WAY_STEP( D, E, F, G, H, A, B, C, 5, 0 ); SHA2s_8WAY_STEP( C, D, E, F, G, H, A, B, 6, 0 ); SHA2s_8WAY_STEP( B, C, D, E, F, G, H, A, 7, 0 ); SHA2s_8WAY_STEP( A, B, C, D, E, F, G, H, 8, 0 ); SHA2s_8WAY_STEP( H, A, B, C, D, E, F, G, 9, 0 ); SHA2s_8WAY_STEP( G, H, A, B, C, D, E, F, 10, 0 ); SHA2s_8WAY_STEP( F, G, H, A, B, C, D, E, 11, 0 ); SHA2s_8WAY_STEP( E, F, G, H, A, B, C, D, 12, 0 ); SHA2s_8WAY_STEP( D, E, F, G, H, A, B, C, 13, 0 ); SHA2s_8WAY_STEP( C, D, E, F, G, H, A, B, 14, 0 ); SHA2s_8WAY_STEP( B, C, D, E, F, G, H, A, 15, 0 ); W[ 0] = X[ 0]; W[ 1] = X[ 1]; W[ 2] = _mm256_add_epi32( X[ 2], SSG2_0x( W[ 3] ) ); W[ 3] = _mm256_add_epi32( X[ 3], W[ 3] ); W[ 4] = _mm256_add_epi32( X[ 4], SSG2_1x( W[ 2] ) ); W[ 5] = _mm256_add_epi32( X[ 5], SSG2_1x( W[ 3] ) ); W[ 6] = _mm256_add_epi32( X[ 6], SSG2_1x( W[ 4] ) ); W[ 7] = _mm256_add_epi32( X[ 7], SSG2_1x( W[ 5] ) ); W[ 8] = _mm256_add_epi32( X[ 8], SSG2_1x( W[ 6] ) ); W[ 9] = _mm256_add_epi32( X[ 9], _mm256_add_epi32( SSG2_1x( W[ 7] ), W[ 2] ) ); W[10] = _mm256_add_epi32( X[10], _mm256_add_epi32( SSG2_1x( W[ 8] ), W[ 3] ) ); W[11] = _mm256_add_epi32( X[11], _mm256_add_epi32( SSG2_1x( W[ 9] ), W[ 4] ) ); W[12] = _mm256_add_epi32( X[12], _mm256_add_epi32( SSG2_1x( W[10] ), W[ 5] ) ); W[13] = _mm256_add_epi32( X[13], _mm256_add_epi32( SSG2_1x( W[11] ), W[ 6] ) ); W[14] = _mm256_add_epi32( X[14], _mm256_add_epi32( SSG2_1x( W[12] ), W[ 7] ) ); W[15] = _mm256_add_epi32( X[15], _mm256_add_epi32( SSG2_1x( W[13] ), W[ 8] ) ); SHA256x8_16ROUNDS( A, B, C, D, E, F, G, H, 16 ); SHA256x8_MSG_EXPANSION( W ); SHA256x8_16ROUNDS( A, B, C, D, E, F, G, H, 32 ); SHA256x8_MSG_EXPANSION( W ); SHA256x8_16ROUNDS( A, B, C, D, E, F, G, H, 48 ); A = _mm256_add_epi32( A, _mm256_load_si256( state_in ) ); B = _mm256_add_epi32( B, _mm256_load_si256( state_in + 1 ) ); C = _mm256_add_epi32( C, _mm256_load_si256( state_in + 2 ) ); D = _mm256_add_epi32( D, _mm256_load_si256( state_in + 3 ) ); E = _mm256_add_epi32( E, _mm256_load_si256( state_in + 4 ) ); F = _mm256_add_epi32( F, _mm256_load_si256( state_in + 5 ) ); G = _mm256_add_epi32( G, _mm256_load_si256( state_in + 6 ) ); H = _mm256_add_epi32( H, _mm256_load_si256( state_in + 7 ) ); _mm256_store_si256( state_out , A ); _mm256_store_si256( state_out + 1, B ); _mm256_store_si256( state_out + 2, C ); _mm256_store_si256( state_out + 3, D ); _mm256_store_si256( state_out + 4, E ); _mm256_store_si256( state_out + 5, F ); _mm256_store_si256( state_out + 6, G ); _mm256_store_si256( state_out + 7, H ); } int sha256_8way_transform_le_short( __m256i *state_out, const __m256i *data, const __m256i *state_in ) { __m256i A, B, C, D, E, F, G, H; __m256i W[16]; memcpy_256( W, data, 16 ); const __m256i H_ = m256_const1_32( 0x136032ED ); A = _mm256_load_si256( state_in ); B = _mm256_load_si256( state_in+1 ); C = _mm256_load_si256( state_in+2 ); D = _mm256_load_si256( state_in+3 ); E = _mm256_load_si256( state_in+4 ); F = _mm256_load_si256( state_in+5 ); G = _mm256_load_si256( state_in+6 ); H = _mm256_load_si256( state_in+7 ); SHA256x8_16ROUNDS( A, B, C, D, E, F, G, H, 0 ); for ( int j = 16; j < 48; j += 16 ) { SHA256x8_MSG_EXPANSION( W ); SHA256x8_16ROUNDS( A, B, C, D, E, F, G, H, j ); } W[ 0] = SHA2x_MEXP( W[14], W[ 9], W[ 1], W[ 0] ); W[ 1] = SHA2x_MEXP( W[15], W[10], W[ 2], W[ 1] ); W[ 2] = SHA2x_MEXP( W[ 0], W[11], W[ 3], W[ 2] ); W[ 3] = SHA2x_MEXP( W[ 1], W[12], W[ 4], W[ 3] ); W[ 4] = SHA2x_MEXP( W[ 2], W[13], W[ 5], W[ 4] ); W[ 5] = SHA2x_MEXP( W[ 3], W[14], W[ 6], W[ 5] ); W[ 6] = SHA2x_MEXP( W[ 4], W[15], W[ 7], W[ 6] ); W[ 7] = SHA2x_MEXP( W[ 5], W[ 0], W[ 8], W[ 7] ); W[ 8] = SHA2x_MEXP( W[ 6], W[ 1], W[ 9], W[ 8] ); W[ 9] = SHA2x_MEXP( W[ 7], W[ 2], W[10], W[ 9] ); W[10] = SHA2x_MEXP( W[ 8], W[ 3], W[11], W[10] ); W[11] = SHA2x_MEXP( W[ 9], W[ 4], W[12], W[11] ); W[12] = SHA2x_MEXP( W[10], W[ 5], W[13], W[12] ); #if !defined(__AVX512VL__) __m256i X_xor_Y, Y_xor_Z = _mm256_xor_si256( B, C ); #endif SHA2s_8WAY_STEP( A, B, C, D, E, F, G, H, 0, 48 ); SHA2s_8WAY_STEP( H, A, B, C, D, E, F, G, 1, 48 ); SHA2s_8WAY_STEP( G, H, A, B, C, D, E, F, 2, 48 ); SHA2s_8WAY_STEP( F, G, H, A, B, C, D, E, 3, 48 ); SHA2s_8WAY_STEP( E, F, G, H, A, B, C, D, 4, 48 ); SHA2s_8WAY_STEP( D, E, F, G, H, A, B, C, 5, 48 ); SHA2s_8WAY_STEP( C, D, E, F, G, H, A, B, 6, 48 ); SHA2s_8WAY_STEP( B, C, D, E, F, G, H, A, 7, 48 ); SHA2s_8WAY_STEP( A, B, C, D, E, F, G, H, 8, 48 ); __m256i T1_57 = _mm256_add_epi32( G, mm256_add4_32( BSG2_1x( D ), CHx( D, E, F ), _mm256_set1_epi32( K256[57] ), W[ 9] ) ); C = _mm256_add_epi32( C, T1_57 ); __m256i T1_58 = _mm256_add_epi32( F, mm256_add4_32( BSG2_1x( C ), CHx( C, D, E ), _mm256_set1_epi32( K256[58] ), W[10] ) ); B = _mm256_add_epi32( B, T1_58 ); __m256i T1_59 = _mm256_add_epi32( E, mm256_add4_32( BSG2_1x( B ), CHx( B, C, D ), _mm256_set1_epi32( K256[59] ), W[11] ) ); A = _mm256_add_epi32( A, T1_59 ); __m256i T1_60 = mm256_add4_32( D, BSG2_1x( A ), CHx( A, B, C ), W[12] ); H = _mm256_add_epi32( H, T1_60 ); if ( _mm256_movemask_ps( (__m256)_mm256_cmpeq_epi32( H, H_ ) ) == 0 ) return 0; __m256i K60 = _mm256_set1_epi32( K256[60] ); H = _mm256_add_epi32( H, K60 ); G = _mm256_add_epi32( T1_57, _mm256_add_epi32( BSG2_0x( H ), MAJx( H, A, B ) ) ); #if !defined(__AVX512VL__) Y_xor_Z = X_xor_Y; #endif F = _mm256_add_epi32( T1_58, _mm256_add_epi32( BSG2_0x( G ), MAJx( G, H, A ) ) ); #if !defined(__AVX512VL__) Y_xor_Z = X_xor_Y; #endif E = _mm256_add_epi32( T1_59, _mm256_add_epi32( BSG2_0x( F ), MAJx( F, G, H ) ) ); #if !defined(__AVX512VL__) Y_xor_Z = X_xor_Y; #endif D = mm256_add4_32( T1_60, BSG2_0x( E ), MAJx( E, F, G ), K60 ); #if !defined(__AVX512VL__) Y_xor_Z = X_xor_Y; #endif W[13] = SHA2x_MEXP( W[11], W[6], W[14], W[13] ); W[14] = SHA2x_MEXP( W[12], W[7], W[15], W[14] ); W[15] = SHA2x_MEXP( W[13], W[8], W[ 0], W[15] ); SHA2s_8WAY_STEP( D, E, F, G, H, A, B, C, 13, 48 ); SHA2s_8WAY_STEP( C, D, E, F, G, H, A, B, 14, 48 ); SHA2s_8WAY_STEP( B, C, D, E, F, G, H, A, 15, 48 ); state_out[0] = _mm256_add_epi32( state_in[0], A ); state_out[1] = _mm256_add_epi32( state_in[1], B ); state_out[2] = _mm256_add_epi32( state_in[2], C ); state_out[3] = _mm256_add_epi32( state_in[3], D ); state_out[4] = _mm256_add_epi32( state_in[4], E ); state_out[5] = _mm256_add_epi32( state_in[5], F ); state_out[6] = _mm256_add_epi32( state_in[6], G ); state_out[7] = _mm256_add_epi32( state_in[7], H ); return 1; } void sha256_8way_init( sha256_8way_context *sc ) { sc->count_high = sc->count_low = 0; sc->val[0] = m256_const1_64( 0x6A09E6676A09E667 ); sc->val[1] = m256_const1_64( 0xBB67AE85BB67AE85 ); sc->val[2] = m256_const1_64( 0x3C6EF3723C6EF372 ); sc->val[3] = m256_const1_64( 0xA54FF53AA54FF53A ); sc->val[4] = m256_const1_64( 0x510E527F510E527F ); sc->val[5] = m256_const1_64( 0x9B05688C9B05688C ); sc->val[6] = m256_const1_64( 0x1F83D9AB1F83D9AB ); sc->val[7] = m256_const1_64( 0x5BE0CD195BE0CD19 ); } // need to handle odd byte length for yespower. // Assume only last update is odd. void sha256_8way_update( sha256_8way_context *sc, const void *data, size_t len ) { __m256i *vdata = (__m256i*)data; size_t ptr; const int buf_size = 64; ptr = (unsigned)sc->count_low & (buf_size - 1U); while ( len > 0 ) { size_t clen; uint32_t clow, clow2; clen = buf_size - ptr; if ( clen > len ) clen = len; memcpy_256( sc->buf + (ptr>>2), vdata, clen>>2 ); vdata = vdata + (clen>>2); ptr += clen; len -= clen; if ( ptr == buf_size ) { sha256_8way_transform_be( sc->val, sc->buf, sc->val ); ptr = 0; } clow = sc->count_low; clow2 = clow + clen; sc->count_low = clow2; if ( clow2 < clow ) sc->count_high++; } } void sha256_8way_close( sha256_8way_context *sc, void *dst ) { unsigned ptr; uint32_t low, high; const int buf_size = 64; const int pad = buf_size - 8; ptr = (unsigned)sc->count_low & (buf_size - 1U); sc->buf[ ptr>>2 ] = m256_const1_64( 0x0000008000000080 ); ptr += 4; if ( ptr > pad ) { memset_zero_256( sc->buf + (ptr>>2), (buf_size - ptr) >> 2 ); sha256_8way_transform_be( sc->val, sc->buf, sc->val ); memset_zero_256( sc->buf, pad >> 2 ); } else memset_zero_256( sc->buf + (ptr>>2), (pad - ptr) >> 2 ); low = sc->count_low; high = (sc->count_high << 3) | (low >> 29); low = low << 3; sc->buf[ pad >> 2 ] = m256_const1_32( bswap_32( high ) ); sc->buf[ ( pad+4 ) >> 2 ] = m256_const1_32( bswap_32( low ) ); sha256_8way_transform_be( sc->val, sc->buf, sc->val ); mm256_block_bswap_32( dst, sc->val ); } void sha256_8way_full( void *dst, const void *data, size_t len ) { sha256_8way_context ctx; sha256_8way_init( &ctx ); sha256_8way_update( &ctx, data, len ); sha256_8way_close( &ctx, dst ); } #if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__) // SHA-256 16 way #define CHx16(X, Y, Z) _mm512_ternarylogic_epi32( X, Y, Z, 0xca ) #define MAJx16(X, Y, Z) _mm512_ternarylogic_epi32( X, Y, Z, 0xe8 ) #define BSG2_0x16(x) mm512_xor3( _mm512_ror_epi32( x, 2 ), \ _mm512_ror_epi32( x, 13 ), \ _mm512_ror_epi32( x, 22 ) ) #define BSG2_1x16(x) mm512_xor3( _mm512_ror_epi32( x, 6 ), \ _mm512_ror_epi32( x, 11 ), \ _mm512_ror_epi32( x, 25 ) ) #define SSG2_0x16(x) mm512_xor3( _mm512_ror_epi32( x, 7 ), \ _mm512_ror_epi32( x, 18 ), \ _mm512_srli_epi32( x, 3 ) ) #define SSG2_1x16(x) mm512_xor3( _mm512_ror_epi32( x, 17 ), \ _mm512_ror_epi32( x, 19 ), \ _mm512_srli_epi32( x, 10 ) ) #define SHA2x16_MEXP( a, b, c, d ) \ mm512_add4_32( SSG2_1x16( a ), b, SSG2_0x16( c ), d ); #define SHA256x16_MSG_EXPANSION( W ) \ W[ 0] = SHA2x16_MEXP( W[14], W[ 9], W[ 1], W[ 0] ); \ W[ 1] = SHA2x16_MEXP( W[15], W[10], W[ 2], W[ 1] ); \ W[ 2] = SHA2x16_MEXP( W[ 0], W[11], W[ 3], W[ 2] ); \ W[ 3] = SHA2x16_MEXP( W[ 1], W[12], W[ 4], W[ 3] ); \ W[ 4] = SHA2x16_MEXP( W[ 2], W[13], W[ 5], W[ 4] ); \ W[ 5] = SHA2x16_MEXP( W[ 3], W[14], W[ 6], W[ 5] ); \ W[ 6] = SHA2x16_MEXP( W[ 4], W[15], W[ 7], W[ 6] ); \ W[ 7] = SHA2x16_MEXP( W[ 5], W[ 0], W[ 8], W[ 7] ); \ W[ 8] = SHA2x16_MEXP( W[ 6], W[ 1], W[ 9], W[ 8] ); \ W[ 9] = SHA2x16_MEXP( W[ 7], W[ 2], W[10], W[ 9] ); \ W[10] = SHA2x16_MEXP( W[ 8], W[ 3], W[11], W[10] ); \ W[11] = SHA2x16_MEXP( W[ 9], W[ 4], W[12], W[11] ); \ W[12] = SHA2x16_MEXP( W[10], W[ 5], W[13], W[12] ); \ W[13] = SHA2x16_MEXP( W[11], W[ 6], W[14], W[13] ); \ W[14] = SHA2x16_MEXP( W[12], W[ 7], W[15], W[14] ); \ W[15] = SHA2x16_MEXP( W[13], W[ 8], W[ 0], W[15] ); #define SHA2s_16WAY_STEP( A, B, C, D, E, F, G, H, i, j ) \ do { \ __m512i T0 = _mm512_add_epi32( _mm512_set1_epi32( K256[(j)+(i)] ), W[i] ); \ __m512i T1 = BSG2_1x16( E ); \ __m512i T2 = BSG2_0x16( A ); \ T0 = _mm512_add_epi32( T0, CHx16( E, F, G ) ); \ T1 = _mm512_add_epi32( T1, H ); \ T2 = _mm512_add_epi32( T2, MAJx16( A, B, C ) ); \ T1 = _mm512_add_epi32( T1, T0 ); \ D = _mm512_add_epi32( D, T1 ); \ H = _mm512_add_epi32( T1, T2 ); \ } while (0) /* #define SHA2s_16WAY_STEP(A, B, C, D, E, F, G, H, i, j) \ do { \ __m512i T1, T2; \ __m512i K = _mm512_set1_epi32( K256[( (j)+(i) )] ); \ T1 = _mm512_add_epi32( H, mm512_add4_32( BSG2_1x16(E), CHx16(E, F, G), \ K, W[i] ) ); \ T2 = _mm512_add_epi32( BSG2_0x16(A), MAJx16(A, B, C) ); \ D = _mm512_add_epi32( D, T1 ); \ H = _mm512_add_epi32( T1, T2 ); \ } while (0) */ #define SHA256x16_16ROUNDS( A, B, C, D, E, F, G, H, j ) \ SHA2s_16WAY_STEP( A, B, C, D, E, F, G, H, 0, j ); \ SHA2s_16WAY_STEP( H, A, B, C, D, E, F, G, 1, j ); \ SHA2s_16WAY_STEP( G, H, A, B, C, D, E, F, 2, j ); \ SHA2s_16WAY_STEP( F, G, H, A, B, C, D, E, 3, j ); \ SHA2s_16WAY_STEP( E, F, G, H, A, B, C, D, 4, j ); \ SHA2s_16WAY_STEP( D, E, F, G, H, A, B, C, 5, j ); \ SHA2s_16WAY_STEP( C, D, E, F, G, H, A, B, 6, j ); \ SHA2s_16WAY_STEP( B, C, D, E, F, G, H, A, 7, j ); \ SHA2s_16WAY_STEP( A, B, C, D, E, F, G, H, 8, j ); \ SHA2s_16WAY_STEP( H, A, B, C, D, E, F, G, 9, j ); \ SHA2s_16WAY_STEP( G, H, A, B, C, D, E, F, 10, j ); \ SHA2s_16WAY_STEP( F, G, H, A, B, C, D, E, 11, j ); \ SHA2s_16WAY_STEP( E, F, G, H, A, B, C, D, 12, j ); \ SHA2s_16WAY_STEP( D, E, F, G, H, A, B, C, 13, j ); \ SHA2s_16WAY_STEP( C, D, E, F, G, H, A, B, 14, j ); \ SHA2s_16WAY_STEP( B, C, D, E, F, G, H, A, 15, j ); static inline void SHA256_16WAY_TRANSFORM( __m512i *out, __m512i *W, const __m512i *in ) \ { __m512i A, B, C, D, E, F, G, H; A = _mm512_load_si512( in ); B = _mm512_load_si512( in+1 ); C = _mm512_load_si512( in+2 ); D = _mm512_load_si512( in+3 ); E = _mm512_load_si512( in+4 ); F = _mm512_load_si512( in+5 ); G = _mm512_load_si512( in+6 ); H = _mm512_load_si512( in+7 ); SHA256x16_16ROUNDS( A, B, C, D, E, F, G, H, 0 ); SHA256x16_MSG_EXPANSION( W ); SHA256x16_16ROUNDS( A, B, C, D, E, F, G, H, 16 ); SHA256x16_MSG_EXPANSION( W ); SHA256x16_16ROUNDS( A, B, C, D, E, F, G, H, 32 ); SHA256x16_MSG_EXPANSION( W ); SHA256x16_16ROUNDS( A, B, C, D, E, F, G, H, 48 ); out[0] = _mm512_add_epi32( in[0], A ); out[1] = _mm512_add_epi32( in[1], B ); out[2] = _mm512_add_epi32( in[2], C ); out[3] = _mm512_add_epi32( in[3], D ); out[4] = _mm512_add_epi32( in[4], E ); out[5] = _mm512_add_epi32( in[5], F ); out[6] = _mm512_add_epi32( in[6], G ); out[7] = _mm512_add_epi32( in[7], H ); } // accepts LE input data void sha256_16way_transform_le( __m512i *state_out, const __m512i *data, const __m512i *state_in ) { __m512i W[16]; memcpy_512( W, data, 16 ); SHA256_16WAY_TRANSFORM( state_out, W, state_in ); } // Accepts BE input data, need to bswap void sha256_16way_transform_be( __m512i *state_out, const __m512i *data, const __m512i *state_in ) { __m512i W[16]; mm512_block_bswap_32( W , data ); mm512_block_bswap_32( W+8, data+8 ); SHA256_16WAY_TRANSFORM( state_out, W, state_in ); } // Aggressive prehashing, LE byte order void sha256_16way_prehash_3rounds( __m512i *state_mid, __m512i *X, const __m512i *W, const __m512i *state_in ) { __m512i A, B, C, D, E, F, G, H; // precalculate constant part msg expansion for second iteration. X[ 0] = SHA2x16_MEXP( W[14], W[ 9], W[ 1], W[ 0] ); X[ 1] = SHA2x16_MEXP( W[15], W[10], W[ 2], W[ 1] ); X[ 2] = _mm512_add_epi32( _mm512_add_epi32( SSG2_1x16( X[ 0] ), W[11] ), W[ 2] ); X[ 3] = _mm512_add_epi32( _mm512_add_epi32( SSG2_1x16( X[ 1] ), W[12] ), SSG2_0x16( W[ 4] ) ); X[ 4] = _mm512_add_epi32( _mm512_add_epi32( W[13], SSG2_0x16( W[ 5] ) ), W[ 4] ); X[ 5] = _mm512_add_epi32( _mm512_add_epi32( W[14], SSG2_0x16( W[ 6] ) ), W[ 5] ); X [6] = _mm512_add_epi32( _mm512_add_epi32( W[15], SSG2_0x16( W[ 7] ) ), W[ 6] ); X[ 7] = _mm512_add_epi32( _mm512_add_epi32( X[ 0], SSG2_0x16( W[ 8] ) ), W[ 7] ); X[ 8] = _mm512_add_epi32( _mm512_add_epi32( X[ 1], SSG2_0x16( W[ 9] ) ), W[ 8] ); X[ 9] = _mm512_add_epi32( SSG2_0x16( W[10] ), W[ 9] ); X[10] = _mm512_add_epi32( SSG2_0x16( W[11] ), W[10] ); X[11] = _mm512_add_epi32( SSG2_0x16( W[12] ), W[11] ); X[12] = _mm512_add_epi32( SSG2_0x16( W[13] ), W[12] ); X[13] = _mm512_add_epi32( SSG2_0x16( W[14] ), W[13] ); X[14] = _mm512_add_epi32( SSG2_0x16( W[15] ), W[14] ); X[15] = _mm512_add_epi32( SSG2_0x16( X[ 0] ), W[15] ); A = _mm512_load_si512( state_in ); B = _mm512_load_si512( state_in + 1 ); C = _mm512_load_si512( state_in + 2 ); D = _mm512_load_si512( state_in + 3 ); E = _mm512_load_si512( state_in + 4 ); F = _mm512_load_si512( state_in + 5 ); G = _mm512_load_si512( state_in + 6 ); H = _mm512_load_si512( state_in + 7 ); SHA2s_16WAY_STEP( A, B, C, D, E, F, G, H, 0, 0 ); SHA2s_16WAY_STEP( H, A, B, C, D, E, F, G, 1, 0 ); SHA2s_16WAY_STEP( G, H, A, B, C, D, E, F, 2, 0 ); _mm512_store_si512( state_mid , A ); _mm512_store_si512( state_mid + 1, B ); _mm512_store_si512( state_mid + 2, C ); _mm512_store_si512( state_mid + 3, D ); _mm512_store_si512( state_mid + 4, E ); _mm512_store_si512( state_mid + 5, F ); _mm512_store_si512( state_mid + 6, G ); _mm512_store_si512( state_mid + 7, H ); } void sha256_16way_final_rounds( __m512i *state_out, const __m512i *data, const __m512i *state_in, const __m512i *state_mid, const __m512i *X ) { __m512i A, B, C, D, E, F, G, H; __m512i W[16]; memcpy_512( W, data, 16 ); A = _mm512_load_si512( state_mid ); B = _mm512_load_si512( state_mid + 1 ); C = _mm512_load_si512( state_mid + 2 ); D = _mm512_load_si512( state_mid + 3 ); E = _mm512_load_si512( state_mid + 4 ); F = _mm512_load_si512( state_mid + 5 ); G = _mm512_load_si512( state_mid + 6 ); H = _mm512_load_si512( state_mid + 7 ); SHA2s_16WAY_STEP( F, G, H, A, B, C, D, E, 3, 0 ); SHA2s_16WAY_STEP( E, F, G, H, A, B, C, D, 4, 0 ); SHA2s_16WAY_STEP( D, E, F, G, H, A, B, C, 5, 0 ); SHA2s_16WAY_STEP( C, D, E, F, G, H, A, B, 6, 0 ); SHA2s_16WAY_STEP( B, C, D, E, F, G, H, A, 7, 0 ); SHA2s_16WAY_STEP( A, B, C, D, E, F, G, H, 8, 0 ); SHA2s_16WAY_STEP( H, A, B, C, D, E, F, G, 9, 0 ); SHA2s_16WAY_STEP( G, H, A, B, C, D, E, F, 10, 0 ); SHA2s_16WAY_STEP( F, G, H, A, B, C, D, E, 11, 0 ); SHA2s_16WAY_STEP( E, F, G, H, A, B, C, D, 12, 0 ); SHA2s_16WAY_STEP( D, E, F, G, H, A, B, C, 13, 0 ); SHA2s_16WAY_STEP( C, D, E, F, G, H, A, B, 14, 0 ); SHA2s_16WAY_STEP( B, C, D, E, F, G, H, A, 15, 0 ); // update precalculated msg expansion with new nonce: W[3]. W[ 0] = X[ 0]; W[ 1] = X[ 1]; W[ 2] = _mm512_add_epi32( X[ 2], SSG2_0x16( W[ 3] ) ); W[ 3] = _mm512_add_epi32( X[ 3], W[ 3] ); W[ 4] = _mm512_add_epi32( X[ 4], SSG2_1x16( W[ 2] ) ); W[ 5] = _mm512_add_epi32( X[ 5], SSG2_1x16( W[ 3] ) ); W[ 6] = _mm512_add_epi32( X[ 6], SSG2_1x16( W[ 4] ) ); W[ 7] = _mm512_add_epi32( X[ 7], SSG2_1x16( W[ 5] ) ); W[ 8] = _mm512_add_epi32( X[ 8], SSG2_1x16( W[ 6] ) ); W[ 9] = _mm512_add_epi32( X[ 9], _mm512_add_epi32( SSG2_1x16( W[ 7] ), W[ 2] ) ); W[10] = _mm512_add_epi32( X[10], _mm512_add_epi32( SSG2_1x16( W[ 8] ), W[ 3] ) ); W[11] = _mm512_add_epi32( X[11], _mm512_add_epi32( SSG2_1x16( W[ 9] ), W[ 4] ) ); W[12] = _mm512_add_epi32( X[12], _mm512_add_epi32( SSG2_1x16( W[10] ), W[ 5] ) ); W[13] = _mm512_add_epi32( X[13], _mm512_add_epi32( SSG2_1x16( W[11] ), W[ 6] ) ); W[14] = _mm512_add_epi32( X[14], _mm512_add_epi32( SSG2_1x16( W[12] ), W[ 7] ) ); W[15] = _mm512_add_epi32( X[15], _mm512_add_epi32( SSG2_1x16( W[13] ), W[ 8] ) ); SHA256x16_16ROUNDS( A, B, C, D, E, F, G, H, 16 ); SHA256x16_MSG_EXPANSION( W ); SHA256x16_16ROUNDS( A, B, C, D, E, F, G, H, 32 ); SHA256x16_MSG_EXPANSION( W ); SHA256x16_16ROUNDS( A, B, C, D, E, F, G, H, 48 ); A = _mm512_add_epi32( A, _mm512_load_si512( state_in ) ); B = _mm512_add_epi32( B, _mm512_load_si512( state_in + 1 ) ); C = _mm512_add_epi32( C, _mm512_load_si512( state_in + 2 ) ); D = _mm512_add_epi32( D, _mm512_load_si512( state_in + 3 ) ); E = _mm512_add_epi32( E, _mm512_load_si512( state_in + 4 ) ); F = _mm512_add_epi32( F, _mm512_load_si512( state_in + 5 ) ); G = _mm512_add_epi32( G, _mm512_load_si512( state_in + 6 ) ); H = _mm512_add_epi32( H, _mm512_load_si512( state_in + 7 ) ); _mm512_store_si512( state_out , A ); _mm512_store_si512( state_out + 1, B ); _mm512_store_si512( state_out + 2, C ); _mm512_store_si512( state_out + 3, D ); _mm512_store_si512( state_out + 4, E ); _mm512_store_si512( state_out + 5, F ); _mm512_store_si512( state_out + 6, G ); _mm512_store_si512( state_out + 7, H ); } // returns 0 if hash aborted early and invalid. int sha256_16way_transform_le_short( __m512i *state_out, const __m512i *data, const __m512i *state_in ) { __m512i A, B, C, D, E, F, G, H; __m512i W[16]; memcpy_512( W, data, 16 ); // Value for H at round 60, before adding K, to produce valid final hash //where H == 0. // H_ = -( H256[7] + K256[60] ); const __m512i H_ = m512_const1_32( 0x136032ED ); A = _mm512_load_si512( state_in ); B = _mm512_load_si512( state_in+1 ); C = _mm512_load_si512( state_in+2 ); D = _mm512_load_si512( state_in+3 ); E = _mm512_load_si512( state_in+4 ); F = _mm512_load_si512( state_in+5 ); G = _mm512_load_si512( state_in+6 ); H = _mm512_load_si512( state_in+7 ); SHA256x16_16ROUNDS( A, B, C, D, E, F, G, H, 0 ); SHA256x16_MSG_EXPANSION( W ); SHA256x16_16ROUNDS( A, B, C, D, E, F, G, H, 16 ); SHA256x16_MSG_EXPANSION( W ); SHA256x16_16ROUNDS( A, B, C, D, E, F, G, H, 32 ); W[ 0] = SHA2x16_MEXP( W[14], W[ 9], W[ 1], W[ 0] ); W[ 1] = SHA2x16_MEXP( W[15], W[10], W[ 2], W[ 1] ); W[ 2] = SHA2x16_MEXP( W[ 0], W[11], W[ 3], W[ 2] ); W[ 3] = SHA2x16_MEXP( W[ 1], W[12], W[ 4], W[ 3] ); W[ 4] = SHA2x16_MEXP( W[ 2], W[13], W[ 5], W[ 4] ); W[ 5] = SHA2x16_MEXP( W[ 3], W[14], W[ 6], W[ 5] ); W[ 6] = SHA2x16_MEXP( W[ 4], W[15], W[ 7], W[ 6] ); W[ 7] = SHA2x16_MEXP( W[ 5], W[ 0], W[ 8], W[ 7] ); W[ 8] = SHA2x16_MEXP( W[ 6], W[ 1], W[ 9], W[ 8] ); W[ 9] = SHA2x16_MEXP( W[ 7], W[ 2], W[10], W[ 9] ); W[10] = SHA2x16_MEXP( W[ 8], W[ 3], W[11], W[10] ); W[11] = SHA2x16_MEXP( W[ 9], W[ 4], W[12], W[11] ); W[12] = SHA2x16_MEXP( W[10], W[ 5], W[13], W[12] ); // Rounds 48 to 56 SHA2s_16WAY_STEP( A, B, C, D, E, F, G, H, 0, 48 ); SHA2s_16WAY_STEP( H, A, B, C, D, E, F, G, 1, 48 ); SHA2s_16WAY_STEP( G, H, A, B, C, D, E, F, 2, 48 ); SHA2s_16WAY_STEP( F, G, H, A, B, C, D, E, 3, 48 ); SHA2s_16WAY_STEP( E, F, G, H, A, B, C, D, 4, 48 ); SHA2s_16WAY_STEP( D, E, F, G, H, A, B, C, 5, 48 ); SHA2s_16WAY_STEP( C, D, E, F, G, H, A, B, 6, 48 ); SHA2s_16WAY_STEP( B, C, D, E, F, G, H, A, 7, 48 ); SHA2s_16WAY_STEP( A, B, C, D, E, F, G, H, 8, 48 ); // Rounds 57 to 60 part 1 __m512i T1_57 = _mm512_add_epi32( _mm512_set1_epi32( K256[57] ), mm512_add4_32( BSG2_1x16( D ), CHx16( D, E, F ), W[ 9], G ) ); C = _mm512_add_epi32( C, T1_57 ); __m512i T1_58 = _mm512_add_epi32( _mm512_set1_epi32( K256[58] ), mm512_add4_32( BSG2_1x16( C ), CHx16( C, D, E ), W[10], F ) ); B = _mm512_add_epi32( B, T1_58 ); __m512i T1_59 = _mm512_add_epi32( _mm512_set1_epi32( K256[59] ), mm512_add4_32( BSG2_1x16( B ), CHx16( B, C, D ), W[11], E ) ); A = _mm512_add_epi32( A, T1_59 ); __m512i T1_60 = mm512_add4_32( BSG2_1x16( A ), CHx16( A, B, C ), W[12], D ); H = _mm512_add_epi32( H, T1_60 ); // give up? if ( _mm512_cmpeq_epi32_mask( H, H_ ) == 0 ) return 0; // Rounds 57 to 60 part 2 __m512i K60 = _mm512_set1_epi32( K256[60] ); H = _mm512_add_epi32( H, K60 ); G = _mm512_add_epi32( T1_57, _mm512_add_epi32( BSG2_0x16( H ), MAJx16( H, A, B ) ) ); F = _mm512_add_epi32( T1_58, _mm512_add_epi32( BSG2_0x16( G ), MAJx16( G, H, A ) ) ); E = _mm512_add_epi32( T1_59, _mm512_add_epi32( BSG2_0x16( F ), MAJx16( F, G, H ) ) ); D = mm512_add4_32( T1_60, BSG2_0x16( E ), MAJx16( E, F, G ), K60 ); // Rounds 61 to 63 W[13] = SHA2x16_MEXP( W[11], W[ 6], W[14], W[13] ); W[14] = SHA2x16_MEXP( W[12], W[ 7], W[15], W[14] ); W[15] = SHA2x16_MEXP( W[13], W[ 8], W[ 0], W[15] ); SHA2s_16WAY_STEP( D, E, F, G, H, A, B, C, 13, 48 ); SHA2s_16WAY_STEP( C, D, E, F, G, H, A, B, 14, 48 ); SHA2s_16WAY_STEP( B, C, D, E, F, G, H, A, 15, 48 ); state_out[0] = _mm512_add_epi32( state_in[0], A ); state_out[1] = _mm512_add_epi32( state_in[1], B ); state_out[2] = _mm512_add_epi32( state_in[2], C ); state_out[3] = _mm512_add_epi32( state_in[3], D ); state_out[4] = _mm512_add_epi32( state_in[4], E ); state_out[5] = _mm512_add_epi32( state_in[5], F ); state_out[6] = _mm512_add_epi32( state_in[6], G ); state_out[7] = _mm512_add_epi32( state_in[7], H ); return 1; } void sha256_16way_init( sha256_16way_context *sc ) { sc->count_high = sc->count_low = 0; sc->val[0] = m512_const1_64( 0x6A09E6676A09E667 ); sc->val[1] = m512_const1_64( 0xBB67AE85BB67AE85 ); sc->val[2] = m512_const1_64( 0x3C6EF3723C6EF372 ); sc->val[3] = m512_const1_64( 0xA54FF53AA54FF53A ); sc->val[4] = m512_const1_64( 0x510E527F510E527F ); sc->val[5] = m512_const1_64( 0x9B05688C9B05688C ); sc->val[6] = m512_const1_64( 0x1F83D9AB1F83D9AB ); sc->val[7] = m512_const1_64( 0x5BE0CD195BE0CD19 ); } void sha256_16way_update( sha256_16way_context *sc, const void *data, size_t len ) { __m512i *vdata = (__m512i*)data; size_t ptr; const int buf_size = 64; ptr = (unsigned)sc->count_low & (buf_size - 1U); while ( len > 0 ) { size_t clen; uint32_t clow, clow2; clen = buf_size - ptr; if ( clen > len ) clen = len; memcpy_512( sc->buf + (ptr>>2), vdata, clen>>2 ); vdata = vdata + (clen>>2); ptr += clen; len -= clen; if ( ptr == buf_size ) { sha256_16way_transform_be( sc->val, sc->buf, sc->val ); ptr = 0; } clow = sc->count_low; clow2 = clow + clen; sc->count_low = clow2; if ( clow2 < clow ) sc->count_high++; } } void sha256_16way_close( sha256_16way_context *sc, void *dst ) { unsigned ptr; uint32_t low, high; const int buf_size = 64; const int pad = buf_size - 8; ptr = (unsigned)sc->count_low & (buf_size - 1U); sc->buf[ ptr>>2 ] = m512_const1_64( 0x0000008000000080 ); ptr += 4; if ( ptr > pad ) { memset_zero_512( sc->buf + (ptr>>2), (buf_size - ptr) >> 2 ); sha256_16way_transform_be( sc->val, sc->buf, sc->val ); memset_zero_512( sc->buf, pad >> 2 ); } else memset_zero_512( sc->buf + (ptr>>2), (pad - ptr) >> 2 ); low = sc->count_low; high = (sc->count_high << 3) | (low >> 29); low = low << 3; sc->buf[ pad >> 2 ] = m512_const1_32( bswap_32( high ) ); sc->buf[ ( pad+4 ) >> 2 ] = m512_const1_32( bswap_32( low ) ); sha256_16way_transform_be( sc->val, sc->buf, sc->val ); mm512_block_bswap_32( dst, sc->val ); } void sha256_16way_full( void *dst, const void *data, size_t len ) { sha256_16way_context ctx; sha256_16way_init( &ctx ); sha256_16way_update( &ctx, data, len ); sha256_16way_close( &ctx, dst ); } #endif // AVX512 #endif // __AVX2__ #endif // __SSE2__