Compare commits

...

3 Commits

Author SHA1 Message Date
Jay D Dee
40039386a0 v3.10.0 2019-12-03 12:26:11 -05:00
Jay D Dee
91ec6f1771 v3.9.11 2019-11-26 09:22:03 -05:00
Jay D Dee
a52c5eccf7 v3.9.10 2019-11-22 20:29:18 -05:00
100 changed files with 12876 additions and 3513 deletions

View File

@@ -24,18 +24,10 @@ be installed manually. There may be others, read the error messages they
will give a clue as to the missing package.
The following command should install everything you need on Debian based
distributions such as Ubuntu:
distributions such as Ubuntu. Fedora and other distributions may have similar
but different package names.
sudo apt-get install build-essential libssl-dev libcurl4-openssl-dev libjansson-dev libgmp-dev automake zlib1g-dev
build-essential (Development Tools package group on Fedora)
automake
libjansson-dev
libgmp-dev
libcurl4-openssl-dev
libssl-dev
lib-thread
zlib1g-dev
sudo apt-get install build-essential libssl-dev libcurl4-openssl-dev libjansson-dev libgmp-dev zlib1g-dev
SHA support on AMD Ryzen CPUs requires gcc version 5 or higher and
openssl 1.1.0e or higher. Add one of the following, depending on the

View File

@@ -22,14 +22,13 @@ Step by step...
Refer to Linux compile instructions and install required packages.
Additionally, install mingw-64.
Additionally, install mingw-w64.
sudo apt-get install mingw-w64
2. Create a local library directory for packages to be compiled in the next
step. Recommended location is $HOME/usr/lib/
step. Suggested location is $HOME/usr/lib/
3. Download and build other packages for mingw that don't have a mingw64
version available in the repositories.

View File

@@ -117,6 +117,7 @@ cpuminer_SOURCES = \
algo/keccak/keccak-4way.c\
algo/keccak/keccak-gate.c \
algo/keccak/sse2/keccak.c \
algo/lanehash/lane.c \
algo/luffa/sph_luffa.c \
algo/luffa/luffa.c \
algo/luffa/luffa_for_sse2.c \
@@ -173,7 +174,6 @@ cpuminer_SOURCES = \
algo/sha/sph_sha2big.c \
algo/sha/sha256-hash-4way.c \
algo/sha/sha512-hash-4way.c \
algo/sha/sha256_hash_11way.c \
algo/sha/sha2.c \
algo/sha/sha256t-gate.c \
algo/sha/sha256t-4way.c \
@@ -197,9 +197,9 @@ cpuminer_SOURCES = \
algo/skein/skein-gate.c \
algo/skein/skein2.c \
algo/skein/skein2-4way.c \
algo/skein/skein2-gate.c \
algo/sm3/sm3.c \
algo/sm3/sm3-hash-4way.c \
algo/swifftx/swifftx.c \
algo/tiger/sph_tiger.c \
algo/whirlpool/sph_whirlpool.c \
algo/whirlpool/whirlpool-hash-4way.c \
@@ -279,6 +279,11 @@ cpuminer_SOURCES = \
algo/x17/sonoa-4way.c \
algo/x17/sonoa.c \
algo/x20/x20r.c \
algo/x22/x22i-4way.c \
algo/x22/x22i.c \
algo/x22/x22i-gate.c \
algo/x22/x25x.c \
algo/x22/x25x-4way.c \
algo/yescrypt/yescrypt.c \
algo/yescrypt/sha256_Y.c \
algo/yescrypt/yescrypt-best.c \

View File

@@ -129,6 +129,8 @@ Supported Algorithms
x16s Pigeoncoin (PGN)
x17
x21s
x22i
x25x
xevan Bitsend (BSD)
yescrypt Globalboost-Y (BSTY)
yescryptr8 BitZeny (ZNY)

View File

@@ -29,6 +29,7 @@ cpuminer-sse2.exe "-msse2" Core2, Nehalem
cpuminer-aes-sse42.exe "-march=westmere" Westmere
cpuminer-avx.exe "-march=corei7-avx" Sandy-Ivybridge
cpuminer-avx2.exe "-march=core-avx2" Haswell, Sky-Kaby-Coffeelake
cpuminer-avx512.exe "-march=skylake-avx512" Skylake-X, Cascadelake-X
cpuminer-zen "-march=znver1" AMD Ryzen, Threadripper
If you like this software feel free to donate:

View File

@@ -31,6 +31,36 @@ FreeBSD YMMV.
Change Log
----------
v3.10.0
AVX-512 is now supported on selected algos, Windows binary is now available.
AVX512 optimizations are available for argon2d, blake2s, keccak, keccakc,
skein & skein2.
Fixed CPU temperature for some CPU models (Linux only).
Fixed a bug that caused some lanes not to submit shares.
Fixed some previously undetected buffer overflows.
Lyra2rev2 3% faster SSE2 and AVX2.
Added "-fno-asynchronous-unwind-tables" to AVX512 build acript for Windows
to fix known mingw issue.
Changed AVX2 build script to explicitly add AES to address change in
behaviour in GCC 9.
v3.9.11
Added x22i & x25x algos.
Blake2s 2% faster AVX2 with Intel CPU, slower with Ryzen v1, v2 ?
v3.9.10
Faster X* algos with AVX2.
Small improvements to summary stats report.
v3.9.9.1
Fixed a day1 bug that could cause the miner to idle for up to 2 minutes

View File

@@ -238,6 +238,8 @@ bool register_algo_gate( int algo, algo_gate_t *gate )
case ALGO_X16S: register_x16s_algo ( gate ); break;
case ALGO_X17: register_x17_algo ( gate ); break;
case ALGO_X21S: register_x21s_algo ( gate ); break;
case ALGO_X22I: register_x22i_algo ( gate ); break;
case ALGO_X25X: register_x25x_algo ( gate ); break;
case ALGO_XEVAN: register_xevan_algo ( gate ); break;
/* case ALGO_YESCRYPT: register_yescrypt_05_algo ( gate ); break;
case ALGO_YESCRYPTR8: register_yescryptr8_05_algo ( gate ); break;

View File

@@ -118,25 +118,55 @@ void ( *hash ) ( void*, const void*, uint32_t ) ;
void ( *hash_suw ) ( void*, const void* );
//optional, safe to use default in most cases
// Allocate thread local buffers and other initialization specific to miner
// threads.
bool ( *miner_thread_init ) ( int );
// Generate global blockheader from stratum data.
void ( *stratum_gen_work ) ( struct stratum_ctx*, struct work* );
// Get thread local copy of blockheader with unique nonce.
void ( *get_new_work ) ( struct work*, struct work*, int, uint32_t*,
bool );
// Return pointer to nonce in blockheader.
uint32_t *( *get_nonceptr ) ( uint32_t* );
void ( *decode_extra_data ) ( struct work*, uint64_t* );
// Decode getwork blockheader
bool ( *work_decode ) ( const json_t*, struct work* );
// Extra getwork data
void ( *decode_extra_data ) ( struct work*, uint64_t* );
bool ( *submit_getwork_result ) ( CURL*, struct work* );
void ( *gen_merkle_root ) ( char*, struct stratum_ctx* );
// Increment extranonce
void ( *build_extraheader ) ( struct work*, struct stratum_ctx* );
void ( *build_block_header ) ( struct work*, uint32_t, uint32_t*,
uint32_t*, uint32_t, uint32_t );
// Build mining.submit message
void ( *build_stratum_request ) ( char*, struct work*, struct stratum_ctx* );
char* ( *malloc_txs_request ) ( struct work* );
// Big or little
void ( *set_work_data_endian ) ( struct work* );
double ( *calc_network_diff ) ( struct work* );
// Wait for first work
bool ( *ready_to_mine ) ( struct work*, struct stratum_ctx*, int );
void ( *resync_threads ) ( struct work* );
// Diverge mining threads
bool ( *do_this_thread ) ( int );
// After do_this_thread
void ( *resync_threads ) ( struct work* );
json_t* (*longpoll_rpc_call) ( CURL*, int*, char* );
bool ( *stratum_handle_response )( json_t* );
set_t optimizations;

View File

@@ -59,7 +59,6 @@ extern "C"{
typedef struct {
unsigned char buf[64<<2];
uint32_t H[8<<2];
uint32_t S[4<<2];
// __m128i buf[16] __attribute__ ((aligned (64)));
// __m128i H[8];
// __m128i S[4];
@@ -93,7 +92,6 @@ void blake256r8_4way_close(void *cc, void *dst);
typedef struct {
__m256i buf[16] __attribute__ ((aligned (64)));
__m256i H[8];
__m256i S[4];
size_t ptr;
sph_u32 T0, T1;
int rounds; // 14 for blake, 8 for blakecoin & vanilla

View File

@@ -304,16 +304,17 @@ static const sph_u32 CS[16] = {
#endif
// Blake-256 4 way
#define GS_4WAY( m0, m1, c0, c1, a, b, c, d ) \
do { \
a = _mm_add_epi32( _mm_add_epi32( _mm_xor_si128( \
_mm_set1_epi32( c1 ), m0 ), b ), a ); \
a = _mm_add_epi32( _mm_add_epi32( a, b ), \
_mm_xor_si128( _mm_set1_epi32( c1 ), m0 ) ); \
d = mm128_ror_32( _mm_xor_si128( d, a ), 16 ); \
c = _mm_add_epi32( c, d ); \
b = mm128_ror_32( _mm_xor_si128( b, c ), 12 ); \
a = _mm_add_epi32( _mm_add_epi32( _mm_xor_si128( \
_mm_set1_epi32( c0 ), m1 ), b ), a ); \
a = _mm_add_epi32( _mm_add_epi32( a, b ), \
_mm_xor_si128( _mm_set1_epi32( c0 ), m1 ) ); \
d = mm128_ror_32( _mm_xor_si128( d, a ), 8 ); \
c = _mm_add_epi32( c, d ); \
b = mm128_ror_32( _mm_xor_si128( b, c ), 7 ); \
@@ -321,7 +322,8 @@ do { \
#if SPH_COMPACT_BLAKE_32
// Blake-256 4 way
// Not used
#if 0
#define ROUND_S_4WAY(r) do { \
GS_4WAY(M[sigma[r][0x0]], M[sigma[r][0x1]], \
@@ -342,6 +344,8 @@ do { \
CS[sigma[r][0xE]], CS[sigma[r][0xF]], V3, V4, V9, VE); \
} while (0)
#endif
#else
#define ROUND_S_4WAY(r) do { \
@@ -359,7 +363,6 @@ do { \
#define DECL_STATE32_4WAY \
__m128i H0, H1, H2, H3, H4, H5, H6, H7; \
__m128i S0, S1, S2, S3; \
uint32_t T0, T1;
#define READ_STATE32_4WAY(state) do { \
@@ -371,10 +374,6 @@ do { \
H5 = casti_m128i( state->H, 5 ); \
H6 = casti_m128i( state->H, 6 ); \
H7 = casti_m128i( state->H, 7 ); \
S0 = casti_m128i( state->S, 0 ); \
S1 = casti_m128i( state->S, 1 ); \
S2 = casti_m128i( state->S, 2 ); \
S3 = casti_m128i( state->S, 3 ); \
T0 = (state)->T0; \
T1 = (state)->T1; \
} while (0)
@@ -388,17 +387,13 @@ do { \
casti_m128i( state->H, 5 ) = H5; \
casti_m128i( state->H, 6 ) = H6; \
casti_m128i( state->H, 7 ) = H7; \
casti_m128i( state->S, 0 ) = S0; \
casti_m128i( state->S, 1 ) = S1; \
casti_m128i( state->S, 2 ) = S2; \
casti_m128i( state->S, 3 ) = S3; \
(state)->T0 = T0; \
(state)->T1 = T1; \
} while (0)
#if SPH_COMPACT_BLAKE_32
// not used
#if 0
#define COMPRESS32_4WAY( rounds ) do { \
__m128i M[16]; \
__m128i V0, V1, V2, V3, V4, V5, V6, V7; \
@@ -441,6 +436,7 @@ do { \
H7 = _mm_xor_si128( _mm_xor_si128( \
_mm_xor_si128( S3, V7 ), VF ), H7 ); \
} while (0)
#endif
#else
@@ -508,10 +504,10 @@ do { \
V5 = H5; \
V6 = H6; \
V7 = H7; \
V8 = _mm_xor_si128( S0, m128_const1_64( 0x243F6A88243F6A88 ) ); \
V9 = _mm_xor_si128( S1, m128_const1_64( 0x85A308D385A308D3 ) ); \
VA = _mm_xor_si128( S2, m128_const1_64( 0x13198A2E13198A2E ) ); \
VB = _mm_xor_si128( S3, m128_const1_64( 0x0370734403707344 ) ); \
V8 = m128_const1_64( 0x243F6A88243F6A88 ); \
V9 = m128_const1_64( 0x85A308D385A308D3 ); \
VA = m128_const1_64( 0x13198A2E13198A2E ); \
VB = m128_const1_64( 0x0370734403707344 ); \
VC = _mm_xor_si128( _mm_set1_epi32( T0 ), \
m128_const1_64( 0xA4093822A4093822 ) ); \
VD = _mm_xor_si128( _mm_set1_epi32( T0 ), \
@@ -538,14 +534,14 @@ do { \
ROUND_S_4WAY(2); \
ROUND_S_4WAY(3); \
} \
H0 = mm128_xor4( V8, V0, S0, H0 ); \
H1 = mm128_xor4( V9, V1, S1, H1 ); \
H2 = mm128_xor4( VA, V2, S2, H2 ); \
H3 = mm128_xor4( VB, V3, S3, H3 ); \
H4 = mm128_xor4( VC, V4, S0, H4 ); \
H5 = mm128_xor4( VD, V5, S1, H5 ); \
H6 = mm128_xor4( VE, V6, S2, H6 ); \
H7 = mm128_xor4( VF, V7, S3, H7 ); \
H0 = _mm_xor_si128( _mm_xor_si128( V8, V0 ), H0 ); \
H1 = _mm_xor_si128( _mm_xor_si128( V9, V1 ), H1 ); \
H2 = _mm_xor_si128( _mm_xor_si128( VA, V2 ), H2 ); \
H3 = _mm_xor_si128( _mm_xor_si128( VB, V3 ), H3 ); \
H4 = _mm_xor_si128( _mm_xor_si128( VC, V4 ), H4 ); \
H5 = _mm_xor_si128( _mm_xor_si128( VD, V5 ), H5 ); \
H6 = _mm_xor_si128( _mm_xor_si128( VE, V6 ), H6 ); \
H7 = _mm_xor_si128( _mm_xor_si128( VF, V7 ), H7 ); \
} while (0)
#endif
@@ -556,13 +552,13 @@ do { \
#define GS_8WAY( m0, m1, c0, c1, a, b, c, d ) \
do { \
a = _mm256_add_epi32( _mm256_add_epi32( _mm256_xor_si256( \
_mm256_set1_epi32( c1 ), m0 ), b ), a ); \
a = _mm256_add_epi32( _mm256_add_epi32( a, b ), \
_mm256_xor_si256( _mm256_set1_epi32( c1 ), m0 ) ); \
d = mm256_ror_32( _mm256_xor_si256( d, a ), 16 ); \
c = _mm256_add_epi32( c, d ); \
b = mm256_ror_32( _mm256_xor_si256( b, c ), 12 ); \
a = _mm256_add_epi32( _mm256_add_epi32( _mm256_xor_si256( \
_mm256_set1_epi32( c0 ), m1 ), b ), a ); \
a = _mm256_add_epi32( _mm256_add_epi32( a, b ), \
_mm256_xor_si256( _mm256_set1_epi32( c0 ), m1 ) ); \
d = mm256_ror_32( _mm256_xor_si256( d, a ), 8 ); \
c = _mm256_add_epi32( c, d ); \
b = mm256_ror_32( _mm256_xor_si256( b, c ), 7 ); \
@@ -581,7 +577,6 @@ do { \
#define DECL_STATE32_8WAY \
__m256i H0, H1, H2, H3, H4, H5, H6, H7; \
__m256i S0, S1, S2, S3; \
sph_u32 T0, T1;
#define READ_STATE32_8WAY(state) \
@@ -594,10 +589,6 @@ do { \
H5 = (state)->H[5]; \
H6 = (state)->H[6]; \
H7 = (state)->H[7]; \
S0 = (state)->S[0]; \
S1 = (state)->S[1]; \
S2 = (state)->S[2]; \
S3 = (state)->S[3]; \
T0 = (state)->T0; \
T1 = (state)->T1; \
} while (0)
@@ -612,10 +603,6 @@ do { \
(state)->H[5] = H5; \
(state)->H[6] = H6; \
(state)->H[7] = H7; \
(state)->S[0] = S0; \
(state)->S[1] = S1; \
(state)->S[2] = S2; \
(state)->S[3] = S3; \
(state)->T0 = T0; \
(state)->T1 = T1; \
} while (0)
@@ -635,10 +622,10 @@ do { \
V5 = H5; \
V6 = H6; \
V7 = H7; \
V8 = _mm256_xor_si256( S0, m256_const1_64( 0x243F6A88243F6A88 ) ); \
V9 = _mm256_xor_si256( S1, m256_const1_64( 0x85A308D385A308D3 ) ); \
VA = _mm256_xor_si256( S2, m256_const1_64( 0x13198A2E13198A2E ) ); \
VB = _mm256_xor_si256( S3, m256_const1_64( 0x0370734403707344 ) ); \
V8 = m256_const1_64( 0x243F6A88243F6A88 ); \
V9 = m256_const1_64( 0x85A308D385A308D3 ); \
VA = m256_const1_64( 0x13198A2E13198A2E ); \
VB = m256_const1_64( 0x0370734403707344 ); \
VC = _mm256_xor_si256( _mm256_set1_epi32( T0 ),\
m256_const1_64( 0xA4093822A4093822 ) ); \
VD = _mm256_xor_si256( _mm256_set1_epi32( T0 ),\
@@ -682,14 +669,14 @@ do { \
ROUND_S_8WAY(2); \
ROUND_S_8WAY(3); \
} \
H0 = mm256_xor4( V8, V0, S0, H0 ); \
H1 = mm256_xor4( V9, V1, S1, H1 ); \
H2 = mm256_xor4( VA, V2, S2, H2 ); \
H3 = mm256_xor4( VB, V3, S3, H3 ); \
H4 = mm256_xor4( VC, V4, S0, H4 ); \
H5 = mm256_xor4( VD, V5, S1, H5 ); \
H6 = mm256_xor4( VE, V6, S2, H6 ); \
H7 = mm256_xor4( VF, V7, S3, H7 ); \
H0 = _mm256_xor_si256( _mm256_xor_si256( V8, V0 ), H0 ); \
H1 = _mm256_xor_si256( _mm256_xor_si256( V9, V1 ), H1 ); \
H2 = _mm256_xor_si256( _mm256_xor_si256( VA, V2 ), H2 ); \
H3 = _mm256_xor_si256( _mm256_xor_si256( VB, V3 ), H3 ); \
H4 = _mm256_xor_si256( _mm256_xor_si256( VC, V4 ), H4 ); \
H5 = _mm256_xor_si256( _mm256_xor_si256( VD, V5 ), H5 ); \
H6 = _mm256_xor_si256( _mm256_xor_si256( VE, V6 ), H6 ); \
H7 = _mm256_xor_si256( _mm256_xor_si256( VF, V7 ), H7 ); \
} while (0)
@@ -703,7 +690,6 @@ static void
blake32_4way_init( blake_4way_small_context *ctx, const uint32_t *iv,
const uint32_t *salt, int rounds )
{
__m128i zero = m128_zero;
casti_m128i( ctx->H, 0 ) = m128_const1_64( 0x6A09E6676A09E667 );
casti_m128i( ctx->H, 1 ) = m128_const1_64( 0xBB67AE85BB67AE85 );
casti_m128i( ctx->H, 2 ) = m128_const1_64( 0x3C6EF3723C6EF372 );
@@ -712,11 +698,6 @@ blake32_4way_init( blake_4way_small_context *ctx, const uint32_t *iv,
casti_m128i( ctx->H, 5 ) = m128_const1_64( 0x9B05688C9B05688C );
casti_m128i( ctx->H, 6 ) = m128_const1_64( 0x1F83D9AB1F83D9AB );
casti_m128i( ctx->H, 7 ) = m128_const1_64( 0x5BE0CD195BE0CD19 );
casti_m128i( ctx->S, 0 ) = zero;
casti_m128i( ctx->S, 1 ) = zero;
casti_m128i( ctx->S, 2 ) = zero;
casti_m128i( ctx->S, 3 ) = zero;
ctx->T0 = ctx->T1 = 0;
ctx->ptr = 0;
ctx->rounds = rounds;
@@ -824,7 +805,6 @@ static void
blake32_8way_init( blake_8way_small_context *sc, const sph_u32 *iv,
const sph_u32 *salt, int rounds )
{
__m256i zero = m256_zero;
casti_m256i( sc->H, 0 ) = m256_const1_64( 0x6A09E6676A09E667 );
casti_m256i( sc->H, 1 ) = m256_const1_64( 0xBB67AE85BB67AE85 );
casti_m256i( sc->H, 2 ) = m256_const1_64( 0x3C6EF3723C6EF372 );
@@ -833,10 +813,6 @@ blake32_8way_init( blake_8way_small_context *sc, const sph_u32 *iv,
casti_m256i( sc->H, 5 ) = m256_const1_64( 0x9B05688C9B05688C );
casti_m256i( sc->H, 6 ) = m256_const1_64( 0x1F83D9AB1F83D9AB );
casti_m256i( sc->H, 7 ) = m256_const1_64( 0x5BE0CD195BE0CD19 );
casti_m256i( sc->S, 0 ) = zero;
casti_m256i( sc->S, 1 ) = zero;
casti_m256i( sc->S, 2 ) = zero;
casti_m256i( sc->S, 3 ) = zero;
sc->T0 = sc->T1 = 0;
sc->ptr = 0;
sc->rounds = rounds;

View File

@@ -4,13 +4,59 @@
*/
#include "blake2b-gate.h"
#if defined(BLAKE2B_4WAY)
#include <string.h>
#include <stdint.h>
#include "blake2b-hash-4way.h"
#if defined(BLAKE2B_8WAY)
int scanhash_blake2b_8way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t hash[8*8] __attribute__ ((aligned (128)));;
uint32_t vdata[20*8] __attribute__ ((aligned (64)));;
uint32_t lane_hash[8] __attribute__ ((aligned (64)));
blake2b_8way_ctx ctx __attribute__ ((aligned (64)));
uint32_t *hash7 = &(hash[25]); // 3*8+1
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
int thr_id = mythr->id;
__m512i *noncev = (__m512i*)vdata + 9; // aligned
const uint32_t Htarg = ptarget[7];
const uint32_t first_nonce = pdata[19];
uint32_t n = first_nonce;
mm512_bswap32_intrlv80_8x64( vdata, pdata );
do {
*noncev = mm512_intrlv_blend_32( mm512_bswap_32(
_mm512_set_epi32( n+7, 0, n+6, 0, n+5, 0, n+4, 0,
n+3, 0, n+2, 0, n+1, 0, n , 0 ) ), *noncev );
blake2b_8way_init( &ctx );
blake2b_8way_update( &ctx, vdata, 80 );
blake2b_8way_final( &ctx, hash );
for ( int lane = 0; lane < 8; lane++ )
if ( hash7[ lane<<1 ] < Htarg )
{
extr_lane_8x64( lane_hash, hash, lane, 256 );
if ( fulltest( lane_hash, ptarget ) && !opt_benchmark )
{
pdata[19] = n + lane;
submit_lane_solution( work, lane_hash, mythr, lane );
}
}
n += 8;
} while ( (n < max_nonce-8) && !work_restart[thr_id].restart);
*hashes_done = n - first_nonce + 1;
return 0;
}
#elif defined(BLAKE2B_4WAY)
// Function not used, code inlined.
void blake2b_4way_hash(void *output, const void *input)
{

View File

@@ -1,15 +1,19 @@
#include "blake2b-gate.h"
bool register_blake2b_algo( algo_gate_t* gate )
{
#if defined(BLAKE2B_4WAY)
#if defined(BLAKE2B_8WAY)
gate->scanhash = (void*)&scanhash_blake2b_8way;
// gate->hash = (void*)&blake2b_8way_hash;
#elif defined(BLAKE2B_4WAY)
gate->scanhash = (void*)&scanhash_blake2b_4way;
gate->hash = (void*)&blake2b_4way_hash;
#else
gate->scanhash = (void*)&scanhash_blake2b;
gate->hash = (void*)&blake2b_hash;
#endif
gate->optimizations = AVX2_OPT;
gate->optimizations = AVX2_OPT | AVX512_OPT;
return true;
};

View File

@@ -4,13 +4,21 @@
#include <stdint.h>
#include "algo-gate-api.h"
#if defined(__AVX2__)
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#define BLAKE2B_8WAY
#elif defined(__AVX2__)
#define BLAKE2B_4WAY
#endif
bool register_blake2b_algo( algo_gate_t* gate );
#if defined(BLAKE2B_4WAY)
#if defined(BLAKE2B_8WAY)
//void blake2b_8way_hash( void *state, const void *input );
int scanhash_blake2b_8way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
#elif defined(BLAKE2B_4WAY)
void blake2b_4way_hash( void *state, const void *input );
int scanhash_blake2b_4way( struct work *work, uint32_t max_nonce,

View File

@@ -33,6 +33,178 @@
#include "blake2b-hash-4way.h"
static const uint8_t sigma[12][16] =
{
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 },
{ 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 },
{ 11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 },
{ 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 },
{ 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 },
{ 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 },
{ 12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11 },
{ 13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10 },
{ 6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5 },
{ 10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13, 0 },
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 },
{ 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 }
};
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#define B2B8W_G(a, b, c, d, x, y) \
{ \
v[a] = _mm512_add_epi64( _mm512_add_epi64( v[a], v[b] ), x ); \
v[d] = mm512_ror_64( _mm512_xor_si512( v[d], v[a] ), 32 ); \
v[c] = _mm512_add_epi64( v[c], v[d] ); \
v[b] = mm512_ror_64( _mm512_xor_si512( v[b], v[c] ), 24 ); \
v[a] = _mm512_add_epi64( _mm512_add_epi64( v[a], v[b] ), y ); \
v[d] = mm512_ror_64( _mm512_xor_si512( v[d], v[a] ), 16 ); \
v[c] = _mm512_add_epi64( v[c], v[d] ); \
v[b] = mm512_ror_64( _mm512_xor_si512( v[b], v[c] ), 63 ); \
}
static void blake2b_8way_compress( blake2b_8way_ctx *ctx, int last )
{
__m512i v[16], m[16];
v[ 0] = ctx->h[0];
v[ 1] = ctx->h[1];
v[ 2] = ctx->h[2];
v[ 3] = ctx->h[3];
v[ 4] = ctx->h[4];
v[ 5] = ctx->h[5];
v[ 6] = ctx->h[6];
v[ 7] = ctx->h[7];
v[ 8] = m512_const1_64( 0x6A09E667F3BCC908 );
v[ 9] = m512_const1_64( 0xBB67AE8584CAA73B );
v[10] = m512_const1_64( 0x3C6EF372FE94F82B );
v[11] = m512_const1_64( 0xA54FF53A5F1D36F1 );
v[12] = m512_const1_64( 0x510E527FADE682D1 );
v[13] = m512_const1_64( 0x9B05688C2B3E6C1F );
v[14] = m512_const1_64( 0x1F83D9ABFB41BD6B );
v[15] = m512_const1_64( 0x5BE0CD19137E2179 );
v[12] = _mm512_xor_si512( v[12], _mm512_set1_epi64( ctx->t[0] ) );
v[13] = _mm512_xor_si512( v[13], _mm512_set1_epi64( ctx->t[1] ) );
if ( last )
v[14] = mm512_not( v[14] );
m[ 0] = ctx->b[ 0];
m[ 1] = ctx->b[ 1];
m[ 2] = ctx->b[ 2];
m[ 3] = ctx->b[ 3];
m[ 4] = ctx->b[ 4];
m[ 5] = ctx->b[ 5];
m[ 6] = ctx->b[ 6];
m[ 7] = ctx->b[ 7];
m[ 8] = ctx->b[ 8];
m[ 9] = ctx->b[ 9];
m[10] = ctx->b[10];
m[11] = ctx->b[11];
m[12] = ctx->b[12];
m[13] = ctx->b[13];
m[14] = ctx->b[14];
m[15] = ctx->b[15];
for ( int i = 0; i < 12; i++ )
{
B2B8W_G( 0, 4, 8, 12, m[ sigma[i][ 0] ], m[ sigma[i][ 1] ] );
B2B8W_G( 1, 5, 9, 13, m[ sigma[i][ 2] ], m[ sigma[i][ 3] ] );
B2B8W_G( 2, 6, 10, 14, m[ sigma[i][ 4] ], m[ sigma[i][ 5] ] );
B2B8W_G( 3, 7, 11, 15, m[ sigma[i][ 6] ], m[ sigma[i][ 7] ] );
B2B8W_G( 0, 5, 10, 15, m[ sigma[i][ 8] ], m[ sigma[i][ 9] ] );
B2B8W_G( 1, 6, 11, 12, m[ sigma[i][10] ], m[ sigma[i][11] ] );
B2B8W_G( 2, 7, 8, 13, m[ sigma[i][12] ], m[ sigma[i][13] ] );
B2B8W_G( 3, 4, 9, 14, m[ sigma[i][14] ], m[ sigma[i][15] ] );
}
ctx->h[0] = _mm512_xor_si512( _mm512_xor_si512( ctx->h[0], v[0] ), v[ 8] );
ctx->h[1] = _mm512_xor_si512( _mm512_xor_si512( ctx->h[1], v[1] ), v[ 9] );
ctx->h[2] = _mm512_xor_si512( _mm512_xor_si512( ctx->h[2], v[2] ), v[10] );
ctx->h[3] = _mm512_xor_si512( _mm512_xor_si512( ctx->h[3], v[3] ), v[11] );
ctx->h[4] = _mm512_xor_si512( _mm512_xor_si512( ctx->h[4], v[4] ), v[12] );
ctx->h[5] = _mm512_xor_si512( _mm512_xor_si512( ctx->h[5], v[5] ), v[13] );
ctx->h[6] = _mm512_xor_si512( _mm512_xor_si512( ctx->h[6], v[6] ), v[14] );
ctx->h[7] = _mm512_xor_si512( _mm512_xor_si512( ctx->h[7], v[7] ), v[15] );
}
int blake2b_8way_init( blake2b_8way_ctx *ctx )
{
size_t i;
ctx->h[0] = m512_const1_64( 0x6A09E667F3BCC908 );
ctx->h[1] = m512_const1_64( 0xBB67AE8584CAA73B );
ctx->h[2] = m512_const1_64( 0x3C6EF372FE94F82B );
ctx->h[3] = m512_const1_64( 0xA54FF53A5F1D36F1 );
ctx->h[4] = m512_const1_64( 0x510E527FADE682D1 );
ctx->h[5] = m512_const1_64( 0x9B05688C2B3E6C1F );
ctx->h[6] = m512_const1_64( 0x1F83D9ABFB41BD6B );
ctx->h[7] = m512_const1_64( 0x5BE0CD19137E2179 );
ctx->h[0] = _mm512_xor_si512( ctx->h[0], m512_const1_64( 0x01010020 ) );
ctx->t[0] = 0;
ctx->t[1] = 0;
ctx->c = 0;
ctx->outlen = 32;
for ( i = 0; i < 16; i++ )
ctx->b[i] = m512_zero;
return 0;
}
void blake2b_8way_update( blake2b_8way_ctx *ctx, const void *input,
size_t inlen )
{
__m512i* in =(__m512i*)input;
size_t i, c;
c = ctx->c >> 3;
for ( i = 0; i < (inlen >> 3); i++ )
{
if ( ctx->c == 128 )
{
ctx->t[0] += ctx->c;
if ( ctx->t[0] < ctx->c )
ctx->t[1]++;
blake2b_8way_compress( ctx, 0 );
ctx->c = 0;
}
ctx->b[ c++ ] = in[i];
ctx->c += 8;
}
}
void blake2b_8way_final( blake2b_8way_ctx *ctx, void *out )
{
size_t c;
c = ctx->c >> 3;
ctx->t[0] += ctx->c;
if ( ctx->t[0] < ctx->c )
ctx->t[1]++;
while ( ctx->c < 128 )
{
ctx->b[c++] = m512_zero;
ctx->c += 8;
}
blake2b_8way_compress( ctx, 1 ); // final block flag = 1
casti_m512i( out, 0 ) = ctx->h[0];
casti_m512i( out, 1 ) = ctx->h[1];
casti_m512i( out, 2 ) = ctx->h[2];
casti_m512i( out, 3 ) = ctx->h[3];
}
#endif
#if defined(__AVX2__)
// G Mixing function.
@@ -61,21 +233,6 @@ static const uint64_t blake2b_iv[8] = {
static void blake2b_4way_compress( blake2b_4way_ctx *ctx, int last )
{
const uint8_t sigma[12][16] = {
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 },
{ 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 },
{ 11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 },
{ 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 },
{ 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 },
{ 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 },
{ 12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11 },
{ 13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10 },
{ 6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5 },
{ 10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13, 0 },
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 },
{ 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 }
};
int i;
__m256i v[16], m[16];
v[ 0] = ctx->h[0];
@@ -118,7 +275,7 @@ static void blake2b_4way_compress( blake2b_4way_ctx *ctx, int last )
m[14] = ctx->b[14];
m[15] = ctx->b[15];
for ( i = 0; i < 12; i++ )
for ( int i = 0; i < 12; i++ )
{
B2B_G( 0, 4, 8, 12, m[ sigma[i][ 0] ], m[ sigma[i][ 1] ] );
B2B_G( 1, 5, 9, 13, m[ sigma[i][ 2] ], m[ sigma[i][ 3] ] );

View File

@@ -2,8 +2,6 @@
#ifndef __BLAKE2B_HASH_4WAY_H__
#define __BLAKE2B_HASH_4WAY_H__
#if defined(__AVX2__)
#include "simd-utils.h"
#include <stddef.h>
#include <stdint.h>
@@ -16,14 +14,34 @@
#define ALIGN(x) __attribute__((aligned(x)))
#endif
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
ALIGN(128) typedef struct {
__m512i b[16]; // input buffer
__m512i h[8]; // chained state
uint64_t t[2]; // total number of bytes
size_t c; // pointer for b[]
size_t outlen; // digest size
} blake2b_8way_ctx;
int blake2b_8way_init( blake2b_8way_ctx *ctx );
void blake2b_8way_update( blake2b_8way_ctx *ctx, const void *input,
size_t inlen );
void blake2b_8way_final( blake2b_8way_ctx *ctx, void *out );
#endif
#if defined(__AVX2__)
// state context
ALIGN(64) typedef struct {
ALIGN(128) typedef struct {
__m256i b[16]; // input buffer
__m256i h[8]; // chained state
uint64_t t[2]; // total number of bytes
size_t c; // pointer for b[]
size_t outlen; // digest size
} blake2b_4way_ctx __attribute__((aligned(64)));
} blake2b_4way_ctx;
int blake2b_4way_init( blake2b_4way_ctx *ctx );
void blake2b_4way_update( blake2b_4way_ctx *ctx, const void *input,

View File

@@ -3,22 +3,72 @@
#include <string.h>
#include <stdint.h>
#if defined(BLAKE2S_8WAY)
#if defined(BLAKE2S_16WAY)
static __thread blake2s_16way_state blake2s_16w_ctx;
void blake2s_16way_hash( void *output, const void *input )
{
blake2s_16way_state ctx;
memcpy( &ctx, &blake2s_16w_ctx, sizeof ctx );
blake2s_16way_update( &ctx, input + (64<<4), 16 );
blake2s_16way_final( &ctx, output, BLAKE2S_OUTBYTES );
}
int scanhash_blake2s_16way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t vdata[20*16] __attribute__ ((aligned (128)));
uint32_t hash[8*16] __attribute__ ((aligned (64)));
uint32_t lane_hash[8] __attribute__ ((aligned (64)));
uint32_t *hash7 = &(hash[7<<4]);
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
const uint32_t Htarg = ptarget[7];
const uint32_t first_nonce = pdata[19];
__m512i *noncev = (__m512i*)vdata + 19; // aligned
uint32_t n = first_nonce;
int thr_id = mythr->id;
mm512_bswap32_intrlv80_16x32( vdata, pdata );
blake2s_16way_init( &blake2s_16w_ctx, BLAKE2S_OUTBYTES );
blake2s_16way_update( &blake2s_16w_ctx, vdata, 64 );
do {
*noncev = mm512_bswap_32( _mm512_set_epi32(
n+15, n+14, n+13, n+12, n+11, n+10, n+ 9, n+ 8,
n+ 7, n+ 6, n+ 5, n+ 4, n+ 3, n+ 2, n+ 1, n ) );
pdata[19] = n;
blake2s_16way_hash( hash, vdata );
for ( int lane = 0; lane < 16; lane++ )
if ( unlikely( hash7[lane] <= Htarg ) )
{
extr_lane_16x32( lane_hash, hash, lane, 256 );
if ( likely( fulltest( lane_hash, ptarget ) && !opt_benchmark ) )
{
pdata[19] = n + lane;
submit_lane_solution( work, lane_hash, mythr, lane );
}
}
n += 16;
} while ( (n < max_nonce-16) && !work_restart[thr_id].restart );
*hashes_done = n - first_nonce + 1;
return 0;
}
#elif defined(BLAKE2S_8WAY)
static __thread blake2s_8way_state blake2s_8w_ctx;
void blake2s_8way_hash( void *output, const void *input )
{
uint32_t vhash[8*8] __attribute__ ((aligned (64)));
blake2s_8way_state ctx;
memcpy( &ctx, &blake2s_8w_ctx, sizeof ctx );
blake2s_8way_update( &ctx, input + (64<<3), 16 );
blake2s_8way_final( &ctx, vhash, BLAKE2S_OUTBYTES );
dintrlv_8x32( output, output+ 32, output+ 64, output+ 96,
output+128, output+160, output+192, output+224,
vhash, 256 );
blake2s_8way_final( &ctx, output, BLAKE2S_OUTBYTES );
}
int scanhash_blake2s_8way( struct work *work, uint32_t max_nonce,
@@ -26,13 +76,15 @@ int scanhash_blake2s_8way( struct work *work, uint32_t max_nonce,
{
uint32_t vdata[20*8] __attribute__ ((aligned (64)));
uint32_t hash[8*8] __attribute__ ((aligned (32)));
uint32_t lane_hash[8] __attribute__ ((aligned (32)));
uint32_t *hash7 = &(hash[7<<3]);
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
const uint32_t Htarg = ptarget[7];
const uint32_t first_nonce = pdata[19];
__m256i *noncev = (__m256i*)vdata + 19; // aligned
uint32_t n = first_nonce;
int thr_id = mythr->id; // thr_id arg is deprecated
int thr_id = mythr->id;
mm256_bswap32_intrlv80_8x32( vdata, pdata );
blake2s_8way_init( &blake2s_8w_ctx, BLAKE2S_OUTBYTES );
@@ -45,16 +97,17 @@ int scanhash_blake2s_8way( struct work *work, uint32_t max_nonce,
blake2s_8way_hash( hash, vdata );
for ( int i = 0; i < 8; i++ )
if ( (hash+(i<<3))[7] <= Htarg )
if ( fulltest( hash+(i<<3), ptarget ) && !opt_benchmark )
for ( int lane = 0; lane < 8; lane++ )
if ( unlikely( hash7[lane] <= Htarg ) )
{
pdata[19] = n+i;
submit_lane_solution( work, hash+(i<<3), mythr, i );
extr_lane_8x32( lane_hash, hash, lane, 256 );
if ( likely( fulltest( lane_hash, ptarget ) && !opt_benchmark ) )
{
pdata[19] = n + lane;
submit_lane_solution( work, lane_hash, mythr, lane );
}
}
n += 8;
} while ( (n < max_nonce) && !work_restart[thr_id].restart );
*hashes_done = n - first_nonce + 1;
@@ -67,15 +120,10 @@ static __thread blake2s_4way_state blake2s_4w_ctx;
void blake2s_4way_hash( void *output, const void *input )
{
uint32_t vhash[8*4] __attribute__ ((aligned (64)));
blake2s_4way_state ctx;
memcpy( &ctx, &blake2s_4w_ctx, sizeof ctx );
blake2s_4way_update( &ctx, input + (64<<2), 16 );
blake2s_4way_final( &ctx, vhash, BLAKE2S_OUTBYTES );
dintrlv_4x32( output, output+32, output+64, output+96,
vhash, 256 );
blake2s_4way_final( &ctx, output, BLAKE2S_OUTBYTES );
}
int scanhash_blake2s_4way( struct work *work, uint32_t max_nonce,
@@ -83,13 +131,15 @@ int scanhash_blake2s_4way( struct work *work, uint32_t max_nonce,
{
uint32_t vdata[20*4] __attribute__ ((aligned (64)));
uint32_t hash[8*4] __attribute__ ((aligned (32)));
uint32_t lane_hash[8] __attribute__ ((aligned (32)));
uint32_t *hash7 = &(hash[7<<2]);
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
const uint32_t Htarg = ptarget[7];
const uint32_t first_nonce = pdata[19];
__m128i *noncev = (__m128i*)vdata + 19; // aligned
uint32_t n = first_nonce;
int thr_id = mythr->id; // thr_id arg is deprecated
int thr_id = mythr->id;
mm128_bswap32_intrlv80_4x32( vdata, pdata );
blake2s_4way_init( &blake2s_4w_ctx, BLAKE2S_OUTBYTES );
@@ -101,15 +151,16 @@ int scanhash_blake2s_4way( struct work *work, uint32_t max_nonce,
blake2s_4way_hash( hash, vdata );
for ( int i = 0; i < 4; i++ )
if ( (hash+(i<<3))[7] <= Htarg )
if ( fulltest( hash+(i<<3), ptarget ) && !opt_benchmark )
for ( int lane = 0; lane < 4; lane++ ) if ( hash7[lane] <= Htarg )
{
pdata[19] = n+i;
submit_lane_solution( work, hash+(i<<3), mythr, i );
extr_lane_4x32( lane_hash, hash, lane, 256 );
if ( fulltest( lane_hash, ptarget ) && !opt_benchmark )
{
pdata[19] = n + lane;
submit_lane_solution( work, lane_hash, mythr, lane );
}
}
n += 4;
} while ( (n < max_nonce) && !work_restart[thr_id].restart );
*hashes_done = n - first_nonce + 1;

View File

@@ -2,7 +2,11 @@
bool register_blake2s_algo( algo_gate_t* gate )
{
#if defined(BLAKE2S_8WAY)
#if defined(BLAKE2S_16WAY)
gate->scanhash = (void*)&scanhash_blake2s_16way;
gate->hash = (void*)&blake2s_16way_hash;
#elif defined(BLAKE2S_8WAY)
//#if defined(BLAKE2S_8WAY)
gate->scanhash = (void*)&scanhash_blake2s_8way;
gate->hash = (void*)&blake2s_8way_hash;
#elif defined(BLAKE2S_4WAY)
@@ -12,7 +16,7 @@ bool register_blake2s_algo( algo_gate_t* gate )
gate->scanhash = (void*)&scanhash_blake2s;
gate->hash = (void*)&blake2s_hash;
#endif
gate->optimizations = SSE2_OPT | AVX2_OPT;
gate->optimizations = SSE2_OPT | AVX2_OPT | AVX512_OPT;
return true;
};

View File

@@ -8,13 +8,26 @@
#if defined(__SSE2__)
#define BLAKE2S_4WAY
#endif
#if defined(__AVX2__)
#define BLAKE2S_8WAY
#endif
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#define BLAKE2S_16WAY
#endif
bool register_blake2s_algo( algo_gate_t* gate );
#if defined(BLAKE2S_8WAY)
#if defined(BLAKE2S_16WAY)
void blake2s_16way_hash( void *state, const void *input );
int scanhash_blake2s_16way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
#elif defined (BLAKE2S_8WAY)
//#if defined(BLAKE2S_8WAY)
void blake2s_8way_hash( void *state, const void *input );
int scanhash_blake2s_8way( struct work *work, uint32_t max_nonce,

View File

@@ -20,12 +20,13 @@
//#if defined(__SSE4_2__)
#if defined(__SSE2__)
/*
static const uint32_t blake2s_IV[8] =
{
0x6A09E667UL, 0xBB67AE85UL, 0x3C6EF372UL, 0xA54FF53AUL,
0x510E527FUL, 0x9B05688CUL, 0x1F83D9ABUL, 0x5BE0CD19UL
};
*/
static const uint8_t blake2s_sigma[10][16] =
{
@@ -41,6 +42,7 @@ static const uint8_t blake2s_sigma[10][16] =
{ 10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13 , 0 } ,
};
// define a constant for initial param.
int blake2s_4way_init( blake2s_4way_state *S, const uint8_t outlen )
@@ -88,41 +90,45 @@ int blake2s_4way_compress( blake2s_4way_state *S, const __m128i* block )
memcpy_128( m, block, 16 );
memcpy_128( v, S->h, 8 );
v[ 8] = _mm_set1_epi32( blake2s_IV[0] );
v[ 9] = _mm_set1_epi32( blake2s_IV[1] );
v[10] = _mm_set1_epi32( blake2s_IV[2] );
v[11] = _mm_set1_epi32( blake2s_IV[3] );
v[ 8] = m128_const1_64( 0x6A09E6676A09E667ULL );
v[ 9] = m128_const1_64( 0xBB67AE85BB67AE85ULL );
v[10] = m128_const1_64( 0x3C6EF3723C6EF372ULL );
v[11] = m128_const1_64( 0xA54FF53AA54FF53AULL );
v[12] = _mm_xor_si128( _mm_set1_epi32( S->t[0] ),
_mm_set1_epi32( blake2s_IV[4] ) );
m128_const1_64( 0x510E527F510E527FULL ) );
v[13] = _mm_xor_si128( _mm_set1_epi32( S->t[1] ),
_mm_set1_epi32( blake2s_IV[5] ) );
m128_const1_64( 0x9B05688C9B05688CULL ) );
v[14] = _mm_xor_si128( _mm_set1_epi32( S->f[0] ),
_mm_set1_epi32( blake2s_IV[6] ) );
m128_const1_64( 0x1F83D9AB1F83D9ABULL ) );
v[15] = _mm_xor_si128( _mm_set1_epi32( S->f[1] ),
_mm_set1_epi32( blake2s_IV[7] ) );
m128_const1_64( 0x5BE0CD195BE0CD19ULL ) );
#define G4W(r,i,a,b,c,d) \
#define G4W( sigma0, sigma1, a, b, c, d ) \
do { \
a = _mm_add_epi32( _mm_add_epi32( a, b ), m[ blake2s_sigma[r][2*i+0] ] ); \
uint8_t s0 = sigma0; \
uint8_t s1 = sigma1; \
a = _mm_add_epi32( _mm_add_epi32( a, b ), m[ s0 ] ); \
d = mm128_ror_32( _mm_xor_si128( d, a ), 16 ); \
c = _mm_add_epi32( c, d ); \
b = mm128_ror_32( _mm_xor_si128( b, c ), 12 ); \
a = _mm_add_epi32( _mm_add_epi32( a, b ), m[ blake2s_sigma[r][2*i+1] ] ); \
a = _mm_add_epi32( _mm_add_epi32( a, b ), m[ s1 ] ); \
d = mm128_ror_32( _mm_xor_si128( d, a ), 8 ); \
c = _mm_add_epi32( c, d ); \
b = mm128_ror_32( _mm_xor_si128( b, c ), 7 ); \
} while(0)
#define ROUND4W(r) \
do { \
G4W( r, 0, v[ 0], v[ 4], v[ 8], v[12] ); \
G4W( r, 1, v[ 1], v[ 5], v[ 9], v[13] ); \
G4W( r, 2, v[ 2], v[ 6], v[10], v[14] ); \
G4W( r, 3, v[ 3], v[ 7], v[11], v[15] ); \
G4W( r, 4, v[ 0], v[ 5], v[10], v[15] ); \
G4W( r, 5, v[ 1], v[ 6], v[11], v[12] ); \
G4W( r, 6, v[ 2], v[ 7], v[ 8], v[13] ); \
G4W( r, 7, v[ 3], v[ 4], v[ 9], v[14] ); \
uint8_t *sigma = (uint8_t*)&blake2s_sigma[r]; \
G4W( sigma[ 0], sigma[ 1], v[ 0], v[ 4], v[ 8], v[12] ); \
G4W( sigma[ 2], sigma[ 3], v[ 1], v[ 5], v[ 9], v[13] ); \
G4W( sigma[ 4], sigma[ 5], v[ 2], v[ 6], v[10], v[14] ); \
G4W( sigma[ 6], sigma[ 7], v[ 3], v[ 7], v[11], v[15] ); \
G4W( sigma[ 8], sigma[ 9], v[ 0], v[ 5], v[10], v[15] ); \
G4W( sigma[10], sigma[11], v[ 1], v[ 6], v[11], v[12] ); \
G4W( sigma[12], sigma[13], v[ 2], v[ 7], v[ 8], v[13] ); \
G4W( sigma[14], sigma[15], v[ 3], v[ 4], v[ 9], v[14] ); \
} while(0)
ROUND4W( 0 );
@@ -144,26 +150,47 @@ do { \
return 0;
}
// There is a problem that can't be resolved internally.
// If the last block is a full 64 bytes it should not be compressed in
// update but left for final. However, when streaming, it isn't known
// which block is last. There may be a subsequent call to update to add
// more data.
//
// The reference code handled this by juggling 2 blocks at a time at
// a significant performance penalty.
//
// Instead a new function is introduced called full_blocks which combines
// update and final and is to be used in non-streaming mode where the data
// is a multiple of 64 bytes.
//
// Supported:
// 64 + 16 bytes (blake2s with midstate optimization)
// 80 bytes (blake2s without midstate optimization)
// Any multiple of 64 bytes in one shot (x25x)
//
// Unsupported:
// Stream of full 64 byte blocks one at a time.
// use only when streaming more data or final block not full.
int blake2s_4way_update( blake2s_4way_state *S, const void *in,
uint64_t inlen )
{
__m128i *input = (__m128i*)in;
__m128i *buf = (__m128i*)S->buf;
const int bsize = BLAKE2S_BLOCKBYTES;
__m128i *input = (__m128i*)in;
__m128i *buf = (__m128i*)S->buf;
while( inlen > 0 )
{
size_t left = S->buflen;
if( inlen >= bsize - left )
if( inlen >= BLAKE2S_BLOCKBYTES - left )
{
memcpy_128( buf + (left>>2), input, (bsize - left) >> 2 );
S->buflen += bsize - left;
memcpy_128( buf + (left>>2), input, (BLAKE2S_BLOCKBYTES - left) >> 2 );
S->buflen += BLAKE2S_BLOCKBYTES - left;
S->t[0] += BLAKE2S_BLOCKBYTES;
S->t[1] += ( S->t[0] < BLAKE2S_BLOCKBYTES );
blake2s_4way_compress( S, buf );
S->buflen = 0;
input += ( bsize >> 2 );
inlen -= bsize;
input += ( BLAKE2S_BLOCKBYTES >> 2 );
inlen -= BLAKE2S_BLOCKBYTES;
}
else
{
@@ -195,8 +222,45 @@ int blake2s_4way_final( blake2s_4way_state *S, void *out, uint8_t outlen )
return 0;
}
// Update and final when inlen is a multiple of 64 bytes
int blake2s_4way_full_blocks( blake2s_4way_state *S, void *out,
const void *input, uint64_t inlen )
{
__m128i *in = (__m128i*)input;
__m128i *buf = (__m128i*)S->buf;
while( inlen > BLAKE2S_BLOCKBYTES )
{
memcpy_128( buf, in, BLAKE2S_BLOCKBYTES >> 2 );
S->buflen = BLAKE2S_BLOCKBYTES;
inlen -= BLAKE2S_BLOCKBYTES;
S->t[0] += BLAKE2S_BLOCKBYTES;
S->t[1] += ( S->t[0] < BLAKE2S_BLOCKBYTES );
blake2s_4way_compress( S, buf );
S->buflen = 0;
in += ( BLAKE2S_BLOCKBYTES >> 2 );
}
// last block
memcpy_128( buf, in, BLAKE2S_BLOCKBYTES >> 2 );
S->buflen = BLAKE2S_BLOCKBYTES;
S->t[0] += S->buflen;
S->t[1] += ( S->t[0] < S->buflen );
if ( S->last_node ) S->f[1] = ~0U;
S->f[0] = ~0U;
blake2s_4way_compress( S, buf );
for ( int i = 0; i < 8; ++i )
casti_m128i( out, i ) = S->h[ i ];
return 0;
}
#if defined(__AVX2__)
// The commented code below is slower on Intel but faster on
// Zen1 AVX2. It's also faster than Zen1 AVX.
// Ryzen gen2 is unknown at this time.
int blake2s_8way_compress( blake2s_8way_state *S, const __m256i *block )
{
__m256i m[16];
@@ -205,6 +269,23 @@ int blake2s_8way_compress( blake2s_8way_state *S, const __m256i *block )
memcpy_256( m, block, 16 );
memcpy_256( v, S->h, 8 );
v[ 8] = m256_const1_64( 0x6A09E6676A09E667ULL );
v[ 9] = m256_const1_64( 0xBB67AE85BB67AE85ULL );
v[10] = m256_const1_64( 0x3C6EF3723C6EF372ULL );
v[11] = m256_const1_64( 0xA54FF53AA54FF53AULL );
v[12] = _mm256_xor_si256( _mm256_set1_epi32( S->t[0] ),
m256_const1_64( 0x510E527F510E527FULL ) );
v[13] = _mm256_xor_si256( _mm256_set1_epi32( S->t[1] ),
m256_const1_64( 0x9B05688C9B05688CULL ) );
v[14] = _mm256_xor_si256( _mm256_set1_epi32( S->f[0] ),
m256_const1_64( 0x1F83D9AB1F83D9ABULL ) );
v[15] = _mm256_xor_si256( _mm256_set1_epi32( S->f[1] ),
m256_const1_64( 0x5BE0CD195BE0CD19ULL ) );
/*
v[ 8] = _mm256_set1_epi32( blake2s_IV[0] );
v[ 9] = _mm256_set1_epi32( blake2s_IV[1] );
v[10] = _mm256_set1_epi32( blake2s_IV[2] );
@@ -218,6 +299,7 @@ int blake2s_8way_compress( blake2s_8way_state *S, const __m256i *block )
v[15] = _mm256_xor_si256( _mm256_set1_epi32( S->f[1] ),
_mm256_set1_epi32( blake2s_IV[7] ) );
#define G8W(r,i,a,b,c,d) \
do { \
a = _mm256_add_epi32( _mm256_add_epi32( a, b ), \
@@ -231,7 +313,36 @@ do { \
c = _mm256_add_epi32( c, d ); \
b = mm256_ror_32( _mm256_xor_si256( b, c ), 7 ); \
} while(0)
*/
#define G8W( sigma0, sigma1, a, b, c, d) \
do { \
uint8_t s0 = sigma0; \
uint8_t s1 = sigma1; \
a = _mm256_add_epi32( _mm256_add_epi32( a, b ), m[ s0 ] ); \
d = mm256_ror_32( _mm256_xor_si256( d, a ), 16 ); \
c = _mm256_add_epi32( c, d ); \
b = mm256_ror_32( _mm256_xor_si256( b, c ), 12 ); \
a = _mm256_add_epi32( _mm256_add_epi32( a, b ), m[ s1 ] ); \
d = mm256_ror_32( _mm256_xor_si256( d, a ), 8 ); \
c = _mm256_add_epi32( c, d ); \
b = mm256_ror_32( _mm256_xor_si256( b, c ), 7 ); \
} while(0)
#define ROUND8W(r) \
do { \
uint8_t *sigma = (uint8_t*)&blake2s_sigma[r]; \
G8W( sigma[ 0], sigma[ 1], v[ 0], v[ 4], v[ 8], v[12] ); \
G8W( sigma[ 2], sigma[ 3], v[ 1], v[ 5], v[ 9], v[13] ); \
G8W( sigma[ 4], sigma[ 5], v[ 2], v[ 6], v[10], v[14] ); \
G8W( sigma[ 6], sigma[ 7], v[ 3], v[ 7], v[11], v[15] ); \
G8W( sigma[ 8], sigma[ 9], v[ 0], v[ 5], v[10], v[15] ); \
G8W( sigma[10], sigma[11], v[ 1], v[ 6], v[11], v[12] ); \
G8W( sigma[12], sigma[13], v[ 2], v[ 7], v[ 8], v[13] ); \
G8W( sigma[14], sigma[15], v[ 3], v[ 4], v[ 9], v[14] ); \
} while(0)
/*
#define ROUND8W(r) \
do { \
G8W( r, 0, v[ 0], v[ 4], v[ 8], v[12] ); \
@@ -243,6 +354,7 @@ do { \
G8W( r, 6, v[ 2], v[ 7], v[ 8], v[13] ); \
G8W( r, 7, v[ 3], v[ 4], v[ 9], v[14] ); \
} while(0)
*/
ROUND8W( 0 );
ROUND8W( 1 );
@@ -354,6 +466,168 @@ int blake2s_8way_final( blake2s_8way_state *S, void *out, uint8_t outlen )
#endif // __AVX2__
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
// Blake2s-256 16 way
int blake2s_16way_compress( blake2s_16way_state *S, const __m512i *block )
{
__m512i m[16];
__m512i v[16];
memcpy_512( m, block, 16 );
memcpy_512( v, S->h, 8 );
v[ 8] = m512_const1_64( 0x6A09E6676A09E667ULL );
v[ 9] = m512_const1_64( 0xBB67AE85BB67AE85ULL );
v[10] = m512_const1_64( 0x3C6EF3723C6EF372ULL );
v[11] = m512_const1_64( 0xA54FF53AA54FF53AULL );
v[12] = _mm512_xor_si512( _mm512_set1_epi32( S->t[0] ),
m512_const1_64( 0x510E527F510E527FULL ) );
v[13] = _mm512_xor_si512( _mm512_set1_epi32( S->t[1] ),
m512_const1_64( 0x9B05688C9B05688CULL ) );
v[14] = _mm512_xor_si512( _mm512_set1_epi32( S->f[0] ),
m512_const1_64( 0x1F83D9AB1F83D9ABULL ) );
v[15] = _mm512_xor_si512( _mm512_set1_epi32( S->f[1] ),
m512_const1_64( 0x5BE0CD195BE0CD19ULL ) );
#define G16W( sigma0, sigma1, a, b, c, d) \
do { \
uint8_t s0 = sigma0; \
uint8_t s1 = sigma1; \
a = _mm512_add_epi32( _mm512_add_epi32( a, b ), m[ s0 ] ); \
d = mm512_ror_32( _mm512_xor_si512( d, a ), 16 ); \
c = _mm512_add_epi32( c, d ); \
b = mm512_ror_32( _mm512_xor_si512( b, c ), 12 ); \
a = _mm512_add_epi32( _mm512_add_epi32( a, b ), m[ s1 ] ); \
d = mm512_ror_32( _mm512_xor_si512( d, a ), 8 ); \
c = _mm512_add_epi32( c, d ); \
b = mm512_ror_32( _mm512_xor_si512( b, c ), 7 ); \
} while(0)
#define ROUND16W(r) \
do { \
uint8_t *sigma = (uint8_t*)&blake2s_sigma[r]; \
G16W( sigma[ 0], sigma[ 1], v[ 0], v[ 4], v[ 8], v[12] ); \
G16W( sigma[ 2], sigma[ 3], v[ 1], v[ 5], v[ 9], v[13] ); \
G16W( sigma[ 4], sigma[ 5], v[ 2], v[ 6], v[10], v[14] ); \
G16W( sigma[ 6], sigma[ 7], v[ 3], v[ 7], v[11], v[15] ); \
G16W( sigma[ 8], sigma[ 9], v[ 0], v[ 5], v[10], v[15] ); \
G16W( sigma[10], sigma[11], v[ 1], v[ 6], v[11], v[12] ); \
G16W( sigma[12], sigma[13], v[ 2], v[ 7], v[ 8], v[13] ); \
G16W( sigma[14], sigma[15], v[ 3], v[ 4], v[ 9], v[14] ); \
} while(0)
ROUND16W( 0 );
ROUND16W( 1 );
ROUND16W( 2 );
ROUND16W( 3 );
ROUND16W( 4 );
ROUND16W( 5 );
ROUND16W( 6 );
ROUND16W( 7 );
ROUND16W( 8 );
ROUND16W( 9 );
for( size_t i = 0; i < 8; ++i )
S->h[i] = _mm512_xor_si512( _mm512_xor_si512( S->h[i], v[i] ), v[i + 8] );
#undef G16W
#undef ROUND16W
return 0;
}
int blake2s_16way_init( blake2s_16way_state *S, const uint8_t outlen )
{
blake2s_nway_param P[1];
P->digest_length = outlen;
P->key_length = 0;
P->fanout = 1;
P->depth = 1;
P->leaf_length = 0;
*((uint64_t*)(P->node_offset)) = 0;
P->node_depth = 0;
P->inner_length = 0;
memset( P->salt, 0, sizeof( P->salt ) );
memset( P->personal, 0, sizeof( P->personal ) );
memset( S, 0, sizeof( blake2s_16way_state ) );
S->h[0] = m512_const1_64( 0x6A09E6676A09E667ULL );
S->h[1] = m512_const1_64( 0xBB67AE85BB67AE85ULL );
S->h[2] = m512_const1_64( 0x3C6EF3723C6EF372ULL );
S->h[3] = m512_const1_64( 0xA54FF53AA54FF53AULL );
S->h[4] = m512_const1_64( 0x510E527F510E527FULL );
S->h[5] = m512_const1_64( 0x9B05688C9B05688CULL );
S->h[6] = m512_const1_64( 0x1F83D9AB1F83D9ABULL );
S->h[7] = m512_const1_64( 0x5BE0CD195BE0CD19ULL );
uint32_t *p = ( uint32_t * )( P );
/* IV XOR ParamBlock */
for ( size_t i = 0; i < 8; ++i )
S->h[i] = _mm512_xor_si512( S->h[i], _mm512_set1_epi32( p[i] ) );
return 0;
}
int blake2s_16way_update( blake2s_16way_state *S, const void *in,
uint64_t inlen )
{
__m512i *input = (__m512i*)in;
__m512i *buf = (__m512i*)S->buf;
const int bsize = BLAKE2S_BLOCKBYTES;
while( inlen > 0 )
{
size_t left = S->buflen;
if( inlen >= bsize - left )
{
memcpy_512( buf + (left>>2), input, (bsize - left) >> 2 );
S->buflen += bsize - left;
S->t[0] += BLAKE2S_BLOCKBYTES;
S->t[1] += ( S->t[0] < BLAKE2S_BLOCKBYTES );
blake2s_16way_compress( S, buf );
S->buflen = 0;
input += ( bsize >> 2 );
inlen -= bsize;
}
else
{
memcpy_512( buf + ( left>>2 ), input, inlen>>2 );
S->buflen += (size_t) inlen;
input += ( inlen>>2 );
inlen -= inlen;
}
}
return 0;
}
int blake2s_16way_final( blake2s_16way_state *S, void *out, uint8_t outlen )
{
__m512i *buf = (__m512i*)S->buf;
S->t[0] += S->buflen;
S->t[1] += ( S->t[0] < S->buflen );
if ( S->last_node )
S->f[1] = ~0U;
S->f[0] = ~0U;
memset_zero_512( buf + ( S->buflen>>2 ),
( BLAKE2S_BLOCKBYTES - S->buflen ) >> 2 );
blake2s_16way_compress( S, buf );
for ( int i = 0; i < 8; ++i )
casti_m512i( out, i ) = S->h[ i ];
return 0;
}
#endif // AVX512
#if 0
int blake2s( uint8_t *out, const void *in, const void *key, const uint8_t outlen, const uint64_t inlen, uint8_t keylen )
{

View File

@@ -75,6 +75,9 @@ int blake2s_4way_init( blake2s_4way_state *S, const uint8_t outlen );
int blake2s_4way_update( blake2s_4way_state *S, const void *in,
uint64_t inlen );
int blake2s_4way_final( blake2s_4way_state *S, void *out, uint8_t outlen );
int blake2s_4way_full_blocks( blake2s_4way_state *S, void *out,
const void *input, uint64_t inlen );
#if defined(__AVX2__)
@@ -92,6 +95,27 @@ int blake2s_8way_init( blake2s_8way_state *S, const uint8_t outlen );
int blake2s_8way_update( blake2s_8way_state *S, const void *in,
uint64_t inlen );
int blake2s_8way_final( blake2s_8way_state *S, void *out, uint8_t outlen );
//int blake2s_8way_full_blocks( blake2s_8way_state *S, void *out,
// const void *input, uint64_t inlen );
#endif
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
ALIGN( 128 ) typedef struct __blake2s_16way_state
{
__m512i h[8];
uint8_t buf[ BLAKE2S_BLOCKBYTES * 16 ];
uint32_t t[2];
uint32_t f[2];
size_t buflen;
uint8_t last_node;
} blake2s_16way_state ;
int blake2s_16way_init( blake2s_16way_state *S, const uint8_t outlen );
int blake2s_16way_update( blake2s_16way_state *S, const void *in,
uint64_t inlen );
int blake2s_16way_final( blake2s_16way_state *S, void *out, uint8_t outlen );
#endif

View File

@@ -403,7 +403,9 @@ static const sph_u64 CB[16] = {
__m256i M[16]; \
__m256i V0, V1, V2, V3, V4, V5, V6, V7; \
__m256i V8, V9, VA, VB, VC, VD, VE, VF; \
unsigned r; \
const __m256i shuff_bswap64 = m256_const2_64( 0x08090a0b0c0d0e0f, \
0x0001020304050607 ) \
unsigned r; \
V0 = H0; \
V1 = H1; \
V2 = H2; \
@@ -412,53 +414,53 @@ static const sph_u64 CB[16] = {
V5 = H5; \
V6 = H6; \
V7 = H7; \
V8 = _mm256_xor_si256( S0, _mm256_set_epi64x( CB0, CB0, CB0, CB0 ) ); \
V9 = _mm256_xor_si256( S1, _mm256_set_epi64x( CB1, CB1, CB1, CB1 ) ); \
VA = _mm256_xor_si256( S2, _mm256_set_epi64x( CB2, CB2, CB2, CB2 ) ); \
VB = _mm256_xor_si256( S3, _mm256_set_epi64x( CB3, CB3, CB3, CB3 ) ); \
VC = _mm256_xor_si256( _mm256_set_epi64x( T0, T0, T0, T0 ), \
_mm256_set_epi64x( CB4, CB4, CB4, CB4 ) ); \
VD = _mm256_xor_si256( _mm256_set_epi64x( T0, T0, T0, T0 ), \
_mm256_set_epi64x( CB5, CB5, CB5, CB5 ) ); \
VE = _mm256_xor_si256( _mm256_set_epi64x( T1, T1, T1, T1 ), \
_mm256_set_epi64x( CB6, CB6, CB6, CB6 ) ); \
VF = _mm256_xor_si256( _mm256_set_epi64x( T1, T1, T1, T1 ), \
_mm256_set_epi64x( CB7, CB7, CB7, CB7 ) ); \
M[0x0] = mm256_bswap_64( *(buf+0) ); \
M[0x1] = mm256_bswap_64( *(buf+1) ); \
M[0x2] = mm256_bswap_64( *(buf+2) ); \
M[0x3] = mm256_bswap_64( *(buf+3) ); \
M[0x4] = mm256_bswap_64( *(buf+4) ); \
M[0x5] = mm256_bswap_64( *(buf+5) ); \
M[0x6] = mm256_bswap_64( *(buf+6) ); \
M[0x7] = mm256_bswap_64( *(buf+7) ); \
M[0x8] = mm256_bswap_64( *(buf+8) ); \
M[0x9] = mm256_bswap_64( *(buf+9) ); \
M[0xA] = mm256_bswap_64( *(buf+10) ); \
M[0xB] = mm256_bswap_64( *(buf+11) ); \
M[0xC] = mm256_bswap_64( *(buf+12) ); \
M[0xD] = mm256_bswap_64( *(buf+13) ); \
M[0xE] = mm256_bswap_64( *(buf+14) ); \
M[0xF] = mm256_bswap_64( *(buf+15) ); \
V8 = _mm256_xor_si256( S0, _mm256_set1_epi64x( CB0 ) ); \
V9 = _mm256_xor_si256( S1, _mm256_set1_epi64x( CB1 ) ); \
VA = _mm256_xor_si256( S2, _mm256_set1_epi64x( CB2 ) ); \
VB = _mm256_xor_si256( S3, _mm256_set1_epi64x( CB3 ) ); \
VC = _mm256_xor_si256( _mm256_set1_epi64x( T0 ), \
_mm256_set1_epi64x( CB4 ) ); \
VD = _mm256_xor_si256( _mm256_set1_epi64x( T0 ), \
_mm256_set1_epi64x( CB5 ) ); \
VE = _mm256_xor_si256( _mm256_set1_epi64x( T1 ), \
_mm256_set1_epi64x( CB6 ) ); \
VF = _mm256_xor_si256( _mm256_set1_epi64x( T1 ), \
_mm256_set1_epi64x( CB7, CB7, CB7, CB7 ) ); \
M[0x0] = _mm256_shuffle_epi8( *(buf+ 0), shuff_bswap64 ); \
M[0x1] = _mm256_shuffle_epi8( *(buf+ 1), shuff_bswap64 ); \
M[0x2] = _mm256_shuffle_epi8( *(buf+ 2), shuff_bswap64 ); \
M[0x3] = _mm256_shuffle_epi8( *(buf+ 3), shuff_bswap64 ); \
M[0x4] = _mm256_shuffle_epi8( *(buf+ 4), shuff_bswap64 ); \
M[0x5] = _mm256_shuffle_epi8( *(buf+ 5), shuff_bswap64 ); \
M[0x6] = _mm256_shuffle_epi8( *(buf+ 6), shuff_bswap64 ); \
M[0x7] = _mm256_shuffle_epi8( *(buf+ 7), shuff_bswap64 ); \
M[0x8] = _mm256_shuffle_epi8( *(buf+ 8), shuff_bswap64 ); \
M[0x9] = _mm256_shuffle_epi8( *(buf+ 9), shuff_bswap64 ); \
M[0xA] = _mm256_shuffle_epi8( *(buf+10), shuff_bswap64 ); \
M[0xB] = _mm256_shuffle_epi8( *(buf+11), shuff_bswap64 ); \
M[0xC] = _mm256_shuffle_epi8( *(buf+12), shuff_bswap64 ); \
M[0xD] = _mm256_shuffle_epi8( *(buf+13), shuff_bswap64 ); \
M[0xE] = _mm256_shuffle_epi8( *(buf+14), shuff_bswap64 ); \
M[0xF] = _mm256_shuffle_epi8( *(buf+15), shuff_bswap64 ); \
for (r = 0; r < 16; r ++) \
ROUND_B_4WAY(r); \
H0 = _mm256_xor_si256( _mm256_xor_si256( \
H0 = _mm256_xor_si256( _mm256_xor_si256( \
_mm256_xor_si256( S0, V0 ), V8 ), H0 ); \
H1 = _mm256_xor_si256( _mm256_xor_si256( \
H1 = _mm256_xor_si256( _mm256_xor_si256( \
_mm256_xor_si256( S1, V1 ), V9 ), H1 ); \
H2 = _mm256_xor_si256( _mm256_xor_si256( \
H2 = _mm256_xor_si256( _mm256_xor_si256( \
_mm256_xor_si256( S2, V2 ), VA ), H2 ); \
H3 = _mm256_xor_si256( _mm256_xor_si256( \
H3 = _mm256_xor_si256( _mm256_xor_si256( \
_mm256_xor_si256( S3, V3 ), VB ), H3 ); \
H4 = _mm256_xor_si256( _mm256_xor_si256( \
H4 = _mm256_xor_si256( _mm256_xor_si256( \
_mm256_xor_si256( S0, V4 ), VC ), H4 ); \
H5 = _mm256_xor_si256( _mm256_xor_si256( \
H5 = _mm256_xor_si256( _mm256_xor_si256( \
_mm256_xor_si256( S1, V5 ), VD ), H5 ); \
H6 = _mm256_xor_si256( _mm256_xor_si256( \
H6 = _mm256_xor_si256( _mm256_xor_si256( \
_mm256_xor_si256( S2, V6 ), VE ), H6 ); \
H7 = _mm256_xor_si256( _mm256_xor_si256( \
H7 = _mm256_xor_si256( _mm256_xor_si256( \
_mm256_xor_si256( S3, V7 ), VF ), H7 ); \
} while (0)
} while (0)
#else
@@ -491,8 +493,7 @@ static const sph_u64 CB[16] = {
m256_const1_64( CB6 ) ); \
VF = _mm256_xor_si256( _mm256_set1_epi64x( T1 ), \
m256_const1_64( CB7 ) ); \
shuf_bswap64 = m256_const_64( 0x08090a0b0c0d0e0f, 0x0001020304050607, \
0x08090a0b0c0d0e0f, 0x0001020304050607 ); \
shuf_bswap64 = m256_const2_64( 0x08090a0b0c0d0e0f, 0x0001020304050607 ); \
M0 = _mm256_shuffle_epi8( *(buf+ 0), shuf_bswap64 ); \
M1 = _mm256_shuffle_epi8( *(buf+ 1), shuf_bswap64 ); \
M2 = _mm256_shuffle_epi8( *(buf+ 2), shuf_bswap64 ); \
@@ -620,7 +621,7 @@ blake64_4way_close( blake_4way_big_context *sc,
bit_len = ((unsigned)ptr << 3);
z = 0x80 >> n;
zz = ((ub & -z) | z) & 0xFF;
buf[ptr>>3] = _mm256_set_epi64x( zz, zz, zz, zz );
buf[ptr>>3] = _mm256_set1_epi64x( zz );
tl = sc->T0 + bit_len;
th = sc->T1;
if (ptr == 0 )

View File

@@ -78,7 +78,7 @@ void bmw256_4way_addbits_and_close(
// BMW-256 8 way 32
typedef struct {
__m256i buf[64];
__m256i buf[16];
__m256i H[16];
size_t ptr;
uint32_t bit_count; // assume bit_count fits in 32 bits
@@ -121,7 +121,7 @@ typedef struct {
__m256i H[16];
size_t ptr;
sph_u64 bit_count;
} bmw_4way_big_context;
} bmw_4way_big_context __attribute__((aligned(128)));
typedef bmw_4way_big_context bmw512_4way_context;
@@ -137,6 +137,22 @@ void bmw512_4way_addbits_and_close(
#endif // __AVX2__
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
typedef struct {
__m512i buf[16];
__m512i H[16];
size_t ptr;
uint64_t bit_count;
} bmw512_8way_context __attribute__((aligned(128)));
void bmw512_8way_init( bmw512_8way_context *ctx );
void bmw512_8way_update( bmw512_8way_context *ctx, const void *data,
size_t len );
void bmw512_8way_close( bmw512_8way_context *ctx, void *dst );
#endif // AVX512
#ifdef __cplusplus
}
#endif

View File

@@ -137,165 +137,151 @@ static const uint32_t IV256[] = {
ss4( qt[ (i)- 2 ] ), ss5( qt[ (i)- 1 ] ) ) ), \
add_elt_s( M, H, (i)-16 ) )
// Expressions are grouped using associativity to reduce CPU depenedencies,
// resulting in some sign changes compared to the reference code.
#define Ws0 \
_mm_add_epi32( \
_mm_add_epi32( \
_mm_add_epi32( \
_mm_sub_epi32( _mm_xor_si128( M[ 5], H[ 5] ), \
_mm_xor_si128( M[ 7], H[ 7] ) ), \
_mm_xor_si128( M[10], H[10] ) ), \
_mm_xor_si128( M[13], H[13] ) ), \
_mm_xor_si128( M[14], H[14] ) )
_mm_add_epi32( \
_mm_sub_epi32( _mm_xor_si128( M[ 5], H[ 5] ), \
_mm_xor_si128( M[ 7], H[ 7] ) ), \
_mm_xor_si128( M[10], H[10] ) ), \
_mm_add_epi32( _mm_xor_si128( M[13], H[13] ), \
_mm_xor_si128( M[14], H[14] ) ) )
#define Ws1 \
_mm_sub_epi32( \
_mm_add_epi32( \
_mm_add_epi32( \
_mm_add_epi32( \
_mm_sub_epi32( _mm_xor_si128( M[ 6], H[ 6] ), \
_mm_xor_si128( M[ 8], H[ 8] ) ), \
_mm_xor_si128( M[11], H[11] ) ), \
_mm_xor_si128( M[14], H[14] ) ), \
_mm_xor_si128( M[15], H[15] ) )
_mm_sub_epi32( _mm_xor_si128( M[ 6], H[ 6] ), \
_mm_xor_si128( M[ 8], H[ 8] ) ), \
_mm_xor_si128( M[11], H[11] ) ), \
_mm_sub_epi32( _mm_xor_si128( M[14], H[14] ), \
_mm_xor_si128( M[15], H[15] ) ) )
#define Ws2 \
_mm_add_epi32( \
_mm_sub_epi32( \
_mm_add_epi32( \
_mm_add_epi32( _mm_xor_si128( M[ 0], H[ 0] ), \
_mm_xor_si128( M[ 7], H[ 7] ) ), \
_mm_xor_si128( M[ 9], H[ 9] ) ), \
_mm_xor_si128( M[12], H[12] ) ), \
_mm_xor_si128( M[15], H[15] ) )
_mm_sub_epi32( \
_mm_add_epi32( \
_mm_add_epi32( _mm_xor_si128( M[ 0], H[ 0] ), \
_mm_xor_si128( M[ 7], H[ 7] ) ), \
_mm_xor_si128( M[ 9], H[ 9] ) ), \
_mm_sub_epi32( _mm_xor_si128( M[12], H[12] ), \
_mm_xor_si128( M[15], H[15] ) ) )
#define Ws3 \
_mm_add_epi32( \
_mm_sub_epi32( \
_mm_add_epi32( \
_mm_sub_epi32( _mm_xor_si128( M[ 0], H[ 0] ), \
_mm_xor_si128( M[ 1], H[ 1] ) ), \
_mm_xor_si128( M[ 8], H[ 8] ) ), \
_mm_xor_si128( M[10], H[10] ) ), \
_mm_xor_si128( M[13], H[13] ) )
_mm_sub_epi32( \
_mm_add_epi32( \
_mm_sub_epi32( _mm_xor_si128( M[ 0], H[ 0] ), \
_mm_xor_si128( M[ 1], H[ 1] ) ), \
_mm_xor_si128( M[ 8], H[ 8] ) ), \
_mm_sub_epi32( _mm_xor_si128( M[10], H[10] ), \
_mm_xor_si128( M[13], H[13] ) ) )
#define Ws4 \
_mm_sub_epi32( \
_mm_sub_epi32( \
_mm_add_epi32( \
_mm_add_epi32( _mm_xor_si128( M[ 1], H[ 1] ), \
_mm_xor_si128( M[ 2], H[ 2] ) ), \
_mm_xor_si128( M[ 9], H[ 9] ) ), \
_mm_xor_si128( M[11], H[11] ) ), \
_mm_xor_si128( M[14], H[14] ) )
_mm_add_epi32( \
_mm_add_epi32( _mm_xor_si128( M[ 1], H[ 1] ), \
_mm_xor_si128( M[ 2], H[ 2] ) ), \
_mm_xor_si128( M[ 9], H[ 9] ) ), \
_mm_add_epi32( _mm_xor_si128( M[11], H[11] ), \
_mm_xor_si128( M[14], H[14] ) ) )
#define Ws5 \
_mm_add_epi32( \
_mm_sub_epi32( \
_mm_add_epi32( \
_mm_sub_epi32( _mm_xor_si128( M[ 3], H[ 3] ), \
_mm_xor_si128( M[ 2], H[ 2] ) ), \
_mm_xor_si128( M[10], H[10] ) ), \
_mm_xor_si128( M[12], H[12] ) ), \
_mm_xor_si128( M[15], H[15] ) )
_mm_sub_epi32( \
_mm_add_epi32( \
_mm_sub_epi32( _mm_xor_si128( M[ 3], H[ 3] ), \
_mm_xor_si128( M[ 2], H[ 2] ) ), \
_mm_xor_si128( M[10], H[10] ) ), \
_mm_sub_epi32( _mm_xor_si128( M[12], H[12] ), \
_mm_xor_si128( M[15], H[15] ) ) )
#define Ws6 \
_mm_add_epi32( \
_mm_sub_epi32( \
_mm_sub_epi32( \
_mm_sub_epi32( _mm_xor_si128( M[ 4], H[ 4] ), \
_mm_xor_si128( M[ 0], H[ 0] ) ), \
_mm_xor_si128( M[ 3], H[ 3] ) ), \
_mm_xor_si128( M[11], H[11] ) ), \
_mm_xor_si128( M[13], H[13] ) )
_mm_sub_epi32( \
_mm_sub_epi32( \
_mm_sub_epi32( _mm_xor_si128( M[ 4], H[ 4] ), \
_mm_xor_si128( M[ 0], H[ 0] ) ), \
_mm_xor_si128( M[ 3], H[ 3] ) ), \
_mm_sub_epi32( _mm_xor_si128( M[11], H[11] ), \
_mm_xor_si128( M[13], H[13] ) ) )
#define Ws7 \
_mm_sub_epi32( \
_mm_sub_epi32( \
_mm_sub_epi32( \
_mm_sub_epi32( _mm_xor_si128( M[ 1], H[ 1] ), \
_mm_xor_si128( M[ 4], H[ 4] ) ), \
_mm_xor_si128( M[ 5], H[ 5] ) ), \
_mm_xor_si128( M[12], H[12] ) ), \
_mm_xor_si128( M[14], H[14] ) )
_mm_sub_epi32( \
_mm_sub_epi32( _mm_xor_si128( M[ 1], H[ 1] ), \
_mm_xor_si128( M[ 4], H[ 4] ) ), \
_mm_xor_si128( M[ 5], H[ 5] ) ), \
_mm_add_epi32( _mm_xor_si128( M[12], H[12] ), \
_mm_xor_si128( M[14], H[14] ) ) )
#define Ws8 \
_mm_sub_epi32( \
_mm_add_epi32( \
_mm_sub_epi32( \
_mm_sub_epi32( _mm_xor_si128( M[ 2], H[ 2] ), \
_mm_xor_si128( M[ 5], H[ 5] ) ), \
_mm_xor_si128( M[ 6], H[ 6] ) ), \
_mm_xor_si128( M[13], H[13] ) ), \
_mm_xor_si128( M[15], H[15] ) )
#define Ws9 \
_mm_add_epi32( \
_mm_sub_epi32( \
_mm_add_epi32( \
_mm_sub_epi32( _mm_xor_si128( M[ 0], H[ 0] ), \
_mm_xor_si128( M[ 3], H[ 3] ) ), \
_mm_xor_si128( M[ 6], H[ 6] ) ), \
_mm_xor_si128( M[ 7], H[ 7] ) ), \
_mm_xor_si128( M[14], H[14] ) )
_mm_sub_epi32( \
_mm_sub_epi32( _mm_xor_si128( M[ 2], H[ 2] ), \
_mm_xor_si128( M[ 5], H[ 5] ) ), \
_mm_xor_si128( M[ 6], H[ 6] ) ), \
_mm_sub_epi32( _mm_xor_si128( M[13], H[13] ), \
_mm_xor_si128( M[15], H[15] ) ) )
#define Ws9 \
_mm_sub_epi32( \
_mm_add_epi32( \
_mm_sub_epi32( _mm_xor_si128( M[ 0], H[ 0] ), \
_mm_xor_si128( M[ 3], H[ 3] ) ), \
_mm_xor_si128( M[ 6], H[ 6] ) ), \
_mm_sub_epi32( _mm_xor_si128( M[ 7], H[ 7] ), \
_mm_xor_si128( M[14], H[14] ) ) )
#define Ws10 \
_mm_add_epi32( \
_mm_sub_epi32( \
_mm_sub_epi32( \
_mm_sub_epi32( _mm_xor_si128( M[ 8], H[ 8] ), \
_mm_xor_si128( M[ 1], H[ 1] ) ), \
_mm_xor_si128( M[ 4], H[ 4] ) ), \
_mm_xor_si128( M[ 7], H[ 7] ) ), \
_mm_xor_si128( M[15], H[15] ) )
_mm_sub_epi32( \
_mm_sub_epi32( \
_mm_sub_epi32( _mm_xor_si128( M[ 8], H[ 8] ), \
_mm_xor_si128( M[ 1], H[ 1] ) ), \
_mm_xor_si128( M[ 4], H[ 4] ) ), \
_mm_sub_epi32( _mm_xor_si128( M[ 7], H[ 7] ), \
_mm_xor_si128( M[15], H[15] ) ) )
#define Ws11 \
_mm_add_epi32( \
_mm_sub_epi32( \
_mm_sub_epi32( \
_mm_sub_epi32( _mm_xor_si128( M[ 8], H[ 8] ), \
_mm_xor_si128( M[ 0], H[ 0] ) ), \
_mm_xor_si128( M[ 2], H[ 2] ) ), \
_mm_xor_si128( M[ 5], H[ 5] ) ), \
_mm_xor_si128( M[ 9], H[ 9] ) )
_mm_sub_epi32( \
_mm_sub_epi32( \
_mm_sub_epi32( _mm_xor_si128( M[ 8], H[ 8] ), \
_mm_xor_si128( M[ 0], H[ 0] ) ), \
_mm_xor_si128( M[ 2], H[ 2] ) ), \
_mm_sub_epi32( _mm_xor_si128( M[ 5], H[ 5] ), \
_mm_xor_si128( M[ 9], H[ 9] ) ) )
#define Ws12 \
_mm_add_epi32( \
_mm_sub_epi32( \
_mm_sub_epi32( \
_mm_add_epi32( _mm_xor_si128( M[ 1], H[ 1] ), \
_mm_xor_si128( M[ 3], H[ 3] ) ), \
_mm_xor_si128( M[ 6], H[ 6] ) ), \
_mm_xor_si128( M[ 9], H[ 9] ) ), \
_mm_xor_si128( M[10], H[10] ) )
_mm_sub_epi32( \
_mm_sub_epi32( \
_mm_add_epi32( _mm_xor_si128( M[ 1], H[ 1] ), \
_mm_xor_si128( M[ 3], H[ 3] ) ), \
_mm_xor_si128( M[ 6], H[ 6] ) ), \
_mm_sub_epi32( _mm_xor_si128( M[ 9], H[ 9] ), \
_mm_xor_si128( M[10], H[10] ) ) )
#define Ws13 \
_mm_add_epi32( \
_mm_add_epi32( \
_mm_add_epi32( \
_mm_add_epi32( _mm_xor_si128( M[ 2], H[ 2] ), \
_mm_xor_si128( M[ 4], H[ 4] ) ), \
_mm_xor_si128( M[ 7], H[ 7] ) ), \
_mm_xor_si128( M[10], H[10] ) ), \
_mm_xor_si128( M[11], H[11] ) )
_mm_add_epi32( \
_mm_add_epi32( _mm_xor_si128( M[ 2], H[ 2] ), \
_mm_xor_si128( M[ 4], H[ 4] ) ), \
_mm_xor_si128( M[ 7], H[ 7] ) ), \
_mm_add_epi32( _mm_xor_si128( M[10], H[10] ), \
_mm_xor_si128( M[11], H[11] ) ) )
#define Ws14 \
_mm_sub_epi32( \
_mm_sub_epi32( \
_mm_add_epi32( \
_mm_sub_epi32( _mm_xor_si128( M[ 3], H[ 3] ), \
_mm_xor_si128( M[ 5], H[ 5] ) ), \
_mm_xor_si128( M[ 8], H[ 8] ) ), \
_mm_xor_si128( M[11], H[11] ) ), \
_mm_xor_si128( M[12], H[12] ) )
_mm_add_epi32( \
_mm_sub_epi32( _mm_xor_si128( M[ 3], H[ 3] ), \
_mm_xor_si128( M[ 5], H[ 5] ) ), \
_mm_xor_si128( M[ 8], H[ 8] ) ), \
_mm_add_epi32( _mm_xor_si128( M[11], H[11] ), \
_mm_xor_si128( M[12], H[12] ) ) )
#define Ws15 \
_mm_add_epi32( \
_mm_sub_epi32( \
_mm_sub_epi32( \
_mm_sub_epi32( _mm_xor_si128( M[12], H[12] ), \
_mm_xor_si128( M[ 4], H[ 4] ) ), \
_mm_xor_si128( M[ 6], H[ 6] ) ), \
_mm_xor_si128( M[ 9], H[ 9] ) ), \
_mm_xor_si128( M[13], H[13] ) )
_mm_sub_epi32( \
_mm_sub_epi32( \
_mm_sub_epi32( _mm_xor_si128( M[12], H[12] ), \
_mm_xor_si128( M[ 4], H[4] ) ), \
_mm_xor_si128( M[ 6], H[ 6] ) ), \
_mm_sub_epi32( _mm_xor_si128( M[ 9], H[ 9] ), \
_mm_xor_si128( M[13], H[13] ) ) )
void compress_small( const __m128i *M, const __m128i H[16], __m128i dH[16] )
@@ -700,163 +686,148 @@ bmw256_4way_addbits_and_close(void *cc, unsigned ub, unsigned n, void *dst)
#define W8s0 \
_mm256_add_epi32( \
_mm256_add_epi32( \
_mm256_add_epi32( \
_mm256_sub_epi32( _mm256_xor_si256( M[ 5], H[ 5] ), \
_mm256_xor_si256( M[ 7], H[ 7] ) ), \
_mm256_xor_si256( M[10], H[10] ) ), \
_mm256_xor_si256( M[13], H[13] ) ), \
_mm256_xor_si256( M[14], H[14] ) )
_mm256_add_epi32( \
_mm256_sub_epi32( _mm256_xor_si256( M[ 5], H[ 5] ), \
_mm256_xor_si256( M[ 7], H[ 7] ) ), \
_mm256_xor_si256( M[10], H[10] ) ), \
_mm256_add_epi32( _mm256_xor_si256( M[13], H[13] ), \
_mm256_xor_si256( M[14], H[14] ) ) )
#define W8s1 \
_mm256_sub_epi32( \
_mm256_add_epi32( \
_mm256_add_epi32( \
_mm256_add_epi32( \
_mm256_sub_epi32( _mm256_xor_si256( M[ 6], H[ 6] ), \
_mm256_xor_si256( M[ 8], H[ 8] ) ), \
_mm256_xor_si256( M[11], H[11] ) ), \
_mm256_xor_si256( M[14], H[14] ) ), \
_mm256_xor_si256( M[15], H[15] ) )
_mm256_sub_epi32( _mm256_xor_si256( M[ 6], H[ 6] ), \
_mm256_xor_si256( M[ 8], H[ 8] ) ), \
_mm256_xor_si256( M[11], H[11] ) ), \
_mm256_sub_epi32( _mm256_xor_si256( M[14], H[14] ), \
_mm256_xor_si256( M[15], H[15] ) ) )
#define W8s2 \
_mm256_add_epi32( \
_mm256_sub_epi32( \
_mm256_add_epi32( \
_mm256_add_epi32( _mm256_xor_si256( M[ 0], H[ 0] ), \
_mm256_xor_si256( M[ 7], H[ 7] ) ), \
_mm256_xor_si256( M[ 9], H[ 9] ) ), \
_mm256_xor_si256( M[12], H[12] ) ), \
_mm256_xor_si256( M[15], H[15] ) )
_mm256_sub_epi32( \
_mm256_add_epi32( \
_mm256_add_epi32( _mm256_xor_si256( M[ 0], H[ 0] ), \
_mm256_xor_si256( M[ 7], H[ 7] ) ), \
_mm256_xor_si256( M[ 9], H[ 9] ) ), \
_mm256_sub_epi32( _mm256_xor_si256( M[12], H[12] ), \
_mm256_xor_si256( M[15], H[15] ) ) )
#define W8s3 \
_mm256_add_epi32( \
_mm256_sub_epi32( \
_mm256_add_epi32( \
_mm256_sub_epi32( _mm256_xor_si256( M[ 0], H[ 0] ), \
_mm256_xor_si256( M[ 1], H[ 1] ) ), \
_mm256_xor_si256( M[ 8], H[ 8] ) ), \
_mm256_xor_si256( M[10], H[10] ) ), \
_mm256_xor_si256( M[13], H[13] ) )
_mm256_sub_epi32( \
_mm256_add_epi32( \
_mm256_sub_epi32( _mm256_xor_si256( M[ 0], H[ 0] ), \
_mm256_xor_si256( M[ 1], H[ 1] ) ), \
_mm256_xor_si256( M[ 8], H[ 8] ) ), \
_mm256_sub_epi32( _mm256_xor_si256( M[10], H[10] ), \
_mm256_xor_si256( M[13], H[13] ) ) )
#define W8s4 \
_mm256_sub_epi32( \
_mm256_sub_epi32( \
_mm256_add_epi32( \
_mm256_add_epi32( _mm256_xor_si256( M[ 1], H[ 1] ), \
_mm256_xor_si256( M[ 2], H[ 2] ) ), \
_mm256_xor_si256( M[ 9], H[ 9] ) ), \
_mm256_xor_si256( M[11], H[11] ) ), \
_mm256_xor_si256( M[14], H[14] ) )
_mm256_add_epi32( \
_mm256_add_epi32( _mm256_xor_si256( M[ 1], H[ 1] ), \
_mm256_xor_si256( M[ 2], H[ 2] ) ), \
_mm256_xor_si256( M[ 9], H[ 9] ) ), \
_mm256_add_epi32( _mm256_xor_si256( M[11], H[11] ), \
_mm256_xor_si256( M[14], H[14] ) ) )
#define W8s5 \
_mm256_add_epi32( \
_mm256_sub_epi32( \
_mm256_add_epi32( \
_mm256_sub_epi32( _mm256_xor_si256( M[ 3], H[ 3] ), \
_mm256_xor_si256( M[ 2], H[ 2] ) ), \
_mm256_xor_si256( M[10], H[10] ) ), \
_mm256_xor_si256( M[12], H[12] ) ), \
_mm256_xor_si256( M[15], H[15] ) )
_mm256_sub_epi32( \
_mm256_add_epi32( \
_mm256_sub_epi32( _mm256_xor_si256( M[ 3], H[ 3] ), \
_mm256_xor_si256( M[ 2], H[ 2] ) ), \
_mm256_xor_si256( M[10], H[10] ) ), \
_mm256_sub_epi32( _mm256_xor_si256( M[12], H[12] ), \
_mm256_xor_si256( M[15], H[15] ) ) )
#define W8s6 \
_mm256_add_epi32( \
_mm256_sub_epi32( \
_mm256_sub_epi32( \
_mm256_sub_epi32( _mm256_xor_si256( M[ 4], H[ 4] ), \
_mm256_xor_si256( M[ 0], H[ 0] ) ), \
_mm256_xor_si256( M[ 3], H[ 3] ) ), \
_mm256_xor_si256( M[11], H[11] ) ), \
_mm256_xor_si256( M[13], H[13] ) )
_mm256_sub_epi32( \
_mm256_sub_epi32( \
_mm256_sub_epi32( _mm256_xor_si256( M[ 4], H[ 4] ), \
_mm256_xor_si256( M[ 0], H[ 0] ) ), \
_mm256_xor_si256( M[ 3], H[ 3] ) ), \
_mm256_sub_epi32( _mm256_xor_si256( M[11], H[11] ), \
_mm256_xor_si256( M[13], H[13] ) ) )
#define W8s7 \
_mm256_sub_epi32( \
_mm256_sub_epi32( \
_mm256_sub_epi32( \
_mm256_sub_epi32( _mm256_xor_si256( M[ 1], H[ 1] ), \
_mm256_xor_si256( M[ 4], H[ 4] ) ), \
_mm256_xor_si256( M[ 5], H[ 5] ) ), \
_mm256_xor_si256( M[12], H[12] ) ), \
_mm256_xor_si256( M[14], H[14] ) )
_mm256_sub_epi32( \
_mm256_sub_epi32( _mm256_xor_si256( M[ 1], H[ 1] ), \
_mm256_xor_si256( M[ 4], H[ 4] ) ), \
_mm256_xor_si256( M[ 5], H[ 5] ) ), \
_mm256_add_epi32( _mm256_xor_si256( M[12], H[12] ), \
_mm256_xor_si256( M[14], H[14] ) ) )
#define W8s8 \
_mm256_sub_epi32( \
_mm256_add_epi32( \
_mm256_sub_epi32( \
_mm256_sub_epi32( _mm256_xor_si256( M[ 2], H[ 2] ), \
_mm256_xor_si256( M[ 5], H[ 5] ) ), \
_mm256_xor_si256( M[ 6], H[ 6] ) ), \
_mm256_xor_si256( M[13], H[13] ) ), \
_mm256_xor_si256( M[15], H[15] ) )
_mm256_add_epi32( \
_mm256_sub_epi32( \
_mm256_sub_epi32( _mm256_xor_si256( M[ 2], H[ 2] ), \
_mm256_xor_si256( M[ 5], H[ 5] ) ), \
_mm256_xor_si256( M[ 6], H[ 6] ) ), \
_mm256_sub_epi32( _mm256_xor_si256( M[13], H[13] ), \
_mm256_xor_si256( M[15], H[15] ) ) )
#define W8s9 \
_mm256_add_epi32( \
_mm256_sub_epi32( \
_mm256_add_epi32( \
_mm256_sub_epi32( _mm256_xor_si256( M[ 0], H[ 0] ), \
_mm256_xor_si256( M[ 3], H[ 3] ) ), \
_mm256_xor_si256( M[ 6], H[ 6] ) ), \
_mm256_xor_si256( M[ 7], H[ 7] ) ), \
_mm256_xor_si256( M[14], H[14] ) )
_mm256_sub_epi32( \
_mm256_add_epi32( \
_mm256_sub_epi32( _mm256_xor_si256( M[ 0], H[ 0] ), \
_mm256_xor_si256( M[ 3], H[ 3] ) ), \
_mm256_xor_si256( M[ 6], H[ 6] ) ), \
_mm256_sub_epi32( _mm256_xor_si256( M[ 7], H[ 7] ), \
_mm256_xor_si256( M[14], H[14] ) ) )
#define W8s10 \
_mm256_add_epi32( \
_mm256_sub_epi32( \
_mm256_sub_epi32( \
_mm256_sub_epi32( _mm256_xor_si256( M[ 8], H[ 8] ), \
_mm256_xor_si256( M[ 1], H[ 1] ) ), \
_mm256_xor_si256( M[ 4], H[ 4] ) ), \
_mm256_xor_si256( M[ 7], H[ 7] ) ), \
_mm256_xor_si256( M[15], H[15] ) )
_mm256_sub_epi32( \
_mm256_sub_epi32( \
_mm256_sub_epi32( _mm256_xor_si256( M[ 8], H[ 8] ), \
_mm256_xor_si256( M[ 1], H[ 1] ) ), \
_mm256_xor_si256( M[ 4], H[ 4] ) ), \
_mm256_sub_epi32( _mm256_xor_si256( M[ 7], H[ 7] ), \
_mm256_xor_si256( M[15], H[15] ) ) )
#define W8s11 \
_mm256_add_epi32( \
_mm256_sub_epi32( \
_mm256_sub_epi32( \
_mm256_sub_epi32( _mm256_xor_si256( M[ 8], H[ 8] ), \
_mm256_xor_si256( M[ 0], H[ 0] ) ), \
_mm256_xor_si256( M[ 2], H[ 2] ) ), \
_mm256_xor_si256( M[ 5], H[ 5] ) ), \
_mm256_xor_si256( M[ 9], H[ 9] ) )
_mm256_sub_epi32( \
_mm256_sub_epi32( \
_mm256_sub_epi32( _mm256_xor_si256( M[ 8], H[ 8] ), \
_mm256_xor_si256( M[ 0], H[ 0] ) ), \
_mm256_xor_si256( M[ 2], H[ 2] ) ), \
_mm256_sub_epi32( _mm256_xor_si256( M[ 5], H[ 5] ), \
_mm256_xor_si256( M[ 9], H[ 9] ) ) )
#define W8s12 \
_mm256_add_epi32( \
_mm256_sub_epi32( \
_mm256_sub_epi32( \
_mm256_add_epi32( _mm256_xor_si256( M[ 1], H[ 1] ), \
_mm256_xor_si256( M[ 3], H[ 3] ) ), \
_mm256_xor_si256( M[ 6], H[ 6] ) ), \
_mm256_xor_si256( M[ 9], H[ 9] ) ), \
_mm256_xor_si256( M[10], H[10] ) )
_mm256_sub_epi32( \
_mm256_sub_epi32( \
_mm256_add_epi32( _mm256_xor_si256( M[ 1], H[ 1] ), \
_mm256_xor_si256( M[ 3], H[ 3] ) ), \
_mm256_xor_si256( M[ 6], H[ 6] ) ), \
_mm256_sub_epi32( _mm256_xor_si256( M[ 9], H[ 9] ), \
_mm256_xor_si256( M[10], H[10] ) ) )
#define W8s13 \
_mm256_add_epi32( \
_mm256_add_epi32( \
_mm256_add_epi32( \
_mm256_add_epi32( _mm256_xor_si256( M[ 2], H[ 2] ), \
_mm256_xor_si256( M[ 4], H[ 4] ) ), \
_mm256_xor_si256( M[ 7], H[ 7] ) ), \
_mm256_xor_si256( M[10], H[10] ) ), \
_mm256_xor_si256( M[11], H[11] ) )
_mm256_add_epi32( \
_mm256_add_epi32( _mm256_xor_si256( M[ 2], H[ 2] ), \
_mm256_xor_si256( M[ 4], H[ 4] ) ), \
_mm256_xor_si256( M[ 7], H[ 7] ) ), \
_mm256_add_epi32( _mm256_xor_si256( M[10], H[10] ), \
_mm256_xor_si256( M[11], H[11] ) ) )
#define W8s14 \
_mm256_sub_epi32( \
_mm256_sub_epi32( \
_mm256_add_epi32( \
_mm256_sub_epi32( _mm256_xor_si256( M[ 3], H[ 3] ), \
_mm256_xor_si256( M[ 5], H[ 5] ) ), \
_mm256_xor_si256( M[ 8], H[ 8] ) ), \
_mm256_xor_si256( M[11], H[11] ) ), \
_mm256_xor_si256( M[12], H[12] ) )
_mm256_add_epi32( \
_mm256_sub_epi32( _mm256_xor_si256( M[ 3], H[ 3] ), \
_mm256_xor_si256( M[ 5], H[ 5] ) ), \
_mm256_xor_si256( M[ 8], H[ 8] ) ), \
_mm256_add_epi32( _mm256_xor_si256( M[11], H[11] ), \
_mm256_xor_si256( M[12], H[12] ) ) )
#define W8s15 \
_mm256_add_epi32( \
_mm256_sub_epi32( \
_mm256_sub_epi32( \
_mm256_sub_epi32( _mm256_xor_si256( M[12], H[12] ), \
_mm256_xor_si256( M[ 4], H[4] ) ), \
_mm256_xor_si256( M[ 6], H[ 6] ) ), \
_mm256_xor_si256( M[ 9], H[ 9] ) ), \
_mm256_xor_si256( M[13], H[13] ) )
_mm256_sub_epi32( \
_mm256_sub_epi32( \
_mm256_sub_epi32( _mm256_xor_si256( M[12], H[12] ), \
_mm256_xor_si256( M[ 4], H[4] ) ), \
_mm256_xor_si256( M[ 6], H[ 6] ) ), \
_mm256_sub_epi32( _mm256_xor_si256( M[ 9], H[ 9] ), \
_mm256_xor_si256( M[13], H[13] ) ) )
void compress_small_8way( const __m256i *M, const __m256i H[16],
__m256i dH[16] )

View File

@@ -1,13 +1,66 @@
#include "bmw512-gate.h"
#ifdef BMW512_4WAY
#include <stdlib.h>
#include <string.h>
#include <stdint.h>
//#include "sph_keccak.h"
#include "bmw-hash-4way.h"
#if defined(BMW512_8WAY)
void bmw512hash_8way(void *state, const void *input)
{
bmw512_8way_context ctx;
bmw512_8way_init( &ctx );
bmw512_8way_update( &ctx, input, 80 );
bmw512_8way_close( &ctx, state );
}
int scanhash_bmw512_8way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t vdata[24*8] __attribute__ ((aligned (64)));
uint32_t hash[16*8] __attribute__ ((aligned (32)));
uint32_t lane_hash[8] __attribute__ ((aligned (32)));
uint32_t *hash7 = &(hash[49]); // 3*16+1
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
uint32_t n = pdata[19];
const uint32_t first_nonce = pdata[19];
__m512i *noncev = (__m512i*)vdata + 9; // aligned
// const uint32_t Htarg = ptarget[7];
int thr_id = mythr->id;
mm512_bswap32_intrlv80_8x64( vdata, pdata );
do {
*noncev = mm512_intrlv_blend_32( mm512_bswap_32(
_mm512_set_epi32( n+7, 0, n+6, 0, n+5, 0, n+4, 0 ,
n+3, 0, n+2, 0, n+1, 0, n , 0 ) ), *noncev );
bmw512hash_8way( hash, vdata );
for ( int lane = 0; lane < 8; lane++ )
if ( ( ( hash7[ lane<<1 ] & 0xFFFFFF00 ) == 0 ) )
{
extr_lane_8x64( lane_hash, hash, lane, 256 );
if ( fulltest( lane_hash, ptarget ) )
{
pdata[19] = n + lane;
submit_lane_solution( work, lane_hash, mythr, lane );
}
}
n += 4;
} while ( (n < max_nonce-8) && !work_restart[thr_id].restart);
*hashes_done = n - first_nonce + 1;
return 0;
}
#elif defined(BMW512_4WAY)
//#ifdef BMW512_4WAY
void bmw512hash_4way(void *state, const void *input)
{
bmw512_4way_context ctx;

View File

@@ -2,9 +2,12 @@
bool register_bmw512_algo( algo_gate_t* gate )
{
gate->optimizations = AVX2_OPT;
gate->optimizations = AVX2_OPT | AVX512_OPT;
opt_target_factor = 256.0;
#if defined (BMW512_4WAY)
#if defined (BMW512_8WAY)
gate->scanhash = (void*)&scanhash_bmw512_8way;
gate->hash = (void*)&bmw512hash_8way;
#elif defined (BMW512_4WAY)
gate->scanhash = (void*)&scanhash_bmw512_4way;
gate->hash = (void*)&bmw512hash_4way;
#else

View File

@@ -1,23 +1,33 @@
#ifndef BMW512_GATE_H__
#define BMW512_GATE_H__
#define BMW512_GATE_H__ 1
#include "algo-gate-api.h"
#include <stdint.h>
#if defined(__AVX2__)
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#define BMW512_8WAY 1
#elif defined(__AVX2__)
#define BMW512_4WAY 1
#endif
#if defined(BMW512_4WAY)
#if defined(BMW512_8WAY)
void bmw512hash_8way( void *state, const void *input );
int scanhash_bmw512_8way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
#elif defined(BMW512_4WAY)
void bmw512hash_4way( void *state, const void *input );
int scanhash_bmw512_4way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
#endif
#else
void bmw512hash( void *state, const void *input );
int scanhash_bmw512( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
#endif
#endif

View File

@@ -556,7 +556,7 @@ void bmw512_2way_close( bmw_2way_big_context *ctx, void *dst )
compress_big_2way( buf, h, h2 );
memcpy_128( buf, h2, 16 );
compress_big_2way( buf, final_b2, h1 );
memcpy( (__m128i*)dst, h1+16, 8 );
memcpy( (__m128i*)dst, h1+8, 8 );
}
#endif // __SSE2__
@@ -636,165 +636,152 @@ void bmw512_2way_close( bmw_2way_big_context *ctx, void *dst )
sb4( qt[ (i)- 2 ] ), sb5( qt[ (i)- 1 ] ) ) ), \
add_elt_b( M, H, (i)-16 ) )
#define Wb0 \
_mm256_add_epi64( \
_mm256_add_epi64( \
_mm256_add_epi64( \
_mm256_sub_epi64( _mm256_xor_si256( M[ 5], H[ 5] ), \
_mm256_xor_si256( M[ 7], H[ 7] ) ), \
_mm256_xor_si256( M[10], H[10] ) ), \
_mm256_xor_si256( M[13], H[13] ) ), \
_mm256_xor_si256( M[14], H[14] ) )
_mm256_add_epi64( \
_mm256_sub_epi64( _mm256_xor_si256( M[ 5], H[ 5] ), \
_mm256_xor_si256( M[ 7], H[ 7] ) ), \
_mm256_xor_si256( M[10], H[10] ) ), \
_mm256_add_epi64( _mm256_xor_si256( M[13], H[13] ), \
_mm256_xor_si256( M[14], H[14] ) ) )
#define Wb1 \
_mm256_sub_epi64( \
_mm256_add_epi64( \
_mm256_add_epi64( \
_mm256_add_epi64( \
_mm256_sub_epi64( _mm256_xor_si256( M[ 6], H[ 6] ), \
_mm256_xor_si256( M[ 8], H[ 8] ) ), \
_mm256_xor_si256( M[11], H[11] ) ), \
_mm256_xor_si256( M[14], H[14] ) ), \
_mm256_xor_si256( M[15], H[15] ) )
_mm256_sub_epi64( _mm256_xor_si256( M[ 6], H[ 6] ), \
_mm256_xor_si256( M[ 8], H[ 8] ) ), \
_mm256_xor_si256( M[11], H[11] ) ), \
_mm256_sub_epi64( _mm256_xor_si256( M[14], H[14] ), \
_mm256_xor_si256( M[15], H[15] ) ) )
#define Wb2 \
_mm256_add_epi64( \
_mm256_sub_epi64( \
_mm256_add_epi64( \
_mm256_add_epi64( _mm256_xor_si256( M[ 0], H[ 0] ), \
_mm256_xor_si256( M[ 7], H[ 7] ) ), \
_mm256_xor_si256( M[ 9], H[ 9] ) ), \
_mm256_xor_si256( M[12], H[12] ) ), \
_mm256_xor_si256( M[15], H[15] ) )
_mm256_sub_epi64( \
_mm256_add_epi64( \
_mm256_add_epi64( _mm256_xor_si256( M[ 0], H[ 0] ), \
_mm256_xor_si256( M[ 7], H[ 7] ) ), \
_mm256_xor_si256( M[ 9], H[ 9] ) ), \
_mm256_sub_epi64( _mm256_xor_si256( M[12], H[12] ), \
_mm256_xor_si256( M[15], H[15] ) ) )
#define Wb3 \
_mm256_add_epi64( \
_mm256_sub_epi64( \
_mm256_add_epi64( \
_mm256_sub_epi64( _mm256_xor_si256( M[ 0], H[ 0] ), \
_mm256_xor_si256( M[ 1], H[ 1] ) ), \
_mm256_xor_si256( M[ 8], H[ 8] ) ), \
_mm256_xor_si256( M[10], H[10] ) ), \
_mm256_xor_si256( M[13], H[13] ) )
_mm256_sub_epi64( \
_mm256_add_epi64( \
_mm256_sub_epi64( _mm256_xor_si256( M[ 0], H[ 0] ), \
_mm256_xor_si256( M[ 1], H[ 1] ) ), \
_mm256_xor_si256( M[ 8], H[ 8] ) ), \
_mm256_sub_epi64( _mm256_xor_si256( M[10], H[10] ), \
_mm256_xor_si256( M[13], H[13] ) ) )
#define Wb4 \
_mm256_sub_epi64( \
_mm256_sub_epi64( \
_mm256_add_epi64( \
_mm256_add_epi64( _mm256_xor_si256( M[ 1], H[ 1] ), \
_mm256_xor_si256( M[ 2], H[ 2] ) ), \
_mm256_xor_si256( M[ 9], H[ 9] ) ), \
_mm256_xor_si256( M[11], H[11] ) ), \
_mm256_xor_si256( M[14], H[14] ) )
_mm256_add_epi64( \
_mm256_add_epi64( _mm256_xor_si256( M[ 1], H[ 1] ), \
_mm256_xor_si256( M[ 2], H[ 2] ) ), \
_mm256_xor_si256( M[ 9], H[ 9] ) ), \
_mm256_add_epi64( _mm256_xor_si256( M[11], H[11] ), \
_mm256_xor_si256( M[14], H[14] ) ) )
#define Wb5 \
_mm256_add_epi64( \
_mm256_sub_epi64( \
_mm256_add_epi64( \
_mm256_sub_epi64( _mm256_xor_si256( M[ 3], H[ 3] ), \
_mm256_xor_si256( M[ 2], H[ 2] ) ), \
_mm256_xor_si256( M[10], H[10] ) ), \
_mm256_xor_si256( M[12], H[12] ) ), \
_mm256_xor_si256( M[15], H[15] ) )
_mm256_sub_epi64( \
_mm256_add_epi64( \
_mm256_sub_epi64( _mm256_xor_si256( M[ 3], H[ 3] ), \
_mm256_xor_si256( M[ 2], H[ 2] ) ), \
_mm256_xor_si256( M[10], H[10] ) ), \
_mm256_sub_epi64( _mm256_xor_si256( M[12], H[12] ), \
_mm256_xor_si256( M[15], H[15] ) ) )
#define Wb6 \
_mm256_add_epi64( \
_mm256_sub_epi64( \
_mm256_sub_epi64( \
_mm256_sub_epi64( _mm256_xor_si256( M[ 4], H[ 4] ), \
_mm256_xor_si256( M[ 0], H[ 0] ) ), \
_mm256_xor_si256( M[ 3], H[ 3] ) ), \
_mm256_xor_si256( M[11], H[11] ) ), \
_mm256_xor_si256( M[13], H[13] ) )
_mm256_sub_epi64( \
_mm256_sub_epi64( \
_mm256_sub_epi64( _mm256_xor_si256( M[ 4], H[ 4] ), \
_mm256_xor_si256( M[ 0], H[ 0] ) ), \
_mm256_xor_si256( M[ 3], H[ 3] ) ), \
_mm256_sub_epi64( _mm256_xor_si256( M[11], H[11] ), \
_mm256_xor_si256( M[13], H[13] ) ) )
#define Wb7 \
_mm256_sub_epi64( \
_mm256_sub_epi64( \
_mm256_sub_epi64( \
_mm256_sub_epi64( _mm256_xor_si256( M[ 1], H[ 1] ), \
_mm256_xor_si256( M[ 4], H[ 4] ) ), \
_mm256_xor_si256( M[ 5], H[ 5] ) ), \
_mm256_xor_si256( M[12], H[12] ) ), \
_mm256_xor_si256( M[14], H[14] ) )
_mm256_sub_epi64( \
_mm256_sub_epi64( _mm256_xor_si256( M[ 1], H[ 1] ), \
_mm256_xor_si256( M[ 4], H[ 4] ) ), \
_mm256_xor_si256( M[ 5], H[ 5] ) ), \
_mm256_add_epi64( _mm256_xor_si256( M[12], H[12] ), \
_mm256_xor_si256( M[14], H[14] ) ) )
#define Wb8 \
_mm256_sub_epi64( \
_mm256_add_epi64( \
_mm256_sub_epi64( \
_mm256_sub_epi64( _mm256_xor_si256( M[ 2], H[ 2] ), \
_mm256_xor_si256( M[ 5], H[ 5] ) ), \
_mm256_xor_si256( M[ 6], H[ 6] ) ), \
_mm256_xor_si256( M[13], H[13] ) ), \
_mm256_xor_si256( M[15], H[15] ) )
_mm256_add_epi64( \
_mm256_sub_epi64( \
_mm256_sub_epi64( _mm256_xor_si256( M[ 2], H[ 2] ), \
_mm256_xor_si256( M[ 5], H[ 5] ) ), \
_mm256_xor_si256( M[ 6], H[ 6] ) ), \
_mm256_sub_epi64( _mm256_xor_si256( M[13], H[13] ), \
_mm256_xor_si256( M[15], H[15] ) ) )
#define Wb9 \
_mm256_add_epi64( \
_mm256_sub_epi64( \
_mm256_add_epi64( \
_mm256_sub_epi64( _mm256_xor_si256( M[ 0], H[ 0] ), \
_mm256_xor_si256( M[ 3], H[ 3] ) ), \
_mm256_xor_si256( M[ 6], H[ 6] ) ), \
_mm256_xor_si256( M[ 7], H[ 7] ) ), \
_mm256_xor_si256( M[14], H[14] ) )
_mm256_sub_epi64( \
_mm256_add_epi64( \
_mm256_sub_epi64( _mm256_xor_si256( M[ 0], H[ 0] ), \
_mm256_xor_si256( M[ 3], H[ 3] ) ), \
_mm256_xor_si256( M[ 6], H[ 6] ) ), \
_mm256_sub_epi64( _mm256_xor_si256( M[ 7], H[ 7] ), \
_mm256_xor_si256( M[14], H[14] ) ) )
#define Wb10 \
_mm256_add_epi64( \
_mm256_sub_epi64( \
_mm256_sub_epi64( \
_mm256_sub_epi64( _mm256_xor_si256( M[ 8], H[ 8] ), \
_mm256_xor_si256( M[ 1], H[ 1] ) ), \
_mm256_xor_si256( M[ 4], H[ 4] ) ), \
_mm256_xor_si256( M[ 7], H[ 7] ) ), \
_mm256_xor_si256( M[15], H[15] ) )
_mm256_sub_epi64( \
_mm256_sub_epi64( \
_mm256_sub_epi64( _mm256_xor_si256( M[ 8], H[ 8] ), \
_mm256_xor_si256( M[ 1], H[ 1] ) ), \
_mm256_xor_si256( M[ 4], H[ 4] ) ), \
_mm256_sub_epi64( _mm256_xor_si256( M[ 7], H[ 7] ), \
_mm256_xor_si256( M[15], H[15] ) ) )
#define Wb11 \
_mm256_add_epi64( \
_mm256_sub_epi64( \
_mm256_sub_epi64( \
_mm256_sub_epi64( _mm256_xor_si256( M[ 8], H[ 8] ), \
_mm256_xor_si256( M[ 0], H[ 0] ) ), \
_mm256_xor_si256( M[ 2], H[ 2] ) ), \
_mm256_xor_si256( M[ 5], H[ 5] ) ), \
_mm256_xor_si256( M[ 9], H[ 9] ) )
_mm256_sub_epi64( \
_mm256_sub_epi64( \
_mm256_sub_epi64( _mm256_xor_si256( M[ 8], H[ 8] ), \
_mm256_xor_si256( M[ 0], H[ 0] ) ), \
_mm256_xor_si256( M[ 2], H[ 2] ) ), \
_mm256_sub_epi64( _mm256_xor_si256( M[ 5], H[ 5] ), \
_mm256_xor_si256( M[ 9], H[ 9] ) ) )
#define Wb12 \
_mm256_add_epi64( \
_mm256_sub_epi64( \
_mm256_sub_epi64( \
_mm256_add_epi64( _mm256_xor_si256( M[ 1], H[ 1] ), \
_mm256_xor_si256( M[ 3], H[ 3] ) ), \
_mm256_xor_si256( M[ 6], H[ 6] ) ), \
_mm256_xor_si256( M[ 9], H[ 9] ) ), \
_mm256_xor_si256( M[10], H[10] ) )
_mm256_sub_epi64( \
_mm256_sub_epi64( \
_mm256_add_epi64( _mm256_xor_si256( M[ 1], H[ 1] ), \
_mm256_xor_si256( M[ 3], H[ 3] ) ), \
_mm256_xor_si256( M[ 6], H[ 6] ) ), \
_mm256_sub_epi64( _mm256_xor_si256( M[ 9], H[ 9] ), \
_mm256_xor_si256( M[10], H[10] ) ) )
#define Wb13 \
_mm256_add_epi64( \
_mm256_add_epi64( \
_mm256_add_epi64( \
_mm256_add_epi64( _mm256_xor_si256( M[ 2], H[ 2] ), \
_mm256_xor_si256( M[ 4], H[ 4] ) ), \
_mm256_xor_si256( M[ 7], H[ 7] ) ), \
_mm256_xor_si256( M[10], H[10] ) ), \
_mm256_xor_si256( M[11], H[11] ) )
_mm256_add_epi64( \
_mm256_add_epi64( _mm256_xor_si256( M[ 2], H[ 2] ), \
_mm256_xor_si256( M[ 4], H[ 4] ) ), \
_mm256_xor_si256( M[ 7], H[ 7] ) ), \
_mm256_add_epi64( _mm256_xor_si256( M[10], H[10] ), \
_mm256_xor_si256( M[11], H[11] ) ) )
#define Wb14 \
_mm256_sub_epi64( \
_mm256_sub_epi64( \
_mm256_add_epi64( \
_mm256_sub_epi64( _mm256_xor_si256( M[ 3], H[ 3] ), \
_mm256_xor_si256( M[ 5], H[ 5] ) ), \
_mm256_xor_si256( M[ 8], H[ 8] ) ), \
_mm256_xor_si256( M[11], H[11] ) ), \
_mm256_xor_si256( M[12], H[12] ) )
_mm256_add_epi64( \
_mm256_sub_epi64( _mm256_xor_si256( M[ 3], H[ 3] ), \
_mm256_xor_si256( M[ 5], H[ 5] ) ), \
_mm256_xor_si256( M[ 8], H[ 8] ) ), \
_mm256_add_epi64( _mm256_xor_si256( M[11], H[11] ), \
_mm256_xor_si256( M[12], H[12] ) ) )
#define Wb15 \
_mm256_add_epi64( \
_mm256_sub_epi64( \
_mm256_sub_epi64( \
_mm256_sub_epi64( _mm256_xor_si256( M[12], H[12] ), \
_mm256_xor_si256( M[ 4], H[4] ) ), \
_mm256_xor_si256( M[ 6], H[ 6] ) ), \
_mm256_xor_si256( M[ 9], H[ 9] ) ), \
_mm256_xor_si256( M[13], H[13] ) )
_mm256_sub_epi64( \
_mm256_sub_epi64( \
_mm256_sub_epi64( _mm256_xor_si256( M[12], H[12] ), \
_mm256_xor_si256( M[ 4], H[4] ) ), \
_mm256_xor_si256( M[ 6], H[ 6] ) ), \
_mm256_sub_epi64( _mm256_xor_si256( M[ 9], H[ 9] ), \
_mm256_xor_si256( M[13], H[13] ) ) )
void compress_big( const __m256i *M, const __m256i H[16], __m256i dH[16] )
{
@@ -1079,6 +1066,477 @@ bmw512_4way_addbits_and_close(void *cc, unsigned ub, unsigned n, void *dst)
#endif // __AVX2__
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
// BMW-512 8 WAY
#define s8b0(x) \
mm512_xor4( _mm512_srli_epi64( (x), 1), _mm512_slli_epi64( (x), 3), \
mm512_rol_64( (x), 4), mm512_rol_64( (x),37) )
#define s8b1(x) \
mm512_xor4( _mm512_srli_epi64( (x), 1), _mm512_slli_epi64( (x), 2), \
mm512_rol_64( (x),13), mm512_rol_64( (x),43) )
#define s8b2(x) \
mm512_xor4( _mm512_srli_epi64( (x), 2), _mm512_slli_epi64( (x), 1), \
mm512_rol_64( (x),19), mm512_rol_64( (x),53) )
#define s8b3(x) \
mm512_xor4( _mm512_srli_epi64( (x), 2), _mm512_slli_epi64( (x), 2), \
mm512_rol_64( (x),28), mm512_rol_64( (x),59) )
#define s8b4(x) \
_mm512_xor_si512( (x), _mm512_srli_epi64( (x), 1 ) )
#define s8b5(x) \
_mm512_xor_si512( (x), _mm512_srli_epi64( (x), 2 ) )
#define r8b1(x) mm512_rol_64( x, 5 )
#define r8b2(x) mm512_rol_64( x, 11 )
#define r8b3(x) mm512_rol_64( x, 27 )
#define r8b4(x) mm512_rol_64( x, 32 )
#define r8b5(x) mm512_rol_64( x, 37 )
#define r8b6(x) mm512_rol_64( x, 43 )
#define r8b7(x) mm512_rol_64( x, 53 )
#define rol8w_off_64( M, j, off ) \
mm512_rol_64( M[ ( (j) + (off) ) & 0xF ] , \
( ( (j) + (off) ) & 0xF ) + 1 )
#define add_elt_b8( M, H, j ) \
_mm512_xor_si512( \
_mm512_add_epi64( \
_mm512_sub_epi64( _mm512_add_epi64( rol8w_off_64( M, j, 0 ), \
rol8w_off_64( M, j, 3 ) ), \
rol8w_off_64( M, j, 10 ) ), \
_mm512_set1_epi64( ( (j) + 16 ) * 0x0555555555555555ULL ) ), \
H[ ( (j)+7 ) & 0xF ] )
#define expand1b8( qt, M, H, i ) \
_mm512_add_epi64( mm512_add4_64( \
mm512_add4_64( s8b1( qt[ (i)-16 ] ), s8b2( qt[ (i)-15 ] ), \
s8b3( qt[ (i)-14 ] ), s8b0( qt[ (i)-13 ] )), \
mm512_add4_64( s8b1( qt[ (i)-12 ] ), s8b2( qt[ (i)-11 ] ), \
s8b3( qt[ (i)-10 ] ), s8b0( qt[ (i)- 9 ] )), \
mm512_add4_64( s8b1( qt[ (i)- 8 ] ), s8b2( qt[ (i)- 7 ] ), \
s8b3( qt[ (i)- 6 ] ), s8b0( qt[ (i)- 5 ] )), \
mm512_add4_64( s8b1( qt[ (i)- 4 ] ), s8b2( qt[ (i)- 3 ] ), \
s8b3( qt[ (i)- 2 ] ), s8b0( qt[ (i)- 1 ] ) ) ), \
add_elt_b8( M, H, (i)-16 ) )
#define expand2b8( qt, M, H, i) \
_mm512_add_epi64( mm512_add4_64( \
mm512_add4_64( qt[ (i)-16 ], r8b1( qt[ (i)-15 ] ), \
qt[ (i)-14 ], r8b2( qt[ (i)-13 ] ) ), \
mm512_add4_64( qt[ (i)-12 ], r8b3( qt[ (i)-11 ] ), \
qt[ (i)-10 ], r8b4( qt[ (i)- 9 ] ) ), \
mm512_add4_64( qt[ (i)- 8 ], r8b5( qt[ (i)- 7 ] ), \
qt[ (i)- 6 ], r8b6( qt[ (i)- 5 ] ) ), \
mm512_add4_64( qt[ (i)- 4 ], r8b7( qt[ (i)- 3 ] ), \
s8b4( qt[ (i)- 2 ] ), s8b5( qt[ (i)- 1 ] ) ) ), \
add_elt_b8( M, H, (i)-16 ) )
#define W8b0 \
_mm512_add_epi64( \
_mm512_add_epi64( \
_mm512_sub_epi64( _mm512_xor_si512( M[ 5], H[ 5] ), \
_mm512_xor_si512( M[ 7], H[ 7] ) ), \
_mm512_xor_si512( M[10], H[10] ) ), \
_mm512_add_epi64( _mm512_xor_si512( M[13], H[13] ), \
_mm512_xor_si512( M[14], H[14] ) ) )
#define W8b1 \
_mm512_add_epi64( \
_mm512_add_epi64( \
_mm512_sub_epi64( _mm512_xor_si512( M[ 6], H[ 6] ), \
_mm512_xor_si512( M[ 8], H[ 8] ) ), \
_mm512_xor_si512( M[11], H[11] ) ), \
_mm512_sub_epi64( _mm512_xor_si512( M[14], H[14] ), \
_mm512_xor_si512( M[15], H[15] ) ) )
#define W8b2 \
_mm512_sub_epi64( \
_mm512_add_epi64( \
_mm512_add_epi64( _mm512_xor_si512( M[ 0], H[ 0] ), \
_mm512_xor_si512( M[ 7], H[ 7] ) ), \
_mm512_xor_si512( M[ 9], H[ 9] ) ), \
_mm512_sub_epi64( _mm512_xor_si512( M[12], H[12] ), \
_mm512_xor_si512( M[15], H[15] ) ) )
#define W8b3 \
_mm512_sub_epi64( \
_mm512_add_epi64( \
_mm512_sub_epi64( _mm512_xor_si512( M[ 0], H[ 0] ), \
_mm512_xor_si512( M[ 1], H[ 1] ) ), \
_mm512_xor_si512( M[ 8], H[ 8] ) ), \
_mm512_sub_epi64( _mm512_xor_si512( M[10], H[10] ), \
_mm512_xor_si512( M[13], H[13] ) ) )
#define W8b4 \
_mm512_sub_epi64( \
_mm512_add_epi64( \
_mm512_add_epi64( _mm512_xor_si512( M[ 1], H[ 1] ), \
_mm512_xor_si512( M[ 2], H[ 2] ) ), \
_mm512_xor_si512( M[ 9], H[ 9] ) ), \
_mm512_add_epi64( _mm512_xor_si512( M[11], H[11] ), \
_mm512_xor_si512( M[14], H[14] ) ) )
#define W8b5 \
_mm512_sub_epi64( \
_mm512_add_epi64( \
_mm512_sub_epi64( _mm512_xor_si512( M[ 3], H[ 3] ), \
_mm512_xor_si512( M[ 2], H[ 2] ) ), \
_mm512_xor_si512( M[10], H[10] ) ), \
_mm512_sub_epi64( _mm512_xor_si512( M[12], H[12] ), \
_mm512_xor_si512( M[15], H[15] ) ) )
#define W8b6 \
_mm512_sub_epi64( \
_mm512_sub_epi64( \
_mm512_sub_epi64( _mm512_xor_si512( M[ 4], H[ 4] ), \
_mm512_xor_si512( M[ 0], H[ 0] ) ), \
_mm512_xor_si512( M[ 3], H[ 3] ) ), \
_mm512_sub_epi64( _mm512_xor_si512( M[11], H[11] ), \
_mm512_xor_si512( M[13], H[13] ) ) )
#define W8b7 \
_mm512_sub_epi64( \
_mm512_sub_epi64( \
_mm512_sub_epi64( _mm512_xor_si512( M[ 1], H[ 1] ), \
_mm512_xor_si512( M[ 4], H[ 4] ) ), \
_mm512_xor_si512( M[ 5], H[ 5] ) ), \
_mm512_add_epi64( _mm512_xor_si512( M[12], H[12] ), \
_mm512_xor_si512( M[14], H[14] ) ) )
#define W8b8 \
_mm512_add_epi64( \
_mm512_sub_epi64( \
_mm512_sub_epi64( _mm512_xor_si512( M[ 2], H[ 2] ), \
_mm512_xor_si512( M[ 5], H[ 5] ) ), \
_mm512_xor_si512( M[ 6], H[ 6] ) ), \
_mm512_sub_epi64( _mm512_xor_si512( M[13], H[13] ), \
_mm512_xor_si512( M[15], H[15] ) ) )
#define W8b9 \
_mm512_sub_epi64( \
_mm512_add_epi64( \
_mm512_sub_epi64( _mm512_xor_si512( M[ 0], H[ 0] ), \
_mm512_xor_si512( M[ 3], H[ 3] ) ), \
_mm512_xor_si512( M[ 6], H[ 6] ) ), \
_mm512_sub_epi64( _mm512_xor_si512( M[ 7], H[ 7] ), \
_mm512_xor_si512( M[14], H[14] ) ) )
#define W8b10 \
_mm512_sub_epi64( \
_mm512_sub_epi64( \
_mm512_sub_epi64( _mm512_xor_si512( M[ 8], H[ 8] ), \
_mm512_xor_si512( M[ 1], H[ 1] ) ), \
_mm512_xor_si512( M[ 4], H[ 4] ) ), \
_mm512_sub_epi64( _mm512_xor_si512( M[ 7], H[ 7] ), \
_mm512_xor_si512( M[15], H[15] ) ) )
#define W8b11 \
_mm512_sub_epi64( \
_mm512_sub_epi64( \
_mm512_sub_epi64( _mm512_xor_si512( M[ 8], H[ 8] ), \
_mm512_xor_si512( M[ 0], H[ 0] ) ), \
_mm512_xor_si512( M[ 2], H[ 2] ) ), \
_mm512_sub_epi64( _mm512_xor_si512( M[ 5], H[ 5] ), \
_mm512_xor_si512( M[ 9], H[ 9] ) ) )
#define W8b12 \
_mm512_sub_epi64( \
_mm512_sub_epi64( \
_mm512_add_epi64( _mm512_xor_si512( M[ 1], H[ 1] ), \
_mm512_xor_si512( M[ 3], H[ 3] ) ), \
_mm512_xor_si512( M[ 6], H[ 6] ) ), \
_mm512_sub_epi64( _mm512_xor_si512( M[ 9], H[ 9] ), \
_mm512_xor_si512( M[10], H[10] ) ) )
#define W8b13 \
_mm512_add_epi64( \
_mm512_add_epi64( \
_mm512_add_epi64( _mm512_xor_si512( M[ 2], H[ 2] ), \
_mm512_xor_si512( M[ 4], H[ 4] ) ), \
_mm512_xor_si512( M[ 7], H[ 7] ) ), \
_mm512_add_epi64( _mm512_xor_si512( M[10], H[10] ), \
_mm512_xor_si512( M[11], H[11] ) ) )
#define W8b14 \
_mm512_sub_epi64( \
_mm512_add_epi64( \
_mm512_sub_epi64( _mm512_xor_si512( M[ 3], H[ 3] ), \
_mm512_xor_si512( M[ 5], H[ 5] ) ), \
_mm512_xor_si512( M[ 8], H[ 8] ) ), \
_mm512_add_epi64( _mm512_xor_si512( M[11], H[11] ), \
_mm512_xor_si512( M[12], H[12] ) ) )
#define W8b15 \
_mm512_sub_epi64( \
_mm512_sub_epi64( \
_mm512_sub_epi64( _mm512_xor_si512( M[12], H[12] ), \
_mm512_xor_si512( M[ 4], H[4] ) ), \
_mm512_xor_si512( M[ 6], H[ 6] ) ), \
_mm512_sub_epi64( _mm512_xor_si512( M[ 9], H[ 9] ), \
_mm512_xor_si512( M[13], H[13] ) ) )
void compress_big_8way( const __m512i *M, const __m512i H[16],
__m512i dH[16] )
{
__m512i qt[32], xl, xh;
qt[ 0] = _mm512_add_epi64( s8b0( W8b0 ), H[ 1] );
qt[ 1] = _mm512_add_epi64( s8b1( W8b1 ), H[ 2] );
qt[ 2] = _mm512_add_epi64( s8b2( W8b2 ), H[ 3] );
qt[ 3] = _mm512_add_epi64( s8b3( W8b3 ), H[ 4] );
qt[ 4] = _mm512_add_epi64( s8b4( W8b4 ), H[ 5] );
qt[ 5] = _mm512_add_epi64( s8b0( W8b5 ), H[ 6] );
qt[ 6] = _mm512_add_epi64( s8b1( W8b6 ), H[ 7] );
qt[ 7] = _mm512_add_epi64( s8b2( W8b7 ), H[ 8] );
qt[ 8] = _mm512_add_epi64( s8b3( W8b8 ), H[ 9] );
qt[ 9] = _mm512_add_epi64( s8b4( W8b9 ), H[10] );
qt[10] = _mm512_add_epi64( s8b0( W8b10), H[11] );
qt[11] = _mm512_add_epi64( s8b1( W8b11), H[12] );
qt[12] = _mm512_add_epi64( s8b2( W8b12), H[13] );
qt[13] = _mm512_add_epi64( s8b3( W8b13), H[14] );
qt[14] = _mm512_add_epi64( s8b4( W8b14), H[15] );
qt[15] = _mm512_add_epi64( s8b0( W8b15), H[ 0] );
qt[16] = expand1b8( qt, M, H, 16 );
qt[17] = expand1b8( qt, M, H, 17 );
qt[18] = expand2b8( qt, M, H, 18 );
qt[19] = expand2b8( qt, M, H, 19 );
qt[20] = expand2b8( qt, M, H, 20 );
qt[21] = expand2b8( qt, M, H, 21 );
qt[22] = expand2b8( qt, M, H, 22 );
qt[23] = expand2b8( qt, M, H, 23 );
qt[24] = expand2b8( qt, M, H, 24 );
qt[25] = expand2b8( qt, M, H, 25 );
qt[26] = expand2b8( qt, M, H, 26 );
qt[27] = expand2b8( qt, M, H, 27 );
qt[28] = expand2b8( qt, M, H, 28 );
qt[29] = expand2b8( qt, M, H, 29 );
qt[30] = expand2b8( qt, M, H, 30 );
qt[31] = expand2b8( qt, M, H, 31 );
xl = _mm512_xor_si512(
mm512_xor4( qt[16], qt[17], qt[18], qt[19] ),
mm512_xor4( qt[20], qt[21], qt[22], qt[23] ) );
xh = _mm512_xor_si512( xl, _mm512_xor_si512(
mm512_xor4( qt[24], qt[25], qt[26], qt[27] ),
mm512_xor4( qt[28], qt[29], qt[30], qt[31] ) ) );
#define DH1( m, sl, sr, a, b, c ) \
_mm512_add_epi64( \
_mm512_xor_si512( M[m], \
_mm512_xor_si512( _mm512_slli_epi64( xh, sl ), \
_mm512_srli_epi64( qt[a], sr ) ) ), \
_mm512_xor_si512( _mm512_xor_si512( xl, qt[b] ), qt[c] ) )
#define DHL( m, rl, sl, h, a, b, c ) \
_mm512_add_epi64( _mm512_add_epi64( \
mm512_rol_64( dH[h], rl ), \
_mm512_xor_si512( _mm512_xor_si512( xh, qt[a] ), M[m] )), \
_mm512_xor_si512( _mm512_slli_epi64( xl, sl ), \
_mm512_xor_si512( qt[b], qt[c] ) ) );
#define DHR( m, rl, sr, h, a, b, c ) \
_mm512_add_epi64( _mm512_add_epi64( \
mm512_rol_64( dH[h], rl ), \
_mm512_xor_si512( _mm512_xor_si512( xh, qt[a] ), M[m] )), \
_mm512_xor_si512( _mm512_srli_epi64( xl, sr ), \
_mm512_xor_si512( qt[b], qt[c] ) ) );
dH[ 0] = DH1( 0, 5, 5, 16, 24, 0 );
dH[ 1] = DH1( 1, 7, 8, 17, 25, 1 );
dH[ 2] = DH1( 2, 5, 5, 18, 26, 2 );
dH[ 3] = DH1( 3, 1, 5, 19, 27, 3 );
dH[ 4] = DH1( 4, 3, 0, 20, 28, 4 );
dH[ 5] = DH1( 5, 6, 6, 21, 29, 5 );
dH[ 6] = DH1( 6, 4, 6, 22, 30, 6 );
dH[ 7] = DH1( 7, 11, 2, 23, 31, 7 );
dH[ 8] = DHL( 8, 9, 8, 4, 24, 23, 8 );
dH[ 9] = DHR( 9, 10, 6, 5, 25, 16, 9 );
dH[10] = DHL( 10, 11, 6, 6, 26, 17, 10 );
dH[11] = DHL( 11, 12, 4, 7, 27, 18, 11 );
dH[12] = DHR( 12, 13, 3, 0, 28, 19, 12 );
dH[13] = DHR( 13, 14, 4, 1, 29, 20, 13 );
dH[14] = DHR( 14, 15, 7, 2, 30, 21, 14 );
dH[15] = DHR( 15, 16, 2, 3, 31, 22, 15 );
#undef DH1
#undef DHL
#undef DHR
}
static const __m512i final_b8[16] =
{
{ 0xaaaaaaaaaaaaaaa0, 0xaaaaaaaaaaaaaaa0,
0xaaaaaaaaaaaaaaa0, 0xaaaaaaaaaaaaaaa0,
0xaaaaaaaaaaaaaaa0, 0xaaaaaaaaaaaaaaa0,
0xaaaaaaaaaaaaaaa0, 0xaaaaaaaaaaaaaaa0 },
{ 0xaaaaaaaaaaaaaaa1, 0xaaaaaaaaaaaaaaa1,
0xaaaaaaaaaaaaaaa1, 0xaaaaaaaaaaaaaaa1,
0xaaaaaaaaaaaaaaa1, 0xaaaaaaaaaaaaaaa1,
0xaaaaaaaaaaaaaaa1, 0xaaaaaaaaaaaaaaa1 },
{ 0xaaaaaaaaaaaaaaa2, 0xaaaaaaaaaaaaaaa2,
0xaaaaaaaaaaaaaaa2, 0xaaaaaaaaaaaaaaa2,
0xaaaaaaaaaaaaaaa2, 0xaaaaaaaaaaaaaaa2,
0xaaaaaaaaaaaaaaa2, 0xaaaaaaaaaaaaaaa2 },
{ 0xaaaaaaaaaaaaaaa3, 0xaaaaaaaaaaaaaaa3,
0xaaaaaaaaaaaaaaa3, 0xaaaaaaaaaaaaaaa3,
0xaaaaaaaaaaaaaaa3, 0xaaaaaaaaaaaaaaa3,
0xaaaaaaaaaaaaaaa3, 0xaaaaaaaaaaaaaaa3 },
{ 0xaaaaaaaaaaaaaaa4, 0xaaaaaaaaaaaaaaa4,
0xaaaaaaaaaaaaaaa4, 0xaaaaaaaaaaaaaaa4,
0xaaaaaaaaaaaaaaa4, 0xaaaaaaaaaaaaaaa4,
0xaaaaaaaaaaaaaaa4, 0xaaaaaaaaaaaaaaa4 },
{ 0xaaaaaaaaaaaaaaa5, 0xaaaaaaaaaaaaaaa5,
0xaaaaaaaaaaaaaaa5, 0xaaaaaaaaaaaaaaa5,
0xaaaaaaaaaaaaaaa5, 0xaaaaaaaaaaaaaaa5,
0xaaaaaaaaaaaaaaa5, 0xaaaaaaaaaaaaaaa5 },
{ 0xaaaaaaaaaaaaaaa6, 0xaaaaaaaaaaaaaaa6,
0xaaaaaaaaaaaaaaa6, 0xaaaaaaaaaaaaaaa6,
0xaaaaaaaaaaaaaaa6, 0xaaaaaaaaaaaaaaa6,
0xaaaaaaaaaaaaaaa6, 0xaaaaaaaaaaaaaaa6 },
{ 0xaaaaaaaaaaaaaaa7, 0xaaaaaaaaaaaaaaa7,
0xaaaaaaaaaaaaaaa7, 0xaaaaaaaaaaaaaaa7,
0xaaaaaaaaaaaaaaa7, 0xaaaaaaaaaaaaaaa7,
0xaaaaaaaaaaaaaaa7, 0xaaaaaaaaaaaaaaa7 },
{ 0xaaaaaaaaaaaaaaa8, 0xaaaaaaaaaaaaaaa8,
0xaaaaaaaaaaaaaaa8, 0xaaaaaaaaaaaaaaa8,
0xaaaaaaaaaaaaaaa8, 0xaaaaaaaaaaaaaaa8,
0xaaaaaaaaaaaaaaa8, 0xaaaaaaaaaaaaaaa8 },
{ 0xaaaaaaaaaaaaaaa9, 0xaaaaaaaaaaaaaaa9,
0xaaaaaaaaaaaaaaa9, 0xaaaaaaaaaaaaaaa9,
0xaaaaaaaaaaaaaaa9, 0xaaaaaaaaaaaaaaa9,
0xaaaaaaaaaaaaaaa9, 0xaaaaaaaaaaaaaaa9 },
{ 0xaaaaaaaaaaaaaaaa, 0xaaaaaaaaaaaaaaaa,
0xaaaaaaaaaaaaaaaa, 0xaaaaaaaaaaaaaaaa,
0xaaaaaaaaaaaaaaaa, 0xaaaaaaaaaaaaaaaa,
0xaaaaaaaaaaaaaaaa, 0xaaaaaaaaaaaaaaaa },
{ 0xaaaaaaaaaaaaaaab, 0xaaaaaaaaaaaaaaab,
0xaaaaaaaaaaaaaaab, 0xaaaaaaaaaaaaaaab,
0xaaaaaaaaaaaaaaab, 0xaaaaaaaaaaaaaaab,
0xaaaaaaaaaaaaaaab, 0xaaaaaaaaaaaaaaab },
{ 0xaaaaaaaaaaaaaaac, 0xaaaaaaaaaaaaaaac,
0xaaaaaaaaaaaaaaac, 0xaaaaaaaaaaaaaaac,
0xaaaaaaaaaaaaaaac, 0xaaaaaaaaaaaaaaac,
0xaaaaaaaaaaaaaaac, 0xaaaaaaaaaaaaaaac },
{ 0xaaaaaaaaaaaaaaad, 0xaaaaaaaaaaaaaaad,
0xaaaaaaaaaaaaaaad, 0xaaaaaaaaaaaaaaad,
0xaaaaaaaaaaaaaaad, 0xaaaaaaaaaaaaaaad,
0xaaaaaaaaaaaaaaad, 0xaaaaaaaaaaaaaaad },
{ 0xaaaaaaaaaaaaaaae, 0xaaaaaaaaaaaaaaae,
0xaaaaaaaaaaaaaaae, 0xaaaaaaaaaaaaaaae,
0xaaaaaaaaaaaaaaae, 0xaaaaaaaaaaaaaaae,
0xaaaaaaaaaaaaaaae, 0xaaaaaaaaaaaaaaae },
{ 0xaaaaaaaaaaaaaaaf, 0xaaaaaaaaaaaaaaaf,
0xaaaaaaaaaaaaaaaf, 0xaaaaaaaaaaaaaaaf,
0xaaaaaaaaaaaaaaaf, 0xaaaaaaaaaaaaaaaf,
0xaaaaaaaaaaaaaaaf, 0xaaaaaaaaaaaaaaaf }
};
void bmw512_8way_init( bmw512_8way_context *ctx )
//bmw64_4way_init( bmw_4way_big_context *sc, const sph_u64 *iv )
{
ctx->H[ 0] = m512_const1_64( 0x8081828384858687 );
ctx->H[ 1] = m512_const1_64( 0x88898A8B8C8D8E8F );
ctx->H[ 2] = m512_const1_64( 0x9091929394959697 );
ctx->H[ 3] = m512_const1_64( 0x98999A9B9C9D9E9F );
ctx->H[ 4] = m512_const1_64( 0xA0A1A2A3A4A5A6A7 );
ctx->H[ 5] = m512_const1_64( 0xA8A9AAABACADAEAF );
ctx->H[ 6] = m512_const1_64( 0xB0B1B2B3B4B5B6B7 );
ctx->H[ 7] = m512_const1_64( 0xB8B9BABBBCBDBEBF );
ctx->H[ 8] = m512_const1_64( 0xC0C1C2C3C4C5C6C7 );
ctx->H[ 9] = m512_const1_64( 0xC8C9CACBCCCDCECF );
ctx->H[10] = m512_const1_64( 0xD0D1D2D3D4D5D6D7 );
ctx->H[11] = m512_const1_64( 0xD8D9DADBDCDDDEDF );
ctx->H[12] = m512_const1_64( 0xE0E1E2E3E4E5E6E7 );
ctx->H[13] = m512_const1_64( 0xE8E9EAEBECEDEEEF );
ctx->H[14] = m512_const1_64( 0xF0F1F2F3F4F5F6F7 );
ctx->H[15] = m512_const1_64( 0xF8F9FAFBFCFDFEFF );
ctx->ptr = 0;
ctx->bit_count = 0;
}
void bmw512_8way_update( bmw512_8way_context *ctx, const void *data,
size_t len )
{
__m512i *vdata = (__m512i*)data;
__m512i *buf;
__m512i htmp[16];
__m512i *h1, *h2;
size_t ptr;
const int buf_size = 128; // bytes of one lane, compatible with len
ctx->bit_count += len << 3;
buf = ctx->buf;
ptr = ctx->ptr;
h1 = ctx->H;
h2 = htmp;
while ( len > 0 )
{
size_t clen;
clen = buf_size - ptr;
if ( clen > len )
clen = len;
memcpy_512( buf + (ptr>>3), vdata, clen >> 3 );
vdata = vdata + (clen>>3);
len -= clen;
ptr += clen;
if ( ptr == buf_size )
{
__m512i *ht;
compress_big_8way( buf, h1, h2 );
ht = h1;
h1 = h2;
h2 = ht;
ptr = 0;
}
}
ctx->ptr = ptr;
if ( h1 != ctx->H )
memcpy_512( ctx->H, h1, 16 );
}
void bmw512_8way_close( bmw512_8way_context *ctx, void *dst )
{
__m512i *buf;
__m512i h1[16], h2[16], *h;
size_t ptr, u, v;
const int buf_size = 128; // bytes of one lane, compatible with len
buf = ctx->buf;
ptr = ctx->ptr;
buf[ ptr>>3 ] = m512_const1_64( 0x80 );
ptr += 8;
h = ctx->H;
if ( ptr > (buf_size - 8) )
{
memset_zero_512( buf + (ptr>>3), (buf_size - ptr) >> 3 );
compress_big_8way( buf, h, h1 );
ptr = 0;
h = h1;
}
memset_zero_512( buf + (ptr>>3), (buf_size - 8 - ptr) >> 3 );
buf[ (buf_size - 8) >> 3 ] = _mm512_set1_epi64( ctx->bit_count );
compress_big_8way( buf, h, h2 );
for ( u = 0; u < 16; u ++ )
buf[ u ] = h2[ u ];
compress_big_8way( buf, final_b8, h1 );
for (u = 0, v = 8; u < 8; u ++, v ++)
casti_m512i( dst, u ) = h1[ v ];
}
#endif // AVX512
#ifdef __cplusplus
}
#endif

View File

@@ -7,7 +7,7 @@
// 2x128
/*
// The result of hashing 10 rounds of initial data which consists of params
// zero padded.
static const uint64_t IV256[] =
@@ -25,7 +25,7 @@ static const uint64_t IV512[] =
0x148FE485FCD398D9, 0xB64445321B017BEF, 0x2FF5781C6A536159, 0x0DBADEA991FA7934,
0xA5A70E75D65C8A2B, 0xBC796576B1C62456, 0xE7989AF11921C8F7, 0xD43E3B447795D246
};
*/
static void transform_2way( cube_2way_context *sp )
{
@@ -97,39 +97,30 @@ static void transform_2way( cube_2way_context *sp )
int cube_2way_init( cube_2way_context *sp, int hashbitlen, int rounds,
int blockbytes )
{
__m128i* h = (__m128i*)sp->h;
__m256i *h = (__m256i*)sp->h;
__m128i *iv = (__m128i*)( hashbitlen == 512 ? (__m128i*)IV512
: (__m128i*)IV256 );
sp->hashlen = hashbitlen/128;
sp->blocksize = blockbytes/16;
sp->rounds = rounds;
sp->pos = 0;
if ( hashbitlen == 512 )
{
h[ 0] = m128_const_64( 0x4167D83E2D538B8B, 0x50F494D42AEA2A61 );
h[ 2] = m128_const_64( 0x50AC5695CC39968E, 0xC701CF8C3FEE2313 );
h[ 4] = m128_const_64( 0x825B453797CF0BEF, 0xA647A8B34D42C787 );
h[ 6] = m128_const_64( 0xA23911AED0E5CD33, 0xF22090C4EEF864D2 );
h[ 8] = m128_const_64( 0xB64445321B017BEF, 0x148FE485FCD398D9 );
h[10] = m128_const_64( 0x0DBADEA991FA7934, 0x2FF5781C6A536159 );
h[12] = m128_const_64( 0xBC796576B1C62456, 0xA5A70E75D65C8A2B );
h[14] = m128_const_64( 0xD43E3B447795D246, 0xE7989AF11921C8F7 );
h[1] = h[ 0]; h[ 3] = h[ 2]; h[ 5] = h[ 4]; h[ 7] = h[ 6];
h[9] = h[ 8]; h[11] = h[10]; h[13] = h[12]; h[15] = h[14];
}
else
{
h[ 0] = m128_const_64( 0x35481EAE63117E71, 0xCCD6F29FEA2BD4B4 );
h[ 2] = m128_const_64( 0xF4CC12BE7E624131, 0xE5D94E6322512D5B );
h[ 4] = m128_const_64( 0x3361DA8CD0720C35, 0x42AF2070C2D0B696 );
h[ 6] = m128_const_64( 0x40E5FBAB4680AC00, 0x8EF8AD8328CCECA4 );
h[ 8] = m128_const_64( 0xF0B266796C859D41, 0x6107FBD5D89041C3 );
h[10] = m128_const_64( 0x93CB628565C892FD, 0x5FA2560309392549 );
h[12] = m128_const_64( 0x85254725774ABFDD, 0x9E4B4E602AF2B5AE );
h[14] = m128_const_64( 0xD6032C0A9CDAF8AF, 0x4AB6AAD615815AEB );
h[1] = h[ 0]; h[ 3] = h[ 2]; h[ 5] = h[ 4]; h[ 7] = h[ 6];
h[9] = h[ 8]; h[11] = h[10]; h[13] = h[12]; h[15] = h[14];
}
h[ 0] = m256_const1_128( iv[0] );
h[ 1] = m256_const1_128( iv[1] );
h[ 2] = m256_const1_128( iv[2] );
h[ 3] = m256_const1_128( iv[3] );
h[ 4] = m256_const1_128( iv[4] );
h[ 5] = m256_const1_128( iv[5] );
h[ 6] = m256_const1_128( iv[6] );
h[ 7] = m256_const1_128( iv[7] );
h[ 0] = m256_const1_128( iv[0] );
h[ 1] = m256_const1_128( iv[1] );
h[ 2] = m256_const1_128( iv[2] );
h[ 3] = m256_const1_128( iv[3] );
h[ 4] = m256_const1_128( iv[4] );
h[ 5] = m256_const1_128( iv[5] );
h[ 6] = m256_const1_128( iv[6] );
h[ 7] = m256_const1_128( iv[7] );
return 0;
}
@@ -164,11 +155,11 @@ int cube_2way_close( cube_2way_context *sp, void *output )
// pos is zero for 64 byte data, 1 for 80 byte data.
sp->h[ sp->pos ] = _mm256_xor_si256( sp->h[ sp->pos ],
_mm256_set_epi32( 0,0,0,0x80, 0,0,0,0x80 ) );
m256_const2_64( 0, 0x0000000000000080 ) );
transform_2way( sp );
sp->h[7] = _mm256_xor_si256( sp->h[7],
_mm256_set_epi32( 1,0,0,0, 1,0,0,0 ) );
m256_const2_64( 0x0000000100000000, 0 ) );
for ( i = 0; i < 10; ++i ) transform_2way( sp );
@@ -197,13 +188,13 @@ int cube_2way_update_close( cube_2way_context *sp, void *output,
// pos is zero for 64 byte data, 1 for 80 byte data.
sp->h[ sp->pos ] = _mm256_xor_si256( sp->h[ sp->pos ],
_mm256_set_epi32( 0,0,0,0x80, 0,0,0,0x80 ) );
m256_const2_64( 0, 0x0000000000000080 ) );
transform_2way( sp );
sp->h[7] = _mm256_xor_si256( sp->h[7], _mm256_set_epi32( 1,0,0,0,
1,0,0,0 ) );
sp->h[7] = _mm256_xor_si256( sp->h[7],
m256_const2_64( 0x0000000100000000, 0 ) );
for ( i = 0; i < 10; ++i ) transform_2way( sp );
for ( i = 0; i < 10; ++i ) transform_2way( sp );
memcpy( hash, sp->h, sp->hashlen<<5 );
return 0;

View File

@@ -32,8 +32,6 @@
#include <stddef.h>
#include <string.h>
//#include "miner.h"
#include "hamsi-hash-4way.h"
#if defined(__AVX2__)
@@ -100,7 +98,7 @@ extern "C"{
#endif
//#include "hamsi-helper-4way.c"
/*
static const sph_u32 IV512[] = {
SPH_C32(0x73746565), SPH_C32(0x6c706172), SPH_C32(0x6b204172),
SPH_C32(0x656e6265), SPH_C32(0x72672031), SPH_C32(0x302c2062),
@@ -109,7 +107,7 @@ static const sph_u32 IV512[] = {
SPH_C32(0x65766572), SPH_C32(0x6c65652c), SPH_C32(0x2042656c),
SPH_C32(0x6769756d)
};
*/
static const sph_u32 alpha_n[] = {
SPH_C32(0xff00f0f0), SPH_C32(0xccccaaaa), SPH_C32(0xf0f0cccc),
SPH_C32(0xff00aaaa), SPH_C32(0xccccaaaa), SPH_C32(0xf0f0ff00),
@@ -138,6 +136,7 @@ static const sph_u32 alpha_f[] = {
SPH_C32(0xcaf9f9c0), SPH_C32(0x0ff0639c)
};
// imported from hamsi helper
/* Note: this table lists bits within each byte from least
@@ -529,49 +528,34 @@ static const sph_u32 T512[64][16] = {
SPH_C32(0xe7e00a94) }
};
#define INPUT_BIG \
do { \
const __m256i zero = _mm256_setzero_si256(); \
__m256i db = *buf; \
const sph_u32 *tp = &T512[0][0]; \
m0 = zero; \
m1 = zero; \
m2 = zero; \
m3 = zero; \
m4 = zero; \
m5 = zero; \
m6 = zero; \
m7 = zero; \
const uint64_t *tp = (uint64_t*)&T512[0][0]; \
m0 = m1 = m2 = m3 = m4 = m5 = m6 = m7 = m256_zero; \
for ( int u = 0; u < 64; u++ ) \
{ \
__m256i dm = _mm256_and_si256( db, m256_one_64 ) ; \
dm = mm256_negate_32( _mm256_or_si256( dm, \
_mm256_slli_epi64( dm, 32 ) ) ); \
m0 = _mm256_xor_si256( m0, _mm256_and_si256( dm, \
_mm256_set_epi32( tp[0x1], tp[0x0], tp[0x1], tp[0x0], \
tp[0x1], tp[0x0], tp[0x1], tp[0x0] ) ) ); \
m256_const1_64( tp[0] ) ) ); \
m1 = _mm256_xor_si256( m1, _mm256_and_si256( dm, \
_mm256_set_epi32( tp[0x3], tp[0x2], tp[0x3], tp[0x2], \
tp[0x3], tp[0x2], tp[0x3], tp[0x2] ) ) ); \
m256_const1_64( tp[1] ) ) ); \
m2 = _mm256_xor_si256( m2, _mm256_and_si256( dm, \
_mm256_set_epi32( tp[0x5], tp[0x4], tp[0x5], tp[0x4], \
tp[0x5], tp[0x4], tp[0x5], tp[0x4] ) ) ); \
m256_const1_64( tp[2] ) ) ); \
m3 = _mm256_xor_si256( m3, _mm256_and_si256( dm, \
_mm256_set_epi32( tp[0x7], tp[0x6], tp[0x7], tp[0x6], \
tp[0x7], tp[0x6], tp[0x7], tp[0x6] ) ) ); \
m256_const1_64( tp[3] ) ) ); \
m4 = _mm256_xor_si256( m4, _mm256_and_si256( dm, \
_mm256_set_epi32( tp[0x9], tp[0x8], tp[0x9], tp[0x8], \
tp[0x9], tp[0x8], tp[0x9], tp[0x8] ) ) ); \
m256_const1_64( tp[4] ) ) ); \
m5 = _mm256_xor_si256( m5, _mm256_and_si256( dm, \
_mm256_set_epi32( tp[0xB], tp[0xA], tp[0xB], tp[0xA], \
tp[0xB], tp[0xA], tp[0xB], tp[0xA] ) ) ); \
m256_const1_64( tp[5] ) ) ); \
m6 = _mm256_xor_si256( m6, _mm256_and_si256( dm, \
_mm256_set_epi32( tp[0xD], tp[0xC], tp[0xD], tp[0xC], \
tp[0xD], tp[0xC], tp[0xD], tp[0xC] ) ) ); \
m256_const1_64( tp[6] ) ) ); \
m7 = _mm256_xor_si256( m7, _mm256_and_si256( dm, \
_mm256_set_epi32( tp[0xF], tp[0xE], tp[0xF], tp[0xE], \
tp[0xF], tp[0xE], tp[0xF], tp[0xE] ) ) ); \
tp += 0x10; \
m256_const1_64( tp[7] ) ) ); \
tp += 8; \
db = _mm256_srli_epi64( db, 1 ); \
} \
} while (0)
@@ -662,55 +646,39 @@ do { \
#define ROUND_BIG(rc, alpha) \
do { \
__m256i t0, t1, t2, t3; \
s0 = _mm256_xor_si256( s0, _mm256_set_epi32( \
alpha[0x01] ^ (rc), alpha[0x00], alpha[0x01] ^ (rc), alpha[0x00], \
alpha[0x01] ^ (rc), alpha[0x00], alpha[0x01] ^ (rc), alpha[0x00] ) ); \
s1 = _mm256_xor_si256( s1, _mm256_set_epi32( \
alpha[0x03], alpha[0x02], alpha[0x03], alpha[0x02], \
alpha[0x03], alpha[0x02], alpha[0x03], alpha[0x02] ) ); \
s2 = _mm256_xor_si256( s2, _mm256_set_epi32( \
alpha[0x05], alpha[0x04], alpha[0x05], alpha[0x04], \
alpha[0x05], alpha[0x04], alpha[0x05], alpha[0x04] ) ); \
s3 = _mm256_xor_si256( s3, _mm256_set_epi32( \
alpha[0x07], alpha[0x06], alpha[0x07], alpha[0x06], \
alpha[0x07], alpha[0x06], alpha[0x07], alpha[0x06] ) ); \
s4 = _mm256_xor_si256( s4, _mm256_set_epi32( \
alpha[0x09], alpha[0x08], alpha[0x09], alpha[0x08], \
alpha[0x09], alpha[0x08], alpha[0x09], alpha[0x08] ) ); \
s5 = _mm256_xor_si256( s5, _mm256_set_epi32( \
alpha[0x0B], alpha[0x0A], alpha[0x0B], alpha[0x0A], \
alpha[0x0B], alpha[0x0A], alpha[0x0B], alpha[0x0A] ) ); \
s6 = _mm256_xor_si256( s6, _mm256_set_epi32( \
alpha[0x0D], alpha[0x0C], alpha[0x0D], alpha[0x0C], \
alpha[0x0D], alpha[0x0C], alpha[0x0D], alpha[0x0C] ) ); \
s7 = _mm256_xor_si256( s7, _mm256_set_epi32( \
alpha[0x0F], alpha[0x0E], alpha[0x0F], alpha[0x0E], \
alpha[0x0F], alpha[0x0E], alpha[0x0F], alpha[0x0E] ) ); \
s8 = _mm256_xor_si256( s8, _mm256_set_epi32( \
alpha[0x11], alpha[0x10], alpha[0x11], alpha[0x10], \
alpha[0x11], alpha[0x10], alpha[0x11], alpha[0x10] ) ); \
s9 = _mm256_xor_si256( s9, _mm256_set_epi32( \
alpha[0x13], alpha[0x12], alpha[0x13], alpha[0x12], \
alpha[0x13], alpha[0x12], alpha[0x13], alpha[0x12] ) ); \
sA = _mm256_xor_si256( sA, _mm256_set_epi32( \
alpha[0x15], alpha[0x14], alpha[0x15], alpha[0x14], \
alpha[0x15], alpha[0x14], alpha[0x15], alpha[0x14] ) ); \
sB = _mm256_xor_si256( sB, _mm256_set_epi32( \
alpha[0x17], alpha[0x16], alpha[0x17], alpha[0x16], \
alpha[0x17], alpha[0x16], alpha[0x17], alpha[0x16] ) ); \
sC = _mm256_xor_si256( sC, _mm256_set_epi32( \
alpha[0x19], alpha[0x18], alpha[0x19], alpha[0x18], \
alpha[0x19], alpha[0x18], alpha[0x19], alpha[0x18] ) ); \
sD = _mm256_xor_si256( sD, _mm256_set_epi32( \
alpha[0x1B], alpha[0x1A], alpha[0x1B], alpha[0x1A], \
alpha[0x1B], alpha[0x1A], alpha[0x1B], alpha[0x1A] ) ); \
sE = _mm256_xor_si256( sE, _mm256_set_epi32( \
alpha[0x1D], alpha[0x1C], alpha[0x1D], alpha[0x1C], \
alpha[0x1D], alpha[0x1C], alpha[0x1D], alpha[0x1C] ) ); \
sF = _mm256_xor_si256( sF, _mm256_set_epi32( \
alpha[0x1F], alpha[0x1E], alpha[0x1F], alpha[0x1E], \
alpha[0x1F], alpha[0x1E], alpha[0x1F], alpha[0x1E] ) ); \
__m256i t0, t1, t2, t3; \
s0 = _mm256_xor_si256( s0, m256_const1_64( \
( ( (uint64_t)( (rc) ^ alpha[1] ) << 32 ) ) | (uint64_t)alpha[0] ) ); \
s1 = _mm256_xor_si256( s1, m256_const1_64( \
( (uint64_t)alpha[ 3] << 32 ) | (uint64_t)alpha[ 2] ) ); \
s2 = _mm256_xor_si256( s2, m256_const1_64( \
( (uint64_t)alpha[ 5] << 32 ) | (uint64_t)alpha[ 4] ) ); \
s3 = _mm256_xor_si256( s3, m256_const1_64( \
( (uint64_t)alpha[ 7] << 32 ) | (uint64_t)alpha[ 6] ) ); \
s4 = _mm256_xor_si256( s4, m256_const1_64( \
( (uint64_t)alpha[ 9] << 32 ) | (uint64_t)alpha[ 8] ) ); \
s5 = _mm256_xor_si256( s5, m256_const1_64( \
( (uint64_t)alpha[11] << 32 ) | (uint64_t)alpha[10] ) ); \
s6 = _mm256_xor_si256( s6, m256_const1_64( \
( (uint64_t)alpha[13] << 32 ) | (uint64_t)alpha[12] ) ); \
s7 = _mm256_xor_si256( s7, m256_const1_64( \
( (uint64_t)alpha[15] << 32 ) | (uint64_t)alpha[14] ) ); \
s8 = _mm256_xor_si256( s8, m256_const1_64( \
( (uint64_t)alpha[17] << 32 ) | (uint64_t)alpha[16] ) ); \
s9 = _mm256_xor_si256( s9, m256_const1_64( \
( (uint64_t)alpha[19] << 32 ) | (uint64_t)alpha[18] ) ); \
sA = _mm256_xor_si256( sA, m256_const1_64( \
( (uint64_t)alpha[21] << 32 ) | (uint64_t)alpha[20] ) ); \
sB = _mm256_xor_si256( sB, m256_const1_64( \
( (uint64_t)alpha[23] << 32 ) | (uint64_t)alpha[22] ) ); \
sC = _mm256_xor_si256( sC, m256_const1_64( \
( (uint64_t)alpha[25] << 32 ) | (uint64_t)alpha[24] ) ); \
sD = _mm256_xor_si256( sD, m256_const1_64( \
( (uint64_t)alpha[27] << 32 ) | (uint64_t)alpha[26] ) ); \
sE = _mm256_xor_si256( sE, m256_const1_64( \
( (uint64_t)alpha[29] << 32 ) | (uint64_t)alpha[28] ) ); \
sF = _mm256_xor_si256( sF, m256_const1_64( \
( (uint64_t)alpha[31] << 32 ) | (uint64_t)alpha[30] ) ); \
\
SBOX( s0, s4, s8, sC ); \
SBOX( s1, s5, s9, sD ); \
@@ -864,47 +832,22 @@ void hamsi_big_final( hamsi_4way_big_context *sc, __m256i *buf )
void hamsi512_4way_init( hamsi_4way_big_context *sc )
{
sc->partial_len = 0;
sph_u32 lo, hi;
sc->count_high = sc->count_low = 0;
for ( int i = 0; i < 8; i++ )
{
lo = 2*i;
hi = 2*i + 1;
sc->h[i] = _mm256_set_epi32( IV512[hi], IV512[lo], IV512[hi], IV512[lo],
IV512[hi], IV512[lo], IV512[hi], IV512[lo] );
}
sc->h[0] = m256_const1_64( 0x6c70617273746565 );
sc->h[1] = m256_const1_64( 0x656e62656b204172 );
sc->h[2] = m256_const1_64( 0x302c206272672031 );
sc->h[3] = m256_const1_64( 0x3434362c75732032 );
sc->h[4] = m256_const1_64( 0x3030312020422d33 );
sc->h[5] = m256_const1_64( 0x656e2d484c657576 );
sc->h[6] = m256_const1_64( 0x6c65652c65766572 );
sc->h[7] = m256_const1_64( 0x6769756d2042656c );
}
void hamsi512_4way( hamsi_4way_big_context *sc, const void *data, size_t len )
{
__m256i *vdata = (__m256i*)data;
// It looks like the only way to get in here is if core was previously called
// with a very small len
// That's not likely even with 80 byte input so deprecate partial len
/*
if ( sc->partial_len != 0 )
{
size_t mlen;
mlen = 8 - sc->partial_len;
if ( len < mlen )
{
memcpy_256( sc->partial + (sc->partial_len >> 3), data, len>>3 );
sc->partial_len += len;
return;
}
else
{
memcpy_256( sc->partial + (sc->partial_len >> 3), data, mlen>>3 );
len -= mlen;
vdata += mlen>>3;
hamsi_big( sc, sc->partial, 1 );
sc->partial_len = 0;
}
}
*/
hamsi_big( sc, vdata, len>>3 );
vdata += ( (len& ~(size_t)7) >> 3 );
len &= (size_t)7;
@@ -920,8 +863,9 @@ void hamsi512_4way_close( hamsi_4way_big_context *sc, void *dst )
sph_enc32be( &ch, sc->count_high );
sph_enc32be( &cl, sc->count_low + ( sc->partial_len << 3 ) );
pad[0] = _mm256_set_epi32( cl, ch, cl, ch, cl, ch, cl, ch );
sc->buf[0] = _mm256_set_epi32( 0UL, 0x80UL, 0UL, 0x80UL,
0UL, 0x80UL, 0UL, 0x80UL );
sc->buf[0] = m256_const1_64( 0x80 );
// sc->buf[0] = _mm256_set_epi32( 0UL, 0x80UL, 0UL, 0x80UL,
// 0UL, 0x80UL, 0UL, 0x80UL );
hamsi_big( sc, sc->buf, 1 );
hamsi_big_final( sc, pad );

View File

@@ -94,7 +94,7 @@ extern "C"{
#define Sb(x0, x1, x2, x3, c) \
do { \
__m256i cc = _mm256_set_epi64x( c, c, c, c ); \
__m256i cc = _mm256_set1_epi64x( c ); \
x3 = mm256_not( x3 ); \
x0 = _mm256_xor_si256( x0, _mm256_andnot_si256( x2, cc ) ); \
tmp = _mm256_xor_si256( cc, _mm256_and_si256( x0, x1 ) ); \

View File

@@ -1,18 +1,68 @@
#include "keccak-gate.h"
#ifdef KECCAK_4WAY
#include <stdlib.h>
#include <string.h>
#include <stdint.h>
#include "sph_keccak.h"
#include "keccak-hash-4way.h"
#if defined(KECCAK_8WAY)
void keccakhash_8way(void *state, const void *input)
{
keccak256_8way_context ctx;
keccak256_8way_init( &ctx );
keccak256_8way_update( &ctx, input, 80 );
keccak256_8way_close( &ctx, state );
}
int scanhash_keccak_8way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t vdata[24*8] __attribute__ ((aligned (128)));
uint32_t hash[16*8] __attribute__ ((aligned (64)));
uint32_t lane_hash[8] __attribute__ ((aligned (64)));
uint32_t *hash7 = &(hash[49]); // 3*16+1
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
uint32_t n = pdata[19];
const uint32_t first_nonce = pdata[19];
__m512i *noncev = (__m512i*)vdata + 9; // aligned
const uint32_t Htarg = ptarget[7];
int thr_id = mythr->id;
mm512_bswap32_intrlv80_8x64( vdata, pdata );
do {
*noncev = mm512_intrlv_blend_32( mm512_bswap_32(
_mm512_set_epi32( n+7, 0, n+6, 0, n+5, 0, n+4, 0,
n+3, 0, n+2, 0, n+1, 0, n , 0 ) ), *noncev );
keccakhash_8way( hash, vdata );
for ( int lane = 0; lane < 8; lane++ )
if ( hash7[ lane<<1 ] < Htarg )
{
extr_lane_8x64( lane_hash, hash, lane, 256 );
if ( fulltest( lane_hash, ptarget ) && !opt_benchmark )
{
pdata[19] = n + lane;
submit_lane_solution( work, lane_hash, mythr, lane );
}
}
n += 8;
} while ( (n < max_nonce-8) && !work_restart[thr_id].restart);
*hashes_done = n - first_nonce + 1;
return 0;
}
#elif defined(KECCAK_4WAY)
void keccakhash_4way(void *state, const void *input)
{
keccak256_4way_context ctx;
keccak256_4way_init( &ctx );
keccak256_4way( &ctx, input, 80 );
keccak256_4way_update( &ctx, input, 80 );
keccak256_4way_close( &ctx, state );
}
@@ -28,8 +78,8 @@ int scanhash_keccak_4way( struct work *work, uint32_t max_nonce,
uint32_t n = pdata[19];
const uint32_t first_nonce = pdata[19];
__m256i *noncev = (__m256i*)vdata + 9; // aligned
// const uint32_t Htarg = ptarget[7];
int thr_id = mythr->id; // thr_id arg is deprecated
const uint32_t Htarg = ptarget[7];
int thr_id = mythr->id;
mm256_bswap32_intrlv80_4x64( vdata, pdata );
do {
@@ -39,7 +89,7 @@ int scanhash_keccak_4way( struct work *work, uint32_t max_nonce,
keccakhash_4way( hash, vdata );
for ( int lane = 0; lane < 4; lane++ )
if ( ( hash7[ lane<<1 ] & 0xFFFFFF00 ) == 0 )
if ( hash7[ lane<<1 ] < Htarg )
{
extr_lane_4x64( lane_hash, hash, lane, 256 );
if ( fulltest( lane_hash, ptarget ) && !opt_benchmark )

View File

@@ -3,30 +3,36 @@
bool register_keccak_algo( algo_gate_t* gate )
{
gate->optimizations = AVX2_OPT;
gate->optimizations = AVX2_OPT | AVX512_OPT;
gate->gen_merkle_root = (void*)&SHA256_gen_merkle_root;
opt_target_factor = 128.0;
#if defined (KECCAK_4WAY)
#if defined (KECCAK_8WAY)
gate->scanhash = (void*)&scanhash_keccak_8way;
gate->hash = (void*)&keccakhash_8way;
#elif defined (KECCAK_4WAY)
gate->scanhash = (void*)&scanhash_keccak_4way;
gate->hash = (void*)&keccakhash_4way;
#else
gate->scanhash = (void*)&scanhash_keccak;
gate->hash = (void*)&keccakhash;
gate->scanhash = (void*)&scanhash_keccak;
gate->hash = (void*)&keccakhash;
#endif
return true;
};
bool register_keccakc_algo( algo_gate_t* gate )
{
gate->optimizations = AVX2_OPT;
gate->optimizations = AVX2_OPT | AVX512_OPT;
gate->gen_merkle_root = (void*)&sha256d_gen_merkle_root;
opt_target_factor = 256.0;
#if defined (KECCAK_4WAY)
#if defined (KECCAK_8WAY)
gate->scanhash = (void*)&scanhash_keccak_8way;
gate->hash = (void*)&keccakhash_8way;
#elif defined (KECCAK_4WAY)
gate->scanhash = (void*)&scanhash_keccak_4way;
gate->hash = (void*)&keccakhash_4way;
#else
gate->scanhash = (void*)&scanhash_keccak;
gate->hash = (void*)&keccakhash;
gate->scanhash = (void*)&scanhash_keccak;
gate->hash = (void*)&keccakhash;
#endif
return true;
};

View File

@@ -1,23 +1,33 @@
#ifndef KECCAK_GATE_H__
#define KECCAK_GATE_H__
#define KECCAK_GATE_H__ 1
#include "algo-gate-api.h"
#include <stdint.h>
#if defined(__AVX2__)
#define KECCAK_4WAY
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#define KECCAK_8WAY 1
#elif defined(__AVX2__)
#define KECCAK_4WAY 1
#endif
#if defined(KECCAK_4WAY)
#if defined(KECCAK_8WAY)
void keccakhash_8way( void *state, const void *input );
int scanhash_keccak_8way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
#elif defined(KECCAK_4WAY)
void keccakhash_4way( void *state, const void *input );
int scanhash_keccak_4way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
#endif
#else
void keccakhash( void *state, const void *input );
int scanhash_keccak( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
#endif
#endif

View File

@@ -1,23 +1,24 @@
#include <stddef.h>
#include <stdint.h>
#include "keccak-hash-4way.h"
#if defined(__AVX2__)
static const sph_u64 RC[] = {
SPH_C64(0x0000000000000001), SPH_C64(0x0000000000008082),
SPH_C64(0x800000000000808A), SPH_C64(0x8000000080008000),
SPH_C64(0x000000000000808B), SPH_C64(0x0000000080000001),
SPH_C64(0x8000000080008081), SPH_C64(0x8000000000008009),
SPH_C64(0x000000000000008A), SPH_C64(0x0000000000000088),
SPH_C64(0x0000000080008009), SPH_C64(0x000000008000000A),
SPH_C64(0x000000008000808B), SPH_C64(0x800000000000008B),
SPH_C64(0x8000000000008089), SPH_C64(0x8000000000008003),
SPH_C64(0x8000000000008002), SPH_C64(0x8000000000000080),
SPH_C64(0x000000000000800A), SPH_C64(0x800000008000000A),
SPH_C64(0x8000000080008081), SPH_C64(0x8000000000008080),
SPH_C64(0x0000000080000001), SPH_C64(0x8000000080008008)
static const uint64_t RC[] = {
0x0000000000000001, 0x0000000000008082,
0x800000000000808A, 0x8000000080008000,
0x000000000000808B, 0x0000000080000001,
0x8000000080008081, 0x8000000000008009,
0x000000000000008A, 0x0000000000000088,
0x0000000080008009, 0x000000008000000A,
0x000000008000808B, 0x800000000000008B,
0x8000000000008089, 0x8000000000008003,
0x8000000000008002, 0x8000000000000080,
0x000000000000800A, 0x800000008000000A,
0x8000000080008081, 0x8000000000008080,
0x0000000080000001, 0x8000000080008008
};
// generic macros
#define a00 (kc->w[ 0])
#define a10 (kc->w[ 1])
#define a20 (kc->w[ 2])
@@ -48,6 +49,197 @@ static const sph_u64 RC[] = {
#define READ_STATE(sc)
#define WRITE_STATE(sc)
#define MOV64(d, s) (d = s)
#define XOR64_IOTA XOR64
#define LPAR (
#define RPAR )
#define DO(x) x
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#define INPUT_BUF(size) do { \
size_t j; \
for (j = 0; j < (size>>3); j++ ) \
kc->w[j ] = _mm512_xor_si512( kc->w[j], buf[j] ); \
} while (0)
// Targetted macros, keccak-macros.h is included for each target.
#define DECL64(x) __m512i x
#define XOR64(d, a, b) (d = _mm512_xor_si512(a,b))
#define AND64(d, a, b) (d = _mm512_and_si512(a,b))
#define OR64(d, a, b) (d = _mm512_or_si512(a,b))
#define NOT64(d, s) (d = _mm512_xor_si512(s,m512_neg1))
#define ROL64(d, v, n) (d = mm512_rol_64(v, n))
#include "keccak-macros.c"
#define KECCAK_F_1600 DO(KECCAK_F_1600_512)
#define KECCAK_F_1600_512 do { \
int j; \
for (j = 0; j < 24; j += 8) \
{ \
KF_ELT( 0, 1, _mm512_set1_epi64( RC[j + 0] ) ); \
KF_ELT( 1, 2, _mm512_set1_epi64( RC[j + 1] ) ); \
KF_ELT( 2, 3, _mm512_set1_epi64( RC[j + 2] ) ); \
KF_ELT( 3, 4, _mm512_set1_epi64( RC[j + 3] ) ); \
KF_ELT( 4, 5, _mm512_set1_epi64( RC[j + 4] ) ); \
KF_ELT( 5, 6, _mm512_set1_epi64( RC[j + 5] ) ); \
KF_ELT( 6, 7, _mm512_set1_epi64( RC[j + 6] ) ); \
KF_ELT( 7, 8, _mm512_set1_epi64( RC[j + 7] ) ); \
P8_TO_P0; \
} \
} while (0)
static void keccak64_8way_init( keccak64_ctx_m512i *kc, unsigned out_size )
{
__m512i zero = m512_zero;
__m512i neg1 = m512_neg1;
// Initialization for the "lane complement".
kc->w[ 0] = zero; kc->w[ 1] = neg1;
kc->w[ 2] = neg1; kc->w[ 3] = zero;
kc->w[ 4] = zero; kc->w[ 5] = zero;
kc->w[ 6] = zero; kc->w[ 7] = zero;
kc->w[ 8] = neg1; kc->w[ 9] = zero;
kc->w[10] = zero; kc->w[11] = zero;
kc->w[12] = neg1; kc->w[13] = zero;
kc->w[14] = zero; kc->w[15] = zero;
kc->w[16] = zero; kc->w[17] = neg1;
kc->w[18] = zero; kc->w[19] = zero;
kc->w[20] = neg1; kc->w[21] = zero;
kc->w[22] = zero; kc->w[23] = zero;
kc->w[24] = zero; kc->ptr = 0;
kc->lim = 200 - (out_size >> 2);
}
static void
keccak64_8way_core( keccak64_ctx_m512i *kc, const void *data, size_t len,
size_t lim )
{
__m512i *buf;
__m512i *vdata = (__m512i*)data;
size_t ptr;
DECL_STATE
buf = kc->buf;
ptr = kc->ptr;
if ( len < (lim - ptr) )
{
memcpy_512( buf + (ptr>>3), vdata, len>>3 );
kc->ptr = ptr + len;
return;
}
READ_STATE( kc );
while ( len > 0 )
{
size_t clen;
clen = (lim - ptr);
if ( clen > len )
clen = len;
memcpy_512( buf + (ptr>>3), vdata, clen>>3 );
ptr += clen;
vdata = vdata + (clen>>3);
len -= clen;
if ( ptr == lim )
{
INPUT_BUF( lim );
KECCAK_F_1600;
ptr = 0;
}
}
WRITE_STATE( kc );
kc->ptr = ptr;
}
static void keccak64_8way_close( keccak64_ctx_m512i *kc, void *dst,
size_t byte_len, size_t lim )
{
unsigned eb;
union {
__m512i tmp[lim + 1];
sph_u64 dummy; /* for alignment */
} u;
size_t j;
size_t m512_len = byte_len >> 3;
eb = 0x100 >> 8;
if ( kc->ptr == (lim - 8) )
{
const uint64_t t = eb | 0x8000000000000000;
u.tmp[0] = m512_const1_64( t );
j = 8;
}
else
{
j = lim - kc->ptr;
u.tmp[0] = m512_const1_64( eb );
memset_zero_512( u.tmp + 1, (j>>3) - 2 );
u.tmp[ (j>>3) - 1] = m512_const1_64( 0x8000000000000000 );
}
keccak64_8way_core( kc, u.tmp, j, lim );
/* Finalize the "lane complement" */
NOT64( kc->w[ 1], kc->w[ 1] );
NOT64( kc->w[ 2], kc->w[ 2] );
NOT64( kc->w[ 8], kc->w[ 8] );
NOT64( kc->w[12], kc->w[12] );
NOT64( kc->w[17], kc->w[17] );
NOT64( kc->w[20], kc->w[20] );
memcpy_512( dst, kc->w, m512_len );
}
void keccak256_8way_init( void *kc )
{
keccak64_8way_init( kc, 256 );
}
void
keccak256_8way_update(void *cc, const void *data, size_t len)
{
keccak64_8way_core(cc, data, len, 136);
}
void
keccak256_8way_close(void *cc, void *dst)
{
keccak64_8way_close(cc, dst, 32, 136);
}
void keccak512_8way_init( void *kc )
{
keccak64_8way_init( kc, 512 );
}
void
keccak512_8way_update(void *cc, const void *data, size_t len)
{
keccak64_8way_core(cc, data, len, 72);
}
void
keccak512_8way_close(void *cc, void *dst)
{
keccak64_8way_close(cc, dst, 64, 72);
}
#undef INPUT_BUF
#undef DECL64
#undef XOR64
#undef AND64
#undef OR64
#undef NOT64
#undef ROL64
#undef KECCAK_F_1600
#endif // AVX512
#if defined(__AVX2__)
#define INPUT_BUF(size) do { \
size_t j; \
for (j = 0; j < (size>>3); j++ ) \
@@ -55,314 +247,28 @@ static const sph_u64 RC[] = {
} while (0)
#define DECL64(x) __m256i x
#define MOV64(d, s) (d = s)
#define XOR64(d, a, b) (d = _mm256_xor_si256(a,b))
#define AND64(d, a, b) (d = _mm256_and_si256(a,b))
#define OR64(d, a, b) (d = _mm256_or_si256(a,b))
#define NOT64(d, s) (d = _mm256_xor_si256(s,m256_neg1))
#define ROL64(d, v, n) (d = mm256_rol_64(v, n))
#define XOR64_IOTA XOR64
#define TH_ELT(t, c0, c1, c2, c3, c4, d0, d1, d2, d3, d4) do { \
DECL64(tt0); \
DECL64(tt1); \
DECL64(tt2); \
DECL64(tt3); \
XOR64(tt0, d0, d1); \
XOR64(tt1, d2, d3); \
XOR64(tt0, tt0, d4); \
XOR64(tt0, tt0, tt1); \
ROL64(tt0, tt0, 1); \
XOR64(tt2, c0, c1); \
XOR64(tt3, c2, c3); \
XOR64(tt0, tt0, c4); \
XOR64(tt2, tt2, tt3); \
XOR64(t, tt0, tt2); \
} while (0)
#include "keccak-macros.c"
#define THETA(b00, b01, b02, b03, b04, b10, b11, b12, b13, b14, \
b20, b21, b22, b23, b24, b30, b31, b32, b33, b34, \
b40, b41, b42, b43, b44) \
do { \
DECL64(t0); \
DECL64(t1); \
DECL64(t2); \
DECL64(t3); \
DECL64(t4); \
TH_ELT(t0, b40, b41, b42, b43, b44, b10, b11, b12, b13, b14); \
TH_ELT(t1, b00, b01, b02, b03, b04, b20, b21, b22, b23, b24); \
TH_ELT(t2, b10, b11, b12, b13, b14, b30, b31, b32, b33, b34); \
TH_ELT(t3, b20, b21, b22, b23, b24, b40, b41, b42, b43, b44); \
TH_ELT(t4, b30, b31, b32, b33, b34, b00, b01, b02, b03, b04); \
XOR64(b00, b00, t0); \
XOR64(b01, b01, t0); \
XOR64(b02, b02, t0); \
XOR64(b03, b03, t0); \
XOR64(b04, b04, t0); \
XOR64(b10, b10, t1); \
XOR64(b11, b11, t1); \
XOR64(b12, b12, t1); \
XOR64(b13, b13, t1); \
XOR64(b14, b14, t1); \
XOR64(b20, b20, t2); \
XOR64(b21, b21, t2); \
XOR64(b22, b22, t2); \
XOR64(b23, b23, t2); \
XOR64(b24, b24, t2); \
XOR64(b30, b30, t3); \
XOR64(b31, b31, t3); \
XOR64(b32, b32, t3); \
XOR64(b33, b33, t3); \
XOR64(b34, b34, t3); \
XOR64(b40, b40, t4); \
XOR64(b41, b41, t4); \
XOR64(b42, b42, t4); \
XOR64(b43, b43, t4); \
XOR64(b44, b44, t4); \
} while (0)
#define KECCAK_F_1600 DO(KECCAK_F_1600_256)
#define RHO(b00, b01, b02, b03, b04, b10, b11, b12, b13, b14, \
b20, b21, b22, b23, b24, b30, b31, b32, b33, b34, \
b40, b41, b42, b43, b44) \
do { \
/* ROL64(b00, b00, 0); */ \
ROL64(b01, b01, 36); \
ROL64(b02, b02, 3); \
ROL64(b03, b03, 41); \
ROL64(b04, b04, 18); \
ROL64(b10, b10, 1); \
ROL64(b11, b11, 44); \
ROL64(b12, b12, 10); \
ROL64(b13, b13, 45); \
ROL64(b14, b14, 2); \
ROL64(b20, b20, 62); \
ROL64(b21, b21, 6); \
ROL64(b22, b22, 43); \
ROL64(b23, b23, 15); \
ROL64(b24, b24, 61); \
ROL64(b30, b30, 28); \
ROL64(b31, b31, 55); \
ROL64(b32, b32, 25); \
ROL64(b33, b33, 21); \
ROL64(b34, b34, 56); \
ROL64(b40, b40, 27); \
ROL64(b41, b41, 20); \
ROL64(b42, b42, 39); \
ROL64(b43, b43, 8); \
ROL64(b44, b44, 14); \
} while (0)
/*
* The KHI macro integrates the "lane complement" optimization. On input,
* some words are complemented:
* a00 a01 a02 a04 a13 a20 a21 a22 a30 a33 a34 a43
* On output, the following words are complemented:
* a04 a10 a20 a22 a23 a31
*
* The (implicit) permutation and the theta expansion will bring back
* the input mask for the next round.
*/
#define KHI_XO(d, a, b, c) do { \
DECL64(kt); \
OR64(kt, b, c); \
XOR64(d, a, kt); \
} while (0)
#define KHI_XA(d, a, b, c) do { \
DECL64(kt); \
AND64(kt, b, c); \
XOR64(d, a, kt); \
} while (0)
#define KHI(b00, b01, b02, b03, b04, b10, b11, b12, b13, b14, \
b20, b21, b22, b23, b24, b30, b31, b32, b33, b34, \
b40, b41, b42, b43, b44) \
do { \
DECL64(c0); \
DECL64(c1); \
DECL64(c2); \
DECL64(c3); \
DECL64(c4); \
DECL64(bnn); \
NOT64(bnn, b20); \
KHI_XO(c0, b00, b10, b20); \
KHI_XO(c1, b10, bnn, b30); \
KHI_XA(c2, b20, b30, b40); \
KHI_XO(c3, b30, b40, b00); \
KHI_XA(c4, b40, b00, b10); \
MOV64(b00, c0); \
MOV64(b10, c1); \
MOV64(b20, c2); \
MOV64(b30, c3); \
MOV64(b40, c4); \
NOT64(bnn, b41); \
KHI_XO(c0, b01, b11, b21); \
KHI_XA(c1, b11, b21, b31); \
KHI_XO(c2, b21, b31, bnn); \
KHI_XO(c3, b31, b41, b01); \
KHI_XA(c4, b41, b01, b11); \
MOV64(b01, c0); \
MOV64(b11, c1); \
MOV64(b21, c2); \
MOV64(b31, c3); \
MOV64(b41, c4); \
NOT64(bnn, b32); \
KHI_XO(c0, b02, b12, b22); \
KHI_XA(c1, b12, b22, b32); \
KHI_XA(c2, b22, bnn, b42); \
KHI_XO(c3, bnn, b42, b02); \
KHI_XA(c4, b42, b02, b12); \
MOV64(b02, c0); \
MOV64(b12, c1); \
MOV64(b22, c2); \
MOV64(b32, c3); \
MOV64(b42, c4); \
NOT64(bnn, b33); \
KHI_XA(c0, b03, b13, b23); \
KHI_XO(c1, b13, b23, b33); \
KHI_XO(c2, b23, bnn, b43); \
KHI_XA(c3, bnn, b43, b03); \
KHI_XO(c4, b43, b03, b13); \
MOV64(b03, c0); \
MOV64(b13, c1); \
MOV64(b23, c2); \
MOV64(b33, c3); \
MOV64(b43, c4); \
NOT64(bnn, b14); \
KHI_XA(c0, b04, bnn, b24); \
KHI_XO(c1, bnn, b24, b34); \
KHI_XA(c2, b24, b34, b44); \
KHI_XO(c3, b34, b44, b04); \
KHI_XA(c4, b44, b04, b14); \
MOV64(b04, c0); \
MOV64(b14, c1); \
MOV64(b24, c2); \
MOV64(b34, c3); \
MOV64(b44, c4); \
} while (0)
#define IOTA(r) XOR64_IOTA(a00, a00, r)
#define P0 a00, a01, a02, a03, a04, a10, a11, a12, a13, a14, a20, a21, \
a22, a23, a24, a30, a31, a32, a33, a34, a40, a41, a42, a43, a44
#define P1 a00, a30, a10, a40, a20, a11, a41, a21, a01, a31, a22, a02, \
a32, a12, a42, a33, a13, a43, a23, a03, a44, a24, a04, a34, a14
#define P2 a00, a33, a11, a44, a22, a41, a24, a02, a30, a13, a32, a10, \
a43, a21, a04, a23, a01, a34, a12, a40, a14, a42, a20, a03, a31
#define P3 a00, a23, a41, a14, a32, a24, a42, a10, a33, a01, a43, a11, \
a34, a02, a20, a12, a30, a03, a21, a44, a31, a04, a22, a40, a13
#define P4 a00, a12, a24, a31, a43, a42, a04, a11, a23, a30, a34, a41, \
a03, a10, a22, a21, a33, a40, a02, a14, a13, a20, a32, a44, a01
#define P5 a00, a21, a42, a13, a34, a04, a20, a41, a12, a33, a03, a24, \
a40, a11, a32, a02, a23, a44, a10, a31, a01, a22, a43, a14, a30
#define P6 a00, a02, a04, a01, a03, a20, a22, a24, a21, a23, a40, a42, \
a44, a41, a43, a10, a12, a14, a11, a13, a30, a32, a34, a31, a33
#define P7 a00, a10, a20, a30, a40, a22, a32, a42, a02, a12, a44, a04, \
a14, a24, a34, a11, a21, a31, a41, a01, a33, a43, a03, a13, a23
#define P8 a00, a11, a22, a33, a44, a32, a43, a04, a10, a21, a14, a20, \
a31, a42, a03, a41, a02, a13, a24, a30, a23, a34, a40, a01, a12
#define P9 a00, a41, a32, a23, a14, a43, a34, a20, a11, a02, a31, a22, \
a13, a04, a40, a24, a10, a01, a42, a33, a12, a03, a44, a30, a21
#define P10 a00, a24, a43, a12, a31, a34, a03, a22, a41, a10, a13, a32, \
a01, a20, a44, a42, a11, a30, a04, a23, a21, a40, a14, a33, a02
#define P11 a00, a42, a34, a21, a13, a03, a40, a32, a24, a11, a01, a43, \
a30, a22, a14, a04, a41, a33, a20, a12, a02, a44, a31, a23, a10
#define P12 a00, a04, a03, a02, a01, a40, a44, a43, a42, a41, a30, a34, \
a33, a32, a31, a20, a24, a23, a22, a21, a10, a14, a13, a12, a11
#define P13 a00, a20, a40, a10, a30, a44, a14, a34, a04, a24, a33, a03, \
a23, a43, a13, a22, a42, a12, a32, a02, a11, a31, a01, a21, a41
#define P14 a00, a22, a44, a11, a33, a14, a31, a03, a20, a42, a23, a40, \
a12, a34, a01, a32, a04, a21, a43, a10, a41, a13, a30, a02, a24
#define P15 a00, a32, a14, a41, a23, a31, a13, a40, a22, a04, a12, a44, \
a21, a03, a30, a43, a20, a02, a34, a11, a24, a01, a33, a10, a42
#define P16 a00, a43, a31, a24, a12, a13, a01, a44, a32, a20, a21, a14, \
a02, a40, a33, a34, a22, a10, a03, a41, a42, a30, a23, a11, a04
#define P17 a00, a34, a13, a42, a21, a01, a30, a14, a43, a22, a02, a31, \
a10, a44, a23, a03, a32, a11, a40, a24, a04, a33, a12, a41, a20
#define P18 a00, a03, a01, a04, a02, a30, a33, a31, a34, a32, a10, a13, \
a11, a14, a12, a40, a43, a41, a44, a42, a20, a23, a21, a24, a22
#define P19 a00, a40, a30, a20, a10, a33, a23, a13, a03, a43, a11, a01, \
a41, a31, a21, a44, a34, a24, a14, a04, a22, a12, a02, a42, a32
#define P20 a00, a44, a33, a22, a11, a23, a12, a01, a40, a34, a41, a30, \
a24, a13, a02, a14, a03, a42, a31, a20, a32, a21, a10, a04, a43
#define P21 a00, a14, a23, a32, a41, a12, a21, a30, a44, a03, a24, a33, \
a42, a01, a10, a31, a40, a04, a13, a22, a43, a02, a11, a20, a34
#define P22 a00, a31, a12, a43, a24, a21, a02, a33, a14, a40, a42, a23, \
a04, a30, a11, a13, a44, a20, a01, a32, a34, a10, a41, a22, a03
#define P23 a00, a13, a21, a34, a42, a02, a10, a23, a31, a44, a04, a12, \
a20, a33, a41, a01, a14, a22, a30, a43, a03, a11, a24, a32, a40
#define P8_TO_P0 do { \
DECL64(t); \
MOV64(t, a01); \
MOV64(a01, a11); \
MOV64(a11, a43); \
MOV64(a43, t); \
MOV64(t, a02); \
MOV64(a02, a22); \
MOV64(a22, a31); \
MOV64(a31, t); \
MOV64(t, a03); \
MOV64(a03, a33); \
MOV64(a33, a24); \
MOV64(a24, t); \
MOV64(t, a04); \
MOV64(a04, a44); \
MOV64(a44, a12); \
MOV64(a12, t); \
MOV64(t, a10); \
MOV64(a10, a32); \
MOV64(a32, a13); \
MOV64(a13, t); \
MOV64(t, a14); \
MOV64(a14, a21); \
MOV64(a21, a20); \
MOV64(a20, t); \
MOV64(t, a23); \
MOV64(a23, a42); \
MOV64(a42, a40); \
MOV64(a40, t); \
MOV64(t, a30); \
MOV64(a30, a41); \
MOV64(a41, a34); \
MOV64(a34, t); \
} while (0)
#define LPAR (
#define RPAR )
#define KF_ELT(r, s, k) do { \
THETA LPAR P ## r RPAR; \
RHO LPAR P ## r RPAR; \
KHI LPAR P ## s RPAR; \
IOTA(k); \
} while (0)
#define DO(x) x
#define KECCAK_F_1600 DO(KECCAK_F_1600_)
#define KECCAK_F_1600_ do { \
#define KECCAK_F_1600_256 do { \
int j; \
for (j = 0; j < 24; j += 8) \
{ \
KF_ELT( 0, 1, (_mm256_set_epi64x( RC[j + 0], RC[j + 0], \
RC[j + 0], RC[j + 0])) ); \
KF_ELT( 1, 2, (_mm256_set_epi64x( RC[j + 1], RC[j + 1], \
RC[j + 1], RC[j + 1])) ); \
KF_ELT( 2, 3, (_mm256_set_epi64x( RC[j + 2], RC[j + 2], \
RC[j + 2], RC[j + 2])) ); \
KF_ELT( 3, 4, (_mm256_set_epi64x( RC[j + 3], RC[j + 3], \
RC[j + 3], RC[j + 3])) ); \
KF_ELT( 4, 5, (_mm256_set_epi64x( RC[j + 4], RC[j + 4], \
RC[j + 4], RC[j + 4])) ); \
KF_ELT( 5, 6, (_mm256_set_epi64x( RC[j + 5], RC[j + 5], \
RC[j + 5], RC[j + 5])) ); \
KF_ELT( 6, 7, (_mm256_set_epi64x( RC[j + 6], RC[j + 6], \
RC[j + 6], RC[j + 6])) ); \
KF_ELT( 7, 8, (_mm256_set_epi64x( RC[j + 7], RC[j + 7], \
RC[j + 7], RC[j + 7])) ); \
KF_ELT( 0, 1, _mm256_set1_epi64x( RC[j + 0] ) ); \
KF_ELT( 1, 2, _mm256_set1_epi64x( RC[j + 1] ) ); \
KF_ELT( 2, 3, _mm256_set1_epi64x( RC[j + 2] ) ); \
KF_ELT( 3, 4, _mm256_set1_epi64x( RC[j + 3] ) ); \
KF_ELT( 4, 5, _mm256_set1_epi64x( RC[j + 4] ) ); \
KF_ELT( 5, 6, _mm256_set1_epi64x( RC[j + 5] ) ); \
KF_ELT( 6, 7, _mm256_set1_epi64x( RC[j + 6] ) ); \
KF_ELT( 7, 8, _mm256_set1_epi64x( RC[j + 7] ) ); \
P8_TO_P0; \
} \
} while (0)
@@ -453,7 +359,7 @@ static void keccak64_close( keccak64_ctx_m256i *kc, void *dst, size_t byte_len,
else
{
j = lim - kc->ptr;
u.tmp[0] = _mm256_set_epi64x( eb, eb, eb, eb );
u.tmp[0] = m256_const1_64( eb );
memset_zero_256( u.tmp + 1, (j>>3) - 2 );
u.tmp[ (j>>3) - 1] = m256_const1_64( 0x8000000000000000 );
}
@@ -474,7 +380,7 @@ void keccak256_4way_init( void *kc )
}
void
keccak256_4way(void *cc, const void *data, size_t len)
keccak256_4way_update(void *cc, const void *data, size_t len)
{
keccak64_core(cc, data, len, 136);
}
@@ -491,15 +397,24 @@ void keccak512_4way_init( void *kc )
}
void
keccak512_4way(void *cc, const void *data, size_t len)
keccak512_4way_update(void *cc, const void *data, size_t len)
{
keccak64_core(cc, data, len, 72);
keccak64_core(cc, data, len, 72);
}
void
keccak512_4way_close(void *cc, void *dst)
{
keccak64_close(cc, dst, 64, 72);
keccak64_close(cc, dst, 64, 72);
}
#endif
#undef INPUT_BUF
#undef DECL64
#undef XOR64
#undef AND64
#undef OR64
#undef NOT64
#undef ROL64
#undef KECCAK_F_1600
#endif // AVX2

View File

@@ -64,26 +64,49 @@ extern "C"{
* <code>memcpy()</code>).
*/
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
typedef struct {
__m256i buf[144*8]; /* first field, for alignment */
__m512i buf[144*8];
__m512i w[25];
size_t ptr, lim;
} keccak64_ctx_m512i __attribute__((aligned(128)));
typedef keccak64_ctx_m512i keccak256_8way_context;
typedef keccak64_ctx_m512i keccak512_8way_context;
void keccak256_8way_init(void *cc);
void keccak256_8way_update(void *cc, const void *data, size_t len);
void keccak256_8way_close(void *cc, void *dst);
void keccak512_8way_init(void *cc);
void keccak512_8way_update(void *cc, const void *data, size_t len);
void keccak512_8way_close(void *cc, void *dst);
void keccak512_8way_addbits_and_close(
void *cc, unsigned ub, unsigned n, void *dst);
#endif
typedef struct {
__m256i buf[144*8];
__m256i w[25];
size_t ptr, lim;
// sph_u64 wide[25];
} keccak64_ctx_m256i;
} keccak64_ctx_m256i __attribute__((aligned(128)));
typedef keccak64_ctx_m256i keccak256_4way_context;
typedef keccak64_ctx_m256i keccak512_4way_context;
void keccak256_4way_init(void *cc);
void keccak256_4way(void *cc, const void *data, size_t len);
void keccak256_4way_update(void *cc, const void *data, size_t len);
void keccak256_4way_close(void *cc, void *dst);
#define keccak256_4way keccak256_4way_update
void keccak512_4way_init(void *cc);
void keccak512_4way(void *cc, const void *data, size_t len);
void keccak512_4way_update(void *cc, const void *data, size_t len);
void keccak512_4way_close(void *cc, void *dst);
void keccak512_4way_addbits_and_close(
void *cc, unsigned ub, unsigned n, void *dst);
#define keccak512_4way keccak512_4way_update
#endif

324
algo/keccak/keccak-macros.c Normal file
View File

@@ -0,0 +1,324 @@
#ifdef TH_ELT
#undef TH_ELT
#endif
#define TH_ELT(t, c0, c1, c2, c3, c4, d0, d1, d2, d3, d4) do { \
DECL64(tt0); \
DECL64(tt1); \
DECL64(tt2); \
DECL64(tt3); \
XOR64(tt0, d0, d1); \
XOR64(tt1, d2, d3); \
XOR64(tt0, tt0, d4); \
XOR64(tt0, tt0, tt1); \
ROL64(tt0, tt0, 1); \
XOR64(tt2, c0, c1); \
XOR64(tt3, c2, c3); \
XOR64(tt0, tt0, c4); \
XOR64(tt2, tt2, tt3); \
XOR64(t, tt0, tt2); \
} while (0)
#ifdef THETA
#undef THETA
#endif
#define THETA(b00, b01, b02, b03, b04, b10, b11, b12, b13, b14, \
b20, b21, b22, b23, b24, b30, b31, b32, b33, b34, \
b40, b41, b42, b43, b44) \
do { \
DECL64(t0); \
DECL64(t1); \
DECL64(t2); \
DECL64(t3); \
DECL64(t4); \
TH_ELT(t0, b40, b41, b42, b43, b44, b10, b11, b12, b13, b14); \
TH_ELT(t1, b00, b01, b02, b03, b04, b20, b21, b22, b23, b24); \
TH_ELT(t2, b10, b11, b12, b13, b14, b30, b31, b32, b33, b34); \
TH_ELT(t3, b20, b21, b22, b23, b24, b40, b41, b42, b43, b44); \
TH_ELT(t4, b30, b31, b32, b33, b34, b00, b01, b02, b03, b04); \
XOR64(b00, b00, t0); \
XOR64(b01, b01, t0); \
XOR64(b02, b02, t0); \
XOR64(b03, b03, t0); \
XOR64(b04, b04, t0); \
XOR64(b10, b10, t1); \
XOR64(b11, b11, t1); \
XOR64(b12, b12, t1); \
XOR64(b13, b13, t1); \
XOR64(b14, b14, t1); \
XOR64(b20, b20, t2); \
XOR64(b21, b21, t2); \
XOR64(b22, b22, t2); \
XOR64(b23, b23, t2); \
XOR64(b24, b24, t2); \
XOR64(b30, b30, t3); \
XOR64(b31, b31, t3); \
XOR64(b32, b32, t3); \
XOR64(b33, b33, t3); \
XOR64(b34, b34, t3); \
XOR64(b40, b40, t4); \
XOR64(b41, b41, t4); \
XOR64(b42, b42, t4); \
XOR64(b43, b43, t4); \
XOR64(b44, b44, t4); \
} while (0)
#ifdef RHO
#undef RHO
#endif
#define RHO(b00, b01, b02, b03, b04, b10, b11, b12, b13, b14, \
b20, b21, b22, b23, b24, b30, b31, b32, b33, b34, \
b40, b41, b42, b43, b44) \
do { \
/* ROL64(b00, b00, 0); */ \
ROL64(b01, b01, 36); \
ROL64(b02, b02, 3); \
ROL64(b03, b03, 41); \
ROL64(b04, b04, 18); \
ROL64(b10, b10, 1); \
ROL64(b11, b11, 44); \
ROL64(b12, b12, 10); \
ROL64(b13, b13, 45); \
ROL64(b14, b14, 2); \
ROL64(b20, b20, 62); \
ROL64(b21, b21, 6); \
ROL64(b22, b22, 43); \
ROL64(b23, b23, 15); \
ROL64(b24, b24, 61); \
ROL64(b30, b30, 28); \
ROL64(b31, b31, 55); \
ROL64(b32, b32, 25); \
ROL64(b33, b33, 21); \
ROL64(b34, b34, 56); \
ROL64(b40, b40, 27); \
ROL64(b41, b41, 20); \
ROL64(b42, b42, 39); \
ROL64(b43, b43, 8); \
ROL64(b44, b44, 14); \
} while (0)
/*
* The KHI macro integrates the "lane complement" optimization. On input,
* some words are complemented:
* a00 a01 a02 a04 a13 a20 a21 a22 a30 a33 a34 a43
* On output, the following words are complemented:
* a04 a10 a20 a22 a23 a31
*
* The (implicit) permutation and the theta expansion will bring back
* the input mask for the next round.
*/
#ifdef KHI_XO
#undef KHI_XO
#endif
#define KHI_XO(d, a, b, c) do { \
DECL64(kt); \
OR64(kt, b, c); \
XOR64(d, a, kt); \
} while (0)
#ifdef KHI_XA
#undef KHI_XA
#endif
#define KHI_XA(d, a, b, c) do { \
DECL64(kt); \
AND64(kt, b, c); \
XOR64(d, a, kt); \
} while (0)
#ifdef KHI
#undef KHI
#endif
#define KHI(b00, b01, b02, b03, b04, b10, b11, b12, b13, b14, \
b20, b21, b22, b23, b24, b30, b31, b32, b33, b34, \
b40, b41, b42, b43, b44) \
do { \
DECL64(c0); \
DECL64(c1); \
DECL64(c2); \
DECL64(c3); \
DECL64(c4); \
DECL64(bnn); \
NOT64(bnn, b20); \
KHI_XO(c0, b00, b10, b20); \
KHI_XO(c1, b10, bnn, b30); \
KHI_XA(c2, b20, b30, b40); \
KHI_XO(c3, b30, b40, b00); \
KHI_XA(c4, b40, b00, b10); \
MOV64(b00, c0); \
MOV64(b10, c1); \
MOV64(b20, c2); \
MOV64(b30, c3); \
MOV64(b40, c4); \
NOT64(bnn, b41); \
KHI_XO(c0, b01, b11, b21); \
KHI_XA(c1, b11, b21, b31); \
KHI_XO(c2, b21, b31, bnn); \
KHI_XO(c3, b31, b41, b01); \
KHI_XA(c4, b41, b01, b11); \
MOV64(b01, c0); \
MOV64(b11, c1); \
MOV64(b21, c2); \
MOV64(b31, c3); \
MOV64(b41, c4); \
NOT64(bnn, b32); \
KHI_XO(c0, b02, b12, b22); \
KHI_XA(c1, b12, b22, b32); \
KHI_XA(c2, b22, bnn, b42); \
KHI_XO(c3, bnn, b42, b02); \
KHI_XA(c4, b42, b02, b12); \
MOV64(b02, c0); \
MOV64(b12, c1); \
MOV64(b22, c2); \
MOV64(b32, c3); \
MOV64(b42, c4); \
NOT64(bnn, b33); \
KHI_XA(c0, b03, b13, b23); \
KHI_XO(c1, b13, b23, b33); \
KHI_XO(c2, b23, bnn, b43); \
KHI_XA(c3, bnn, b43, b03); \
KHI_XO(c4, b43, b03, b13); \
MOV64(b03, c0); \
MOV64(b13, c1); \
MOV64(b23, c2); \
MOV64(b33, c3); \
MOV64(b43, c4); \
NOT64(bnn, b14); \
KHI_XA(c0, b04, bnn, b24); \
KHI_XO(c1, bnn, b24, b34); \
KHI_XA(c2, b24, b34, b44); \
KHI_XO(c3, b34, b44, b04); \
KHI_XA(c4, b44, b04, b14); \
MOV64(b04, c0); \
MOV64(b14, c1); \
MOV64(b24, c2); \
MOV64(b34, c3); \
MOV64(b44, c4); \
} while (0)
#ifdef IOTA
#undef IOTA
#endif
#define IOTA(r) XOR64_IOTA(a00, a00, r)
#ifdef P0
#undef P1
#undef P2
#undef P3
#undef P4
#undef P5
#undef P6
#undef P7
#undef P8
#undef P9
#undef P10
#undef p11
#undef P12
#undef P13
#undef P14
#undef P15
#undef P16
#undef P17
#undef P18
#undef P19
#undef P20
#undef P21
#undef P22
#undef P23
#endif
#define P0 a00, a01, a02, a03, a04, a10, a11, a12, a13, a14, a20, a21, \
a22, a23, a24, a30, a31, a32, a33, a34, a40, a41, a42, a43, a44
#define P1 a00, a30, a10, a40, a20, a11, a41, a21, a01, a31, a22, a02, \
a32, a12, a42, a33, a13, a43, a23, a03, a44, a24, a04, a34, a14
#define P2 a00, a33, a11, a44, a22, a41, a24, a02, a30, a13, a32, a10, \
a43, a21, a04, a23, a01, a34, a12, a40, a14, a42, a20, a03, a31
#define P3 a00, a23, a41, a14, a32, a24, a42, a10, a33, a01, a43, a11, \
a34, a02, a20, a12, a30, a03, a21, a44, a31, a04, a22, a40, a13
#define P4 a00, a12, a24, a31, a43, a42, a04, a11, a23, a30, a34, a41, \
a03, a10, a22, a21, a33, a40, a02, a14, a13, a20, a32, a44, a01
#define P5 a00, a21, a42, a13, a34, a04, a20, a41, a12, a33, a03, a24, \
a40, a11, a32, a02, a23, a44, a10, a31, a01, a22, a43, a14, a30
#define P6 a00, a02, a04, a01, a03, a20, a22, a24, a21, a23, a40, a42, \
a44, a41, a43, a10, a12, a14, a11, a13, a30, a32, a34, a31, a33
#define P7 a00, a10, a20, a30, a40, a22, a32, a42, a02, a12, a44, a04, \
a14, a24, a34, a11, a21, a31, a41, a01, a33, a43, a03, a13, a23
#define P8 a00, a11, a22, a33, a44, a32, a43, a04, a10, a21, a14, a20, \
a31, a42, a03, a41, a02, a13, a24, a30, a23, a34, a40, a01, a12
#define P9 a00, a41, a32, a23, a14, a43, a34, a20, a11, a02, a31, a22, \
a13, a04, a40, a24, a10, a01, a42, a33, a12, a03, a44, a30, a21
#define P10 a00, a24, a43, a12, a31, a34, a03, a22, a41, a10, a13, a32, \
a01, a20, a44, a42, a11, a30, a04, a23, a21, a40, a14, a33, a02
#define P11 a00, a42, a34, a21, a13, a03, a40, a32, a24, a11, a01, a43, \
a30, a22, a14, a04, a41, a33, a20, a12, a02, a44, a31, a23, a10
#define P12 a00, a04, a03, a02, a01, a40, a44, a43, a42, a41, a30, a34, \
a33, a32, a31, a20, a24, a23, a22, a21, a10, a14, a13, a12, a11
#define P13 a00, a20, a40, a10, a30, a44, a14, a34, a04, a24, a33, a03, \
a23, a43, a13, a22, a42, a12, a32, a02, a11, a31, a01, a21, a41
#define P14 a00, a22, a44, a11, a33, a14, a31, a03, a20, a42, a23, a40, \
a12, a34, a01, a32, a04, a21, a43, a10, a41, a13, a30, a02, a24
#define P15 a00, a32, a14, a41, a23, a31, a13, a40, a22, a04, a12, a44, \
a21, a03, a30, a43, a20, a02, a34, a11, a24, a01, a33, a10, a42
#define P16 a00, a43, a31, a24, a12, a13, a01, a44, a32, a20, a21, a14, \
a02, a40, a33, a34, a22, a10, a03, a41, a42, a30, a23, a11, a04
#define P17 a00, a34, a13, a42, a21, a01, a30, a14, a43, a22, a02, a31, \
a10, a44, a23, a03, a32, a11, a40, a24, a04, a33, a12, a41, a20
#define P18 a00, a03, a01, a04, a02, a30, a33, a31, a34, a32, a10, a13, \
a11, a14, a12, a40, a43, a41, a44, a42, a20, a23, a21, a24, a22
#define P19 a00, a40, a30, a20, a10, a33, a23, a13, a03, a43, a11, a01, \
a41, a31, a21, a44, a34, a24, a14, a04, a22, a12, a02, a42, a32
#define P20 a00, a44, a33, a22, a11, a23, a12, a01, a40, a34, a41, a30, \
a24, a13, a02, a14, a03, a42, a31, a20, a32, a21, a10, a04, a43
#define P21 a00, a14, a23, a32, a41, a12, a21, a30, a44, a03, a24, a33, \
a42, a01, a10, a31, a40, a04, a13, a22, a43, a02, a11, a20, a34
#define P22 a00, a31, a12, a43, a24, a21, a02, a33, a14, a40, a42, a23, \
a04, a30, a11, a13, a44, a20, a01, a32, a34, a10, a41, a22, a03
#define P23 a00, a13, a21, a34, a42, a02, a10, a23, a31, a44, a04, a12, \
a20, a33, a41, a01, a14, a22, a30, a43, a03, a11, a24, a32, a40
#ifdef P8_TO_P0
#undef P8_TO_P0
#endif
#define P8_TO_P0 do { \
DECL64(t); \
MOV64(t, a01); \
MOV64(a01, a11); \
MOV64(a11, a43); \
MOV64(a43, t); \
MOV64(t, a02); \
MOV64(a02, a22); \
MOV64(a22, a31); \
MOV64(a31, t); \
MOV64(t, a03); \
MOV64(a03, a33); \
MOV64(a33, a24); \
MOV64(a24, t); \
MOV64(t, a04); \
MOV64(a04, a44); \
MOV64(a44, a12); \
MOV64(a12, t); \
MOV64(t, a10); \
MOV64(a10, a32); \
MOV64(a32, a13); \
MOV64(a13, t); \
MOV64(t, a14); \
MOV64(a14, a21); \
MOV64(a21, a20); \
MOV64(a20, t); \
MOV64(t, a23); \
MOV64(a23, a42); \
MOV64(a42, a40); \
MOV64(a40, t); \
MOV64(t, a30); \
MOV64(a30, a41); \
MOV64(a41, a34); \
MOV64(a34, t); \
} while (0)
#define KF_ELT(r, s, k) do { \
THETA LPAR P ## r RPAR; \
RHO LPAR P ## r RPAR; \
KHI LPAR P ## s RPAR; \
IOTA(k); \
} while (0)

2156
algo/lanehash/lane.c Normal file

File diff suppressed because it is too large Load Diff

50
algo/lanehash/lane.h Normal file
View File

@@ -0,0 +1,50 @@
/*
* Copyright (c) 2008 Sebastiaan Indesteege
* <sebastiaan.indesteege@esat.kuleuven.be>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/*
* Optimised ANSI-C implementation of LANE
*/
#ifndef LANE_H
#define LANE_H
#include <string.h>
//#include "algo/sha/sha3-defs.h"
#include <stdint.h>
typedef unsigned char BitSequence;
typedef unsigned long long DataLength;
//typedef enum { SUCCESS = 0, FAIL = 1, BAD_HASHBITLEN = 2, BAD_DATABITLEN = 3 } HashReturn;
//typedef unsigned char u8;
//typedef unsigned int u32;
//typedef unsigned long long u64;
typedef struct {
int hashbitlen;
uint64_t ctr;
uint32_t h[16];
uint8_t buffer[128];
} hashState;
void laneInit (hashState *state, int hashbitlen);
void laneUpdate (hashState *state, const BitSequence *data, DataLength databitlen);
void laneFinal (hashState *state, BitSequence *hashval);
void laneHash (int hashbitlen, const BitSequence *data, DataLength databitlen, BitSequence *hashval);
#endif /* LANE_H */

View File

@@ -1,23 +1,3 @@
/*
* luffa_for_sse2.c
* Version 2.0 (Sep 15th 2009)
*
* Copyright (C) 2008-2009 Hitachi, Ltd. All rights reserved.
*
* Hitachi, Ltd. is the owner of this software and hereby grant
* the U.S. Government and any interested party the right to use
* this software for the purposes of the SHA-3 evaluation process,
* notwithstanding that this software is copyrighted.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <string.h>
#include <immintrin.h>
#include "luffa-hash-2way.h"
@@ -26,31 +6,30 @@
#include "simd-utils.h"
#define MASK _mm256_set_epi32( 0UL, 0UL, 0UL, 0xffffffffUL, \
0UL, 0UL, 0UL, 0xffffffffUL )
#define cns(i) m256_const1_128( ( (__m128i*)CNS_INIT)[i] )
#define ADD_CONSTANT(a,b,c0,c1)\
a = _mm256_xor_si256(a,c0);\
b = _mm256_xor_si256(b,c1);\
#define MULT2(a0,a1) \
#define MULT2( a0, a1, mask ) \
do { \
register __m256i b = _mm256_xor_si256( a0, \
_mm256_shuffle_epi32( _mm256_and_si256(a1,MASK), 16 ) ); \
__m256i b = _mm256_xor_si256( a0, \
_mm256_shuffle_epi32( _mm256_and_si256(a1,mask), 16 ) ); \
a0 = _mm256_or_si256( _mm256_srli_si256(b,4), _mm256_slli_si256(a1,12) ); \
a1 = _mm256_or_si256( _mm256_srli_si256(a1,4), _mm256_slli_si256(b,12) ); \
} while(0)
// confirm pointer arithmetic
// ok but use array indexes
#define STEP_PART(x,c,t)\
#define STEP_PART(x,c0,c1,t)\
SUBCRUMB(*x,*(x+1),*(x+2),*(x+3),*t);\
SUBCRUMB(*(x+5),*(x+6),*(x+7),*(x+4),*t);\
MIXWORD(*x,*(x+4),*t,*(t+1));\
MIXWORD(*(x+1),*(x+5),*t,*(t+1));\
MIXWORD(*(x+2),*(x+6),*t,*(t+1));\
MIXWORD(*(x+3),*(x+7),*t,*(t+1));\
ADD_CONSTANT(*x, *(x+4), *c, *(c+1));
ADD_CONSTANT(*x, *(x+4), c0, c1);
#define SUBCRUMB(a0,a1,a2,a3,t)\
t = _mm256_load_si256(&a0);\
@@ -245,7 +224,7 @@ static const uint32 CNS_INIT[128] __attribute((aligned(32))) = {
0x00000000,0x00000000,0x00000000,0xfc053c31
};
__m256i CNS[32];
/***************************************************/
/* Round function */
@@ -258,6 +237,7 @@ void rnd512_2way( luffa_2way_context *state, __m256i *msg )
__m256i msg0, msg1;
__m256i tmp[2];
__m256i x[8];
const __m256i MASK = m256_const2_64( 0, 0x00000000ffffffff );
t0 = chainv[0];
t1 = chainv[1];
@@ -271,7 +251,7 @@ void rnd512_2way( luffa_2way_context *state, __m256i *msg )
t0 = _mm256_xor_si256( t0, chainv[8] );
t1 = _mm256_xor_si256( t1, chainv[9] );
MULT2( t0, t1 );
MULT2( t0, t1, MASK );
msg0 = _mm256_shuffle_epi32( msg[0], 27 );
msg1 = _mm256_shuffle_epi32( msg[1], 27 );
@@ -290,66 +270,66 @@ void rnd512_2way( luffa_2way_context *state, __m256i *msg )
t0 = chainv[0];
t1 = chainv[1];
MULT2( chainv[0], chainv[1]);
MULT2( chainv[0], chainv[1], MASK );
chainv[0] = _mm256_xor_si256( chainv[0], chainv[2] );
chainv[1] = _mm256_xor_si256( chainv[1], chainv[3] );
MULT2( chainv[2], chainv[3]);
MULT2( chainv[2], chainv[3], MASK );
chainv[2] = _mm256_xor_si256(chainv[2], chainv[4]);
chainv[3] = _mm256_xor_si256(chainv[3], chainv[5]);
MULT2( chainv[4], chainv[5]);
MULT2( chainv[4], chainv[5], MASK );
chainv[4] = _mm256_xor_si256(chainv[4], chainv[6]);
chainv[5] = _mm256_xor_si256(chainv[5], chainv[7]);
MULT2( chainv[6], chainv[7]);
MULT2( chainv[6], chainv[7], MASK );
chainv[6] = _mm256_xor_si256(chainv[6], chainv[8]);
chainv[7] = _mm256_xor_si256(chainv[7], chainv[9]);
MULT2( chainv[8], chainv[9]);
MULT2( chainv[8], chainv[9], MASK );
chainv[8] = _mm256_xor_si256( chainv[8], t0 );
chainv[9] = _mm256_xor_si256( chainv[9], t1 );
t0 = chainv[8];
t1 = chainv[9];
MULT2( chainv[8], chainv[9]);
MULT2( chainv[8], chainv[9], MASK );
chainv[8] = _mm256_xor_si256( chainv[8], chainv[6] );
chainv[9] = _mm256_xor_si256( chainv[9], chainv[7] );
MULT2( chainv[6], chainv[7]);
MULT2( chainv[6], chainv[7], MASK );
chainv[6] = _mm256_xor_si256( chainv[6], chainv[4] );
chainv[7] = _mm256_xor_si256( chainv[7], chainv[5] );
MULT2( chainv[4], chainv[5]);
MULT2( chainv[4], chainv[5], MASK );
chainv[4] = _mm256_xor_si256( chainv[4], chainv[2] );
chainv[5] = _mm256_xor_si256( chainv[5], chainv[3] );
MULT2( chainv[2], chainv[3] );
MULT2( chainv[2], chainv[3], MASK );
chainv[2] = _mm256_xor_si256( chainv[2], chainv[0] );
chainv[3] = _mm256_xor_si256( chainv[3], chainv[1] );
MULT2( chainv[0], chainv[1] );
MULT2( chainv[0], chainv[1], MASK );
chainv[0] = _mm256_xor_si256( _mm256_xor_si256( chainv[0], t0 ), msg0 );
chainv[1] = _mm256_xor_si256( _mm256_xor_si256( chainv[1], t1 ), msg1 );
MULT2( msg0, msg1);
MULT2( msg0, msg1, MASK );
chainv[2] = _mm256_xor_si256( chainv[2], msg0 );
chainv[3] = _mm256_xor_si256( chainv[3], msg1 );
MULT2( msg0, msg1);
MULT2( msg0, msg1, MASK );
chainv[4] = _mm256_xor_si256( chainv[4], msg0 );
chainv[5] = _mm256_xor_si256( chainv[5], msg1 );
MULT2( msg0, msg1);
MULT2( msg0, msg1, MASK );
chainv[6] = _mm256_xor_si256( chainv[6], msg0 );
chainv[7] = _mm256_xor_si256( chainv[7], msg1 );
MULT2( msg0, msg1);
MULT2( msg0, msg1, MASK );
chainv[8] = _mm256_xor_si256( chainv[8], msg0 );
chainv[9] = _mm256_xor_si256( chainv[9], msg1 );
MULT2( msg0, msg1);
MULT2( msg0, msg1, MASK );
chainv[3] = _mm256_or_si256( _mm256_slli_epi32( chainv[3], 1 ),
_mm256_srli_epi32( chainv[3], 31 ) );
@@ -365,14 +345,14 @@ void rnd512_2way( luffa_2way_context *state, __m256i *msg )
chainv[1],chainv[3],chainv[5],chainv[7],
x[4], x[5], x[6], x[7] );
STEP_PART( &x[0], &CNS[ 0], &tmp[0] );
STEP_PART( &x[0], &CNS[ 2], &tmp[0] );
STEP_PART( &x[0], &CNS[ 4], &tmp[0] );
STEP_PART( &x[0], &CNS[ 6], &tmp[0] );
STEP_PART( &x[0], &CNS[ 8], &tmp[0] );
STEP_PART( &x[0], &CNS[10], &tmp[0] );
STEP_PART( &x[0], &CNS[12], &tmp[0] );
STEP_PART( &x[0], &CNS[14], &tmp[0] );
STEP_PART( &x[0], cns( 0), cns( 1), &tmp[0] );
STEP_PART( &x[0], cns( 2), cns( 3), &tmp[0] );
STEP_PART( &x[0], cns( 4), cns( 5), &tmp[0] );
STEP_PART( &x[0], cns( 6), cns( 7), &tmp[0] );
STEP_PART( &x[0], cns( 8), cns( 9), &tmp[0] );
STEP_PART( &x[0], cns(10), cns(11), &tmp[0] );
STEP_PART( &x[0], cns(12), cns(13), &tmp[0] );
STEP_PART( &x[0], cns(14), cns(15), &tmp[0] );
MIXTON1024( x[0], x[1], x[2], x[3],
chainv[0], chainv[2], chainv[4],chainv[6],
@@ -380,25 +360,24 @@ void rnd512_2way( luffa_2way_context *state, __m256i *msg )
chainv[1],chainv[3],chainv[5],chainv[7]);
/* Process last 256-bit block */
STEP_PART2( chainv[8], chainv[9], t0, t1, CNS[16], CNS[17],
STEP_PART2( chainv[8], chainv[9], t0, t1, cns(16), cns(17),
tmp[0], tmp[1] );
STEP_PART2( chainv[8], chainv[9], t0, t1, CNS[18], CNS[19],
STEP_PART2( chainv[8], chainv[9], t0, t1, cns(18), cns(19),
tmp[0], tmp[1] );
STEP_PART2( chainv[8], chainv[9], t0, t1, CNS[20], CNS[21],
STEP_PART2( chainv[8], chainv[9], t0, t1, cns(20), cns(21),
tmp[0], tmp[1] );
STEP_PART2( chainv[8], chainv[9], t0, t1, CNS[22], CNS[23],
STEP_PART2( chainv[8], chainv[9], t0, t1, cns(22), cns(23),
tmp[0], tmp[1] );
STEP_PART2( chainv[8], chainv[9], t0, t1, CNS[24], CNS[25],
STEP_PART2( chainv[8], chainv[9], t0, t1, cns(24), cns(25),
tmp[0], tmp[1] );
STEP_PART2( chainv[8], chainv[9], t0, t1, CNS[26], CNS[27],
STEP_PART2( chainv[8], chainv[9], t0, t1, cns(26), cns(27),
tmp[0], tmp[1] );
STEP_PART2( chainv[8], chainv[9], t0, t1, CNS[28], CNS[29],
STEP_PART2( chainv[8], chainv[9], t0, t1, cns(28), cns(29),
tmp[0], tmp[1] );
STEP_PART2( chainv[8], chainv[9], t0, t1, CNS[30], CNS[31],
STEP_PART2( chainv[8], chainv[9], t0, t1, cns(30), cns(31),
tmp[0], tmp[1] );
}
/***************************************************/
/* Finalization function */
/* state: hash context */
@@ -410,8 +389,9 @@ void finalization512_2way( luffa_2way_context *state, uint32 *b )
__m256i* chainv = state->chainv;
__m256i t[2];
__m256i zero[2];
zero[0] = zero[1] = _mm256_setzero_si256();
zero[0] = zero[1] = m256_zero;
const __m256i shuff_bswap32 = m256_const2_64( 0x0c0d0e0f08090a0b,
0x0405060700010203 );
/*---- blank round with m=0 ----*/
rnd512_2way( state, zero );
@@ -433,8 +413,10 @@ void finalization512_2way( luffa_2way_context *state, uint32 *b )
_mm256_store_si256( (__m256i*)&hash[0], t[0] );
_mm256_store_si256( (__m256i*)&hash[8], t[1] );
casti_m256i( b, 0 ) = mm256_bswap_32( casti_m256i( hash, 0 ) );
casti_m256i( b, 1 ) = mm256_bswap_32( casti_m256i( hash, 1 ) );
casti_m256i( b, 0 ) = _mm256_shuffle_epi8(
casti_m256i( hash, 0 ), shuff_bswap32 );
casti_m256i( b, 1 ) = _mm256_shuffle_epi8(
casti_m256i( hash, 1 ), shuff_bswap32 );
rnd512_2way( state, zero );
@@ -455,26 +437,27 @@ void finalization512_2way( luffa_2way_context *state, uint32 *b )
_mm256_store_si256( (__m256i*)&hash[0], t[0] );
_mm256_store_si256( (__m256i*)&hash[8], t[1] );
casti_m256i( b, 2 ) = mm256_bswap_32( casti_m256i( hash, 0 ) );
casti_m256i( b, 3 ) = mm256_bswap_32( casti_m256i( hash, 1 ) );
casti_m256i( b, 2 ) = _mm256_shuffle_epi8(
casti_m256i( hash, 0 ), shuff_bswap32 );
casti_m256i( b, 3 ) = _mm256_shuffle_epi8(
casti_m256i( hash, 1 ), shuff_bswap32 );
}
int luffa_2way_init( luffa_2way_context *state, int hashbitlen )
{
int i;
state->hashbitlen = hashbitlen;
for ( i=0; i<32; i++ ) CNS[i] =
_mm256_set_epi32( CNS_INIT[ (i<<2) + 3 ], CNS_INIT[ (i<<2) +2 ],
CNS_INIT[ (i<<2) + 1 ], CNS_INIT[ (i<<2) ],
CNS_INIT[ (i<<2) + 3 ], CNS_INIT[ (i<<2) +2 ],
CNS_INIT[ (i<<2) + 1 ], CNS_INIT[ (i<<2) ] );
for ( i=0; i<10; i++ ) state->chainv[i] =
_mm256_set_epi32( IV[ (i<<2) +3 ], IV[ (i<<2) +2 ],
IV[ (i<<2) +1 ], IV[ (i<<2) ],
IV[ (i<<2) +3 ], IV[ (i<<2) +2 ],
IV[ (i<<2) +1 ], IV[ (i<<2) ] );
__m128i *iv = (__m128i*)IV;
state->chainv[0] = m256_const1_128( iv[0] );
state->chainv[1] = m256_const1_128( iv[1] );
state->chainv[2] = m256_const1_128( iv[2] );
state->chainv[3] = m256_const1_128( iv[3] );
state->chainv[4] = m256_const1_128( iv[4] );
state->chainv[5] = m256_const1_128( iv[5] );
state->chainv[6] = m256_const1_128( iv[6] );
state->chainv[7] = m256_const1_128( iv[7] );
state->chainv[8] = m256_const1_128( iv[8] );
state->chainv[9] = m256_const1_128( iv[9] );
((__m256i*)state->buffer)[0] = m256_zero;
((__m256i*)state->buffer)[1] = m256_zero;
@@ -492,13 +475,15 @@ int luffa_2way_update( luffa_2way_context *state, const void *data,
__m256i msg[2];
int i;
int blocks = (int)len >> 5;
const __m256i shuff_bswap32 = m256_const2_64( 0x0c0d0e0f08090a0b,
0x0405060700010203 );
state-> rembytes = (int)len & 0x1F;
// full blocks
for ( i = 0; i < blocks; i++, vdata+=2 )
{
msg[0] = mm256_bswap_32( vdata[ 0] );
msg[1] = mm256_bswap_32( vdata[ 1 ] );
msg[0] = _mm256_shuffle_epi8( vdata[ 0 ], shuff_bswap32 );
msg[1] = _mm256_shuffle_epi8( vdata[ 1 ], shuff_bswap32 );
rnd512_2way( state, msg );
}
@@ -507,9 +492,8 @@ int luffa_2way_update( luffa_2way_context *state, const void *data,
if ( state->rembytes )
{
// remaining data bytes
buffer[0] = mm256_bswap_32( vdata[0] );
buffer[1] = _mm256_set_epi8( 0,0,0,0, 0,0,0,0, 0,0,0,0, 0x80,0,0,0,
0,0,0,0, 0,0,0,0, 0,0,0,0, 0x80,0,0,0 );
buffer[0] = _mm256_shuffle_epi8( vdata[0], shuff_bswap32 );
buffer[1] = m256_const2_64( 0, 0x0000000080000000 );
}
return 0;
}
@@ -525,8 +509,7 @@ int luffa_2way_close( luffa_2way_context *state, void *hashval )
rnd512_2way( state, buffer );
else
{ // empty pad block, constant data
msg[0] = _mm256_set_epi8( 0,0,0,0, 0,0,0,0, 0,0,0,0, 0x80,0,0,0,
0,0,0,0, 0,0,0,0, 0,0,0,0, 0x80,0,0,0 );
msg[0] = m256_const2_64( 0, 0x0000000080000000 );
msg[1] = m256_zero;
rnd512_2way( state, msg );
}
@@ -545,13 +528,16 @@ int luffa_2way_update_close( luffa_2way_context *state,
__m256i msg[2];
int i;
const int blocks = (int)( inlen >> 5 );
const __m256i shuff_bswap32 = m256_const2_64( 0x0c0d0e0f08090a0b,
0x0405060700010203 );
state->rembytes = inlen & 0x1F;
// full blocks
for ( i = 0; i < blocks; i++, vdata+=2 )
{
msg[0] = mm256_bswap_32( vdata[ 0 ] );
msg[1] = mm256_bswap_32( vdata[ 1 ] );
msg[0] = _mm256_shuffle_epi8( vdata[ 0 ], shuff_bswap32 );
msg[1] = _mm256_shuffle_epi8( vdata[ 1 ], shuff_bswap32 );
rnd512_2way( state, msg );
}
@@ -559,16 +545,14 @@ int luffa_2way_update_close( luffa_2way_context *state,
if ( state->rembytes )
{
// padding of partial block
msg[0] = mm256_bswap_32( vdata[0] );
msg[1] = _mm256_set_epi8( 0,0,0,0, 0,0,0,0, 0,0,0,0, 0x80,0,0,0,
0,0,0,0, 0,0,0,0, 0,0,0,0, 0x80,0,0,0 );
msg[0] = _mm256_shuffle_epi8( vdata[ 0 ], shuff_bswap32 );
msg[1] = m256_const2_64( 0, 0x0000000080000000 );
rnd512_2way( state, msg );
}
else
{
// empty pad block
msg[0] = _mm256_set_epi8( 0,0,0,0, 0,0,0,0, 0,0,0,0, 0x80,0,0,0,
0,0,0,0, 0,0,0,0, 0,0,0,0, 0x80,0,0,0 );
msg[0] = m256_const2_64( 0, 0x0000000080000000 );
msg[1] = m256_zero;
rnd512_2way( state, msg );
}

View File

@@ -541,7 +541,9 @@ static void finalization512( hashState_luffa *state, uint32 *b )
uint32 hash[8] __attribute((aligned(64)));
__m256i* chainv = (__m256i*)state->chainv;
__m256i t;
const __m128i zero = _mm_setzero_si128();
const __m128i zero = m128_zero;
const __m256i shuff_bswap32 = m256_const2_64( 0x0c0d0e0f08090a0b,
0x0405060700010203 );
rnd512( state, zero, zero );
@@ -555,7 +557,9 @@ static void finalization512( hashState_luffa *state, uint32 *b )
_mm256_store_si256( (__m256i*)hash, t );
casti_m256i( b, 0 ) = mm256_bswap_32( casti_m256i( hash, 0 ) );
casti_m256i( b, 0 ) = _mm256_shuffle_epi8(
casti_m256i( hash, 0 ), shuff_bswap32 );
// casti_m256i( b, 0 ) = mm256_bswap_32( casti_m256i( hash, 0 ) );
rnd512( state, zero, zero );
@@ -568,7 +572,9 @@ static void finalization512( hashState_luffa *state, uint32 *b )
_mm256_store_si256( (__m256i*)hash, t );
casti_m256i( b, 1 ) = mm256_bswap_32( casti_m256i( hash, 0 ) );
casti_m256i( b, 1 ) = _mm256_shuffle_epi8(
casti_m256i( hash, 0 ), shuff_bswap32 );
// casti_m256i( b, 1 ) = mm256_bswap_32( casti_m256i( hash, 0 ) );
}
#else

View File

@@ -5,7 +5,6 @@
#include "algo/bmw/bmw-hash-4way.h"
#include "algo/cubehash/cubehash_sse2.h"
#if defined (LYRA2REV3_8WAY)
typedef struct {
@@ -14,7 +13,7 @@ typedef struct {
bmw256_8way_context bmw;
} lyra2v3_8way_ctx_holder;
static lyra2v3_8way_ctx_holder l2v3_8way_ctx;
static __thread lyra2v3_8way_ctx_holder l2v3_8way_ctx;
bool init_lyra2rev3_8way_ctx()
{
@@ -38,7 +37,7 @@ void lyra2rev3_8way_hash( void *state, const void *input )
lyra2v3_8way_ctx_holder ctx __attribute__ ((aligned (64)));
memcpy( &ctx, &l2v3_8way_ctx, sizeof(l2v3_8way_ctx) );
blake256_8way( &ctx.blake, input, 80 );
blake256_8way( &ctx.blake, input + (64*8), 16 );
blake256_8way_close( &ctx.blake, vhash );
dintrlv_8x32( hash0, hash1, hash2, hash3,
@@ -91,7 +90,7 @@ int scanhash_lyra2rev3_8way( struct work *work, const uint32_t max_nonce,
{
uint32_t hash[8*8] __attribute__ ((aligned (64)));
uint32_t vdata[20*8] __attribute__ ((aligned (64)));
uint32_t *hash7 = &(hash[7<<3]);
uint32_t *hash7 = &hash[7<<3];
uint32_t lane_hash[8] __attribute__ ((aligned (32)));
uint32_t *pdata = work->data;
const uint32_t *ptarget = work->target;
@@ -99,12 +98,15 @@ int scanhash_lyra2rev3_8way( struct work *work, const uint32_t max_nonce,
uint32_t n = first_nonce;
const uint32_t Htarg = ptarget[7];
__m256i *noncev = (__m256i*)vdata + 19; // aligned
const int thr_id = mythr->id; // thr_id arg is deprecated
const int thr_id = mythr->id;
if ( opt_benchmark )
( (uint32_t*)ptarget )[7] = 0x0000ff;
if ( opt_benchmark ) ( (uint32_t*)ptarget )[7] = 0x0000ff;
mm256_bswap32_intrlv80_8x32( vdata, pdata );
blake256_8way_init( &l2v3_8way_ctx.blake );
blake256_8way( &l2v3_8way_ctx.blake, vdata, 64 );
do
{
*noncev = mm256_bswap_32( _mm256_set_epi32( n+7, n+6, n+5, n+4,
@@ -113,17 +115,18 @@ int scanhash_lyra2rev3_8way( struct work *work, const uint32_t max_nonce,
lyra2rev3_8way_hash( hash, vdata );
pdata[19] = n;
for ( int lane = 0; lane < 8; lane++ ) if ( hash7[lane] <= Htarg )
for ( int lane = 0; lane < 8; lane++ )
if ( unlikely( hash7[lane] <= Htarg ) )
{
extr_lane_8x32( lane_hash, hash, lane, 256 );
if ( fulltest( lane_hash, ptarget ) && !opt_benchmark )
if ( likely( fulltest( lane_hash, ptarget ) && !opt_benchmark ) )
{
pdata[19] = n + lane;
submit_lane_solution( work, lane_hash, mythr, lane );
pdata[19] = n + lane;
submit_lane_solution( work, lane_hash, mythr, lane );
}
}
n += 8;
} while ( (n < max_nonce-8) && !work_restart[thr_id].restart);
} while ( likely( (n < max_nonce-8) && !work_restart[thr_id].restart ) );
*hashes_done = n - first_nonce + 1;
return 0;
}
@@ -132,14 +135,14 @@ int scanhash_lyra2rev3_8way( struct work *work, const uint32_t max_nonce,
#if defined (LYRA2REV3_4WAY)
typedef struct {
blake256_4way_context blake;
cubehashParam cube;
bmw256_4way_context bmw;
} lyra2v3_4way_ctx_holder;
static lyra2v3_4way_ctx_holder l2v3_4way_ctx;
//static lyra2v3_4way_ctx_holder l2v3_4way_ctx;
static __thread lyra2v3_4way_ctx_holder l2v3_4way_ctx;
bool init_lyra2rev3_4way_ctx()
{
@@ -159,7 +162,8 @@ void lyra2rev3_4way_hash( void *state, const void *input )
lyra2v3_4way_ctx_holder ctx __attribute__ ((aligned (64)));
memcpy( &ctx, &l2v3_4way_ctx, sizeof(l2v3_4way_ctx) );
blake256_4way( &ctx.blake, input, 80 );
// blake256_4way( &ctx.blake, input, 80 );
blake256_4way( &ctx.blake, input + (64*4), 16 );
blake256_4way_close( &ctx.blake, vhash );
dintrlv_4x32( hash0, hash1, hash2, hash3, vhash, 256 );
@@ -205,6 +209,10 @@ int scanhash_lyra2rev3_4way( struct work *work, const uint32_t max_nonce,
( (uint32_t*)ptarget )[7] = 0x0000ff;
mm128_bswap32_intrlv80_4x32( vdata, pdata );
blake256_4way_init( &l2v3_4way_ctx.blake );
blake256_4way( &l2v3_4way_ctx.blake, vdata, 64 );
do
{
*noncev = mm128_bswap_32( _mm_set_epi32( n+3, n+2, n+1, n ) );

View File

@@ -305,9 +305,11 @@ void sha256_4way_close( sha256_4way_context *sc, void *dst )
low = low << 3;
sc->buf[ pad >> 2 ] =
mm128_bswap_32( _mm_set1_epi32( high ) );
mm128_bswap_32( m128_const1_32( high ) );
// mm128_bswap_32( _mm_set1_epi32( high ) );
sc->buf[ ( pad+4 ) >> 2 ] =
mm128_bswap_32( _mm_set1_epi32( low ) );
mm128_bswap_32( m128_const1_32( low ) );
// mm128_bswap_32( _mm_set1_epi32( low ) );
sha256_4way_round( sc, sc->buf, sc->val );
mm128_block_bswap_32( dst, sc->val );
@@ -538,9 +540,9 @@ void sha256_8way_close( sha256_8way_context *sc, void *dst )
low = low << 3;
sc->buf[ pad >> 2 ] =
mm256_bswap_32( _mm256_set1_epi32( high ) );
mm256_bswap_32( m256_const1_32( high ) );
sc->buf[ ( pad+4 ) >> 2 ] =
mm256_bswap_32( _mm256_set1_epi32( low ) );
mm256_bswap_32( m256_const1_32( low ) );
sha256_8way_round( sc, sc->buf, sc->val );

View File

@@ -1,538 +0,0 @@
#if 0
#include <stddef.h>
#include <string.h>
#include "sha2-hash-4way.h"
#if defined(__AVX2__)
// naming convention for variables and macros
// VARx: AVX2 8 way 32 bit
// VARy: MMX 2 way 32 bit
// VARz: scalar integer 32 bit
static const uint32_t H256[8] =
{
0x6A09E667, 0xBB67AE85, 0x3C6EF372, 0xA54FF53A,
0x510E527F, 0x9B05688C, 0x1F83D9AB, 0x5BE0CD19
};
static const uint32_t K256[64] =
{
0x428A2F98, 0x71374491, 0xB5C0FBCF, 0xE9B5DBA5,
0x3956C25B, 0x59F111F1, 0x923F82A4, 0xAB1C5ED5,
0xD807AA98, 0x12835B01, 0x243185BE, 0x550C7DC3,
0x72BE5D74, 0x80DEB1FE, 0x9BDC06A7, 0xC19BF174,
0xE49B69C1, 0xEFBE4786, 0x0FC19DC6, 0x240CA1CC,
0x2DE92C6F, 0x4A7484AA, 0x5CB0A9DC, 0x76F988DA,
0x983E5152, 0xA831C66D, 0xB00327C8, 0xBF597FC7,
0xC6E00BF3, 0xD5A79147, 0x06CA6351, 0x14292967,
0x27B70A85, 0x2E1B2138, 0x4D2C6DFC, 0x53380D13,
0x650A7354, 0x766A0ABB, 0x81C2C92E, 0x92722C85,
0xA2BFE8A1, 0xA81A664B, 0xC24B8B70, 0xC76C51A3,
0xD192E819, 0xD6990624, 0xF40E3585, 0x106AA070,
0x19A4C116, 0x1E376C08, 0x2748774C, 0x34B0BCB5,
0x391C0CB3, 0x4ED8AA4A, 0x5B9CCA4F, 0x682E6FF3,
0x748F82EE, 0x78A5636F, 0x84C87814, 0x8CC70208,
0x90BEFFFA, 0xA4506CEB, 0xBEF9A3F7, 0xC67178F2
};
#define CHx(X, Y, Z) \
_mm256_xor_si256( _mm256_and_si256( _mm256_xor_si256( Y, Z ), X ), Z )
#define CHy(X, Y, Z) \
_mm_xor_si64( _mm_and_si64( _mm_xor_si64( Y, Z ), X ), Z )
#define CHz(X, Y, Z) ((( (Y) ^ (Z) ) & (X) ) ^ (Z) )
#define MAJx(X, Y, Z) \
_mm256_or_si256( _mm256_and_si256( X, Y ), \
_mm256_and_si256( _mm256_or_si256( X, Y ), Z ) )
#define MAJy(X, Y, Z) \
_mm_or_si64( _mm_and_si64( X, Y ), \
_mm_and_si64( _mm_or_si64( X, Y ), Z ) )
#define MAJz(X, Y, Z) ( ( (X) & (Y) ) | ( ( (X) | (Y) ) & (Z) ) )
#define BSG2_0x(x) \
_mm256_xor_si256( _mm256_xor_si256( \
mm256_ror_32(x,2), mm256_ror_32(x,13) ), _mm256_srli_epi32(x,22) )
#define BSG2_0y(x) \
_mm_xor_si64( _mm_xor_si64( \
mm64_ror_32(x,2), mm64_ror_32(x,13) ), _mm_srli_pi32(x,22) )
#define BSG2_0z(x) ( u32_ror_32(x,2) ^ u32_ror_32(x,13) ^ ((x)>>22) )
#define BSG2_1x(x) \
_mm256_xor_si256( _mm256_xor_si256( \
mm256_ror_32(x,6), mm256_ror_32(x,11) ), _mm256_srli_epi32(x,25) )
#define BSG2_1y(x) \
_mm_xor_si64( _mm_xor_si64( \
mm64_ror_32(x,6), mm64_ror_32(x,11) ), _mm_srli_pi32(x,25) )
#define BSG2_1z(x) ( u32_ror_32(x,6) ^ u32_ror_32(x,11) ^ ((x)>>25) )
#define SSG2_0x(x) \
_mm256_xor_si256( _mm256_xor_si256( \
mm256_ror_32(x,7), mm256_ror_32(x,18) ), _mm256_srli_epi32(x,3) )
#define SSG2_0y(x) \
_mm_xor_si64( _mm_xor_si64( \
mm64_ror_32(x,7), mm64_ror_32(x,18) ), _mm_srli_pi32(x,3) )
#define SSG2_0z(x) (( u32_ror_32(x,7) ^ u32_ror_32(x,18) ) ^ ((x)>>3) )
#define SSG2_1x(x) \
_mm256_xor_si256( _mm256_xor_si256( \
mm256_ror_32(x,17), mm256_ror_32(x,19) ), _mm256_srli_epi32(x,10) )
#define SSG2_1y(x) \
_mm_xor_si64( _mm_xor_si64( \
mm64_ror_32(x,17), mm64_ror_32(x,19) ), _mm_srli_pi32(x,10) )
#define SSG2_1z(x) ( u32_ror_32(x,17) ^ u32_ror_32(x,19) ^ ((x)>>10) )
#define SHA2x_MEXP( a, b, c, d ) \
_mm256_add_epi32( _mm256_add_epi32( _mm256_add_epi32( \
SSG2_1x( Wx[a] ), Wx[b] ), SSG2_0x( Wx[c] ) ), Wx[d] )
#define SHA2y_MEXP( a, b, c, d ) \
_mm_add_pi32( _mm_add_pi32( _mm_add_pi32( \
SSG2_1y( Wy[a] ), Wy[b] ), SSG2_0y( Wy[c] ) ), Wy[d] )
#define SHA2z_MEXP( a, b, c, d ) \
( SSG2_1z( Wz[a] ) + Wz[b] + SSG2_0z( Wz[c] ) + Wz[d] )
#define SHA2s_11WAY_STEP( Ax, Bx, Cx, Dx, Ex, Fx, Gx, Hx, \
Ay, By, Cy, Dy, Ey, Fy, Gy, Hy, \
Az, Bz, Cz, Dz, Ez, Fz, Gz, Hz, i, j) \
do { \
__m256i T1x, T2x; \
__m64 T1y, T2y; \
uint32_t T1z, T2z; \
T1x = _mm256_add_epi32( _mm256_add_epi32( _mm256_add_epi32( \
_mm256_add_epi32( Hx, BSG2_1x(Ex) ), CHx(Ex, Fx, Gx) ), \
_mm256_set1_epi32( K256[( (j)+(i) )] ) ), Wx[i] ); \
T1y = _mm_add_pi32( _mm_add_pi32( _mm_add_pi32( \
_mm_add_pi32( Hy, BSG2_1y(Ey) ), CHy(Ey, Fy, Gy) ), \
_mm_set1_pi32( K256[( (j)+(i) )] ) ), Wy[i] ); \
T1z = Hz + BSG2_1z( Ez ) + CHz( Ez, Fz, Gz ) + K256[ ((j)+(i)) ] + Wz[i]; \
T2x = _mm256_add_epi32( BSG2_0x(Ax), MAJx(Ax, Bx, Cx) ); \
T2y = _mm_add_pi32( BSG2_0y(Ay), MAJy(Ay, By, Cy) ); \
T2z = BSG2_0z( Az ) + MAJz( Az, Bz, Cz ); \
Dx = _mm256_add_epi32( Dx, T1x ); \
Dy = _mm_add_pi32( Dy, T1y ); \
Dz = Dz + T1z; \
Hx = _mm256_add_epi32( T1x, T2x ); \
Hy = _mm_add_pi32( T1y, T2y ); \
Hz = T1z + T2z; \
} while (0)
void sha256_11way_round( __m256i *inx, __m256i rx[8], __m64 *iny, __m64 ry[8],
uint32_t *inz, uint32_t rz[8] )
{
__m256i Ax, Bx, Cx, Dx, Ex, Fx, Gx, Hx;
__m256i Wx[16];
__m64 Ay, By, Cy, Dy, Ey, Fy, Gy, Hy;
__m64 Wy[16];
uint32_t Az, Bz, Cz, Dz, Ez, Fz, Gz, Hz;
uint32_t Wz[16];
Wx[ 0] = mm256_bswap_32( inx[ 0] );
Wy[ 0] = mm64_bswap_32( iny[ 0] );
Wz[ 0] = bswap_32( inz[ 0] );
Wx[ 1] = mm256_bswap_32( inx[ 1] );
Wy[ 1] = mm64_bswap_32( iny[ 1] );
Wz[ 1] = bswap_32( inz[ 1] );
Wx[ 2] = mm256_bswap_32( inx[ 2] );
Wy[ 2] = mm64_bswap_32( iny[ 2] );
Wz[ 2] = bswap_32( inz[ 2] );
Wx[ 3] = mm256_bswap_32( inx[ 3] );
Wy[ 3] = mm64_bswap_32( iny[ 3] );
Wz[ 3] = bswap_32( inz[ 3] );
Wx[ 4] = mm256_bswap_32( inx[ 4] );
Wy[ 4] = mm64_bswap_32( iny[ 4] );
Wz[ 4] = bswap_32( inz[ 4] );
Wx[ 5] = mm256_bswap_32( inx[ 5] );
Wy[ 5] = mm64_bswap_32( iny[ 5] );
Wz[ 5] = bswap_32( inz[ 5] );
Wx[ 6] = mm256_bswap_32( inx[ 6] );
Wy[ 6] = mm64_bswap_32( iny[ 6] );
Wz[ 6] = bswap_32( inz[ 6] );
Wx[ 7] = mm256_bswap_32( inx[ 7] );
Wy[ 7] = mm64_bswap_32( iny[ 7] );
Wz[ 7] = bswap_32( inz[ 7] );
Wx[ 8] = mm256_bswap_32( inx[ 8] );
Wy[ 8] = mm64_bswap_32( iny[ 8] );
Wz[ 8] = bswap_32( inz[ 8] );
Wx[ 9] = mm256_bswap_32( inx[ 9] );
Wy[ 9] = mm64_bswap_32( iny[ 9] );
Wz[ 9] = bswap_32( inz[ 9] );
Wx[10] = mm256_bswap_32( inx[10] );
Wy[10] = mm64_bswap_32( iny[10] );
Wz[10] = bswap_32( inz[10] );
Wx[11] = mm256_bswap_32( inx[11] );
Wy[11] = mm64_bswap_32( iny[11] );
Wz[11] = bswap_32( inz[11] );
Wx[12] = mm256_bswap_32( inx[12] );
Wy[12] = mm64_bswap_32( iny[12] );
Wz[12] = bswap_32( inz[12] );
Wx[13] = mm256_bswap_32( inx[13] );
Wy[13] = mm64_bswap_32( iny[13] );
Wz[13] = bswap_32( inz[13] );
Wx[14] = mm256_bswap_32( inx[14] );
Wy[14] = mm64_bswap_32( iny[14] );
Wz[14] = bswap_32( inz[14] );
Wx[15] = mm256_bswap_32( inx[15] );
Wy[15] = mm64_bswap_32( iny[15] );
Wz[15] = bswap_32( inz[15] );
Ax = rx[0]; Ay = ry[0]; Az = rz[0];
Bx = rx[1]; By = ry[1]; Bz = rz[1];
Cx = rx[2]; Cy = ry[2]; Cz = rz[2];
Dx = rx[3]; Dy = ry[3]; Dz = rz[3];
Ex = rx[4]; Ey = ry[4]; Ez = rz[4];
Fx = rx[5]; Fy = ry[5]; Fz = rz[5];
Gx = rx[6]; Gy = ry[6]; Gz = rz[6];
Hx = rx[7]; Hy = ry[7]; Hz = rz[7];
SHA2s_11WAY_STEP( Ax, Bx, Cx, Dx, Ex, Fx, Gx, Hx,
Ay, By, Cy, Dy, Ey, Fy, Gy, Hy,
Az, Bz, Cz, Dz, Ez, Fz, Gz, Hz, 0, 0 );
SHA2s_11WAY_STEP( Hx, Ax, Bx, Cx, Dx, Ex, Fx, Gx,
Hy, Ay, By, Cy, Dy, Ey, Fy, Gy,
Hz, Az, Bz, Cz, Dz, Ez, Fz, Gz, 1, 0 );
SHA2s_11WAY_STEP( Gx, Hx, Ax, Bx, Cx, Dx, Ex, Fx,
Gy, Hy, Ay, By, Cy, Dy, Ey, Fy,
Gz, Hz, Az, Bz, Cz, Dz, Ez, Fz, 2, 0 );
SHA2s_11WAY_STEP( Fx, Gx, Hx, Ax, Bx, Cx, Dx, Ex,
Fy, Gy, Hy, Ay, By, Cy, Dy, Ey,
Fz, Gz, Hz, Az, Bz, Cz, Dz, Ez, 3, 0 );
SHA2s_11WAY_STEP( Ex, Fx, Gx, Hx, Ax, Bx, Cx, Dx,
Ey, Fy, Gy, Hy, Ay, By, Cy, Dy,
Ez, Fz, Gz, Hz, Az, Bz, Cz, Dz, 4, 0 );
SHA2s_11WAY_STEP( Dx, Ex, Fx, Gx, Hx, Ax, Bx, Cx,
Dy, Ey, Fy, Gy, Hy, Ay, By, Cy,
Dz, Ez, Fz, Gz, Hz, Az, Bz, Cz, 5, 0 );
SHA2s_11WAY_STEP( Cx, Dx, Ex, Fx, Gx, Hx, Ax, Bx,
Cy, Dy, Ey, Fy, Gy, Hy, Ay, By,
Cz, Dz, Ez, Fz, Gz, Hz, Az, Bz, 6, 0 );
SHA2s_11WAY_STEP( Bx, Cx, Dx, Ex, Fx, Gx, Hx, Ax,
By, Cy, Dy, Ey, Fy, Gy, Hy, Ay,
Bz, Cz, Dz, Ez, Fz, Gz, Hz, Az, 7, 0 );
SHA2s_11WAY_STEP( Ax, Bx, Cx, Dx, Ex, Fx, Gx, Hx,
Ay, By, Cy, Dy, Ey, Fy, Gy, Hy,
Az, Bz, Cz, Dz, Ez, Fz, Gz, Hz, 8, 0 );
SHA2s_11WAY_STEP( Hx, Ax, Bx, Cx, Dx, Ex, Fx, Gx,
Hy, Ay, By, Cy, Dy, Ey, Fy, Gy,
Hz, Az, Bz, Cz, Dz, Ez, Fz, Gz, 9, 0 );
SHA2s_11WAY_STEP( Gx, Hx, Ax, Bx, Cx, Dx, Ex, Fx,
Gy, Hy, Ay, By, Cy, Dy, Ey, Fy,
Gz, Hz, Az, Bz, Cz, Dz, Ez, Fz, 10, 0 );
SHA2s_11WAY_STEP( Fx, Gx, Hx, Ax, Bx, Cx, Dx, Ex,
Fy, Gy, Hy, Ay, By, Cy, Dy, Ey,
Fz, Gz, Hz, Az, Bz, Cz, Dz, Ez, 11, 0 );
SHA2s_11WAY_STEP( Ex, Fx, Gx, Hx, Ax, Bx, Cx, Dx,
Ey, Fy, Gy, Hy, Ay, By, Cy, Dy,
Ez, Fz, Gz, Hz, Az, Bz, Cz, Dz, 12, 0 );
SHA2s_11WAY_STEP( Dx, Ex, Fx, Gx, Hx, Ax, Bx, Cx,
Dy, Ey, Fy, Gy, Hy, Ay, By, Cy,
Dz, Ez, Fz, Gz, Hz, Az, Bz, Cz, 13, 0 );
SHA2s_11WAY_STEP( Cx, Dx, Ex, Fx, Gx, Hx, Ax, Bx,
Cy, Dy, Ey, Fy, Gy, Hy, Ay, By,
Cz, Dz, Ez, Fz, Gz, Hz, Az, Bz, 14, 0 );
SHA2s_11WAY_STEP( Bx, Cx, Dx, Ex, Fx, Gx, Hx, Ax,
By, Cy, Dy, Ey, Fy, Gy, Hy, Ay,
Bz, Cz, Dz, Ez, Fz, Gz, Hz, Az, 15, 0 );
for ( int j = 16; j < 64; j += 16 )
{
Wx[ 0] = SHA2x_MEXP( 14, 9, 1, 0 );
Wy[ 0] = SHA2y_MEXP( 14, 9, 1, 0 );
Wz[ 0] = SHA2z_MEXP( 14, 9, 1, 0 );
Wx[ 1] = SHA2x_MEXP( 15, 10, 2, 1 );
Wy[ 1] = SHA2y_MEXP( 15, 10, 2, 1 );
Wz[ 1] = SHA2z_MEXP( 15, 10, 2, 1 );
Wx[ 2] = SHA2x_MEXP( 0, 11, 3, 2 );
Wy[ 2] = SHA2y_MEXP( 0, 11, 3, 2 );
Wz[ 2] = SHA2z_MEXP( 0, 11, 3, 2 );
Wx[ 3] = SHA2x_MEXP( 1, 12, 4, 3 );
Wy[ 3] = SHA2y_MEXP( 1, 12, 4, 3 );
Wz[ 3] = SHA2z_MEXP( 1, 12, 4, 3 );
Wx[ 4] = SHA2x_MEXP( 2, 13, 5, 4 );
Wy[ 4] = SHA2y_MEXP( 2, 13, 5, 4 );
Wz[ 4] = SHA2z_MEXP( 2, 13, 5, 4 );
Wx[ 5] = SHA2x_MEXP( 3, 14, 6, 5 );
Wy[ 5] = SHA2y_MEXP( 3, 14, 6, 5 );
Wz[ 5] = SHA2z_MEXP( 3, 14, 6, 5 );
Wx[ 6] = SHA2x_MEXP( 4, 15, 7, 6 );
Wy[ 6] = SHA2y_MEXP( 4, 15, 7, 6 );
Wz[ 6] = SHA2z_MEXP( 4, 15, 7, 6 );
Wx[ 7] = SHA2x_MEXP( 5, 0, 8, 7);
Wy[ 7] = SHA2y_MEXP( 5, 0, 8, 7);
Wz[ 7] = SHA2z_MEXP( 5, 0, 8, 7);
Wx[ 8] = SHA2x_MEXP( 6, 1, 9, 8);
Wy[ 8] = SHA2y_MEXP( 6, 1, 9, 8);
Wz[ 8] = SHA2z_MEXP( 6, 1, 9, 8);
Wx[ 9] = SHA2x_MEXP( 7, 2, 10, 9 );
Wy[ 9] = SHA2y_MEXP( 7, 2, 10, 9);
Wz[ 9] = SHA2z_MEXP( 7, 2, 10, 9);
Wx[10] = SHA2x_MEXP( 8, 3, 11, 10 );
Wy[10] = SHA2y_MEXP( 8, 3, 11, 10);
Wz[10] = SHA2z_MEXP( 8, 3, 11, 10);
Wx[11] = SHA2x_MEXP( 9, 4, 12, 11);
Wy[11] = SHA2y_MEXP( 9, 4, 12, 11);
Wz[11] = SHA2z_MEXP( 9, 4, 12, 11 );
Wx[12] = SHA2x_MEXP( 10, 5, 13, 12 );
Wy[12] = SHA2y_MEXP( 10, 5, 13, 12 );
Wz[12] = SHA2z_MEXP( 10, 5, 13, 12 );
Wx[13] = SHA2x_MEXP( 11, 6, 14, 13 );
Wy[13] = SHA2y_MEXP( 11, 6, 14, 13 );
Wz[13] = SHA2z_MEXP( 11, 6, 14, 13 );
Wx[14] = SHA2x_MEXP( 12, 7, 15, 14 );
Wy[14] = SHA2y_MEXP( 12, 7, 15, 14 );
Wz[14] = SHA2z_MEXP( 12, 7, 15, 14 );
Wx[15] = SHA2x_MEXP( 13, 8, 0, 15 );
Wy[15] = SHA2y_MEXP( 13, 8, 0, 15 );
Wz[15] = SHA2z_MEXP( 13, 8, 0, 15 );
SHA2s_11WAY_STEP( Ax, Bx, Cx, Dx, Ex, Fx, Gx, Hx,
Ay, By, Cy, Dy, Ey, Fy, Gy, Hy,
Az, Bz, Cz, Dz, Ez, Fz, Gz, Hz, 0, j );
SHA2s_11WAY_STEP( Hx, Ax, Bx, Cx, Dx, Ex, Fx, Gx,
Hy, Ay, By, Cy, Dy, Ey, Fy, Gy,
Hz, Az, Bz, Cz, Dz, Ez, Fz, Gz, 1, j );
SHA2s_11WAY_STEP( Gx, Hx, Ax, Bx, Cx, Dx, Ex, Fx,
Gy, Hy, Ay, By, Cy, Dy, Ey, Fy,
Gz, Hz, Az, Bz, Cz, Dz, Ez, Fz, 2, j );
SHA2s_11WAY_STEP( Fx, Gx, Hx, Ax, Bx, Cx, Dx, Ex,
Fy, Gy, Hy, Ay, By, Cy, Dy, Ey,
Fz, Gz, Hz, Az, Bz, Cz, Dz, Ez, 3, j );
SHA2s_11WAY_STEP( Ex, Fx, Gx, Hx, Ax, Bx, Cx, Dx,
Ey, Fy, Gy, Hy, Ay, By, Cy, Dy,
Ez, Fz, Gz, Hz, Az, Bz, Cz, Dz, 4, j );
SHA2s_11WAY_STEP( Dx, Ex, Fx, Gx, Hx, Ax, Bx, Cx,
Dy, Ey, Fy, Gy, Hy, Ay, By, Cy,
Dz, Ez, Fz, Gz, Hz, Az, Bz, Cz, 5, j );
SHA2s_11WAY_STEP( Cx, Dx, Ex, Fx, Gx, Hx, Ax, Bx,
Cy, Dy, Ey, Fy, Gy, Hy, Ay, By,
Cz, Dz, Ez, Fz, Gz, Hz, Az, Bz, 6, j );
SHA2s_11WAY_STEP( Bx, Cx, Dx, Ex, Fx, Gx, Hx, Ax,
By, Cy, Dy, Ey, Fy, Gy, Hy, Ay,
Bz, Cz, Dz, Ez, Fz, Gz, Hz, Az, 7, j );
SHA2s_11WAY_STEP( Ax, Bx, Cx, Dx, Ex, Fx, Gx, Hx,
Ay, By, Cy, Dy, Ey, Fy, Gy, Hy,
Az, Bz, Cz, Dz, Ez, Fz, Gz, Hz, 8, j );
SHA2s_11WAY_STEP( Hx, Ax, Bx, Cx, Dx, Ex, Fx, Gx,
Hy, Ay, By, Cy, Dy, Ey, Fy, Gy,
Hz, Az, Bz, Cz, Dz, Ez, Fz, Gz, 9, j );
SHA2s_11WAY_STEP( Gx, Hx, Ax, Bx, Cx, Dx, Ex, Fx,
Gy, Hy, Ay, By, Cy, Dy, Ey, Fy,
Gz, Hz, Az, Bz, Cz, Dz, Ez, Fz, 10, j );
SHA2s_11WAY_STEP( Fx, Gx, Hx, Ax, Bx, Cx, Dx, Ex,
Fy, Gy, Hy, Ay, By, Cy, Dy, Ey,
Fz, Gz, Hz, Az, Bz, Cz, Dz, Ez, 11, j );
SHA2s_11WAY_STEP( Ex, Fx, Gx, Hx, Ax, Bx, Cx, Dx,
Ey, Fy, Gy, Hy, Ay, By, Cy, Dy,
Ez, Fz, Gz, Hz, Az, Bz, Cz, Dz, 12, j );
SHA2s_11WAY_STEP( Dx, Ex, Fx, Gx, Hx, Ax, Bx, Cx,
Dy, Ey, Fy, Gy, Hy, Ay, By, Cy,
Dz, Ez, Fz, Gz, Hz, Az, Bz, Cz, 13, j );
SHA2s_11WAY_STEP( Cx, Dx, Ex, Fx, Gx, Hx, Ax, Bx,
Cy, Dy, Ey, Fy, Gy, Hy, Ay, By,
Cz, Dz, Ez, Fz, Gz, Hz, Az, Bz, 14, j );
SHA2s_11WAY_STEP( Bx, Cx, Dx, Ex, Fx, Gx, Hx, Ax,
By, Cy, Dy, Ey, Fy, Gy, Hy, Ay,
Bz, Cz, Dz, Ez, Fz, Gz, Hz, Az, 15, j );
}
rx[0] = _mm256_add_epi32( rx[0], Ax );
ry[0] = _mm_add_pi32( ry[0], Ay );
rz[0] = rz[0]+ Az;
rx[1] = _mm256_add_epi32( rx[1], Bx );
ry[1] = _mm_add_pi32( ry[1], By );
rz[1] = rz[1]+ Bz;
rx[2] = _mm256_add_epi32( rx[2], Cx );
ry[2] = _mm_add_pi32( ry[2], Cy );
rz[3] = rz[3]+ Dz;
rx[4] = _mm256_add_epi32( rx[4], Ex );
ry[4] = _mm_add_pi32( ry[4], Ey );
rz[4] = rz[4]+ Ez;
rx[5] = _mm256_add_epi32( rx[5], Fx );
ry[5] = _mm_add_pi32( ry[5], Fy );
rz[5] = rz[5]+ Fz;
rx[6] = _mm256_add_epi32( rx[6], Gx );
ry[6] = _mm_add_pi32( ry[6], Gy );
rz[6] = rz[6]+ Gz;
rx[7] = _mm256_add_epi32( rx[7], Hx );
ry[7] = _mm_add_pi32( ry[7], Hy );
rz[7] = rz[7]+ Hz;
}
void sha256_11way_init( sha256_11way_context *ctx )
{
ctx->count_high = ctx->count_low = 0;
ctx->valx[0] = _mm256_set1_epi32( H256[0] );
ctx->valy[0] = _mm_set1_pi32( H256[0] );
ctx->valx[1] = _mm256_set1_epi32( H256[0] );
ctx->valy[1] = _mm_set1_pi32( H256[0] );
ctx->valx[2] = _mm256_set1_epi32( H256[0] );
ctx->valy[2] = _mm_set1_pi32( H256[0] );
ctx->valx[3] = _mm256_set1_epi32( H256[0] );
ctx->valy[3] = _mm_set1_pi32( H256[0] );
ctx->valx[4] = _mm256_set1_epi32( H256[0] );
ctx->valy[4] = _mm_set1_pi32( H256[0] );
ctx->valx[5] = _mm256_set1_epi32( H256[0] );
ctx->valy[5] = _mm_set1_pi32( H256[0] );
ctx->valx[6] = _mm256_set1_epi32( H256[0] );
ctx->valy[6] = _mm_set1_pi32( H256[0] );
ctx->valx[7] = _mm256_set1_epi32( H256[0] );
ctx->valy[7] = _mm_set1_pi32( H256[0] );
memcpy( ctx->valz, H256, 32 );
}
void sha256_11way_update( sha256_11way_context *ctx, const void *datax,
const void *datay, const void *dataz, size_t len )
{
__m256i *vdatax = (__m256i*) datax;
__m64 *vdatay = (__m64*) datay;
uint32_t *idataz = (uint32_t*)dataz;
size_t ptr;
const int buf_size = 64;
ptr = (unsigned)ctx->count_low & (buf_size - 1U);
while ( len > 0 )
{
size_t clen;
uint32_t clow, clow2;
clen = buf_size - ptr;
if ( clen > len )
clen = len;
memcpy_256( ctx->bufx + (ptr>>2), vdatax + (ptr>>2), clen>>2 );
memcpy_m64( ctx->bufy + (ptr>>2), vdatay + (ptr>>2), clen>>2 );
memcpy ( ctx->bufz + ptr, idataz + ptr, clen );
ptr += clen;
len -= clen;
if ( ptr == buf_size )
{
sha256_11way_round( ctx->bufx, ctx->valx,
ctx->bufy, ctx->valy,
ctx->bufz, ctx->valz );
ptr = 0;
}
clow = ctx->count_low;
clow2 = clow + clen;
ctx->count_low = clow2;
if ( clow2 < clow )
ctx->count_high++;
}
}
void sha256_11way_close( sha256_11way_context *ctx, void *dstx, void *dsty,
void *dstz)
{
unsigned ptr, u;
uint32_t low, high;
const int buf_size = 64;
const int pad = buf_size - 8;
ptr = (unsigned)ctx->count_low & (buf_size - 1U);
ctx->bufx[ ptr>>2 ] = _mm256_set1_epi32( 0x80 );
ctx->bufy[ ptr>>2 ] = _mm_set1_pi32( 0x80 );
ctx->bufz[ ptr>>2 ] = 0x80;
ptr += 4;
if ( ptr > pad )
{
memset_zero_256( ctx->bufx + (ptr>>2), (buf_size - ptr) >> 2 );
memset_zero_m64( ctx->bufy + (ptr>>2), (buf_size - ptr) >> 2 );
memset( ctx->bufz + (ptr>>2), 0, (buf_size - ptr) >> 2 );
sha256_11way_round( ctx->bufx, ctx->valx,
ctx->bufy, ctx->valy,
ctx->bufz, ctx->valz );
memset_zero_256( ctx->bufx, pad >> 2 );
memset_zero_m64( ctx->bufy, pad >> 2 );
memset( ctx->bufz, 0, pad >> 2 );
}
else
{
memset_zero_256( ctx->bufx + (ptr>>2), (pad - ptr) >> 2 );
memset_zero_m64( ctx->bufy + (ptr>>2), (pad - ptr) >> 2 );
memset( ctx->bufz + (ptr>>2), 0, (pad - ptr) >> 2 );
}
low = ctx->count_low;
high = (ctx->count_high << 3) | (low >> 29);
low = low << 3;
ctx->bufx[ pad >> 2 ] =
mm256_bswap_32( _mm256_set1_epi32( high ) );
ctx->bufy[ pad >> 2 ] =
mm64_bswap_32( _mm_set1_pi32( high ) );
ctx->bufz[ pad >> 2 ] =
bswap_32( high );
ctx->bufx[ ( pad+4 ) >> 2 ] =
mm256_bswap_32( _mm256_set1_epi32( low ) );
ctx->bufy[ ( pad+4 ) >> 2 ] =
mm64_bswap_32( _mm_set1_pi32( low ) );
ctx->bufz[ ( pad+4 ) >> 2 ] =
bswap_32( low );
sha256_11way_round( ctx->bufx, ctx->valx,
ctx->bufy, ctx->valy,
ctx->bufz, ctx->valz );
for ( u = 0; u < 8; u ++ )
{
casti_m256i( dstx, u ) = mm256_bswap_32( ctx->valx[u] );
casti_m64 ( dsty, u ) = mm64_bswap_32( ctx->valy[u] );
((uint32_t*)dstz)[u] = bswap_32( ctx->valz[u] );
}
}
#endif
#endif // 0

View File

@@ -5,137 +5,6 @@
#include <stdio.h>
#include "sha-hash-4way.h"
#if defined(SHA256T_11WAY)
static __thread sha256_11way_context sha256_ctx11 __attribute__ ((aligned (64)));
void sha256t_11way_hash( void *outx, void *outy, void *outz, const void *inpx,
const void *inpy, const void*inpz )
{
uint32_t hashx[8*8] __attribute__ ((aligned (64)));
uint32_t hashy[8*2] __attribute__ ((aligned (64)));
uint32_t hashz[8] __attribute__ ((aligned (64)));
sha256_11way_context ctx;
const void *inpx64 = inpx+(64<<3);
const void *inpy64 = inpy+(64<<1);
const void *inpz64 = inpz+ 64;
memcpy( &ctx, &sha256_ctx11, sizeof ctx );
sha256_11way_update( &ctx, inpx64, inpy64, inpz64, 16 );
sha256_11way_close( &ctx, hashx, hashy, hashz );
sha256_11way_init( &ctx );
sha256_11way_update( &ctx, hashx, hashy, hashz, 32 );
sha256_11way_close( &ctx, hashx, hashy, hashz );
sha256_11way_init( &ctx );
sha256_11way_update( &ctx, hashx, hashy, hashz, 32 );
sha256_11way_close( &ctx, outx, outy, outz );
}
int scanhash_sha256t_11way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t datax[20*8] __attribute__ ((aligned (64)));
uint32_t datay[20*2] __attribute__ ((aligned (32)));
uint32_t dataz[20] __attribute__ ((aligned (32)));
uint32_t hashx[8*8] __attribute__ ((aligned (32)));
uint32_t hashy[8*2] __attribute__ ((aligned (32)));
uint32_t hashz[8] __attribute__ ((aligned (32)));
uint32_t lane_hash[8] __attribute__ ((aligned (64)));
uint32_t *hash7;
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
const uint32_t Htarg = ptarget[7];
const uint32_t first_nonce = pdata[19];
uint32_t n = first_nonce;
__m256i *noncex = (__m256i*) datax + 19;
__m64 *noncey = (__m64*) datay + 19;
uint32_t *noncez = (uint32_t*)dataz + 19;
int thr_id = mythr->id; // thr_id arg is deprecated
int i;
const uint64_t htmax[] = { 0,
0xF,
0xFF,
0xFFF,
0xFFFF,
0x10000000 };
const uint32_t masks[] = { 0xFFFFFFFF,
0xFFFFFFF0,
0xFFFFFF00,
0xFFFFF000,
0xFFFF0000,
0 };
// Use dataz (scalar) to stage bswapped data for the vectors.
casti_m256i( dataz, 0 ) = mm256_bswap_32( casti_m256i( pdata, 0 ) );
casti_m256i( dataz, 1 ) = mm256_bswap_32( casti_m256i( pdata, 1 ) );
casti_m128i( dataz, 4 ) = mm128_bswap_32( casti_m128i( pdata, 4 ) );
intrlv_8x32( datax, dataz, dataz, dataz, dataz,
dataz, dataz, dataz, dataz, 640 );
mm64_interleave_2x32( datay, dataz, dataz, 640 );
sha256_11way_init( &sha256_ctx11 );
sha256_11way_update( &sha256_ctx11, datax, datay, dataz, 64 );
for ( int m = 0; m < 6; m++ ) if ( Htarg <= htmax[m] )
{
uint32_t mask = masks[m];
do
{
*noncex = mm256_bswap_32(
_mm256_set_epi32( n+7, n+6, n+5, n+4, n+3, n+2, n+1, n ) );
*noncey = mm64_bswap_32( _mm_set_pi32( n+9, n+8 ) );
*noncez = bswap_32( n+10 );
pdata[19] = n;
sha256t_11way_hash( hashx, hashy, hashz, datax, datay, dataz );
if ( opt_benchmark ) { n += 11; continue; }
hash7 = &(hashx[7<<3]);
for ( i = 0; i < 8; i++ ) if ( !( hash7[ i ] & mask ) )
{
// deinterleave hash for lane
extr_lane_8x32( lane_hash, hashx, i, 256 );
if ( fulltest( lane_hash, ptarget ) )
{
pdata[19] = n + i;
submit_lane_solution( work, lane_hash, mythr, i );
}
}
hash7 = &(hashy[7<<1]);
for( i = 0; i < 2; i++ ) if ( !(hash7[ 0] & mask ) )
{
mm64_extr_lane_2x32( lane_hash, hashy, i, 256 );
if ( fulltest( lane_hash, ptarget ) )
{
pdata[19] = n + 8 + i;
submit_lane_solution( work, lane_hash, mythr, i+8 );
}
}
if ( !(hashz[7] & mask ) && fulltest( hashz, ptarget ) )
{
pdata[19] = n+10;
submit_lane_solution( work, hashz, mythr, 10 );
}
n += 11;
} while ( (n < max_nonce-12) && !work_restart[thr_id].restart );
break;
}
*hashes_done = n - first_nonce + 1;
return 0;
}
#endif
#if defined(SHA256T_8WAY)
static __thread sha256_8way_context sha256_ctx8 __attribute__ ((aligned (64)));

View File

@@ -252,16 +252,6 @@ void sha512_4way_init( sha512_4way_context *sc )
{
sc->initialized = false;
sc->count = 0;
/*
sc->val[0] = _mm256_set1_epi64x( H512[0] );
sc->val[1] = _mm256_set1_epi64x( H512[1] );
sc->val[2] = _mm256_set1_epi64x( H512[2] );
sc->val[3] = _mm256_set1_epi64x( H512[3] );
sc->val[4] = _mm256_set1_epi64x( H512[4] );
sc->val[5] = _mm256_set1_epi64x( H512[5] );
sc->val[6] = _mm256_set1_epi64x( H512[6] );
sc->val[7] = _mm256_set1_epi64x( H512[7] );
*/
}
void sha512_4way( sha512_4way_context *sc, const void *data, size_t len )
@@ -295,6 +285,8 @@ void sha512_4way_close( sha512_4way_context *sc, void *dst )
unsigned ptr;
const int buf_size = 128;
const int pad = buf_size - 16;
const __m256i shuff_bswap64 = m256_const2_64( 0x08090a0b0c0d0e0f,
0x0001020304050607 );
ptr = (unsigned)sc->count & (buf_size - 1U);
sc->buf[ ptr>>3 ] = m256_const1_64( 0x80 );
@@ -308,10 +300,10 @@ void sha512_4way_close( sha512_4way_context *sc, void *dst )
else
memset_zero_256( sc->buf + (ptr>>3), (pad - ptr) >> 3 );
sc->buf[ pad >> 3 ] =
mm256_bswap_64( _mm256_set1_epi64x( sc->count >> 61 ) );
sc->buf[ ( pad+8 ) >> 3 ] =
mm256_bswap_64( _mm256_set1_epi64x( sc->count << 3 ) );
sc->buf[ pad >> 3 ] = _mm256_shuffle_epi8(
_mm256_set1_epi64x( sc->count >> 61 ), shuff_bswap64 );
sc->buf[ ( pad+8 ) >> 3 ] = _mm256_shuffle_epi8(
_mm256_set1_epi64x( sc->count << 3 ), shuff_bswap64 );
sha512_4way_round( sc, sc->buf, sc->val );
mm256_block_bswap_64( dst, sc->val );

View File

@@ -5,6 +5,7 @@
#if defined(__AVX2__)
static const uint32_t IV512[] =
{
0x72FCCDD8, 0x79CA4727, 0x128A077B, 0x40D55AEC,
@@ -13,6 +14,7 @@ static const uint32_t IV512[] =
0xE275EADE, 0x502D9FCD, 0xB9357178, 0x022A4B9A
};
#define mm256_ror2x256hi_1x32( a, b ) \
_mm256_blend_epi32( mm256_ror1x32_128( a ), \
mm256_ror1x32_128( b ), 0x88 )
@@ -232,18 +234,14 @@ c512_2way( shavite512_2way_context *ctx, const void *msg )
void shavite512_2way_init( shavite512_2way_context *ctx )
{
casti_m256i( ctx->h, 0 ) =
_mm256_set_epi32( IV512[ 3], IV512[ 2], IV512[ 1], IV512[ 0],
IV512[ 3], IV512[ 2], IV512[ 1], IV512[ 0] );
casti_m256i( ctx->h, 1 ) =
_mm256_set_epi32( IV512[ 7], IV512[ 6], IV512[ 5], IV512[ 4],
IV512[ 7], IV512[ 6], IV512[ 5], IV512[ 4] );
casti_m256i( ctx->h, 2 ) =
_mm256_set_epi32( IV512[11], IV512[10], IV512[ 9], IV512[ 8],
IV512[11], IV512[10], IV512[ 9], IV512[ 8] );
casti_m256i( ctx->h, 3 ) =
_mm256_set_epi32( IV512[15], IV512[14], IV512[13], IV512[12],
IV512[15], IV512[14], IV512[13], IV512[12] );
__m256i *h = (__m256i*)ctx->h;
__m128i *iv = (__m128i*)IV512;
h[0] = m256_const1_128( iv[0] );
h[1] = m256_const1_128( iv[1] );
h[2] = m256_const1_128( iv[2] );
h[3] = m256_const1_128( iv[3] );
ctx->ptr = 0;
ctx->count0 = 0;
ctx->count1 = 0;
@@ -251,6 +249,7 @@ void shavite512_2way_init( shavite512_2way_context *ctx )
ctx->count3 = 0;
}
// not tested, use update_close
void shavite512_2way_update( shavite512_2way_context *ctx, const void *data,
size_t len )
{
@@ -287,6 +286,7 @@ void shavite512_2way_update( shavite512_2way_context *ctx, const void *data,
ctx->ptr = ptr;
}
// not tested
void shavite512_2way_close( shavite512_2way_context *ctx, void *dst )
{
unsigned char *buf;
@@ -300,7 +300,7 @@ void shavite512_2way_close( shavite512_2way_context *ctx, void *dst )
uint32_t vp = ctx->ptr>>5;
// Terminating byte then zero pad
casti_m256i( buf, vp++ ) = _mm256_set_epi32( 0,0,0,0x80, 0,0,0,0x80 );
casti_m256i( buf, vp++ ) = m256_const2_64( 0, 0x0000000000000080 );
// Zero pad full vectors up to count
for ( ; vp < 6; vp++ )
@@ -314,14 +314,12 @@ void shavite512_2way_close( shavite512_2way_context *ctx, void *dst )
count.u32[2] = ctx->count2;
count.u32[3] = ctx->count3;
casti_m256i( buf, 6 ) = _mm256_set_epi16( count.u16[0], 0,0,0,0,0,0,0,
count.u16[0], 0,0,0,0,0,0,0 );
casti_m256i( buf, 7 ) = _mm256_set_epi16(
0x0200 , count.u16[7], count.u16[6], count.u16[5],
count.u16[4], count.u16[3], count.u16[2], count.u16[1],
0x0200 , count.u16[7], count.u16[6], count.u16[5],
count.u16[4], count.u16[3], count.u16[2], count.u16[1] );
casti_m256i( buf, 6 ) = m256_const1_128(
_mm_insert_epi16( m128_zero, count.u16[0], 7 ) );
casti_m256i( buf, 7 ) = m256_const1_128( _mm_set_epi16(
0x0200, count.u16[7], count.u16[6], count.u16[5],
count.u16[4], count.u16[3], count.u16[2], count.u16[1] ) );
c512_2way( ctx, buf);
casti_m256i( dst, 0 ) = casti_m256i( ctx->h, 0 );
@@ -382,23 +380,21 @@ void shavite512_2way_update_close( shavite512_2way_context *ctx, void *dst,
if ( vp == 0 ) // empty buf, xevan.
{
casti_m256i( buf, 0 ) = _mm256_set_epi32( 0,0,0,0x80, 0,0,0,0x80 );
casti_m256i( buf, 0 ) = m256_const2_64( 0, 0x0000000000000080 );
memset_zero_256( (__m256i*)buf + 1, 5 );
ctx->count0 = ctx->count1 = ctx->count2 = ctx->count3 = 0;
}
else // half full buf, everyone else.
{
casti_m256i( buf, vp++ ) = _mm256_set_epi32( 0,0,0,0x80, 0,0,0,0x80 );
casti_m256i( buf, vp++ ) = m256_const2_64( 0, 0x0000000000000080 );
memset_zero_256( (__m256i*)buf + vp, 6 - vp );
}
casti_m256i( buf, 6 ) = _mm256_set_epi16( count.u16[0], 0,0,0,0,0,0,0,
count.u16[0], 0,0,0,0,0,0,0 );
casti_m256i( buf, 7 ) = _mm256_set_epi16(
0x0200 , count.u16[7], count.u16[6], count.u16[5],
count.u16[4], count.u16[3], count.u16[2], count.u16[1],
0x0200 , count.u16[7], count.u16[6], count.u16[5],
count.u16[4], count.u16[3], count.u16[2], count.u16[1] );
casti_m256i( buf, 6 ) = m256_const1_128(
_mm_insert_epi16( m128_zero, count.u16[0], 7 ) );
casti_m256i( buf, 7 ) = m256_const1_128( _mm_set_epi16(
0x0200, count.u16[7], count.u16[6], count.u16[5],
count.u16[4], count.u16[3], count.u16[2], count.u16[1] ) );
c512_2way( ctx, buf);

View File

@@ -83,13 +83,14 @@ HashReturn init_sd(hashState_sd *state, int hashbitlen) {
char *init;
#ifndef NO_PRECOMPUTED_IV
if (hashbitlen == 224)
r=InitIV(state, hashbitlen, IV_224);
else if (hashbitlen == 256)
r=InitIV(state, hashbitlen, IV_256);
else if (hashbitlen == 384)
r=InitIV(state, hashbitlen, IV_384);
else if (hashbitlen == 512)
// if (hashbitlen == 224)
// r=InitIV(state, hashbitlen, IV_224);
// else if (hashbitlen == 256)
// r=InitIV(state, hashbitlen, IV_256);
// else if (hashbitlen == 384)
// r=InitIV(state, hashbitlen, IV_384);
// else
if (hashbitlen == 512)
r=InitIV(state, hashbitlen, IV_512);
else
#endif

View File

@@ -110,14 +110,26 @@ static const m256_v16 FFT256_Twiddle[] =
// imported from vector.c
#define REDUCE(x) \
_mm256_sub_epi16( _mm256_and_si256( x, m256_const1_64( \
0x00ff00ff00ff00ff ) ), _mm256_srai_epi16( x, 8 ) )
/*
#define REDUCE(x) \
_mm256_sub_epi16( _mm256_and_si256( x, _mm256_set1_epi16( 255 ) ), \
_mm256_srai_epi16( x, 8 ) )
*/
#define EXTRA_REDUCE_S(x)\
_mm256_sub_epi16( x, _mm256_and_si256( \
m256_const1_64( 0x0101010101010101 ), \
_mm256_cmpgt_epi16( x, m256_const1_64( 0x0080008000800080 ) ) ) )
/*
#define EXTRA_REDUCE_S(x)\
_mm256_sub_epi16( x, \
_mm256_and_si256( _mm256_set1_epi16( 257 ), \
_mm256_cmpgt_epi16( x, _mm256_set1_epi16( 128 ) ) ) )
*/
#define REDUCE_FULL_S( x ) EXTRA_REDUCE_S( REDUCE (x ) )

View File

@@ -2,13 +2,136 @@
#include <string.h>
#include <stdint.h>
#include "skein-hash-4way.h"
// 8 way is faster than SHA on Icelake
// SHA is faster than 4 way on Ryzen
//
#if defined(__SHA__)
#include <openssl/sha.h>
#else
#include "algo/sha/sha-hash-4way.h"
#endif
#include "algo/sha/sha-hash-4way.h"
#if defined (SKEIN_4WAY)
#if defined (SKEIN_8WAY)
void skeinhash_8way( void *state, const void *input )
{
uint64_t vhash64[16*8] __attribute__ ((aligned (128)));
skein512_8way_context ctx_skein;
//#if defined(__SHA__)
// uint32_t hash0[16] __attribute__ ((aligned (64)));
// uint32_t hash1[16] __attribute__ ((aligned (64)));
// uint32_t hash2[16] __attribute__ ((aligned (64)));
// uint32_t hash3[16] __attribute__ ((aligned (64)));
// uint32_t hash4[16] __attribute__ ((aligned (64)));
// uint32_t hash5[16] __attribute__ ((aligned (64)));
// uint32_t hash6[16] __attribute__ ((aligned (64)));
// uint32_t hash7[16] __attribute__ ((aligned (64)));
// SHA256_CTX ctx_sha256;
//#else
uint32_t vhash32[32*8] __attribute__ ((aligned (128)));
sha256_8way_context ctx_sha256;
//#endif
skein512_8way_init( &ctx_skein );
skein512_8way_update( &ctx_skein, input, 80 );
skein512_8way_close( &ctx_skein, vhash64 );
/*
#if defined(__SHA__)
dintrlv_8x64( hash0, hash1, hash2, hash3, hash4, hash5, hash6, hash7,
vhash64, 512 );
SHA256_Init( &ctx_sha256 );
SHA256_Update( &ctx_sha256, (unsigned char*)hash0, 64 );
SHA256_Final( (unsigned char*)hash0, &ctx_sha256 );
SHA256_Init( &ctx_sha256 );
SHA256_Update( &ctx_sha256, (unsigned char*)hash1, 64 );
SHA256_Final( (unsigned char*)hash1, &ctx_sha256 );
SHA256_Init( &ctx_sha256 );
SHA256_Update( &ctx_sha256, (unsigned char*)hash2, 64 );
SHA256_Final( (unsigned char*)hash2, &ctx_sha256 );
SHA256_Init( &ctx_sha256 );
SHA256_Update( &ctx_sha256, (unsigned char*)hash3, 64 );
SHA256_Final( (unsigned char*)hash3, &ctx_sha256 );
SHA256_Init( &ctx_sha256 );
SHA256_Update( &ctx_sha256, (unsigned char*)hash4, 64 );
SHA256_Final( (unsigned char*)hash4, &ctx_sha256 );
SHA256_Init( &ctx_sha256 );
SHA256_Update( &ctx_sha256, (unsigned char*)hash5, 64 );
SHA256_Final( (unsigned char*)hash5, &ctx_sha256 );
SHA256_Init( &ctx_sha256 );
SHA256_Update( &ctx_sha256, (unsigned char*)hash6, 64 );
SHA256_Final( (unsigned char*)hash6, &ctx_sha256 );
SHA256_Init( &ctx_sha256 );
SHA256_Update( &ctx_sha256, (unsigned char*)hash7, 64 );
SHA256_Final( (unsigned char*)hash7, &ctx_sha256 );
intrlv_8x32( state, hash0, hash1, hash2, hash3, hash4, hash5, hash6,
hash7, 256 );
#else
*/
rintrlv_8x64_8x32( vhash32, vhash64, 512 );
// dintrlv_8x64( hash0, hash1, hash2, hash3, hash4, hash5, hash6, hash7,
// vhash64, 512 );
// intrlv_8x32( vhash32, hash0, hash1, hash2, hash3, hash4, hash5, hash6,
// hash7, 512 );
sha256_8way_init( &ctx_sha256 );
sha256_8way( &ctx_sha256, vhash32, 64 );
sha256_8way_close( &ctx_sha256, state );
//#endif
}
int scanhash_skein_8way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t vdata[20*8] __attribute__ ((aligned (128)));
uint32_t hash[16*8] __attribute__ ((aligned (64)));
uint32_t lane_hash[8] __attribute__ ((aligned (64)));
uint32_t *hash7 = &(hash[7<<3]);
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
const uint32_t Htarg = ptarget[7];
const uint32_t first_nonce = pdata[19];
uint32_t n = first_nonce;
__m512i *noncev = (__m512i*)vdata + 9; // aligned
int thr_id = mythr->id;
mm512_bswap32_intrlv80_8x64( vdata, pdata );
do
{
*noncev = mm512_intrlv_blend_32( mm512_bswap_32(
_mm512_set_epi32( n+7, 0, n+6, 0, n+5, 0, n+4, 0,
n+3, 0, n+2, 0, n+1, 0, n , 0 ) ), *noncev );
skeinhash_8way( hash, vdata );
for ( int lane = 0; lane < 8; lane++ )
if ( hash7[ lane ] <= Htarg )
{
extr_lane_8x32( lane_hash, hash, lane, 256 );
if ( fulltest( lane_hash, ptarget ) )
{
pdata[19] = n + lane;
submit_lane_solution( work, lane_hash, mythr, lane );
}
}
n += 8;
} while ( (n < max_nonce-8) && !work_restart[thr_id].restart );
*hashes_done = n - first_nonce;
return 0;
}
#elif defined (SKEIN_4WAY)
void skeinhash_4way( void *state, const void *input )
{
@@ -26,7 +149,7 @@ void skeinhash_4way( void *state, const void *input )
#endif
skein512_4way_init( &ctx_skein );
skein512_4way( &ctx_skein, input, 80 );
skein512_4way_update( &ctx_skein, input, 80 );
skein512_4way_close( &ctx_skein, vhash64 );
#if defined(__SHA__)
@@ -71,7 +194,7 @@ int scanhash_skein_4way( struct work *work, uint32_t max_nonce,
const uint32_t first_nonce = pdata[19];
uint32_t n = first_nonce;
__m256i *noncev = (__m256i*)vdata + 9; // aligned
int thr_id = mythr->id; // thr_id arg is deprecated
int thr_id = mythr->id;
mm256_bswap32_intrlv80_4x64( vdata, pdata );
do
@@ -92,9 +215,9 @@ int scanhash_skein_4way( struct work *work, uint32_t max_nonce,
}
}
n += 4;
} while ( (n < max_nonce) && !work_restart[thr_id].restart );
} while ( (n < max_nonce-4) && !work_restart[thr_id].restart );
*hashes_done = n - first_nonce + 1;
*hashes_done = n - first_nonce;
return 0;
}

View File

@@ -4,8 +4,11 @@
bool register_skein_algo( algo_gate_t* gate )
{
gate->optimizations = AVX2_OPT | SHA_OPT;
#if defined (SKEIN_4WAY)
gate->optimizations = AVX2_OPT | AVX512_OPT | SHA_OPT;
#if defined (SKEIN_8WAY)
gate->scanhash = (void*)&scanhash_skein_8way;
gate->hash = (void*)&skeinhash_8way;
#elif defined (SKEIN_4WAY)
gate->scanhash = (void*)&scanhash_skein_4way;
gate->hash = (void*)&skeinhash_4way;
#else
@@ -15,3 +18,20 @@ bool register_skein_algo( algo_gate_t* gate )
return true;
};
bool register_skein2_algo( algo_gate_t* gate )
{
gate->optimizations = AVX2_OPT | AVX512_OPT;
#if defined (SKEIN_8WAY)
gate->scanhash = (void*)&scanhash_skein2_8way;
gate->hash = (void*)&skein2hash_8way;
#elif defined (SKEIN_4WAY)
gate->scanhash = (void*)&scanhash_skein2_4way;
gate->hash = (void*)&skein2hash_4way;
#else
gate->scanhash = (void*)&scanhash_skein2;
gate->hash = (void*)&skein2hash;
#endif
return true;
};

View File

@@ -1,23 +1,44 @@
#ifndef __SKEIN_GATE_H__
#define __SKEIN_GATE_H__
#define __SKEIN_GATE_H__ 1
#include <stdint.h>
#include "algo-gate-api.h"
#if defined(__AVX2__)
#define SKEIN_4WAY
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#define SKEIN_8WAY 1
#elif defined(__AVX2__)
#define SKEIN_4WAY 1
#endif
#if defined(SKEIN_4WAY)
#if defined(SKEIN_8WAY)
void skeinhash_8way( void *output, const void *input );
int scanhash_skein_8way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
void skein2hash_8way( void *output, const void *input );
int scanhash_skein2_8way( struct work *work, uint32_t max_nonce,
uint64_t* hashes_done, struct thr_info *mythr );
#elif defined(SKEIN_4WAY)
void skeinhash_4way( void *output, const void *input );
int scanhash_skein_4way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
#endif
void skein2hash_4way( void *output, const void *input );
int scanhash_skein2_4way( struct work *work, uint32_t max_nonce,
uint64_t* hashes_done, struct thr_info *mythr );
#else
void skeinhash( void *output, const void *input );
int scanhash_skein( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
void skein2hash( void *output, const void *input );
int scanhash_skein2( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
#endif
#endif

View File

@@ -36,7 +36,6 @@
#include <string.h>
#include "skein-hash-4way.h"
#ifdef __cplusplus
extern "C"{
#endif
@@ -45,6 +44,22 @@ extern "C"{
#pragma warning (disable: 4146)
#endif
/*
static const sph_u64 IV256[] = {
SPH_C64(0xCCD044A12FDB3E13), SPH_C64(0xE83590301A79A9EB),
SPH_C64(0x55AEA0614F816E6F), SPH_C64(0x2A2767A4AE9B94DB),
SPH_C64(0xEC06025E74DD7683), SPH_C64(0xE7A436CDC4746251),
SPH_C64(0xC36FBAF9393AD185), SPH_C64(0x3EEDBA1833EDFC13)
};
static const sph_u64 IV512[] = {
SPH_C64(0x4903ADFF749C51CE), SPH_C64(0x0D95DE399746DF03),
SPH_C64(0x8FD1934127C79BCE), SPH_C64(0x9A255629FF352CB1),
SPH_C64(0x5DB62599DF6CA7B0), SPH_C64(0xEABE394CA9D5C3F4),
SPH_C64(0x991112C71A75B523), SPH_C64(0xAE18A40B660FCC33)
};
*/
/*
* M9_ ## s ## _ ## i evaluates to s+i mod 9 (0 <= s <= 18, 0 <= i <= 7).
*/
@@ -270,8 +285,151 @@ extern "C"{
#define SKBI(k, s, i) XCAT(k, XCAT(XCAT(XCAT(M9_, s), _), i))
#define SKBT(t, s, v) XCAT(t, XCAT(XCAT(XCAT(M3_, s), _), v))
#define READ_STATE_BIG(sc) do { \
h0 = (sc)->h0; \
h1 = (sc)->h1; \
h2 = (sc)->h2; \
h3 = (sc)->h3; \
h4 = (sc)->h4; \
h5 = (sc)->h5; \
h6 = (sc)->h6; \
h7 = (sc)->h7; \
bcount = sc->bcount; \
} while (0)
#define WRITE_STATE_BIG(sc) do { \
(sc)->h0 = h0; \
(sc)->h1 = h1; \
(sc)->h2 = h2; \
(sc)->h3 = h3; \
(sc)->h4 = h4; \
(sc)->h5 = h5; \
(sc)->h6 = h6; \
(sc)->h7 = h7; \
sc->bcount = bcount; \
} while (0)
// AVX2 all scalar vars are now vectors representing 4 nonces in parallel
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#define TFBIG_KINIT_8WAY( k0, k1, k2, k3, k4, k5, k6, k7, k8, t0, t1, t2 ) \
do { \
k8 = _mm512_xor_si512( _mm512_xor_si512( \
_mm512_xor_si512( _mm512_xor_si512( k0, k1 ), \
_mm512_xor_si512( k2, k3 ) ), \
_mm512_xor_si512( _mm512_xor_si512( k4, k5 ), \
_mm512_xor_si512( k6, k7 ) ) ), \
m512_const1_64( 0x1BD11BDAA9FC1A22) ); \
t2 = t0 ^ t1; \
} while (0)
#define TFBIG_ADDKEY_8WAY(w0, w1, w2, w3, w4, w5, w6, w7, k, t, s) \
do { \
w0 = _mm512_add_epi64( w0, SKBI(k,s,0) ); \
w1 = _mm512_add_epi64( w1, SKBI(k,s,1) ); \
w2 = _mm512_add_epi64( w2, SKBI(k,s,2) ); \
w3 = _mm512_add_epi64( w3, SKBI(k,s,3) ); \
w4 = _mm512_add_epi64( w4, SKBI(k,s,4) ); \
w5 = _mm512_add_epi64( w5, _mm512_add_epi64( SKBI(k,s,5), \
m512_const1_64( SKBT(t,s,0) ) ) ); \
w6 = _mm512_add_epi64( w6, _mm512_add_epi64( SKBI(k,s,6), \
m512_const1_64( SKBT(t,s,1) ) ) ); \
w7 = _mm512_add_epi64( w7, _mm512_add_epi64( SKBI(k,s,7), \
m512_const1_64( s ) ) ); \
} while (0)
#define TFBIG_MIX_8WAY(x0, x1, rc) \
do { \
x0 = _mm512_add_epi64( x0, x1 ); \
x1 = _mm512_xor_si512( mm512_rol_64( x1, rc ), x0 ); \
} while (0)
#define TFBIG_MIX8_8WAY(w0, w1, w2, w3, w4, w5, w6, w7, rc0, rc1, rc2, rc3) do { \
TFBIG_MIX_8WAY(w0, w1, rc0); \
TFBIG_MIX_8WAY(w2, w3, rc1); \
TFBIG_MIX_8WAY(w4, w5, rc2); \
TFBIG_MIX_8WAY(w6, w7, rc3); \
} while (0)
#define TFBIG_8WAY_4e(s) do { \
TFBIG_ADDKEY_8WAY(p0, p1, p2, p3, p4, p5, p6, p7, h, t, s); \
TFBIG_MIX8_8WAY(p0, p1, p2, p3, p4, p5, p6, p7, 46, 36, 19, 37); \
TFBIG_MIX8_8WAY(p2, p1, p4, p7, p6, p5, p0, p3, 33, 27, 14, 42); \
TFBIG_MIX8_8WAY(p4, p1, p6, p3, p0, p5, p2, p7, 17, 49, 36, 39); \
TFBIG_MIX8_8WAY(p6, p1, p0, p7, p2, p5, p4, p3, 44, 9, 54, 56); \
} while (0)
#define TFBIG_8WAY_4o(s) do { \
TFBIG_ADDKEY_8WAY(p0, p1, p2, p3, p4, p5, p6, p7, h, t, s); \
TFBIG_MIX8_8WAY(p0, p1, p2, p3, p4, p5, p6, p7, 39, 30, 34, 24); \
TFBIG_MIX8_8WAY(p2, p1, p4, p7, p6, p5, p0, p3, 13, 50, 10, 17); \
TFBIG_MIX8_8WAY(p4, p1, p6, p3, p0, p5, p2, p7, 25, 29, 39, 43); \
TFBIG_MIX8_8WAY(p6, p1, p0, p7, p2, p5, p4, p3, 8, 35, 56, 22); \
} while (0)
#define UBI_BIG_8WAY(etype, extra) \
do { \
sph_u64 t0, t1, t2; \
__m512i h8; \
__m512i m0 = buf[0]; \
__m512i m1 = buf[1]; \
__m512i m2 = buf[2]; \
__m512i m3 = buf[3]; \
__m512i m4 = buf[4]; \
__m512i m5 = buf[5]; \
__m512i m6 = buf[6]; \
__m512i m7 = buf[7]; \
\
__m512i p0 = m0; \
__m512i p1 = m1; \
__m512i p2 = m2; \
__m512i p3 = m3; \
__m512i p4 = m4; \
__m512i p5 = m5; \
__m512i p6 = m6; \
__m512i p7 = m7; \
t0 = SPH_T64(bcount << 6) + (sph_u64)(extra); \
t1 = (bcount >> 58) + ((sph_u64)(etype) << 55); \
TFBIG_KINIT_8WAY(h0, h1, h2, h3, h4, h5, h6, h7, h8, t0, t1, t2); \
TFBIG_8WAY_4e(0); \
TFBIG_8WAY_4o(1); \
TFBIG_8WAY_4e(2); \
TFBIG_8WAY_4o(3); \
TFBIG_8WAY_4e(4); \
TFBIG_8WAY_4o(5); \
TFBIG_8WAY_4e(6); \
TFBIG_8WAY_4o(7); \
TFBIG_8WAY_4e(8); \
TFBIG_8WAY_4o(9); \
TFBIG_8WAY_4e(10); \
TFBIG_8WAY_4o(11); \
TFBIG_8WAY_4e(12); \
TFBIG_8WAY_4o(13); \
TFBIG_8WAY_4e(14); \
TFBIG_8WAY_4o(15); \
TFBIG_8WAY_4e(16); \
TFBIG_8WAY_4o(17); \
TFBIG_ADDKEY_8WAY(p0, p1, p2, p3, p4, p5, p6, p7, h, t, 18); \
h0 = _mm512_xor_si512( m0, p0 );\
h1 = _mm512_xor_si512( m1, p1 );\
h2 = _mm512_xor_si512( m2, p2 );\
h3 = _mm512_xor_si512( m3, p3 );\
h4 = _mm512_xor_si512( m4, p4 );\
h5 = _mm512_xor_si512( m5, p5 );\
h6 = _mm512_xor_si512( m6, p6 );\
h7 = _mm512_xor_si512( m7, p7 );\
} while (0)
#define DECL_STATE_BIG_8WAY \
__m512i h0, h1, h2, h3, h4, h5, h6, h7; \
sph_u64 bcount;
#endif // AVX512
#define TFBIG_KINIT_4WAY( k0, k1, k2, k3, k4, k5, k6, k7, k8, t0, t1, t2 ) \
do { \
k8 = _mm256_xor_si256( _mm256_xor_si256( \
@@ -298,39 +456,34 @@ do { \
m256_const1_64( s ) ) ); \
} while (0)
#define TFBIG_MIX_4WAY(x0, x1, rc) \
do { \
x0 = _mm256_add_epi64( x0, x1 ); \
x1 = _mm256_xor_si256( mm256_rol_64( x1, rc ), x0 ); \
} while (0)
// typeless
#define TFBIG_MIX8(w0, w1, w2, w3, w4, w5, w6, w7, rc0, rc1, rc2, rc3) do { \
TFBIG_MIX_4WAY(w0, w1, rc0); \
TFBIG_MIX_4WAY(w2, w3, rc1); \
TFBIG_MIX_4WAY(w4, w5, rc2); \
TFBIG_MIX_4WAY(w6, w7, rc3); \
} while (0)
#define TFBIG_MIX8_4WAY(w0, w1, w2, w3, w4, w5, w6, w7, rc0, rc1, rc2, rc3) do { \
TFBIG_MIX_4WAY(w0, w1, rc0); \
TFBIG_MIX_4WAY(w2, w3, rc1); \
TFBIG_MIX_4WAY(w4, w5, rc2); \
TFBIG_MIX_4WAY(w6, w7, rc3); \
} while (0)
#define TFBIG_4WAY_4e(s) do { \
TFBIG_ADDKEY_4WAY(p0, p1, p2, p3, p4, p5, p6, p7, h, t, s); \
TFBIG_MIX8_4WAY(p0, p1, p2, p3, p4, p5, p6, p7, 46, 36, 19, 37); \
TFBIG_MIX8_4WAY(p2, p1, p4, p7, p6, p5, p0, p3, 33, 27, 14, 42); \
TFBIG_MIX8_4WAY(p4, p1, p6, p3, p0, p5, p2, p7, 17, 49, 36, 39); \
TFBIG_MIX8_4WAY(p6, p1, p0, p7, p2, p5, p4, p3, 44, 9, 54, 56); \
} while (0)
#define TFBIG_4e(s) do { \
TFBIG_ADDKEY_4WAY(p0, p1, p2, p3, p4, p5, p6, p7, h, t, s); \
TFBIG_MIX8(p0, p1, p2, p3, p4, p5, p6, p7, 46, 36, 19, 37); \
TFBIG_MIX8(p2, p1, p4, p7, p6, p5, p0, p3, 33, 27, 14, 42); \
TFBIG_MIX8(p4, p1, p6, p3, p0, p5, p2, p7, 17, 49, 36, 39); \
TFBIG_MIX8(p6, p1, p0, p7, p2, p5, p4, p3, 44, 9, 54, 56); \
} while (0)
#define TFBIG_4o(s) do { \
TFBIG_ADDKEY_4WAY(p0, p1, p2, p3, p4, p5, p6, p7, h, t, s); \
TFBIG_MIX8(p0, p1, p2, p3, p4, p5, p6, p7, 39, 30, 34, 24); \
TFBIG_MIX8(p2, p1, p4, p7, p6, p5, p0, p3, 13, 50, 10, 17); \
TFBIG_MIX8(p4, p1, p6, p3, p0, p5, p2, p7, 25, 29, 39, 43); \
TFBIG_MIX8(p6, p1, p0, p7, p2, p5, p4, p3, 8, 35, 56, 22); \
} while (0)
#define TFBIG_4WAY_4o(s) do { \
TFBIG_ADDKEY_4WAY(p0, p1, p2, p3, p4, p5, p6, p7, h, t, s); \
TFBIG_MIX8_4WAY(p0, p1, p2, p3, p4, p5, p6, p7, 39, 30, 34, 24); \
TFBIG_MIX8_4WAY(p2, p1, p4, p7, p6, p5, p0, p3, 13, 50, 10, 17); \
TFBIG_MIX8_4WAY(p4, p1, p6, p3, p0, p5, p2, p7, 25, 29, 39, 43); \
TFBIG_MIX8_4WAY(p6, p1, p0, p7, p2, p5, p4, p3, 8, 35, 56, 22); \
} while (0)
// scale buf offset by 4
#define UBI_BIG_4WAY(etype, extra) \
@@ -357,24 +510,24 @@ do { \
t0 = SPH_T64(bcount << 6) + (sph_u64)(extra); \
t1 = (bcount >> 58) + ((sph_u64)(etype) << 55); \
TFBIG_KINIT_4WAY(h0, h1, h2, h3, h4, h5, h6, h7, h8, t0, t1, t2); \
TFBIG_4e(0); \
TFBIG_4o(1); \
TFBIG_4e(2); \
TFBIG_4o(3); \
TFBIG_4e(4); \
TFBIG_4o(5); \
TFBIG_4e(6); \
TFBIG_4o(7); \
TFBIG_4e(8); \
TFBIG_4o(9); \
TFBIG_4e(10); \
TFBIG_4o(11); \
TFBIG_4e(12); \
TFBIG_4o(13); \
TFBIG_4e(14); \
TFBIG_4o(15); \
TFBIG_4e(16); \
TFBIG_4o(17); \
TFBIG_4WAY_4e(0); \
TFBIG_4WAY_4o(1); \
TFBIG_4WAY_4e(2); \
TFBIG_4WAY_4o(3); \
TFBIG_4WAY_4e(4); \
TFBIG_4WAY_4o(5); \
TFBIG_4WAY_4e(6); \
TFBIG_4WAY_4o(7); \
TFBIG_4WAY_4e(8); \
TFBIG_4WAY_4o(9); \
TFBIG_4WAY_4e(10); \
TFBIG_4WAY_4o(11); \
TFBIG_4WAY_4e(12); \
TFBIG_4WAY_4o(13); \
TFBIG_4WAY_4e(14); \
TFBIG_4WAY_4o(15); \
TFBIG_4WAY_4e(16); \
TFBIG_4WAY_4o(17); \
TFBIG_ADDKEY_4WAY(p0, p1, p2, p3, p4, p5, p6, p7, h, t, 18); \
h0 = _mm256_xor_si256( m0, p0 );\
h1 = _mm256_xor_si256( m1, p1 );\
@@ -391,45 +544,142 @@ do { \
__m256i h0, h1, h2, h3, h4, h5, h6, h7; \
sph_u64 bcount;
#define READ_STATE_BIG(sc) do { \
h0 = (sc)->h0; \
h1 = (sc)->h1; \
h2 = (sc)->h2; \
h3 = (sc)->h3; \
h4 = (sc)->h4; \
h5 = (sc)->h5; \
h6 = (sc)->h6; \
h7 = (sc)->h7; \
bcount = sc->bcount; \
} while (0)
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#define WRITE_STATE_BIG(sc) do { \
(sc)->h0 = h0; \
(sc)->h1 = h1; \
(sc)->h2 = h2; \
(sc)->h3 = h3; \
(sc)->h4 = h4; \
(sc)->h5 = h5; \
(sc)->h6 = h6; \
(sc)->h7 = h7; \
sc->bcount = bcount; \
} while (0)
void skein256_8way_init( skein256_8way_context *sc )
{
sc->h0 = m512_const1_64( 0xCCD044A12FDB3E13 );
sc->h1 = m512_const1_64( 0xE83590301A79A9EB );
sc->h2 = m512_const1_64( 0x55AEA0614F816E6F );
sc->h3 = m512_const1_64( 0x2A2767A4AE9B94DB );
sc->h4 = m512_const1_64( 0xEC06025E74DD7683 );
sc->h5 = m512_const1_64( 0xE7A436CDC4746251 );
sc->h6 = m512_const1_64( 0xC36FBAF9393AD185 );
sc->h7 = m512_const1_64( 0x3EEDBA1833EDFC13 );
sc->bcount = 0;
sc->ptr = 0;
}
/*
static const sph_u64 IV256[] = {
SPH_C64(0xCCD044A12FDB3E13), SPH_C64(0xE83590301A79A9EB),
SPH_C64(0x55AEA0614F816E6F), SPH_C64(0x2A2767A4AE9B94DB),
SPH_C64(0xEC06025E74DD7683), SPH_C64(0xE7A436CDC4746251),
SPH_C64(0xC36FBAF9393AD185), SPH_C64(0x3EEDBA1833EDFC13)
};
void skein512_8way_init( skein512_8way_context *sc )
{
sc->h0 = m512_const1_64( 0x4903ADFF749C51CE );
sc->h1 = m512_const1_64( 0x0D95DE399746DF03 );
sc->h2 = m512_const1_64( 0x8FD1934127C79BCE );
sc->h3 = m512_const1_64( 0x9A255629FF352CB1 );
sc->h4 = m512_const1_64( 0x5DB62599DF6CA7B0 );
sc->h5 = m512_const1_64( 0xEABE394CA9D5C3F4 );
sc->h6 = m512_const1_64( 0x991112C71A75B523 );
sc->h7 = m512_const1_64( 0xAE18A40B660FCC33 );
sc->bcount = 0;
sc->ptr = 0;
}
static void
skein_big_core_8way( skein512_8way_context *sc, const void *data,
size_t len )
{
__m512i *vdata = (__m512i*)data;
__m512i *buf;
size_t ptr;
unsigned first;
DECL_STATE_BIG_8WAY
buf = sc->buf;
ptr = sc->ptr;
const int buf_size = 64; // 64 * _m256i
if ( len <= buf_size - ptr )
{
memcpy_512( buf + (ptr>>3), vdata, len>>3 );
sc->ptr = ptr + len;
return;
}
READ_STATE_BIG( sc );
first = ( bcount == 0 ) << 7;
do {
size_t clen;
if ( ptr == buf_size )
{
bcount ++;
UBI_BIG_8WAY( 96 + first, 0 );
first = 0;
ptr = 0;
}
clen = buf_size - ptr;
if ( clen > len )
clen = len;
memcpy_512( buf + (ptr>>3), vdata, clen>>3 );
ptr += clen;
vdata += (clen>>3);
len -= clen;
} while ( len > 0 );
WRITE_STATE_BIG( sc );
sc->ptr = ptr;
}
static void
skein_big_close_8way( skein512_8way_context *sc, unsigned ub, unsigned n,
void *dst, size_t out_len )
{
__m512i *buf;
size_t ptr;
unsigned et;
DECL_STATE_BIG_8WAY
buf = sc->buf;
ptr = sc->ptr;
const int buf_size = 64;
READ_STATE_BIG(sc);
memset_zero_512( buf + (ptr>>3), (buf_size - ptr) >> 3 );
et = 352 + ((bcount == 0) << 7);
UBI_BIG_8WAY( et, ptr );
memset_zero_512( buf, buf_size >> 3 );
bcount = 0;
UBI_BIG_8WAY( 510, 8 );
buf[0] = h0;
buf[1] = h1;
buf[2] = h2;
buf[3] = h3;
buf[4] = h4;
buf[5] = h5;
buf[6] = h6;
buf[7] = h7;
memcpy_512( dst, buf, out_len >> 3 );
}
void
skein256_8way_update(void *cc, const void *data, size_t len)
{
skein_big_core_8way(cc, data, len);
}
void
skein256_8way_close(void *cc, void *dst)
{
skein_big_close_8way(cc, 0, 0, dst, 32);
}
void
skein512_8way_update(void *cc, const void *data, size_t len)
{
skein_big_core_8way(cc, data, len);
}
void
skein512_8way_close(void *cc, void *dst)
{
skein_big_close_8way(cc, 0, 0, dst, 64);
}
#endif // AVX512
static const sph_u64 IV512[] = {
SPH_C64(0x4903ADFF749C51CE), SPH_C64(0x0D95DE399746DF03),
SPH_C64(0x8FD1934127C79BCE), SPH_C64(0x9A255629FF352CB1),
SPH_C64(0x5DB62599DF6CA7B0), SPH_C64(0xEABE394CA9D5C3F4),
SPH_C64(0x991112C71A75B523), SPH_C64(0xAE18A40B660FCC33)
};
*/
void skein256_4way_init( skein256_4way_context *sc )
{
@@ -517,66 +767,30 @@ skein_big_close_4way( skein512_4way_context *sc, unsigned ub, unsigned n,
ptr = sc->ptr;
const int buf_size = 64;
/*
* At that point, if ptr == 0, then the message was empty;
* otherwise, there is between 1 and 64 bytes (inclusive) which
* are yet to be processed. Either way, we complete the buffer
* to a full block with zeros (the Skein specification mandates
* that an empty message is padded so that there is at least
* one block to process).
*
* Once this block has been processed, we do it again, with
* a block full of zeros, for the output (that block contains
* the encoding of "0", over 8 bytes, then padded with zeros).
*/
READ_STATE_BIG(sc);
memset_zero_256( buf + (ptr>>3), (buf_size - ptr) >> 3 );
memset_zero_256( buf + (ptr>>3), (buf_size - ptr) >> 3 );
et = 352 + ((bcount == 0) << 7);
UBI_BIG_4WAY( et, ptr );
UBI_BIG_4WAY( et, ptr );
memset_zero_256( buf, buf_size >> 3 );
bcount = 0;
UBI_BIG_4WAY( 510, 8 );
memset_zero_256( buf, buf_size >> 3 );
bcount = 0;
UBI_BIG_4WAY( 510, 8 );
buf[0] = h0;
buf[1] = h1;
buf[2] = h2;
buf[3] = h3;
buf[4] = h4;
buf[5] = h5;
buf[6] = h6;
buf[7] = h7;
buf[0] = h0;
buf[1] = h1;
buf[2] = h2;
buf[3] = h3;
buf[4] = h4;
buf[5] = h5;
buf[6] = h6;
buf[7] = h7;
memcpy_256( dst, buf, out_len >> 3 );
memcpy_256( dst, buf, out_len >> 3 );
}
/*
static const sph_u64 IV256[] = {
SPH_C64(0xCCD044A12FDB3E13), SPH_C64(0xE83590301A79A9EB),
SPH_C64(0x55AEA0614F816E6F), SPH_C64(0x2A2767A4AE9B94DB),
SPH_C64(0xEC06025E74DD7683), SPH_C64(0xE7A436CDC4746251),
SPH_C64(0xC36FBAF9393AD185), SPH_C64(0x3EEDBA1833EDFC13)
};
static const sph_u64 IV512[] = {
SPH_C64(0x4903ADFF749C51CE), SPH_C64(0x0D95DE399746DF03),
SPH_C64(0x8FD1934127C79BCE), SPH_C64(0x9A255629FF352CB1),
SPH_C64(0x5DB62599DF6CA7B0), SPH_C64(0xEABE394CA9D5C3F4),
SPH_C64(0x991112C71A75B523), SPH_C64(0xAE18A40B660FCC33)
};
*/
/*
void
skein256_4way_init(void *cc)
{
skein_big_init_4way(cc, IV256);
}
*/
void
skein256_4way(void *cc, const void *data, size_t len)
skein256_4way_update(void *cc, const void *data, size_t len)
{
skein_big_core_4way(cc, data, len);
}
@@ -587,16 +801,8 @@ skein256_4way_close(void *cc, void *dst)
skein_big_close_4way(cc, 0, 0, dst, 32);
}
/*
void
skein512_4way_init(void *cc)
{
skein_big_init_4way(cc, IV512);
}
*/
void
skein512_4way(void *cc, const void *data, size_t len)
skein512_4way_update(void *cc, const void *data, size_t len)
{
skein_big_core_4way(cc, data, len);
}

View File

@@ -55,29 +55,50 @@ extern "C"{
#define SPH_SIZE_skein256 256
#define SPH_SIZE_skein512 512
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
typedef struct
{
__m256i buf[8] __attribute__ ((aligned (64)));
__m512i buf[8];
__m512i h0, h1, h2, h3, h4, h5, h6, h7;
size_t ptr;
sph_u64 bcount;
} sph_skein_8way_big_context __attribute__ ((aligned (128)));
typedef sph_skein_8way_big_context skein512_8way_context;
typedef sph_skein_8way_big_context skein256_8way_context;
void skein512_8way_init( skein512_8way_context *sc );
void skein512_8way_update( void *cc, const void *data, size_t len );
void skein512_8way_close( void *cc, void *dst );
void skein256_8way_init( skein256_8way_context *sc );
void skein256_8way_update( void *cc, const void *data, size_t len );
void skein256_8way_close( void *cc, void *dst );
#endif // AVX512
typedef struct
{
__m256i buf[8];
__m256i h0, h1, h2, h3, h4, h5, h6, h7;
size_t ptr;
sph_u64 bcount;
} sph_skein_4way_big_context;
} sph_skein_4way_big_context __attribute__ ((aligned (128)));
typedef sph_skein_4way_big_context skein512_4way_context;
typedef sph_skein_4way_big_context skein256_4way_context;
void skein512_4way_init( skein512_4way_context *sc );
void skein512_4way( void *cc, const void *data, size_t len );
void skein512_4way_update( void *cc, const void *data, size_t len );
void skein512_4way_close( void *cc, void *dst );
//void sph_skein512_addbits_and_close(
// void *cc, unsigned ub, unsigned n, void *dst);
#define skein512_4way skein512_4way_update
void skein256_4way_init( skein256_4way_context *sc );
void skein256_4way( void *cc, const void *data, size_t len );
void skein256_4way_update( void *cc, const void *data, size_t len );
void skein256_4way_close( void *cc, void *dst );
//void sph_skein256_addbits_and_close(
// void *cc, unsigned ub, unsigned n, void *dst);
#define skein256_4way skein256_4way_update
#ifdef __cplusplus
}

View File

@@ -1,9 +1,66 @@
#include "skein2-gate.h"
#include "skein-gate.h"
#include <string.h>
#include <stdint.h>
#include "skein-hash-4way.h"
#if defined(SKEIN2_4WAY)
#if defined(SKEIN_8WAY)
void skein2hash_8way( void *output, const void *input )
{
skein512_8way_context ctx;
uint64_t hash[16*8] __attribute__ ((aligned (128)));
skein512_8way_init( &ctx );
skein512_8way_update( &ctx, input, 80 );
skein512_8way_close( &ctx, hash );
skein512_8way_init( &ctx );
skein512_8way_update( &ctx, hash, 64 );
skein512_8way_close( &ctx, output );
}
int scanhash_skein2_8way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t hash[16*8] __attribute__ ((aligned (128)));
uint32_t vdata[20*8] __attribute__ ((aligned (64)));
uint32_t lane_hash[8] __attribute__ ((aligned (64)));
uint32_t *hash7 = &(hash[49]);
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
const uint32_t Htarg = ptarget[7];
const uint32_t first_nonce = pdata[19];
uint32_t n = first_nonce;
__m512i *noncev = (__m512i*)vdata + 9; // aligned
int thr_id = mythr->id;
mm512_bswap32_intrlv80_8x64( vdata, pdata );
do
{
*noncev = mm512_intrlv_blend_32( mm512_bswap_32(
_mm512_set_epi32( n+7, 0, n+6, 0, n+5, 0, n+4, 0,
n+3, 0, n+2, 0, n+1, 0, n , 0 ) ), *noncev );
skein2hash_8way( hash, vdata );
for ( int lane = 0; lane < 8; lane++ )
if ( hash7[ lane<<1 ] <= Htarg )
{
extr_lane_8x64( lane_hash, hash, lane, 256 );
if ( fulltest( lane_hash, ptarget ) && !opt_benchmark )
{
pdata[19] = n + lane;
submit_lane_solution( work, lane_hash, mythr, lane );
}
}
n += 8;
} while ( (n < max_nonce-8) && !work_restart[thr_id].restart );
*hashes_done = n - first_nonce + 1;
return 0;
}
#elif defined(SKEIN_4WAY)
void skein2hash_4way( void *output, const void *input )
{

View File

@@ -1,17 +0,0 @@
#include "skein2-gate.h"
#include <stdint.h>
#include "sph_skein.h"
bool register_skein2_algo( algo_gate_t* gate )
{
gate->optimizations = AVX2_OPT;
#if defined (SKEIN2_4WAY)
gate->scanhash = (void*)&scanhash_skein2_4way;
gate->hash = (void*)&skein2hash_4way;
#else
gate->scanhash = (void*)&scanhash_skein2;
gate->hash = (void*)&skein2hash;
#endif
return true;
};

View File

@@ -1,20 +0,0 @@
#ifndef __SKEIN2GATE_H__
#define __SKEIN2_GATE_H__
#include "algo-gate-api.h"
#include <stdint.h>
#if defined(__AVX2__)
#define SKEIN2_4WAY
#endif
#if defined(SKEIN2_4WAY)
void skein2hash_4way( void *output, const void *input );
int scanhash_skein2_4way( struct work *work, uint32_t max_nonce,
uint64_t* hashes_done, struct thr_info *mythr );
#endif
void skein2hash( void *output, const void *input );
int scanhash_skein2( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
#endif

View File

@@ -1,4 +1,4 @@
#include "algo-gate-api.h"
#include "skein-gate.h"
#include <string.h>
#include <stdint.h>

View File

@@ -0,0 +1,369 @@
#include "Swifftx_sha3.h"
extern "C" {
#include "SWIFFTX.h"
}
#include <math.h>
#include <stdlib.h>
#include <string.h>
// The default salt value.
// This is the expansion of e (Euler's number) - the 19 digits after 2.71:
// 8281828459045235360.
// The above in base 256, from MSB to LSB:
BitSequence SWIF_saltValueChar[SWIF_HAIFA_SALT_SIZE] = {114, 238, 247, 26, 192, 28, 170, 160};
// All the IVs here below were produced from the decimal digits of e's expansion.
// The code can be found in 'ProduceRandomIV.c'.
// The initial value for 224 digest size.
const BitSequence SWIF_HAIFA_IV_224[SWIFFTX_OUTPUT_BLOCK_SIZE] =
{37, 242, 132, 2, 167, 81, 158, 237, 113, 77, 162, 60, 65, 236, 108, 246,
101, 72, 190, 109, 58, 205, 99, 6, 114, 169, 104, 114, 38, 146, 121, 142,
59, 98, 233, 84, 72, 227, 22, 199, 17, 102, 198, 145, 24, 178, 37, 1,
215, 245, 66, 120, 230, 193, 113, 253, 165, 218, 66, 134, 49, 231, 124, 204,
0};
// The initial value for 256 digest size.
const BitSequence SWIF_HAIFA_IV_256[SWIFFTX_OUTPUT_BLOCK_SIZE] =
{250, 50, 42, 40, 14, 233, 53, 48, 227, 42, 237, 187, 211, 120, 209, 234,
27, 144, 4, 61, 243, 244, 29, 247, 37, 162, 70, 11, 231, 196, 53, 6,
193, 240, 94, 126, 204, 132, 104, 46, 114, 29, 3, 104, 118, 184, 201, 3,
57, 77, 91, 101, 31, 155, 84, 199, 228, 39, 198, 42, 248, 198, 201, 178,
8};
// The initial value for 384 digest size.
const BitSequence SWIF_HAIFA_IV_384[SWIFFTX_OUTPUT_BLOCK_SIZE] =
{40, 145, 193, 100, 205, 171, 47, 76, 254, 10, 196, 41, 165, 207, 200, 79,
109, 13, 75, 201, 17, 172, 64, 162, 217, 22, 88, 39, 51, 30, 220, 151,
133, 73, 216, 233, 184, 203, 77, 0, 248, 13, 28, 199, 30, 147, 232, 242,
227, 124, 169, 174, 14, 45, 27, 87, 254, 73, 68, 136, 135, 159, 83, 152,
0};
// The initial value for 512 digest size.
const BitSequence SWIF_HAIFA_IV_512[SWIFFTX_OUTPUT_BLOCK_SIZE] =
{195, 126, 197, 167, 157, 114, 99, 126, 208, 105, 200, 90, 71, 195, 144, 138,
142, 122, 123, 116, 24, 214, 168, 173, 203, 183, 194, 210, 102, 117, 138, 42,
114, 118, 132, 33, 35, 149, 143, 163, 163, 183, 243, 175, 72, 22, 201, 255,
102, 243, 22, 187, 211, 167, 239, 76, 164, 70, 80, 182, 181, 212, 9, 185,
0};
///////////////////////////////////////////////////////////////////////////////////////////////
// NIST API implementation portion.
///////////////////////////////////////////////////////////////////////////////////////////////
int Swifftx::Init(int hashbitlen)
{
switch(hashbitlen)
{
case 224:
swifftxState.hashbitlen = hashbitlen;
// Initializes h_0 in HAIFA:
memcpy(swifftxState.currOutputBlock, SWIF_HAIFA_IV_224, SWIFFTX_OUTPUT_BLOCK_SIZE);
break;
case 256:
swifftxState.hashbitlen = hashbitlen;
memcpy(swifftxState.currOutputBlock, SWIF_HAIFA_IV_256, SWIFFTX_OUTPUT_BLOCK_SIZE);
break;
case 384:
swifftxState.hashbitlen = hashbitlen;
memcpy(swifftxState.currOutputBlock, SWIF_HAIFA_IV_384, SWIFFTX_OUTPUT_BLOCK_SIZE);
break;
case 512:
swifftxState.hashbitlen = hashbitlen;
memcpy(swifftxState.currOutputBlock, SWIF_HAIFA_IV_512, SWIFFTX_OUTPUT_BLOCK_SIZE);
break;
default:
return BAD_HASHBITLEN;
}
swifftxState.wasUpdated = false;
swifftxState.remainingSize = 0;
memset(swifftxState.remaining, 0, SWIF_HAIFA_INPUT_BLOCK_SIZE);
memset(swifftxState.numOfBitsChar, 0, SWIF_HAIFA_NUM_OF_BITS_SIZE);
// Initialize the salt with the default value.
memcpy(swifftxState.salt, SWIF_saltValueChar, SWIF_HAIFA_SALT_SIZE);
InitializeSWIFFTX();
return SUCCESS;
}
int Swifftx::Update(const BitSequence *data, DataLength databitlen)
{
// The size of input in bytes after putting the remaining data from previous invocation.
int sizeOfInputAfterRemaining = 0;
// The input block to compression function of SWIFFTX:
BitSequence currInputBlock[SWIFFTX_INPUT_BLOCK_SIZE] = {0};
// Whether we handled a single block.
bool wasSingleBlockHandled = false;
swifftxState.wasUpdated = true;
// Handle an empty message as required by NIST. Since 'Final()' is oblivious to the input
// (but of course uses the output of the compression function from the previous round,
// which is called h_{i-1} in HAIFA article), we have to do nothing here.
if (databitlen == 0)
return SUCCESS;
// If we had before an input with unaligned length, return an error
if (swifftxState.remainingSize % 8)
{
return INPUT_DATA_NOT_ALIGNED;
}
// Convert remaining size to bytes.
swifftxState.remainingSize /= 8;
// As long as we have enough data combined from (remaining + data) to fill input block
//NASTAVENIE RUND
while (((databitlen / 8) + swifftxState.remainingSize) >= SWIF_HAIFA_INPUT_BLOCK_SIZE)
{
// Fill the input block with data:
// 1. The output of the previous block:
memcpy(currInputBlock, swifftxState.currOutputBlock, SWIFFTX_OUTPUT_BLOCK_SIZE);
// 2. The input part of the block:
// 2a. The remaining data from the previous 'Update()' call:
if (swifftxState.remainingSize)
memcpy(currInputBlock + SWIFFTX_OUTPUT_BLOCK_SIZE, swifftxState.remaining,
swifftxState.remainingSize);
// 2b. The input data that we have place for after the 'remaining':
sizeOfInputAfterRemaining = SWIFFTX_INPUT_BLOCK_SIZE - SWIFFTX_OUTPUT_BLOCK_SIZE
- ((int) swifftxState.remainingSize) - SWIF_HAIFA_NUM_OF_BITS_SIZE
- SWIF_HAIFA_SALT_SIZE;
memcpy(currInputBlock + SWIFFTX_OUTPUT_BLOCK_SIZE + swifftxState.remainingSize,
data, sizeOfInputAfterRemaining);
// 3. The #bits part of the block:
memcpy(currInputBlock + SWIFFTX_OUTPUT_BLOCK_SIZE + swifftxState.remainingSize
+ sizeOfInputAfterRemaining,
swifftxState.numOfBitsChar, SWIF_HAIFA_NUM_OF_BITS_SIZE);
// 4. The salt part of the block:
memcpy(currInputBlock + SWIFFTX_OUTPUT_BLOCK_SIZE + swifftxState.remainingSize
+ sizeOfInputAfterRemaining + SWIF_HAIFA_NUM_OF_BITS_SIZE,
swifftxState.salt, SWIF_HAIFA_SALT_SIZE);
ComputeSingleSWIFFTX(currInputBlock, swifftxState.currOutputBlock, false);
// Update the #bits field with SWIF_HAIFA_INPUT_BLOCK_SIZE.
AddToCurrInBase256(swifftxState.numOfBitsChar, SWIF_HAIFA_INPUT_BLOCK_SIZE * 8);
wasSingleBlockHandled = true;
data += sizeOfInputAfterRemaining;
databitlen -= (sizeOfInputAfterRemaining * 8);
swifftxState.remainingSize = 0;
}
// Update the swifftxState.remaining and swifftxState.remainingSize.
// remainingSize will be in bits after exiting 'Update()'.
if (wasSingleBlockHandled)
{
swifftxState.remainingSize = (unsigned int) databitlen; // now remaining size is in bits.
if (swifftxState.remainingSize)
memcpy(swifftxState.remaining, data, (swifftxState.remainingSize + 7) / 8);
}
else
{
memcpy(swifftxState.remaining + swifftxState.remainingSize, data,
(size_t) (databitlen + 7) / 8);
swifftxState.remainingSize = (swifftxState.remainingSize * 8) + (unsigned short) databitlen;
}
return SUCCESS;
}
int Swifftx::Final(BitSequence *hashval)
{
int i;
// Whether to add one last block. True if the padding appended to the last block overflows
// the block size.
bool toAddFinalBlock = false;
bool toPutOneInFinalBlock = false;
unsigned short oneShift = 0;
// The size of the last input block before the zeroes padding. We add 1 here because we
// include the final '1' bit in the calculation and 7 as we round the length to bytes.
unsigned short sizeOfLastInputBlock = (swifftxState.remainingSize + 1 + 7) / 8;
// The number of bytes of zero in the padding part.
// The padding contains:
// 1. A single 1 bit.
// 2. As many zeroes as needed.
// 3. The message length in bits. Occupies SWIF_HAIFA_NUM_OF_BITS_SIZE bytes.
// 4. The digest size. Maximum is 512, so we need 2 bytes.
// If the total number achieved is negative, add an additional block, as HAIFA specifies.
short numOfZeroBytesInPadding = (short) SWIFFTX_INPUT_BLOCK_SIZE - SWIFFTX_OUTPUT_BLOCK_SIZE
- sizeOfLastInputBlock - (2 * SWIF_HAIFA_NUM_OF_BITS_SIZE) - 2
- SWIF_HAIFA_SALT_SIZE;
// The input block to compression function of SWIFFTX:
BitSequence currInputBlock[SWIFFTX_INPUT_BLOCK_SIZE] = {0};
// The message length in base 256.
BitSequence messageLengthChar[SWIF_HAIFA_NUM_OF_BITS_SIZE] = {0};
// The digest size used for padding:
unsigned char digestSizeLSB = swifftxState.hashbitlen % 256;
unsigned char digestSizeMSB = (swifftxState.hashbitlen - digestSizeLSB) / 256;
if (numOfZeroBytesInPadding < 1)
toAddFinalBlock = true;
// Fill the input block with data:
// 1. The output of the previous block:
memcpy(currInputBlock, swifftxState.currOutputBlock, SWIFFTX_OUTPUT_BLOCK_SIZE);
// 2a. The input part of the block, which is the remaining data from the previous 'Update()'
// call, if exists and an extra '1' bit (maybe all we have is this extra 1):
// Add the last 1 in big-endian convention ...
if (swifftxState.remainingSize % 8 == 0)
{
swifftxState.remaining[sizeOfLastInputBlock - 1] = 0x80;
}
else
{
swifftxState.remaining[sizeOfLastInputBlock - 1] |= (1 << (7 - (swifftxState.remainingSize % 8)));
}
if (sizeOfLastInputBlock)
memcpy(currInputBlock + SWIFFTX_OUTPUT_BLOCK_SIZE, swifftxState.remaining,
sizeOfLastInputBlock);
// Compute the message length in base 256:
for (i = 0; i < SWIF_HAIFA_NUM_OF_BITS_SIZE; ++i)
messageLengthChar[i] = swifftxState.numOfBitsChar[i];
if (sizeOfLastInputBlock)
AddToCurrInBase256(messageLengthChar, sizeOfLastInputBlock * 8);
if (!toAddFinalBlock)
{
// 2b. Put the zeroes:
memset(currInputBlock + SWIFFTX_OUTPUT_BLOCK_SIZE + sizeOfLastInputBlock,
0, numOfZeroBytesInPadding);
// 2c. Pad the message length:
for (i = 0; i < SWIF_HAIFA_NUM_OF_BITS_SIZE; ++i)
currInputBlock[SWIFFTX_OUTPUT_BLOCK_SIZE + sizeOfLastInputBlock
+ numOfZeroBytesInPadding + i] = messageLengthChar[i];
// 2d. Pad the digest size:
currInputBlock[SWIFFTX_OUTPUT_BLOCK_SIZE + sizeOfLastInputBlock
+ numOfZeroBytesInPadding + SWIF_HAIFA_NUM_OF_BITS_SIZE] = digestSizeMSB;
currInputBlock[SWIFFTX_OUTPUT_BLOCK_SIZE + sizeOfLastInputBlock
+ numOfZeroBytesInPadding + SWIF_HAIFA_NUM_OF_BITS_SIZE + 1] = digestSizeLSB;
}
else
{
// 2b. Put the zeroes, if at all:
if ((SWIF_HAIFA_INPUT_BLOCK_SIZE - sizeOfLastInputBlock) > 0)
{
memset(currInputBlock + SWIFFTX_OUTPUT_BLOCK_SIZE + sizeOfLastInputBlock,
0, SWIF_HAIFA_INPUT_BLOCK_SIZE - sizeOfLastInputBlock);
}
}
// 3. The #bits part of the block:
memcpy(currInputBlock + SWIFFTX_OUTPUT_BLOCK_SIZE + SWIF_HAIFA_INPUT_BLOCK_SIZE,
swifftxState.numOfBitsChar, SWIF_HAIFA_NUM_OF_BITS_SIZE);
// 4. The salt part of the block:
memcpy(currInputBlock + SWIFFTX_OUTPUT_BLOCK_SIZE + SWIF_HAIFA_INPUT_BLOCK_SIZE
+ SWIF_HAIFA_NUM_OF_BITS_SIZE,
swifftxState.salt,
SWIF_HAIFA_SALT_SIZE);
ComputeSingleSWIFFTX(currInputBlock, swifftxState.currOutputBlock, !toAddFinalBlock);
// If we have to add one more block, it is now:
if (toAddFinalBlock)
{
// 1. The previous output block, as usual.
memcpy(currInputBlock, swifftxState.currOutputBlock, SWIFFTX_OUTPUT_BLOCK_SIZE);
// 2a. Instead of the input, zeroes:
memset(currInputBlock + SWIFFTX_OUTPUT_BLOCK_SIZE , 0,
SWIF_HAIFA_INPUT_BLOCK_SIZE - SWIF_HAIFA_NUM_OF_BITS_SIZE - 2);
// 2b. Instead of the input, the message length:
memcpy(currInputBlock + SWIFFTX_OUTPUT_BLOCK_SIZE + SWIF_HAIFA_INPUT_BLOCK_SIZE
- SWIF_HAIFA_NUM_OF_BITS_SIZE - 2,
messageLengthChar,
SWIF_HAIFA_NUM_OF_BITS_SIZE);
// 2c. Instead of the input, the digest size:
currInputBlock[SWIFFTX_OUTPUT_BLOCK_SIZE + SWIF_HAIFA_INPUT_BLOCK_SIZE - 2] = digestSizeMSB;
currInputBlock[SWIFFTX_OUTPUT_BLOCK_SIZE + SWIF_HAIFA_INPUT_BLOCK_SIZE - 1] = digestSizeLSB;
// 3. The #bits part of the block, which is zero in case of additional block:
memset(currInputBlock + SWIFFTX_OUTPUT_BLOCK_SIZE + SWIF_HAIFA_INPUT_BLOCK_SIZE,
0,
SWIF_HAIFA_NUM_OF_BITS_SIZE);
// 4. The salt part of the block:
memcpy(currInputBlock + SWIFFTX_OUTPUT_BLOCK_SIZE + SWIF_HAIFA_INPUT_BLOCK_SIZE
+ SWIF_HAIFA_NUM_OF_BITS_SIZE,
swifftxState.salt,
SWIF_HAIFA_SALT_SIZE);
ComputeSingleSWIFFTX(currInputBlock, swifftxState.currOutputBlock, true);
}
// Finally, copy the result into 'hashval'. In case the digest size is not 512bit, copy the
// first hashbitlen of them:
for (i = 0; i < (swifftxState.hashbitlen / 8); ++i)
hashval[i] = swifftxState.currOutputBlock[i];
return SUCCESS;
}
int Swifftx::Hash(int hashbitlen, const BitSequence *data, DataLength databitlen,
BitSequence *hashval)
{
int result;
//hashState state;
// The pointer to the current place in the input we take into the compression function.
DataLength currInputIndex = 0;
result = Swifftx::Init(hashbitlen);
if (result != SUCCESS)
return result;
for ( ; (databitlen / 8) > SWIF_HAIFA_INPUT_BLOCK_SIZE;
currInputIndex += SWIF_HAIFA_INPUT_BLOCK_SIZE, databitlen -= (SWIF_HAIFA_INPUT_BLOCK_SIZE * 8))
{
result = Swifftx::Update(data + currInputIndex, SWIF_HAIFA_INPUT_BLOCK_SIZE * 8);
if (result != SUCCESS)
return result;
}
// The length of the last block may be shorter than (SWIF_HAIFA_INPUT_BLOCK_SIZE * 8)
result = Swifftx::Update(data + currInputIndex, databitlen);
if (result != SUCCESS)
{
return result;
}
return Swifftx::Final(hashval);
}
///////////////////////////////////////////////////////////////////////////////////////////////
// Helper fuction implementation portion.
///////////////////////////////////////////////////////////////////////////////////////////////
void Swifftx::AddToCurrInBase256(BitSequence value[SWIF_HAIFA_NUM_OF_BITS_SIZE],
unsigned short toAdd)
{
unsigned char remainder = 0;
short i;
BitSequence currValueInBase256[8] = {0};
unsigned short currIndex = 7;
unsigned short temp = 0;
do
{
remainder = toAdd % 256;
currValueInBase256[currIndex--] = remainder;
toAdd -= remainder;
toAdd /= 256;
}
while(toAdd != 0);
for (i = 7; i >= 0; --i)
{
temp = value[i] + currValueInBase256[i];
if (temp > 255)
{
value[i] = temp % 256;
currValueInBase256[i - 1]++;
}
else
value[i] = (unsigned char) temp;
}
}

View File

@@ -0,0 +1,79 @@
#ifndef SWIFFTX_SHA3_H
#define SWIFFTX_SHA3_H
#include "sha3_interface.h"
#include "stdbool.h"
#include "stdint.h"
class Swifftx : public SHA3 {
#define SWIFFTX_INPUT_BLOCK_SIZE 256
#define SWIFFTX_OUTPUT_BLOCK_SIZE 65
#define SWIF_HAIFA_SALT_SIZE 8
#define SWIF_HAIFA_NUM_OF_BITS_SIZE 8
#define SWIF_HAIFA_INPUT_BLOCK_SIZE (SWIFFTX_INPUT_BLOCK_SIZE - SWIFFTX_OUTPUT_BLOCK_SIZE \
- SWIF_HAIFA_NUM_OF_BITS_SIZE - SWIF_HAIFA_SALT_SIZE)
typedef unsigned char BitSequence;
//const DataLength SWIF_SALT_VALUE;
#define SWIF_HAIFA_IV 0
/*const BitSequence SWIF_HAIFA_IV_224[SWIFFTX_OUTPUT_BLOCK_SIZE];
const BitSequence SWIF_HAIFA_IV_256[SWIFFTX_OUTPUT_BLOCK_SIZE];
const BitSequence SWIF_HAIFA_IV_384[SWIFFTX_OUTPUT_BLOCK_SIZE];
const BitSequence SWIF_HAIFA_IV_512[SWIFFTX_OUTPUT_BLOCK_SIZE];*/
typedef enum
{
SUCCESS = 0,
FAIL = 1,
BAD_HASHBITLEN = 2,
BAD_SALT_SIZE = 3,
SET_SALT_VALUE_FAILED = 4,
INPUT_DATA_NOT_ALIGNED = 5
} HashReturn;
typedef struct hashState {
unsigned short hashbitlen;
// The data remained after the recent call to 'Update()'.
BitSequence remaining[SWIF_HAIFA_INPUT_BLOCK_SIZE + 1];
// The size of the remaining data in bits.
// Is 0 in case there is no remaning data at all.
unsigned int remainingSize;
// The current output of the compression function. At the end will contain the final digest
// (which may be needed to be truncated, depending on hashbitlen).
BitSequence currOutputBlock[SWIFFTX_OUTPUT_BLOCK_SIZE];
// The value of '#bits hashed so far' field in HAIFA, in base 256.
BitSequence numOfBitsChar[SWIF_HAIFA_NUM_OF_BITS_SIZE];
// The salt value currently in use:
BitSequence salt[SWIF_HAIFA_SALT_SIZE];
// Indicates whether a single 'Update()' occured.
// Ater a call to 'Update()' the key and the salt values cannot be changed.
bool wasUpdated;
} hashState;
private:
int swifftxNumRounds;
hashState swifftxState;
public:
int Init(int hashbitlen);
int Update(const BitSequence *data, DataLength databitlen);
int Final(BitSequence *hashval);
int Hash(int hashbitlen, const BitSequence *data, DataLength databitlen,
BitSequence *hashval);
private:
static void AddToCurrInBase256(BitSequence value[SWIF_HAIFA_NUM_OF_BITS_SIZE], unsigned short toAdd);
};
#endif

View File

@@ -0,0 +1,21 @@
#pragma once
#include <cstdint>
namespace hash {
using BitSequence = unsigned char;
using DataLength = unsigned long long;
struct hash_interface {
virtual ~hash_interface() = default;
virtual int Init(int hash_bitsize) = 0;
virtual int Update(const BitSequence *data, DataLength data_bitsize) = 0;
virtual int Final(BitSequence *hash) = 0;
virtual int
Hash(int hash_bitsize, const BitSequence *data, DataLength data_bitsize, BitSequence *hash) = 0;
};
} // namespace hash

39
algo/swifftx/inttypes.h Normal file
View File

@@ -0,0 +1,39 @@
/*
inttypes.h
Contributors:
Created by Marek Michalkiewicz <marekm@linux.org.pl>
THIS SOFTWARE IS NOT COPYRIGHTED
This source code is offered for use in the public domain. You may
use, modify or distribute it freely.
This code is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY. ALL WARRANTIES, EXPRESS OR IMPLIED ARE HEREBY
DISCLAIMED. This includes but is not limited to warranties of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
*/
#ifndef __INTTYPES_H_
#define __INTTYPES_H_
/* Use [u]intN_t if you need exactly N bits.
XXX - doesn't handle the -mint8 option. */
typedef signed char swift_int8_t;
typedef unsigned char swift_uint8_t;
typedef int swift_int16_t;
typedef unsigned int swift_uint16_t;
typedef long swift_int32_t;
typedef unsigned long swift_uint32_t;
typedef long long swift_int64_t;
typedef unsigned long long swift_uint64_t;
//typedef swift_int16_t intptr_t;
//typedef swift_uint16_t uintptr_t;
#endif

View File

@@ -0,0 +1,14 @@
#pragma once
#include <cstdint>
//#include <streams/hash/hash_interface.h>
#include "hash_interface.h"
namespace sha3 {
using BitSequence = hash::BitSequence;
using DataLength = hash::DataLength;
struct sha3_interface : hash::hash_interface {};
} // namespace sha3

47
algo/swifftx/stdbool.h Normal file
View File

@@ -0,0 +1,47 @@
/*
* Copyright (c) 2000 Jeroen Ruigrok van der Werven <asmodai@FreeBSD.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD: src/include/stdbool.h,v 1.6 2002/08/16 07:33:14 alfred Exp $
*/
#ifndef _STDBOOL_H_
#define _STDBOOL_H_
#define __bool_true_false_are_defined 1
#ifndef __cplusplus
#define false 0
#define true 1
//#define bool _Bool
//#if __STDC_VERSION__ < 199901L && __GNUC__ < 3
//typedef int _Bool;
//#endif
typedef int bool;
#endif /* !__cplusplus */
#endif /* !_STDBOOL_H_ */

54
algo/swifftx/stdint.h Normal file
View File

@@ -0,0 +1,54 @@
#ifndef _SWIFFT_STDINT_H
#define _SWIFFT_STDINT_H
///////////////////////////////////////////////////////////////////////////////////////////////
//
// A note from SWIFFTX implementers:
//
// Although the submission was targeted for Microsoft Visual Studio 2005 compiler, we strived
// to make the code as portable as possible. This is why we preferred to use the types defined
// here, instead of Microsoft-specific types. We compiled the code with gcc to make this sure.
// However, we couldn't use this header as is, due to VS2005 compiler objections. This is why
// we commented out certain defines and clearly marked it.
// To compile our code on gcc you may define SYS_STDINT.
//
///////////////////////////////////////////////////////////////////////////////////////////////
#ifdef SYS_STDINT
#include <stdint.h>
#else
#include "inttypes.h"
// The following was commented out by SWIFFTX implementers:
// __BEGIN_DECLS
typedef swift_int8_t swifftx_int_least8_t;
typedef swift_int16_t swifftx_int_least16_t;
typedef swift_int32_t swifftx_int_least32_t;
typedef swift_uint8_t swifftx_uint_least8_t;
typedef swift_uint16_t swifftx_uint_least16_t;
typedef swift_uint32_t swifftx_uint_least32_t;
#ifndef __STRICT_ANSI__
typedef swift_int64_t swifftx_int_least64_t;
typedef swift_uint64_t swifftx_uint_least64_t;
#endif
/*typedef signed char int_fast8_t;
typedef signed long int int_fast16_t;
typedef signed long int int_fast32_t;
typedef signed long long int int_fast64_t;
typedef unsigned char uint_fast8_t;
typedef unsigned long int uint_fast16_t;
typedef unsigned long int uint_fast32_t;
typedef unsigned long long int uint_fast64_t;*/
// The following was commented out by SWIFFTX implementers:
// #include <endian.h>
// __END_DECLS
#endif
#endif

912
algo/swifftx/swifftx-4way.c Normal file
View File

@@ -0,0 +1,912 @@
///////////////////////////////////////////////////////////////////////////////////////////////
//
// SWIFFTX ANSI C OPTIMIZED 32BIT IMPLEMENTATION FOR NIST SHA-3 COMPETITION
//
// SWIFFTX.c
//
// October 2008
//
// This is the source file of the OPTIMIZED 32BIT implementation of SWIFFTX hash function.
// SWIFFTX is a candidate function for SHA-3 NIST competition.
// More details about SWIFFTX can be found in the accompanying submission documents.
//
///////////////////////////////////////////////////////////////////////////////////////////////
#include "swifftx.h"
// See the remarks concerning compatibility issues inside stdint.h.
#include "stdint.h"
// Remove this while using gcc:
//#include "stdbool.h"
#include <memory.h>
///////////////////////////////////////////////////////////////////////////////////////////////
// Constants and static tables portion.
///////////////////////////////////////////////////////////////////////////////////////////////
// In SWIFFTX we work over Z_257, so this is the modulus and the arithmetic is performed modulo
// this number.
#define FIELD_SIZE 257
// The size of FFT we use:
#define N 64
#define LOGN 6
#define EIGHTH_N (N / 8)
// The number of FFTS done on the input.
#define M (SWIFFTX_INPUT_BLOCK_SIZE / 8) // 32
// Omega is the 128th root of unity in Z_257.
// We choose w = 42.
#define OMEGA 42
// The size of the inner FFT lookup table:
#define W 8
// Calculates the sum and the difference of two numbers.
//
// Parameters:
// - A: the first operand. After the operation stores the sum of the two operands.
// - B: the second operand. After the operation stores the difference between the first and the
// second operands.
#define ADD_SUB_4WAY( A, B ) \
{ \
__m128i temp = B; \
B = _mm_sub_epi32( A, B ); \
A = _mm_add_epi32( A, temp ); \
}
//#define ADD_SUB(A, B) {register int temp = (B); B = ((A) - (B)); A = ((A) + (temp));}
// Quickly reduces an integer modulo 257.
//
// Parameters:
// - A: the input.
#define Q_REDUCE( A ) ( _mm_sub_epi32( \
_mm_and_epi32( A, m128_const1_32( 0xff ) ), \
_mm_srli_epi32( A, 8 ) ) )
//#define Q_REDUCE(A) (((A) & 0xff) - ((A) >> 8))
// Since we need to do the setup only once, this is the indicator variable:
static bool wasSetupDone = false;
// This array stores the powers of omegas that correspond to the indices, which are the input
// values. Known also as the "outer FFT twiddle factors".
swift_int16_t multipliers[N];
// This array stores the powers of omegas, multiplied by the corresponding values.
// We store this table to save computation time.
//
// To calculate the intermediate value of the compression function (the first out of two
// stages), we multiply the k-th bit of x_i by w^[(2i + 1) * k]. {x_i} is the input to the
// compression function, i is between 0 and 31, x_i is a 64-bit value.
// One can see the formula for this (intermediate) stage in the SWIFFT FSE 2008 paper --
// formula (2), section 3, page 6.
swift_int16_t fftTable[256 * EIGHTH_N];
// The A's we use in SWIFFTX shall be random elements of Z_257.
// We generated these A's from the decimal expansion of PI as follows: we converted each
// triple of digits into a decimal number d. If d < (257 * 3) we used (d % 257) for the next A
// element, otherwise move to the next triple of digits in the expansion. This guarntees that
// the A's are random, provided that PI digits are.
const swift_int16_t As[3 * M * N] =
{141, 78, 139, 75, 238, 205, 129, 126, 22, 245, 197, 169, 142, 118, 105, 78,
50, 149, 29, 208, 114, 34, 85, 117, 67, 148, 86, 256, 25, 49, 133, 93,
95, 36, 68, 231, 211, 102, 151, 128, 224, 117, 193, 27, 102, 187, 7, 105,
45, 130, 108, 124, 171, 151, 189, 128, 218, 134, 233, 165, 14, 201, 145, 134,
52, 203, 91, 96, 197, 69, 134, 213, 136, 93, 3, 249, 141, 16, 210, 73,
6, 92, 58, 74, 174, 6, 254, 91, 201, 107, 110, 76, 103, 11, 73, 16,
34, 209, 7, 127, 146, 254, 95, 176, 57, 13, 108, 245, 77, 92, 186, 117,
124, 97, 105, 118, 34, 74, 205, 122, 235, 53, 94, 238, 210, 227, 183, 11,
129, 159, 105, 183, 142, 129, 86, 21, 137, 138, 224, 223, 190, 188, 179, 188,
256, 25, 217, 176, 36, 176, 238, 127, 160, 210, 155, 148, 132, 0, 54, 127,
145, 6, 46, 85, 243, 95, 173, 123, 178, 207, 211, 183, 224, 173, 146, 35,
71, 114, 50, 22, 175, 1, 28, 19, 112, 129, 21, 34, 161, 159, 115, 52,
4, 193, 211, 92, 115, 49, 59, 217, 218, 96, 61, 81, 24, 202, 198, 89,
45, 128, 8, 51, 253, 87, 171, 35, 4, 188, 171, 10, 3, 137, 238, 73,
19, 208, 124, 163, 103, 177, 155, 147, 46, 84, 253, 233, 171, 241, 211, 217,
159, 48, 96, 79, 237, 18, 171, 226, 99, 1, 97, 195, 216, 163, 198, 95,
0, 201, 65, 228, 21, 153, 124, 230, 44, 35, 44, 108, 85, 156, 249, 207,
26, 222, 131, 1, 60, 242, 197, 150, 181, 19, 116, 213, 75, 98, 124, 240,
123, 207, 62, 255, 60, 143, 187, 157, 139, 9, 12, 104, 89, 49, 193, 146,
104, 196, 181, 82, 198, 253, 192, 191, 255, 122, 212, 104, 47, 20, 132, 208,
46, 170, 2, 69, 234, 36, 56, 163, 28, 152, 104, 238, 162, 56, 24, 58,
38, 150, 193, 254, 253, 125, 173, 35, 73, 126, 247, 239, 216, 6, 199, 15,
90, 12, 97, 122, 9, 84, 207, 127, 219, 72, 58, 30, 29, 182, 41, 192,
235, 248, 237, 74, 72, 176, 210, 252, 45, 64, 165, 87, 202, 241, 236, 223,
151, 242, 119, 239, 52, 112, 169, 28, 13, 37, 160, 60, 158, 81, 133, 60,
16, 145, 249, 192, 173, 217, 214, 93, 141, 184, 54, 34, 161, 104, 157, 95,
38, 133, 218, 227, 211, 181, 9, 66, 137, 143, 77, 33, 248, 159, 4, 55,
228, 48, 99, 219, 222, 184, 15, 36, 254, 256, 157, 237, 87, 139, 209, 113,
232, 85, 126, 167, 197, 100, 103, 166, 64, 225, 125, 205, 117, 135, 84, 128,
231, 112, 90, 241, 28, 22, 210, 147, 186, 49, 230, 21, 108, 39, 194, 47,
123, 199, 107, 114, 30, 210, 250, 143, 59, 156, 131, 133, 221, 27, 76, 99,
208, 250, 78, 12, 211, 141, 95, 81, 195, 106, 8, 232, 150, 212, 205, 221,
11, 225, 87, 219, 126, 136, 137, 180, 198, 48, 68, 203, 239, 252, 194, 235,
142, 137, 174, 172, 190, 145, 250, 221, 182, 204, 1, 195, 130, 153, 83, 241,
161, 239, 211, 138, 11, 169, 155, 245, 174, 49, 10, 166, 16, 130, 181, 139,
222, 222, 112, 99, 124, 94, 51, 243, 133, 194, 244, 136, 35, 248, 201, 177,
178, 186, 129, 102, 89, 184, 180, 41, 149, 96, 165, 72, 225, 231, 134, 158,
199, 28, 249, 16, 225, 195, 10, 210, 164, 252, 138, 8, 35, 152, 213, 199,
82, 116, 97, 230, 63, 199, 241, 35, 79, 120, 54, 174, 67, 112, 1, 76,
69, 222, 194, 96, 82, 94, 25, 228, 196, 145, 155, 136, 228, 234, 46, 101,
246, 51, 103, 166, 246, 75, 9, 200, 161, 4, 108, 35, 129, 168, 208, 144,
50, 14, 13, 220, 41, 132, 122, 127, 194, 9, 232, 234, 107, 28, 187, 8,
51, 141, 97, 221, 225, 9, 113, 170, 166, 102, 135, 22, 231, 185, 227, 187,
110, 145, 251, 146, 76, 22, 146, 228, 7, 53, 64, 25, 62, 198, 130, 190,
221, 232, 169, 64, 188, 199, 237, 249, 173, 218, 196, 191, 48, 224, 5, 113,
100, 166, 160, 21, 191, 197, 61, 162, 149, 171, 240, 183, 129, 231, 123, 204,
192, 179, 134, 15, 47, 161, 142, 177, 239, 234, 186, 237, 231, 53, 208, 95,
146, 36, 225, 231, 89, 142, 93, 248, 137, 124, 83, 39, 69, 77, 89, 208,
182, 48, 85, 147, 244, 164, 246, 68, 38, 190, 220, 35, 202, 91, 157, 151,
201, 240, 185, 218, 4, 152, 2, 132, 177, 88, 190, 196, 229, 74, 220, 135,
137, 196, 11, 47, 5, 251, 106, 144, 163, 60, 222, 127, 52, 57, 202, 102,
64, 140, 110, 206, 23, 182, 39, 245, 1, 163, 157, 186, 163, 80, 7, 230,
44, 249, 176, 102, 164, 125, 147, 120, 18, 191, 186, 125, 64, 65, 198, 157,
164, 213, 95, 61, 13, 181, 208, 91, 242, 197, 158, 34, 98, 169, 91, 14,
17, 93, 157, 17, 65, 30, 183, 6, 139, 58, 255, 108, 100, 136, 209, 144,
164, 6, 237, 33, 210, 110, 57, 126, 197, 136, 125, 244, 165, 151, 168, 3,
143, 251, 247, 155, 136, 130, 88, 14, 74, 121, 250, 133, 21, 226, 185, 232,
118, 132, 89, 64, 204, 161, 2, 70, 224, 159, 35, 204, 123, 180, 13, 52,
231, 57, 25, 78, 66, 69, 97, 42, 198, 84, 176, 59, 8, 232, 125, 134,
193, 2, 232, 109, 216, 69, 90, 142, 32, 38, 249, 37, 75, 180, 184, 188,
19, 47, 120, 87, 146, 70, 232, 120, 191, 45, 33, 38, 19, 248, 110, 110,
44, 64, 2, 84, 244, 228, 252, 228, 170, 123, 38, 144, 213, 144, 171, 212,
243, 87, 189, 46, 128, 110, 84, 77, 65, 183, 61, 184, 101, 44, 168, 68,
14, 106, 105, 8, 227, 211, 166, 39, 152, 43, 52, 254, 197, 55, 119, 89,
168, 65, 53, 138, 177, 56, 219, 0, 58, 121, 148, 18, 44, 100, 215, 103,
145, 229, 117, 196, 91, 89, 113, 143, 172, 239, 249, 184, 154, 39, 112, 65,
204, 42, 84, 38, 155, 151, 151, 16, 100, 87, 174, 162, 145, 147, 149, 186,
237, 145, 134, 144, 198, 235, 213, 163, 48, 230, 24, 47, 57, 71, 127, 0,
150, 219, 12, 81, 197, 150, 131, 13, 169, 63, 175, 184, 48, 235, 65, 243,
149, 200, 163, 254, 202, 114, 247, 67, 143, 250, 126, 228, 80, 130, 216, 214,
36, 2, 230, 33, 119, 125, 3, 142, 237, 100, 3, 152, 197, 174, 244, 129,
232, 30, 206, 199, 39, 210, 220, 43, 237, 221, 201, 54, 179, 42, 28, 133,
246, 203, 198, 177, 0, 28, 194, 85, 223, 109, 155, 147, 221, 60, 133, 108,
157, 254, 26, 75, 157, 185, 49, 142, 31, 137, 71, 43, 63, 64, 237, 148,
237, 172, 159, 160, 155, 254, 234, 224, 140, 193, 114, 140, 62, 109, 136, 39,
255, 8, 158, 146, 128, 49, 222, 96, 57, 209, 180, 249, 202, 127, 113, 231,
78, 178, 46, 33, 228, 215, 104, 31, 207, 186, 82, 41, 42, 39, 103, 119,
123, 133, 243, 254, 238, 156, 90, 186, 37, 212, 33, 107, 252, 51, 177, 36,
237, 76, 159, 245, 93, 214, 97, 56, 190, 38, 160, 94, 105, 222, 220, 158,
49, 16, 191, 52, 120, 87, 179, 2, 27, 144, 223, 230, 184, 6, 129, 227,
69, 47, 215, 181, 162, 139, 72, 200, 45, 163, 159, 62, 2, 221, 124, 40,
159, 242, 35, 208, 179, 166, 98, 67, 178, 68, 143, 225, 178, 146, 187, 159,
57, 66, 176, 192, 236, 250, 168, 224, 122, 43, 159, 120, 133, 165, 122, 64,
87, 74, 161, 241, 9, 87, 90, 24, 255, 113, 203, 220, 57, 139, 197, 159,
31, 151, 27, 140, 77, 162, 7, 27, 84, 228, 187, 220, 53, 126, 162, 242,
84, 181, 223, 103, 86, 177, 207, 31, 140, 18, 207, 256, 201, 166, 96, 23,
233, 103, 197, 84, 161, 75, 59, 149, 138, 154, 119, 92, 16, 53, 116, 97,
220, 114, 35, 45, 77, 209, 40, 196, 71, 22, 81, 178, 110, 14, 3, 180,
110, 129, 112, 47, 18, 61, 134, 78, 73, 79, 254, 232, 125, 180, 205, 54,
220, 119, 63, 89, 181, 52, 77, 109, 151, 77, 80, 207, 144, 25, 20, 6,
208, 47, 201, 206, 192, 14, 73, 176, 256, 201, 207, 87, 216, 60, 56, 73,
92, 243, 179, 113, 49, 59, 55, 168, 121, 137, 69, 154, 95, 57, 187, 47,
129, 4, 15, 92, 6, 116, 69, 196, 48, 134, 84, 81, 111, 56, 38, 176,
239, 6, 128, 72, 242, 134, 36, 221, 59, 48, 242, 68, 130, 110, 171, 89,
13, 220, 48, 29, 5, 75, 104, 233, 91, 129, 105, 162, 44, 113, 163, 163,
85, 147, 190, 111, 197, 80, 213, 153, 81, 68, 203, 33, 161, 165, 10, 61,
120, 252, 0, 205, 28, 42, 193, 64, 39, 37, 83, 175, 5, 218, 215, 174,
128, 121, 231, 11, 150, 145, 135, 197, 136, 91, 193, 5, 107, 88, 82, 6,
4, 188, 256, 70, 40, 2, 167, 57, 169, 203, 115, 254, 215, 172, 84, 80,
188, 167, 34, 137, 43, 243, 2, 79, 178, 38, 188, 135, 233, 194, 208, 13,
11, 151, 231, 196, 12, 122, 162, 56, 17, 114, 191, 207, 90, 132, 64, 238,
187, 6, 198, 176, 240, 88, 118, 236, 15, 226, 166, 22, 193, 229, 82, 246,
213, 64, 37, 63, 31, 243, 252, 37, 156, 38, 175, 204, 138, 141, 211, 82,
106, 217, 97, 139, 153, 56, 129, 218, 158, 9, 83, 26, 87, 112, 71, 21,
250, 5, 65, 141, 68, 116, 231, 113, 10, 218, 99, 205, 201, 92, 157, 4,
97, 46, 49, 220, 72, 139, 103, 171, 149, 129, 193, 19, 69, 245, 43, 31,
58, 68, 36, 195, 159, 22, 54, 34, 233, 141, 205, 100, 226, 96, 22, 192,
41, 231, 24, 79, 234, 138, 30, 120, 117, 216, 172, 197, 172, 107, 86, 29,
181, 151, 0, 6, 146, 186, 68, 55, 54, 58, 213, 182, 60, 231, 33, 232,
77, 210, 216, 154, 80, 51, 141, 122, 68, 148, 219, 122, 254, 48, 64, 175,
41, 115, 62, 243, 141, 81, 119, 121, 5, 68, 121, 88, 239, 29, 230, 90,
135, 159, 35, 223, 168, 112, 49, 37, 146, 60, 126, 134, 42, 145, 115, 90,
73, 133, 211, 86, 120, 141, 122, 241, 127, 56, 130, 36, 174, 75, 83, 246,
112, 45, 136, 194, 201, 115, 1, 156, 114, 167, 208, 12, 176, 147, 32, 170,
251, 100, 102, 220, 122, 210, 6, 49, 75, 201, 38, 105, 132, 135, 126, 102,
13, 121, 76, 228, 202, 20, 61, 213, 246, 13, 207, 42, 148, 168, 37, 253,
34, 94, 141, 185, 18, 234, 157, 109, 104, 64, 250, 125, 49, 236, 86, 48,
196, 77, 75, 237, 156, 103, 225, 19, 110, 229, 22, 68, 177, 93, 221, 181,
152, 153, 61, 108, 101, 74, 247, 195, 127, 216, 30, 166, 168, 61, 83, 229,
120, 156, 96, 120, 201, 124, 43, 27, 253, 250, 120, 143, 89, 235, 189, 243,
150, 7, 127, 119, 149, 244, 84, 185, 134, 34, 128, 193, 236, 234, 132, 117,
137, 32, 145, 184, 44, 121, 51, 76, 11, 228, 142, 251, 39, 77, 228, 251,
41, 58, 246, 107, 125, 187, 9, 240, 35, 8, 11, 162, 242, 220, 158, 163,
2, 184, 163, 227, 242, 2, 100, 101, 2, 78, 129, 34, 89, 28, 26, 157,
79, 31, 107, 250, 194, 156, 186, 69, 212, 66, 41, 180, 139, 42, 211, 253,
256, 239, 29, 129, 104, 248, 182, 68, 1, 189, 48, 226, 36, 229, 3, 158,
41, 53, 241, 22, 115, 174, 16, 163, 224, 19, 112, 219, 177, 233, 42, 27,
250, 134, 18, 28, 145, 122, 68, 34, 134, 31, 147, 17, 39, 188, 150, 76,
45, 42, 167, 249, 12, 16, 23, 182, 13, 79, 121, 3, 70, 197, 239, 44,
86, 177, 255, 81, 64, 171, 138, 131, 73, 110, 44, 201, 254, 198, 146, 91,
48, 9, 104, 31, 29, 161, 101, 31, 138, 180, 231, 233, 79, 137, 61, 236,
140, 15, 249, 218, 234, 119, 99, 195, 110, 137, 237, 207, 8, 31, 45, 24,
90, 155, 203, 253, 192, 203, 65, 176, 210, 171, 142, 214, 220, 122, 136, 237,
189, 186, 147, 40, 80, 254, 173, 33, 191, 46, 192, 26, 108, 255, 228, 205,
61, 76, 39, 107, 225, 126, 228, 182, 140, 251, 143, 134, 252, 168, 221, 8,
185, 85, 60, 233, 147, 244, 87, 137, 8, 140, 96, 80, 53, 45, 175, 160,
124, 189, 112, 37, 144, 19, 70, 17, 170, 242, 2, 3, 28, 95, 120, 199,
212, 43, 9, 117, 86, 151, 101, 241, 200, 145, 241, 19, 178, 69, 204, 197,
227, 166, 94, 7, 193, 45, 247, 234, 19, 187, 212, 212, 236, 125, 33, 95,
198, 121, 122, 103, 77, 155, 235, 49, 25, 237, 249, 11, 162, 7, 238, 24,
16, 150, 129, 25, 152, 17, 42, 67, 247, 162, 77, 154, 31, 133, 55, 137,
79, 119, 153, 10, 86, 28, 244, 186, 41, 169, 106, 44, 10, 49, 110, 179,
32, 133, 155, 244, 61, 70, 131, 168, 170, 39, 231, 252, 32, 69, 92, 238,
239, 35, 132, 136, 236, 167, 90, 32, 123, 88, 69, 22, 20, 89, 145, 166,
30, 118, 75, 4, 49, 31, 225, 54, 11, 50, 56, 191, 246, 1, 187, 33,
119, 107, 139, 68, 19, 240, 131, 55, 94, 113, 31, 252, 12, 179, 121, 2,
120, 252, 0, 76, 41, 80, 185, 42, 62, 121, 105, 159, 121, 109, 111, 98,
7, 118, 86, 29, 210, 70, 231, 179, 223, 229, 164, 70, 62, 47, 0, 206,
204, 178, 168, 120, 224, 166, 99, 25, 103, 63, 246, 224, 117, 204, 75, 124,
140, 133, 110, 110, 222, 88, 151, 118, 46, 37, 22, 143, 158, 40, 2, 50,
153, 94, 190, 199, 13, 198, 127, 211, 180, 90, 183, 98, 0, 142, 210, 154,
100, 187, 67, 231, 202, 100, 198, 235, 252, 160, 247, 124, 247, 14, 121, 221,
57, 88, 253, 243, 185, 89, 45, 249, 221, 194, 108, 175, 193, 119, 50, 141,
223, 133, 136, 64, 176, 250, 129, 100, 124, 94, 181, 159, 99, 185, 177, 240,
135, 42, 103, 52, 202, 208, 143, 186, 193, 103, 154, 237, 102, 88, 225, 161,
50, 188, 191, 109, 12, 87, 19, 227, 247, 183, 13, 52, 205, 170, 205, 146,
89, 160, 18, 105, 192, 73, 231, 225, 184, 157, 252, 220, 61, 59, 169, 183,
221, 20, 141, 20, 158, 101, 245, 7, 245, 225, 118, 137, 84, 55, 19, 27,
164, 110, 35, 25, 202, 94, 150, 46, 91, 152, 130, 1, 7, 46, 16, 237,
171, 109, 19, 200, 65, 38, 10, 213, 70, 96, 126, 226, 185, 225, 181, 46,
10, 165, 11, 123, 53, 158, 22, 147, 64, 22, 227, 69, 182, 237, 197, 37,
39, 49, 186, 223, 139, 128, 55, 36, 166, 178, 220, 20, 98, 172, 166, 253,
45, 0, 120, 180, 189, 185, 158, 159, 196, 6, 214, 79, 141, 52, 156, 107,
5, 109, 142, 159, 33, 64, 190, 133, 95, 132, 95, 202, 160, 63, 186, 23,
231, 107, 163, 33, 234, 15, 244, 77, 108, 49, 51, 7, 164, 87, 142, 99,
240, 202, 47, 256, 118, 190, 196, 178, 217, 42, 39, 153, 21, 192, 232, 202,
14, 82, 179, 64, 233, 4, 219, 10, 133, 78, 43, 144, 146, 216, 202, 81,
71, 252, 8, 201, 68, 256, 85, 233, 164, 88, 176, 30, 5, 152, 126, 179,
249, 84, 140, 190, 159, 54, 118, 98, 2, 159, 27, 133, 74, 121, 239, 196,
71, 149, 119, 135, 102, 20, 87, 112, 44, 75, 221, 3, 151, 158, 5, 98,
152, 25, 97, 106, 63, 171, 240, 79, 234, 240, 230, 92, 76, 70, 173, 196,
36, 225, 218, 133, 64, 240, 150, 41, 146, 66, 133, 51, 134, 73, 170, 238,
140, 90, 45, 89, 46, 147, 96, 169, 174, 174, 244, 151, 90, 40, 32, 74,
38, 154, 246, 57, 31, 14, 189, 151, 83, 243, 197, 183, 220, 185, 53, 225,
51, 106, 188, 208, 222, 248, 93, 13, 93, 215, 131, 25, 142, 185, 113, 222,
131, 215, 149, 50, 159, 85, 32, 5, 205, 192, 2, 227, 42, 214, 197, 42,
126, 182, 68, 123, 109, 36, 237, 179, 170, 199, 77, 256, 5, 128, 214, 243,
137, 177, 170, 253, 179, 180, 153, 236, 100, 196, 216, 231, 198, 37, 192, 80,
121, 221, 246, 1, 16, 246, 29, 78, 64, 148, 124, 38, 96, 125, 28, 20,
48, 51, 73, 187, 139, 208, 98, 253, 221, 188, 84, 129, 1, 205, 95, 205,
117, 79, 71, 126, 134, 237, 19, 184, 137, 125, 129, 178, 223, 54, 188, 112,
30, 7, 225, 228, 205, 184, 233, 87, 117, 22, 58, 10, 8, 42, 2, 114,
254, 19, 17, 13, 150, 92, 233, 179, 63, 12, 60, 171, 127, 35, 50, 5,
195, 113, 241, 25, 249, 184, 166, 44, 221, 35, 151, 116, 8, 54, 195, 89,
218, 186, 132, 5, 41, 89, 226, 177, 11, 41, 87, 172, 5, 23, 20, 59,
228, 94, 76, 33, 137, 43, 151, 221, 61, 232, 4, 120, 93, 217, 80, 228,
228, 6, 58, 25, 62, 84, 91, 48, 209, 20, 247, 243, 55, 106, 80, 79,
235, 34, 20, 180, 146, 2, 236, 13, 236, 206, 243, 222, 204, 83, 148, 213,
214, 117, 237, 98, 0, 90, 204, 168, 32, 41, 126, 67, 191, 74, 27, 255,
26, 75, 240, 113, 185, 105, 167, 154, 112, 67, 151, 63, 161, 134, 239, 176,
42, 87, 249, 130, 45, 242, 17, 100, 107, 120, 212, 218, 237, 76, 231, 162,
175, 172, 118, 155, 92, 36, 124, 17, 121, 71, 13, 9, 82, 126, 147, 142,
218, 148, 138, 80, 163, 106, 164, 123, 140, 129, 35, 42, 186, 154, 228, 214,
75, 73, 8, 253, 42, 153, 232, 164, 95, 24, 110, 90, 231, 197, 90, 196,
57, 164, 252, 181, 31, 7, 97, 256, 35, 77, 200, 212, 99, 179, 92, 227,
17, 180, 49, 176, 9, 188, 13, 182, 93, 44, 128, 219, 134, 92, 151, 6,
23, 126, 200, 109, 66, 30, 140, 180, 146, 134, 67, 200, 7, 9, 223, 168,
186, 221, 3, 154, 150, 165, 43, 53, 138, 27, 86, 213, 235, 160, 70, 2,
240, 20, 89, 212, 84, 141, 168, 246, 183, 227, 30, 167, 138, 185, 253, 83,
52, 143, 236, 94, 59, 65, 89, 218, 194, 157, 164, 156, 111, 95, 202, 168,
245, 256, 151, 28, 222, 194, 72, 130, 217, 134, 253, 77, 246, 100, 76, 32,
254, 174, 182, 193, 14, 237, 74, 1, 74, 26, 135, 216, 152, 208, 112, 38,
181, 62, 25, 71, 61, 234, 254, 97, 191, 23, 92, 256, 190, 205, 6, 16,
134, 147, 210, 219, 148, 59, 73, 185, 24, 247, 174, 143, 116, 220, 128, 144,
111, 126, 101, 98, 130, 136, 101, 102, 69, 127, 24, 168, 146, 226, 226, 207,
176, 122, 149, 254, 134, 196, 22, 151, 197, 21, 50, 205, 116, 154, 65, 116,
177, 224, 127, 77, 177, 159, 225, 69, 176, 54, 100, 104, 140, 8, 11, 126,
11, 188, 185, 159, 107, 16, 254, 142, 80, 28, 5, 157, 104, 57, 109, 82,
102, 80, 173, 242, 238, 207, 57, 105, 237, 160, 59, 189, 189, 199, 26, 11,
190, 156, 97, 118, 20, 12, 254, 189, 165, 147, 142, 199, 5, 213, 64, 133,
108, 217, 133, 60, 94, 28, 116, 136, 47, 165, 125, 42, 183, 143, 14, 129,
223, 70, 212, 205, 181, 180, 3, 201, 182, 46, 57, 104, 239, 60, 99, 181,
220, 231, 45, 79, 156, 89, 149, 143, 190, 103, 153, 61, 235, 73, 136, 20,
89, 243, 16, 130, 247, 141, 134, 93, 80, 68, 85, 84, 8, 72, 194, 4,
242, 110, 19, 133, 199, 70, 172, 92, 132, 254, 67, 74, 36, 94, 13, 90,
154, 184, 9, 109, 118, 243, 214, 71, 36, 95, 0, 90, 201, 105, 112, 215,
69, 196, 224, 210, 236, 242, 155, 211, 37, 134, 69, 113, 157, 97, 68, 26,
230, 149, 219, 180, 20, 76, 172, 145, 154, 40, 129, 8, 93, 56, 162, 124,
207, 233, 105, 19, 3, 183, 155, 134, 8, 244, 213, 78, 139, 88, 156, 37,
51, 152, 111, 102, 112, 250, 114, 252, 201, 241, 133, 24, 136, 153, 5, 90,
210, 197, 216, 24, 131, 17, 147, 246, 13, 86, 3, 253, 179, 237, 101, 114,
243, 191, 207, 2, 220, 133, 244, 53, 87, 125, 154, 158, 197, 20, 8, 83,
32, 191, 38, 241, 204, 22, 168, 59, 217, 123, 162, 82, 21, 50, 130, 89,
239, 253, 195, 56, 253, 74, 147, 125, 234, 199, 250, 28, 65, 193, 22, 237,
193, 94, 58, 229, 139, 176, 69, 42, 179, 164, 150, 168, 246, 214, 86, 174,
59, 117, 15, 19, 76, 37, 214, 238, 153, 226, 154, 45, 109, 114, 198, 107,
45, 70, 238, 196, 142, 252, 244, 71, 123, 136, 134, 188, 99, 132, 25, 42,
240, 0, 196, 33, 26, 124, 256, 145, 27, 102, 153, 35, 28, 132, 221, 167,
138, 133, 41, 170, 95, 224, 40, 139, 239, 153, 1, 106, 255, 106, 170, 163,
127, 44, 155, 232, 194, 119, 232, 117, 239, 143, 108, 41, 3, 9, 180, 256,
144, 113, 133, 200, 79, 69, 128, 216, 31, 50, 102, 209, 249, 136, 150, 154,
182, 51, 228, 39, 127, 142, 87, 15, 94, 92, 187, 245, 31, 236, 64, 58,
114, 11, 17, 166, 189, 152, 218, 34, 123, 39, 58, 37, 153, 91, 63, 121,
31, 34, 12, 254, 106, 96, 171, 14, 155, 247, 214, 69, 24, 98, 3, 204,
202, 194, 207, 30, 253, 44, 119, 70, 14, 96, 82, 250, 63, 6, 232, 38,
89, 144, 102, 191, 82, 254, 20, 222, 96, 162, 110, 6, 159, 58, 200, 226,
98, 128, 42, 70, 84, 247, 128, 211, 136, 54, 143, 166, 60, 118, 99, 218,
27, 193, 85, 81, 219, 223, 46, 41, 23, 233, 152, 222, 36, 236, 54, 181,
56, 50, 4, 207, 129, 92, 78, 88, 197, 251, 131, 105, 31, 172, 38, 131,
19, 204, 129, 47, 227, 106, 202, 183, 23, 6, 77, 224, 102, 147, 11, 218,
131, 132, 60, 192, 208, 223, 236, 23, 103, 115, 89, 18, 185, 171, 70, 174,
139, 0, 100, 160, 221, 11, 228, 60, 12, 122, 114, 12, 157, 235, 148, 57,
83, 62, 173, 131, 169, 126, 85, 99, 93, 243, 81, 80, 29, 245, 206, 82,
236, 227, 166, 14, 230, 213, 144, 97, 27, 111, 99, 164, 105, 150, 89, 111,
252, 118, 140, 232, 120, 183, 137, 213, 232, 157, 224, 33, 134, 118, 186, 80,
159, 2, 186, 193, 54, 242, 25, 237, 232, 249, 226, 213, 90, 149, 90, 160,
118, 69, 64, 37, 10, 183, 109, 246, 30, 52, 219, 69, 189, 26, 116, 220,
50, 244, 243, 243, 139, 137, 232, 98, 38, 45, 256, 143, 171, 101, 73, 238,
123, 45, 194, 167, 250, 123, 12, 29, 136, 237, 141, 21, 89, 96, 199, 44,
8, 214, 208, 17, 113, 41, 137, 26, 166, 155, 89, 85, 54, 58, 97, 160,
50, 239, 58, 71, 21, 157, 139, 12, 37, 198, 182, 131, 149, 134, 16, 204,
164, 181, 248, 166, 52, 216, 136, 201, 37, 255, 187, 240, 5, 101, 147, 231,
14, 163, 253, 134, 146, 216, 8, 54, 224, 90, 220, 195, 75, 215, 186, 58,
71, 204, 124, 105, 239, 53, 16, 85, 69, 163, 195, 223, 33, 38, 69, 88,
88, 203, 99, 55, 176, 13, 156, 204, 236, 99, 194, 134, 75, 247, 126, 129,
160, 124, 233, 206, 139, 144, 154, 45, 233, 51, 206, 61, 60, 55, 205, 107,
84, 108, 96, 188, 203, 31, 89, 20, 115, 144, 137, 90, 237, 78, 231, 185,
120, 217, 1, 176, 169, 30, 155, 176, 100, 113, 53, 42, 193, 108, 14, 121,
176, 158, 137, 92, 178, 44, 110, 249, 108, 234, 94, 101, 128, 12, 250, 173,
72, 202, 232, 66, 139, 152, 189, 18, 32, 197, 9, 238, 246, 55, 119, 183,
196, 119, 113, 247, 191, 100, 200, 245, 46, 16, 234, 112, 136, 116, 232, 48,
176, 108, 11, 237, 14, 153, 93, 177, 124, 72, 67, 121, 135, 143, 45, 18,
97, 251, 184, 172, 136, 55, 213, 8, 103, 12, 221, 212, 13, 160, 116, 91,
237, 127, 218, 190, 103, 131, 77, 82, 36, 100, 22, 252, 79, 69, 54, 26,
65, 182, 115, 142, 247, 20, 89, 81, 188, 244, 27, 120, 240, 248, 13, 230,
67, 133, 32, 201, 129, 87, 9, 245, 66, 88, 166, 34, 46, 184, 119, 218,
144, 235, 163, 40, 138, 134, 127, 217, 64, 227, 116, 67, 55, 202, 130, 48,
199, 42, 251, 112, 124, 153, 123, 194, 243, 49, 250, 12, 78, 157, 167, 134,
210, 73, 156, 102, 21, 88, 216, 123, 45, 11, 208, 18, 47, 187, 20, 43,
3, 180, 124, 2, 136, 176, 77, 111, 138, 139, 91, 225, 126, 8, 74, 255,
88, 192, 193, 239, 138, 204, 139, 194, 166, 130, 252, 184, 140, 168, 30, 177,
121, 98, 131, 124, 69, 171, 75, 49, 184, 34, 76, 122, 202, 115, 184, 253,
120, 182, 33, 251, 1, 74, 216, 217, 243, 168, 70, 162, 119, 158, 197, 198,
61, 89, 7, 5, 54, 199, 211, 170, 23, 226, 44, 247, 165, 195, 7, 225,
91, 23, 50, 15, 51, 208, 106, 94, 12, 31, 43, 112, 146, 139, 246, 182,
113, 1, 97, 15, 66, 2, 51, 76, 164, 184, 237, 200, 218, 176, 72, 98,
33, 135, 38, 147, 140, 229, 50, 94, 81, 187, 129, 17, 238, 168, 146, 203,
181, 99, 164, 3, 104, 98, 255, 189, 114, 142, 86, 102, 229, 102, 80, 129,
64, 84, 79, 161, 81, 156, 128, 111, 164, 197, 18, 15, 55, 196, 198, 191,
28, 113, 117, 96, 207, 253, 19, 158, 231, 13, 53, 130, 252, 211, 58, 180,
212, 142, 7, 219, 38, 81, 62, 109, 167, 113, 33, 56, 97, 185, 157, 130,
186, 129, 119, 182, 196, 26, 54, 110, 65, 170, 166, 236, 30, 22, 162, 0,
106, 12, 248, 33, 48, 72, 159, 17, 76, 244, 172, 132, 89, 171, 196, 76,
254, 166, 76, 218, 226, 3, 52, 220, 238, 181, 179, 144, 225, 23, 3, 166,
158, 35, 228, 154, 204, 23, 203, 71, 134, 189, 18, 168, 236, 141, 117, 138,
2, 132, 78, 57, 154, 21, 250, 196, 184, 40, 161, 40, 10, 178, 134, 120,
132, 123, 101, 82, 205, 121, 55, 140, 231, 56, 231, 71, 206, 246, 198, 150,
146, 192, 45, 105, 242, 1, 125, 18, 176, 46, 222, 122, 19, 80, 113, 133,
131, 162, 81, 51, 98, 168, 247, 161, 139, 39, 63, 162, 22, 153, 170, 92,
91, 130, 174, 200, 45, 112, 99, 164, 132, 184, 191, 186, 200, 167, 86, 145,
167, 227, 130, 44, 12, 158, 172, 249, 204, 17, 54, 249, 16, 200, 21, 174,
67, 223, 105, 201, 50, 36, 133, 203, 244, 131, 228, 67, 29, 195, 91, 91,
55, 107, 167, 154, 170, 137, 218, 183, 169, 61, 99, 175, 128, 23, 142, 183,
66, 255, 59, 187, 66, 85, 212, 109, 168, 82, 16, 43, 67, 139, 114, 176,
216, 255, 130, 94, 152, 79, 183, 64, 100, 23, 214, 82, 34, 230, 48, 15,
242, 130, 50, 241, 81, 32, 5, 125, 183, 182, 184, 99, 248, 109, 159, 210,
226, 61, 119, 129, 39, 149, 78, 214, 107, 78, 147, 124, 228, 18, 143, 188,
84, 180, 233, 119, 64, 39, 158, 133, 177, 168, 6, 150, 80, 117, 150, 56,
49, 72, 49, 37, 30, 242, 49, 142, 33, 156, 34, 44, 44, 72, 58, 22,
249, 46, 168, 80, 25, 196, 64, 174, 97, 179, 244, 134, 213, 105, 63, 151,
21, 90, 168, 90, 245, 28, 157, 65, 250, 232, 188, 27, 99, 160, 156, 127,
68, 193, 10, 80, 205, 36, 138, 229, 12, 223, 70, 169, 251, 41, 48, 94,
41, 177, 99, 256, 158, 0, 6, 83, 231, 191, 120, 135, 157, 146, 218, 213,
160, 7, 47, 234, 98, 211, 79, 225, 179, 95, 175, 105, 185, 79, 115, 0,
104, 14, 65, 124, 15, 188, 52, 9, 253, 27, 132, 137, 13, 127, 75, 238,
185, 253, 33, 8, 52, 157, 164, 68, 232, 188, 69, 28, 209, 233, 5, 129,
216, 90, 252, 212, 33, 200, 222, 9, 112, 15, 43, 36, 226, 114, 15, 249,
217, 8, 148, 22, 147, 23, 143, 67, 222, 116, 235, 250, 212, 210, 39, 142,
108, 64, 209, 83, 73, 66, 99, 34, 17, 29, 45, 151, 244, 114, 28, 241,
144, 208, 146, 179, 132, 89, 217, 198, 252, 219, 205, 165, 75, 107, 11, 173,
76, 6, 196, 247, 152, 216, 248, 91, 209, 178, 57, 250, 174, 60, 79, 123,
18, 135, 9, 241, 230, 159, 184, 68, 156, 251, 215, 9, 113, 234, 75, 235,
103, 194, 205, 129, 230, 45, 96, 73, 157, 20, 200, 212, 212, 228, 161, 7,
231, 228, 108, 43, 198, 87, 140, 140, 4, 182, 164, 3, 53, 104, 250, 213,
85, 38, 89, 61, 52, 187, 35, 204, 86, 249, 100, 71, 248, 213, 163, 215,
66, 106, 252, 129, 40, 111, 47, 24, 186, 221, 85, 205, 199, 237, 122, 181,
32, 46, 182, 135, 33, 251, 142, 34, 208, 242, 128, 255, 4, 234, 15, 33,
167, 222, 32, 186, 191, 34, 255, 244, 98, 240, 228, 204, 30, 142, 32, 70,
69, 83, 110, 151, 10, 243, 141, 21, 223, 69, 61, 37, 59, 209, 102, 114,
223, 33, 129, 254, 255, 103, 86, 247, 235, 72, 126, 177, 102, 226, 102, 30,
149, 221, 62, 247, 251, 120, 163, 173, 57, 202, 204, 24, 39, 106, 120, 143,
202, 176, 191, 147, 37, 38, 51, 133, 47, 245, 157, 132, 154, 71, 183, 111,
30, 180, 18, 202, 82, 96, 170, 91, 157, 181, 212, 140, 256, 8, 196, 121,
149, 79, 66, 127, 113, 78, 4, 197, 84, 256, 111, 222, 102, 63, 228, 104,
136, 223, 67, 193, 93, 154, 249, 83, 204, 101, 200, 234, 84, 252, 230, 195,
43, 140, 120, 242, 89, 63, 166, 233, 209, 94, 43, 170, 126, 5, 205, 78,
112, 80, 143, 151, 146, 248, 137, 203, 45, 183, 61, 1, 155, 8, 102, 59,
68, 212, 230, 61, 254, 191, 128, 223, 176, 123, 229, 27, 146, 120, 96, 165,
213, 12, 232, 40, 186, 225, 66, 105, 200, 195, 212, 110, 237, 238, 151, 19,
12, 171, 150, 82, 7, 228, 79, 52, 15, 78, 62, 43, 21, 154, 114, 21,
12, 212, 256, 232, 125, 127, 5, 51, 37, 252, 136, 13, 47, 195, 168, 191,
231, 55, 57, 251, 214, 116, 15, 86, 210, 41, 249, 242, 119, 27, 250, 203,
107, 69, 90, 43, 206, 154, 127, 54, 100, 78, 187, 54, 244, 177, 234, 167,
202, 136, 209, 171, 69, 114, 133, 173, 26, 139, 78, 141, 128, 32, 124, 39,
45, 218, 96, 68, 90, 44, 67, 62, 83, 190, 188, 256, 103, 42, 102, 64,
249, 0, 141, 11, 61, 69, 70, 66, 233, 237, 29, 200, 251, 157, 71, 51,
64, 133, 113, 76, 35, 125, 76, 137, 217, 145, 35, 69, 226, 180, 56, 249,
156, 163, 176, 237, 81, 54, 85, 169, 115, 211, 129, 70, 248, 40, 252, 192,
194, 101, 247, 8, 181, 124, 217, 191, 194, 93, 99, 127, 117, 177, 144, 151,
228, 121, 32, 11, 89, 81, 26, 29, 183, 76, 249, 132, 179, 70, 34, 102,
20, 66, 87, 63, 124, 205, 174, 177, 87, 219, 73, 218, 91, 87, 176, 72,
15, 211, 47, 61, 251, 165, 39, 247, 146, 70, 150, 57, 1, 212, 36, 162,
39, 38, 16, 216, 3, 50, 116, 200, 32, 234, 77, 181, 155, 19, 90, 188,
36, 6, 254, 46, 46, 203, 25, 230, 181, 196, 4, 151, 225, 65, 122, 216,
168, 86, 158, 131, 136, 16, 49, 102, 233, 64, 154, 88, 228, 52, 146, 69,
93, 157, 243, 121, 70, 209, 126, 213, 88, 145, 236, 65, 70, 96, 204, 47,
10, 200, 77, 8, 103, 150, 48, 153, 5, 37, 52, 235, 209, 31, 181, 126,
83, 142, 224, 140, 6, 32, 200, 171, 160, 179, 115, 229, 75, 194, 208, 39,
59, 223, 52, 247, 38, 197, 135, 1, 6, 189, 106, 114, 168, 5, 211, 222,
44, 63, 90, 160, 116, 172, 170, 133, 125, 138, 39, 131, 23, 178, 10, 214,
36, 93, 28, 59, 68, 17, 123, 25, 255, 184, 204, 102, 194, 214, 129, 94,
159, 245, 112, 141, 62, 11, 61, 197, 124, 221, 205, 11, 79, 71, 201, 54,
58, 150, 29, 121, 87, 46, 240, 201, 68, 20, 194, 209, 47, 152, 158, 174,
193, 164, 120, 255, 216, 165, 247, 58, 85, 130, 220, 23, 122, 223, 188, 98,
21, 70, 72, 170, 150, 237, 76, 143, 112, 238, 206, 146, 215, 110, 4, 250,
68, 44, 174, 177, 30, 98, 143, 241, 180, 127, 113, 48, 0, 1, 179, 199,
59, 106, 201, 114, 29, 86, 173, 133, 217, 44, 200, 141, 107, 172, 16, 60,
82, 58, 239, 94, 141, 234, 186, 235, 109, 173, 249, 139, 141, 59, 100, 248,
84, 144, 49, 160, 51, 207, 164, 103, 74, 97, 146, 202, 193, 125, 168, 134,
236, 111, 135, 121, 59, 145, 168, 200, 181, 173, 109, 2, 255, 6, 9, 245,
90, 202, 214, 143, 121, 65, 85, 232, 132, 77, 228, 84, 26, 54, 184, 15,
161, 29, 177, 79, 43, 0, 156, 184, 163, 165, 62, 90, 179, 93, 45, 239,
1, 16, 120, 189, 127, 47, 74, 166, 20, 214, 233, 226, 89, 217, 229, 26,
156, 53, 162, 60, 21, 3, 192, 72, 111, 51, 53, 101, 181, 208, 88, 82,
179, 160, 219, 113, 240, 108, 43, 224, 162, 147, 62, 14, 95, 81, 205, 4,
160, 177, 225, 115, 29, 69, 235, 168, 148, 29, 128, 114, 124, 129, 172, 165,
215, 231, 214, 86, 160, 44, 157, 91, 248, 183, 73, 164, 56, 181, 162, 92,
141, 118, 127, 240, 196, 77, 0, 9, 244, 79, 250, 100, 195, 25, 255, 85,
94, 35, 212, 137, 107, 34, 110, 20, 200, 104, 17, 32, 231, 43, 150, 159,
231, 216, 223, 190, 226, 109, 162, 197, 87, 92, 224, 11, 111, 73, 60, 225,
238, 73, 246, 169, 19, 217, 119, 38, 121, 118, 70, 82, 99, 241, 110, 67,
31, 76, 146, 215, 124, 240, 31, 103, 139, 224, 75, 160, 31, 78, 93, 4,
64, 9, 103, 223, 6, 227, 119, 85, 116, 81, 21, 43, 46, 206, 234, 132,
85, 99, 22, 131, 135, 97, 86, 13, 234, 188, 21, 14, 89, 169, 207, 238,
219, 177, 190, 72, 157, 41, 114, 140, 92, 141, 186, 1, 63, 107, 225, 184,
118, 150, 153, 254, 241, 106, 120, 210, 104, 144, 151, 161, 88, 206, 125, 164,
15, 211, 173, 49, 146, 241, 71, 36, 58, 201, 46, 27, 33, 187, 91, 162,
117, 19, 210, 213, 187, 97, 193, 50, 190, 114, 217, 60, 61, 167, 207, 213,
213, 53, 135, 34, 156, 91, 115, 119, 46, 99, 242, 1, 90, 52, 198, 227,
201, 91, 216, 146, 210, 82, 121, 38, 73, 133, 182, 193, 132, 148, 246, 75,
109, 157, 179, 113, 176, 134, 205, 159, 148, 58, 103, 171, 132, 156, 133, 147,
161, 231, 39, 100, 175, 97, 125, 28, 183, 129, 135, 191, 202, 181, 29, 218,
43, 104, 148, 203, 189, 204, 4, 182, 169, 1, 134, 122, 141, 202, 13, 187,
177, 112, 162, 35, 231, 6, 8, 241, 99, 6, 191, 45, 113, 113, 101, 104};
// The S-Box we use for further linearity breaking.
// We created it by taking the digits of decimal expansion of e.
// The code that created it can be found in 'ProduceRandomSBox.c'.
unsigned char SBox[256] = {
//0 1 2 3 4 5 6 7 8 9 A B C D E F
0x7d, 0xd1, 0x70, 0x0b, 0xfa, 0x39, 0x18, 0xc3, 0xf3, 0xbb, 0xa7, 0xd4, 0x84, 0x25, 0x3b, 0x3c, // 0
0x2c, 0x15, 0x69, 0x9a, 0xf9, 0x27, 0xfb, 0x02, 0x52, 0xba, 0xa8, 0x4b, 0x20, 0xb5, 0x8b, 0x3a, // 1
0x88, 0x8e, 0x26, 0xcb, 0x71, 0x5e, 0xaf, 0xad, 0x0c, 0xac, 0xa1, 0x93, 0xc6, 0x78, 0xce, 0xfc, // 2
0x2a, 0x76, 0x17, 0x1f, 0x62, 0xc2, 0x2e, 0x99, 0x11, 0x37, 0x65, 0x40, 0xfd, 0xa0, 0x03, 0xc1, // 3
0xca, 0x48, 0xe2, 0x9b, 0x81, 0xe4, 0x1c, 0x01, 0xec, 0x68, 0x7a, 0x5a, 0x50, 0xf8, 0x0e, 0xa3, // 4
0xe8, 0x61, 0x2b, 0xa2, 0xeb, 0xcf, 0x8c, 0x3d, 0xb4, 0x95, 0x13, 0x08, 0x46, 0xab, 0x91, 0x7b, // 5
0xea, 0x55, 0x67, 0x9d, 0xdd, 0x29, 0x6a, 0x8f, 0x9f, 0x22, 0x4e, 0xf2, 0x57, 0xd2, 0xa9, 0xbd, // 6
0x38, 0x16, 0x5f, 0x4c, 0xf7, 0x9e, 0x1b, 0x2f, 0x30, 0xc7, 0x41, 0x24, 0x5c, 0xbf, 0x05, 0xf6, // 7
0x0a, 0x31, 0xa5, 0x45, 0x21, 0x33, 0x6b, 0x6d, 0x6c, 0x86, 0xe1, 0xa4, 0xe6, 0x92, 0x9c, 0xdf, // 8
0xe7, 0xbe, 0x28, 0xe3, 0xfe, 0x06, 0x4d, 0x98, 0x80, 0x04, 0x96, 0x36, 0x3e, 0x14, 0x4a, 0x34, // 9
0xd3, 0xd5, 0xdb, 0x44, 0xcd, 0xf5, 0x54, 0xdc, 0x89, 0x09, 0x90, 0x42, 0x87, 0xff, 0x7e, 0x56, // A
0x5d, 0x59, 0xd7, 0x23, 0x75, 0x19, 0x97, 0x73, 0x83, 0x64, 0x53, 0xa6, 0x1e, 0xd8, 0xb0, 0x49, // B
0x3f, 0xef, 0xbc, 0x7f, 0x43, 0xf0, 0xc9, 0x72, 0x0f, 0x63, 0x79, 0x2d, 0xc0, 0xda, 0x66, 0xc8, // C
0x32, 0xde, 0x47, 0x07, 0xb8, 0xe9, 0x1d, 0xc4, 0x85, 0x74, 0x82, 0xcc, 0x60, 0x51, 0x77, 0x0d, // D
0xaa, 0x35, 0xed, 0x58, 0x7c, 0x5b, 0xb9, 0x94, 0x6e, 0x8d, 0xb1, 0xc5, 0xb7, 0xee, 0xb6, 0xae, // E
0x10, 0xe0, 0xd6, 0xd9, 0xe5, 0x4f, 0xf1, 0x12, 0x00, 0xd0, 0xf4, 0x1a, 0x6f, 0x8a, 0xb3, 0xb2 }; // F
///////////////////////////////////////////////////////////////////////////////////////////////
//
// Helper functions definition portion.
//
///////////////////////////////////////////////////////////////////////////////////////////////
// Don't vectorize, move decl to header file
// Translates an input array with values in base 257 to output array with values in base 256.
// Returns the carry bit.
//
// Parameters:
// - input: the input array of size EIGHTH_N. Each value in the array is a number in Z_257.
// The MSB is assumed to be the last one in the array.
// - output: the input array encoded in base 256.
//
// Returns:
// - The carry bit (MSB).
swift_int16_t TranslateToBase256(swift_int32_t input[EIGHTH_N], unsigned char output[EIGHTH_N]);
// Translates an input integer into the range (-FIELD_SIZE / 2) <= result <= (FIELD_SIZE / 2).
//
// Parameters:
// - x: the input integer.
//
// Returns:
// - The result, which equals (x MOD FIELD_SIZE), such that |result| <= (FIELD_SIZE / 2).
int Center(int x);
// Calculates bit reversal permutation.
//
// Parameters:
// - input: the input to reverse.
// - numOfBits: the number of bits in the input to reverse.
//
// Returns:
// - The resulting number, which is obtained from the input by reversing its bits.
int ReverseBits(int input, int numOfBits);
// Initializes the FFT fast lookup table.
// Shall be called only once.
void InitializeSWIFFTX();
// Calculates the FFT.
//
// Parameters:
// - input: the input to the FFT.
// - output: the resulting output.
void FFT(const unsigned char input[EIGHTH_N], swift_int32_t *output);
///////////////////////////////////////////////////////////////////////////////////////////////
// Helper functions implementation portion.
///////////////////////////////////////////////////////////////////////////////////////////////
// Don't vectorize, delete this copy.
swift_int16_t TranslateToBase256(swift_int32_t input[EIGHTH_N], unsigned char output[EIGHTH_N])
{
swift_int32_t pairs[EIGHTH_N / 2];
int i;
for (i = 0; i < EIGHTH_N; i += 2)
{
// input[i] + 257 * input[i + 1]
pairs[i >> 1] = input[i] + input[i + 1] + (input[i + 1] << 8);
}
for (i = (EIGHTH_N / 2) - 1; i > 0; --i)
{
int j;
for (j = i - 1; j < (EIGHTH_N / 2) - 1; ++j)
{
// pairs[j + 1] * 513, because 257^2 = 513 % 256^2.
register swift_int32_t temp = pairs[j] + pairs[j + 1] + (pairs[j + 1] << 9);
pairs[j] = temp & 0xffff;
pairs[j + 1] += (temp >> 16);
}
}
for (i = 0; i < EIGHTH_N; i += 2)
{
output[i] = (unsigned char) (pairs[i >> 1] & 0xff);
output[i + 1] = (unsigned char) ((pairs[i >> 1] >> 8) & 0xff);
}
return (pairs[EIGHTH_N/2 - 1] >> 16);
}
int Center(int x)
{
int result = x % FIELD_SIZE;
if (result > (FIELD_SIZE / 2))
result -= FIELD_SIZE;
if (result < (FIELD_SIZE / -2))
result += FIELD_SIZE;
return result;
}
int ReverseBits(int input, int numOfBits)
{
register int reversed = 0;
for (input |= numOfBits; input > 1; input >>= 1)
reversed = (reversed << 1) | (input & 1);
return reversed;
}
void InitializeSWIFFTX()
{
int i, j, k, x;
// The powers of OMEGA
int omegaPowers[2 * N];
omegaPowers[0] = 1;
if (wasSetupDone)
return;
for (i = 1; i < (2 * N); ++i)
{
omegaPowers[i] = Center(omegaPowers[i - 1] * OMEGA);
}
for (i = 0; i < (N / W); ++i)
{
for (j = 0; j < W; ++j)
{
multipliers[(i << 3) + j] = omegaPowers[ReverseBits(i, N / W) * (2 * j + 1)];
}
}
for (x = 0; x < 256; ++x)
{
for (j = 0; j < 8; ++j)
{
register int temp = 0;
for (k = 0; k < 8; ++k)
{
temp += omegaPowers[(EIGHTH_N * (2 * j + 1) * ReverseBits(k, W)) % (2 * N)]
* ((x >> k) & 1);
}
fftTable[(x << 3) + j] = Center(temp);
}
}
wasSetupDone = true;
}
// input should be deinterleaved in contiguos memory
// output and F are 4x32
// multipliers & fftTable are scalar 16
void FFT_4way(const unsigned char input[EIGHTH_N], swift_int32_t *output)
{
swift_int16_t *mult = multipliers;
m128_swift_int32_t F[64];
for (int i = 0; i < 8; i++)
{
int j = i<<3;
// Need to isolate bytes in input, 8 bytes per lane.
// Each iteration of the loop process one input vector
// Each lane reads a different index to ffttable.
// deinterleave the input!
// load table with 4 lanes from different indexes into fftTable
// extract bytes into m128 4x16
// mutiply by vectorized mult
// input[lane][byte]
__m128i table;
table = _mm_set_epi32( fftTable[ input[3][i] ],
fftTable[ input[2][i] ],
fftTable[ input[1][i] ],
fftTable[ input[0][i] ] );
F[i ] = _mm_mullo_epi32( mm128_const1_32( mult[j+0] ), table );
table = _mm_set_epi32( fftTable[ input[3][i+1] ]
fftTable[ input[2][i+1] ]
fftTable[ input[1][i+1] ]
fftTable[ input[0][i+1] ] );
F[i+8] = _mm_mullo_epi32( mm128_const1_32( mult[j+0] ), table );
m128_swift_int16_t *table = &( fftTable[input[i] << 3] );
F[i ] = _mm_mullo_epi32( mm128_const1_32( mult[j+0] ),
mm128_const1_32( table[0] ) );
F[i+ 8] = _mm_mullo_epi32( mm128_const1_32( mult[j+1] ),
mm128_const1_32( table[1] ) );
F[i+16] = _mm_mullo_epi32( mm128_const1_32( mult[j+2] ),
mm128_const1_32( table[2] ) );
F[i+24] = _mm_mullo_epi32( mm128_const1_32( mult[j+3] ),
mm128_const1_32( table[3] ) );
F[i+32] = _mm_mullo_epi32( mm128_const1_32( mult[j+4] ),
mm128_const1_32( table[4] ) );
F[i+40] = _mm_mullo_epi32( mm128_const1_32( mult[j+5] ),
mm128_const1_32( table[5] ) );
F[i+48] = _mm_mullo_epi32( mm128_const1_32( mult[j+6] ),
mm128_const1_32( table[6] ) );
F[i+56] = _mm_mullo_epi32( mm128_const1_32( mult[j+7] ),
mm128_const1_32( table[7] ) );
}
for ( int i = 0; i < 8; i++ )
{
int j = i<<3;
ADD_SUB_4WAY( F[j ], F[j+1] );
ADD_SUB_4WAY( F[j+2], F[j+3] );
ADD_SUB_4WAY( F[j+4], F[j+5] );
ADD_SUB_4WAY( F[j+6], F[j+7] );
F[j+3] = _mm_slli_epi32( F[j+3], 4 );
F[j+7] = _mm_slli_epi32( F[j+7], 4 );
ADD_SUB_4WAY( F[j ], F[j+2] );
ADD_SUB_4WAY( F[j+1], F[j+3] );
ADD_SUB_4WAY( F[j+4], F[j+6] );
ADD_SUB_4WAY( F[j+5], F[j+7] );
F[j+5] = _mm_slli_epi32( F[j+5], 2 );
F[j+6] = _mm_slli_epi32( F[j+6], 4 );
F[j+7] = _mm_slli_epi32( F[j+7], 6 );
ADD_SUB_4WAY( F[j ], F[j+4] );
ADD_SUB_4WAY( F[j+1], F[j+5] );
ADD_SUB_4WAY( F[j+2], F[j+6] );
ADD_SUB_4WAY( F[j+3], F[j+7] );
output[i ] = Q_REDUCE_4WAY( F[j ] );
output[i+ 8] = Q_REDUCE_4WAY( F[j+1] );
output[i+16] = Q_REDUCE_4WAY( F[j+2] );
output[i+24] = Q_REDUCE_4WAY( F[j+3] );
output[i+32] = Q_REDUCE_4WAY( F[j+4] );
output[i+40] = Q_REDUCE_4WAY( F[j+5] );
output[i+48] = Q_REDUCE_4WAY( F[j+6] );
output[i+56] = Q_REDUCE_4WAY( F[j+7] );
}
}
// Calculates the FFT part of SWIFFT.
// We divided the SWIFFT calculation into two, because that way we could save 2 computations of
// the FFT part, since in the first stage of SWIFFTX the difference between the first 3 SWIFFTs
// is only the A's part.
//
// Parameters:
// - input: the input to FFT.
// - m: the input size divided by 8. The function performs m FFTs.
// - output: will store the result.
void SWIFFTFFT(const unsigned char *input, int m, swift_int32_t *output)
{
int i;
for (i = 0;
i < m;
i++, input += EIGHTH_N, output += N)
{
FFT(input, output);
}
}
// Calculates the 'sum' part of SWIFFT, including the base change at the end.
// We divided the SWIFFT calculation into two, because that way we could save 2 computations of
// the FFT part, since in the first stage of SWIFFTX the difference between the first 3 SWIFFTs
// is only the A's part.
//
// Parameters:
// - input: the input. Of size 64 * m.
// - m: the input size divided by 64.
// - output: will store the result.
// - a: the coefficients in the sum. Of size 64 * m.
void SWIFFTSum(const swift_int32_t *input, int m, unsigned char *output, const swift_int16_t *a)
{
int i, j;
swift_int32_t result[N];
register swift_int16_t carry = 0;
for (j = 0; j < N; ++j)
{
register swift_int32_t sum = 0;
const register swift_int32_t *f = input + j;
const register swift_int16_t *k = a + j;
for (i = 0; i < m; i++, f += N,k += N)
{
sum += (*f) * (*k);
}
result[j] = sum;
}
for (j = 0; j < N; ++j)
{
result[j] = ((FIELD_SIZE << 22) + result[j]) % FIELD_SIZE;
}
for (j = 0; j < 8; ++j)
{
int register carryBit = TranslateToBase256(result + (j << 3), output + (j << 3));
carry |= carryBit << j;
}
output[N] = carry;
}
// On entry input is interleaved 4x64. SIZE is *4 lanes / 8 bytes,
// multiply by 2.
void ComputeSingleSWIFFTX_4way( unsigned char input[SWIFFTX_INPUT_BLOCK_SIZE],
unsigned char output[SWIFFTX_OUTPUT_BLOCK_SIZE],
bool doSmooth)
{
int i;
// Will store the result of the FFT parts:
m128_swift_int32_t fftOut[N * M];
// swift_int32_t fftOut[N * M];
unsigned char intermediate[N * 3 + 8];
unsigned char carry0,carry1,carry2;
// Do the three SWIFFTS while remembering the three carry bytes (each carry byte gets
// overriden by the following SWIFFT):
// 1. Compute the FFT of the input - the common part for the first 3 SWIFFTs:
SWIFFTFFT(input, M, fftOut);
// 2. Compute the sums of the 3 SWIFFTs, each using a different set of coefficients:
// 2a. The first SWIFFT:
SWIFFTSum(fftOut, M, intermediate, As);
// Remember the carry byte:
carry0 = intermediate[N];
// 2b. The second one:
SWIFFTSum(fftOut, M, intermediate + N, As + (M * N));
carry1 = intermediate[2 * N];
// 2c. The third one:
SWIFFTSum(fftOut, M, intermediate + (2 * N), As + 2 * (M * N));
carry2 = intermediate[3 * N];
//2d. Put three carry bytes in their place
intermediate[3 * N] = carry0;
intermediate[(3 * N) + 1] = carry1;
intermediate[(3 * N) + 2] = carry2;
// Padding intermediate output with 5 zeroes.
memset(intermediate + (3 * N) + 3, 0, 5);
// Apply the S-Box:
for (i = 0; i < (3 * N) + 8; ++i)
{
intermediate[i] = SBox[intermediate[i]];
}
// 3. The final and last SWIFFT:
SWIFFTFFT(intermediate, 3 * (N/8) + 1, fftOut);
SWIFFTSum(fftOut, 3 * (N/8) + 1, output, As);
if (doSmooth)
{
unsigned char sum[N];
register int i, j;
memset(sum, 0, N);
for (i = 0; i < (N + 1) * 8; ++i)
{
register const swift_int16_t *AsRow;
register int AShift;
if (!(output[i >> 3] & (1 << (i & 7))))
{
continue;
}
AsRow = As + N * M + (i & ~(N - 1)) ;
AShift = i & 63;
for (j = AShift; j < N; ++j)
{
sum[j] += AsRow[j - AShift];
}
for(j = 0; j < AShift; ++j)
{
sum[j] -= AsRow[N - AShift + j];
}
}
for (i = 0; i < N; ++i)
{
output[i] = sum[i];
}
output[N] = 0;
}
}

1243
algo/swifftx/swifftx.c Normal file

File diff suppressed because it is too large Load Diff

1155
algo/swifftx/swifftx.c.bak Normal file

File diff suppressed because it is too large Load Diff

78
algo/swifftx/swifftx.h Normal file
View File

@@ -0,0 +1,78 @@
///////////////////////////////////////////////////////////////////////////////////////////////
//
// SWIFFTX ANSI C OPTIMIZED 32BIT IMPLEMENTATION FOR NIST SHA-3 COMPETITION
//
// SWIFFTX.h
//
// October 2008
//
// This file is the exact copy from the reference implementation.
//
///////////////////////////////////////////////////////////////////////////////////////////////
#ifndef __SWIFFTX__
#define __SWIFFTX__
#ifdef __cplusplus
extern "C"{
#endif
// See the remarks concerning compatibility issues inside stdint.h.
//#include <stdint.h>
#include <stdbool.h>
#include "stdint.h"
//#include "stdbool.h"
//#include "SHA3swift.h"
// The size of SWIFFTX input in bytes.
#define SWIFFTX_INPUT_BLOCK_SIZE 256
// The size of output block in bytes. The compression function of SWIFFT outputs a block of
// this size (i.e., this is the size of the resulting hash value).
#define SWIFFTX_OUTPUT_BLOCK_SIZE 65
// Computes the result of a single SWIFFT operation.
// This is the simple implementation, where our main concern is to show our design principles.
// It is made more efficient in the optimized version, by using FFT instead of DFT, and
// through other speed-up techniques.
//
// Parameters:
// - input: the input string. Consists of 8*m input bytes, where each octet passes the DFT
// processing.
// - m: the length of the input in bytes.
// - output: the resulting hash value of SWIFFT, of size 65 bytes (520 bit). This is the
// result of summing the dot products of the DFTS with the A's after applying the base
// change transformation
// - A: the A's coefficients to work with (since every SWIFFT in SWIFFTX uses different As).
// A single application of SWIFFT uses 64*m A's.
void ComputeSingleSWIFFT(unsigned char *input, unsigned short m,
unsigned char output[SWIFFTX_OUTPUT_BLOCK_SIZE],
const swift_int16_t *a);
// Computes the result of a single SWIFFTX operation.
// NOTE: for simplicity we use 'ComputeSingleSWIFFT()' as a subroutine. This is only to show
// the design idea. In the optimized versions we don't do this for efficiency concerns, since
// there we compute the first part (which doesn't involve the A coefficients) only once for all
// of the 3 invocations of SWIFFT. This enables us to introduce a significant speedup.
//
// Parameters:
// - input: the input input of 256 bytes (2048 bit).
// - output: the resulting hash value of SWIFFT, of size 64 bytes (512 bit).
// - doSMooth: if true, a final smoothing stage is performed and the output is of size 512 bits.
//
// Returns:
// - Success value.
void ComputeSingleSWIFFTX( unsigned char input[SWIFFTX_INPUT_BLOCK_SIZE],
unsigned char output[SWIFFTX_OUTPUT_BLOCK_SIZE] );
void ComputeSingleSWIFFTX_smooth( unsigned char input[SWIFFTX_INPUT_BLOCK_SIZE],
unsigned char output[SWIFFTX_OUTPUT_BLOCK_SIZE], bool doSmooth);
// Calculates the powers of OMEGA and generates the bit reversal permutation.
// You must call this function before doing SWIFFT/X, otherwise you will get zeroes everywhere.
void InitializeSWIFFTX();
#ifdef __cplusplus
}
#endif
#endif // __SWIFFTX__

View File

@@ -45,12 +45,12 @@ void init_tt8_4way_ctx()
void timetravel_4way_hash(void *output, const void *input)
{
uint64_t hash0[8] __attribute__ ((aligned (64)));
uint64_t hash1[8] __attribute__ ((aligned (64)));
uint64_t hash2[8] __attribute__ ((aligned (64)));
uint64_t hash3[8] __attribute__ ((aligned (64)));
uint64_t vhashX[8*4] __attribute__ ((aligned (64)));
uint64_t vhashY[8*4] __attribute__ ((aligned (64)));
uint64_t hash0[10] __attribute__ ((aligned (64)));
uint64_t hash1[10] __attribute__ ((aligned (64)));
uint64_t hash2[10] __attribute__ ((aligned (64)));
uint64_t hash3[10] __attribute__ ((aligned (64)));
uint64_t vhashX[10*4] __attribute__ ((aligned (64)));
uint64_t vhashY[10*4] __attribute__ ((aligned (64)));
uint64_t *vhashA, *vhashB;
tt8_4way_ctx_holder ctx __attribute__ ((aligned (64)));
uint32_t dataLen = 64;

View File

@@ -51,12 +51,12 @@ void init_tt10_4way_ctx()
void timetravel10_4way_hash(void *output, const void *input)
{
uint64_t hash0[8] __attribute__ ((aligned (64)));
uint64_t hash1[8] __attribute__ ((aligned (64)));
uint64_t hash2[8] __attribute__ ((aligned (64)));
uint64_t hash3[8] __attribute__ ((aligned (64)));
uint64_t vhashX[8*4] __attribute__ ((aligned (64)));
uint64_t vhashY[8*4] __attribute__ ((aligned (64)));
uint64_t hash0[10] __attribute__ ((aligned (64)));
uint64_t hash1[10] __attribute__ ((aligned (64)));
uint64_t hash2[10] __attribute__ ((aligned (64)));
uint64_t hash3[10] __attribute__ ((aligned (64)));
uint64_t vhashX[10*4] __attribute__ ((aligned (64)));
uint64_t vhashY[10*4] __attribute__ ((aligned (64)));
uint64_t *vhashA, *vhashB;
tt10_4way_ctx_holder ctx __attribute__ ((aligned (64)));
uint32_t dataLen = 64;

View File

@@ -108,7 +108,7 @@ void x12_4way_hash( void *state, const void *input )
intrlv_2x128( vhash, hash2, hash3, 512 );
luffa_2way_init( &ctx.luffa, 512 );
luffa_2way_update_close( &ctx.luffa, vhash, vhash, 64 );
intrlv_2x128( hash2, hash3, vhash, 512 );
dintrlv_2x128( hash2, hash3, vhash, 512 );
// 8 Cubehash
cubehashUpdateDigest( &ctx.cube, (byte*)hash0, (const byte*) hash0, 64 );

View File

@@ -12,7 +12,6 @@
#include "algo/skein/skein-hash-4way.h"
#include "algo/jh/jh-hash-4way.h"
#include "algo/keccak/keccak-hash-4way.h"
//#include "algo/luffa/luffa-hash-2way.h"
#include "algo/cubehash/cubehash_sse2.h"
#include "algo/shavite/sph_shavite.h"
#include "algo/simd/simd-hash-2way.h"
@@ -28,7 +27,6 @@ typedef struct {
skein512_4way_context skein;
jh512_4way_context jh;
keccak512_4way_context keccak;
// luffa_2way_context luffa;
cubehashParam cube;
sph_shavite512_context shavite;
simd_2way_context simd;
@@ -49,7 +47,6 @@ void init_x13bcd_4way_ctx()
skein512_4way_init( &x13bcd_4way_ctx.skein );
jh512_4way_init( &x13bcd_4way_ctx.jh );
keccak512_4way_init( &x13bcd_4way_ctx.keccak );
// luffa_2way_init( &x13bcd_4way_ctx.luffa, 512 );
cubehashInit( &x13bcd_4way_ctx.cube, 512, 16, 32 );
sph_shavite512_init( &x13bcd_4way_ctx.shavite );
simd_2way_init( &x13bcd_4way_ctx.simd, 512 );
@@ -72,8 +69,6 @@ void x13bcd_4way_hash( void *state, const void *input )
// Blake
memcpy( &ctx.blake, &x13bcd_ctx_mid, sizeof(x13bcd_ctx_mid) );
blake512_4way( &ctx.blake, input + (64<<2), 16 );
// blake512_4way( &ctx.blake, input, 80 );
blake512_4way_close( &ctx.blake, vhash );
// Bmw
@@ -127,17 +122,6 @@ void x13bcd_4way_hash( void *state, const void *input )
sm3_4way_close( &ctx.sm3, sm3_vhash );
dintrlv_4x32( hash0, hash1, hash2, hash3, sm3_vhash, 512 );
/*
// Luffa
intrlv_2x128( vhash, hash0, hash1, 512 );
luffa_2way_update_close( &ctx.luffa, vhash, vhash, 64 );
dintrlv_2x128( hash0, hash1, vhash, 512 );
intrlv_2x128( vhash, hash2, hash3, 512 );
luffa_2way_init( &ctx.luffa, 512 );
luffa_2way_update_close( &ctx.luffa, vhash, vhash, 64 );
dintrlv_2x128( hash2, hash3, vhash, 512 );
*/
// Cubehash
cubehashUpdateDigest( &ctx.cube, (byte*)hash0, (const byte*) hash0, 64 );
memcpy( &ctx.cube, &x13bcd_4way_ctx.cube, sizeof(cubehashParam) );
@@ -185,26 +169,6 @@ void x13bcd_4way_hash( void *state, const void *input )
update_final_echo( &ctx.echo, (BitSequence *)hash3,
(const BitSequence *) hash3, 512 );
/*
intrlv_4x32( vhash, hash0, hash1, hash2, hash3, 512 );
// SM3 parallel 32 bit
uint32_t sm3_vhash[32*4] __attribute__ ((aligned (64)));
memset( sm3_vhash, 0, sizeof sm3_vhash );
uint32_t sm3_hash0[32] __attribute__ ((aligned (32)));
memset( sm3_hash0, 0, sizeof sm3_hash0 );
uint32_t sm3_hash1[32] __attribute__ ((aligned (32)));
memset( sm3_hash1, 0, sizeof sm3_hash1 );
uint32_t sm3_hash2[32] __attribute__ ((aligned (32)));
memset( sm3_hash2, 0, sizeof sm3_hash2 );
uint32_t sm3_hash3[32] __attribute__ ((aligned (32)));
memset( sm3_hash3, 0, sizeof sm3_hash3 );
sm3_4way( &ctx.sm3, vhash, 64 );
sm3_4way_close( &ctx.sm3, sm3_vhash );
dintrlv_4x32( hash0, hash1, hash2, hash3, sm3_vhash, 512 );
*/
// Hamsi parallel 4x32x2
intrlv_4x64( vhash, hash0, hash1, hash2, hash3, 512 );
hamsi512_4way( &ctx.hamsi, vhash, 64 );

View File

@@ -275,34 +275,31 @@ int scanhash_x16r_4way( struct work *work, uint32_t max_nonce,
{
uint32_t hash[4*16] __attribute__ ((aligned (64)));
uint32_t vdata[24*4] __attribute__ ((aligned (64)));
uint32_t endiandata[20] __attribute__((aligned(64)));
uint32_t bedata1[2] __attribute__((aligned(64)));
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
const uint32_t Htarg = ptarget[7];
const uint32_t first_nonce = pdata[19];
uint32_t n = first_nonce;
int thr_id = mythr->id; // thr_id arg is deprecated
__m256i *noncev = (__m256i*)vdata + 9; // aligned
int thr_id = mythr->id;
volatile uint8_t *restart = &(work_restart[thr_id].restart);
casti_m256i( endiandata, 0 ) = mm256_bswap_32( casti_m256i( pdata, 0 ) );
casti_m256i( endiandata, 1 ) = mm256_bswap_32( casti_m256i( pdata, 1 ) );
casti_m128i( endiandata, 4 ) = mm128_bswap_32( casti_m128i( pdata, 4 ) );
if ( s_ntime != endiandata[17] )
{
uint32_t ntime = swab32(pdata[17]);
x16_r_s_getAlgoString( (const uint8_t*) (&endiandata[1]), hashOrder );
s_ntime = ntime;
if ( opt_debug && !thr_id )
applog( LOG_DEBUG, "hash order %s (%08x)", hashOrder, ntime );
}
if ( opt_benchmark )
ptarget[7] = 0x0cff;
uint64_t *edata = (uint64_t*)endiandata;
intrlv_4x64( (uint64_t*)vdata, edata, edata, edata, edata, 640 );
mm256_bswap32_intrlv80_4x64( vdata, pdata );
bedata1[0] = bswap_32( pdata[1] );
bedata1[1] = bswap_32( pdata[2] );
const uint32_t ntime = bswap_32( pdata[17] );
if ( s_ntime != ntime )
{
x16_r_s_getAlgoString( (const uint8_t*)bedata1, hashOrder );
s_ntime = ntime;
if ( opt_debug && !thr_id )
applog( LOG_DEBUG, "hash order %s (%08x)", hashOrder, ntime );
}
do
{
@@ -312,14 +309,15 @@ int scanhash_x16r_4way( struct work *work, uint32_t max_nonce,
x16r_4way_hash( hash, vdata );
pdata[19] = n;
for ( int i = 0; i < 4; i++ ) if ( (hash+(i<<3))[7] <= Htarg )
if( fulltest( hash+(i<<3), ptarget ) && !opt_benchmark )
for ( int i = 0; i < 4; i++ )
if ( unlikely( (hash+(i<<3))[7] <= Htarg ) )
if( likely( fulltest( hash+(i<<3), ptarget ) && !opt_benchmark ) )
{
pdata[19] = n+i;
submit_lane_solution( work, hash+(i<<3), mythr, i );
}
n += 4;
} while ( ( n < max_nonce ) && !(*restart) );
} while ( likely( ( n < max_nonce ) && !(*restart) ) );
*hashes_done = n - first_nonce + 1;
return 0;

View File

@@ -24,7 +24,6 @@
#include "algo/sha/sha-hash-4way.h"
static __thread uint32_t s_ntime = UINT32_MAX;
static __thread bool s_implemented = false;
static __thread char hashOrder[X16R_HASH_FUNC_COUNT + 1] = { 0 };
union _x16rt_4way_context_overlay
@@ -64,26 +63,8 @@ void x16rt_4way_hash( void* output, const void* input )
dintrlv_4x64( hash0, hash1, hash2, hash3, input, 640 );
/*
void *in = (void*) input;
uint32_t *in32 = (uint32_t*) hash0;
uint32_t ntime = in32[17];
if ( s_ntime == UINT32_MAX )
{
uint32_t _ALIGN(64) timeHash[8];
x16rt_getTimeHash(ntime, &timeHash);
x16rt_getAlgoString(&timeHash[0], hashOrder);
}
*/
// Input data is both 64 bit interleaved (input)
// and deinterleaved in inp0-3.
// If First function uses 64 bit data it is not required to interleave inp
// first. It may use the inerleaved data dmost convenient, ie 4way 64 bit.
// All other functions assume data is deinterleaved in hash0-3
// All functions must exit with data deinterleaved in hash0-3.
// Alias in0-3 points to either inp0-3 or hash0-3 according to
// its hashOrder position. Size is also set accordingly.
// and deinterleaved in inp0-3. First function has no need re-interleave.
for ( int i = 0; i < 16; i++ )
{
const char elem = hashOrder[i];
@@ -290,44 +271,31 @@ int scanhash_x16rt_4way( struct work *work, uint32_t max_nonce,
{
uint32_t hash[4*16] __attribute__ ((aligned (64)));
uint32_t vdata[24*4] __attribute__ ((aligned (64)));
uint32_t endiandata[20] __attribute__((aligned(64)));
uint32_t _ALIGN(64) timeHash[4*8];
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
const uint32_t Htarg = ptarget[7];
const uint32_t first_nonce = pdata[19];
uint32_t n = first_nonce;
int thr_id = mythr->id; // thr_id arg is deprecated
int thr_id = mythr->id;
__m256i *noncev = (__m256i*)vdata + 9; // aligned
volatile uint8_t *restart = &(work_restart[thr_id].restart);
casti_m256i( endiandata, 0 ) = mm256_bswap_32( casti_m256i( pdata, 0 ) );
casti_m256i( endiandata, 1 ) = mm256_bswap_32( casti_m256i( pdata, 1 ) );
casti_m128i( endiandata, 4 ) = mm128_bswap_32( casti_m128i( pdata, 4 ) );
if ( opt_benchmark )
ptarget[7] = 0x0cff;
uint32_t ntime = swab32( pdata[17] );
mm256_bswap32_intrlv80_4x64( vdata, pdata );
uint32_t ntime = bswap_32( pdata[17] );
if ( s_ntime != ntime )
{
x16rt_getTimeHash( ntime, &timeHash );
x16rt_getAlgoString( &timeHash[0], hashOrder );
s_ntime = ntime;
s_implemented = true;
if ( opt_debug && !thr_id )
applog( LOG_INFO, "hash order: %s time: (%08x) time hash: (%08x)",
hashOrder, ntime, timeHash );
}
if ( !s_implemented )
{
applog( LOG_WARNING, "s not implemented");
sleep(1);
return 0;
}
if ( opt_benchmark )
ptarget[7] = 0x0cff;
uint64_t *edata = (uint64_t*)endiandata;
intrlv_4x64( (uint64_t*)vdata, edata, edata, edata, edata, 640 );
do
{

View File

@@ -331,35 +331,32 @@ int scanhash_x16rv2_4way( struct work *work, uint32_t max_nonce,
{
uint32_t hash[4*16] __attribute__ ((aligned (64)));
uint32_t vdata[24*4] __attribute__ ((aligned (64)));
uint32_t endiandata[20] __attribute__((aligned(64)));
uint32_t bedata1[2] __attribute__((aligned(64)));
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
const uint32_t Htarg = ptarget[7];
const uint32_t first_nonce = pdata[19];
uint32_t n = first_nonce;
int thr_id = mythr->id; // thr_id arg is deprecated
int thr_id = mythr->id;
__m256i *noncev = (__m256i*)vdata + 9; // aligned
volatile uint8_t *restart = &(work_restart[thr_id].restart);
casti_m256i( endiandata, 0 ) = mm256_bswap_32( casti_m256i( pdata, 0 ) );
casti_m256i( endiandata, 1 ) = mm256_bswap_32( casti_m256i( pdata, 1 ) );
casti_m128i( endiandata, 4 ) = mm128_bswap_32( casti_m128i( pdata, 4 ) );
if ( opt_benchmark )
ptarget[7] = 0x0fff;
mm256_bswap32_intrlv80_4x64( vdata, pdata );
if ( s_ntime != endiandata[17] )
bedata1[0] = bswap_32( pdata[1] );
bedata1[1] = bswap_32( pdata[2] );
const uint32_t ntime = bswap_32(pdata[17]);
if ( s_ntime != ntime )
{
uint32_t ntime = swab32(pdata[17]);
x16_r_s_getAlgoString( (const uint8_t*) (&endiandata[1]), hashOrder );
x16_r_s_getAlgoString( (const uint8_t*)bedata1, hashOrder );
s_ntime = ntime;
if ( opt_debug && !thr_id )
applog( LOG_DEBUG, "hash order %s (%08x)", hashOrder, ntime );
}
if ( opt_benchmark )
ptarget[7] = 0x0cff;
uint64_t *edata = (uint64_t*)endiandata;
intrlv_4x64( (uint64_t*)vdata, edata, edata, edata, edata, 640 );
do
{
*noncev = mm256_intrlv_blend_32( mm256_bswap_32(
@@ -368,14 +365,15 @@ int scanhash_x16rv2_4way( struct work *work, uint32_t max_nonce,
x16rv2_4way_hash( hash, vdata );
pdata[19] = n;
for ( int i = 0; i < 4; i++ ) if ( (hash+(i<<3))[7] <= Htarg )
if( fulltest( hash+(i<<3), ptarget ) && !opt_benchmark )
for ( int i = 0; i < 4; i++ )
if ( unlikely( (hash+(i<<3))[7] <= Htarg ) )
if( likely( fulltest( hash+(i<<3), ptarget ) && !opt_benchmark ) )
{
pdata[19] = n+i;
submit_lane_solution( work, hash+(i<<3), mythr, i );
}
n += 4;
} while ( ( n < max_nonce ) && !(*restart) );
} while ( likely( ( n < max_nonce ) && !(*restart) ) );
*hashes_done = n - first_nonce + 1;
return 0;

View File

@@ -368,7 +368,7 @@ int scanhash_x21s_4way( struct work *work, uint32_t max_nonce,
{
uint32_t hash[4*16] __attribute__ ((aligned (64)));
uint32_t vdata[24*4] __attribute__ ((aligned (64)));
uint32_t endiandata[20] __attribute__((aligned(64)));
uint32_t bedata1[2] __attribute__((aligned(64)));
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
const uint32_t Htarg = ptarget[7];
@@ -378,25 +378,22 @@ int scanhash_x21s_4way( struct work *work, uint32_t max_nonce,
__m256i *noncev = (__m256i*)vdata + 9; // aligned
volatile uint8_t *restart = &(work_restart[thr_id].restart);
casti_m256i( endiandata, 0 ) = mm256_bswap_32( casti_m256i( pdata, 0 ) );
casti_m256i( endiandata, 1 ) = mm256_bswap_32( casti_m256i( pdata, 1 ) );
casti_m128i( endiandata, 4 ) = mm128_bswap_32( casti_m128i( pdata, 4 ) );
if ( opt_benchmark )
ptarget[7] = 0x0cff;
mm256_bswap32_intrlv80_4x64( vdata, pdata );
if ( s_ntime != endiandata[17] )
bedata1[0] = bswap_32( pdata[1] );
bedata1[1] = bswap_32( pdata[2] );
uint32_t ntime = bswap_32( pdata[17] );
if ( s_ntime != ntime )
{
uint32_t ntime = swab32(pdata[17]);
x16_r_s_getAlgoString( (const uint8_t*) (&endiandata[1]), hashOrder );
x16_r_s_getAlgoString( (const uint8_t*)bedata1, hashOrder );
s_ntime = ntime;
if ( opt_debug && !thr_id )
applog( LOG_DEBUG, "hash order %s (%08x)", hashOrder, ntime );
}
if ( opt_benchmark )
ptarget[7] = 0x0cff;
uint64_t *edata = (uint64_t*)endiandata;
intrlv_4x64( (uint64_t*)vdata, edata, edata, edata, edata, 640 );
do
{
*noncev = mm256_intrlv_blend_32( mm256_bswap_32(

View File

@@ -803,52 +803,40 @@ void sonoa_4way_hash( void *state, const void *input )
haval256_5_4way_close( &ctx.haval, state );
}
int scanhash_sonoa_4way( struct work *work, uint32_t max_nonce,
int scanhash_sonoa_4way( struct work *work, const uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t hash[4*16] __attribute__ ((aligned (64)));
uint32_t vdata[24*4] __attribute__ ((aligned (64)));
uint32_t lane_hash[8] __attribute__ ((aligned (32)));
uint32_t *hash7 = &(hash[7<<2]);
uint32_t *hash7 = &( hash[7<<2] );
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
uint32_t n = pdata[19];
const uint32_t *ptarget = work->target;
const uint32_t first_nonce = pdata[19];
__m256i *noncev = (__m256i*)vdata + 9; // aligned
const uint32_t Htarg = ptarget[7];
int thr_id = mythr->id;
uint64_t htmax[] = { 0, 0xF, 0xFF,
0xFFF, 0xFFFF, 0x10000000 };
uint32_t masks[] = { 0xFFFFFFFF, 0xFFFFFFF0, 0xFFFFFF00,
0xFFFFF000, 0xFFFF0000, 0 };
uint32_t n = first_nonce;
__m256i *noncev = (__m256i*)vdata + 9; // aligned
const int thr_id = mythr->id;
// Need big endian data
mm256_bswap32_intrlv80_4x64( vdata, pdata );
for ( int m=0; m < 6; m++ ) if ( Htarg <= htmax[m] )
do
{
uint32_t mask = masks[m];
do
*noncev = mm256_intrlv_blend_32( mm256_bswap_32(
_mm256_set_epi32( n+3, 0,n+2, 0,n+1, 0, n, 0 ) ), *noncev );
sonoa_4way_hash( hash, vdata );
for ( int lane = 0; lane < 4; lane++ )
if ( unlikely( hash7[ lane ] <= Htarg ) )
{
*noncev = mm256_intrlv_blend_32( mm256_bswap_32(
_mm256_set_epi32( n+3, 0,n+2, 0,n+1, 0, n, 0 ) ),
*noncev );
sonoa_4way_hash( hash, vdata );
for ( int lane = 0; lane < 4; lane++ )
if ( ( ( hash7[ lane ] & mask ) == 0 ) )
extr_lane_4x32( lane_hash, hash, lane, 256 );
if ( likely( fulltest( lane_hash, ptarget ) && !opt_benchmark ) )
{
extr_lane_4x32( lane_hash, hash, lane, 256 );
if ( fulltest( lane_hash, ptarget ) && !opt_benchmark )
{
pdata[19] = n + lane;
submit_lane_solution( work, lane_hash, mythr, lane );
}
pdata[19] = n + lane;
submit_lane_solution( work, lane_hash, mythr, lane );
}
n += 4;
} while ( ( n < max_nonce - 4 ) && !work_restart[thr_id].restart );
break;
}
}
n += 4;
} while ( ( n < max_nonce - 4 ) && !work_restart[thr_id].restart );
*hashes_done = n - first_nonce + 1;
return 0;
}

View File

@@ -205,50 +205,40 @@ void x17_4way_hash( void *state, const void *input )
int scanhash_x17_4way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t hash[4*16] __attribute__ ((aligned (64)));
uint32_t vdata[24*4] __attribute__ ((aligned (64)));
uint32_t lane_hash[8] __attribute__ ((aligned (32)));
uint32_t *hash7 = &(hash[7<<2]);
uint32_t *pdata = work->data;
const uint32_t *ptarget = work->target;
const uint32_t first_nonce = pdata[19];
__m256i *noncev = (__m256i*)vdata + 9; // aligned
uint32_t n = first_nonce;
const int thr_id = mythr->id;
const uint32_t Htarg = ptarget[7];
uint64_t htmax[] = { 0, 0xF, 0xFF,
0xFFF, 0xFFFF, 0x10000000 };
uint32_t masks[] = { 0xFFFFFFFF, 0xFFFFFFF0, 0xFFFFFF00,
0xFFFFF000, 0xFFFF0000, 0 };
uint32_t hash[4*16] __attribute__ ((aligned (64)));
uint32_t vdata[24*4] __attribute__ ((aligned (64)));
uint32_t lane_hash[8] __attribute__ ((aligned (32)));
uint32_t *hash7 = &(hash[7<<2]);
uint32_t *pdata = work->data;
const uint32_t *ptarget = work->target;
const uint32_t first_nonce = pdata[19];
__m256i *noncev = (__m256i*)vdata + 9; // aligned
uint32_t n = first_nonce;
const int thr_id = mythr->id;
const uint32_t Htarg = ptarget[7];
// Need big endian data
mm256_bswap32_intrlv80_4x64( vdata, pdata );
for ( int m = 0; m < 6; m++ ) if ( Htarg <= htmax[m] )
{
const uint32_t mask = masks[ m ];
do
{
*noncev = mm256_intrlv_blend_32( mm256_bswap_32(
_mm256_set_epi32( n+3, 0, n+2, 0, n+1, 0, n, 0 ) ), *noncev );
x17_4way_hash( hash, vdata );
mm256_bswap32_intrlv80_4x64( vdata, pdata );
do
{
*noncev = mm256_intrlv_blend_32( mm256_bswap_32(
_mm256_set_epi32( n+3, 0, n+2, 0, n+1, 0, n, 0 ) ), *noncev );
x17_4way_hash( hash, vdata );
for ( int lane = 0; lane < 4; lane++ )
if ( ( hash7[ lane ] & mask ) == 0 )
{
extr_lane_4x32( lane_hash, hash, lane, 256 );
if ( fulltest( lane_hash, ptarget ) && !opt_benchmark )
{
pdata[19] = n + lane;
submit_lane_solution( work, lane_hash, mythr, lane );
}
}
n += 4;
} while ( ( n < max_nonce - 4 ) && !work_restart[thr_id].restart );
break;
}
for ( int lane = 0; lane < 4; lane++ )
if unlikely( ( hash7[ lane ] <= Htarg ) )
{
extr_lane_4x32( lane_hash, hash, lane, 256 );
if ( likely( fulltest( lane_hash, ptarget ) && !opt_benchmark ) )
{
pdata[19] = n + lane;
submit_lane_solution( work, lane_hash, mythr, lane );
}
}
n += 4;
} while ( likely( ( n < max_nonce - 4 ) && !work_restart[thr_id].restart ) );
*hashes_done = n - first_nonce + 1;
return 0;
*hashes_done = n - first_nonce + 1;
return 0;
}
#endif

311
algo/x22/x22i-4way.c Normal file
View File

@@ -0,0 +1,311 @@
#include "x22i-gate.h"
#if defined(X22I_4WAY)
#include "algo/blake/blake-hash-4way.h"
#include "algo/bmw/bmw-hash-4way.h"
#include "algo/echo/aes_ni/hash_api.h"
#include "algo/groestl/aes_ni/hash-groestl.h"
#include "algo/skein/skein-hash-4way.h"
#include "algo/jh/jh-hash-4way.h"
#include "algo/keccak/keccak-hash-4way.h"
#include "algo/luffa/luffa-hash-2way.h"
#include "algo/cubehash/cube-hash-2way.h"
#include "algo/shavite/shavite-hash-2way.h"
#include "algo/simd/simd-hash-2way.h"
#include "algo/shavite/sph_shavite.h"
#include "algo/hamsi/hamsi-hash-4way.h"
#include "algo/fugue/sph_fugue.h"
#include "algo/shabal/shabal-hash-4way.h"
#include "algo/whirlpool/sph_whirlpool.h"
#include "algo/sha/sha-hash-4way.h"
#include "algo/haval/haval-hash-4way.h"
#include "algo/tiger/sph_tiger.h"
#include "algo/lyra2/lyra2.h"
#include "algo/gost/sph_gost.h"
#include "algo/swifftx/swifftx.h"
union _x22i_4way_ctx_overlay
{
blake512_4way_context blake;
bmw512_4way_context bmw;
hashState_groestl groestl;
hashState_echo echo;
skein512_4way_context skein;
jh512_4way_context jh;
keccak512_4way_context keccak;
luffa_2way_context luffa;
cube_2way_context cube;
shavite512_2way_context shavite;
simd_2way_context simd;
hamsi512_4way_context hamsi;
sph_fugue512_context fugue;
shabal512_4way_context shabal;
sph_whirlpool_context whirlpool;
sha512_4way_context sha512;
haval256_5_4way_context haval;
sph_tiger_context tiger;
sph_gost512_context gost;
sha256_4way_context sha256;
};
typedef union _x22i_4way_ctx_overlay x22i_ctx_overlay;
void x22i_4way_hash( void *output, const void *input )
{
uint64_t hash0[8*4] __attribute__ ((aligned (64)));
uint64_t hash1[8*4] __attribute__ ((aligned (64)));
uint64_t hash2[8*4] __attribute__ ((aligned (64)));
uint64_t hash3[8*4] __attribute__ ((aligned (64)));
uint64_t vhash[8*4] __attribute__ ((aligned (64)));
uint64_t vhashA[8*4] __attribute__ ((aligned (64)));
uint64_t vhashB[8*4] __attribute__ ((aligned (64)));
// unsigned char hash[64 * 4] __attribute__((aligned(64))) = {0};
unsigned char hashA0[64] __attribute__((aligned(64))) = {0};
unsigned char hashA1[64] __attribute__((aligned(32))) = {0};
unsigned char hashA2[64] __attribute__((aligned(32))) = {0};
unsigned char hashA3[64] __attribute__((aligned(32))) = {0};
x22i_ctx_overlay ctx;
blake512_4way_init( &ctx.blake );
blake512_4way( &ctx.blake, input, 80 );
blake512_4way_close( &ctx.blake, vhash );
bmw512_4way_init( &ctx.bmw );
bmw512_4way( &ctx.bmw, vhash, 64 );
bmw512_4way_close( &ctx.bmw, vhash );
dintrlv_4x64_512( hash0, hash1, hash2, hash3, vhash );
init_groestl( &ctx.groestl, 64 );
update_and_final_groestl( &ctx.groestl, (char*)hash0,
(const char*)hash0, 512 );
init_groestl( &ctx.groestl, 64 );
update_and_final_groestl( &ctx.groestl, (char*)hash1,
(const char*)hash1, 512 );
init_groestl( &ctx.groestl, 64 );
update_and_final_groestl( &ctx.groestl, (char*)hash2,
(const char*)hash2, 512 );
init_groestl( &ctx.groestl, 64 );
update_and_final_groestl( &ctx.groestl, (char*)hash3,
(const char*)hash3, 512 );
intrlv_4x64_512( vhash, hash0, hash1, hash2, hash3 );
skein512_4way_init( &ctx.skein );
skein512_4way( &ctx.skein, vhash, 64 );
skein512_4way_close( &ctx.skein, vhash );
jh512_4way_init( &ctx.jh );
jh512_4way( &ctx.jh, vhash, 64 );
jh512_4way_close( &ctx.jh, vhash );
keccak512_4way_init( &ctx.keccak );
keccak512_4way( &ctx.keccak, vhash, 64 );
keccak512_4way_close( &ctx.keccak, vhash );
rintrlv_4x64_2x128( vhashA, vhashB, vhash, 512 );
luffa_2way_init( &ctx.luffa, 512 );
luffa_2way_update_close( &ctx.luffa, vhashA, vhashA, 64 );
luffa_2way_init( &ctx.luffa, 512 );
luffa_2way_update_close( &ctx.luffa, vhashB, vhashB, 64 );
cube_2way_init( &ctx.cube, 512, 16, 32 );
cube_2way_update_close( &ctx.cube, vhashA, vhashA, 64 );
cube_2way_init( &ctx.cube, 512, 16, 32 );
cube_2way_update_close( &ctx.cube, vhashB, vhashB, 64 );
shavite512_2way_init( &ctx.shavite );
shavite512_2way_update_close( &ctx.shavite, vhashA, vhashA, 64 );
shavite512_2way_init( &ctx.shavite );
shavite512_2way_update_close( &ctx.shavite, vhashB, vhashB, 64 );
simd_2way_init( &ctx.simd, 512 );
simd_2way_update_close( &ctx.simd, vhashA, vhashA, 512 );
simd_2way_init( &ctx.simd, 512 );
simd_2way_update_close( &ctx.simd, vhashB, vhashB, 512 );
dintrlv_2x128_512( hash0, hash1, vhashA );
dintrlv_2x128_512( hash2, hash3, vhashB );
init_echo( &ctx.echo, 512 );
update_final_echo ( &ctx.echo, (BitSequence*)hash0,
(const BitSequence*)hash0, 512 );
init_echo( &ctx.echo, 512 );
update_final_echo ( &ctx.echo, (BitSequence*)hash1,
(const BitSequence*)hash1, 512 );
init_echo( &ctx.echo, 512 );
update_final_echo ( &ctx.echo, (BitSequence*)hash2,
(const BitSequence*)hash2, 512 );
init_echo( &ctx.echo, 512 );
update_final_echo ( &ctx.echo, (BitSequence*)hash3,
(const BitSequence*)hash3, 512 );
intrlv_4x64_512( vhash, hash0, hash1, hash2, hash3 );
hamsi512_4way_init( &ctx.hamsi );
hamsi512_4way( &ctx.hamsi, vhash, 64 );
hamsi512_4way_close( &ctx.hamsi, vhash );
dintrlv_4x64_512( hash0, hash1, hash2, hash3, vhash );
sph_fugue512_init( &ctx.fugue );
sph_fugue512( &ctx.fugue, hash0, 64 );
sph_fugue512_close( &ctx.fugue, hash0 );
sph_fugue512_init( &ctx.fugue );
sph_fugue512( &ctx.fugue, hash1, 64 );
sph_fugue512_close( &ctx.fugue, hash1 );
sph_fugue512_init( &ctx.fugue );
sph_fugue512( &ctx.fugue, hash2, 64 );
sph_fugue512_close( &ctx.fugue, hash2 );
sph_fugue512_init( &ctx.fugue );
sph_fugue512( &ctx.fugue, hash3, 64 );
sph_fugue512_close( &ctx.fugue, hash3 );
intrlv_4x32_512( vhash, hash0, hash1, hash2, hash3 );
shabal512_4way_init( &ctx.shabal );
shabal512_4way( &ctx.shabal, vhash, 64 );
shabal512_4way_close( &ctx.shabal, vhash );
dintrlv_4x32_512( &hash0[8], &hash1[8], &hash2[8], &hash3[8], vhash );
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool( &ctx.whirlpool, &hash0[8], 64 );
sph_whirlpool_close( &ctx.whirlpool, &hash0[16] );
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool( &ctx.whirlpool, &hash1[8], 64 );
sph_whirlpool_close( &ctx.whirlpool, &hash1[16] );
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool( &ctx.whirlpool, &hash2[8], 64 );
sph_whirlpool_close( &ctx.whirlpool, &hash2[16] );
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool( &ctx.whirlpool, &hash3[8], 64 );
sph_whirlpool_close( &ctx.whirlpool, &hash3[16] );
intrlv_4x64_512( vhash, &hash0[16], &hash1[16], &hash2[16], &hash3[16] );
sha512_4way_init( &ctx.sha512 );
sha512_4way( &ctx.sha512, vhash, 64 );
sha512_4way_close( &ctx.sha512, vhash );
dintrlv_4x64_512( &hash0[24], &hash1[24], &hash2[24], &hash3[24], vhash );
// InitializeSWIFFTX();
ComputeSingleSWIFFTX((unsigned char*)hash0, (unsigned char*)hashA0);
ComputeSingleSWIFFTX((unsigned char*)hash1, (unsigned char*)hashA1);
ComputeSingleSWIFFTX((unsigned char*)hash2, (unsigned char*)hashA2);
ComputeSingleSWIFFTX((unsigned char*)hash3, (unsigned char*)hashA3);
intrlv_4x32_512( vhashA, hashA0, hashA1, hashA2, hashA3 );
memset( vhash, 0, 64*4 );
haval256_5_4way_init( &ctx.haval );
haval256_5_4way( &ctx.haval, vhashA, 64 );
haval256_5_4way_close( &ctx.haval, vhash );
dintrlv_4x32_512( hash0, hash1, hash2, hash3, vhash );
memset( hashA0, 0, 64 );
memset( hashA1, 0, 64 );
memset( hashA2, 0, 64 );
memset( hashA3, 0, 64 );
sph_tiger_init(&ctx.tiger);
sph_tiger (&ctx.tiger, (const void*) hash0, 64);
sph_tiger_close(&ctx.tiger, (void*) hashA0);
sph_tiger_init(&ctx.tiger);
sph_tiger (&ctx.tiger, (const void*) hash1, 64);
sph_tiger_close(&ctx.tiger, (void*) hashA1);
sph_tiger_init(&ctx.tiger);
sph_tiger (&ctx.tiger, (const void*) hash2, 64);
sph_tiger_close(&ctx.tiger, (void*) hashA2);
sph_tiger_init(&ctx.tiger);
sph_tiger (&ctx.tiger, (const void*) hash3, 64);
sph_tiger_close(&ctx.tiger, (void*) hashA3);
memset( hash0, 0, 64 );
memset( hash1, 0, 64 );
memset( hash2, 0, 64 );
memset( hash3, 0, 64 );
LYRA2RE( (void*) hash0, 32, (const void*) hashA0, 32, (const void*) hashA0,
32, 1, 4, 4 );
LYRA2RE( (void*) hash1, 32, (const void*) hashA1, 32, (const void*) hashA1,
32, 1, 4, 4 );
LYRA2RE( (void*) hash2, 32, (const void*) hashA2, 32, (const void*) hashA2,
32, 1, 4, 4 );
LYRA2RE( (void*) hash3, 32, (const void*) hashA3, 32, (const void*) hashA3,
32, 1, 4, 4 );
sph_gost512_init(&ctx.gost);
sph_gost512 (&ctx.gost, (const void*) hash0, 64);
sph_gost512_close(&ctx.gost, (void*) hash0);
sph_gost512_init(&ctx.gost);
sph_gost512 (&ctx.gost, (const void*) hash1, 64);
sph_gost512_close(&ctx.gost, (void*) hash1);
sph_gost512_init(&ctx.gost);
sph_gost512 (&ctx.gost, (const void*) hash2, 64);
sph_gost512_close(&ctx.gost, (void*) hash2);
sph_gost512_init(&ctx.gost);
sph_gost512 (&ctx.gost, (const void*) hash3, 64);
sph_gost512_close(&ctx.gost, (void*) hash3);
intrlv_4x32_512( vhash, hash0, hash1, hash2, hash3 );
sha256_4way_init( &ctx.sha256 );
sha256_4way( &ctx.sha256, vhash, 64 );
sha256_4way_close( &ctx.sha256, output );
// memcpy(output, hash, 32);
}
int scanhash_x22i_4way( struct work* work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t hash[4*16] __attribute__ ((aligned (64)));
uint32_t vdata[24*4] __attribute__ ((aligned (64)));
uint32_t lane_hash[8] __attribute__ ((aligned (32)));
uint32_t *hash7 = &(hash[7<<2]);
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
const uint32_t first_nonce = pdata[19];
__m256i *noncev = (__m256i*)vdata + 9; // aligned
uint32_t n = first_nonce;
const int thr_id = mythr->id;
const uint32_t Htarg = ptarget[7];
if (opt_benchmark)
((uint32_t*)ptarget)[7] = 0x08ff;
InitializeSWIFFTX();
mm256_bswap32_intrlv80_4x64( vdata, pdata );
do
{
*noncev = mm256_intrlv_blend_32( mm256_bswap_32(
_mm256_set_epi32( n+3, 0, n+2, 0, n+1, 0, n, 0 ) ), *noncev );
x22i_4way_hash( hash, vdata );
for ( int lane = 0; lane < 4; lane++ )
if unlikely( ( hash7[ lane ] <= Htarg ) )
{
extr_lane_4x32( lane_hash, hash, lane, 256 );
if ( likely( fulltest( lane_hash, ptarget ) && !opt_benchmark ) )
{
pdata[19] = n + lane;
submit_lane_solution( work, lane_hash, mythr, lane );
}
}
n += 4;
} while ( likely( ( n < max_nonce - 4 ) && !work_restart[thr_id].restart ) );
*hashes_done = n - first_nonce + 1;
return 0;
}
#endif // X22I_4WAY

28
algo/x22/x22i-gate.c Normal file
View File

@@ -0,0 +1,28 @@
#include "x22i-gate.h"
bool register_x22i_algo( algo_gate_t* gate )
{
#if defined (X22I_4WAY)
gate->scanhash = (void*)&scanhash_x22i_4way;
gate->hash = (void*)&x22i_4way_hash;
#else
gate->scanhash = (void*)&scanhash_x22i;
gate->hash = (void*)&x22i_hash;
#endif
gate->optimizations = SSE2_OPT | AES_OPT | AVX2_OPT | SHA_OPT;
return true;
};
bool register_x25x_algo( algo_gate_t* gate )
{
#if defined (X22I_4WAY)
gate->scanhash = (void*)&scanhash_x25x_4way;
gate->hash = (void*)&x25x_4way_hash;
#else
gate->scanhash = (void*)&scanhash_x25x;
gate->hash = (void*)&x25x_hash;
#endif
gate->optimizations = SSE2_OPT | AES_OPT | AVX2_OPT | SHA_OPT;
return true;
};

35
algo/x22/x22i-gate.h Normal file
View File

@@ -0,0 +1,35 @@
#ifndef X22I_GATE_H__
#define X22I_GATE_H__ 1
#include "algo-gate-api.h"
#include "simd-utils.h"
#include <stdint.h>
#include <unistd.h>
#if defined(__AVX2__) && defined(__AES__)
#define X22I_4WAY
#endif
bool register_x22i__algo( algo_gate_t* gate );
#if defined(X22I_4WAY)
void x22i_4way_hash( void *state, const void *input );
int scanhash_x22i_4way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
void x25x_4way_hash( void *state, const void *input );
int scanhash_x25x_4way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
#endif
void x22i_hash( void *state, const void *input );
int scanhash_x22i( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
void x25x_hash( void *state, const void *input );
int scanhash_x25x( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
#endif // X22I_GATE_H__

202
algo/x22/x22i.c Normal file
View File

@@ -0,0 +1,202 @@
#include "algo/blake/sph_blake.h"
#include "algo/bmw/sph_bmw.h"
#if defined(__AES__)
#include "algo/echo/aes_ni/hash_api.h"
#include "algo/groestl/aes_ni/hash-groestl.h"
#else
#include "algo/groestl/sph_groestl.h"
#include "algo/echo/sph_echo.h"
#endif
#include "algo/skein/sph_skein.h"
#include "algo/jh/sph_jh.h"
#include "algo/keccak/sph_keccak.h"
#include "algo/luffa/luffa_for_sse2.h"
#include "algo/cubehash/cubehash_sse2.h"
#include "algo/shavite/sph_shavite.h"
#include "algo/simd/nist.h"
#include "algo/hamsi/sph_hamsi.h"
#include "algo/fugue/sph_fugue.h"
#include "algo/shabal/sph_shabal.h"
#include "algo/whirlpool/sph_whirlpool.h"
#include <openssl/sha.h>
#include "algo/haval/sph-haval.h"
#include "algo/tiger/sph_tiger.h"
#include "algo/lyra2/lyra2.h"
#include "algo/gost/sph_gost.h"
#include "algo/swifftx/swifftx.h"
#include "x22i-gate.h"
union _x22i_context_overlay
{
sph_blake512_context blake;
sph_bmw512_context bmw;
#if defined(__AES__)
hashState_groestl groestl;
hashState_echo echo;
#else
sph_groestl512_context groestl;
sph_echo512_context echo;
#endif
sph_jh512_context jh;
sph_keccak512_context keccak;
sph_skein512_context skein;
hashState_luffa luffa;
cubehashParam cube;
sph_shavite512_context shavite;
hashState_sd simd;
sph_hamsi512_context hamsi;
sph_fugue512_context fugue;
sph_shabal512_context shabal;
sph_whirlpool_context whirlpool;
SHA512_CTX sha512;
sph_haval256_5_context haval;
sph_tiger_context tiger;
sph_gost512_context gost;
SHA256_CTX sha256;
};
typedef union _x22i_context_overlay x22i_context_overlay;
void x22i_hash( void *output, const void *input )
{
unsigned char hash[64 * 4] __attribute__((aligned(64))) = {0};
unsigned char hash2[65] __attribute__((aligned(64))) = {0};
x22i_context_overlay ctx;
sph_blake512_init(&ctx.blake);
sph_blake512(&ctx.blake, input, 80);
sph_blake512_close(&ctx.blake, hash);
sph_bmw512_init(&ctx.bmw);
sph_bmw512(&ctx.bmw, (const void*) hash, 64);
sph_bmw512_close(&ctx.bmw, hash);
#if defined(__AES__)
init_groestl( &ctx.groestl, 64 );
update_and_final_groestl( &ctx.groestl, (char*)hash,
(const char*)hash, 512 );
#else
sph_groestl512_init( &ctx.groestl );
sph_groestl512( &ctx.groestl, hash, 64 );
sph_groestl512_close( &ctx.groestl, hash );
#endif
sph_skein512_init(&ctx.skein);
sph_skein512(&ctx.skein, (const void*) hash, 64);
sph_skein512_close(&ctx.skein, hash);
sph_jh512_init(&ctx.jh);
sph_jh512(&ctx.jh, (const void*) hash, 64);
sph_jh512_close(&ctx.jh, hash);
sph_keccak512_init(&ctx.keccak);
sph_keccak512(&ctx.keccak, (const void*) hash, 64);
sph_keccak512_close(&ctx.keccak, hash);
init_luffa( &ctx.luffa, 512 );
update_and_final_luffa( &ctx.luffa, (BitSequence*)hash,
(const BitSequence*)hash, 64 );
cubehashInit( &ctx.cube, 512, 16, 32 );
cubehashUpdateDigest( &ctx.cube, (byte*) hash,
(const byte*)hash, 64 );
sph_shavite512_init(&ctx.shavite);
sph_shavite512(&ctx.shavite, (const void*) hash, 64);
sph_shavite512_close(&ctx.shavite, hash);
init_sd( &ctx.simd, 512 );
update_final_sd( &ctx.simd, (BitSequence*)hash,
(const BitSequence*)hash, 512 );
#if defined(__AES__)
init_echo( &ctx.echo, 512 );
update_final_echo ( &ctx.echo, (BitSequence*)hash,
(const BitSequence*)hash, 512 );
#else
sph_echo512_init( &ctx.echo );
sph_echo512( &ctx.echo, hash, 64 );
sph_echo512_close( &ctx.echo, hash );
#endif
sph_hamsi512_init(&ctx.hamsi);
sph_hamsi512(&ctx.hamsi, (const void*) hash, 64);
sph_hamsi512_close(&ctx.hamsi, hash);
sph_fugue512_init(&ctx.fugue);
sph_fugue512(&ctx.fugue, (const void*) hash, 64);
sph_fugue512_close(&ctx.fugue, hash);
sph_shabal512_init(&ctx.shabal);
sph_shabal512(&ctx.shabal, (const void*) hash, 64);
sph_shabal512_close(&ctx.shabal, &hash[64]);
sph_whirlpool_init(&ctx.whirlpool);
sph_whirlpool (&ctx.whirlpool, (const void*) &hash[64], 64);
sph_whirlpool_close(&ctx.whirlpool, &hash[128]);
SHA512_Init( &ctx.sha512 );
SHA512_Update( &ctx.sha512, (const void*) &hash[128], 64);
SHA512_Final( (void*) &hash[192], &ctx.sha512 );
ComputeSingleSWIFFTX((unsigned char*)hash, (unsigned char*)hash2);
memset(hash, 0, 64);
sph_haval256_5_init(&ctx.haval);
sph_haval256_5(&ctx.haval,(const void*) hash2, 64);
sph_haval256_5_close(&ctx.haval,hash);
memset(hash2, 0, 64);
sph_tiger_init(&ctx.tiger);
sph_tiger (&ctx.tiger, (const void*) hash, 64);
sph_tiger_close(&ctx.tiger, (void*) hash2);
memset(hash, 0, 64);
LYRA2RE((void*) hash, 32, (const void*) hash2, 32, (const void*) hash2, 32, 1, 4, 4);
sph_gost512_init(&ctx.gost);
sph_gost512 (&ctx.gost, (const void*) hash, 64);
sph_gost512_close(&ctx.gost, (void*) hash);
SHA256_Init( &ctx.sha256 );
SHA256_Update( &ctx.sha256, (const void*) hash, 64 );
SHA256_Final( (unsigned char*) hash, &ctx.sha256 );
memcpy(output, hash, 32);
}
int scanhash_x22i( struct work* work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t endiandata[20] __attribute__((aligned(64)));
uint32_t hash[8] __attribute__((aligned(64)));
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
const uint32_t first_nonce = pdata[19];
const uint32_t Htarg = ptarget[7];
uint32_t n = first_nonce;
const int thr_id = mythr->id;
if (opt_benchmark)
((uint32_t*)ptarget)[7] = 0x08ff;
for (int k=0; k < 20; k++)
be32enc(&endiandata[k], pdata[k]);
InitializeSWIFFTX();
do
{
pdata[19] = ++n;
be32enc( &endiandata[19], n );
x22i_hash( hash, endiandata );
if ( hash[7] < Htarg )
if ( fulltest( hash, ptarget ) && !opt_benchmark )
submit_solution( work, hash, mythr );
} while ( n < max_nonce && !work_restart[thr_id].restart );
*hashes_done = pdata[19] - first_nonce;
return 0;
}

402
algo/x22/x25x-4way.c Normal file
View File

@@ -0,0 +1,402 @@
#include "x22i-gate.h"
#if defined(X22I_4WAY)
#include "algo/blake/blake-hash-4way.h"
#include "algo/bmw/bmw-hash-4way.h"
#include "algo/skein/skein-hash-4way.h"
#include "algo/jh/jh-hash-4way.h"
#include "algo/keccak/keccak-hash-4way.h"
#include "algo/hamsi/hamsi-hash-4way.h"
#include "algo/shabal/shabal-hash-4way.h"
#include "algo/sha/sha-hash-4way.h"
#include "algo/haval/haval-hash-4way.h"
#include "algo/blake/blake2s-hash-4way.h"
#include "algo/echo/aes_ni/hash_api.h"
#include "algo/groestl/aes_ni/hash-groestl.h"
#include "algo/luffa/luffa_for_sse2.h"
#include "algo/cubehash/cubehash_sse2.h"
#include "algo/shavite/sph_shavite.h"
#include "algo/simd/nist.h"
#include "algo/fugue/sph_fugue.h"
#include "algo/whirlpool/sph_whirlpool.h"
#include "algo/tiger/sph_tiger.h"
#include "algo/lyra2/lyra2.h"
#include "algo/gost/sph_gost.h"
#include "algo/swifftx/swifftx.h"
#include "algo/panama/sph_panama.h"
#include "algo/lanehash/lane.h"
union _x25x_4way_ctx_overlay
{
blake512_4way_context blake;
bmw512_4way_context bmw;
hashState_groestl groestl;
hashState_echo echo;
skein512_4way_context skein;
jh512_4way_context jh;
keccak512_4way_context keccak;
hashState_luffa luffa;
cubehashParam cube;
sph_shavite512_context shavite;
hashState_sd simd;
hamsi512_4way_context hamsi;
sph_fugue512_context fugue;
shabal512_4way_context shabal;
sph_whirlpool_context whirlpool;
sha512_4way_context sha512;
haval256_5_4way_context haval;
sph_tiger_context tiger;
sph_gost512_context gost;
sha256_4way_context sha256;
sph_panama_context panama;
blake2s_4way_state blake2s;
};
typedef union _x25x_4way_ctx_overlay x25x_4way_ctx_overlay;
void x25x_shuffle( void *hash )
{
// Simple shuffle algorithm, instead of just reversing
#define X25X_SHUFFLE_BLOCKS (24 * 64 / 2)
#define X25X_SHUFFLE_ROUNDS 12
static const uint16_t x25x_round_const[X25X_SHUFFLE_ROUNDS] =
{
0x142c, 0x5830, 0x678c, 0xe08c, 0x3c67, 0xd50d, 0xb1d8, 0xecb2,
0xd7ee, 0x6783, 0xfa6c, 0x4b9c
};
uint16_t* block_pointer = (uint16_t*)hash;
for ( int r = 0; r < X25X_SHUFFLE_ROUNDS; r++ )
{
for ( int i = 0; i < X25X_SHUFFLE_BLOCKS; i++ )
{
uint16_t block_value = block_pointer[ X25X_SHUFFLE_BLOCKS - i - 1 ];
block_pointer[i] ^= block_pointer[ block_value % X25X_SHUFFLE_BLOCKS ]
+ ( x25x_round_const[r] << (i % 16) );
}
}
#undef X25X_SHUFFLE_BLOCKS
#undef X25X_SHUFFLE_ROUNDS
}
void x25x_4way_hash( void *output, const void *input )
{
unsigned char hash0[25][64] __attribute__((aligned(64))) = {0};
unsigned char hash1[25][64] __attribute__((aligned(64))) = {0};
unsigned char hash2[25][64] __attribute__((aligned(64))) = {0};
unsigned char hash3[25][64] __attribute__((aligned(64))) = {0};
uint64_t vhash[8*4] __attribute__ ((aligned (64)));
unsigned char vhashA[24][64*4] __attribute__ ((aligned (64)));
x25x_4way_ctx_overlay ctx __attribute__ ((aligned (64)));
blake512_4way_init( &ctx.blake );
blake512_4way( &ctx.blake, input, 80 );
blake512_4way_close( &ctx.blake, vhash );
dintrlv_4x64_512( &hash0[0], &hash1[0], &hash2[0], &hash3[0], vhash );
bmw512_4way_init( &ctx.bmw );
bmw512_4way( &ctx.bmw, vhash, 64 );
bmw512_4way_close( &ctx.bmw, vhash );
dintrlv_4x64_512( &hash0[1], &hash1[1], &hash2[1], &hash3[1], vhash );
init_groestl( &ctx.groestl, 64 );
update_and_final_groestl( &ctx.groestl, (char*)&hash0[2],
(const char*)&hash0[1], 512 );
init_groestl( &ctx.groestl, 64 );
update_and_final_groestl( &ctx.groestl, (char*)&hash1[2],
(const char*)&hash1[1], 512 );
init_groestl( &ctx.groestl, 64 );
update_and_final_groestl( &ctx.groestl, (char*)&hash2[2],
(const char*)&hash2[1], 512 );
init_groestl( &ctx.groestl, 64 );
update_and_final_groestl( &ctx.groestl, (char*)&hash3[2],
(const char*)&hash3[1], 512 );
intrlv_4x64_512( vhash, &hash0[2], &hash1[2], &hash2[2], &hash3[2] );
skein512_4way_init( &ctx.skein );
skein512_4way( &ctx.skein, vhash, 64 );
skein512_4way_close( &ctx.skein, vhash );
dintrlv_4x64_512( &hash0[3], &hash1[3], &hash2[3], &hash3[3], vhash );
jh512_4way_init( &ctx.jh );
jh512_4way( &ctx.jh, vhash, 64 );
jh512_4way_close( &ctx.jh, vhash );
dintrlv_4x64_512( &hash0[4], &hash1[4], &hash2[4], &hash3[4], vhash );
keccak512_4way_init( &ctx.keccak );
keccak512_4way( &ctx.keccak, vhash, 64 );
keccak512_4way_close( &ctx.keccak, vhash );
dintrlv_4x64_512( &hash0[5], &hash1[5], &hash2[5], &hash3[5], vhash );
init_luffa( &ctx.luffa, 512 );
update_and_final_luffa( &ctx.luffa, (BitSequence*)&hash0[6],
(const BitSequence*)&hash0[5], 64 );
init_luffa( &ctx.luffa, 512 );
update_and_final_luffa( &ctx.luffa, (BitSequence*)&hash1[6],
(const BitSequence*)&hash1[5], 64 );
init_luffa( &ctx.luffa, 512 );
update_and_final_luffa( &ctx.luffa, (BitSequence*)&hash2[6],
(const BitSequence*)&hash2[5], 64 );
init_luffa( &ctx.luffa, 512 );
update_and_final_luffa( &ctx.luffa, (BitSequence*)&hash3[6],
(const BitSequence*)&hash3[5], 64 );
cubehashInit( &ctx.cube, 512, 16, 32 );
cubehashUpdateDigest( &ctx.cube, (byte*) &hash0[7],
(const byte*)&hash0[6], 64 );
cubehashInit( &ctx.cube, 512, 16, 32 );
cubehashUpdateDigest( &ctx.cube, (byte*) &hash1[7],
(const byte*)&hash1[6], 64 );
cubehashInit( &ctx.cube, 512, 16, 32 );
cubehashUpdateDigest( &ctx.cube, (byte*) &hash2[7],
(const byte*)&hash2[6], 64 );
cubehashInit( &ctx.cube, 512, 16, 32 );
cubehashUpdateDigest( &ctx.cube, (byte*) &hash3[7],
(const byte*)&hash3[6], 64 );
sph_shavite512_init(&ctx.shavite);
sph_shavite512(&ctx.shavite, (const void*) &hash0[7], 64);
sph_shavite512_close(&ctx.shavite, &hash0[8]);
sph_shavite512_init(&ctx.shavite);
sph_shavite512(&ctx.shavite, (const void*) &hash1[7], 64);
sph_shavite512_close(&ctx.shavite, &hash1[8]);
sph_shavite512_init(&ctx.shavite);
sph_shavite512(&ctx.shavite, (const void*) &hash2[7], 64);
sph_shavite512_close(&ctx.shavite, &hash2[8]);
sph_shavite512_init(&ctx.shavite);
sph_shavite512(&ctx.shavite, (const void*) &hash3[7], 64);
sph_shavite512_close(&ctx.shavite, &hash3[8]);
init_sd( &ctx.simd, 512 );
update_final_sd( &ctx.simd, (BitSequence*)&hash0[9],
(const BitSequence*)&hash0[8], 512 );
init_sd( &ctx.simd, 512 );
update_final_sd( &ctx.simd, (BitSequence*)&hash1[9],
(const BitSequence*)&hash1[8], 512 );
init_sd( &ctx.simd, 512 );
update_final_sd( &ctx.simd, (BitSequence*)&hash2[9],
(const BitSequence*)&hash2[8], 512 );
init_sd( &ctx.simd, 512 );
update_final_sd( &ctx.simd, (BitSequence*)&hash3[9],
(const BitSequence*)&hash3[8], 512 );
init_echo( &ctx.echo, 512 );
update_final_echo ( &ctx.echo, (BitSequence*)&hash0[10],
(const BitSequence*)&hash0[9], 512 );
init_echo( &ctx.echo, 512 );
update_final_echo ( &ctx.echo, (BitSequence*)&hash1[10],
(const BitSequence*)&hash1[9], 512 );
init_echo( &ctx.echo, 512 );
update_final_echo ( &ctx.echo, (BitSequence*)&hash2[10],
(const BitSequence*)&hash2[9], 512 );
init_echo( &ctx.echo, 512 );
update_final_echo ( &ctx.echo, (BitSequence*)&hash3[10],
(const BitSequence*)&hash3[9], 512 );
intrlv_4x64_512( vhash, &hash0[10], &hash1[10], &hash2[10], &hash3[10] );
hamsi512_4way_init( &ctx.hamsi );
hamsi512_4way( &ctx.hamsi, vhash, 64 );
hamsi512_4way_close( &ctx.hamsi, vhash );
dintrlv_4x64_512( &hash0[11], &hash1[11], &hash2[11], &hash3[11], vhash );
sph_fugue512_init(&ctx.fugue);
sph_fugue512(&ctx.fugue, (const void*) &hash0[11], 64);
sph_fugue512_close(&ctx.fugue, &hash0[12]);
sph_fugue512_init(&ctx.fugue);
sph_fugue512(&ctx.fugue, (const void*) &hash1[11], 64);
sph_fugue512_close(&ctx.fugue, &hash1[12]);
sph_fugue512_init(&ctx.fugue);
sph_fugue512(&ctx.fugue, (const void*) &hash2[11], 64);
sph_fugue512_close(&ctx.fugue, &hash2[12]);
sph_fugue512_init(&ctx.fugue);
sph_fugue512(&ctx.fugue, (const void*) &hash3[11], 64);
sph_fugue512_close(&ctx.fugue, &hash3[12]);
intrlv_4x32_512( vhash, &hash0[12], &hash1[12], &hash2[12], &hash3[12] );
shabal512_4way_init( &ctx.shabal );
shabal512_4way( &ctx.shabal, vhash, 64 );
shabal512_4way_close( &ctx.shabal, vhash );
dintrlv_4x32_512( &hash0[13], &hash1[13], &hash2[13], &hash3[13], vhash );
sph_whirlpool_init(&ctx.whirlpool);
sph_whirlpool (&ctx.whirlpool, (const void*) &hash0[13], 64);
sph_whirlpool_close(&ctx.whirlpool, &hash0[14]);
sph_whirlpool_init(&ctx.whirlpool);
sph_whirlpool (&ctx.whirlpool, (const void*) &hash1[13], 64);
sph_whirlpool_close(&ctx.whirlpool, &hash1[14]);
sph_whirlpool_init(&ctx.whirlpool);
sph_whirlpool (&ctx.whirlpool, (const void*) &hash2[13], 64);
sph_whirlpool_close(&ctx.whirlpool, &hash2[14]);
sph_whirlpool_init(&ctx.whirlpool);
sph_whirlpool (&ctx.whirlpool, (const void*) &hash3[13], 64);
sph_whirlpool_close(&ctx.whirlpool, &hash3[14]);
intrlv_4x64_512( vhash, &hash0[14], &hash1[14], &hash2[14], &hash3[14] );
sha512_4way_init( &ctx.sha512 );
sha512_4way( &ctx.sha512, vhash, 64 );
sha512_4way_close( &ctx.sha512, vhash );
dintrlv_4x64_512( &hash0[15], &hash1[15], &hash2[15], &hash3[15], vhash );
ComputeSingleSWIFFTX((unsigned char*)&hash0[12], (unsigned char*)&hash0[16]);
ComputeSingleSWIFFTX((unsigned char*)&hash1[12], (unsigned char*)&hash1[16]);
ComputeSingleSWIFFTX((unsigned char*)&hash2[12], (unsigned char*)&hash2[16]);
ComputeSingleSWIFFTX((unsigned char*)&hash3[12], (unsigned char*)&hash3[16]);
intrlv_4x32_512( &vhashA, &hash0[16], &hash1[16], &hash2[16], &hash3[16] );
memset( vhash, 0, 64*4 );
haval256_5_4way_init( &ctx.haval );
haval256_5_4way( &ctx.haval, vhashA, 64 );
haval256_5_4way_close( &ctx.haval, vhash );
dintrlv_4x32_512( &hash0[17], &hash1[17], &hash2[17], &hash3[17], vhash );
sph_tiger_init(&ctx.tiger);
sph_tiger (&ctx.tiger, (const void*) &hash0[17], 64);
sph_tiger_close(&ctx.tiger, (void*) &hash0[18]);
sph_tiger_init(&ctx.tiger);
sph_tiger (&ctx.tiger, (const void*) &hash1[17], 64);
sph_tiger_close(&ctx.tiger, (void*) &hash1[18]);
sph_tiger_init(&ctx.tiger);
sph_tiger (&ctx.tiger, (const void*) &hash2[17], 64);
sph_tiger_close(&ctx.tiger, (void*) &hash2[18]);
sph_tiger_init(&ctx.tiger);
sph_tiger (&ctx.tiger, (const void*) &hash3[17], 64);
sph_tiger_close(&ctx.tiger, (void*) &hash3[18]);
LYRA2RE( (void*)&hash0[19], 32, (const void*)&hash0[18], 32,
(const void*)&hash0[18], 32, 1, 4, 4 );
LYRA2RE( (void*)&hash1[19], 32, (const void*)&hash1[18], 32,
(const void*)&hash1[18], 32, 1, 4, 4 );
LYRA2RE( (void*)&hash2[19], 32, (const void*)&hash2[18], 32,
(const void*)&hash2[18], 32, 1, 4, 4 );
LYRA2RE( (void*)&hash3[19], 32, (const void*)&hash3[18], 32,
(const void*)&hash3[18], 32, 1, 4, 4 );
sph_gost512_init(&ctx.gost);
sph_gost512 (&ctx.gost, (const void*) &hash0[19], 64);
sph_gost512_close(&ctx.gost, (void*) &hash0[20]);
sph_gost512_init(&ctx.gost);
sph_gost512 (&ctx.gost, (const void*) &hash1[19], 64);
sph_gost512_close(&ctx.gost, (void*) &hash1[20]);
sph_gost512_init(&ctx.gost);
sph_gost512 (&ctx.gost, (const void*) &hash2[19], 64);
sph_gost512_close(&ctx.gost, (void*) &hash2[20]);
sph_gost512_init(&ctx.gost);
sph_gost512 (&ctx.gost, (const void*) &hash3[19], 64);
sph_gost512_close(&ctx.gost, (void*) &hash3[20]);
intrlv_4x32_512( vhashA, &hash0[20], &hash1[20], &hash2[20], &hash3[20] );
memset( vhash, 0, 64*4 );
sha256_4way_init( &ctx.sha256 );
sha256_4way( &ctx.sha256, vhashA, 64 );
sha256_4way_close( &ctx.sha256, vhash );
dintrlv_4x32_512( &hash0[21], &hash1[21], &hash2[21], &hash3[21], vhash );
sph_panama_init(&ctx.panama);
sph_panama (&ctx.panama, (const void*) &hash0[21], 64 );
sph_panama_close(&ctx.panama, (void*) &hash0[22]);
sph_panama_init(&ctx.panama);
sph_panama (&ctx.panama, (const void*) &hash1[21], 64 );
sph_panama_close(&ctx.panama, (void*) &hash1[22]);
sph_panama_init(&ctx.panama);
sph_panama (&ctx.panama, (const void*) &hash2[21], 64 );
sph_panama_close(&ctx.panama, (void*) &hash2[22]);
sph_panama_init(&ctx.panama);
sph_panama (&ctx.panama, (const void*) &hash3[21], 64 );
sph_panama_close(&ctx.panama, (void*) &hash3[22]);
laneHash(512, (const BitSequence*)&hash0[22], 512, (BitSequence*)&hash0[23]);
laneHash(512, (const BitSequence*)&hash1[22], 512, (BitSequence*)&hash1[23]);
laneHash(512, (const BitSequence*)&hash2[22], 512, (BitSequence*)&hash2[23]);
laneHash(512, (const BitSequence*)&hash3[22], 512, (BitSequence*)&hash3[23]);
x25x_shuffle( hash0 );
x25x_shuffle( hash1 );
x25x_shuffle( hash2 );
x25x_shuffle( hash3 );
intrlv_4x32_512( &vhashA[ 0], &hash0[ 0], &hash1[ 0], &hash2[ 0], &hash3[ 0] );
intrlv_4x32_512( &vhashA[ 1], &hash0[ 1], &hash1[ 1], &hash2[ 1], &hash3[ 1] );
intrlv_4x32_512( &vhashA[ 2], &hash0[ 2], &hash1[ 2], &hash2[ 2], &hash3[ 2] );
intrlv_4x32_512( &vhashA[ 3], &hash0[ 3], &hash1[ 3], &hash2[ 3], &hash3[ 3] );
intrlv_4x32_512( &vhashA[ 4], &hash0[ 4], &hash1[ 4], &hash2[ 4], &hash3[ 4] );
intrlv_4x32_512( &vhashA[ 5], &hash0[ 5], &hash1[ 5], &hash2[ 5], &hash3[ 5] );
intrlv_4x32_512( &vhashA[ 6], &hash0[ 6], &hash1[ 6], &hash2[ 6], &hash3[ 6] );
intrlv_4x32_512( &vhashA[ 7], &hash0[ 7], &hash1[ 7], &hash2[ 7], &hash3[ 7] );
intrlv_4x32_512( &vhashA[ 8], &hash0[ 8], &hash1[ 8], &hash2[ 8], &hash3[ 8] );
intrlv_4x32_512( &vhashA[ 9], &hash0[ 9], &hash1[ 9], &hash2[ 9], &hash3[ 9] );
intrlv_4x32_512( &vhashA[10], &hash0[10], &hash1[10], &hash2[10], &hash3[10] );
intrlv_4x32_512( &vhashA[11], &hash0[11], &hash1[11], &hash2[11], &hash3[11] );
intrlv_4x32_512( &vhashA[12], &hash0[12], &hash1[12], &hash2[12], &hash3[12] );
intrlv_4x32_512( &vhashA[13], &hash0[13], &hash1[13], &hash2[13], &hash3[13] );
intrlv_4x32_512( &vhashA[14], &hash0[14], &hash1[14], &hash2[14], &hash3[14] );
intrlv_4x32_512( &vhashA[15], &hash0[15], &hash1[15], &hash2[15], &hash3[15] );
intrlv_4x32_512( &vhashA[16], &hash0[16], &hash1[16], &hash2[16], &hash3[16] );
intrlv_4x32_512( &vhashA[17], &hash0[17], &hash1[17], &hash2[17], &hash3[17] );
intrlv_4x32_512( &vhashA[18], &hash0[18], &hash1[18], &hash2[18], &hash3[18] );
intrlv_4x32_512( &vhashA[19], &hash0[19], &hash1[19], &hash2[19], &hash3[19] );
intrlv_4x32_512( &vhashA[20], &hash0[20], &hash1[20], &hash2[20], &hash3[20] );
intrlv_4x32_512( &vhashA[21], &hash0[21], &hash1[21], &hash2[21], &hash3[21] );
intrlv_4x32_512( &vhashA[22], &hash0[22], &hash1[22], &hash2[22], &hash3[22] );
intrlv_4x32_512( &vhashA[23], &hash0[23], &hash1[23], &hash2[23], &hash3[23] );
blake2s_4way_init( &ctx.blake2s, 32 );
blake2s_4way_full_blocks( &ctx.blake2s, vhash, vhashA, 64*24 );
dintrlv_4x32( &hash0[24], &hash1[24], &hash2[24], &hash3[24], vhash, 256 );
memcpy(output, &hash0[24], 32);
memcpy(output+32, &hash1[24], 32);
memcpy(output+64, &hash2[24], 32);
memcpy(output+96, &hash3[24], 32);
}
int scanhash_x25x_4way( struct work* work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t hash[4*16] __attribute__ ((aligned (64)));
uint32_t vdata[24*4] __attribute__ ((aligned (64)));
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
const uint32_t first_nonce = pdata[19];
__m256i *noncev = (__m256i*)vdata + 9; // aligned
uint32_t n = first_nonce;
const int thr_id = mythr->id;
const uint32_t Htarg = ptarget[7];
if (opt_benchmark)
((uint32_t*)ptarget)[7] = 0x08ff;
InitializeSWIFFTX();
mm256_bswap32_intrlv80_4x64( vdata, pdata );
do
{
*noncev = mm256_intrlv_blend_32( mm256_bswap_32(
_mm256_set_epi32( n+3, 0, n+2, 0, n+1, 0, n, 0 ) ), *noncev );
x25x_4way_hash( hash, vdata );
for ( int i = 0; i < 4; i++ )
if ( unlikely( (hash+(i<<3))[7] <= Htarg ) )
if( likely( fulltest( hash+(i<<3), ptarget ) && !opt_benchmark ) )
{
pdata[19] = n+i;
submit_lane_solution( work, hash+(i<<3), mythr, i );
}
n += 4;
} while ( likely( ( n < max_nonce - 4 ) && !work_restart[thr_id].restart ) );
*hashes_done = n - first_nonce + 1;
return 0;
}
#endif

236
algo/x22/x25x.c Normal file
View File

@@ -0,0 +1,236 @@
#include "x22i-gate.h"
#include "algo/blake/sph_blake.h"
#include "algo/bmw/sph_bmw.h"
#if defined(__AES__)
#include "algo/echo/aes_ni/hash_api.h"
#include "algo/groestl/aes_ni/hash-groestl.h"
#else
#include "algo/groestl/sph_groestl.h"
#include "algo/echo/sph_echo.h"
#endif
#include "algo/skein/sph_skein.h"
#include "algo/jh/sph_jh.h"
#include "algo/keccak/sph_keccak.h"
#include "algo/luffa/luffa_for_sse2.h"
#include "algo/cubehash/cubehash_sse2.h"
#include "algo/shavite/sph_shavite.h"
#include "algo/simd/nist.h"
#include "algo/hamsi/sph_hamsi.h"
#include "algo/fugue/sph_fugue.h"
#include "algo/shabal/sph_shabal.h"
#include "algo/whirlpool/sph_whirlpool.h"
#include <openssl/sha.h>
#include "algo/haval/sph-haval.h"
#include "algo/tiger/sph_tiger.h"
#include "algo/lyra2/lyra2.h"
#include "algo/gost/sph_gost.h"
#include "algo/swifftx/swifftx.h"
#include "algo/blake/sph-blake2s.h"
#include "algo/panama/sph_panama.h"
#include "algo/lanehash/lane.h"
union _x25x_context_overlay
{
sph_blake512_context blake;
sph_bmw512_context bmw;
#if defined(__AES__)
hashState_groestl groestl;
hashState_echo echo;
#else
sph_groestl512_context groestl;
sph_echo512_context echo;
#endif
sph_jh512_context jh;
sph_keccak512_context keccak;
sph_skein512_context skein;
hashState_luffa luffa;
cubehashParam cube;
sph_shavite512_context shavite;
hashState_sd simd;
sph_hamsi512_context hamsi;
sph_fugue512_context fugue;
sph_shabal512_context shabal;
sph_whirlpool_context whirlpool;
SHA512_CTX sha512;
sph_haval256_5_context haval;
sph_tiger_context tiger;
sph_gost512_context gost;
SHA256_CTX sha256;
sph_panama_context panama;
blake2s_state blake2s;
};
typedef union _x25x_context_overlay x25x_context_overlay;
void x25x_hash( void *output, const void *input )
{
unsigned char hash[25][64] __attribute__((aligned(64))) = {0};
x25x_context_overlay ctx;
sph_blake512_init(&ctx.blake);
sph_blake512(&ctx.blake, input, 80);
sph_blake512_close(&ctx.blake, &hash[0] );
sph_bmw512_init(&ctx.bmw);
sph_bmw512(&ctx.bmw, (const void*) &hash[0], 64);
sph_bmw512_close(&ctx.bmw, &hash[1]);
#if defined(__AES__)
init_groestl( &ctx.groestl, 64 );
update_and_final_groestl( &ctx.groestl, (char*)&hash[2],
(const char*)&hash[1], 512 );
#else
sph_groestl512_init( &ctx.groestl );
sph_groestl512( &ctx.groestl, &hash[1], 64 );
sph_groestl512_close( &ctx.groestl, &hash[2] );
#endif
sph_skein512_init(&ctx.skein);
sph_skein512(&ctx.skein, (const void*) &hash[2], 64);
sph_skein512_close(&ctx.skein, &hash[3]);
sph_jh512_init(&ctx.jh);
sph_jh512(&ctx.jh, (const void*) &hash[3], 64);
sph_jh512_close(&ctx.jh, &hash[4]);
sph_keccak512_init(&ctx.keccak);
sph_keccak512(&ctx.keccak, (const void*) &hash[4], 64);
sph_keccak512_close(&ctx.keccak, &hash[5]);
init_luffa( &ctx.luffa, 512 );
update_and_final_luffa( &ctx.luffa, (BitSequence*)&hash[6],
(const BitSequence*)&hash[5], 64 );
cubehashInit( &ctx.cube, 512, 16, 32 );
cubehashUpdateDigest( &ctx.cube, (byte*) &hash[7],
(const byte*)&hash[6], 64 );
sph_shavite512_init(&ctx.shavite);
sph_shavite512(&ctx.shavite, (const void*) &hash[7], 64);
sph_shavite512_close(&ctx.shavite, &hash[8]);
init_sd( &ctx.simd, 512 );
update_final_sd( &ctx.simd, (BitSequence*)&hash[9],
(const BitSequence*)&hash[8], 512 );
#if defined(__AES__)
init_echo( &ctx.echo, 512 );
update_final_echo ( &ctx.echo, (BitSequence*)&hash[10],
(const BitSequence*)&hash[9], 512 );
#else
sph_echo512_init( &ctx.echo );
sph_echo512( &ctx.echo, &hash[9], 64 );
sph_echo512_close( &ctx.echo, &hash[10] );
#endif
sph_hamsi512_init(&ctx.hamsi);
sph_hamsi512(&ctx.hamsi, (const void*) &hash[10], 64);
sph_hamsi512_close(&ctx.hamsi, &hash[11]);
sph_fugue512_init(&ctx.fugue);
sph_fugue512(&ctx.fugue, (const void*) &hash[11], 64);
sph_fugue512_close(&ctx.fugue, &hash[12]);
sph_shabal512_init(&ctx.shabal);
sph_shabal512(&ctx.shabal, (const void*) &hash[12], 64);
sph_shabal512_close(&ctx.shabal, &hash[13]);
sph_whirlpool_init(&ctx.whirlpool);
sph_whirlpool (&ctx.whirlpool, (const void*) &hash[13], 64);
sph_whirlpool_close(&ctx.whirlpool, &hash[14]);
SHA512_Init( &ctx.sha512 );
SHA512_Update( &ctx.sha512, (const void*) &hash[14], 64);
SHA512_Final( (void*) &hash[15], &ctx.sha512 );
ComputeSingleSWIFFTX((unsigned char*)&hash[12], (unsigned char*)&hash[16]);
sph_haval256_5_init(&ctx.haval);
sph_haval256_5(&ctx.haval,(const void*) &hash[16], 64);
sph_haval256_5_close(&ctx.haval,&hash[17]);
sph_tiger_init(&ctx.tiger);
sph_tiger (&ctx.tiger, (const void*) &hash[17], 64);
sph_tiger_close(&ctx.tiger, (void*) &hash[18]);
LYRA2RE( (void*)&hash[19], 32, (const void*)&hash[18], 32,
(const void*)&hash[18], 32, 1, 4, 4 );
sph_gost512_init(&ctx.gost);
sph_gost512 (&ctx.gost, (const void*) &hash[19], 64);
sph_gost512_close(&ctx.gost, (void*) &hash[20]);
SHA256_Init( &ctx.sha256 );
SHA256_Update( &ctx.sha256, (const void*) &hash[20], 64 );
SHA256_Final( (unsigned char*) &hash[21], &ctx.sha256 );
sph_panama_init(&ctx.panama);
sph_panama (&ctx.panama, (const void*) &hash[21], 64 );
sph_panama_close(&ctx.panama, (void*) &hash[22]);
laneHash(512, (const BitSequence*) &hash[22], 512, (BitSequence*) &hash[23]);
// Simple shuffle algorithm, instead of just reversing
#define X25X_SHUFFLE_BLOCKS (24 * 64 / 2)
#define X25X_SHUFFLE_ROUNDS 12
static const uint16_t x25x_round_const[X25X_SHUFFLE_ROUNDS] =
{
0x142c, 0x5830, 0x678c, 0xe08c, 0x3c67, 0xd50d, 0xb1d8, 0xecb2,
0xd7ee, 0x6783, 0xfa6c, 0x4b9c
};
uint16_t* block_pointer = (uint16_t*)hash;
for ( int r = 0; r < X25X_SHUFFLE_ROUNDS; r++ )
{
for ( int i = 0; i < X25X_SHUFFLE_BLOCKS; i++ )
{
uint16_t block_value = block_pointer[ X25X_SHUFFLE_BLOCKS - i - 1 ];
block_pointer[i] ^= block_pointer[ block_value % X25X_SHUFFLE_BLOCKS ]
+ ( x25x_round_const[r] << (i % 16) );
}
}
#undef X25X_SHUFFLE_BLOCKS
#undef X25X_SHUFFLE_ROUNDS
blake2s_simple( (uint8_t*)&hash[24], (const void*)(&hash[0]), 64 * 24 );
memcpy(output, &hash[24], 32);
}
int scanhash_x25x( struct work* work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t endiandata[20] __attribute__((aligned(64)));
uint32_t hash[8] __attribute__((aligned(64)));
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
const uint32_t first_nonce = pdata[19];
const uint32_t Htarg = ptarget[7];
uint32_t n = first_nonce;
const int thr_id = mythr->id;
if (opt_benchmark)
((uint32_t*)ptarget)[7] = 0x08ff;
for (int k=0; k < 20; k++)
be32enc(&endiandata[k], pdata[k]);
InitializeSWIFFTX();
do
{
pdata[19] = ++n;
be32enc( &endiandata[19], n );
x25x_hash( hash, endiandata );
if ( hash[7] < Htarg )
if ( fulltest( hash, ptarget ) && !opt_benchmark )
submit_solution( work, hash, mythr );
} while ( n < max_nonce && !work_restart[thr_id].restart );
*hashes_done = pdata[19] - first_nonce;
return 0;
}

Binary file not shown.

View File

@@ -49,6 +49,7 @@
* no slowdown from the prefixes is generally observed on AMD CPUs supporting
* XOP, some slowdown is sometimes observed on Intel CPUs with AVX.
*/
/*
#ifdef __XOP__
#warning "Note: XOP is enabled. That's great."
#elif defined(__AVX__)
@@ -60,6 +61,7 @@
#else
#warning "Note: building generic code for non-x86. That's OK."
#endif
*/
/*
* The SSE4 code version has fewer instructions than the generic SSE2 version,

View File

@@ -16,7 +16,8 @@ mv cpuminer cpuminer-avx512
make clean || echo clean
rm -f config.status
CFLAGS="-O3 -march=core-avx2 -Wall" ./configure --with-curl
# GCC 9 doesn't include AES with core-avx2
CFLAGS="-O3 -march=core-avx2 -maes -Wall" ./configure --with-curl
make -j 16
strip -s cpuminer.exe
mv cpuminer.exe cpuminer-avx2.exe
@@ -25,7 +26,7 @@ mv cpuminer cpuminer-avx2
make clean || echo clean
rm -f config.status
CFLAGS="-O3 -march=corei7-avx -Wall" ./configure --with-curl
CFLAGS="-O3 -march=corei7-avx -maes -Wall" ./configure --with-curl
make -j 16
strip -s cpuminer.exe
mv cpuminer.exe cpuminer-aes-avx.exe

86
build-allarch.sh.bak Executable file
View File

@@ -0,0 +1,86 @@
#!/bin/bash
#
# This script is not intended for users, it is only used for compile testing
# during develpment. Howver the information contained my provide cimpilation
# tips to users.
make distclean || echo clean
rm -f config.status
./autogen.sh || echo done
CFLAGS="-O3 -march=skylake-avx512 -Wall" ./configure --with-curl
make -j 16
strip -s cpuminer.exe
mv cpuminer.exe cpuminer-avx512.exe
strip -s cpuminer
mv cpuminer cpuminer-avx512
make clean || echo clean
rm -f config.status
CFLAGS="-O3 -march=core-avx2 -Wall" ./configure --with-curl
make -j 16
strip -s cpuminer.exe
mv cpuminer.exe cpuminer-avx2.exe
strip -s cpuminer
mv cpuminer cpuminer-avx2
make clean || echo clean
rm -f config.status
CFLAGS="-O3 -march=corei7-avx -Wall" ./configure --with-curl
make -j 16
strip -s cpuminer.exe
mv cpuminer.exe cpuminer-aes-avx.exe
strip -s cpuminer
mv cpuminer cpuminer-aes-avx
make clean || echo clean
rm -f config.status
CFLAGS="-O3 -maes -msse4.2 -Wall" ./configure --with-curl
make -j 16
strip -s cpuminer.exe
mv cpuminer.exe cpuminer-aes-sse42.exe
strip -s cpuminer
mv cpuminer cpuminer-aes-sse42
make clean || echo clean
rm -f config.status
CFLAGS="-O3 -march=corei7 -Wall" ./configure --with-curl
make -j 16
strip -s cpuminer.exe
mv cpuminer.exe cpuminer-sse42.exe
strip -s cpuminer
mv cpuminer cpuminer-sse42
make clean || echo clean
rm -f config.status
CFLAGS="-O3 -march=core2 -Wall" ./configure --with-curl
make -j 16
strip -s cpuminer.exe
mv cpuminer.exe cpuminer-ssse3.exe
strip -s cpuminer
mv cpuminer cpuminer-ssse3
make clean || echo clean
rm -f config.status
CFLAGS="-O3 -msse2 -Wall" ./configure --with-curl
make -j 16
strip -s cpuminer.exe
mv cpuminer.exe cpuminer-sse2.exe
strip -s cpuminer
mv cpuminer cpuminer-sse2
make clean || echo done
rm -f config.status
CFLAGS="-O3 -march=znver1 -Wall" ./configure --with-curl
make -j 16
strip -s cpuminer.exe
mv cpuminer.exe cpuminer-zen.exe
strip -s cpuminer
mv cpuminer cpuminer-zen
make clean || echo done
rm -f config.status
CFLAGS="-O3 -march=native -Wall" ./configure --with-curl
make -j 16
strip -s cpuminer.exe
strip -s cpuminer

20
configure vendored
View File

@@ -1,6 +1,6 @@
#! /bin/sh
# Guess values for system-dependent variables and create Makefiles.
# Generated by GNU Autoconf 2.69 for cpuminer-opt 3.9.9.1.
# Generated by GNU Autoconf 2.69 for cpuminer-opt 3.10.0.
#
#
# Copyright (C) 1992-1996, 1998-2012 Free Software Foundation, Inc.
@@ -577,8 +577,8 @@ MAKEFLAGS=
# Identity of this package.
PACKAGE_NAME='cpuminer-opt'
PACKAGE_TARNAME='cpuminer-opt'
PACKAGE_VERSION='3.9.9.1'
PACKAGE_STRING='cpuminer-opt 3.9.9.1'
PACKAGE_VERSION='3.10.0'
PACKAGE_STRING='cpuminer-opt 3.10.0'
PACKAGE_BUGREPORT=''
PACKAGE_URL=''
@@ -1332,7 +1332,7 @@ if test "$ac_init_help" = "long"; then
# Omit some internal or obsolete options to make the list less imposing.
# This message is too long to be a string in the A/UX 3.1 sh.
cat <<_ACEOF
\`configure' configures cpuminer-opt 3.9.9.1 to adapt to many kinds of systems.
\`configure' configures cpuminer-opt 3.10.0 to adapt to many kinds of systems.
Usage: $0 [OPTION]... [VAR=VALUE]...
@@ -1404,7 +1404,7 @@ fi
if test -n "$ac_init_help"; then
case $ac_init_help in
short | recursive ) echo "Configuration of cpuminer-opt 3.9.9.1:";;
short | recursive ) echo "Configuration of cpuminer-opt 3.10.0:";;
esac
cat <<\_ACEOF
@@ -1509,7 +1509,7 @@ fi
test -n "$ac_init_help" && exit $ac_status
if $ac_init_version; then
cat <<\_ACEOF
cpuminer-opt configure 3.9.9.1
cpuminer-opt configure 3.10.0
generated by GNU Autoconf 2.69
Copyright (C) 2012 Free Software Foundation, Inc.
@@ -2012,7 +2012,7 @@ cat >config.log <<_ACEOF
This file contains any messages produced by compilers while
running configure, to aid debugging if configure makes a mistake.
It was created by cpuminer-opt $as_me 3.9.9.1, which was
It was created by cpuminer-opt $as_me 3.10.0, which was
generated by GNU Autoconf 2.69. Invocation command line was
$ $0 $@
@@ -2993,7 +2993,7 @@ fi
# Define the identity of the package.
PACKAGE='cpuminer-opt'
VERSION='3.9.9.1'
VERSION='3.10.0'
cat >>confdefs.h <<_ACEOF
@@ -6690,7 +6690,7 @@ cat >>$CONFIG_STATUS <<\_ACEOF || ac_write_fail=1
# report actual input values of CONFIG_FILES etc. instead of their
# values after options handling.
ac_log="
This file was extended by cpuminer-opt $as_me 3.9.9.1, which was
This file was extended by cpuminer-opt $as_me 3.10.0, which was
generated by GNU Autoconf 2.69. Invocation command line was
CONFIG_FILES = $CONFIG_FILES
@@ -6756,7 +6756,7 @@ _ACEOF
cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1
ac_cs_config="`$as_echo "$ac_configure_args" | sed 's/^ //; s/[\\""\`\$]/\\\\&/g'`"
ac_cs_version="\\
cpuminer-opt config.status 3.9.9.1
cpuminer-opt config.status 3.10.0
configured by $0, generated by GNU Autoconf 2.69,
with options \\"\$ac_cs_config\\"

View File

@@ -1,4 +1,4 @@
AC_INIT([cpuminer-opt], [3.9.9.1])
AC_INIT([cpuminer-opt], [3.10.0])
AC_PREREQ([2.59c])
AC_CANONICAL_SYSTEM

View File

@@ -53,6 +53,8 @@
#if HAVE_SYS_PARAM_H
#include <sys/param.h>
#endif
// GCC 9 warning sysctl.h is deprecated
#include <sys/sysctl.h>
#endif
#endif
@@ -157,8 +159,6 @@ uint32_t accepted_share_count = 0;
uint32_t rejected_share_count = 0;
uint32_t solved_block_count = 0;
double *thr_hashrates;
double *thr_hashcount;
double global_hashcount = 0;
double global_hashrate = 0;
double stratum_diff = 0.;
double net_diff = 0.;
@@ -875,7 +875,7 @@ static uint32_t last_block_height = 0;
static double last_targetdiff = 0.;
static double ref_rate_hi = 0.;
static double ref_rate_lo = 1e100;
#if !(defined(__WINDOWS__) || defined(__WIN64))
#if !(defined(__WINDOWS__) || defined(_WIN64) || defined(_WIN32))
static uint32_t hi_temp = 0;
#endif
//static uint32_t stratum_errors = 0;
@@ -976,10 +976,11 @@ void report_summary_log( bool force )
accepts, accepted_share_count );
applog2( LOG_INFO,"Rejected %6d %6d",
rejects, rejected_share_count );
// applog2( LOG_INFO,"Blocks solved %6d",
// solved_block_count );
if ( solved_block_count )
applog2( LOG_INFO,"Blocks solved %6d",
solved_block_count );
#if !(defined(__WINDOWS__) || defined(__WIN64))
#if !(defined(__WINDOWS__) || defined(_WIN64) || defined(_WIN32))
int temp = cpu_temp(0);
char tempstr[32];
@@ -1004,7 +1005,7 @@ static int share_result( int result, struct work *null_work,
const char *reason )
{
double share_time = 0., share_ratio = 0.;
double hashcount = 0., hashrate = 0.;
double hashrate = 0.;
int latency = 0;
struct share_stats_t my_stats = {0};
struct timeval ack_time, latency_tv, et;
@@ -1065,11 +1066,7 @@ static int share_result( int result, struct work *null_work,
pthread_mutex_lock( &stats_lock );
for ( int i = 0; i < opt_n_threads; i++ )
{
hashcount += thr_hashcount[i];
hashrate += thr_hashrates[i];
}
global_hashcount = hashcount;
global_hashrate = hashrate;
if ( result )
@@ -1342,8 +1339,8 @@ static bool submit_upstream_work( CURL *curl, struct work *work )
if ( work->height && work->height <= net_blocks )
{
if (opt_debug)
applog(LOG_WARNING, "block %u was already solved", work->height);
return true;
applog(LOG_WARNING, "block %u was already solved", work->height);
return true;
}
}
@@ -1735,12 +1732,12 @@ err_out:
return false;
}
// Treat 32 byte hash string as 256 bit integer and convert to double precision
// floating point number.
// Convert little endian 256 bit unsigned integer to
// double precision floating point.
static inline double u256_to_double( const uint64_t* u )
{
const double f = 4294967296.0 * 4294967296.0; // 2**64
return u[0] + f * ( u[1] + f * ( u[2] + f * u[3] ) );
return ( ( u[3] * f + u[2] ) * f + u[1] ) * f + u[0];
}
void work_set_target_ratio( struct work* work, uint32_t* hash )
@@ -2203,7 +2200,6 @@ static void *miner_thread( void *userdata )
if ( diff.tv_usec || diff.tv_sec )
{
pthread_mutex_lock( &stats_lock );
thr_hashcount[thr_id] = hashes_done;
thr_hashrates[thr_id] =
hashes_done / ( diff.tv_sec + diff.tv_usec * 1e-6 );
pthread_mutex_unlock( &stats_lock );
@@ -2232,30 +2228,19 @@ static void *miner_thread( void *userdata )
}
}
// display hashrate
if ( !opt_quiet )
if ( opt_hash_meter )
{
char hc[16];
char hr[16];
char hc_units[2] = {0,0};
char hr_units[2] = {0,0};
double hashcount;
double hashrate;
if ( opt_hash_meter )
hashrate = thr_hashrates[thr_id];
if ( hashrate != 0. )
{
hashcount = thr_hashcount[thr_id];
hashrate = thr_hashrates[thr_id];
if ( hashcount != 0. )
{
scale_hash_for_display( &hashcount, hc_units );
scale_hash_for_display( &hashrate, hr_units );
if ( hc_units[0] )
sprintf( hc, "%.2f", hashcount );
else // no fractions of a hash
sprintf( hc, "%.0f", hashcount );
sprintf( hr, "%.2f", hashrate );
applog( LOG_INFO, "CPU #%d: %s %sh, %s %sh/s",
thr_id, hc, hc_units, hr, hr_units );
}
scale_hash_for_display( &hashrate, hr_units );
sprintf( hr, "%.2f", hashrate );
applog( LOG_INFO, "CPU #%d: %s %sh/s",
thr_id, hr, hr_units );
}
}
@@ -2265,35 +2250,23 @@ static void *miner_thread( void *userdata )
&& thr_id == opt_n_threads - 1 )
{
double hashrate = 0.;
double hashcount = 0.;
for ( i = 0; i < opt_n_threads; i++ )
{
hashrate += thr_hashrates[i];
hashcount += thr_hashcount[i];
}
if ( hashcount != 0. )
if ( hashrate != 0. )
{
global_hashcount = hashcount;
global_hashrate = hashrate;
if ( opt_benchmark )
{
char hc[16];
char hc_units[2] = {0,0};
char hr[16];
char hr_units[2] = {0,0};
scale_hash_for_display( &hashcount, hc_units );
scale_hash_for_display( &hashrate, hr_units );
if ( hc_units[0] )
sprintf( hc, "%.2f", hashcount );
else // no fractions of a hash
sprintf( hc, "%.0f", hashcount );
sprintf( hr, "%.2f", hashrate );
#if ((defined(_WIN64) || defined(__WINDOWS__)))
applog( LOG_NOTICE, "Total: %s %sH, %s %sH/s",
hc, hc_units, hr, hr_units );
#if ((defined(_WIN64) || defined(__WINDOWS__)) || defined(_WIN32))
applog( LOG_NOTICE, "Total: %s %sH/s", hr, hr_units );
#else
applog( LOG_NOTICE, "Total: %s %sH, %s %sH/s, %dC",
hc, hc_units, hr, hr_units, (uint32_t)cpu_temp(0) );
applog( LOG_NOTICE, "Total: %s %sH/s, CPU temp: %dC",
hr, hr_units, (uint32_t)cpu_temp(0) );
#endif
}
}
@@ -2612,10 +2585,14 @@ void std_stratum_gen_work( struct stratum_ctx *sctx, struct work *g_work )
if ( ( stratum_diff != sctx->job.diff )
|| ( last_block_height != sctx->block_height ) )
{
double hr = global_hashrate;
char hr_units[4] = {0};
char block_ttf[32];
char share_ttf[32];
double hr = 0.;
pthread_mutex_lock( &stats_lock );
for ( int i = 0; i < opt_n_threads; i++ )
hr += thr_hashrates[i];
global_hashrate = hr;
pthread_mutex_unlock( &stats_lock );
if ( stratum_diff != sctx->job.diff )
applog( LOG_BLUE, "New stratum difficulty" );
@@ -2626,17 +2603,25 @@ void std_stratum_gen_work( struct stratum_ctx *sctx, struct work *g_work )
stratum_diff = sctx->job.diff;
last_block_height = stratum.block_height;
last_targetdiff = g_work->targetdiff;
sprintf_et( block_ttf, net_diff * diff_to_hash / hr );
sprintf_et( share_ttf, last_targetdiff * diff_to_hash / hr );
scale_hash_for_display ( &hr, hr_units );
applog2( LOG_INFO, "%s %s block %d", short_url,
algo_names[opt_algo], stratum.block_height );
applog2( LOG_INFO, "Diff: net %g, stratum %g, target %g",
net_diff, stratum_diff, last_targetdiff );
applog2( LOG_INFO, "TTF @ %.2f %sh/s: block %s, share %s",
hr, hr_units, block_ttf, share_ttf );
if ( hr > 0. )
{
char hr_units[4] = {0};
char block_ttf[32];
char share_ttf[32];
sprintf_et( block_ttf, net_diff * diff_to_hash / hr );
sprintf_et( share_ttf, last_targetdiff * diff_to_hash / hr );
scale_hash_for_display ( &hr, hr_units );
applog2( LOG_INFO, "TTF @ %.2f %sh/s: block %s, share %s",
hr, hr_units, block_ttf, share_ttf );
}
}
}
@@ -3356,12 +3341,14 @@ bool check_cpu_capability ()
bool cpu_has_avx2 = has_avx2();
bool cpu_has_sha = has_sha();
bool cpu_has_avx512 = has_avx512();
bool cpu_has_vaes = has_vaes();
bool sw_has_aes = false;
bool sw_has_sse42 = false;
bool sw_has_avx = false;
bool sw_has_avx2 = false;
bool sw_has_avx512 = false;
bool sw_has_sha = false;
bool sw_has_vaes = false;
set_t algo_features = algo_gate.optimizations;
bool algo_has_sse2 = set_incl( SSE2_OPT, algo_features );
bool algo_has_aes = set_incl( AES_OPT, algo_features );
@@ -3369,12 +3356,14 @@ bool check_cpu_capability ()
bool algo_has_avx2 = set_incl( AVX2_OPT, algo_features );
bool algo_has_avx512 = set_incl( AVX512_OPT, algo_features );
bool algo_has_sha = set_incl( SHA_OPT, algo_features );
bool algo_has_vaes = set_incl( VAES_OPT, algo_features );
bool use_aes;
bool use_sse2;
bool use_sse42;
bool use_avx2;
bool use_avx512;
bool use_sha;
bool use_vaes;
bool use_none;
#ifdef __AES__
@@ -3389,12 +3378,16 @@ bool check_cpu_capability ()
#ifdef __AVX2__
sw_has_avx2 = true;
#endif
#if (defined(__AVX512F__) && defined(__AVX51DQF__) && defined(__AVX51BW__) && defined(__AVX512VL__))
#if (defined(__AVX512F__) && defined(__AVX512DQ__) && defined(__AVX512BW__) && defined(__AVX512VL__))
sw_has_avx512 = true;
#endif
#ifdef __SHA__
sw_has_sha = true;
#endif
#ifdef __VAES__
sw_has_vaes = true;
#endif
// #if !((__AES__) || (__SSE2__))
// printf("Neither __AES__ nor __SSE2__ defined.\n");
@@ -3421,6 +3414,7 @@ bool check_cpu_capability ()
if ( cpu_has_avx2 ) printf( " AVX2" );
if ( cpu_has_avx512 ) printf( " AVX512" );
if ( cpu_has_sha ) printf( " SHA" );
if ( cpu_has_vaes ) printf( " VAES" );
printf(".\nSW features: SSE2");
if ( sw_has_aes ) printf( " AES" );
@@ -3429,18 +3423,20 @@ bool check_cpu_capability ()
if ( sw_has_avx2 ) printf( " AVX2" );
if ( sw_has_avx512 ) printf( " AVX512" );
if ( sw_has_sha ) printf( " SHA" );
if ( sw_has_vaes ) printf( " VAES" );
printf(".\nAlgo features:");
if ( algo_features == EMPTY_SET ) printf( " None" );
else
{
if ( algo_has_sse2 ) printf( " SSE2" );
if ( algo_has_aes ) printf( " AES" );
if ( algo_has_sse42 ) printf( " SSE4.2" );
if ( algo_has_sse2 ) printf( " SSE2" );
if ( algo_has_aes ) printf( " AES" );
if ( algo_has_sse42 ) printf( " SSE4.2" );
if ( algo_has_avx2 ) printf( " AVX2" );
if ( algo_has_avx512 ) printf( " AVX512" );
if ( algo_has_sha ) printf( " SHA" );
if ( algo_has_vaes ) printf( " VAES" );
}
printf(".\n");
@@ -3478,8 +3474,9 @@ bool check_cpu_capability ()
use_avx2 = cpu_has_avx2 && sw_has_avx2 && algo_has_avx2;
use_avx512 = cpu_has_avx512 && sw_has_avx512 && algo_has_avx512;
use_sha = cpu_has_sha && sw_has_sha && algo_has_sha;
use_vaes = cpu_has_vaes && sw_has_vaes && algo_has_vaes;
use_none = !( use_sse2 || use_aes || use_sse42 || use_avx512 || use_avx2 ||
use_sha );
use_sha || use_vaes );
// Display best options
printf( "Start mining with" );
@@ -3724,9 +3721,6 @@ int main(int argc, char *argv[])
thr_hashrates = (double *) calloc(opt_n_threads, sizeof(double));
if (!thr_hashrates)
return 1;
thr_hashcount = (double *) calloc(opt_n_threads, sizeof(double));
if (!thr_hashcount)
return 1;
/* init workio thread info */
work_thr_id = opt_n_threads;

View File

@@ -610,6 +610,8 @@ enum algos {
ALGO_X16S,
ALGO_X17,
ALGO_X21S,
ALGO_X22I,
ALGO_X25X,
ALGO_XEVAN,
ALGO_YESCRYPT,
ALGO_YESCRYPTR8,
@@ -707,6 +709,8 @@ static const char* const algo_names[] = {
"x16s",
"x17",
"x21s",
"x22i",
"x25x",
"xevan",
"yescrypt",
"yescryptr8",
@@ -871,6 +875,8 @@ Options:\n\
x16s\n\
x17\n\
x21s\n\
x22i\n\
x25x\n\
xevan Bitsend (BSD)\n\
yescrypt Globalboost-Y (BSTY)\n\
yescryptr8 BitZeny (ZNY)\n\

View File

@@ -105,52 +105,36 @@
// Ex: mm256_ror1x64_128 rotates each 128 bit lane of a 256 bit vector
// right by 64 bits.
//
// Some random thoughts about macros and inline functions, the pros and
// cons, when to use them, etc:
// Vector constants
//
// Macros are very convenient and efficient for statement functions.
// Macro args are passed by value and modifications are seen by the caller.
// Macros should not generally call regular functions unless it is for a
// special purpose such overloading a function name.
// Statement function macros that return a value should not end in ";"
// Statement function macros that return a value and don't modify input args
// may be used in function arguments and expressions.
// Macro args used in expressions should be protected ex: (x)+1
// Macros force inlining, function inlining can be overridden by the compiler.
// Inline functions are preferred when multiple statements or local variables
// are needed.
// The compiler can't do any syntax checking or type checking of args making
// macros difficult to debug.
// Although it is technically posssible to access the callers data without
// they being passed as arguments it is good practice to always define
// arguments even if they have the same name.
// Vector constants are a big problem because they technically don't exist.
// All vectors used as constants either reside in memory or must be genererated
// at run time at significant cost. The cost of generating a constant
// increases non-linearly with the number of vector elements. A 4 element
// vector costs between 7 and 11 clocks to generate, an 8 element vector
// is 15-25 clocks. There are also additional clock due to data dependency
// stalls.
//
// General guidelines for inline functions:
// Vector constants are often used as control indexes for permute, blend, etc,
// where generating the index can be over 90% of the operation. This is
// where the problem occurs. An instruction that only requires one to 3
// clocks needs may times more just to build the index argument.
//
// Inline functions should not have loops, it defeats the purpose of inlining.
// Inline functions should be short, the benefit is lost and the memory cost
// increases if the function is referenced often.
// Inline functions may call other functions, inlined or not. It is convenient
// for wrapper functions whether or not the wrapped function is itself inlined.
// Care should be taken when unrolling loops that contain calls to inlined
// functions that may be large.
// Large code blocks used only once may use function inlining to
// improve high level code readability without the penalty of function
// overhead.
// There is very little a programmer can do to avoid the worst case scenarios.
// Smaller integers can be merged to form 64 bit integers, and vectors with
// repeated elements can be generated more efficiently but they have limited
// benefit and limited application.
//
// These utilities avoid memory accesses and assume data is in a register
// argument. Vector constants, in particular are generated with opcodes instead
// of being read from memory.
// If a vector constant is to be used repeatedly it is better to define a local
// variable to generate the constant only once.
//
// The utilities defined here make use features like register aliasing
// to optimize operations. Many operations have specialized versions as
// well as more generic versions. It is preferable to use a specialized
// version whenever possible as they can take advantage of certain
// optimizations not available to the generic version. The generic
// version will often have an additional argument used is some extra
// calculations.
//
///////////////////////////////////////////////////////
// If a sequence of constants is to be used it can be more efficient to
// use arithmetic with already existing constants to generate new ones.
//
// ex: const __m512i one = _mm512_const1_64( 1 );
// const __m512i two = _mm512_add_epi64( one, one );
//
//////////////////////////////////////////////////////////////////////////
#include <inttypes.h>
#include <x86intrin.h>

File diff suppressed because it is too large Load Diff

View File

@@ -3,183 +3,132 @@
#if defined(__SSE2__)
//////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////
//
// 128 bit SSE vectors
//
// SSE2 is generally required for full 128 bit support. Some functions
// are also optimized with SSSE3 or SSE4.1.
//
// Do not call intrinsic _mm_extract directly, it isn't supported in SSE2.
// Use mm128_extr macro instead, it will select the appropriate implementation.
//
// 128 bit operations are enhanced with uint128 which adds 128 bit integer
// support for arithmetic and other operations. Casting to uint128_t is not
// free but is sometimes the only way for certain operations.
// SSE2 is required for 128 bit integer support. Some functions are also
// optimized with SSSE3, SSE4.1 or AVX. Some of these more optimized
// functions don't have SSE2 equivalents and their use would break SSE2
// compatibility.
//
// Constants are an issue with simd. Simply put, immediate constants don't
// exist. All simd constants either reside in memory or a register and
// must be loaded from memory or generated using instructions at run time.
// must be loaded from memory or generated at run time.
//
// Due to the cost of generating constants it is often more efficient to
// Due to the cost of generating constants it is more efficient to
// define a local const for repeated references to the same constant.
//
// Some constant values can be generated using shortcuts. Zero for example
// is as simple as XORing any register with itself, and is implemented
// iby the setzero instrinsic. These shortcuts must be implemented using ASM
// due to doing things the compiler would complain about. Another single
// instruction constant is -1, defined below. Others may be added as the need
// arises. Even single instruction constants are less efficient than local
// register variables so the advice above stands. These pseudo-constants
// do not perform any memory accesses
// One common use for simd constants is as a control index for vector
// instructions like blend and shuffle. Alhough the ultimate instruction
// may execute in a single clock cycle, generating the control index adds
// several more cycles to the entire operation.
//
// One common use for simd constants is as a control index for some simd
// instructions like blend and shuffle. The utilities below do not take this
// into account. Those that generate a simd constant should not be used
// repeatedly. It may be better for the application to reimplement the
// utility to better suit its usage.
// All of the utilities here assume all data is in registers except
// in rare cases where arguments are pointers.
//
// Intrinsics automatically promote from REX to VEX when AVX is available
// but ASM needs to be done manually.
//
///////////////////////////////////////////////////////////////////////////
// Efficient and convenient moving bwtween GP & low bits of XMM.
// Use VEX when available to give access to xmm8-15 and zero extend for
// larger vectors.
static inline __m128i mm128_mov64_128( const uint64_t n )
{
__m128i a;
#if defined(__AVX__)
asm( "vmovq %1, %0\n\t" : "=x"(a) : "r"(n) );
#else
asm( "movq %1, %0\n\t" : "=x"(a) : "r"(n) );
#endif
return a;
}
static inline __m128i mm128_mov32_128( const uint32_t n )
{
__m128i a;
#if defined(__AVX__)
asm( "vmovd %1, %0\n\t" : "=x"(a) : "r"(n) );
#else
asm( "movd %1, %0\n\t" : "=x"(a) : "r"(n) );
#endif
return a;
}
static inline uint64_t mm128_mov128_64( const __m128i a )
{
uint64_t n;
#if defined(__AVX__)
asm( "vmovq %1, %0\n\t" : "=r"(n) : "x"(a) );
#else
asm( "movq %1, %0\n\t" : "=r"(n) : "x"(a) );
#endif
return n;
}
static inline uint32_t mm128_mov128_32( const __m128i a )
{
uint32_t n;
#if defined(__AVX__)
asm( "vmovd %1, %0\n\t" : "=r"(n) : "x"(a) );
#else
asm( "movd %1, %0\n\t" : "=r"(n) : "x"(a) );
#endif
return n;
}
// Pseudo constants
#define m128_zero _mm_setzero_si128()
#define m128_one_128 mm128_mov64_128( 1 )
#define m128_one_64 _mm_shuffle_epi32( mm128_mov64_128( 1 ), 0x44 )
#define m128_one_32 _mm_shuffle_epi32( mm128_mov32_128( 1 ), 0x00 )
#define m128_one_16 _mm_shuffle_epi32( \
mm128_mov32_128( 0x00010001 ), 0x00 )
#define m128_one_8 _mm_shuffle_epi32( \
mm128_mov32_128( 0x01010101 ), 0x00 )
static inline __m128i mm128_one_128_fn()
{
__m128i a;
const uint64_t one = 1;
asm( "movq %1, %0\n\t"
: "=x"(a)
: "r" (one) );
return a;
}
#define m128_one_128 mm128_one_128_fn()
static inline __m128i mm128_one_64_fn()
{
__m128i a;
const uint64_t one = 1;
asm( "movq %1, %0\n\t"
: "=x" (a)
: "r" (one) );
return _mm_shuffle_epi32( a, 0x44 );
}
#define m128_one_64 mm128_one_64_fn()
static inline __m128i mm128_one_32_fn()
{
__m128i a;
const uint32_t one = 1;
asm( "movd %1, %0\n\t"
: "=x" (a)
: "r" (one) );
return _mm_shuffle_epi32( a, 0x00 );
}
#define m128_one_32 mm128_one_32_fn()
static inline __m128i mm128_one_16_fn()
{
__m128i a;
const uint32_t one = 0x00010001;
asm( "movd %1, %0\n\t"
: "=x" (a)
: "r" (one) );
return _mm_shuffle_epi32( a, 0x00 );
}
#define m128_one_16 mm128_one_16_fn()
static inline __m128i mm128_one_8_fn()
{
__m128i a;
const uint32_t one = 0x01010101;
asm( "movd %1, %0\n\t"
: "=x" (a)
: "r" (one) );
return _mm_shuffle_epi32( a, 0x00 );
}
#define m128_one_8 mm128_one_8_fn()
// ASM avoids the need to initialize return variable to avoid compiler warning.
// Macro abstracts function parentheses to look like an identifier.
static inline __m128i mm128_neg1_fn()
{
__m128i a;
asm( "pcmpeqd %0, %0\n\t"
: "=x" (a) );
#if defined(__AVX__)
asm( "vpcmpeqq %0, %0, %0\n\t" : "=x"(a) );
#else
asm( "pcmpeqq %0, %0\n\t" : "=x"(a) );
#endif
return a;
}
#define m128_neg1 mm128_neg1_fn()
// move uint64_t to low bits of __m128i, zeros the rest
static inline __m128i mm128_mov64_128( uint64_t n )
{
__m128i a;
asm( "movq %1, %0\n\t"
: "=x" (a)
: "r" (n) );
return a;
}
static inline __m128i mm128_mov32_128( uint32_t n )
{
__m128i a;
asm( "movd %1, %0\n\t"
: "=x" (a)
: "r" (n) );
return a;
}
// const functions work best when arguments are immediate constants or
// are known to be in registers. If data needs to loaded from memory or cache
// use set.
static inline uint64_t mm128_mov128_64( __m128i a )
{
uint64_t n;
asm( "movq %1, %0\n\t"
: "=x" (n)
: "r" (a) );
return n;
}
// Equivalent of set1, broadcast 64 bit integer to all elements.
#define m128_const1_64( i ) _mm_shuffle_epi32( mm128_mov64_128( i ), 0x44 )
#define m128_const1_32( i ) _mm_shuffle_epi32( mm128_mov32_128( i ), 0x00 )
static inline uint32_t mm128_mov128_32( __m128i a )
{
uint32_t n;
asm( "movd %1, %0\n\t"
: "=x" (n)
: "r" (a) );
return n;
}
#if defined(__SSE4_1__)
static inline __m128i m128_const1_64( const uint64_t n )
{
__m128i a;
asm( "movq %1, %0\n\t"
: "=x" (a)
: "r" (n) );
return _mm_shuffle_epi32( a, 0x44 );
}
// Assign 64 bit integers to respective elements: {hi, lo}
#define m128_const_64( hi, lo ) \
_mm_insert_epi64( mm128_mov64_128( lo ), hi, 1 )
static inline __m128i m128_const1_32( const uint32_t n )
{
__m128i a;
asm( "movd %1, %0\n\t"
: "=x" (a)
: "r" (n) );
return _mm_shuffle_epi32( a, 0x00 );
}
#if defined(__SSE41__)
// alternative to _mm_set_epi64x, doesn't use mem,
static inline __m128i m128_const_64( const uint64_t hi, const uint64_t lo )
{
__m128i a;
asm( "movq %2, %0\n\t"
"pinsrq $1, %1, %0\n\t"
: "=x" (a)
: "r" (hi), "r" (lo) );
return a;
}
#else
#else // No insert in SSE2
#define m128_const_64 _mm_set_epi64x
#endif
//
// Basic operations without equivalent SIMD intrinsic
@@ -207,18 +156,9 @@ static inline __m128i m128_const_64( const uint64_t hi, const uint64_t lo )
#define mm128_xor4( a, b, c, d ) \
_mm_xor_si128( _mm_xor_si128( a, b ), _mm_xor_si128( c, d ) )
// This isn't cheap, not suitable for bulk usage.
#define mm128_extr_4x32( a0, a1, a2, a3, src ) \
do { \
a0 = _mm_extract_epi32( src, 0 ); \
a1 = _mm_extract_epi32( src, 1 ); \
a1 = _mm_extract_epi32( src, 2 ); \
a3 = _mm_extract_epi32( src, 3 ); \
} while(0)
// Horizontal vector testing
#if defined(__SSE41__)
#if defined(__SSE4_1__)
#define mm128_allbits0( a ) _mm_testz_si128( a, a )
#define mm128_allbits1( a ) _mm_testc_si128( a, m128_neg1 )
@@ -235,7 +175,7 @@ do { \
#define mm128_allbits0( a ) ( !mm128_anybits1(a) )
#define mm128_allbits1( a ) ( !mm128_anybits0(a) )
#endif // SSE41 else SSE2
#endif // SSE4.1 else SSE2
//
// Vector pointer cast
@@ -256,20 +196,6 @@ do { \
// returns pointer p+o
#define casto_m128i(p,o) (((__m128i*)(p))+(o))
// SSE2 doesn't implement extract
#if defined(__SSE4_1)
#define mm128_extr_64(a,n) _mm_extract_epi64( a, n )
#define mm128_extr_32(a,n) _mm_extract_epi32( a, n )
#else
// Doesn't work with register variables.
#define mm128_extr_64(a,n) (((uint64_t*)&a)[n])
#define mm128_extr_32(a,n) (((uint32_t*)&a)[n])
#endif
// Memory functions
// Mostly for convenience, avoids calculating bytes.
@@ -294,13 +220,14 @@ static inline void memcpy_128( __m128i *dst, const __m128i *src, const int n )
//
// Bit rotations
// AVX512 has implemented bit rotation for 128 bit vectors with
// AVX512VL has implemented bit rotation for 128 bit vectors with
// 64 and 32 bit elements.
// compiler doesn't like when a variable is used for the last arg of
// _mm_rol_epi32, must be "8 bit immediate". Therefore use rol_var where
// _mm_rol_epi32, must be "8 bit immediate". Oddly _mm_slli has the same
// specification but works with a variable. Therefore use rol_var where
// necessary.
// sm3-hash-4way.c fails to compile.
// sm3-hash-4way.c has one instance where mm128_rol_var_32 is required.
#define mm128_ror_var_64( v, c ) \
_mm_or_si128( _mm_srli_epi64( v, c ), _mm_slli_epi64( v, 64-(c) ) )
@@ -315,7 +242,7 @@ static inline void memcpy_128( __m128i *dst, const __m128i *src, const int n )
_mm_or_si128( _mm_slli_epi32( v, c ), _mm_srli_epi32( v, 32-(c) ) )
/*
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#define mm128_ror_64 _mm_ror_epi64
@@ -324,14 +251,14 @@ static inline void memcpy_128( __m128i *dst, const __m128i *src, const int n )
#define mm128_rol_32 _mm_rol_epi32
#else
*/
#define mm128_ror_64 mm128_ror_var_64
#define mm128_rol_64 mm128_rol_var_64
#define mm128_ror_32 mm128_ror_var_32
#define mm128_rol_32 mm128_rol_var_32
//#endif // AVX512 else
#endif // AVX512 else
#define mm128_ror_16( v, c ) \
_mm_or_si128( _mm_srli_epi16( v, c ), _mm_slli_epi16( v, 16-(c) ) )
@@ -392,18 +319,19 @@ static inline void memcpy_128( __m128i *dst, const __m128i *src, const int n )
//
// Rotate elements within lanes.
// Equivalent to mm128_ror_64( v, 32 )
#define mm128_swap32_64( v ) _mm_shuffle_epi32( v, 0xb1 )
// Equivalent to mm128_ror_64( v, 16 )
#define mm128_ror16_64( v ) _mm_shuffle_epi8( v, \
m128_const_64( 0x09080f0e0d0c0b0a, 0x0100070605040302 )
#define mm128_rol16_64( v ) _mm_shuffle_epi8( v, \
m128_const_64( 0x0dc0b0a09080f0e, 0x0504030201000706 )
#define mm128_ror16_64( v ) \
_mm_shuffle_epi8( v, m128_const_64( 0x09080f0e0d0c0b0a, \
0x0100070605040302 )
// Equivalent to mm128_ror_32( v, 16 )
#define mm128_swap16_32( v ) _mm_shuffle_epi8( v, \
m128_const_64( 0x0d0c0f0e09080b0a, 0x0504070601000302 )
#define mm128_rol16_64( v ) \
_mm_shuffle_epi8( v, m128_const_64( 0x0d0c0b0a09080f0e, \
0x0504030201000706 )
#define mm128_swap16_32( v ) \
_mm_shuffle_epi8( v, m128_const_64( 0x0d0c0f0e09080b0a, \
0x0504070601000302 )
//
// Endian byte swap.
@@ -418,8 +346,9 @@ static inline void memcpy_128( __m128i *dst, const __m128i *src, const int n )
_mm_shuffle_epi8( v, m128_const_64( 0x0c0d0e0f08090a0b, \
0x0405060700010203 ) )
#define mm128_bswap_16( v ) _mm_shuffle_epi8( \
m128_const_64( 0x0e0f0c0d0a0b0809, 0x0607040502030001 )
#define mm128_bswap_16( v ) \
_mm_shuffle_epi8( v, m128_const_64( 0x0e0f0c0d0a0b0809, \
0x0607040502030001 )
// 8 byte qword * 8 qwords * 2 lanes = 128 bytes
#define mm128_block_bswap_64( d, s ) do \

View File

@@ -1,7 +1,7 @@
#if !defined(SIMD_256_H__)
#define SIMD_256_H__ 1
#if defined(__AVX__)
#if defined(__AVX2__)
/////////////////////////////////////////////////////////////////////
//
@@ -14,176 +14,68 @@
// is limited because 256 bit vectors are less likely to be used when 512
// is available.
// set instructions load memory resident constants, this avoids mem.
// cost 4 pinsert + 1 vinsert, estimate 8 clocks latency.
// Move integer to low element of vector, other elements are set to zero.
#if defined(__AVX2__)
#define mm256_mov64_256( n ) _mm256_castsi128_si256( mm128_mov64_128( n ) )
#define mm256_mov32_256( n ) _mm256_castsi128_si256( mm128_mov32_128( n ) )
#define m256_const_128( hi, lo ) \
#define mm256_mov256_64( a ) mm128_mov128_64( _mm256_castsi256_si128( a ) )
#define mm256_mov256_32( a ) mm128_mov128_32( _mm256_castsi256_si128( a ) )
// concatenate two 128 bit vectors into one 256 bit vector: { hi, lo }
#define mm256_concat_128( hi, lo ) \
_mm256_inserti128_si256( _mm256_castsi128_si256( lo ), hi, 1 )
#define m256_const_64( i3, i2, i1, i0 ) \
m256_const_128( m128_const_64( i3, i2 ), m128_const_64( i1, i0 ) )
#define m256_const1_128( v ) \
_mm256_broadcastsi128_si256( v )
/*
#define m256_const_64( i3, i2, i1, i0 ) \
_mm256_inserti128_si256( _mm256_castsi128_si256( m128_const_64( i1, i0 ) ), \
m128_const_64( i3, i2 ), 1 )
*/
#else // AVX
#define m256_const_64( i3, i2, i1, i0 ) _mm256_set_epi64x( i3, i2, i1, i0 )
#endif
static inline __m256i m256_const1_64( uint64_t i )
// Equavalent of set, move 64 bit integer constants to respective 64 bit
// elements.
static inline __m256i m256_const_64( const uint64_t i3, const uint64_t i2,
const uint64_t i1, const uint64_t i0 )
{
__m128i a;
asm( "movq %1, %0\n\t"
: "=x" (a)
: "r" (i) );
return _mm256_broadcastq_epi64( a );
__m128i hi, lo;
lo = mm128_mov64_128( i0 );
hi = mm128_mov64_128( i2 );
lo = _mm_insert_epi64( lo, i1, 1 );
hi = _mm_insert_epi64( hi, i3, 1 );
return mm256_concat_128( hi, lo );
}
static inline __m256i m256_const1_32( uint32_t i )
{
__m128i a;
asm( "movd %1, %0\n\t"
: "=x" (a)
: "r" (i) );
return _mm256_broadcastd_epi32( a );
}
// Broadcast 128 bits in pairs of 64 bit integer constants {i1. i0} to all
// 128 bit lanes.
#define m256_const2_64( i1, i0 ) \
_mm256_permute4x64_epi64( _mm256_castsi128_si256( \
m128_const_64( i1, i0 ) ), 0x44 )
static inline __m256i m256_const1_16( uint16_t i )
{
__m128i a;
asm( "movw %1, %0\n\t"
: "=x" (a)
: "r" (i) );
return _mm256_broadcastw_epi16( a );
}
// Equivalent of set1, broadcast integer constant to all elements.
#define m256_const1_64( i ) _mm256_broadcastq_epi64( mm128_mov64_128( i ) )
#define m256_const1_32( i ) _mm256_broadcastd_epi32( mm128_mov32_128( i ) )
#define m256_const1_16( i ) _mm256_broadcastw_epi16( mm128_mov32_128( i ) )
#define m256_const1_8 ( i ) _mm256_broadcastb_epi8 ( mm128_mov32_128( i ) )
static inline __m256i m256_const1_8( uint8_t i )
{
__m128i a;
asm( "movb %1, %0\n\t"
: "=x" (a)
: "r" (i) );
return _mm256_broadcastb_epi8( a );
}
//
// All SIMD constant macros are actually functions containing executable
// code and therefore can't be used as compile time initializers.
#define m256_zero _mm256_setzero_si256()
#if defined(__AVX2__)
// Don't call the frunction directly, use the macro to make appear like
// a constant identifier instead of a function.
// __m256i foo = m256_one_64;
static inline __m256i mm256_one_256_fn()
{
__m256i a;
const uint64_t one = 1;
asm( "movq %1, %0\n\t"
: "=x" (a)
: "r" (one) );
return a;
}
#define m256_one_256 mm256_one_256_fn()
static inline __m256i mm256_one_128_fn()
{
__m128i a;
const uint64_t one = 1;
asm( "movq %1, %0\n\t"
: "=x" (a)
: "r" (one) );
return _mm256_broadcastsi128_si256( a );
}
#define m256_one_128 mm256_one_128_fn()
static inline __m256i mm256_one_64_fn()
{
__m128i a;
const uint64_t one = 1;
asm( "movq %1, %0\n\t"
: "=x" (a)
: "r" (one) );
return _mm256_broadcastq_epi64( a );
}
#define m256_one_64 mm256_one_64_fn()
static inline __m256i mm256_one_32_fn()
{
__m128i a;
const uint64_t one = 0x0000000100000001;
asm( "movq %1, %0\n\t"
: "=x" (a)
: "r" (one) );
return _mm256_broadcastq_epi64( a );
}
#define m256_one_32 mm256_one_32_fn()
static inline __m256i mm256_one_16_fn()
{
__m128i a;
const uint64_t one = 0x0001000100010001;
asm( "movq %1, %0\n\t"
: "=x" (a)
: "r" (one) );
return _mm256_broadcastq_epi64( a );
}
#define m256_one_16 mm256_one_16_fn()
static inline __m256i mm256_one_8_fn()
{
__m128i a;
const uint64_t one = 0x0101010101010101;
asm( "movq %1, %0\n\t"
: "=x" (a)
: "r" (one) );
return _mm256_broadcastq_epi64( a );
}
#define m256_one_8 mm256_one_8_fn()
#define m256_zero _mm256_setzero_si256()
#define m256_one_256 mm256_mov64_256( 1 )
#define m256_one_128 \
_mm256_permute4x64_epi64( _mm256_castsi128_si256( \
mm128_mov64_128( 1 ) ), 0x44 )
#define m256_one_64 _mm256_broadcastq_epi64( mm128_mov64_128( 1 ) )
#define m256_one_32 _mm256_broadcastd_epi32( mm128_mov64_128( 1 ) )
#define m256_one_16 _mm256_broadcastw_epi16( mm128_mov64_128( 1 ) )
#define m256_one_8 _mm256_broadcastb_epi8 ( mm128_mov64_128( 1 ) )
static inline __m256i mm256_neg1_fn()
{
__m256i a;
asm( "vpcmpeqq %0, %0, %0\n\t"
: "=x"(a) );
asm( "vpcmpeqq %0, %0, %0\n\t" : "=x"(a) );
return a;
}
#define m256_neg1 mm256_neg1_fn()
#else // AVX
#define m256_one_256 m256_const_64( m128_zero, m128_one ) \
_mm256_inserti128_si256( _mm256_castsi128_si256( m128_one_128 ), \
m128_zero, 1 )
#define m256_one_128 \
_mm256_inserti128_si256( _mm256_castsi128_si256( m128_one_128 ), \
m128_one_128, 1 )
#define m256_one_64 _mm256_set1_epi64x( 1ULL )
#define m256_one_32 _mm256_set1_epi64x( 0x0000000100000001ULL )
#define m256_one_16 _mm256_set1_epi64x( 0x0001000100010001ULL )
#define m256_one_8 _mm256_set1_epi64x( 0x0101010101010101ULL )
// AVX doesn't have inserti128 but insertf128 will do.
static inline __m256i mm256_neg1_fn()
{
__m128i a = m128_neg1;
return _mm256_insertf128_si256( _mm256_castsi128_si256( a ), a, 1 );
}
#define m256_neg1 mm256_neg1_fn()
#endif // AVX2 else AVX
#define m256_neg1 mm256_neg1_fn()
//
@@ -202,58 +94,32 @@ static inline __m256i mm256_neg1_fn()
#define mm128_extr_hi128_256( a ) _mm256_extracti128_si256( a, 1 )
// Extract integers from 256 bit vector, ineficient, avoid if possible..
#define mm256_extr_4x64( a0, a1, a2, a3, src ) \
#define mm256_extr_4x64( a3, a2, a1, a0, src ) \
do { \
__m128i hi = _mm256_extracti128_si256( src, 1 ); \
a0 = mm256_mov256_64( src ); \
a0 = mm128_mov128_64( _mm256_castsi256_si128( src) ); \
a1 = _mm_extract_epi64( _mm256_castsi256_si128( src ), 1 ); \
a2 = mm128_mov128_64( hi ); \
a3 = _mm_extract_epi64( hi, 1 ); \
} while(0)
#define mm256_extr_8x32( a0, a1, a2, a3, a4, a5, a6, a7, src ) \
#define mm256_extr_8x32( a7, a6, a5, a4, a3, a2, a1, a0, src ) \
do { \
uint64_t t = _mm_extract_epi64( _mm256_castsi256_si128( src ), 1 ); \
__m128i hi = _mm256_extracti128_si256( src, 1 ); \
a0 = mm256_mov256_32( src ); \
a1 = _mm_extract_epi32( _mm256_castsi256_si128( src ), 1 ); \
a2 = _mm_extract_epi32( _mm256_castsi256_si128( src ), 2 ); \
a3 = _mm_extract_epi32( _mm256_castsi256_si128( src ), 3 ); \
a2 = (uint32_t)( t ); \
a3 = (uint32_t)( t<<32 ); \
t = _mm_extract_epi64( hi, 1 ); \
a4 = mm128_mov128_32( hi ); \
a5 = _mm_extract_epi32( hi, 1 ); \
a6 = _mm_extract_epi32( hi, 2 ); \
a7 = _mm_extract_epi32( hi, 3 ); \
a6 = (uint32_t)( t ); \
a7 = (uint32_t)( t<<32 ); \
} while(0)
// concatenate two 128 bit vectors into one 256 bit vector: { hi, lo }
#define mm256_concat_128( hi, lo ) \
_mm256_inserti128_si256( _mm256_castsi128_si256( lo ), hi, 1 )
// Move integer to lower bits of vector, upper bits set to zero.
static inline __m256i mm256_mov64_256( uint64_t n )
{
__m128i a;
asm( "movq %1, %0\n\t"
: "=x" (a)
: "r" (n) );
return _mm256_castsi128_si256( a );
}
static inline __m256i mm256_mov32_256( uint32_t n )
{
__m128i a;
asm( "movd %1, %0\n\t"
: "=x" (a)
: "r" (n) );
return _mm256_castsi128_si256( a );
}
// Return lo bits of vector as integer.
#define mm256_mov256_64( a ) mm128_mov128_64( _mm256_castsi256_si128( a ) )
#define mm256_mov256_32( a ) mm128_mov128_32( _mm256_castsi256_si128( a ) )
// Horizontal vector testing
#if defined(__AVX2__)
#define mm256_allbits0( a ) _mm256_testz_si256( a, a )
#define mm256_allbits1( a ) _mm256_testc_si256( a, m256_neg1 )
@@ -261,21 +127,6 @@ static inline __m256i mm256_mov32_256( uint32_t n )
#define mm256_anybits0 mm256_allbitsne
#define mm256_anybits1 mm256_allbitsne
#else // AVX
// Bit-wise test of entire vector, useful to test results of cmp.
#define mm256_anybits0( a ) \
( (uint128_t)mm128_extr_hi128_256( a ) \
| (uint128_t)mm128_extr_lo128_256( a ) )
#define mm256_anybits1( a ) \
( ( (uint128_t)mm128_extr_hi128_256( a ) + 1 ) \
| ( (uint128_t)mm128_extr_lo128_256( a ) + 1 ) )
#define mm256_allbits0_256( a ) ( !mm256_anybits1(a) )
#define mm256_allbits1_256( a ) ( !mm256_anybits0(a) )
#endif // AVX2 else AVX
// Parallel AES, for when x is expected to be in a 256 bit register.
// Use same 128 bit key.
@@ -324,12 +175,6 @@ static inline void memset_256( __m256i *dst, const __m256i a, const int n )
static inline void memcpy_256( __m256i *dst, const __m256i *src, const int n )
{ for ( int i = 0; i < n; i ++ ) dst[i] = src[i]; }
///////////////////////////////
//
// AVX2 needed from now on.
//
#if defined(__AVX2__)
//
// Basic operations without SIMD equivalent
@@ -388,7 +233,7 @@ static inline void memcpy_256( __m256i *dst, const __m256i *src, const int n )
_mm256_or_si256( _mm256_slli_epi32( v, c ), \
_mm256_srli_epi32( v, 32-(c) ) )
/*
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
// AVX512, control must be 8 bit immediate.
@@ -399,7 +244,7 @@ static inline void memcpy_256( __m256i *dst, const __m256i *src, const int n )
#define mm256_rol_32 _mm256_rol_epi32
#else
*/
// No AVX512, use fallback.
@@ -408,7 +253,7 @@ static inline void memcpy_256( __m256i *dst, const __m256i *src, const int n )
#define mm256_ror_32 mm256_ror_var_32
#define mm256_rol_32 mm256_rol_var_32
// #endif // AVX512 else
#endif // AVX512 else
#define mm256_ror_16( v, c ) \
_mm256_or_si256( _mm256_srli_epi16( v, c ), \
@@ -464,6 +309,20 @@ static inline void memcpy_256( __m256i *dst, const __m256i *src, const int n )
//
// AVX2 has no full vector permute for elements less than 32 bits.
// AVX512 has finer granularity full vector permutes.
// AVX512 has full vector alignr which might be faster, especially for 32 bit
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#define mm256_swap_128( v ) _mm256_alignr_epi64( v, v, 2 )
#define mm256_ror_1x64( v ) _mm256_alignr_epi64( v, v, 1 )
#define mm256_rol_1x64( v ) _mm256_alignr_epi64( v, v, 3 )
#define mm256_ror_1x32( v ) _mm256_alignr_epi32( v, v, 1 )
#define mm256_rol_1x32( v ) _mm256_alignr_epi32( v, v, 7 )
#define mm256_ror_3x32( v ) _mm256_alignr_epi32( v, v, 3 )
#define mm256_rol_3x32( v ) _mm256_alignr_epi32( v, v, 5 )
#else // AVX2
// Swap 128 bit elements in 256 bit vector.
#define mm256_swap_128( v ) _mm256_permute4x64_epi64( v, 0x4e )
@@ -472,7 +331,6 @@ static inline void memcpy_256( __m256i *dst, const __m256i *src, const int n )
#define mm256_ror_1x64( v ) _mm256_permute4x64_epi64( v, 0x39 )
#define mm256_rol_1x64( v ) _mm256_permute4x64_epi64( v, 0x93 )
// A little faster with avx512
// Rotate 256 bit vector by one 32 bit element.
#define mm256_ror_1x32( v ) \
_mm256_permutevar8x32_epi32( v, \
@@ -495,6 +353,9 @@ static inline void memcpy_256( __m256i *dst, const __m256i *src, const int n )
m256_const_64( 0x0000000400000003, 0x0000000200000001, \
0x0000000000000007, 0x0000000600000005 )
#endif // AVX512 else AVX2
// AVX512 can do 16 & 8 bit elements.
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
@@ -537,18 +398,16 @@ static inline void memcpy_256( __m256i *dst, const __m256i *src, const int n )
// Invert vector: {7,6,5,4,3,2,1,0} -> {0,1,2,3,4,5,6,7}
#define mm256_invert_16 ( v ) \
_mm256_permutexvar_epi16( m256_const_64( 0x0000000100020003, \
0x0004000500060007, \
0x00080009000a000b, \
0x000c000d000e000f ), v )
_mm256_permutexvar_epi16( m256_const_64( \
0x0000000100020003, 0x0004000500060007, \
0x00080009000a000b, 0x000c000d000e000f ), v )
#if defined(__AVX512VBMI__)
#define mm256_invert_8( v ) \
_mm256_permutexvar_epi8( m256_const_64( 0x0001020304050607, \
0x08090a0b0c0d0e0f, \
0x1011121314151617, \
0x18191a1b1c1d1e1f ), v )
_mm256_permutexvar_epi8( m256_const_64( \
0x0001020304050607, 0x08090a0b0c0d0e0f, \
0x1011121314151617, 0x18191a1b1c1d1e1f ), v )
#endif // VBMI
#endif // AVX512
@@ -563,29 +422,25 @@ static inline void memcpy_256( __m256i *dst, const __m256i *src, const int n )
#define mm256_ror1x32_128( v ) _mm256_shuffle_epi32( v, 0x39 )
#define mm256_rol1x32_128( v ) _mm256_shuffle_epi32( v, 0x93 )
// Rotate each 128 bit lane by one 16 bit element.
#define mm256_ror1x16_128( v ) \
_mm256_shuffle_epi8( v, m256_const_64( 0x01000f0e0d0c0b0a, \
0x0908070605040302, \
0x01000f0e0d0c0b0a, \
0x0908070605040302 ) )
#define mm256_rol1x16_128( v ) \
_mm256_shuffle_epi8( v, m256_const_64( 0x0d0c0b0a09080706, \
0x0504030201000f0e, \
0x0d0c0b0a09080706, \
0x0504030201000f0e ) )
_mm256_shuffle_epi8( v, \
m256_const_64( 0x11101f1e1d1c1b1a, 0x1918171615141312, \
0x01000f0e0d0c0b0a, 0x0908070605040302 ) )
#define mm256_rol1x16_128( v ) \
_mm256_shuffle_epi8( v, \
m256_const_64( 0x1d1c1b1a19181716, 0x1514131211101f1e, \
0x0d0c0b0a09080706, 0x0504030201000f0e ) )
// Rotate each 128 bit lane by one byte
#define mm256_ror1x8_128( v ) \
_mm256_shuffle_epi8( v, m256_const_64( 0x000f0e0d0c0b0a09, \
0x0807060504030201, \
0x000f0e0d0c0b0a09, \
0x0807060504030201 ) )
_mm256_shuffle_epi8( v, \
m256_const_64( 0x101f1e1d1c1b1a19, 0x1817161514131211, \
0x000f0e0d0c0b0a09, 0x0807060504030201 ) )
#define mm256_rol1x8_128( v ) \
_mm256_shuffle_epi8( v, m256_const_64( 0x0c0b0a09080f0e0d, \
0x0504030201000706, \
0x0d0c0b0a09080f0e, \
0x0504030201000706 ) )
_mm256_shuffle_epi8( v, \
m256_const_64( 0x1d1c1b1a19181f1e, 0x1514131211101716, \
0x0d0c0b0a09080f0e, 0x0504030201000706 ) )
// Rotate each 128 bit lane by c bytes.
#define mm256_bror_128( v, c ) \
@@ -599,70 +454,65 @@ static inline void memcpy_256( __m256i *dst, const __m256i *src, const int n )
#define mm256_swap32_64( v ) _mm256_shuffle_epi32( v, 0xb1 )
#define mm256_ror1x16_64( v ) \
_mm256_shuffle_epi8( v, m256_const_64( 0x09080f0e0d0c0b0a, \
0x0100070605040302, \
0x09080f0e0d0c0b0a, \
0x0100070605040302 ) )
_mm256_shuffle_epi8( v, \
m256_const_64( 0x19181f1e1d1c1b1a, 0x1110171615141312, \
0x09080f0e0d0c0b0a, 0x0100070605040302 ) )
#define mm256_rol1x16_64( v ) \
_mm256_shuffle_epi8( v, m256_const_64( 0x0d0c0b0a09080f0e, \
0x0504030201000706, \
0x0d0c0b0a09080f0e, \
0x0504030201000706 ))
_mm256_shuffle_epi8( v, \
m256_const_64( 0x1d1c1b1a19181f1e, 0x1514131211101716, \
0x0d0c0b0a09080f0e, 0x0504030201000706 ) )
#define mm256_ror1x8_64( v ) \
_mm256_shuffle_epi8( v, m256_const_64( 0x080f0e0d0c0b0a09, \
0x0007060504030201, \
0x080f0e0d0c0b0a09, \
0x0007060504030201 ))
_mm256_shuffle_epi8( v, \
m256_const_64( 0x181f1e1d1c1b1a19, 0x1017161514131211, \
0x080f0e0d0c0b0a09, 0x0007060504030201 ) )
#define mm256_rol1x8_64( v ) \
_mm256_shuffle_epi8( v, m256_const_64( 0x0e0d0c0b0a09080f, \
0x0605040302010007, \
0x0e0d0c0b0a09080f, \
0x0605040302010007 ) )
_mm256_shuffle_epi8( v, \
m256_const_64( 0x1e1d1c1b1a19181f, 0x1615141312111017, \
0x0e0d0c0b0a09080f, 0x0605040302010007 ) )
#define mm256_ror3x8_64( v ) \
_mm256_shuffle_epi8( v, m256_const_64( 0x0a09080f0e0d0c0b, \
0x0201000706050403, \
0x0a09080f0e0d0c0b, \
0x0201000706050403 ) )
_mm256_shuffle_epi8( v, \
m256_const_64( 0x1a19181f1e1d1c1b, 0x1211101716151413, \
0x0a09080f0e0d0c0b, 0x0201000706050403 ) )
#define mm256_rol3x8_64( v ) \
_mm256_shuffle_epi8( v, m256_const_64( 0x0c0b0a09080f0e0d, \
0x0403020100070605, \
0x0c0b0a09080f0e0d, \
0x0403020100070605 ) )
_mm256_shuffle_epi8( v, \
m256_const_64( 0x1c1b1a19181f1e1d, 0x1413121110171615, \
0x0c0b0a09080f0e0d, 0x0403020100070605 ) )
// Swap 16 bit elements in each 32 bit lane
#define mm256_swap16_32( v ) \
_mm256_shuffle_epi8( v, m256_const_64( 0x0b0a09080f0e0d0c, \
0x0302010007060504, \
0x0b0a09080f0e0d0c, \
0x0302010007060504 )
_mm256_shuffle_epi8( v, \
m256_const_64( 0x1b1a19181f1e1d1c, 0x1312111017161514, \
0x0b0a09080f0e0d0c, 0x0302010007060504 ) )
//
// Swap bytes in vector elements, endian bswap.
#define mm256_bswap_64( v ) \
_mm256_shuffle_epi8( v, m256_const_64( 0x08090a0b0c0d0e0f, \
0x0001020304050607, \
0x08090a0b0c0d0e0f, \
0x0001020304050607 ) )
_mm256_shuffle_epi8( v, \
m256_const_64( 0x18191a1b1c1d1e1f, 0x1011121314151617, \
0x08090a0b0c0d0e0f, 0x0001020304050607 ) )
#define mm256_bswap_32( v ) \
_mm256_shuffle_epi8( v, m256_const_64( 0x0c0d0e0f08090a0b, \
0x0405060700010203, \
0x0c0d0e0f08090a0b, \
0x0405060700010203 ) )
_mm256_shuffle_epi8( v, \
m256_const_64( 0x1c1d1e1f18191a1b, 0x1415161710111213, \
0x0c0d0e0f08090a0b, 0x0405060700010203 ) )
#define mm256_bswap_16( v ) \
_mm256_shuffle_epi8( v, m256_const_64( 0x0e0f0c0d0a0b0809, \
0x0607040502030001, \
0x0e0f0c0d0a0b0809, \
0x0607040502030001 ) )
_mm256_shuffle_epi8( v, \
m256_const_64( 0x1e1f1c1d1a1b1819, 0x1617141512131011, \
0x0e0f0c0d0a0b0809, 0x0607040502030001, ) )
// Source and destination are pointers, may point to same memory.
// 8 byte qword * 8 qwords * 4 lanes = 256 bytes
#define mm256_block_bswap_64( d, s ) do \
{ \
__m256i ctl = m256_const_64( 0x08090a0b0c0d0e0f, 0x0001020304050607, \
0x08090a0b0c0d0e0f, 0x0001020304050607 ); \
__m256i ctl = m256_const_64( 0x18191a1b1c1d1e1f, 0x1011121314151617, \
0x08090a0b0c0d0e0f, 0x0001020304050607 ) ; \
casti_m256i( d, 0 ) = _mm256_shuffle_epi8( casti_m256i( s, 0 ), ctl ); \
casti_m256i( d, 1 ) = _mm256_shuffle_epi8( casti_m256i( s, 1 ), ctl ); \
casti_m256i( d, 2 ) = _mm256_shuffle_epi8( casti_m256i( s, 2 ), ctl ); \
@@ -676,7 +526,7 @@ static inline void memcpy_256( __m256i *dst, const __m256i *src, const int n )
// 4 byte dword * 8 dwords * 8 lanes = 256 bytes
#define mm256_block_bswap_32( d, s ) do \
{ \
__m256i ctl = m256_const_64( 0x0c0d0e0f08090a0b, 0x0405060700010203, \
__m256i ctl = m256_const_64( 0x1c1d1e1f18191a1b, 0x1415161710111213, \
0x0c0d0e0f08090a0b, 0x0405060700010203 ); \
casti_m256i( d, 0 ) = _mm256_shuffle_epi8( casti_m256i( s, 0 ), ctl ); \
casti_m256i( d, 1 ) = _mm256_shuffle_epi8( casti_m256i( s, 1 ), ctl ); \
@@ -695,6 +545,9 @@ static inline void memcpy_256( __m256i *dst, const __m256i *src, const int n )
// Some of these can use permute but appears to be slower. Maybe a Ryzen
// issue
// _mm256_alignr_epi 64/32 are only available with AVX512 but AVX512 also
// makes these macros unnecessary.
#define mm256_swap256_512 (v1, v2) \
v1 = _mm256_xor_si256(v1, v2); \
v2 = _mm256_xor_si256(v1, v2); \
@@ -702,75 +555,18 @@ static inline void memcpy_256( __m256i *dst, const __m256i *src, const int n )
#define mm256_ror1x128_512( v1, v2 ) \
do { \
__m256i t = _mm256_alignr_epi8( v1, v2, 16 ); \
v1 = _mm256_alignr_epi8( v2, v1, 16 ); \
__m256i t = _mm256_permute2x128( v1, v2, 0x03 ); \
v1 = _mm256__mm256_permute2x128( v2, v1, 0x21 ); \
v2 = t; \
} while(0)
#define mm256_rol1x128_512( v1, v2 ) \
do { \
__m256i t = _mm256_alignr_epi8( v1, v2, 16 ); \
v2 = _mm256_alignr_epi8( v2, v1, 16 ); \
v1 = t; \
} while(0)
#define mm256_ror1x64_512( v1, v2 ) \
do { \
__m256i t = _mm256_alignr_epi8( v1, v2, 8 ); \
v1 = _mm256_alignr_epi8( v2, v1, 8 ); \
v2 = t; \
} while(0)
#define mm256_rol1x64_512( v1, v2 ) \
do { \
__m256i t = _mm256_alignr_epi8( v1, v2, 24 ); \
v2 = _mm256_alignr_epi8( v2, v1, 24 ); \
v1 = t; \
} while(0)
#define mm256_ror1x32_512( v1, v2 ) \
do { \
__m256i t = _mm256_alignr_epi8( v1, v2, 4 ); \
v1 = _mm256_alignr_epi8( v2, v1, 4 ); \
v2 = t; \
} while(0)
#define mm256_rol1x32_512( v1, v2 ) \
do { \
__m256i t = _mm256_alignr_epi8( v1, v2, 28 ); \
v2 = _mm256_alignr_epi8( v2, v1, 28 ); \
v1 = t; \
} while(0)
#define mm256_ror1x16_512( v1, v2 ) \
do { \
__m256i t = _mm256_alignr_epi8( v1, v2, 2 ); \
v1 = _mm256_alignr_epi8( v2, v1, 2 ); \
v2 = t; \
} while(0)
#define mm256_rol1x16_512( v1, v2 ) \
do { \
__m256i t = _mm256_alignr_epi8( v1, v2, 30 ); \
v2 = _mm256_alignr_epi8( v2, v1, 30 ); \
v1 = t; \
} while(0)
#define mm256_ror1x8_512( v1, v2 ) \
do { \
__m256i t = _mm256_alignr_epi8( v1, v2, 1 ); \
v1 = _mm256_alignr_epi8( v2, v1, 1 ); \
v2 = t; \
} while(0)
#define mm256_rol1x8_512( v1, v2 ) \
do { \
__m256i t = _mm256_alignr_epi8( v1, v2, 31 ); \
v2 = _mm256_alignr_epi8( v2, v1, 31 ); \
__m256i t = _mm256_permute2x128( v1, v2, 0x03 ); \
v2 = _mm256__mm256_permute2x128( v2, v1, 0x21 ); \
v1 = t; \
} while(0)
#endif // __AVX2__
#endif // __AVX__
#endif // SIMD_256_H__

View File

@@ -37,74 +37,84 @@
//
// Experimental, not fully tested.
//
// Pseudo constants.
//
// Vector constants are not really constants and can't be used as compile time
// initializers. They contain executable instructions to generate values at
// run time. They are very slow. If the same constant will be used repeatedly
// in a function it's better to define it once in a local register variable
// and use the variable for references.
// Tthe simpler the constant, the more efficienct it's generation. Zero is
// the fastest, then all elements set the same, different 64 bit elements,
// and different smaller elements is the slowest. Caching multiple uses us
// always faster.
// Move integer to/from element 0 of vector.
#define m512_const_256( hi, lo ) \
#define mm512_mov64_512( n ) _mm512_castsi128_si512( mm128_mov64_128( n ) )
#define mm512_mov32_512( n ) _mm512_castsi128_si512( mm128_mov32_128( n ) )
#define mm512_mov256_64( a ) mm128_mov128_64( _mm256_castsi512_si128( a ) )
#define mm512_mov256_32( a ) mm128_mov128_32( _mm256_castsi512_si128( a ) )
// Insert and extract integers is a multistage operation.
// Insert integer into __m128i, then insert __m128i to __m256i, finally
// insert __256i into __m512i. Reverse the order for extract.
// Do not use __m512_insert_epi64 or _mm256_insert_epi64 to perform multiple
// inserts.
// Avoid small integers for multiple inserts.
// Shortcuts:
// Use castsi to reference the low bits of a vector or sub-vector. (free)
// Use mov to insert integer into low bits of vector or sub-vector. (cheap)
// Use _mm_insert only to reference the high bits of __m128i. (expensive)
// Sequence instructions to minimize data dependencies.
// Use const or const1 only when integer is either immediate or known to be in
// a GP register. Use set/set1 when data needs to be loaded from memory or
// cache.
// Concatenate two 256 bit vectors into one 512 bit vector {hi, lo}
#define mm512_concat_256( hi, lo ) \
_mm512_inserti64x4( _mm512_castsi256_si512( lo ), hi, 1 )
#define m512_const_128( i3, i2, i1, i0 ) \
_mm512_inserti64x4( _mm512_castsi256_si512( m256_const_128( i1, i0 ) ), \
m256_const_128( i3,i2 ), 1 )
#define m512_const_64( i7, i6, i5, i4, i3, i2, i1, i0 ) \
m512_const_256( m256_const_64( i7,i6,i5,i4 ), \
m256_const_64( i3,i2,i1,i0 ) )
static inline __m512i m512_const1_256( __m256i v )
// Equivalent of set, assign 64 bit integers to respective 64 bit elements.
static inline __m512i m512_const_64( const uint64_t i7, const uint64_t i6,
const uint64_t i5, const uint64_t i4,
const uint64_t i3, const uint64_t i2,
const uint64_t i1, const uint64_t i0 )
{
return _mm512_broadcast_i64x4( v );
__m256i hi, lo;
__m128i hi1, lo1;
lo = mm256_mov64_256( i0 );
lo1 = mm128_mov64_128( i2 );
hi = mm256_mov64_256( i4 );
hi1 = mm128_mov64_128( i6 );
lo = _mm256_castsi128_si256(
_mm_insert_epi64( _mm256_castsi256_si128( lo ), i1, 1 ) );
lo1 = _mm_insert_epi64( lo1, i3, 1 );
hi = _mm256_castsi128_si256(
_mm_insert_epi64( _mm256_castsi256_si128( hi ), i5, 1 ) );
hi1 = _mm_insert_epi64( hi1, i7, 1 );
lo = _mm256_inserti128_si256( lo, lo1, 1 );
hi = _mm256_inserti128_si256( hi, hi1, 1 );
return mm512_concat_256( hi, lo );
}
static inline __m512i m512_const1_128( __m128i v )
// Equivalent of set4, broadcast 256 bits in groups of four 64 bit constants
// to all 256 bit lanes: {i3,i2,i1,i0,i3,i2,i1,i0,i3,i2,i1,i0,i3,i2,i1,i0}.
static inline __m512i m512_const4_64( const uint64_t i3, const uint64_t i2,
const uint64_t i1, const uint64_t i0 )
{
return _mm512_broadcast_i64x2( v );
__m256i lo = mm256_mov64_256( i0 );
__m128i hi = mm128_mov64_128( i2 );
lo = _mm256_castsi128_si256(
_mm_insert_epi64( _mm256_castsi256_si128(
lo ), i1, 1 ) );
hi = _mm_insert_epi64( hi, i3, 1 );
return _mm512_permutex_epi64( _mm512_castsi256_si512(
_mm256_inserti128_si256( lo, hi, 1 ) ), 0xe4 );
}
static inline __m512i m512_const1_64( uint64_t i )
{
__m128i a;
asm( "movq %1, %0\n\t"
: "=x"(a)
: "r"(i) );
return _mm512_broadcastq_epi64( a );
}
// Broadcast 128 bits in pairs of 64 bit constants {i1. i0} to all
// 128 bit lanes.
#define m512_const2_64( i1, i0 ) \
_mm512_permutex_epi64( _mm512_castsi128_si512( \
m128_const_64( i1, i0 ) ), 0x44 )
static inline __m512i m512_const1_32( uint32_t i )
{
__m128i a;
asm( "movd %1, %0\n\t"
: "=x"(a)
: "r"(i) );
return _mm512_broadcastd_epi32( a );
}
// Equivalent of set1, broadcast 64 bit constant to all 64 bit elements.
#define m512_const1_64( i ) _mm512_broadcastq_epi64( mm128_mov64_128( i ) )
#define m512_const1_32( i ) _mm512_broadcastd_epi32( mm128_mov32_128( i ) )
#define m512_const1_16( i ) _mm512_broadcastw_epi16( mm128_mov32_128( i ) )
#define m512_const1_8 ( i ) _mm512_broadcastb_epi8 ( mm128_mov32_128( i ) )
static inline __m512i m512_const1_16( uint16_t i )
{
__m128i a;
asm( "movw %1, %0\n\t"
: "=x"(a)
: "r"(i) );
return _mm512_broadcastw_epi16( a );
}
static inline __m512i m512_const1_8( uint8_t i )
{
__m128i a;
asm( "movb %1, %0\n\t"
: "=x"(a)
: "r"(i) );
return _mm512_broadcastb_epi8( a );
}
//
// Pseudo constants.
@@ -114,105 +124,26 @@ static inline __m512i m512_const1_8( uint8_t i )
// initialized to zero.
#define m512_zero _mm512_setzero_si512()
#define m512_one_512 mm512_mov64_512( 1 )
#define m512_one_256 _mm512_broadcast_i64x4 ( mm256_mov64_256( 1 ) )
#define m512_one_128 _mm512_broadcast_i64x2 ( mm128_mov64_128( 1 ) )
#define m512_one_64 _mm512_broadcastq_epi64( mm128_mov64_128( 1 ) )
#define m512_one_32 _mm512_broadcastd_epi32( mm128_mov64_128( 1 ) )
#define m512_one_16 _mm512_broadcastw_epi16( mm128_mov64_128( 1 ) )
#define m512_one_8 _mm512_broadcastb_epi8 ( mm128_mov64_128( 1 ) )
/*
#define m512_one_512 _mm512_set_epi64( 0ULL, 0ULL, 0ULL, 0ULL, \
0ULL, 0ULL, 0ULL, 1ULL )
#define m512_one_256 _mm512_set4_epi64( 0ULL, 0ULL, 0ULL, 1ULL )
#define m512_one_128 _mm512_set4_epi64( 0ULL, 1ULL, 0ULL, 1ULL )
#define m512_one_64 _mm512_set1_epi64( 1ULL )
#define m512_one_32 _mm512_set1_epi32( 1UL )
#define m512_one_16 _mm512_set1_epi16( 1U )
#define m512_one_8 _mm512_set1_epi8( 1U )
#define m512_neg1 _mm512_set1_epi64( 0xFFFFFFFFFFFFFFFFULL )
*/
static inline __m512i mm512_one_512_fn()
{
__m512i a;
const uint64_t one = 1;
asm( "movq %1, %0\n\t"
: "=x" (a)
: "r" (one) );
return a;
}
#define m512_one_512 mm512_one_512_fn()
static inline __m512i mm512_one_256_fn()
{
__m256i a;
const uint64_t one = 1;
asm( "movq %1, %0\n\t"
: "=x"(a)
: "r" (one) );
return _mm512_broadcast_i64x4( a );
}
#define m512_one_256 mm512_one_256_fn()
static inline __m512i mm512_one_128_fn()
{
__m128i a;
const uint64_t one = 1;
asm( "movq %1, %0\n\t"
: "=x"(a)
: "r" (one) );
return _mm512_broadcast_i64x2( a );
}
#define m512_one_128 mm512_one_128_fn()
static inline __m512i mm512_one_64_fn()
{
__m128i a;
const uint64_t one = 1;
asm( "movq %1, %0\n\t"
: "=x"(a)
: "r" (one) );
return _mm512_broadcastq_epi64( a );
}
#define m512_one_64 mm512_one_64_fn()
static inline __m512i mm512_one_32_fn()
{
__m128i a;
const uint64_t one = 0x0000000100000001;
asm( "movd %1, %0\n\t"
: "=x"(a)
: "r" (one) );
return _mm512_broadcastq_epi64( a );
}
#define m512_one_32 mm512_one_32_fn()
static inline __m512i mm512_one_16_fn()
{
__m128i a;
const uint64_t one = 0x0001000100010001;
asm( "movd %1, %0\n\t"
: "=x"(a)
: "r" (one) );
return _mm512_broadcastq_epi64( a );
}
#define m512_one_16 mm512_one_16_fn()
static inline __m512i mm512_one_8_fn()
{
__m128i a;
const uint64_t one = 0x0101010101010101;
asm( "movd %1, %0\n\t"
: "=x"(a)
: "r" (one) );
return _mm512_broadcastq_epi64( a );
}
#define m512_one_8 mm512_one_8_fn()
#define m512_neg1 m512_const1_64( 0xffffffffffffffff )
/*
// EVEX vcmpeqq returns a bit mask instead of a vector
static inline __m512i mm512_neg1_fn()
{
__m512i a;
asm( "vpcmpeqq %0, %0, %0\n\t"
:"=x"(a) );
asm( "vpcmpeqq %0, %0, %0\n\t" : "=x"(a) );
return a;
}
#define m512_neg1 mm512_neg1_fn()
*/
//
// Basic operations without SIMD equivalent
@@ -222,12 +153,6 @@ static inline __m512i mm512_neg1_fn()
#define mm512_negate_32( x ) _mm512_sub_epi32( m512_zero, x )
#define mm512_negate_16( x ) _mm512_sub_epi16( m512_zero, x )
// More efficient to use cast to extract low lanes, it's free.
#define mm256_extr_lo256_512( a ) _mm512_castsi512_si256( a )
#define mm256_extr_hi256_512( a ) _mm512_extracti64x4_epi64( a, 1 )
#define mm128_extr_lo128_512( a ) _mm512_castsi512_si256( a )
//
// Pointer casting
@@ -248,6 +173,19 @@ static inline __m512i mm512_neg1_fn()
// returns p+o as pointer to vector
#define casto_m512i(p,o) (((__m512i*)(p))+(o))
//
// Memory functions
// n = number of 512 bit (64 byte) vectors
static inline void memset_zero_512( __m512i *dst, const int n )
{ for ( int i = 0; i < n; i++ ) dst[i] = m512_zero; }
static inline void memset_512( __m512i *dst, const __m512i a, const int n )
{ for ( int i = 0; i < n; i++ ) dst[i] = a; }
static inline void memcpy_512( __m512i *dst, const __m512i *src, const int n )
{ for ( int i = 0; i < n; i ++ ) dst[i] = src[i]; }
// Sum 4 values, fewer dependencies than sequential addition.
@@ -264,19 +202,12 @@ static inline __m512i mm512_neg1_fn()
_mm512_add_epi8( _mm512_add_epi8( a, b ), _mm512_add_epi8( c, d ) )
#define mm512_xor4( a, b, c, d ) \
_mm512_xor_si512( _mm512_xor_si256( a, b ), _mm512_xor_si256( c, d ) )
_mm512_xor_si512( _mm512_xor_si512( a, b ), _mm512_xor_si512( c, d ) )
// Vector size conversion
#define mm256_extr_lo256_512( a ) _mm512_castsi512_si256( a )
#define mm256_extr_hi256_512( a ) _mm512_extracti64x4_epi64( a, 1 )
#define mm512_concat_256( hi, lo ) \
_mm512_inserti164x4( _mm512_castsi256_si512( lo ), hi, 1 )
// Horizontal vector testing
// Returns bit mask
#define mm512_allbits0( a ) _mm512_cmpeq_epi64_mask( a, m512_zero )
#define mm512_allbits1( a ) _mm512_cmpeq_epi64_mask( a, m512_neg1 )
#define mm512_anybits0( a ) _mm512_cmpneq_epi64_mask( a, m512_neg1 )
@@ -294,6 +225,11 @@ static inline __m512i mm512_neg1_fn()
// _mm512_rolv_epi64, _mm512_rorv_epi64, _mm512_rolv_epi32, _mm512_rorv_epi32
//
#define mm512_ror_64 _mm512_ror_epi64
#define mm512_rol_64 _mm512_rol_epi64
#define mm512_ror_32 _mm512_ror_epi32
#define mm512_rol_32 _mm512_rol_epi32
#define mm512_ror_var_64( v, c ) \
_mm512_or_si512( _mm512_srli_epi64( v, c ), \
_mm512_slli_epi64( v, 64-(c) ) )
@@ -331,25 +267,61 @@ static inline __m512i mm512_neg1_fn()
// Swap bytes in vector elements, vectorized endian conversion.
#define mm512_bswap_64( v ) \
_mm512_shuffle_epi8( v, m512_const_64( \
0x38393A3B3C3D3E3F, 0x3031323334353637, \
0x28292A2B2C2D2E2F, 0x2021222324252627, \
0x18191A1B1C1D1E1F, 0x1011121314151617, \
0x08090A0B0C0D0E0F, 0x0001020304050607 ) )
_mm512_shuffle_epi8( v, \
m512_const_64( 0x38393a3b3c3d3e3f, 0x3031323334353637, \
0x28292a2b2c2d2e2f, 0x2021222324252627, \
0x18191a1b1c1d1e1f, 0x1011121314151617, \
0x08090a0b0c0d0e0f, 0x0001020304050607 ))
#define mm512_bswap_32( v ) \
_mm512_shuffle_epi8( v, m512_const_64( \
0x3C3D3E3F38393A3B, 0x3435363730313233, \
0x3C3D3E3F38393A3B, 0x3435363730313233, \
0x3C3D3E3F38393A3B, 0x3435363730313233, \
0x3C3D3E3F38393A3B, 0x3435363730313233 ) )
_mm512_shuffle_epi8( v, \
m512_const_64( 0x3c3d3e3f38393a3b, 0x3435363730313233, \
0x2c2d2e2f28292a2b, 0x2425262720212223, \
0x0c0d0e0f08090a0b, 0x0405060700010203, \
0x1c1d1e1f18191a1b, 0x1415161710111213 ) )
#define mm512_bswap_16( v ) \
_mm512_shuffle_epi8( v, m512_const_64( \
0x3E3F3C3D3A3B3839, 0x3637343532333031, \
0x2E2F2C2D2A2B2829, 0x2627242522232021, \
0x1E1F1C1D1A1B1819, 0x1617141512131011, \
0x0E0F0C0D0A0B0809, 0x0607040502030001 ) )
_mm512_shuffle_epi8( v, \
m512_const_64( 0x3e3f3c3d3a3b3839, 0x3637343532333031, \
0x2e2f2c2d2a2b2829, 0x2627242522232021, \
0x1e1f1c1d1a1b1819, 0x1617141512131011, \
0x0e0f0c0d0a0b0809, 0x0607040502030001 ) )
// Source and destination are pointers, may point to same memory.
// 8 lanes of 64 bytes each
#define mm512_block_bswap_64( d, s ) do \
{ \
__m512i ctl = m512_const_64( 0x38393a3b3c3d3e3f, 0x3031323334353637, \
0x28292a2b2c2d2e2f, 0x2021222324252627, \
0x18191a1b1c1d1e1f, 0x1011121314151617, \
0x08090a0b0c0d0e0f, 0x0001020304050607 ); \
casti_m512i( d, 0 ) = _mm512_shuffle_epi8( casti_m512i( s, 0 ), ctl ); \
casti_m512i( d, 1 ) = _mm512_shuffle_epi8( casti_m512i( s, 1 ), ctl ); \
casti_m512i( d, 2 ) = _mm512_shuffle_epi8( casti_m512i( s, 2 ), ctl ); \
casti_m512i( d, 3 ) = _mm512_shuffle_epi8( casti_m512i( s, 3 ), ctl ); \
casti_m512i( d, 4 ) = _mm512_shuffle_epi8( casti_m512i( s, 4 ), ctl ); \
casti_m512i( d, 5 ) = _mm512_shuffle_epi8( casti_m512i( s, 5 ), ctl ); \
casti_m512i( d, 6 ) = _mm512_shuffle_epi8( casti_m512i( s, 6 ), ctl ); \
casti_m512i( d, 7 ) = _mm512_shuffle_epi8( casti_m512i( s, 7 ), ctl ); \
} while(0)
// 16 lanes of 32 bytes each
#define mm512_block_bswap_32( d, s ) do \
{ \
__m512i ctl = m512_const_64( 0x3c3d3e3f38393a3b, 0x3435363730313233, \
0x2c2d2e2f28292a2b, 0x2425262720212223, \
0x0c0d0e0f08090a0b, 0x0405060700010203, \
0x1c1d1e1f18191a1b, 0x1415161710111213 ); \
casti_m512i( d, 0 ) = _mm512_shuffle_epi8( casti_m512i( s, 0 ), ctl ); \
casti_m512i( d, 1 ) = _mm512_shuffle_epi8( casti_m512i( s, 1 ), ctl ); \
casti_m512i( d, 2 ) = _mm512_shuffle_epi8( casti_m512i( s, 2 ), ctl ); \
casti_m512i( d, 3 ) = _mm512_shuffle_epi8( casti_m512i( s, 3 ), ctl ); \
casti_m512i( d, 4 ) = _mm512_shuffle_epi8( casti_m512i( s, 4 ), ctl ); \
casti_m512i( d, 5 ) = _mm512_shuffle_epi8( casti_m512i( s, 5 ), ctl ); \
casti_m512i( d, 6 ) = _mm512_shuffle_epi8( casti_m512i( s, 6 ), ctl ); \
casti_m512i( d, 7 ) = _mm512_shuffle_epi8( casti_m512i( s, 7 ), ctl ); \
} while(0)
//
// Rotate elements in 512 bit vector.
@@ -367,8 +339,10 @@ static inline __m512i mm512_neg1_fn()
// Generic for odd rotations
#define mm512_ror_x64( v, n ) _mm512_alignr_epi64( v, v, n )
#define mm512_rol_x64( v, n ) _mm512_alignr_epi64( v, v, 8-n )
#define mm512_ror_x32( v, n ) _mm512_alignr_epi32( v, v, n )
#define mm512_rol_x32( v, n ) _mm512_alignr_epi32( v, v, 16-n )
#define mm512_ror_1x16( v ) \
_mm512_permutexvar_epi16( m512_const_64( \
@@ -400,7 +374,11 @@ static inline __m512i mm512_neg1_fn()
// Invert vector: {3,2,1,0} -> {0,1,2,3}
#define mm512_invert_128( v ) _mm512_shuffle_i64x2( v, v, 0x1b )
#define mm512_invert_256( v ) \
_mm512_permutexvar_epi64( v, m512_const_64( 3,2,1,0,7,6,5,4 ) )
#define mm512_invert_128( v ) \
_mm512_permutexvar_epi64( v, m512_const_64( 1,0,3,2,5,4,7,6 ) )
#define mm512_invert_64( v ) \
_mm512_permutexvar_epi64( v, m512_const_64( 0,1,2,3,4,5,6,7 ) )
@@ -436,86 +414,66 @@ static inline __m512i mm512_neg1_fn()
#define mm512_ror1x64_256( v ) _mm512_permutex_epi64( v, 0x39 )
#define mm512_rol1x64_256( v ) _mm512_permutex_epi64( v, 0x93 )
/* Need to fix
// Rotate 256 bit lanes by one 32 bit element
#define mm512_ror1x32_256( v ) \
_mm512_permutexvar_epi32( m512_const_64( \
0x000000080000000f, 0x0000000e0000000d, \
0x0000000c0000000b, 0x0000000a00000009, \
_mm512_permutexvar_epi32( m512_const4_64( \
0x0000000000000007, 0x0000000600000005, \
0x0000000400000003, 0x0000000200000001, v ) )
0x0000000400000003, 0x0000000200000001 ), v )
#define mm512_rol1x32_256( v ) \
_mm512_permutexvar_epi32( m512_const_64( \
0x0000000e0000000d, 0x0000000c0000000b, \
0x0000000a00000009, 0x000000080000000f, \
_mm512_permutexvar_epi32( m512_const4_64( \
0x0000000600000005, 0x0000000400000003, \
0x0000000200000001, 0x0000000000000007 ), v )
#define mm512_ror1x16_256( v ) \
_mm512_permutexvar_epi16( m512_const_64( \
0x0010001F001E001D, 0x001C001B001A0019, \
0x0018001700160015, 0x0014001300120011, \
0x0000000F000E000D, 0x000C000B000A0009, \
_mm512_permutexvar_epi16( m512_const4_64( \
0x0000000f000e000d, 0x000c000b000a0009, \
0x0008000700060005, 0x0004000300020001 ), v )
#define mm512_rol1x16_256( v ) \
_mm512_permutexvar_epi16( m512_const_64( \
0x001E001D001C001B, 0x001A001900180017, \
0x0016001500140013, 0x001200110000000F, \
0x000E000D000C000B, 0x000A000900080007, \
0x0006000500040003, 0x000200010000001F ), v )
_mm512_permutexvar_epi16( m512_const4_64( \
0x000e000d000c000b, 0x000a000900080007, \
0x0006000500040003, 0x000200010000000f ), v )
#define mm512_ror1x8_256( v ) \
_mm512_shuffle_epi8( v, m512_const_64( \
0x203F3E3D3C3B3A39, 0x3837363534333231, \
0x302F2E2D2C2B2A29, 0x2827262524232221, \
0x001F1E1D1C1B1A19, 0x1817161514131211, \
0x100F0E0D0C0B0A09, 0x0807060504030201 ) )
_mm512_shuffle_epi8( v, m512_const4_64( \
0x001f1e1d1c1b1a19, 0x1817161514131211, \
0x100f0e0d0c0b0a09, 0x0807060504030201 ), v )
#define mm512_rol1x8_256( v ) \
_mm512_shuffle_epi8( v, m512_const_64( \
0x3E3D3C3B3A393837, 0x363534333231302F, \
0x2E2D2C2B2A292827, 0x262524232221203F, \
0x1E1D1C1B1A191817, 0x161514131211100F, \
0x0E0D0C0B0A090807, 0x060504030201001F ))
_mm512_shuffle_epi8( v, m512_const4_64( \
0x1e1d1c1b1a191817, 0x161514131211100f, \
0x0e0d0c0b0a090807, 0x060504030201001f ), v )
*/
//
// Rotate elements within 128 bit lanes of 512 bit vector.
// Swap hi & lo 64 bits in each 128 bit lane
#define mm512_swap64_128( v ) _mm512_permutex_epi64( v, 0xb1 )
#define mm512_swap64_128( v ) _mm512_shuffle_epi32( v, 0x4e )
// Rotate 128 bit lanes by one 32 bit element
#define mm512_ror1x32_128( v ) _mm512_shuffle_epi32( v, 0x39 )
#define mm512_rol1x32_128( v ) _mm512_shuffle_epi32( v, 0x93 )
/*
#define mm512_ror1x16_128( v ) \
_mm512_permutexvar_epi16( m512_const_64( \
0x0018001F001E001D, 0x001C001B001A0019, \
0x0010001700160015, 0x0014001300120011, \
0x0008000F000E000D, 0x000C000B000A0009, \
0x0000000700060005, 0x0004000300020001 ), v )
_mm512_permutexvar_epi16( m512_const2_64( \
0x0000000700060005, 0x0004000300020001 ), v )
#define mm512_rol1x16_128( v ) \
_mm512_permutexvar_epi16( m512_const_64( \
0x001E001D001C001B, 0x001A00190018001F, \
0x0016001500140013, 0x0012001100100017, \
0x000E000D000C000B, 0x000A00090008000F, \
0x0006000500040003, 0x0002000100000007, v ) )
_mm512_permutexvar_epi16( m512_const2_64( \
0x0006000500040003, 0x0002000100000007 ), v )
#define mm512_ror1x8_128( v ) \
_mm512_shuffle_epi8( v, m512_const_64( \
0x303F3E3D3C3B3A39, 0x3837363534333231, \
0x202F2E2D2C2B2A29, 0x2827262524232221, \
0x101F1E1D1C1B1A19, 0x1817161514131211, \
0x000F0E0D0C0B0A09, 0x0807060504030201 ) )
_mm512_shuffle_epi8( v, m512_const2_64( \
0x000f0e0d0c0b0a09, 0x0807060504030201 ) )
#define mm512_rol1x8_128( v ) \
_mm512_shuffle_epi8( v, m512_const_64( \
0x3E3D3C3B3A393837, 0x363534333231303F, \
0x2E2D2C2B2A292827, 0x262524232221202F, \
0x1E1D1C1B1A191817, 0x161514131211101F, \
0x0E0D0C0B0A090807, 0x060504030201000F ) )
_mm512_shuffle_epi8( v, m512_const2_64( \
0x0e0d0c0b0a090807, 0x060504030201000f ) )
*/
// Rotate 128 bit lanes by c bytes.
#define mm512_bror_128( v, c ) \
@@ -652,33 +610,5 @@ do { \
v1 = t; \
} while(0)
#define mm512_ror1x16_1024( v1, v2 ) \
do { \
__m512i t = _mm512_alignr_epi8( v1, v2, 2 ); \
v1 = _mm512_alignr_epi8( v2, v1, 2 ); \
v2 = t; \
} while(0)
#define mm512_rol1x16_1024( v1, v2 ) \
do { \
__m512i t = _mm512_alignr_epi8( v1, v2, 62 ); \
v2 = _mm512_alignr_epi8( v2, v1, 62 ); \
v1 = t; \
} while(0)
#define mm512_ror1x8_1024( v1, v2 ) \
do { \
__m512i t = _mm512_alignr_epi8( v1, v2, 1 ); \
v1 = _mm512_alignr_epi8( v2, v1, 1 ); \
v2 = t; \
} while(0)
#define mm512_rol1x8_1024( v1, v2 ) \
do { \
__m512i t = _mm512_alignr_epi8( v1, v2, 63 ); \
v2 = _mm512_alignr_epi8( v2, v1, 63 ); \
v1 = t; \
} while(0)
#endif // AVX512
#endif // SIMD_512_H__

View File

@@ -18,14 +18,47 @@
#ifndef WIN32
// 1035g1: /sys/devices/platform/coretemp.0/hwmon/hwmon3/temp1_input
// 1035g1: /sys/class/hwmon/hwmon1/temp1_input wrong temp
// ryzen has no /sys/devices/platform/coretemp.0
// ryzen: /sys/class/hwmon/hwmon0
// 2400: /sys/class/hwmon/hwmon0/temp1_input incorrect temp
// 2400 has no /sys/class/hwmon/hwmon2/temp1_input
// 2400 /sys/devices/platform/coretemp.0/hwmon/hwmon1/temp1_input ok
// 6700 /sys/devices/platform/coretemp.0/hwmon/hwmon2/temp1_input
// 6700 /sys/class/hwmon/hwmon2/temp1_input
// /sys/devices/platform/coretemp.0/hwmon/hwmon0/temp2_input never exists
// /sys/class/hwmon/hwmon0/temp2_input doesn't exist or shows wrong temp (sys16)
// /sys/class/hwmon/hwmon0/device/temp1_input doesn't exist
// the first 3 will find i5-2400, i7-6700k, r7-1700, i5-1035g1.
// The others are left in for legacy, some should probably be removed.
#define HWMON_PATH1 \
"/sys/devices/platform/coretemp.0/hwmon/hwmon3/temp1_input"
#define HWMON_PATH2 \
"/sys/devices/platform/coretemp.0/hwmon/hwmon1/temp1_input"
#define HWMON_PATH3 \
"/sys/class/hwmon/hwmon0/temp1_input"
#define HWMON_PATH \
"/sys/class/hwmon/hwmon2/temp1_input"
/*
#define HWMON_ALT \
"/sys/class/hwmon/hwmon0/temp1_input"
#define HWMON_ALT1 \
"/sys/devices/platform/coretemp.0/hwmon/hwmon1/temp1_input"
*/
// This shows wrong temp on i5-1035g1
#define HWMON_ALT2 \
"/sys/class/hwmon/hwmon1/temp1_input"
// None of these work on any of the cpus above.
#define HWMON_ALT3 \
"/sys/devices/platform/coretemp.0/hwmon/hwmon0/temp2_input"
#define HWMON_ALT4 \
@@ -33,16 +66,28 @@
#define HWMON_ALT5 \
"/sys/class/hwmon/hwmon0/device/temp1_input"
static inline float linux_cputemp(int core)
{
float tc = 0.0;
FILE *fd = fopen(HWMON_PATH, "r");
FILE *fd;
uint32_t val = 0;
if (!fd)
fd = fopen(HWMON_ALT, "r");
fd = fopen(HWMON_PATH1, "r");
if (!fd)
fd = fopen(HWMON_PATH2, "r");
if (!fd)
fd = fopen(HWMON_PATH3, "r");
if (!fd)
fd = fopen(HWMON_PATH, "r");
if (!fd)
// fd = fopen(HWMON_ALT1, "r");
// if (!fd)
fd = fopen(HWMON_ALT2, "r");
if (!fd)
@@ -52,14 +97,14 @@ static inline float linux_cputemp(int core)
fd = fopen(HWMON_ALT4, "r");
if (!fd)
fd = fopen(HWMON_ALT5, "r");
fd = fopen(HWMON_ALT5, "r");
if (!fd)
return tc;
if (fscanf(fd, "%d", &val))
if ( fscanf( fd, "%d", &val ) )
tc = val / 1000.0;
fclose(fd);
fclose( fd );
return tc;
}
@@ -296,7 +341,7 @@ static inline void cpu_getmodelid(char *outbuf, size_t maxsz)
// EXTENDED_FEATURES ECX
#define AVX512VBMI_Flag (1<<1)
#define AVX512VBMI2_Flag (1<<6)
#define AVX512VAES_Flag (1<<9)
#define VAES_Flag (1<<9)
// Use this to detect presence of feature
@@ -418,14 +463,14 @@ static inline bool has_avx512()
#endif
}
static inline bool has_avx512vaes()
static inline bool has_vaes()
{
#ifdef __arm__
return false;
#else
int cpu_info[4] = { 0 };
cpuid( EXTENDED_FEATURES, cpu_info );
return cpu_info[ ECX_Reg ] & AVX512VAES_Flag;
return cpu_info[ ECX_Reg ] & VAES_Flag;
#endif
}

View File

@@ -41,27 +41,22 @@ make -j 16
strip -s cpuminer.exe
mv cpuminer.exe release/cpuminer-zen.exe
#make clean || echo clean
#CFLAGS="-O3 -march=corei7-avx -msha -Wall" ./configure $CONFIGURE_ARGS
#make
#strip -s cpuminer.exe
#mv cpuminer.exe release/cpuminer-avx-sha.exe
# mingw won't compile avx512 without -fno-asynchronous-unwind-tables
make clean || echo clean
rm -f config.status
CFLAGS="-O3 -march=skylake-avx512 -Wall -fno-asynchronous-unwind-tables" ./configure $CONFIGURE_ARGS
make -j 16
strip -s cpuminer.exe
mv cpuminer.exe release/cpuminer-avx512.exe
make clean || echo clean
rm -f config.status
CFLAGS="-O3 -march=core-avx2 -Wall" ./configure $CONFIGURE_ARGS
# GCC 9 doesn't include AES in core-avx2
CFLAGS="-O3 -march=core-avx2 -maes -Wall" ./configure $CONFIGURE_ARGS
make -j 16
strip -s cpuminer.exe
mv cpuminer.exe release/cpuminer-avx2.exe
#make clean || echo clean
#rm -f config.status
#CFLAGS="-O3 -march=znver1 -Wall" ./configure $CONFIGURE_ARGS
#make -j
#strip -s cpuminer.exe
#mv cpuminer.exe release/cpuminer-aes-sha.exe
make clean || echo clean
rm -f config.status
CFLAGS="-O3 -march=corei7-avx -Wall" ./configure $CONFIGURE_ARGS

103
winbuild-cross.sh.bak Executable file
View File

@@ -0,0 +1,103 @@
#!/bin/bash
#
# Script for building Windows binaries release package using mingw.
# Requires a custom mingw environment, not intended for users.
#
# Compiles Windows EXE files for selected CPU architectures, copies them
# as well as some DLLs that aren't available in most Windows environments
# into a release folder ready to be zipped and uploaded.
# define some local variables
export LOCAL_LIB="$HOME/usr/lib"
export LDFLAGS="-L$LOCAL_LIB/curl/lib/.libs -L$LOCAL_LIB/gmp/.libs -L$LOCAL_LIB/openssl"
export CONFIGURE_ARGS="--with-curl=$LOCAL_LIB/curl --with-crypto=$LOCAL_LIB/openssl --host=x86_64-w64-mingw32"
# make link to local gmp header file.
ln -s $LOCAL_LIB/gmp/gmp.h ./gmp.h
# edit configure to fix pthread lib name for Windows.
#sed -i 's/"-lpthread"/"-lpthreadGC2"/g' configure.ac
# make release directory and copy selected DLLs.
mkdir release
cp README.txt release/
cp README.md release/
cp RELEASE_NOTES release/
cp /usr/x86_64-w64-mingw32/lib/zlib1.dll release/
cp /usr/x86_64-w64-mingw32/lib/libwinpthread-1.dll release/
cp /usr/lib/gcc/x86_64-w64-mingw32/7.3-win32/libstdc++-6.dll release/
cp /usr/lib/gcc/x86_64-w64-mingw32/7.3-win32/libgcc_s_seh-1.dll release/
cp $LOCAL_LIB/openssl/libcrypto-1_1-x64.dll release/
cp $LOCAL_LIB/curl/lib/.libs/libcurl-4.dll release/
make distclean || echo clean
rm -f config.status
./autogen.sh || echo done
CFLAGS="-O3 -march=znver1 -Wall" ./configure $CONFIGURE_ARGS
make -j 16
strip -s cpuminer.exe
mv cpuminer.exe release/cpuminer-zen.exe
#make clean || echo clean
#CFLAGS="-O3 -march=corei7-avx -msha -Wall" ./configure $CONFIGURE_ARGS
#make
#strip -s cpuminer.exe
#mv cpuminer.exe release/cpuminer-avx-sha.exe
make clean || echo clean
rm -f config.status
CFLAGS="-O3 -march=core-avx2 -Wall" ./configure $CONFIGURE_ARGS
make -j 16
strip -s cpuminer.exe
mv cpuminer.exe release/cpuminer-avx2.exe
#make clean || echo clean
#rm -f config.status
#CFLAGS="-O3 -march=znver1 -Wall" ./configure $CONFIGURE_ARGS
#make -j
#strip -s cpuminer.exe
#mv cpuminer.exe release/cpuminer-aes-sha.exe
make clean || echo clean
rm -f config.status
CFLAGS="-O3 -march=corei7-avx -Wall" ./configure $CONFIGURE_ARGS
make -j 16
strip -s cpuminer.exe
mv cpuminer.exe release/cpuminer-avx.exe
# -march=westmere is supported in gcc5
make clean || echo clean
rm -f config.status
CFLAGS="-O3 -march=westmere -Wall" ./configure $CONFIGURE_ARGS
#CFLAGS="-O3 -maes -msse4.2 -Wall" ./configure $CONFIGURE_ARGS
make -j 16
strip -s cpuminer.exe
mv cpuminer.exe release/cpuminer-aes-sse42.exe
#make clean || echo clean
#rm -f config.status
#CFLAGS="-O3 -march=corei7 -Wall" ./configure $CONFIGURE_ARGS
#make
#strip -s cpuminer.exe
#mv cpuminer.exe release/cpuminer-sse42.exe
#make clean || echo clean
#rm -f config.status
#CFLAGS="-O3 -march=core2 -Wall" ./configure $CONFIGURE_ARGS
#make
#strip -s cpuminer.exe
#mv cpuminer.exe release/cpuminer-ssse3.exe
#make clean || echo clean
make clean || echo clean
rm -f config.status
CFLAGS="-O3 -msse2 -Wall" ./configure $CONFIGURE_ARGS
make -j 16
strip -s cpuminer.exe
mv cpuminer.exe release/cpuminer-sse2.exe
make clean || echo clean