Compare commits

...

2 Commits

Author SHA1 Message Date
Jay D Dee
6f49ba09b7 v3.9.6 2019-07-17 17:54:38 -04:00
Jay D Dee
e2d5762ef2 v3.9.5.4 2019-07-15 17:00:26 -04:00
88 changed files with 3786 additions and 3245 deletions

View File

@@ -71,6 +71,9 @@ cpuminer_SOURCES = \
algo/bmw/bmw256-hash-4way.c \
algo/bmw/bmw512-hash-4way.c \
algo/bmw/bmw256.c \
algo/bmw/bmw512-gate.c \
algo/bmw/bmw512.c \
algo/bmw/bmw512-4way.c \
algo/cryptonight/cryptolight.c \
algo/cryptonight/cryptonight-common.c\
algo/cryptonight/cryptonight-aesni.c\
@@ -238,6 +241,8 @@ cpuminer_SOURCES = \
algo/x13/skunk-4way.c \
algo/x13/skunk.c \
algo/x13/drop.c \
algo/x13/x13bcd-4way.c \
algo/x13/x13bcd.c \
algo/x14/x14-gate.c \
algo/x14/x14.c \
algo/x14/x14-4way.c \
@@ -254,6 +259,8 @@ cpuminer_SOURCES = \
algo/x16/x16r-gate.c \
algo/x16/x16r.c \
algo/x16/x16r-4way.c \
algo/x16/x16rt.c \
algo/x16/x16rt-4way.c \
algo/x17/x17-gate.c \
algo/x17/x17.c \
algo/x17/x17-4way.c \

View File

@@ -58,6 +58,7 @@ Supported Algorithms
blakecoin blake256r8
blake2s Blake-2 S
bmw BMW 256
bmw512 BMW 512
c11 Chaincoin
decred
deep Deepcoin (DCN)
@@ -113,11 +114,14 @@ Supported Algorithms
x11gost sib (SibCoin)
x12 Galaxie Cash (GCH)
x13 X13
x13bcd bcd
x13sm3 hsr (Hshare)
x14 X14
x15 X15
x16r Ravencoin (RVN)
x16s pigeoncoin (PGN)
x16rt Gincoin (GIN)
x16rt_veil Veil (VEIL)
x16s Pigeoncoin (PGN)
x17
xevan Bitsend (BSD)
yescrypt Globalboost-Y (BSTY)

View File

@@ -38,6 +38,16 @@ supported.
Change Log
----------
v3.9.6
New algos: bmw512, x16rt, x16rt-veil (alias veil), x13bcd (alias bcd).
v3.9.5.4
Fixed sha256q AVX2 poor performance.
Fixed skein2 buffer overflow and restored bswap-interleave optimization.
More restructuring.
v3.9.5.3
Fix crash mining hodl with aes-sse42.
@@ -45,7 +55,7 @@ More restructuring and share report tweaks.
v3.9.5.2
Revert bswap-interleave optiization for causing crashes on Windows.
Revert bswap-interleave optimization for causing crashes on Windows.
v3.9.5.1

View File

@@ -170,6 +170,7 @@ bool register_algo_gate( int algo, algo_gate_t *gate )
case ALGO_BLAKECOIN: register_blakecoin_algo ( gate ); break;
// case ALGO_BLAKE2B: register_blake2b_algo ( gate ); break;
case ALGO_BLAKE2S: register_blake2s_algo ( gate ); break;
case ALGO_BMW512: register_bmw512_algo ( gate ); break;
case ALGO_C11: register_c11_algo ( gate ); break;
case ALGO_CRYPTOLIGHT: register_cryptolight_algo ( gate ); break;
case ALGO_CRYPTONIGHT: register_cryptonight_algo ( gate ); break;
@@ -227,10 +228,13 @@ bool register_algo_gate( int algo, algo_gate_t *gate )
case ALGO_X11GOST: register_x11gost_algo ( gate ); break;
case ALGO_X12: register_x12_algo ( gate ); break;
case ALGO_X13: register_x13_algo ( gate ); break;
case ALGO_X13BCD: register_x13bcd_algo ( gate ); break;
case ALGO_X13SM3: register_x13sm3_algo ( gate ); break;
case ALGO_X14: register_x14_algo ( gate ); break;
case ALGO_X15: register_x15_algo ( gate ); break;
case ALGO_X16R: register_x16r_algo ( gate ); break;
case ALGO_X16RT: register_x16rt_algo ( gate ); break;
case ALGO_X16RT_VEIL: register_x16rt_veil_algo ( gate ); break;
case ALGO_X16S: register_x16s_algo ( gate ); break;
case ALGO_X17: register_x17_algo ( gate ); break;
case ALGO_XEVAN: register_xevan_algo ( gate ); break;
@@ -327,7 +331,6 @@ const char* const algo_alias_map[][2] =
{ "lyra2", "lyra2re" },
{ "lyra2v2", "lyra2rev2" },
{ "lyra2v3", "lyra2rev3" },
{ "lyra2zoin", "lyra2z330" },
{ "myrgr", "myr-gr" },
{ "myriad", "myr-gr" },
{ "neo", "neoscrypt" },
@@ -335,11 +338,9 @@ const char* const algo_alias_map[][2] =
// { "sia", "blake2b" },
{ "sib", "x11gost" },
{ "timetravel8", "timetravel" },
{ "ziftr", "zr5" },
{ "veil", "x16rt-veil" },
{ "yenten", "yescryptr16" },
{ "yescryptr8k", "yescrypt" },
{ "zcoin", "lyra2z" },
{ "zoin", "lyra2z330" },
{ "ziftr", "zr5" },
{ NULL, NULL }
};

View File

@@ -36,35 +36,31 @@ void argon2d_crds_hash( void *output, const void *input )
int scanhash_argon2d_crds( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t _ALIGN(64) endiandata[20];
uint32_t _ALIGN(64) hash[8];
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
int thr_id = mythr->id; // thr_id arg is deprecated
uint32_t _ALIGN(64) endiandata[20];
uint32_t _ALIGN(64) hash[8];
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
int thr_id = mythr->id; // thr_id arg is deprecated
const uint32_t first_nonce = pdata[19];
const uint32_t Htarg = ptarget[7];
uint32_t nonce = first_nonce;
const uint32_t first_nonce = pdata[19];
const uint32_t Htarg = ptarget[7];
swab32_array( endiandata, pdata, 20 );
uint32_t nonce = first_nonce;
do {
be32enc(&endiandata[19], nonce);
argon2d_crds_hash( hash, endiandata );
if ( hash[7] <= Htarg && fulltest( hash, ptarget ) && !opt_benchmark )
{
pdata[19] = nonce;
submit_solution( work, hash, mythr );
}
nonce++;
} while (nonce < max_nonce && !work_restart[thr_id].restart);
swab32_array( endiandata, pdata, 20 );
do {
be32enc(&endiandata[19], nonce);
argon2d_crds_hash( hash, endiandata );
if ( hash[7] <= Htarg && fulltest( hash, ptarget ) )
{
pdata[19] = nonce;
*hashes_done = pdata[19] - first_nonce;
work_set_target_ratio(work, hash);
return 1;
}
nonce++;
} while (nonce < max_nonce && !work_restart[thr_id].restart);
pdata[19] = nonce;
*hashes_done = pdata[19] - first_nonce + 1;
return 0;
pdata[19] = nonce;
*hashes_done = pdata[19] - first_nonce + 1;
return 0;
}
bool register_argon2d_crds_algo( algo_gate_t* gate )
@@ -107,35 +103,32 @@ void argon2d_dyn_hash( void *output, const void *input )
int scanhash_argon2d_dyn( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t _ALIGN(64) endiandata[20];
uint32_t _ALIGN(64) hash[8];
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
int thr_id = mythr->id; // thr_id arg is deprecated
uint32_t _ALIGN(64) endiandata[20];
uint32_t _ALIGN(64) hash[8];
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
int thr_id = mythr->id; // thr_id arg is deprecated
const uint32_t first_nonce = pdata[19];
const uint32_t Htarg = ptarget[7];
uint32_t nonce = first_nonce;
const uint32_t first_nonce = pdata[19];
const uint32_t Htarg = ptarget[7];
swab32_array( endiandata, pdata, 20 );
uint32_t nonce = first_nonce;
do
{
be32enc(&endiandata[19], nonce);
argon2d_dyn_hash( hash, endiandata );
if ( hash[7] <= Htarg && fulltest( hash, ptarget ) && !opt_benchmark )
{
pdata[19] = nonce;
submit_solution( work, hash, mythr );
}
nonce++;
} while (nonce < max_nonce && !work_restart[thr_id].restart);
swab32_array( endiandata, pdata, 20 );
do {
be32enc(&endiandata[19], nonce);
argon2d_dyn_hash( hash, endiandata );
if ( hash[7] <= Htarg && fulltest( hash, ptarget ) )
{
pdata[19] = nonce;
*hashes_done = pdata[19] - first_nonce;
work_set_target_ratio(work, hash);
return 1;
}
nonce++;
} while (nonce < max_nonce && !work_restart[thr_id].restart);
pdata[19] = nonce;
*hashes_done = pdata[19] - first_nonce + 1;
return 0;
pdata[19] = nonce;
*hashes_done = pdata[19] - first_nonce + 1;
return 0;
}
bool register_argon2d_dyn_algo( algo_gate_t* gate )
@@ -171,11 +164,10 @@ int scanhash_argon2d4096( struct work *work, uint32_t max_nonce,
be32enc( &endiandata[19], n );
argon2d_hash_raw( t_cost, m_cost, parallelism, (char*) endiandata, 80,
(char*) endiandata, 80, (char*) vhash, 32, ARGON2_VERSION_13 );
if ( vhash[7] < Htarg && fulltest( vhash, ptarget ) )
if ( vhash[7] < Htarg && fulltest( vhash, ptarget ) && !opt_benchmark )
{
*hashes_done = n - first_nonce + 1;
pdata[19] = n;
return true;
submit_solution( work, vhash, mythr );
}
n++;

View File

@@ -27,25 +27,19 @@ int scanhash_blake_4way( struct work *work, uint32_t max_nonce,
uint32_t *ptarget = work->target;
const uint32_t first_nonce = pdata[19];
uint32_t HTarget = ptarget[7];
uint32_t _ALIGN(32) edata[20];
__m128i *noncev = (__m128i*)vdata + 19; // aligned
uint32_t n = first_nonce;
int thr_id = mythr->id; // thr_id arg is deprecated
if (opt_benchmark)
HTarget = 0x7f;
// we need big endian data...
swab32_array( edata, pdata, 20 );
mm128_intrlv_4x32( vdata, edata, edata, edata, edata, 640 );
mm128_bswap32_intrlv80_4x32( vdata, pdata );
blake256r14_4way_init( &blake_4w_ctx );
blake256r14_4way( &blake_4w_ctx, vdata, 64 );
uint32_t *noncep = vdata + 76; // 19*4
do {
be32enc( noncep, n );
be32enc( noncep +1, n+1 );
be32enc( noncep +2, n+2 );
be32enc( noncep +3, n+3 );
*noncev = mm128_bswap_32( _mm_set_epi32( n+3, n+2, n+1, n ) );
blakehash_4way( hash, vdata );
@@ -76,9 +70,9 @@ void blakehash_8way( void *state, const void *input )
memcpy( &ctx, &blake_8w_ctx, sizeof ctx );
blake256r14_8way( &ctx, input + (64<<3), 16 );
blake256r14_8way_close( &ctx, vhash );
mm256_dintrlv_8x32( state, state+ 32, state+ 64, state+ 96,
state+128, state+160, state+192, state+224,
vhash, 256 );
_dintrlv_8x32( state, state+ 32, state+ 64, state+ 96,
state+128, state+160, state+192, state+224,
vhash, 256 );
}
int scanhash_blake_8way( struct work *work, uint32_t max_nonce,
@@ -90,32 +84,21 @@ int scanhash_blake_8way( struct work *work, uint32_t max_nonce,
uint32_t *ptarget = work->target;
const uint32_t first_nonce = pdata[19];
uint32_t HTarget = ptarget[7];
uint32_t _ALIGN(32) edata[20];
uint32_t n = first_nonce;
__m256i *noncev = (__m256i*)vdata + 19; // aligned
int thr_id = mythr->id; // thr_id arg is deprecated
if (opt_benchmark)
HTarget = 0x7f;
// we need big endian data...
swab32_array( edata, pdata, 20 );
mm256_intrlv_8x32( vdata, edata, edata, edata, edata,
edata, edata, edata, edata, 640 );
mm256_bswap32_intrlv80_8x32( vdata, pdata );
blake256r14_8way_init( &blake_8w_ctx );
blake256r14_8way( &blake_8w_ctx, vdata, 64 );
uint32_t *noncep = vdata + 152; // 19*8
do {
be32enc( noncep, n );
be32enc( noncep +1, n+1 );
be32enc( noncep +2, n+2 );
be32enc( noncep +3, n+3 );
be32enc( noncep +4, n+4 );
be32enc( noncep +5, n+5 );
be32enc( noncep +6, n+6 );
be32enc( noncep +7, n+7 );
*noncev = mm256_bswap_32( _mm256_set_epi32( n+7, n+6, n+5, n+4,
n+3, n+2, n+1, n ) );
pdata[19] = n;
blakehash_8way( hash, vdata );

View File

@@ -16,9 +16,9 @@ void blake2s_8way_hash( void *output, const void *input )
blake2s_8way_update( &ctx, input + (64<<3), 16 );
blake2s_8way_final( &ctx, vhash, BLAKE2S_OUTBYTES );
mm256_dintrlv_8x32( output, output+ 32, output+ 64, output+ 96,
output+128, output+160, output+192, output+224,
vhash, 256 );
dintrlv_8x32( output, output+ 32, output+ 64, output+ 96,
output+128, output+160, output+192, output+224,
vhash, 256 );
}
int scanhash_blake2s_8way( struct work *work, uint32_t max_nonce,
@@ -28,28 +28,19 @@ int scanhash_blake2s_8way( struct work *work, uint32_t max_nonce,
uint32_t hash[8*8] __attribute__ ((aligned (32)));
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
uint32_t _ALIGN(64) edata[20];
const uint32_t Htarg = ptarget[7];
const uint32_t first_nonce = pdata[19];
__m256i *noncev = (__m256i*)vdata + 19; // aligned
uint32_t n = first_nonce;
uint32_t *noncep = vdata + 152; // 19*8
int thr_id = mythr->id; // thr_id arg is deprecated
swab32_array( edata, pdata, 20 );
mm256_intrlv_8x32( vdata, edata, edata, edata, edata,
edata, edata, edata, edata, 640 );
mm256_bswap32_intrlv80_8x32( vdata, pdata );
blake2s_8way_init( &blake2s_8w_ctx, BLAKE2S_OUTBYTES );
blake2s_8way_update( &blake2s_8w_ctx, vdata, 64 );
do {
be32enc( noncep, n );
be32enc( noncep +1, n+1 );
be32enc( noncep +2, n+2 );
be32enc( noncep +3, n+3 );
be32enc( noncep +4, n+4 );
be32enc( noncep +5, n+5 );
be32enc( noncep +6, n+6 );
be32enc( noncep +7, n+7 );
*noncev = mm256_bswap_32( _mm256_set_epi32( n+7, n+6, n+5, n+4,
n+3, n+2, n+1, n ) );
pdata[19] = n;
blake2s_8way_hash( hash, vdata );
@@ -94,23 +85,18 @@ int scanhash_blake2s_4way( struct work *work, uint32_t max_nonce,
uint32_t hash[8*4] __attribute__ ((aligned (32)));
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
uint32_t _ALIGN(64) edata[20];
const uint32_t Htarg = ptarget[7];
const uint32_t first_nonce = pdata[19];
__m128i *noncev = (__m128i*)vdata + 19; // aligned
uint32_t n = first_nonce;
uint32_t *noncep = vdata + 76; // 19*4
int thr_id = mythr->id; // thr_id arg is deprecated
swab32_array( edata, pdata, 20 );
mm128_intrlv_4x32( vdata, edata, edata, edata, edata, 640 );
mm128_bswap32_intrlv80_4x32( vdata, pdata );
blake2s_4way_init( &blake2s_4w_ctx, BLAKE2S_OUTBYTES );
blake2s_4way_update( &blake2s_4w_ctx, vdata, 64 );
do {
be32enc( noncep, n );
be32enc( noncep +1, n+1 );
be32enc( noncep +2, n+2 );
be32enc( noncep +3, n+3 );
*noncev = mm128_bswap_32( _mm_set_epi32( n+3, n+2, n+1, n ) );
pdata[19] = n;
blake2s_4way_hash( hash, vdata );

View File

@@ -29,23 +29,18 @@ int scanhash_blakecoin_4way( struct work *work, uint32_t max_nonce,
uint32_t *ptarget = work->target;
const uint32_t first_nonce = pdata[19];
uint32_t HTarget = ptarget[7];
uint32_t _ALIGN(32) edata[20];
uint32_t n = first_nonce;
__m128i *noncev = (__m128i*)vdata + 19; // aligned
int thr_id = mythr->id; // thr_id arg is deprecated
if ( opt_benchmark )
HTarget = 0x7f;
swab32_array( edata, pdata, 20 );
mm128_intrlv_4x32( vdata, edata, edata, edata, edata, 640 );
mm128_bswap32_intrlv80_4x32( vdata, pdata );
blake256r8_4way_init( &blakecoin_4w_ctx );
blake256r8_4way( &blakecoin_4w_ctx, vdata, 64 );
uint32_t *noncep = vdata + 76; // 19*4
do {
be32enc( noncep, n );
be32enc( noncep +1, n+1 );
be32enc( noncep +2, n+2 );
be32enc( noncep +3, n+3 );
*noncev = mm128_bswap_32( _mm_set_epi32( n+3, n+2, n+1, n ) );
pdata[19] = n;
blakecoin_4way_hash( hash, vdata );
@@ -79,9 +74,8 @@ void blakecoin_8way_hash( void *state, const void *input )
blake256r8_8way( &ctx, input + (64<<3), 16 );
blake256r8_8way_close( &ctx, vhash );
mm256_dintrlv_8x32( state, state+ 32, state+ 64, state+ 96,
state+128, state+160, state+192, state+224,
vhash, 256 );
dintrlv_8x32( state, state+ 32, state+ 64, state+ 96, state+128,
state+160, state+192, state+224, vhash, 256 );
}
int scanhash_blakecoin_8way( struct work *work, uint32_t max_nonce,
@@ -93,29 +87,19 @@ int scanhash_blakecoin_8way( struct work *work, uint32_t max_nonce,
uint32_t *ptarget = work->target;
const uint32_t first_nonce = pdata[19];
uint32_t HTarget = ptarget[7];
uint32_t _ALIGN(32) edata[20];
uint32_t n = first_nonce;
uint32_t *noncep = vdata + 152; // 19*8
__m256i *noncev = (__m256i*)vdata + 19; // aligned
int thr_id = mythr->id; // thr_id arg is deprecated
if ( opt_benchmark )
HTarget = 0x7f;
// we need big endian data...
swab32_array( edata, pdata, 20 );
mm256_intrlv_8x32( vdata, edata, edata, edata, edata,
edata, edata, edata, edata, 640 );
mm256_bswap32_intrlv80_8x32( vdata, pdata );
blake256r8_8way_init( &blakecoin_8w_ctx );
blake256r8_8way( &blakecoin_8w_ctx, vdata, 64 );
do {
be32enc( noncep, n );
be32enc( noncep +1, n+1 );
be32enc( noncep +2, n+2 );
be32enc( noncep +3, n+3 );
be32enc( noncep +4, n+4 );
be32enc( noncep +5, n+5 );
be32enc( noncep +6, n+6 );
be32enc( noncep +7, n+7 );
*noncev = mm256_bswap_32( _mm256_set_epi32( n+7, n+6, n+5, n+4,
n+3, n+2, n+1, n ) );
pdata[19] = n;
blakecoin_8way_hash( hash, vdata );

View File

@@ -10,13 +10,8 @@
#include "blake-hash-4way.h"
#include "sph_blake.h"
//#define DEBUG_ALGO
extern void pentablakehash_4way( void *output, const void *input )
{
// unsigned char _ALIGN(32) hash[128];
// // same as uint32_t hashA[16], hashB[16];
// #define hashB hash+64
uint64_t hash0[8] __attribute__ ((aligned (64)));
uint64_t hash1[8] __attribute__ ((aligned (64)));
@@ -29,22 +24,7 @@ extern void pentablakehash_4way( void *output, const void *input )
blake512_4way_init( &ctx );
blake512_4way( &ctx, input, 80 );
blake512_4way_close( &ctx, vhash );
/*
uint64_t sin0[10], sin1[10], sin2[10], sin3[10];
mm256_deinterleave_4x64( sin0, sin1, sin2, sin3, input, 640 );
sph_blake512_context ctx2_blake;
sph_blake512_init(&ctx2_blake);
sph_blake512(&ctx2_blake, sin0, 80);
sph_blake512_close(&ctx2_blake, (void*) hash);
mm256_dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
uint64_t* hash64 = (uint64_t*)hash;
for( int i = 0; i < 8; i++ )
{
if ( hash0[i] != hash64[i] )
printf("hash mismatch %u\n",i);
}
*/
blake512_4way_init( &ctx );
blake512_4way( &ctx, vhash, 64 );
blake512_4way_close( &ctx, vhash );
@@ -61,42 +41,10 @@ for( int i = 0; i < 8; i++ )
blake512_4way( &ctx, vhash, 64 );
blake512_4way_close( &ctx, vhash );
mm256_dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
memcpy( output, hash0, 32 );
memcpy( output+32, hash1, 32 );
memcpy( output+64, hash2, 32 );
memcpy( output+96, hash3, 32 );
/*
uint64_t sin0[10] __attribute__ ((aligned (64)));
uint64_t sin1[10] __attribute__ ((aligned (64)));
uint64_t sin2[10] __attribute__ ((aligned (64)));
uint64_t sin3[10] __attribute__ ((aligned (64)));
sph_blake512_context ctx_blake;
sph_blake512_init(&ctx_blake);
sph_blake512(&ctx_blake, input, 80);
sph_blake512_close(&ctx_blake, hash);
sph_blake512_init(&ctx_blake);
sph_blake512(&ctx_blake, hash, 64);
sph_blake512_close(&ctx_blake, hash);
sph_blake512_init(&ctx_blake);
sph_blake512(&ctx_blake, hash, 64);
sph_blake512_close(&ctx_blake, hash);
sph_blake512_init(&ctx_blake);
sph_blake512(&ctx_blake, hash, 64);
sph_blake512_close(&ctx_blake, hash);
sph_blake512_init(&ctx_blake);
sph_blake512(&ctx_blake, hash, 64);
sph_blake512_close(&ctx_blake, hash);
memcpy(output, hash, 32);
*/
}
int scanhash_pentablake_4way( struct work *work,
@@ -137,7 +85,7 @@ int scanhash_pentablake_4way( struct work *work,
swab32_array( endiandata, pdata, 20 );
uint64_t *edata = (uint64_t*)endiandata;
mm256_intrlv_4x64( (uint64_t*)vdata, edata, edata, edata, edata, 640 );
intrlv_4x64( (uint64_t*)vdata, edata, edata, edata, edata, 640 );
for ( int m=0; m < 6; m++ )
{

59
algo/bmw/bmw512-4way.c Normal file
View File

@@ -0,0 +1,59 @@
#include "bmw512-gate.h"
#ifdef BMW512_4WAY
#include <stdlib.h>
#include <string.h>
#include <stdint.h>
//#include "sph_keccak.h"
#include "bmw-hash-4way.h"
void bmw512hash_4way(void *state, const void *input)
{
bmw512_4way_context ctx;
bmw512_4way_init( &ctx );
bmw512_4way( &ctx, input, 80 );
bmw512_4way_close( &ctx, state );
}
int scanhash_bmw512_4way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t vdata[24*4] __attribute__ ((aligned (64)));
uint32_t hash[16*4] __attribute__ ((aligned (32)));
uint32_t lane_hash[8] __attribute__ ((aligned (32)));
uint32_t *hash7 = &(hash[25]); // 3*8+1
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
uint32_t n = pdata[19];
const uint32_t first_nonce = pdata[19];
__m256i *noncev = (__m256i*)vdata + 9; // aligned
// const uint32_t Htarg = ptarget[7];
int thr_id = mythr->id; // thr_id arg is deprecated
mm256_bswap32_intrlv80_4x64( vdata, pdata );
do {
*noncev = mm256_intrlv_blend_32( mm256_bswap_32(
_mm256_set_epi32( n+3, 0, n+2, 0, n+1, 0, n, 0 ) ), *noncev );
bmw512hash_4way( hash, vdata );
for ( int lane = 0; lane < 4; lane++ )
if ( ( ( hash7[ lane<<1 ] & 0xFFFFFF00 ) == 0 ) )
{
extr_lane_4x64( lane_hash, hash, lane, 256 );
if ( fulltest( lane_hash, ptarget ) )
{
pdata[19] = n + lane;
submit_lane_solution( work, lane_hash, mythr, lane );
}
}
n += 4;
} while ( (n < max_nonce-4) && !work_restart[thr_id].restart);
*hashes_done = n - first_nonce + 1;
return 0;
}
#endif

20
algo/bmw/bmw512-gate.c Normal file
View File

@@ -0,0 +1,20 @@
#include "bmw512-gate.h"
int64_t bmw512_get_max64() { return 0x7ffffLL; }
bool register_bmw512_algo( algo_gate_t* gate )
{
gate->optimizations = AVX2_OPT;
gate->set_target = (void*)&alt_set_target;
gate->get_max64 = (void*)&bmw512_get_max64;
#if defined (BMW512_4WAY)
gate->scanhash = (void*)&scanhash_bmw512_4way;
gate->hash = (void*)&bmw512hash_4way;
#else
gate->scanhash = (void*)&scanhash_bmw512;
gate->hash = (void*)&bmw512hash;
#endif
return true;
};

23
algo/bmw/bmw512-gate.h Normal file
View File

@@ -0,0 +1,23 @@
#ifndef BMW512_GATE_H__
#define BMW512_GATE_H__
#include "algo-gate-api.h"
#include <stdint.h>
#if defined(__AVX2__)
#define BMW512_4WAY 1
#endif
#if defined(BMW512_4WAY)
void bmw512hash_4way( void *state, const void *input );
int scanhash_bmw512_4way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
#endif
void bmw512hash( void *state, const void *input );
int scanhash_bmw512( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
#endif

53
algo/bmw/bmw512.c Normal file
View File

@@ -0,0 +1,53 @@
#include "algo-gate-api.h"
#include <stdlib.h>
#include <string.h>
#include <stdint.h>
#include "sph_bmw.h"
void bmw512hash(void *state, const void *input)
{
sph_bmw512_context ctx;
uint32_t hash[32];
sph_bmw512_init( &ctx );
sph_bmw512( &ctx,input, 80 );
sph_bmw512_close( &ctx, hash );
memcpy( state, hash, 32 );
}
int scanhash_bmw512( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
uint32_t n = pdata[19] - 1;
const uint32_t first_nonce = pdata[19];
//const uint32_t Htarg = ptarget[7];
int thr_id = mythr->id; // thr_id arg is deprecated
uint32_t _ALIGN(32) hash64[8];
uint32_t endiandata[32];
for (int i=0; i < 19; i++)
be32enc(&endiandata[i], pdata[i]);
do {
pdata[19] = ++n;
be32enc(&endiandata[19], n);
bmw512hash(hash64, endiandata);
if (((hash64[7]&0xFFFFFF00)==0) &&
fulltest(hash64, ptarget)) {
*hashes_done = n - first_nonce + 1;
return true;
}
} while (n < max_nonce && !work_restart[thr_id].restart);
*hashes_done = n - first_nonce + 1;
pdata[19] = n;
return 0;
}

View File

@@ -242,6 +242,8 @@ void cryptolight_hash(void* output, const void* input, int len) {
free(ctx);
}
#if defined(__AES__)
static void cryptolight_hash_ctx_aes_ni(void* output, const void* input,
int len, struct cryptonight_ctx* ctx)
{
@@ -312,6 +314,8 @@ static void cryptolight_hash_ctx_aes_ni(void* output, const void* input,
oaes_free((OAES_CTX **) &ctx->aes_ctx);
}
#endif
int scanhash_cryptolight( struct work *work,
uint32_t max_nonce, uint64_t *hashes_done, struct thr_info *mythr)
{

View File

@@ -7,6 +7,7 @@
// 2x128
/*
// The result of hashing 10 rounds of initial data which consists of params
// zero padded.
static const uint64_t IV256[] =
@@ -24,13 +25,14 @@ static const uint64_t IV512[] =
0x148FE485FCD398D9, 0xB64445321B017BEF, 0x2FF5781C6A536159, 0x0DBADEA991FA7934,
0xA5A70E75D65C8A2B, 0xBC796576B1C62456, 0xE7989AF11921C8F7, 0xD43E3B447795D246
};
*/
static void transform_2way( cube_2way_context *sp )
{
int r;
const int rounds = sp->rounds;
__m256i x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3;
__m256i x0, x1, x2, x3, x4, x5, x6, x7, y0, y1;
x0 = _mm256_load_si256( (__m256i*)sp->h );
x1 = _mm256_load_si256( (__m256i*)sp->h + 1 );
@@ -47,18 +49,12 @@ static void transform_2way( cube_2way_context *sp )
x5 = _mm256_add_epi32( x1, x5 );
x6 = _mm256_add_epi32( x2, x6 );
x7 = _mm256_add_epi32( x3, x7 );
y0 = x2;
y1 = x3;
y2 = x0;
y3 = x1;
x0 = _mm256_xor_si256( _mm256_slli_epi32( y0, 7 ),
_mm256_srli_epi32( y0, 25 ) );
x1 = _mm256_xor_si256( _mm256_slli_epi32( y1, 7 ),
_mm256_srli_epi32( y1, 25 ) );
x2 = _mm256_xor_si256( _mm256_slli_epi32( y2, 7 ),
_mm256_srli_epi32( y2, 25 ) );
x3 = _mm256_xor_si256( _mm256_slli_epi32( y3, 7 ),
_mm256_srli_epi32( y3, 25 ) );
y0 = x0;
y1 = x1;
x0 = mm256_rol_32( x2, 7 );
x1 = mm256_rol_32( x3, 7 );
x2 = mm256_rol_32( y0, 7 );
x3 = mm256_rol_32( y1, 7 );
x0 = _mm256_xor_si256( x0, x4 );
x1 = _mm256_xor_si256( x1, x5 );
x2 = _mm256_xor_si256( x2, x6 );
@@ -71,18 +67,12 @@ static void transform_2way( cube_2way_context *sp )
x5 = _mm256_add_epi32( x1, x5 );
x6 = _mm256_add_epi32( x2, x6 );
x7 = _mm256_add_epi32( x3, x7 );
y0 = x1;
y1 = x0;
y2 = x3;
y3 = x2;
x0 = _mm256_xor_si256( _mm256_slli_epi32( y0, 11 ),
_mm256_srli_epi32( y0, 21 ) );
x1 = _mm256_xor_si256( _mm256_slli_epi32( y1, 11 ),
_mm256_srli_epi32( y1, 21 ) );
x2 = _mm256_xor_si256( _mm256_slli_epi32( y2, 11 ),
_mm256_srli_epi32( y2, 21 ) );
x3 = _mm256_xor_si256( _mm256_slli_epi32( y3, 11 ),
_mm256_srli_epi32( y3, 21 ) );
y0 = x0;
y1 = x2;
x0 = mm256_rol_32( x1, 11 );
x1 = mm256_rol_32( y0, 11 );
x2 = mm256_rol_32( x3, 11 );
x3 = mm256_rol_32( y1, 11 );
x0 = _mm256_xor_si256( x0, x4 );
x1 = _mm256_xor_si256( x1, x5 );
x2 = _mm256_xor_si256( x2, x6 );
@@ -107,23 +97,40 @@ static void transform_2way( cube_2way_context *sp )
int cube_2way_init( cube_2way_context *sp, int hashbitlen, int rounds,
int blockbytes )
{
const uint64_t* iv = hashbitlen == 512 ? IV512 : IV256;
__m128i* h = (__m128i*)sp->h;
sp->hashlen = hashbitlen/128;
sp->blocksize = blockbytes/16;
sp->rounds = rounds;
sp->pos = 0;
__m256i* h = (__m256i*)sp->h;
h[0] = _mm256_set_epi64x( iv[ 1], iv[ 0], iv[ 1], iv[ 0] );
h[1] = _mm256_set_epi64x( iv[ 3], iv[ 2], iv[ 3], iv[ 2] );
h[2] = _mm256_set_epi64x( iv[ 5], iv[ 4], iv[ 5], iv[ 4] );
h[3] = _mm256_set_epi64x( iv[ 7], iv[ 6], iv[ 7], iv[ 6] );
h[4] = _mm256_set_epi64x( iv[ 9], iv[ 8], iv[ 9], iv[ 8] );
h[5] = _mm256_set_epi64x( iv[11], iv[10], iv[11], iv[10] );
h[6] = _mm256_set_epi64x( iv[13], iv[12], iv[13], iv[12] );
h[7] = _mm256_set_epi64x( iv[15], iv[14], iv[15], iv[14] );
if ( hashbitlen == 512 )
{
h[ 0] = m128_const_64( 0x4167D83E2D538B8B, 0x50F494D42AEA2A61 );
h[ 2] = m128_const_64( 0x50AC5695CC39968E, 0xC701CF8C3FEE2313 );
h[ 4] = m128_const_64( 0x825B453797CF0BEF, 0xA647A8B34D42C787 );
h[ 6] = m128_const_64( 0xA23911AED0E5CD33, 0xF22090C4EEF864D2 );
h[ 8] = m128_const_64( 0xB64445321B017BEF, 0x148FE485FCD398D9 );
h[10] = m128_const_64( 0x0DBADEA991FA7934, 0x2FF5781C6A536159 );
h[12] = m128_const_64( 0xBC796576B1C62456, 0xA5A70E75D65C8A2B );
h[14] = m128_const_64( 0xD43E3B447795D246, 0xE7989AF11921C8F7 );
h[1] = h[ 0]; h[ 3] = h[ 2]; h[ 5] = h[ 4]; h[ 7] = h[ 6];
h[9] = h[ 8]; h[11] = h[10]; h[13] = h[12]; h[15] = h[14];
}
else
{
h[ 0] = m128_const_64( 0x35481EAE63117E71, 0xCCD6F29FEA2BD4B4 );
h[ 2] = m128_const_64( 0xF4CC12BE7E624131, 0xE5D94E6322512D5B );
h[ 4] = m128_const_64( 0x3361DA8CD0720C35, 0x42AF2070C2D0B696 );
h[ 6] = m128_const_64( 0x40E5FBAB4680AC00, 0x8EF8AD8328CCECA4 );
h[ 8] = m128_const_64( 0xF0B266796C859D41, 0x6107FBD5D89041C3 );
h[10] = m128_const_64( 0x93CB628565C892FD, 0x5FA2560309392549 );
h[12] = m128_const_64( 0x85254725774ABFDD, 0x9E4B4E602AF2B5AE );
h[14] = m128_const_64( 0xD6032C0A9CDAF8AF, 0x4AB6AAD615815AEB );
h[1] = h[ 0]; h[ 3] = h[ 2]; h[ 5] = h[ 4]; h[ 7] = h[ 6];
h[9] = h[ 8]; h[11] = h[10]; h[13] = h[12]; h[15] = h[14];
}
return 0;
}
@@ -165,7 +172,7 @@ int cube_2way_close( cube_2way_context *sp, void *output )
for ( i = 0; i < 10; ++i ) transform_2way( sp );
for ( i = 0; i < sp->hashlen; i++ ) hash[i] = sp->h[i];
memcpy( hash, sp->h, sp->hashlen<<5 );
return 0;
}
@@ -198,7 +205,7 @@ int cube_2way_update_close( cube_2way_context *sp, void *output,
for ( i = 0; i < 10; ++i ) transform_2way( sp );
for ( i = 0; i < sp->hashlen; i++ ) hash[i] = sp->h[i];
memcpy( hash, sp->h, sp->hashlen<<5 );
return 0;
}

View File

@@ -16,24 +16,6 @@
#include "simd-utils.h"
#include <stdio.h>
// The result of hashing 10 rounds of initial data which is params and
// mostly zeros.
static const uint64_t IV256[] =
{
0xCCD6F29FEA2BD4B4, 0x35481EAE63117E71, 0xE5D94E6322512D5B, 0xF4CC12BE7E624131,
0x42AF2070C2D0B696, 0x3361DA8CD0720C35, 0x8EF8AD8328CCECA4, 0x40E5FBAB4680AC00,
0x6107FBD5D89041C3, 0xF0B266796C859D41, 0x5FA2560309392549, 0x93CB628565C892FD,
0x9E4B4E602AF2B5AE, 0x85254725774ABFDD, 0x4AB6AAD615815AEB, 0xD6032C0A9CDAF8AF
};
static const uint64_t IV512[] =
{
0x50F494D42AEA2A61, 0x4167D83E2D538B8B, 0xC701CF8C3FEE2313, 0x50AC5695CC39968E,
0xA647A8B34D42C787, 0x825B453797CF0BEF, 0xF22090C4EEF864D2, 0xA23911AED0E5CD33,
0x148FE485FCD398D9, 0xB64445321B017BEF, 0x2FF5781C6A536159, 0x0DBADEA991FA7934,
0xA5A70E75D65C8A2B, 0xBC796576B1C62456, 0xE7989AF11921C8F7, 0xD43E3B447795D246
};
static void transform( cubehashParam *sp )
{
int r;
@@ -53,26 +35,22 @@ static void transform( cubehashParam *sp )
x2 = _mm256_add_epi32( x0, x2 );
x3 = _mm256_add_epi32( x1, x3 );
y0 = x0;
x0 = _mm256_xor_si256( _mm256_slli_epi32( x1, 7 ),
_mm256_srli_epi32( x1, 25 ) );
x1 = _mm256_xor_si256( _mm256_slli_epi32( y0, 7 ),
_mm256_srli_epi32( y0, 25 ) );
x0 = mm256_rol_32( x1, 7 );
x1 = mm256_rol_32( y0, 7 );
x0 = _mm256_xor_si256( x0, x2 );
x1 = _mm256_xor_si256( x1, x3 );
x2 = _mm256_shuffle_epi32( x2, 0x4e );
x3 = _mm256_shuffle_epi32( x3, 0x4e );
x2 = mm256_swap64_128( x2 );
x3 = mm256_swap64_128( x3 );
x2 = _mm256_add_epi32( x0, x2 );
x3 = _mm256_add_epi32( x1, x3 );
y0 = _mm256_permute4x64_epi64( x0, 0x4e );
y1 = _mm256_permute4x64_epi64( x1, 0x4e );
x0 = _mm256_xor_si256( _mm256_slli_epi32( y0, 11 ),
_mm256_srli_epi32( y0, 21 ) );
x1 = _mm256_xor_si256( _mm256_slli_epi32( y1, 11 ),
_mm256_srli_epi32( y1, 21 ) );
y0 = mm256_swap_128( x0 );
y1 = mm256_swap_128( x1 );
x0 = mm256_rol_32( y0, 11 );
x1 = mm256_rol_32( y1, 11 );
x0 = _mm256_xor_si256( x0, x2 );
x1 = _mm256_xor_si256( x1, x3 );
x2 = _mm256_shuffle_epi32( x2, 0xb1 );
x3 = _mm256_shuffle_epi32( x3, 0xb1 );
x2 = mm256_swap32_64( x2 );
x3 = mm256_swap32_64( x3 );
}
_mm256_store_si256( (__m256i*)sp->x, x0 );
@@ -147,37 +125,58 @@ static void transform( cubehashParam *sp )
#endif
} // transform
/*
// The result of hashing 10 rounds of initial data which is params and
// mostly zeros.
static const uint64_t IV256[] =
{
0xCCD6F29FEA2BD4B4, 0x35481EAE63117E71, 0xE5D94E6322512D5B, 0xF4CC12BE7E624131,
0x42AF2070C2D0B696, 0x3361DA8CD0720C35, 0x8EF8AD8328CCECA4, 0x40E5FBAB4680AC00,
0x6107FBD5D89041C3, 0xF0B266796C859D41, 0x5FA2560309392549, 0x93CB628565C892FD,
0x9E4B4E602AF2B5AE, 0x85254725774ABFDD, 0x4AB6AAD615815AEB, 0xD6032C0A9CDAF8AF
};
static const uint64_t IV512[] =
{
0x50F494D42AEA2A61, 0x4167D83E2D538B8B, 0xC701CF8C3FEE2313, 0x50AC5695CC39968E,
0xA647A8B34D42C787, 0x825B453797CF0BEF, 0xF22090C4EEF864D2, 0xA23911AED0E5CD33,
0x148FE485FCD398D9, 0xB64445321B017BEF, 0x2FF5781C6A536159, 0x0DBADEA991FA7934,
0xA5A70E75D65C8A2B, 0xBC796576B1C62456, 0xE7989AF11921C8F7, 0xD43E3B447795D246
};
*/
int cubehashInit(cubehashParam *sp, int hashbitlen, int rounds, int blockbytes)
{
const uint64_t* iv = hashbitlen == 512 ? IV512 : IV256;
__m128i *x = (__m128i*)sp->x;
sp->hashlen = hashbitlen/128;
sp->blocksize = blockbytes/16;
sp->rounds = rounds;
sp->pos = 0;
#if defined(__AVX2__)
__m256i* x = (__m256i*)sp->x;
if ( hashbitlen == 512 )
{
x[0] = _mm256_set_epi64x( iv[ 3], iv[ 2], iv[ 1], iv[ 0] );
x[1] = _mm256_set_epi64x( iv[ 7], iv[ 6], iv[ 5], iv[ 4] );
x[2] = _mm256_set_epi64x( iv[11], iv[10], iv[ 9], iv[ 8] );
x[3] = _mm256_set_epi64x( iv[15], iv[14], iv[13], iv[12] );
x[0] = m128_const_64( 0x4167D83E2D538B8B, 0x50F494D42AEA2A61 );
x[1] = m128_const_64( 0x50AC5695CC39968E, 0xC701CF8C3FEE2313 );
x[2] = m128_const_64( 0x825B453797CF0BEF, 0xA647A8B34D42C787 );
x[3] = m128_const_64( 0xA23911AED0E5CD33, 0xF22090C4EEF864D2 );
x[4] = m128_const_64( 0xB64445321B017BEF, 0x148FE485FCD398D9 );
x[5] = m128_const_64( 0x0DBADEA991FA7934, 0x2FF5781C6A536159 );
x[6] = m128_const_64( 0xBC796576B1C62456, 0xA5A70E75D65C8A2B );
x[7] = m128_const_64( 0xD43E3B447795D246, 0xE7989AF11921C8F7 );
}
else
{
x[0] = m128_const_64( 0x35481EAE63117E71, 0xCCD6F29FEA2BD4B4 );
x[1] = m128_const_64( 0xF4CC12BE7E624131, 0xE5D94E6322512D5B );
x[2] = m128_const_64( 0x3361DA8CD0720C35, 0x42AF2070C2D0B696 );
x[3] = m128_const_64( 0x40E5FBAB4680AC00, 0x8EF8AD8328CCECA4 );
x[4] = m128_const_64( 0xF0B266796C859D41, 0x6107FBD5D89041C3 );
x[5] = m128_const_64( 0x93CB628565C892FD, 0x5FA2560309392549 );
x[6] = m128_const_64( 0x85254725774ABFDD, 0x9E4B4E602AF2B5AE );
x[7] = m128_const_64( 0xD6032C0A9CDAF8AF, 0x4AB6AAD615815AEB );
}
#else
__m128i* x = (__m128i*)sp->x;
x[0] = _mm_set_epi64x( iv[ 1], iv[ 0] );
x[1] = _mm_set_epi64x( iv[ 3], iv[ 2] );
x[2] = _mm_set_epi64x( iv[ 5], iv[ 4] );
x[3] = _mm_set_epi64x( iv[ 7], iv[ 6] );
x[4] = _mm_set_epi64x( iv[ 9], iv[ 8] );
x[5] = _mm_set_epi64x( iv[11], iv[10] );
x[6] = _mm_set_epi64x( iv[13], iv[12] );
x[7] = _mm_set_epi64x( iv[15], iv[14] );
#endif
return SUCCESS;
}

View File

@@ -47,10 +47,6 @@ void myriad_4way_hash( void *output, const void *input )
sha256_4way( &ctx.sha, vhash, 64 );
sha256_4way_close( &ctx.sha, output );
// sha256_4way_close( &ctx.sha, vhash );
// mm128_dintrlv_4x32( output, output+32, output+64, output+96,
// vhash, 256 );
}
int scanhash_myriad_4way( struct work *work, uint32_t max_nonce,
@@ -68,18 +64,10 @@ int scanhash_myriad_4way( struct work *work, uint32_t max_nonce,
__m128i *noncev = (__m128i*)vdata + 19; // aligned
int thr_id = mythr->id; // thr_id arg is deprecated
/*
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
uint32_t _ALIGN(64) endiandata[20];
const uint32_t first_nonce = pdata[19];
uint32_t nonce = first_nonce;
*/
if ( opt_benchmark )
( (uint32_t*)ptarget )[7] = 0x0000ff;
mm128_bswap_intrlv80_4x32( vdata, pdata );
mm128_bswap32_intrlv80_4x32( vdata, pdata );
do {
*noncev = mm128_bswap_32( _mm_set_epi32( n+3,n+2,n+1,n ) );

View File

@@ -3,7 +3,6 @@
#include <stdint.h>
#include <string.h>
#include <stdio.h>
//#include "avxdefs.h"
#if defined(JHA_4WAY)
@@ -13,9 +12,6 @@
#include "algo/keccak/keccak-hash-4way.h"
#include "algo/groestl/aes_ni/hash-groestl.h"
//static __thread keccak512_4way_context jha_kec_mid
// __attribute__ ((aligned (64)));
void jha_hash_4way( void *out, const void *input )
{
uint64_t hash0[8] __attribute__ ((aligned (64)));
@@ -46,7 +42,7 @@ void jha_hash_4way( void *out, const void *input )
vh_mask = _mm256_cmpeq_epi64( _mm256_and_si256(
vh[0], _mm256_set1_epi64x( 1 ) ), m256_zero );
mm256_dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
init_groestl( &ctx_groestl, 64 );
update_and_final_groestl( &ctx_groestl, (char*)hash0,
(char*)hash0, 512 );
@@ -59,7 +55,7 @@ void jha_hash_4way( void *out, const void *input )
init_groestl( &ctx_groestl, 64 );
update_and_final_groestl( &ctx_groestl, (char*)hash3,
(char*)hash3, 512 );
mm256_intrlv_4x64( vhashA, hash0, hash1, hash2, hash3, 512 );
intrlv_4x64( vhashA, hash0, hash1, hash2, hash3, 512 );
skein512_4way_init( &ctx_skein );
skein512_4way( &ctx_skein, vhash, 64 );
@@ -79,8 +75,6 @@ void jha_hash_4way( void *out, const void *input )
for ( int i = 0; i < 8; i++ )
casti_m256i( out, i ) = _mm256_blendv_epi8( vhA[i], vhB[i], vh_mask );
}
// mm256_dintrlv_4x64( out, out+32, out+64, out+96, vhash, 256 );
}
int scanhash_jha_4way( struct work *work, uint32_t max_nonce,
@@ -88,7 +82,6 @@ int scanhash_jha_4way( struct work *work, uint32_t max_nonce,
{
uint32_t hash[8*4] __attribute__ ((aligned (64)));
uint32_t vdata[20*4] __attribute__ ((aligned (64)));
uint32_t edata[20] __attribute__ ((aligned (64)));
uint32_t *hash7 = &(hash[25]);
uint32_t lane_hash[8] __attribute__ ((aligned (32)));
uint32_t *pdata = work->data;
@@ -116,11 +109,7 @@ int scanhash_jha_4way( struct work *work, uint32_t max_nonce,
0
};
for ( int i=0; i < 19; i++ )
be32enc( &edata[i], pdata[i] );
mm256_intrlv_4x64( vdata, edata, edata, edata, edata, 640 );
// mm256_bswap_intrlv80_4x64( vdata, pdata );
mm256_bswap32_intrlv80_4x64( vdata, pdata );
for ( int m = 0; m < 6; m++ )
{
@@ -130,26 +119,17 @@ int scanhash_jha_4way( struct work *work, uint32_t max_nonce,
do {
*noncev = mm256_intrlv_blend_32( mm256_bswap_32(
_mm256_set_epi32( n+3, 0, n+2, 0, n+1, 0, n, 0 ) ), *noncev );
// be32enc( noncep, n );
// be32enc( noncep+2, n+1 );
// be32enc( noncep+4, n+2 );
// be32enc( noncep+6, n+3 );
jha_hash_4way( hash, vdata );
pdata[19] = n;
// for ( int i = 0; i < 4; i++ )
// if ( ( !( (hash+(i<<3))[7] & mask ) == 0 )
// && fulltest( hash+(i<<3), ptarget ) )
for ( int i = 0; i < 4; i++ ) if ( !( (hash7[i] & mask ) == 0 ) )
{
mm256_extr_lane_4x64( lane_hash, hash, i, 256 );
extr_lane_4x64( lane_hash, hash, i, 256 );
if ( fulltest( hash+(i<<3), ptarget ) && !opt_benchmark )
{
pdata[19] = n+i;
submit_lane_solution( work, lane_hash, mythr, i );
// nonces[ num_found++ ] = n+i;
// work_set_target_ratio( work, hash+(i<<3) );
}
}
n += 4;

View File

@@ -20,8 +20,7 @@ int scanhash_keccak_4way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t vdata[24*4] __attribute__ ((aligned (64)));
uint32_t hash[8*4] __attribute__ ((aligned (32)));
uint32_t edata[20] __attribute__ ((aligned (64)));
uint32_t hash[16*4] __attribute__ ((aligned (32)));
uint32_t lane_hash[8] __attribute__ ((aligned (32)));
uint32_t *hash7 = &(hash[25]); // 3*8+1
uint32_t *pdata = work->data;
@@ -32,9 +31,7 @@ int scanhash_keccak_4way( struct work *work, uint32_t max_nonce,
// const uint32_t Htarg = ptarget[7];
int thr_id = mythr->id; // thr_id arg is deprecated
swab32_array( edata, pdata, 20 );
mm256_intrlv_4x64( vdata, edata, edata, edata, edata, 640 );
// mm256_bswap_intrlv80_4x64( vdata, pdata );
mm256_bswap32_intrlv80_4x64( vdata, pdata );
do {
*noncev = mm256_intrlv_blend_32( mm256_bswap_32(
_mm256_set_epi32( n+3, 0, n+2, 0, n+1, 0, n, 0 ) ), *noncev );
@@ -44,7 +41,7 @@ int scanhash_keccak_4way( struct work *work, uint32_t max_nonce,
for ( int lane = 0; lane < 4; lane++ )
if ( ( ( hash7[ lane<<1 ] & 0xFFFFFF00 ) == 0 ) )
{
mm256_extr_lane_4x64( lane_hash, hash, lane, 256 );
extr_lane_4x64( lane_hash, hash, lane, 256 );
if ( fulltest( lane_hash, ptarget ) )
{
pdata[19] = n + lane;

View File

@@ -44,11 +44,11 @@ void allium_4way_hash( void *state, const void *input )
blake256_4way( &ctx.blake, input + (64<<2), 16 );
blake256_4way_close( &ctx.blake, vhash32 );
mm256_rintrlv_4x32_4x64( vhash64, vhash32, 256 );
rintrlv_4x32_4x64( vhash64, vhash32, 256 );
keccak256_4way( &ctx.keccak, vhash64, 32 );
keccak256_4way_close( &ctx.keccak, vhash64 );
mm256_dintrlv_4x64( hash0, hash1, hash2, hash3, vhash64, 256 );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhash64, 256 );
LYRA2RE( hash0, 32, hash0, 32, hash0, 32, 1, 8, 8 );
LYRA2RE( hash1, 32, hash1, 32, hash1, 32, 1, 8, 8 );
@@ -68,12 +68,12 @@ void allium_4way_hash( void *state, const void *input )
LYRA2RE( hash2, 32, hash2, 32, hash2, 32, 1, 8, 8 );
LYRA2RE( hash3, 32, hash3, 32, hash3, 32, 1, 8, 8 );
mm256_intrlv_4x64( vhash64, hash0, hash1, hash2, hash3, 256 );
intrlv_4x64( vhash64, hash0, hash1, hash2, hash3, 256 );
skein256_4way( &ctx.skein, vhash64, 32 );
skein256_4way_close( &ctx.skein, vhash64 );
mm256_dintrlv_4x64( hash0, hash1, hash2, hash3, vhash64, 256 );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhash64, 256 );
update_and_final_groestl256( &ctx.groestl, state, hash0, 256 );
memcpy( &ctx.groestl, &allium_4way_ctx.groestl,
@@ -103,7 +103,7 @@ int scanhash_allium_4way( struct work *work, uint32_t max_nonce,
if ( opt_benchmark )
( (uint32_t*)ptarget )[7] = 0x0000ff;
mm128_bswap_intrlv80_4x32( vdata, pdata );
mm128_bswap32_intrlv80_4x32( vdata, pdata );
blake256_4way_init( &allium_4way_ctx.blake );
blake256_4way( &allium_4way_ctx.blake, vdata, 64 );

View File

@@ -64,7 +64,7 @@ int scanhash_lyra2h_4way( struct work *work, uint32_t max_nonce,
if ( opt_benchmark )
ptarget[7] = 0x0000ff;
mm128_bswap_intrlv80_4x32( vdata, pdata );
mm128_bswap32_intrlv80_4x32( vdata, pdata );
lyra2h_4way_midstate( vdata );
do {

View File

@@ -42,12 +42,12 @@ void lyra2rev2_4way_hash( void *state, const void *input )
blake256_4way( &ctx.blake, input + (64<<2), 16 );
blake256_4way_close( &ctx.blake, vhash );
mm256_rintrlv_4x32_4x64( vhash64, vhash, 256 );
rintrlv_4x32_4x64( vhash64, vhash, 256 );
keccak256_4way( &ctx.keccak, vhash64, 32 );
keccak256_4way_close( &ctx.keccak, vhash64 );
mm256_dintrlv_4x64( hash0, hash1, hash2, hash3, vhash64, 256 );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhash64, 256 );
cubehashUpdateDigest( &ctx.cube, (byte*) hash0, (const byte*) hash0, 32 );
cubehashInit( &ctx.cube, 256, 16, 32 );
@@ -62,12 +62,12 @@ void lyra2rev2_4way_hash( void *state, const void *input )
LYRA2REV2( l2v2_wholeMatrix, hash2, 32, hash2, 32, hash2, 32, 1, 4, 4 );
LYRA2REV2( l2v2_wholeMatrix, hash3, 32, hash3, 32, hash3, 32, 1, 4, 4 );
mm256_intrlv_4x64( vhash64, hash0, hash1, hash2, hash3, 256 );
intrlv_4x64( vhash64, hash0, hash1, hash2, hash3, 256 );
skein256_4way( &ctx.skein, vhash64, 32 );
skein256_4way_close( &ctx.skein, vhash64 );
mm256_dintrlv_4x64( hash0, hash1, hash2, hash3, vhash64, 256 );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhash64, 256 );
cubehashInit( &ctx.cube, 256, 16, 32 );
cubehashUpdateDigest( &ctx.cube, (byte*) hash0, (const byte*) hash0, 32 );
@@ -102,7 +102,7 @@ int scanhash_lyra2rev2_4way( struct work *work, uint32_t max_nonce,
if ( opt_benchmark )
( (uint32_t*)ptarget )[7] = 0x0000ff;
mm128_bswap_intrlv80_4x32( vdata, pdata );
mm128_bswap32_intrlv80_4x32( vdata, pdata );
blake256_4way_init( &l2v2_4way_ctx.blake );
blake256_4way( &l2v2_4way_ctx.blake, vdata, 64 );

View File

@@ -41,7 +41,7 @@ void lyra2rev3_8way_hash( void *state, const void *input )
blake256_8way( &ctx.blake, input, 80 );
blake256_8way_close( &ctx.blake, vhash );
mm256_dintrlv_8x32( hash0, hash1, hash2, hash3,
dintrlv_8x32( hash0, hash1, hash2, hash3,
hash4, hash5, hash6, hash7, vhash, 256 );
LYRA2REV3( l2v3_wholeMatrix, hash0, 32, hash0, 32, hash0, 32, 1, 4, 4 );
@@ -78,7 +78,7 @@ void lyra2rev3_8way_hash( void *state, const void *input )
LYRA2REV3( l2v3_wholeMatrix, hash6, 32, hash6, 32, hash6, 32, 1, 4, 4 );
LYRA2REV3( l2v3_wholeMatrix, hash7, 32, hash7, 32, hash7, 32, 1, 4, 4 );
mm256_intrlv_8x32( vhash, hash0, hash1, hash2, hash3,
intrlv_8x32( vhash, hash0, hash1, hash2, hash3,
hash4, hash5, hash6, hash7, 256 );
bmw256_8way( &ctx.bmw, vhash, 32 );
@@ -91,7 +91,6 @@ int scanhash_lyra2rev3_8way( struct work *work, uint32_t max_nonce,
{
uint32_t hash[8*8] __attribute__ ((aligned (64)));
uint32_t vdata[20*8] __attribute__ ((aligned (64)));
uint32_t edata[20] __attribute__ ((aligned (64)));
uint32_t *hash7 = &(hash[7<<3]);
uint32_t lane_hash[8] __attribute__ ((aligned (32)));
uint32_t *pdata = work->data;
@@ -105,10 +104,7 @@ int scanhash_lyra2rev3_8way( struct work *work, uint32_t max_nonce,
if ( opt_benchmark )
( (uint32_t*)ptarget )[7] = 0x0000ff;
swab32_array( edata, pdata, 20 );
mm256_intrlv_8x32( vdata, edata, edata, edata, edata,
edata, edata, edata, edata, 640 );
// mm256_bswap_intrlv80_8x32( vdata, pdata );
mm256_bswap32_intrlv80_8x32( vdata, pdata );
do
{
*noncev = mm256_bswap_32( _mm256_set_epi32( n+7, n+6, n+5, n+4,
@@ -119,7 +115,7 @@ int scanhash_lyra2rev3_8way( struct work *work, uint32_t max_nonce,
for ( int lane = 0; lane < 8; lane++ ) if ( hash7[lane] <= Htarg )
{
mm256_extr_lane_8x32( lane_hash, hash, lane, 256 );
extr_lane_8x32( lane_hash, hash, lane, 256 );
if ( fulltest( lane_hash, ptarget ) && !opt_benchmark )
{
pdata[19] = n + lane;
@@ -208,7 +204,7 @@ int scanhash_lyra2rev3_4way( struct work *work, uint32_t max_nonce,
if ( opt_benchmark )
( (uint32_t*)ptarget )[7] = 0x0000ff;
mm128_bswap_intrlv80_4x32( vdata, pdata );
mm128_bswap32_intrlv80_4x32( vdata, pdata );
do
{
*noncev = mm128_bswap_32( _mm_set_epi32( n+3, n+2, n+1, n ) );

View File

@@ -60,7 +60,7 @@ int scanhash_lyra2z_4way( struct work *work, uint32_t max_nonce,
if ( opt_benchmark )
ptarget[7] = 0x0000ff;
mm128_bswap_intrlv80_4x32( vdata, pdata );
mm128_bswap32_intrlv80_4x32( vdata, pdata );
lyra2z_4way_midstate( vdata );
do {
@@ -119,8 +119,8 @@ void lyra2z_8way_hash( void *state, const void *input )
blake256_8way( &ctx_blake, input + (64*8), 16 );
blake256_8way_close( &ctx_blake, vhash );
mm256_dintrlv_8x32( hash0, hash1, hash2, hash3,
hash4, hash5, hash6, hash7, vhash, 256 );
dintrlv_8x32( hash0, hash1, hash2, hash3,
hash4, hash5, hash6, hash7, vhash, 256 );
LYRA2Z( lyra2z_8way_matrix, hash0, 32, hash0, 32, hash0, 32, 8, 8, 8 );
LYRA2Z( lyra2z_8way_matrix, hash1, 32, hash1, 32, hash1, 32, 8, 8, 8 );
@@ -146,7 +146,6 @@ int scanhash_lyra2z_8way( struct work *work, uint32_t max_nonce,
{
uint32_t hash[8*8] __attribute__ ((aligned (64)));
uint32_t vdata[20*8] __attribute__ ((aligned (64)));
uint32_t edata[20] __attribute__ ((aligned (64)));
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
const uint32_t Htarg = ptarget[7];
@@ -158,10 +157,7 @@ int scanhash_lyra2z_8way( struct work *work, uint32_t max_nonce,
if ( opt_benchmark )
ptarget[7] = 0x0000ff;
swab32_array( edata, pdata, 20 );
mm256_intrlv_8x32( vdata, edata, edata, edata, edata,
edata, edata, edata, edata, 640 );
// mm256_bswap_intrlv80_8x32( vdata, pdata );
mm256_bswap32_intrlv80_8x32( vdata, pdata );
lyra2z_8way_midstate( vdata );
do {

View File

@@ -69,13 +69,13 @@ void phi2_hash_4way( void *state, const void *input )
LYRA2RE( &hashA[3][0], 32, &hashB[3][0], 32, &hashB[3][0], 32, 1, 8, 8 );
LYRA2RE( &hashA[3][8], 32, &hashB[3][8], 32, &hashB[3][8], 32, 1, 8, 8 );
mm256_intrlv_4x64( vhash, hashA[0], hashA[1], hashA[2], hashA[3], 512 );
intrlv_4x64( vhash, hashA[0], hashA[1], hashA[2], hashA[3], 512 );
jh512_4way_init( &ctx.jh );
jh512_4way( &ctx.jh, vhash, 64 );
jh512_4way_close( &ctx.jh, vhash );
mm256_dintrlv_4x64( hash[0], hash[1], hash[2], hash[3], vhash, 512 );
dintrlv_4x64( hash[0], hash[1], hash[2], hash[3], vhash, 512 );
if ( hash[0][0] & 1 )
{
@@ -141,7 +141,7 @@ void phi2_hash_4way( void *state, const void *input )
(const BitSequence *)hash[3], 512 );
}
mm256_intrlv_4x64( vhash, hash[0], hash[1], hash[2], hash[3], 512 );
intrlv_4x64( vhash, hash[0], hash[1], hash[2], hash[3], 512 );
skein512_4way_init( &ctx.skein );
skein512_4way( &ctx.skein, vhash, 64 );
@@ -217,7 +217,7 @@ int scanhash_phi2_4way( struct work *work, uint32_t max_nonce,
for ( int lane = 0; lane < 4; lane++ ) if ( hash7[ lane<<1 ] < Htarg )
{
mm256_extr_lane_4x64( lane_hash, hash, lane, 256 );
extr_lane_4x64( lane_hash, hash, lane, 256 );
if ( fulltest( lane_hash, ptarget ) && !opt_benchmark )
{
pdata[19] = n + lane;

View File

@@ -323,7 +323,7 @@ int scanhash_m7m_hash( struct work* work, uint64_t max_nonce,
mpz_clears(magipi, magisw, product, bns0, bns1, NULL);
*hashes_done = n - first_nonce + 1;
return rc;
return 0;
}
bool register_m7m_algo( algo_gate_t *gate )

View File

@@ -12,9 +12,6 @@
#include "algo/keccak/keccak-hash-4way.h"
#include "algo/groestl/aes_ni/hash-groestl.h"
// no improvement with midstate
//static __thread blake512_4way_context ctx_mid;
void nist5hash_4way( void *out, const void *input )
{
uint64_t hash0[8] __attribute__ ((aligned (64)));
@@ -28,14 +25,11 @@ void nist5hash_4way( void *out, const void *input )
skein512_4way_context ctx_skein;
keccak512_4way_context ctx_keccak;
// memcpy( &ctx_blake, &ctx_mid, sizeof(ctx_mid) );
// blake512_4way( &ctx_blake, input + (64<<2), 16 );
blake512_4way_init( &ctx_blake );
blake512_4way( &ctx_blake, input, 80 );
blake512_4way_close( &ctx_blake, vhash );
mm256_dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
init_groestl( &ctx_groestl, 64 );
update_and_final_groestl( &ctx_groestl, (char*)hash0,
@@ -50,7 +44,7 @@ void nist5hash_4way( void *out, const void *input )
update_and_final_groestl( &ctx_groestl, (char*)hash3,
(const char*)hash3, 512 );
mm256_intrlv_4x64( vhash, hash0, hash1, hash2, hash3, 512 );
intrlv_4x64( vhash, hash0, hash1, hash2, hash3, 512 );
jh512_4way_init( &ctx_jh );
jh512_4way( &ctx_jh, vhash, 64 );
@@ -72,13 +66,12 @@ int scanhash_nist5_4way( struct work *work, uint32_t max_nonce,
uint32_t *hash7 = &(hash[25]);
uint32_t lane_hash[8] __attribute__ ((aligned (32)));
uint32_t vdata[24*4] __attribute__ ((aligned (64)));
uint32_t endiandata[20] __attribute__((aligned(64)));
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
uint32_t n = pdata[19];
const uint32_t first_nonce = pdata[19];
const uint32_t Htarg = ptarget[7];
uint32_t *noncep = vdata + 73; // 9*8 + 1
__m256i *noncev = (__m256i*)vdata + 9; // aligned
int thr_id = mythr->id; // thr_id arg is deprecated
uint64_t htmax[] = { 0,
@@ -95,15 +88,7 @@ int scanhash_nist5_4way( struct work *work, uint32_t max_nonce,
0xFFFF0000,
0 };
// we need bigendian data...
swab32_array( endiandata, pdata, 20 );
uint64_t *edata = (uint64_t*)endiandata;
mm256_intrlv_4x64( (uint64_t*)vdata, edata, edata, edata, edata, 640 );
// precalc midstate
// blake512_4way_init( &ctx_mid );
// blake512_4way( &ctx_mid, vdata, 64 );
mm256_bswap32_intrlv80_4x64( vdata, pdata );
for ( int m=0; m < 6; m++ )
{
@@ -112,17 +97,15 @@ int scanhash_nist5_4way( struct work *work, uint32_t max_nonce,
uint32_t mask = masks[m];
do {
be32enc( noncep, n );
be32enc( noncep+2, n+1 );
be32enc( noncep+4, n+2 );
be32enc( noncep+6, n+3 );
*noncev = mm256_intrlv_blend_32( mm256_bswap_32(
_mm256_set_epi32( n+3, 0, n+2, 0, n+1, 0, n, 0 ) ), *noncev );
nist5hash_4way( hash, vdata );
for ( int lane = 0; lane < 4; lane++ )
if ( ( hash7[ lane ] & mask ) == 0 )
{
mm256_extr_lane_4x64( lane_hash, hash, lane, 256 );
extr_lane_4x64( lane_hash, hash, lane, 256 );
if ( fulltest( lane_hash, ptarget ) && !opt_benchmark )
{
pdata[19] = n + lane;

View File

@@ -62,7 +62,7 @@ void anime_4way_hash( void *state, const void *input )
vh_mask = _mm256_cmpeq_epi64( _mm256_and_si256( vh[0], bit3_mask ), zero );
mm256_dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
if ( hash0[0] & mask )
{
@@ -88,7 +88,7 @@ void anime_4way_hash( void *state, const void *input )
(char*)hash3, 512 );
}
mm256_intrlv_4x64( vhashA, hash0, hash1, hash2, hash3, 512 );
intrlv_4x64( vhashA, hash0, hash1, hash2, hash3, 512 );
if ( mm256_anybits0( vh_mask ) )
{
@@ -98,7 +98,7 @@ void anime_4way_hash( void *state, const void *input )
mm256_blend_hash_4x64( vh, vhA, vhB, vh_mask );
mm256_dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
reinit_groestl( &ctx.groestl );
update_and_final_groestl( &ctx.groestl, (char*)hash0, (char*)hash0, 512 );
@@ -109,7 +109,7 @@ void anime_4way_hash( void *state, const void *input )
reinit_groestl( &ctx.groestl );
update_and_final_groestl( &ctx.groestl, (char*)hash3, (char*)hash3, 512 );
mm256_intrlv_4x64( vhash, hash0, hash1, hash2, hash3, 512 );
intrlv_4x64( vhash, hash0, hash1, hash2, hash3, 512 );
jh512_4way( &ctx.jh, vhash, 64 );
jh512_4way_close( &ctx.jh, vhash );
@@ -155,7 +155,7 @@ void anime_4way_hash( void *state, const void *input )
mm256_blend_hash_4x64( vh, vhA, vhB, vh_mask );
mm256_dintrlv_4x64( state, state+32, state+64, state+96, vhash, 256 );
dintrlv_4x64( state, state+32, state+64, state+96, vhash, 256 );
}
int scanhash_anime_4way( struct work *work, uint32_t max_nonce,
@@ -163,7 +163,6 @@ int scanhash_anime_4way( struct work *work, uint32_t max_nonce,
{
uint32_t hash[4*8] __attribute__ ((aligned (64)));
uint32_t vdata[24*4] __attribute__ ((aligned (64)));
uint32_t edata[20] __attribute__ ((aligned (64)));
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
uint32_t n = pdata[19];
@@ -188,9 +187,7 @@ int scanhash_anime_4way( struct work *work, uint32_t max_nonce,
0
};
swab32_array( edata, pdata, 20 );
mm256_intrlv_4x64( vdata, edata, edata, edata, edata, 640 );
// mm256_bswap_intrlv80_4x64( vdata, pdata );
mm256_bswap32_intrlv80_4x64( vdata, pdata );
for (int m=0; m < 6; m++)
if (Htarg <= htmax[m])

View File

@@ -67,7 +67,7 @@ extern void hmq1725_4way_hash(void *state, const void *input)
bmw512_4way( &ctx.bmw, input, 80 );
bmw512_4way_close( &ctx.bmw, vhash );
mm256_dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool( &ctx.whirlpool, hash0, 64 );
@@ -84,7 +84,7 @@ extern void hmq1725_4way_hash(void *state, const void *input)
// first fork, A is groestl serial, B is skein parallel.
mm256_intrlv_4x64( vhash, hash0, hash1, hash2, hash3, 512 );
intrlv_4x64( vhash, hash0, hash1, hash2, hash3, 512 );
vh_mask = _mm256_cmpeq_epi64( _mm256_and_si256( vh[0], vmask ),
m256_zero );
@@ -116,7 +116,7 @@ extern void hmq1725_4way_hash(void *state, const void *input)
(char*)hash3, 512 );
// }
mm256_intrlv_4x64( vhashA, hash0, hash1, hash2, hash3, 512 );
intrlv_4x64( vhashA, hash0, hash1, hash2, hash3, 512 );
// B
@@ -158,7 +158,7 @@ extern void hmq1725_4way_hash(void *state, const void *input)
mm256_blend_hash_4x64( vh, vhA, vhB, vh_mask );
mm256_dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
init_luffa( &ctx.luffa, 512 );
update_and_final_luffa( &ctx.luffa, (BitSequence*)hash0,
@@ -186,7 +186,7 @@ extern void hmq1725_4way_hash(void *state, const void *input)
cubehashUpdateDigest( &ctx.cube, (BitSequence *)hash3,
(const BitSequence *)hash3, 64 );
mm256_intrlv_4x64( vhash, hash0, hash1, hash2, hash3, 512 );
intrlv_4x64( vhash, hash0, hash1, hash2, hash3, 512 );
// A= keccak parallel, B= jh parallel
@@ -209,7 +209,7 @@ extern void hmq1725_4way_hash(void *state, const void *input)
mm256_blend_hash_4x64( vh, vhA, vhB, vh_mask );
mm256_dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
sph_shavite512_init( &ctx.shavite );
sph_shavite512 ( &ctx.shavite, hash0, 64 );
@@ -240,7 +240,7 @@ extern void hmq1725_4way_hash(void *state, const void *input)
// A is whirlpool serial, B is haval parallel.
mm256_intrlv_4x64( vhash, hash0, hash1, hash2, hash3, 512 );
intrlv_4x64( vhash, hash0, hash1, hash2, hash3, 512 );
vh_mask = _mm256_cmpeq_epi64( _mm256_and_si256( vh[0], vmask ),
m256_zero );
@@ -271,7 +271,7 @@ extern void hmq1725_4way_hash(void *state, const void *input)
sph_whirlpool_close( &ctx.whirlpool, hash3 );
// }
mm256_intrlv_4x64( vhashA, hash0, hash1, hash2, hash3, 512 );
intrlv_4x64( vhashA, hash0, hash1, hash2, hash3, 512 );
// B
@@ -285,7 +285,7 @@ extern void hmq1725_4way_hash(void *state, const void *input)
mm256_blend_hash_4x64( vh, vhA, vhB, vh_mask );
mm256_dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
init_echo( &ctx.echo, 512 );
update_final_echo( &ctx.echo, (BitSequence *)hash0,
@@ -300,13 +300,13 @@ extern void hmq1725_4way_hash(void *state, const void *input)
update_final_echo( &ctx.echo, (BitSequence *)hash3,
(const BitSequence *)hash3, 512 );
mm256_intrlv_4x64( vhash, hash0, hash1, hash2, hash3, 512 );
intrlv_4x64( vhash, hash0, hash1, hash2, hash3, 512 );
blake512_4way_init( &ctx.blake );
blake512_4way( &ctx.blake, vhash, 64 );
blake512_4way_close( &ctx.blake, vhash );
mm256_dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
// shavite & luffa, both serial, select individually.
@@ -362,13 +362,13 @@ extern void hmq1725_4way_hash(void *state, const void *input)
(const BitSequence *)hash3, 64 );
}
mm256_intrlv_4x64( vhash, hash0, hash1, hash2, hash3, 512 );
intrlv_4x64( vhash, hash0, hash1, hash2, hash3, 512 );
hamsi512_4way_init( &ctx.hamsi );
hamsi512_4way( &ctx.hamsi, vhash, 64 );
hamsi512_4way_close( &ctx.hamsi, vhash );
mm256_dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
sph_fugue512_init( &ctx.fugue );
sph_fugue512( &ctx.fugue, hash0, 64 );
@@ -438,13 +438,13 @@ extern void hmq1725_4way_hash(void *state, const void *input)
(const BitSequence *)hash3, 512 );
}
mm128_intrlv_4x32( vhash, hash0, hash1, hash2, hash3, 512 );
intrlv_4x32( vhash, hash0, hash1, hash2, hash3, 512 );
shabal512_4way_init( &ctx.shabal );
shabal512_4way( &ctx.shabal, vhash, 64 );
shabal512_4way_close( &ctx.shabal, vhash );
mm128_dintrlv_4x32( hash0, hash1, hash2, hash3, vhash, 512 );
dintrlv_4x32( hash0, hash1, hash2, hash3, vhash, 512 );
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool( &ctx.whirlpool, hash0, 64 );
@@ -461,7 +461,7 @@ extern void hmq1725_4way_hash(void *state, const void *input)
// A = fugue serial, B = sha512 prarallel
mm256_intrlv_4x64( vhash, hash0, hash1, hash2, hash3, 512 );
intrlv_4x64( vhash, hash0, hash1, hash2, hash3, 512 );
vh_mask = _mm256_cmpeq_epi64( _mm256_and_si256( vh[0], vmask ),
m256_zero );
@@ -491,7 +491,7 @@ extern void hmq1725_4way_hash(void *state, const void *input)
sph_fugue512_close( &ctx.fugue, hash3 );
// }
mm256_intrlv_4x64( vhashA, hash0, hash1, hash2, hash3, 512 );
intrlv_4x64( vhashA, hash0, hash1, hash2, hash3, 512 );
// if ( mm256_any_clr_256( vh_mask ) )
// {
@@ -502,7 +502,7 @@ extern void hmq1725_4way_hash(void *state, const void *input)
mm256_blend_hash_4x64( vh, vhA, vhB, vh_mask );
mm256_dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
init_groestl( &ctx.groestl, 64 );
update_and_final_groestl( &ctx.groestl, (char*)hash0, (char*)hash0, 512 );
@@ -513,7 +513,7 @@ extern void hmq1725_4way_hash(void *state, const void *input)
init_groestl( &ctx.groestl, 64 );
update_and_final_groestl( &ctx.groestl, (char*)hash3, (char*)hash3, 512 );
mm256_intrlv_4x64( vhash, hash0, hash1, hash2, hash3, 512 );
intrlv_4x64( vhash, hash0, hash1, hash2, hash3, 512 );
sha512_4way_init( &ctx.sha512 );
sha512_4way( &ctx.sha512, vhash, 64 );
@@ -524,7 +524,7 @@ extern void hmq1725_4way_hash(void *state, const void *input)
vh_mask = _mm256_cmpeq_epi64( _mm256_and_si256( vh[0], vmask ),
m256_zero );
mm256_dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
// if ( mm256_any_set_256( vh_mask ) ) //4
// {
@@ -559,7 +559,7 @@ extern void hmq1725_4way_hash(void *state, const void *input)
sph_whirlpool_close( &ctx.whirlpool, hash3 );
// }
mm256_intrlv_4x64( vhashB, hash0, hash1, hash2, hash3, 512 );
intrlv_4x64( vhashB, hash0, hash1, hash2, hash3, 512 );
mm256_blend_hash_4x64( vh, vhA, vhB, vh_mask );
@@ -589,7 +589,7 @@ int scanhash_hmq1725_4way( struct work *work, uint32_t max_nonce,
uint32_t masks[] = { 0xFFFFFFFF, 0xFFFFFFF0, 0xFFFFFF00,
0xFFFFF000, 0xFFFF0000, 0 };
mm256_bswap_intrlv80_4x64( vdata, pdata );
mm256_bswap32_intrlv80_4x64( vdata, pdata );
for ( int m = 0; m < 6; m++ ) if ( Htarg <= htmax[m] )
{
uint32_t mask = masks[ m ];

View File

@@ -63,7 +63,7 @@ void quark_4way_hash( void *state, const void *input )
vh_mask = _mm256_cmpeq_epi64( _mm256_and_si256( vh[0], bit3_mask ), zero );
mm256_dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
if ( hash0[0] & mask )
{
@@ -89,7 +89,7 @@ void quark_4way_hash( void *state, const void *input )
(char*)hash3, 512 );
}
mm256_intrlv_4x64( vhashA, hash0, hash1, hash2, hash3, 512 );
intrlv_4x64( vhashA, hash0, hash1, hash2, hash3, 512 );
if ( mm256_anybits0( vh_mask ) )
{
@@ -99,7 +99,7 @@ void quark_4way_hash( void *state, const void *input )
mm256_blend_hash_4x64( vh, vhA, vhB, vh_mask );
mm256_dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
reinit_groestl( &ctx.groestl );
update_and_final_groestl( &ctx.groestl, (char*)hash0, (char*)hash0, 512 );
@@ -110,7 +110,7 @@ void quark_4way_hash( void *state, const void *input )
reinit_groestl( &ctx.groestl );
update_and_final_groestl( &ctx.groestl, (char*)hash3, (char*)hash3, 512 );
mm256_intrlv_4x64( vhash, hash0, hash1, hash2, hash3, 512 );
intrlv_4x64( vhash, hash0, hash1, hash2, hash3, 512 );
jh512_4way( &ctx.jh, vhash, 64 );
jh512_4way_close( &ctx.jh, vhash );
@@ -168,7 +168,6 @@ int scanhash_quark_4way( struct work *work, uint32_t max_nonce,
{
uint32_t hash[4*8] __attribute__ ((aligned (64)));
uint32_t vdata[24*4] __attribute__ ((aligned (64)));
uint32_t edata[20] __attribute__ ((aligned (64)));
uint32_t lane_hash[8] __attribute__ ((aligned (64)));
uint32_t *hash7 = &(hash[25]);
uint32_t *pdata = work->data;
@@ -178,9 +177,7 @@ int scanhash_quark_4way( struct work *work, uint32_t max_nonce,
__m256i *noncev = (__m256i*)vdata + 9; // aligned
int thr_id = mythr->id; // thr_id arg is deprecated
swab32_array( edata, pdata, 20 );
mm256_intrlv_4x64( vdata, edata, edata, edata, edata, 640 );
// mm256_bswap_intrlv80_4x64( vdata, pdata );
mm256_bswap32_intrlv80_4x64( vdata, pdata );
do
{
*noncev = mm256_intrlv_blend_32( mm256_bswap_32(
@@ -192,7 +189,7 @@ int scanhash_quark_4way( struct work *work, uint32_t max_nonce,
for ( int i = 0; i < 4; i++ )
if ( ( hash7[ i<<1 ] & 0xFFFFFF00 ) == 0 )
{
mm256_extr_lane_4x64( lane_hash, hash, i, 256 );
extr_lane_4x64( lane_hash, hash, i, 256 );
if ( fulltest( lane_hash, ptarget ) && !opt_benchmark )
{
pdata[19] = n+i;

View File

@@ -39,7 +39,7 @@ void deep_2way_hash( void *output, const void *input )
memcpy( &ctx, &deep_2way_ctx, sizeof(deep_2way_ctx) );
luffa_2way_update( &ctx.luffa, input + (64<<1), 16 );
luffa_2way_close( &ctx.luffa, vhash );
mm256_dintrlv_2x128( hash0, hash1, vhash, 512 );
dintrlv_2x128( hash0, hash1, vhash, 512 );
cubehashUpdateDigest( &ctx.cube, (byte*)hash0,
(const byte*) hash0, 64 );
@@ -86,7 +86,7 @@ int scanhash_deep_2way( struct work *work,uint32_t max_nonce,
casti_m128i( endiandata, 4 ) = mm128_bswap_32( casti_m128i( pdata, 4 ) );
uint64_t *edata = (uint64_t*)endiandata;
mm256_intrlv_2x128( (uint64_t*)vdata, edata, edata, 640 );
intrlv_2x128( (uint64_t*)vdata, edata, edata, 640 );
luffa_2way_init( &deep_2way_ctx.luffa, 512 );
luffa_2way_update( &deep_2way_ctx.luffa, vdata, 64 );

View File

@@ -41,7 +41,7 @@ void qubit_2way_hash( void *output, const void *input )
memcpy( &ctx, &qubit_2way_ctx, sizeof(qubit_2way_ctx) );
luffa_2way_update( &ctx.luffa, input + (64<<1), 16 );
luffa_2way_close( &ctx.luffa, vhash );
mm256_dintrlv_2x128( hash0, hash1, vhash, 512 );
dintrlv_2x128( hash0, hash1, vhash, 512 );
cubehashUpdateDigest( &ctx.cube, (byte*)hash0,
(const byte*) hash0, 64 );
@@ -55,9 +55,9 @@ void qubit_2way_hash( void *output, const void *input )
sph_shavite512( &ctx.shavite, hash1, 64 );
sph_shavite512_close( &ctx.shavite, hash1 );
mm256_intrlv_2x128( vhash, hash0, hash1, 512 );
intrlv_2x128( vhash, hash0, hash1, 512 );
simd_2way_update_close( &ctx.simd, vhash, vhash, 512 );
mm256_dintrlv_2x128( hash0, hash1, vhash, 512 );
dintrlv_2x128( hash0, hash1, vhash, 512 );
update_final_echo( &ctx.echo, (BitSequence *)hash0,
(const BitSequence *) hash0, 512 );
@@ -92,7 +92,7 @@ int scanhash_qubit_2way( struct work *work,uint32_t max_nonce,
casti_m128i( endiandata, 4 ) = mm128_bswap_32( casti_m128i( pdata, 4 ) );
uint64_t *edata = (uint64_t*)endiandata;
mm256_intrlv_2x128( (uint64_t*)vdata, edata, edata, 640 );
intrlv_2x128( (uint64_t*)vdata, edata, edata, 640 );
luffa_2way_init( &qubit_2way_ctx.luffa, 512 );
luffa_2way_update( &qubit_2way_ctx.luffa, vdata, 64 );

View File

@@ -40,9 +40,9 @@ void lbry_8way_hash( void* output, const void* input )
sha256_8way_close( &ctx_sha256, vhashA );
// reinterleave to do sha512 4-way 64 bit twice.
mm256_dintrlv_8x32( h0, h1, h2, h3, h4, h5, h6, h7, vhashA, 256 );
mm256_intrlv_4x64( vhashA, h0, h1, h2, h3, 256 );
mm256_intrlv_4x64( vhashB, h4, h5, h6, h7, 256 );
dintrlv_8x32( h0, h1, h2, h3, h4, h5, h6, h7, vhashA, 256 );
intrlv_4x64( vhashA, h0, h1, h2, h3, 256 );
intrlv_4x64( vhashB, h4, h5, h6, h7, 256 );
sha512_4way_init( &ctx_sha512 );
sha512_4way( &ctx_sha512, vhashA, 32 );
@@ -53,9 +53,9 @@ void lbry_8way_hash( void* output, const void* input )
sha512_4way_close( &ctx_sha512, vhashB );
// back to 8-way 32 bit
mm256_dintrlv_4x64( h0, h1, h2, h3, vhashA, 512 );
mm256_dintrlv_4x64( h4, h5, h6, h7, vhashB, 512 );
mm256_intrlv_8x32( vhashA, h0, h1, h2, h3, h4, h5, h6, h7, 512 );
dintrlv_4x64( h0, h1, h2, h3, vhashA, 512 );
dintrlv_4x64( h4, h5, h6, h7, vhashB, 512 );
intrlv_8x32( vhashA, h0, h1, h2, h3, h4, h5, h6, h7, 512 );
ripemd160_8way_init( &ctx_ripemd );
ripemd160_8way( &ctx_ripemd, vhashA, 32 );
@@ -97,11 +97,15 @@ int scanhash_lbry_8way( struct work *work, uint32_t max_nonce,
0xFFFFF000, 0xFFFF0000, 0 };
// we need bigendian data...
casti_m256i( edata, 0 ) = mm256_bswap_32( casti_m256i( pdata, 0 ) );
casti_m256i( edata, 1 ) = mm256_bswap_32( casti_m256i( pdata, 1 ) );
casti_m256i( edata, 2 ) = mm256_bswap_32( casti_m256i( pdata, 2 ) );
casti_m256i( edata, 3 ) = mm256_bswap_32( casti_m256i( pdata, 3 ) );
mm256_intrlv_8x32( vdata, edata, edata, edata, edata,
casti_m128i( edata, 0 ) = mm128_bswap_32( casti_m128i( pdata, 0 ) );
casti_m128i( edata, 1 ) = mm128_bswap_32( casti_m128i( pdata, 1 ) );
casti_m128i( edata, 2 ) = mm128_bswap_32( casti_m128i( pdata, 2 ) );
casti_m128i( edata, 3 ) = mm128_bswap_32( casti_m128i( pdata, 3 ) );
casti_m128i( edata, 4 ) = mm128_bswap_32( casti_m128i( pdata, 4 ) );
casti_m128i( edata, 5 ) = mm128_bswap_32( casti_m128i( pdata, 5 ) );
casti_m128i( edata, 6 ) = mm128_bswap_32( casti_m128i( pdata, 6 ) );
casti_m128i( edata, 7 ) = mm128_bswap_32( casti_m128i( pdata, 7 ) );
intrlv_8x32( vdata, edata, edata, edata, edata,
edata, edata, edata, edata, 1024 );
sha256_8way_init( &sha256_8w_mid );
sha256_8way( &sha256_8w_mid, vdata, LBRY_MIDSTATE );
@@ -118,7 +122,7 @@ int scanhash_lbry_8way( struct work *work, uint32_t max_nonce,
for ( int i = 0; i < 8; i++ ) if ( !( hash7[ i ] & mask ) )
{
// deinterleave hash for lane
mm256_extr_lane_8x32( lane_hash, hash, i, 256 );
extr_lane_8x32( lane_hash, hash, i, 256 );
if ( fulltest( lane_hash, ptarget ) && !opt_benchmark )
{
pdata[27] = n + i;

View File

@@ -196,9 +196,9 @@ SPH_XCAT( HASH, _addbits_and_close )(void *cc, unsigned ub, unsigned n,
ptr = (unsigned)sc->count & (SPH_BLEN - 1U);
#ifdef PW01
sc->buf[ptr>>3] = _mm256_set1_epi64x( 0x100 >> 8 );
sc->buf[ptr>>3] = m256_const1_64( 0x100 >> 8 );
#else
sc->buf[ptr>>3] = _mm256_set1_epi64x( 0x80 );
sc->buf[ptr>>3] = m256_const1_64( 0x80 );
#endif
ptr += 8;

View File

@@ -660,7 +660,7 @@ void sha512_4way_close( sha512_4way_context *sc, void *dst )
const int pad = buf_size - 16;
ptr = (unsigned)sc->count & (buf_size - 1U);
sc->buf[ ptr>>3 ] = _mm256_set1_epi64x( 0x80 );
sc->buf[ ptr>>3 ] = m256_const1_64( 0x80 );
ptr += 8;
if ( ptr > pad )
{

View File

@@ -36,7 +36,6 @@ int scanhash_sha256q_8way( struct work *work, uint32_t max_nonce,
{
uint32_t vdata[20*8] __attribute__ ((aligned (64)));
uint32_t hash[8*8] __attribute__ ((aligned (32)));
uint32_t edata[20] __attribute__ ((aligned (64)));
uint32_t lane_hash[8] __attribute__ ((aligned (32)));
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
@@ -60,10 +59,7 @@ int scanhash_sha256q_8way( struct work *work, uint32_t max_nonce,
0 };
// Need big endian data
swab32_array( edata, pdata, 20 );
mm256_intrlv_8x32( vdata, edata, edata, edata, edata,
edata, edata, edata, edata, 640 );
// mm256_bswap_intrlv80_8x32( vdata, pdata );
mm256_bswap32_intrlv80_8x32( vdata, pdata );
sha256_8way_init( &sha256_ctx8 );
sha256_8way( &sha256_ctx8, vdata, 64 );
@@ -84,7 +80,7 @@ int scanhash_sha256q_8way( struct work *work, uint32_t max_nonce,
if ( !( hash7[ lane ] & mask ) )
{
// deinterleave hash for lane
mm256_extr_lane_8x32( lane_hash, hash, lane, 256 );
extr_lane_8x32( lane_hash, hash, lane, 256 );
if ( fulltest( lane_hash, ptarget ) && !opt_benchmark )
{
@@ -133,7 +129,6 @@ int scanhash_sha256q_4way( struct work *work, uint32_t max_nonce,
{
uint32_t vdata[20*4] __attribute__ ((aligned (64)));
uint32_t hash[8*4] __attribute__ ((aligned (32)));
uint32_t edata[20] __attribute__ ((aligned (64)));
uint32_t *hash7 = &(hash[7<<2]);
uint32_t lane_hash[8] __attribute__ ((aligned (32)));
uint32_t *pdata = work->data;
@@ -157,9 +152,7 @@ int scanhash_sha256q_4way( struct work *work, uint32_t max_nonce,
0xFFFF0000,
0 };
swab32_array( edata, pdata, 20 );
mm128_intrlv_4x32( vdata, edata, edata, edata, edata, 640 );
// mm128_bswap_intrlv80_4x32( vdata, pdata );
mm128_bswap32_intrlv80_4x32( vdata, pdata );
sha256_4way_init( &sha256_ctx4 );
sha256_4way( &sha256_ctx4, vdata, 64 );

View File

@@ -72,7 +72,7 @@ int scanhash_sha256t_11way( struct work *work, uint32_t max_nonce,
casti_m256i( dataz, 1 ) = mm256_bswap_32( casti_m256i( pdata, 1 ) );
casti_m128i( dataz, 4 ) = mm128_bswap_32( casti_m128i( pdata, 4 ) );
mm256_intrlv_8x32( datax, dataz, dataz, dataz, dataz,
intrlv_8x32( datax, dataz, dataz, dataz, dataz,
dataz, dataz, dataz, dataz, 640 );
mm64_interleave_2x32( datay, dataz, dataz, 640 );
@@ -99,7 +99,7 @@ int scanhash_sha256t_11way( struct work *work, uint32_t max_nonce,
for ( i = 0; i < 8; i++ ) if ( !( hash7[ i ] & mask ) )
{
// deinterleave hash for lane
mm256_extr_lane_8x32( lane_hash, hashx, i, 256 );
extr_lane_8x32( lane_hash, hashx, i, 256 );
if ( fulltest( lane_hash, ptarget ) )
{
pdata[19] = n + i;
@@ -163,7 +163,6 @@ int scanhash_sha256t_8way( struct work *work, uint32_t max_nonce,
{
uint32_t vdata[20*8] __attribute__ ((aligned (64)));
uint32_t hash[8*8] __attribute__ ((aligned (32)));
uint32_t edata[20] __attribute__ ((aligned (64)));
uint32_t lane_hash[8] __attribute__ ((aligned (32)));
uint32_t *hash7 = &(hash[7<<3]);
uint32_t *pdata = work->data;
@@ -187,12 +186,9 @@ int scanhash_sha256t_8way( struct work *work, uint32_t max_nonce,
0xFFFF0000,
0 };
swab32_array( edata, pdata, 20 );
mm256_intrlv_8x32( vdata, edata, edata, edata, edata,
edata, edata, edata, edata, 640 );
// Need big endian data
// mm256_bswap_intrlv80_8x32( vdata, pdata );
mm256_bswap32_intrlv80_8x32( vdata, pdata );
sha256_8way_init( &sha256_ctx8 );
sha256_8way( &sha256_ctx8, vdata, 64 );
@@ -209,7 +205,7 @@ int scanhash_sha256t_8way( struct work *work, uint32_t max_nonce,
if ( !( hash7[ lane ] & mask ) )
{
// deinterleave hash for lane
mm256_extr_lane_8x32( lane_hash, hash, lane, 256 );
extr_lane_8x32( lane_hash, hash, lane, 256 );
if ( fulltest( lane_hash, ptarget ) && !opt_benchmark )
{
pdata[19] = n + lane;
@@ -253,7 +249,6 @@ int scanhash_sha256t_4way( struct work *work, uint32_t max_nonce,
{
uint32_t vdata[20*4] __attribute__ ((aligned (64)));
uint32_t hash[8*4] __attribute__ ((aligned (32)));
uint32_t edata[20] __attribute__ ((aligned (64)));
uint32_t lane_hash[8] __attribute__ ((aligned (64)));
uint32_t *hash7 = &(hash[7<<2]);
uint32_t *pdata = work->data;
@@ -277,10 +272,7 @@ int scanhash_sha256t_4way( struct work *work, uint32_t max_nonce,
0xFFFF0000,
0 };
swab32_array( edata, pdata, 20 );
mm128_intrlv_4x32( vdata, edata, edata, edata, edata, 640 );
// mm128_bswap_intrlv80_4x32( vdata, pdata );
mm128_bswap32_intrlv80_4x32( vdata, pdata );
sha256_4way_init( &sha256_ctx4 );
sha256_4way( &sha256_ctx4, vdata, 64 );

View File

@@ -11,7 +11,7 @@ bool register_sha256t_algo( algo_gate_t* gate )
gate->scanhash = (void*)&scanhash_sha256t_4way;
gate->hash = (void*)&sha256t_4way_hash;
#else
gate->optimizations = SHA_OPT;
gate->optimizations = SHA_OPT;
gate->scanhash = (void*)&scanhash_sha256t;
gate->hash = (void*)&sha256t_hash;
#endif
@@ -21,7 +21,11 @@ gate->optimizations = SHA_OPT;
bool register_sha256q_algo( algo_gate_t* gate )
{
#if defined(SHA256T_4WAY)
#if defined(SHA256T_8WAY)
gate->optimizations = SSE2_OPT | AVX2_OPT | SHA_OPT;
gate->scanhash = (void*)&scanhash_sha256q_8way;
gate->hash = (void*)&sha256q_8way_hash;
#elif defined(SHA256T_4WAY)
gate->optimizations = SSE2_OPT | AVX2_OPT | SHA_OPT;
gate->scanhash = (void*)&scanhash_sha256q_4way;
gate->hash = (void*)&sha256q_4way_hash;

View File

@@ -8,7 +8,7 @@
#if !defined(__SHA__)
#if defined(__AVX2__)
#define SHA256T_8WAY
#elif defined(__SSE2__)
#elif defined(__SSE2__)
#define SHA256T_4WAY
#endif
#endif

View File

@@ -12,7 +12,7 @@
void skeinhash_4way( void *state, const void *input )
{
uint64_t vhash64[8*4] __attribute__ ((aligned (64)));
uint64_t vhash64[16*4] __attribute__ ((aligned (64)));
skein512_4way_context ctx_skein;
#if defined(__SHA__)
uint32_t hash0[16] __attribute__ ((aligned (64)));
@@ -30,7 +30,7 @@ void skeinhash_4way( void *state, const void *input )
skein512_4way_close( &ctx_skein, vhash64 );
#if defined(__SHA__)
mm256_dintrlv_4x64( hash0, hash1, hash2, hash3, vhash64, 512 );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhash64, 512 );
SHA256_Init( &ctx_sha256 );
SHA256_Update( &ctx_sha256, (unsigned char*)hash0, 64 );
@@ -50,7 +50,7 @@ void skeinhash_4way( void *state, const void *input )
intrlv_4x32( state, hash0, hash1, hash2, hash3, 256 );
#else
mm256_rintrlv_4x64_4x32( vhash32, vhash64, 512 );
rintrlv_4x64_4x32( vhash32, vhash64, 512 );
sha256_4way_init( &ctx_sha256 );
sha256_4way( &ctx_sha256, vhash32, 64 );
@@ -62,8 +62,7 @@ int scanhash_skein_4way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t vdata[20*4] __attribute__ ((aligned (64)));
uint32_t hash[8*4] __attribute__ ((aligned (64)));
uint32_t edata[20] __attribute__ ((aligned (64)));
uint32_t hash[16*4] __attribute__ ((aligned (64)));
uint32_t lane_hash[8] __attribute__ ((aligned (32)));
uint32_t *hash7 = &(hash[7<<2]);
uint32_t *pdata = work->data;
@@ -74,9 +73,7 @@ int scanhash_skein_4way( struct work *work, uint32_t max_nonce,
__m256i *noncev = (__m256i*)vdata + 9; // aligned
int thr_id = mythr->id; // thr_id arg is deprecated
swab32_array( edata, pdata, 20 );
mm256_intrlv_4x64( vdata, edata, edata, edata, edata, 640 );
// mm256_bswap_intrlv80_4x64( vdata, pdata );
mm256_bswap32_intrlv80_4x64( vdata, pdata );
do
{
*noncev = mm256_intrlv_blend_32( mm256_bswap_32(

View File

@@ -279,10 +279,7 @@ do { \
_mm256_xor_si256( k2, k3 ) ), \
_mm256_xor_si256( _mm256_xor_si256( k4, k5 ), \
_mm256_xor_si256( k6, k7 ) ) ), \
_mm256_set_epi64x( SPH_C64(0x1BD11BDAA9FC1A22), \
SPH_C64(0x1BD11BDAA9FC1A22), \
SPH_C64(0x1BD11BDAA9FC1A22), \
SPH_C64(0x1BD11BDAA9FC1A22) ) ); \
m256_const1_64( 0x1BD11BDAA9FC1A22) ); \
t2 = t0 ^ t1; \
} while (0)
@@ -294,13 +291,11 @@ do { \
w3 = _mm256_add_epi64( w3, SKBI(k,s,3) ); \
w4 = _mm256_add_epi64( w4, SKBI(k,s,4) ); \
w5 = _mm256_add_epi64( w5, _mm256_add_epi64( SKBI(k,s,5), \
_mm256_set_epi64x( SKBT(t,s,0), SKBT(t,s,0), \
SKBT(t,s,0), SKBT(t,s,0) ) ) ); \
m256_const1_64( SKBT(t,s,0) ) ) ); \
w6 = _mm256_add_epi64( w6, _mm256_add_epi64( SKBI(k,s,6), \
_mm256_set_epi64x( SKBT(t,s,1), SKBT(t,s,1), \
SKBT(t,s,1), SKBT(t,s,1) ) ) ); \
m256_const1_64( SKBT(t,s,1) ) ) ); \
w7 = _mm256_add_epi64( w7, _mm256_add_epi64( SKBI(k,s,7), \
_mm256_set_epi64x( s, s, s, s ) ) ); \
m256_const1_64( s ) ) ); \
} while (0)

View File

@@ -8,7 +8,7 @@
void skein2hash_4way( void *output, const void *input )
{
skein512_4way_context ctx;
uint64_t hash[8*4] __attribute__ ((aligned (64)));
uint64_t hash[16*4] __attribute__ ((aligned (64)));
skein512_4way_init( &ctx );
skein512_4way( &ctx, input, 80 );
@@ -22,8 +22,7 @@ void skein2hash_4way( void *output, const void *input )
int scanhash_skein2_4way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t hash[8*4] __attribute__ ((aligned (64)));
uint32_t edata[20] __attribute__ ((aligned (64)));
uint32_t hash[16*4] __attribute__ ((aligned (64)));
uint32_t vdata[20*4] __attribute__ ((aligned (64)));
uint32_t lane_hash[8] __attribute__ ((aligned (64)));
uint32_t *hash7 = &(hash[25]);
@@ -34,20 +33,10 @@ int scanhash_skein2_4way( struct work *work, uint32_t max_nonce,
uint32_t n = first_nonce;
__m256i *noncev = (__m256i*)vdata + 9; // aligned
int thr_id = mythr->id; // thr_id arg is deprecated
// uint32_t *noncep = vdata + 73; // 9*8 + 1
swab32_array( edata, pdata, 20 );
mm256_intrlv_4x64( vdata, edata, edata, edata, edata, 640 );
// mm256_bswap_intrlv80_4x64( vdata, pdata );
mm256_bswap32_intrlv80_4x64( vdata, pdata );
do
{
// be32enc( noncep, n );
// be32enc( noncep+2, n+1 );
// be32enc( noncep+4, n+2 );
// be32enc( noncep+6, n+3 );
*noncev = mm256_intrlv_blend_32( mm256_bswap_32(
_mm256_set_epi32( n+3, 0, n+2, 0, n+1, 0, n, 0 ) ), *noncev );
@@ -56,7 +45,7 @@ int scanhash_skein2_4way( struct work *work, uint32_t max_nonce,
for ( int lane = 0; lane < 4; lane++ )
if ( hash7[ lane<<1 ] <= Htarg )
{
mm256_extr_lane_4x64( lane_hash, hash, lane, 256 );
extr_lane_4x64( lane_hash, hash, lane, 256 );
if ( fulltest( lane_hash, ptarget ) && !opt_benchmark )
{
pdata[19] = n + lane;

View File

@@ -69,7 +69,7 @@ void c11_4way_hash( void *state, const void *input )
bmw512_4way_close( &ctx.bmw, vhash );
// Serial
mm256_dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
// 3 Groestl
update_and_final_groestl( &ctx.groestl, (char*)hash0, (char*)hash0, 512 );
@@ -81,7 +81,7 @@ void c11_4way_hash( void *state, const void *input )
update_and_final_groestl( &ctx.groestl, (char*)hash3, (char*)hash3, 512 );
// 4way
mm256_intrlv_4x64( vhash, hash0, hash1, hash2, hash3, 512 );
intrlv_4x64( vhash, hash0, hash1, hash2, hash3, 512 );
// 4 JH
jh512_4way( &ctx.jh, vhash, 64 );
@@ -96,16 +96,16 @@ void c11_4way_hash( void *state, const void *input )
skein512_4way_close( &ctx.skein, vhash );
// Serial
mm256_dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
// 7 Luffa
mm256_intrlv_2x128( vhash, hash0, hash1, 512 );
mm256_intrlv_2x128( vhashB, hash2, hash3, 512 );
intrlv_2x128( vhash, hash0, hash1, 512 );
intrlv_2x128( vhashB, hash2, hash3, 512 );
luffa_2way_update_close( &ctx.luffa, vhash, vhash, 64 );
luffa_2way_init( &ctx.luffa, 512 );
luffa_2way_update_close( &ctx.luffa, vhashB, vhashB, 64 );
mm256_dintrlv_2x128( hash0, hash1, vhash, 512 );
mm256_dintrlv_2x128( hash2, hash3, vhashB, 512 );
dintrlv_2x128( hash0, hash1, vhash, 512 );
dintrlv_2x128( hash2, hash3, vhashB, 512 );
// 8 Cubehash
cubehashUpdateDigest( &ctx.cube, (byte*)hash0, (const byte*) hash0, 64 );
@@ -133,13 +133,13 @@ void c11_4way_hash( void *state, const void *input )
sph_shavite512_close( &ctx.shavite, hash3 );
// 10 Simd
mm256_intrlv_2x128( vhash, hash0, hash1, 512 );
mm256_intrlv_2x128( vhashB, hash2, hash3, 512 );
intrlv_2x128( vhash, hash0, hash1, 512 );
intrlv_2x128( vhashB, hash2, hash3, 512 );
simd_2way_update_close( &ctx.simd, vhash, vhash, 512 );
simd_2way_init( &ctx.simd, 512 );
simd_2way_update_close( &ctx.simd, vhashB, vhashB, 512 );
mm256_dintrlv_2x128( hash0, hash1, vhash, 512 );
mm256_dintrlv_2x128( hash2, hash3, vhashB, 512 );
dintrlv_2x128( hash0, hash1, vhash, 512 );
dintrlv_2x128( hash2, hash3, vhashB, 512 );
// 11 Echo
update_final_echo( &ctx.echo, (BitSequence *)hash0,
@@ -165,7 +165,6 @@ int scanhash_c11_4way( struct work *work, uint32_t max_nonce,
{
uint32_t hash[4*8] __attribute__ ((aligned (64)));
uint32_t vdata[24*4] __attribute__ ((aligned (64)));
uint32_t edata[20] __attribute__((aligned(64)));
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
uint32_t n = pdata[19];
@@ -178,9 +177,7 @@ int scanhash_c11_4way( struct work *work, uint32_t max_nonce,
uint32_t masks[] = { 0xFFFFFFFF, 0xFFFFFFF0, 0xFFFFFF00,
0xFFFFF000, 0xFFFF0000, 0 };
swab32_array( edata, pdata, 20 );
mm256_intrlv_4x64( vdata, edata, edata, edata, edata, 640 );
// mm256_bswap_intrlv80_4x64( vdata, pdata );
mm256_bswap32_intrlv80_4x64( vdata, pdata );
for (int m=0; m < 6; m++)
if (Htarg <= htmax[m])

View File

@@ -87,19 +87,16 @@ void timetravel_4way_hash(void *output, const void *input)
blake512_4way( &ctx.blake, vhashA, dataLen );
blake512_4way_close( &ctx.blake, vhashB );
if ( i == 7 )
mm256_dintrlv_4x64( hash0, hash1, hash2, hash3,
vhashB, dataLen<<3 );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhashB, dataLen<<3 );
break;
case 1:
bmw512_4way( &ctx.bmw, vhashA, dataLen );
bmw512_4way_close( &ctx.bmw, vhashB );
if ( i == 7 )
mm256_dintrlv_4x64( hash0, hash1, hash2, hash3,
vhashB, dataLen<<3 );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhashB, dataLen<<3 );
break;
case 2:
mm256_dintrlv_4x64( hash0, hash1, hash2, hash3,
vhashA, dataLen<<3 );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhashA, dataLen<<3 );
update_and_final_groestl( &ctx.groestl, (char*)hash0,
(char*)hash0, dataLen<<3 );
reinit_groestl( &ctx.groestl );
@@ -112,47 +109,40 @@ void timetravel_4way_hash(void *output, const void *input)
update_and_final_groestl( &ctx.groestl, (char*)hash3,
(char*)hash3, dataLen<<3 );
if ( i != 7 )
mm256_intrlv_4x64( vhashB,
hash0, hash1, hash2, hash3, dataLen<<3 );
intrlv_4x64( vhashB, hash0, hash1, hash2, hash3, dataLen<<3 );
break;
case 3:
skein512_4way( &ctx.skein, vhashA, dataLen );
skein512_4way_close( &ctx.skein, vhashB );
if ( i == 7 )
mm256_dintrlv_4x64( hash0, hash1, hash2, hash3,
vhashB, dataLen<<3 );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhashB, dataLen<<3 );
break;
case 4:
jh512_4way( &ctx.jh, vhashA, dataLen );
jh512_4way_close( &ctx.jh, vhashB );
if ( i == 7 )
mm256_dintrlv_4x64( hash0, hash1, hash2, hash3,
vhashB, dataLen<<3 );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhashB, dataLen<<3 );
break;
case 5:
keccak512_4way( &ctx.keccak, vhashA, dataLen );
keccak512_4way_close( &ctx.keccak, vhashB );
if ( i == 7 )
mm256_dintrlv_4x64( hash0, hash1, hash2, hash3,
vhashB, dataLen<<3 );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhashB, dataLen<<3 );
break;
case 6:
mm256_dintrlv_4x64( hash0, hash1, hash2, hash3,
vhashA, dataLen<<3 );
mm256_intrlv_2x128( vhashA, hash0, hash1, dataLen<<3 );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhashA, dataLen<<3 );
intrlv_2x128( vhashA, hash0, hash1, dataLen<<3 );
luffa_2way_update_close( &ctx.luffa, vhashA, vhashA, dataLen );
mm256_dintrlv_2x128( hash0, hash1, vhashA, dataLen<<3 );
mm256_intrlv_2x128( vhashA, hash2, hash3, dataLen<<3 );
dintrlv_2x128( hash0, hash1, vhashA, dataLen<<3 );
intrlv_2x128( vhashA, hash2, hash3, dataLen<<3 );
luffa_2way_init( &ctx.luffa, 512 );
luffa_2way_update_close( &ctx.luffa, vhashA, vhashA, dataLen );
mm256_dintrlv_2x128( hash2, hash3, vhashA, dataLen<<3 );
dintrlv_2x128( hash2, hash3, vhashA, dataLen<<3 );
if ( i != 7 )
mm256_intrlv_4x64( vhashB,
hash0, hash1, hash2, hash3, dataLen<<3 );
intrlv_4x64( vhashB, hash0, hash1, hash2, hash3, dataLen<<3 );
break;
case 7:
mm256_dintrlv_4x64( hash0, hash1, hash2, hash3,
vhashA, dataLen<<3 );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhashA, dataLen<<3 );
cubehashUpdateDigest( &ctx.cube, (byte*)hash0,
(const byte*)hash0, dataLen );
memcpy( &ctx.cube, &tt8_4way_ctx.cube, sizeof(cubehashParam) );
@@ -165,8 +155,7 @@ void timetravel_4way_hash(void *output, const void *input)
cubehashUpdateDigest( &ctx.cube, (byte*)hash3,
(const byte*)hash3, dataLen );
if ( i != 7 )
mm256_intrlv_4x64( vhashB,
hash0, hash1, hash2, hash3, dataLen<<3 );
intrlv_4x64( vhashB, hash0, hash1, hash2, hash3, dataLen<<3 );
break;
default:
applog(LOG_ERR,"SWERR: timetravel invalid permutation");
@@ -215,7 +204,7 @@ int scanhash_timetravel_4way( struct work *work, uint32_t max_nonce,
}
uint64_t *edata = (uint64_t*)endiandata;
mm256_intrlv_4x64( (uint64_t*)vdata, edata, edata, edata, edata, 640 );
intrlv_4x64( (uint64_t*)vdata, edata, edata, edata, edata, 640 );
do
{

View File

@@ -93,19 +93,16 @@ void timetravel10_4way_hash(void *output, const void *input)
blake512_4way( &ctx.blake, vhashA, dataLen );
blake512_4way_close( &ctx.blake, vhashB );
if ( i == 9 )
mm256_dintrlv_4x64( hash0, hash1, hash2, hash3,
vhashB, dataLen<<3 );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhashB, dataLen<<3 );
break;
case 1:
bmw512_4way( &ctx.bmw, vhashA, dataLen );
bmw512_4way_close( &ctx.bmw, vhashB );
if ( i == 9 )
mm256_dintrlv_4x64( hash0, hash1, hash2, hash3,
vhashB, dataLen<<3 );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhashB, dataLen<<3 );
break;
case 2:
mm256_dintrlv_4x64( hash0, hash1, hash2, hash3,
vhashA, dataLen<<3 );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhashA, dataLen<<3 );
update_and_final_groestl( &ctx.groestl, (char*)hash0,
(char*)hash0, dataLen<<3 );
reinit_groestl( &ctx.groestl );
@@ -118,46 +115,40 @@ void timetravel10_4way_hash(void *output, const void *input)
update_and_final_groestl( &ctx.groestl, (char*)hash3,
(char*)hash3, dataLen<<3 );
if ( i != 9 )
mm256_intrlv_4x64( vhashB,
hash0, hash1, hash2, hash3, dataLen<<3 );
intrlv_4x64( vhashB, hash0, hash1, hash2, hash3, dataLen<<3 );
break;
case 3:
skein512_4way( &ctx.skein, vhashA, dataLen );
skein512_4way_close( &ctx.skein, vhashB );
if ( i == 9 )
mm256_dintrlv_4x64( hash0, hash1, hash2, hash3,
vhashB, dataLen<<3 );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhashB, dataLen<<3 );
break;
case 4:
jh512_4way( &ctx.jh, vhashA, dataLen );
jh512_4way_close( &ctx.jh, vhashB );
if ( i == 9 )
mm256_dintrlv_4x64( hash0, hash1, hash2, hash3,
vhashB, dataLen<<3 );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhashB, dataLen<<3 );
break;
case 5:
keccak512_4way( &ctx.keccak, vhashA, dataLen );
keccak512_4way_close( &ctx.keccak, vhashB );
if ( i == 9 )
mm256_dintrlv_4x64( hash0, hash1, hash2, hash3,
vhashB, dataLen<<3 );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhashB, dataLen<<3 );
break;
case 6:
mm256_dintrlv_4x64( hash0, hash1, hash2, hash3,
vhashA, dataLen<<3 );
mm256_intrlv_2x128( vhashA, hash0, hash1, dataLen<<3 );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhashA, dataLen<<3 );
intrlv_2x128( vhashA, hash0, hash1, dataLen<<3 );
luffa_2way_update_close( &ctx.luffa, vhashA, vhashA, dataLen );
mm256_dintrlv_2x128( hash0, hash1, vhashA, dataLen<<3 );
mm256_intrlv_2x128( vhashA, hash2, hash3, dataLen<<3 );
dintrlv_2x128( hash0, hash1, vhashA, dataLen<<3 );
intrlv_2x128( vhashA, hash2, hash3, dataLen<<3 );
luffa_2way_init( &ctx.luffa, 512 );
luffa_2way_update_close( &ctx.luffa, vhashA, vhashA, dataLen );
mm256_dintrlv_2x128( hash2, hash3, vhashA, dataLen<<3 );
dintrlv_2x128( hash2, hash3, vhashA, dataLen<<3 );
if ( i != 9 )
mm256_intrlv_4x64( vhashB,
hash0, hash1, hash2, hash3, dataLen<<3 );
intrlv_4x64( vhashB, hash0, hash1, hash2, hash3, dataLen<<3 );
break;
case 7:
mm256_dintrlv_4x64( hash0, hash1, hash2, hash3,
dintrlv_4x64( hash0, hash1, hash2, hash3,
vhashA, dataLen<<3 );
cubehashUpdateDigest( &ctx.cube, (byte*)hash0,
(const byte*)hash0, dataLen );
@@ -171,12 +162,10 @@ void timetravel10_4way_hash(void *output, const void *input)
cubehashUpdateDigest( &ctx.cube, (byte*)hash3,
(const byte*)hash3, dataLen );
if ( i != 9 )
mm256_intrlv_4x64( vhashB,
hash0, hash1, hash2, hash3, dataLen<<3 );
intrlv_4x64( vhashB, hash0, hash1, hash2, hash3, dataLen<<3 );
break;
case 8:
mm256_dintrlv_4x64( hash0, hash1, hash2, hash3,
vhashA, dataLen<<3 );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhashA, dataLen<<3 );
sph_shavite512( &ctx.shavite, hash0, dataLen );
sph_shavite512_close( &ctx.shavite, hash0 );
memcpy( &ctx.shavite, &tt10_4way_ctx.shavite, sizeof ctx.shavite );
@@ -189,22 +178,19 @@ void timetravel10_4way_hash(void *output, const void *input)
sph_shavite512( &ctx.shavite, hash3, dataLen );
sph_shavite512_close( &ctx.shavite, hash3 );
if ( i != 9 )
mm256_intrlv_4x64( vhashB,
hash0, hash1, hash2, hash3, dataLen<<3 );
intrlv_4x64( vhashB, hash0, hash1, hash2, hash3, dataLen<<3 );
break;
case 9:
mm256_dintrlv_4x64( hash0, hash1, hash2, hash3,
vhashA, dataLen<<3 );
mm256_intrlv_2x128( vhashA, hash0, hash1, dataLen<<3 );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhashA, dataLen<<3 );
intrlv_2x128( vhashA, hash0, hash1, dataLen<<3 );
simd_2way_update_close( &ctx.simd, vhashA, vhashA, dataLen<<3 );
mm256_dintrlv_2x128( hash0, hash1, vhashA, dataLen<<3 );
mm256_intrlv_2x128( vhashA, hash2, hash3, dataLen<<3 );
dintrlv_2x128( hash0, hash1, vhashA, dataLen<<3 );
intrlv_2x128( vhashA, hash2, hash3, dataLen<<3 );
simd_2way_init( &ctx.simd, 512 );
simd_2way_update_close( &ctx.simd, vhashA, vhashA, dataLen<<3 );
mm256_dintrlv_2x128( hash2, hash3, vhashA, dataLen<<3 );
dintrlv_2x128( hash2, hash3, vhashA, dataLen<<3 );
if ( i != 9 )
mm256_intrlv_4x64( vhashB,
hash0, hash1, hash2, hash3, dataLen<<3 );
intrlv_4x64( vhashB, hash0, hash1, hash2, hash3, dataLen<<3 );
break;
default:
applog(LOG_ERR,"SWERR: timetravel invalid permutation");
@@ -253,7 +239,7 @@ int scanhash_timetravel10_4way( struct work *work,
}
uint64_t *edata = (uint64_t*)endiandata;
mm256_intrlv_4x64( (uint64_t*)vdata, edata, edata, edata, edata, 640 );
intrlv_4x64( (uint64_t*)vdata, edata, edata, edata, edata, 640 );
do
{

View File

@@ -37,7 +37,7 @@ void tribus_hash_4way(void *state, const void *input)
keccak512_4way( &ctx_keccak, vhash, 64 );
keccak512_4way_close( &ctx_keccak, vhash );
mm256_dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
// hash echo serially
init_echo( &ctx_echo, 512 );
@@ -64,7 +64,6 @@ int scanhash_tribus_4way( struct work *work, uint32_t max_nonce,
{
uint32_t hash[4*8] __attribute__ ((aligned (64)));
uint32_t vdata[20*4] __attribute__ ((aligned (64)));
uint32_t edata[20] __attribute__ ((aligned (64)));
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
const uint32_t first_nonce = pdata[19];
@@ -87,9 +86,7 @@ int scanhash_tribus_4way( struct work *work, uint32_t max_nonce,
0xFFFF0000,
0 };
swab32_array( edata, pdata, 20 );
mm256_intrlv_4x64( vdata, edata, edata, edata, edata, 640 );
// mm256_bswap_intrlv80_4x64( vdata, pdata );
mm256_bswap32_intrlv80_4x64( vdata, pdata );
// precalc midstate
// doing it one way then then interleaving would be faster but too

View File

@@ -69,7 +69,7 @@ void x11_4way_hash( void *state, const void *input )
bmw512_4way_close( &ctx.bmw, vhash );
// Serial
mm256_dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
// 3 Groestl
update_and_final_groestl( &ctx.groestl, (char*)hash0, (char*)hash0, 512 );
@@ -81,7 +81,7 @@ void x11_4way_hash( void *state, const void *input )
update_and_final_groestl( &ctx.groestl, (char*)hash3, (char*)hash3, 512 );
// 4way
mm256_intrlv_4x64( vhash, hash0, hash1, hash2, hash3, 512 );
intrlv_4x64( vhash, hash0, hash1, hash2, hash3, 512 );
// 4 Skein
skein512_4way( &ctx.skein, vhash, 64 );
@@ -95,16 +95,16 @@ void x11_4way_hash( void *state, const void *input )
keccak512_4way( &ctx.keccak, vhash, 64 );
keccak512_4way_close( &ctx.keccak, vhash );
mm256_dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
// 7 Luffa parallel 2 way 128 bit
mm256_intrlv_2x128( vhash, hash0, hash1, 512 );
mm256_intrlv_2x128( vhashB, hash2, hash3, 512 );
intrlv_2x128( vhash, hash0, hash1, 512 );
intrlv_2x128( vhashB, hash2, hash3, 512 );
luffa_2way_update_close( &ctx.luffa, vhash, vhash, 64 );
luffa_2way_init( &ctx.luffa, 512 );
luffa_2way_update_close( &ctx.luffa, vhashB, vhashB, 64 );
mm256_dintrlv_2x128( hash0, hash1, vhash, 512 );
mm256_dintrlv_2x128( hash2, hash3, vhashB, 512 );
dintrlv_2x128( hash0, hash1, vhash, 512 );
dintrlv_2x128( hash2, hash3, vhashB, 512 );
// 8 Cubehash
cubehashUpdateDigest( &ctx.cube, (byte*)hash0, (const byte*) hash0, 64 );
@@ -132,13 +132,13 @@ void x11_4way_hash( void *state, const void *input )
sph_shavite512_close( &ctx.shavite, hash3 );
// 10 Simd
mm256_intrlv_2x128( vhash, hash0, hash1, 512 );
mm256_intrlv_2x128( vhashB, hash2, hash3, 512 );
intrlv_2x128( vhash, hash0, hash1, 512 );
intrlv_2x128( vhashB, hash2, hash3, 512 );
simd_2way_update_close( &ctx.simd, vhash, vhash, 512 );
simd_2way_init( &ctx.simd, 512 );
simd_2way_update_close( &ctx.simd, vhashB, vhashB, 512 );
mm256_dintrlv_2x128( hash0, hash1, vhash, 512 );
mm256_dintrlv_2x128( hash2, hash3, vhashB, 512 );
dintrlv_2x128( hash0, hash1, vhash, 512 );
dintrlv_2x128( hash2, hash3, vhashB, 512 );
// 11 Echo
update_final_echo( &ctx.echo, (BitSequence *)hash0,
@@ -164,7 +164,6 @@ int scanhash_x11_4way( struct work *work, uint32_t max_nonce,
{
uint32_t hash[4*8] __attribute__ ((aligned (64)));
uint32_t vdata[24*4] __attribute__ ((aligned (64)));
uint32_t edata[20] __attribute__((aligned(64)));
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
uint32_t n = pdata[19];
@@ -177,9 +176,7 @@ int scanhash_x11_4way( struct work *work, uint32_t max_nonce,
uint32_t masks[] = { 0xFFFFFFFF, 0xFFFFFFF0, 0xFFFFFF00,
0xFFFFF000, 0xFFFF0000, 0 };
swab32_array( edata, pdata, 20 );
mm256_intrlv_4x64( vdata, edata, edata, edata, edata, 640 );
// mm256_bswap_intrlv80_4x64( vdata, pdata );
mm256_bswap32_intrlv80_4x64( vdata, pdata );
for (int m=0; m < 6; m++)
if (Htarg <= htmax[m])

View File

@@ -87,19 +87,16 @@ void x11evo_4way_hash( void *state, const void *input )
case 0:
blake512_4way( &ctx.blake, input, 80 );
blake512_4way_close( &ctx.blake, vhash );
mm256_dintrlv_4x64( hash0, hash1, hash2, hash3,
vhash, 64<<3 );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 64<<3 );
break;
case 1:
bmw512_4way( &ctx.bmw, vhash, 64 );
bmw512_4way_close( &ctx.bmw, vhash );
if ( i >= len-1 )
mm256_dintrlv_4x64( hash0, hash1, hash2, hash3,
vhash, 64<<3 );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 64<<3 );
break;
case 2:
mm256_dintrlv_4x64( hash0, hash1, hash2, hash3,
vhash, 64<<3 );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 64<<3 );
update_and_final_groestl( &ctx.groestl, (char*)hash0,
(char*)hash0, 512 );
reinit_groestl( &ctx.groestl );
@@ -112,47 +109,40 @@ void x11evo_4way_hash( void *state, const void *input )
update_and_final_groestl( &ctx.groestl, (char*)hash3,
(char*)hash3, 512 );
if ( i < len-1 )
mm256_intrlv_4x64( vhash,
hash0, hash1, hash2, hash3, 64<<3 );
intrlv_4x64( vhash, hash0, hash1, hash2, hash3, 64<<3 );
break;
case 3:
skein512_4way( &ctx.skein, vhash, 64 );
skein512_4way_close( &ctx.skein, vhash );
if ( i >= len-1 )
mm256_dintrlv_4x64( hash0, hash1, hash2, hash3,
vhash, 64<<3 );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 64<<3 );
break;
case 4:
jh512_4way( &ctx.jh, vhash, 64 );
jh512_4way_close( &ctx.jh, vhash );
if ( i >= len-1 )
mm256_dintrlv_4x64( hash0, hash1, hash2, hash3,
vhash, 64<<3 );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 64<<3 );
break;
case 5:
keccak512_4way( &ctx.keccak, vhash, 64 );
keccak512_4way_close( &ctx.keccak, vhash );
if ( i >= len-1 )
mm256_dintrlv_4x64( hash0, hash1, hash2, hash3,
vhash, 64<<3 );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 64<<3 );
break;
case 6:
mm256_dintrlv_4x64( hash0, hash1, hash2, hash3,
vhash, 64<<3 );
mm256_intrlv_2x128( vhash, hash0, hash1, 64<<3 );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 64<<3 );
intrlv_2x128( vhash, hash0, hash1, 64<<3 );
luffa_2way_update_close( &ctx.luffa, vhash, vhash, 64 );
mm256_dintrlv_2x128( hash0, hash1, vhash, 64<<3 );
mm256_intrlv_2x128( vhash, hash2, hash3, 64<<3 );
dintrlv_2x128( hash0, hash1, vhash, 64<<3 );
intrlv_2x128( vhash, hash2, hash3, 64<<3 );
luffa_2way_init( &ctx.luffa, 512 );
luffa_2way_update_close( &ctx.luffa, vhash, vhash, 64 );
mm256_dintrlv_2x128( hash2, hash3, vhash, 64<<3 );
dintrlv_2x128( hash2, hash3, vhash, 64<<3 );
if ( i < len-1 )
mm256_intrlv_4x64( vhash,
hash0, hash1, hash2, hash3, 64<<3 );
intrlv_4x64( vhash, hash0, hash1, hash2, hash3, 64<<3 );
break;
case 7:
mm256_dintrlv_4x64( hash0, hash1, hash2, hash3,
vhash, 64<<3 );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 64<<3 );
cubehashUpdateDigest( &ctx.cube, (byte*)hash0,
(const byte*) hash0, 64 );
memcpy( &ctx.cube, &x11evo_4way_ctx.cube, sizeof(cubehashParam) );
@@ -165,12 +155,10 @@ void x11evo_4way_hash( void *state, const void *input )
cubehashUpdateDigest( &ctx.cube, (byte*)hash3,
(const byte*) hash3, 64 );
if ( i < len-1 )
mm256_intrlv_4x64( vhash,
hash0, hash1, hash2, hash3, 64<<3 );
intrlv_4x64( vhash, hash0, hash1, hash2, hash3, 64<<3 );
break;
case 8:
mm256_dintrlv_4x64( hash0, hash1, hash2, hash3,
vhash, 64<<3 );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 64<<3 );
sph_shavite512( &ctx.shavite, hash0, 64 );
sph_shavite512_close( &ctx.shavite, hash0 );
memcpy( &ctx.shavite, &x11evo_4way_ctx.shavite,
@@ -186,26 +174,22 @@ void x11evo_4way_hash( void *state, const void *input )
sph_shavite512( &ctx.shavite, hash3, 64 );
sph_shavite512_close( &ctx.shavite, hash3 );
if ( i < len-1 )
mm256_intrlv_4x64( vhash,
hash0, hash1, hash2, hash3, 64<<3 );
intrlv_4x64( vhash, hash0, hash1, hash2, hash3, 64<<3 );
break;
case 9:
mm256_dintrlv_4x64( hash0, hash1, hash2, hash3,
vhash, 64<<3 );
mm256_intrlv_2x128( vhash, hash0, hash1, 64<<3 );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 64<<3 );
intrlv_2x128( vhash, hash0, hash1, 64<<3 );
simd_2way_update_close( &ctx.simd, vhash, vhash, 64<<3 );
mm256_dintrlv_2x128( hash0, hash1, vhash, 64<<3 );
mm256_intrlv_2x128( vhash, hash2, hash3, 64<<3 );
dintrlv_2x128( hash0, hash1, vhash, 64<<3 );
intrlv_2x128( vhash, hash2, hash3, 64<<3 );
simd_2way_init( &ctx.simd, 512 );
simd_2way_update_close( &ctx.simd, vhash, vhash, 64<<3 );
mm256_dintrlv_2x128( hash2, hash3, vhash, 64<<3 );
dintrlv_2x128( hash2, hash3, vhash, 64<<3 );
if ( i < len-1 )
mm256_intrlv_4x64( vhash,
hash0, hash1, hash2, hash3, 64<<3 );
intrlv_4x64( vhash, hash0, hash1, hash2, hash3, 64<<3 );
break;
case 10:
mm256_dintrlv_4x64( hash0, hash1, hash2, hash3,
vhash, 64<<3 );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 64<<3 );
update_final_echo( &ctx.echo, (BitSequence *)hash0,
(const BitSequence *) hash0, 512 );
memcpy( &ctx.echo, &x11evo_4way_ctx.echo, sizeof(hashState_echo) );
@@ -218,8 +202,7 @@ void x11evo_4way_hash( void *state, const void *input )
update_final_echo( &ctx.echo, (BitSequence *)hash3,
(const BitSequence *) hash3, 512 );
if ( i < len-1 )
mm256_intrlv_4x64( vhash,
hash0, hash1, hash2, hash3, 64<<3 );
intrlv_4x64( vhash, hash0, hash1, hash2, hash3, 64<<3 );
break;
}
}
@@ -269,7 +252,7 @@ int scanhash_x11evo_4way( struct work* work, uint32_t max_nonce,
}
uint64_t *edata = (uint64_t*)endiandata;
mm256_intrlv_4x64( (uint64_t*)vdata, edata, edata, edata, edata, 640 );
intrlv_4x64( (uint64_t*)vdata, edata, edata, edata, edata, 640 );
do
{

View File

@@ -70,7 +70,7 @@ void x11gost_4way_hash( void *state, const void *input )
bmw512_4way_close( &ctx.bmw, vhash );
// Serial
mm256_dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
update_and_final_groestl( &ctx.groestl, (char*)hash0, (char*)hash0, 512 );
memcpy( &ctx.groestl, &x11gost_4way_ctx.groestl,
@@ -84,7 +84,7 @@ void x11gost_4way_hash( void *state, const void *input )
update_and_final_groestl( &ctx.groestl, (char*)hash3, (char*)hash3, 512 );
// 4way
mm256_intrlv_4x64( vhash, hash0, hash1, hash2, hash3, 512 );
intrlv_4x64( vhash, hash0, hash1, hash2, hash3, 512 );
skein512_4way( &ctx.skein, vhash, 64 );
skein512_4way_close( &ctx.skein, vhash );
@@ -96,7 +96,7 @@ void x11gost_4way_hash( void *state, const void *input )
keccak512_4way_close( &ctx.keccak, vhash );
// Serial
mm256_dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
sph_gost512( &ctx.gost, hash0, 64 );
sph_gost512_close( &ctx.gost, hash0 );
@@ -110,13 +110,13 @@ void x11gost_4way_hash( void *state, const void *input )
sph_gost512( &ctx.gost, hash3, 64 );
sph_gost512_close( &ctx.gost, hash3 );
mm256_intrlv_2x128( vhash, hash0, hash1, 512 );
intrlv_2x128( vhash, hash0, hash1, 512 );
luffa_2way_update_close( &ctx.luffa, vhash, vhash, 64 );
mm256_dintrlv_2x128( hash0, hash1, vhash, 512 );
mm256_intrlv_2x128( vhash, hash2, hash3, 512 );
dintrlv_2x128( hash0, hash1, vhash, 512 );
intrlv_2x128( vhash, hash2, hash3, 512 );
luffa_2way_init( &ctx.luffa, 512 );
luffa_2way_update_close( &ctx.luffa, vhash, vhash, 64 );
mm256_dintrlv_2x128( hash2, hash3, vhash, 512 );
dintrlv_2x128( hash2, hash3, vhash, 512 );
cubehashUpdateDigest( &ctx.cube, (byte*)hash0, (const byte*) hash0, 64 );
memcpy( &ctx.cube, &x11gost_4way_ctx.cube, sizeof(cubehashParam) );
@@ -141,12 +141,12 @@ void x11gost_4way_hash( void *state, const void *input )
sph_shavite512( &ctx.shavite, hash3, 64 );
sph_shavite512_close( &ctx.shavite, hash3 );
mm256_intrlv_2x128( vhash, hash0, hash1, 512 );
intrlv_2x128( vhash, hash0, hash1, 512 );
simd_2way_update_close( &ctx.simd, vhash, vhash, 512 );
mm256_dintrlv_2x128( hash0, hash1, vhash, 512 );
mm256_intrlv_2x128( vhash, hash2, hash3, 512 );
dintrlv_2x128( hash0, hash1, vhash, 512 );
intrlv_2x128( vhash, hash2, hash3, 512 );
simd_2way_update_close( &ctx.simd, vhash, vhash, 512 );
mm256_dintrlv_2x128( hash2, hash3, vhash, 512 );
dintrlv_2x128( hash2, hash3, vhash, 512 );
update_final_echo( &ctx.echo, (BitSequence *)hash0,
(const BitSequence *) hash0, 512 );
@@ -171,7 +171,6 @@ int scanhash_x11gost_4way( struct work *work, uint32_t max_nonce,
{
uint32_t hash[4*8] __attribute__ ((aligned (64)));
uint32_t vdata[24*4] __attribute__ ((aligned (64)));
uint32_t edata[20] __attribute__ ((aligned (64)));
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
uint32_t n = pdata[19];
@@ -184,9 +183,7 @@ int scanhash_x11gost_4way( struct work *work, uint32_t max_nonce,
uint32_t masks[] = { 0xFFFFFFFF, 0xFFFFFFF0, 0xFFFFFF00,
0xFFFFF000, 0xFFFF0000, 0 };
swab32_array( edata, pdata, 20 );
mm256_intrlv_4x64( vdata, edata, edata, edata, edata, 640 );
// mm256_bswap_intrlv80_4x64( vdata, pdata );
mm256_bswap32_intrlv80_4x64( vdata, pdata );
for (int m=0; m < 6; m++)
if (Htarg <= htmax[m])

View File

@@ -33,7 +33,6 @@ typedef struct {
simd_2way_context simd;
hashState_echo echo;
hamsi512_4way_context hamsi;
// sph_fugue512_context fugue;
} x12_4way_ctx_holder;
x12_4way_ctx_holder x12_4way_ctx __attribute__ ((aligned (64)));
@@ -52,7 +51,6 @@ void init_x12_4way_ctx()
simd_2way_init( &x12_4way_ctx.simd, 512 );
init_echo( &x12_4way_ctx.echo, 512 );
hamsi512_4way_init( &x12_4way_ctx.hamsi );
// sph_fugue512_init( &x12_4way_ctx.fugue );
};
void x12_4way_hash( void *state, const void *input )
@@ -74,7 +72,7 @@ void x12_4way_hash( void *state, const void *input )
bmw512_4way_close( &ctx.bmw, vhash );
// Serial
mm256_dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
// 3 Groestl
update_and_final_groestl( &ctx.groestl, (char*)hash0, (char*)hash0, 512 );
@@ -86,7 +84,7 @@ void x12_4way_hash( void *state, const void *input )
update_and_final_groestl( &ctx.groestl, (char*)hash3, (char*)hash3, 512 );
// Parallel 4way 64 bit
mm256_intrlv_4x64( vhash, hash0, hash1, hash2, hash3, 512 );
intrlv_4x64( vhash, hash0, hash1, hash2, hash3, 512 );
// 4 Skein
skein512_4way( &ctx.skein, vhash, 64 );
@@ -101,16 +99,16 @@ void x12_4way_hash( void *state, const void *input )
keccak512_4way_close( &ctx.keccak, vhash );
// Serial
mm256_dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
// 7 Luffa
mm256_intrlv_2x128( vhash, hash0, hash1, 512 );
intrlv_2x128( vhash, hash0, hash1, 512 );
luffa_2way_update_close( &ctx.luffa, vhash, vhash, 64 );
mm256_dintrlv_2x128( hash0, hash1, vhash, 512 );
mm256_intrlv_2x128( vhash, hash2, hash3, 512 );
dintrlv_2x128( hash0, hash1, vhash, 512 );
intrlv_2x128( vhash, hash2, hash3, 512 );
luffa_2way_init( &ctx.luffa, 512 );
luffa_2way_update_close( &ctx.luffa, vhash, vhash, 64 );
mm256_dintrlv_2x128( hash2, hash3, vhash, 512 );
intrlv_2x128( hash2, hash3, vhash, 512 );
// 8 Cubehash
cubehashUpdateDigest( &ctx.cube, (byte*)hash0, (const byte*) hash0, 64 );
@@ -138,13 +136,13 @@ void x12_4way_hash( void *state, const void *input )
sph_shavite512_close( &ctx.shavite, hash3 );
// 10 Simd
mm256_intrlv_2x128( vhash, hash0, hash1, 512 );
intrlv_2x128( vhash, hash0, hash1, 512 );
simd_2way_update_close( &ctx.simd, vhash, vhash, 512 );
mm256_dintrlv_2x128( hash0, hash1, vhash, 512 );
mm256_intrlv_2x128( vhash, hash2, hash3, 512 );
dintrlv_2x128( hash0, hash1, vhash, 512 );
intrlv_2x128( vhash, hash2, hash3, 512 );
simd_2way_init( &ctx.simd, 512 );
simd_2way_update_close( &ctx.simd, vhash, vhash, 512 );
mm256_dintrlv_2x128( hash2, hash3, vhash, 512 );
dintrlv_2x128( hash2, hash3, vhash, 512 );
// 11 Echo
update_final_echo( &ctx.echo, (BitSequence *)hash0,
@@ -160,11 +158,11 @@ void x12_4way_hash( void *state, const void *input )
(const BitSequence *) hash3, 512 );
// 12 Hamsi parallel 4way 32 bit
mm256_intrlv_4x64( vhash, hash0, hash1, hash2, hash3, 512 );
intrlv_4x64( vhash, hash0, hash1, hash2, hash3, 512 );
hamsi512_4way( &ctx.hamsi, vhash, 64 );
hamsi512_4way_close( &ctx.hamsi, vhash );
mm256_dintrlv_4x64( state, state+32, state+64, state+96, vhash, 256 );
dintrlv_4x64( state, state+32, state+64, state+96, vhash, 256 );
}
int scanhash_x12_4way( struct work *work, uint32_t max_nonce,
@@ -189,7 +187,7 @@ int scanhash_x12_4way( struct work *work, uint32_t max_nonce,
swab32_array( endiandata, pdata, 20 );
uint64_t *edata = (uint64_t*)endiandata;
mm256_intrlv_4x64( (uint64_t*)vdata, edata, edata, edata, edata, 640 );
intrlv_4x64( (uint64_t*)vdata, edata, edata, edata, edata, 640 );
for ( int m=0; m < 6; m++ )
if ( Htarg <= htmax[m] )

View File

@@ -53,7 +53,7 @@ void phi1612_4way_hash( void *state, const void *input )
jh512_4way_close( &ctx.jh, vhash );
// Serial to the end
mm256_dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
// Cubehash
cubehashUpdateDigest( &ctx.cube, (byte*)hash0, (const byte*) hash0, 64 );
@@ -114,7 +114,6 @@ int scanhash_phi1612_4way( struct work *work, uint32_t max_nonce,
{
uint32_t hash[4*8] __attribute__ ((aligned (64)));
uint32_t vdata[24*4] __attribute__ ((aligned (64)));
uint32_t edata[20] __attribute__ ((aligned (64)));
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
const uint32_t first_nonce = pdata[19];
@@ -125,9 +124,7 @@ int scanhash_phi1612_4way( struct work *work, uint32_t max_nonce,
if ( opt_benchmark )
( (uint32_t*)ptarget )[7] = 0x0cff;
swab32_array( edata, pdata, 20 );
mm256_intrlv_4x64( vdata, edata, edata, edata, edata, 640 );
// mm256_bswap_intrlv80_4x64( vdata, pdata );
mm256_bswap32_intrlv80_4x64( vdata, pdata );
do {
*noncev = mm256_intrlv_blend_32( mm256_bswap_32(

View File

@@ -33,7 +33,7 @@ void skunk_4way_hash( void *output, const void *input )
skein512_4way( &ctx.skein, input, 80 );
skein512_4way_close( &ctx.skein, vhash );
mm256_dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
cubehashUpdateDigest( &ctx.cube, (byte*) hash0, (const byte*)hash0, 64 );
memcpy( &ctx.cube, &skunk_4way_ctx.cube, sizeof(cubehashParam) );
@@ -78,7 +78,6 @@ int scanhash_skunk_4way( struct work *work, uint32_t max_nonce,
{
uint32_t hash[4*8] __attribute__ ((aligned (64)));
uint32_t vdata[24*4] __attribute__ ((aligned (64)));
uint32_t edata[20] __attribute__ ((aligned (64)));
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
const uint32_t first_nonce = pdata[19];
@@ -91,9 +90,7 @@ int scanhash_skunk_4way( struct work *work, uint32_t max_nonce,
if ( opt_benchmark )
((uint32_t*)ptarget)[7] = 0x0cff;
swab32_array( edata, pdata, 20 );
mm256_intrlv_4x64( vdata, edata, edata, edata, edata, 640 );
// mm256_bswap_intrlv80_4x64( vdata, pdata );
mm256_bswap32_intrlv80_4x64( vdata, pdata );
do
{
*noncev = mm256_intrlv_blend_32( mm256_bswap_32(

View File

@@ -74,7 +74,7 @@ void x13_4way_hash( void *state, const void *input )
bmw512_4way_close( &ctx.bmw, vhash );
// Serial
mm256_dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
// 3 Groestl
update_and_final_groestl( &ctx.groestl, (char*)hash0, (char*)hash0, 512 );
@@ -86,7 +86,7 @@ void x13_4way_hash( void *state, const void *input )
update_and_final_groestl( &ctx.groestl, (char*)hash3, (char*)hash3, 512 );
// Parallel 4way 64 bit
mm256_intrlv_4x64( vhash, hash0, hash1, hash2, hash3, 512 );
intrlv_4x64( vhash, hash0, hash1, hash2, hash3, 512 );
// 4 Skein
skein512_4way( &ctx.skein, vhash, 64 );
@@ -101,16 +101,16 @@ void x13_4way_hash( void *state, const void *input )
keccak512_4way_close( &ctx.keccak, vhash );
// Serial
mm256_dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
// 7 Luffa
mm256_intrlv_2x128( vhash, hash0, hash1, 512 );
intrlv_2x128( vhash, hash0, hash1, 512 );
luffa_2way_update_close( &ctx.luffa, vhash, vhash, 64 );
mm256_dintrlv_2x128( hash0, hash1, vhash, 512 );
mm256_intrlv_2x128( vhash, hash2, hash3, 512 );
dintrlv_2x128( hash0, hash1, vhash, 512 );
intrlv_2x128( vhash, hash2, hash3, 512 );
luffa_2way_init( &ctx.luffa, 512 );
luffa_2way_update_close( &ctx.luffa, vhash, vhash, 64 );
mm256_dintrlv_2x128( hash2, hash3, vhash, 512 );
dintrlv_2x128( hash2, hash3, vhash, 512 );
// 8 Cubehash
cubehashUpdateDigest( &ctx.cube, (byte*)hash0, (const byte*) hash0, 64 );
@@ -138,13 +138,13 @@ void x13_4way_hash( void *state, const void *input )
sph_shavite512_close( &ctx.shavite, hash3 );
// 10 Simd
mm256_intrlv_2x128( vhash, hash0, hash1, 512 );
intrlv_2x128( vhash, hash0, hash1, 512 );
simd_2way_update_close( &ctx.simd, vhash, vhash, 512 );
mm256_dintrlv_2x128( hash0, hash1, vhash, 512 );
mm256_intrlv_2x128( vhash, hash2, hash3, 512 );
dintrlv_2x128( hash0, hash1, vhash, 512 );
intrlv_2x128( vhash, hash2, hash3, 512 );
simd_2way_init( &ctx.simd, 512 );
simd_2way_update_close( &ctx.simd, vhash, vhash, 512 );
mm256_dintrlv_2x128( hash2, hash3, vhash, 512 );
dintrlv_2x128( hash2, hash3, vhash, 512 );
// 11 Echo
update_final_echo( &ctx.echo, (BitSequence *)hash0,
@@ -160,10 +160,10 @@ void x13_4way_hash( void *state, const void *input )
(const BitSequence *) hash3, 512 );
// 12 Hamsi parallel 4way 32 bit
mm256_intrlv_4x64( vhash, hash0, hash1, hash2, hash3, 512 );
intrlv_4x64( vhash, hash0, hash1, hash2, hash3, 512 );
hamsi512_4way( &ctx.hamsi, vhash, 64 );
hamsi512_4way_close( &ctx.hamsi, vhash );
mm256_dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
// 13 Fugue serial
sph_fugue512( &ctx.fugue, hash0, 64 );
@@ -189,7 +189,6 @@ int scanhash_x13_4way( struct work *work, uint32_t max_nonce,
{
uint32_t hash[4*8] __attribute__ ((aligned (64)));
uint32_t vdata[24*4] __attribute__ ((aligned (64)));
uint32_t edata[20] __attribute__ ((aligned (64)));
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
uint32_t n = pdata[19];
@@ -202,9 +201,7 @@ int scanhash_x13_4way( struct work *work, uint32_t max_nonce,
uint32_t masks[] = { 0xFFFFFFFF, 0xFFFFFFF0, 0xFFFFFF00,
0xFFFFF000, 0xFFFF0000, 0 };
swab32_array( edata, pdata, 20 );
mm256_intrlv_4x64( vdata, edata, edata, edata, edata, 640 );
// mm256_bswap_intrlv80_4x64( vdata, pdata );
mm256_bswap32_intrlv80_4x64( vdata, pdata );
for ( int m=0; m < 6; m++ )
if ( Htarg <= htmax[m] )

283
algo/x13/x13bcd-4way.c Normal file
View File

@@ -0,0 +1,283 @@
#include "x13sm3-gate.h"
#if defined(X13SM3_4WAY)
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <stdio.h>
#include "algo/blake/blake-hash-4way.h"
#include "algo/bmw/bmw-hash-4way.h"
#include "algo/groestl/aes_ni/hash-groestl.h"
#include "algo/skein/skein-hash-4way.h"
#include "algo/jh/jh-hash-4way.h"
#include "algo/keccak/keccak-hash-4way.h"
//#include "algo/luffa/luffa-hash-2way.h"
#include "algo/cubehash/cubehash_sse2.h"
#include "algo/shavite/sph_shavite.h"
#include "algo/simd/simd-hash-2way.h"
#include "algo/echo/aes_ni/hash_api.h"
#include "algo/sm3/sm3-hash-4way.h"
#include "algo/hamsi/hamsi-hash-4way.h"
#include "algo/fugue/sph_fugue.h"
typedef struct {
blake512_4way_context blake;
bmw512_4way_context bmw;
hashState_groestl groestl;
skein512_4way_context skein;
jh512_4way_context jh;
keccak512_4way_context keccak;
// luffa_2way_context luffa;
cubehashParam cube;
sph_shavite512_context shavite;
simd_2way_context simd;
hashState_echo echo;
sm3_4way_ctx_t sm3;
hamsi512_4way_context hamsi;
sph_fugue512_context fugue;
} x13bcd_4way_ctx_holder;
x13bcd_4way_ctx_holder x13bcd_4way_ctx __attribute__ ((aligned (64)));
static __thread blake512_4way_context x13bcd_ctx_mid;
void init_x13bcd_4way_ctx()
{
blake512_4way_init( &x13bcd_4way_ctx.blake );
bmw512_4way_init( &x13bcd_4way_ctx.bmw );
init_groestl( &x13bcd_4way_ctx.groestl, 64 );
skein512_4way_init( &x13bcd_4way_ctx.skein );
jh512_4way_init( &x13bcd_4way_ctx.jh );
keccak512_4way_init( &x13bcd_4way_ctx.keccak );
// luffa_2way_init( &x13bcd_4way_ctx.luffa, 512 );
cubehashInit( &x13bcd_4way_ctx.cube, 512, 16, 32 );
sph_shavite512_init( &x13bcd_4way_ctx.shavite );
simd_2way_init( &x13bcd_4way_ctx.simd, 512 );
init_echo( &x13bcd_4way_ctx.echo, 512 );
sm3_4way_init( &x13bcd_4way_ctx.sm3 );
hamsi512_4way_init( &x13bcd_4way_ctx.hamsi );
sph_fugue512_init( &x13bcd_4way_ctx.fugue );
};
void x13bcd_4way_hash( void *state, const void *input )
{
uint64_t hash0[8] __attribute__ ((aligned (64)));
uint64_t hash1[8] __attribute__ ((aligned (64)));
uint64_t hash2[8] __attribute__ ((aligned (64)));
uint64_t hash3[8] __attribute__ ((aligned (64)));
uint64_t vhash[8*4] __attribute__ ((aligned (64)));
x13bcd_4way_ctx_holder ctx;
memcpy( &ctx, &x13bcd_4way_ctx, sizeof(x13bcd_4way_ctx) );
// Blake
memcpy( &ctx.blake, &x13bcd_ctx_mid, sizeof(x13bcd_ctx_mid) );
blake512_4way( &ctx.blake, input + (64<<2), 16 );
// blake512_4way( &ctx.blake, input, 80 );
blake512_4way_close( &ctx.blake, vhash );
// Bmw
bmw512_4way( &ctx.bmw, vhash, 64 );
bmw512_4way_close( &ctx.bmw, vhash );
// Serial
dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
// Groestl
update_and_final_groestl( &ctx.groestl, (char*)hash0, (char*)hash0, 512 );
reinit_groestl( &ctx.groestl );
update_and_final_groestl( &ctx.groestl, (char*)hash1, (char*)hash1, 512 );
reinit_groestl( &ctx.groestl );
update_and_final_groestl( &ctx.groestl, (char*)hash2, (char*)hash2, 512 );
reinit_groestl( &ctx.groestl );
update_and_final_groestl( &ctx.groestl, (char*)hash3, (char*)hash3, 512 );
// Parallel 4way
intrlv_4x64( vhash, hash0, hash1, hash2, hash3, 512 );
// Skein
skein512_4way( &ctx.skein, vhash, 64 );
skein512_4way_close( &ctx.skein, vhash );
// JH
jh512_4way( &ctx.jh, vhash, 64 );
jh512_4way_close( &ctx.jh, vhash );
// Keccak
keccak512_4way( &ctx.keccak, vhash, 64 );
keccak512_4way_close( &ctx.keccak, vhash );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
intrlv_4x32( vhash, hash0, hash1, hash2, hash3, 512 );
// SM3 parallel 32 bit
uint32_t sm3_vhash[32*4] __attribute__ ((aligned (64)));
memset( sm3_vhash, 0, sizeof sm3_vhash );
uint32_t sm3_hash0[32] __attribute__ ((aligned (32)));
memset( sm3_hash0, 0, sizeof sm3_hash0 );
uint32_t sm3_hash1[32] __attribute__ ((aligned (32)));
memset( sm3_hash1, 0, sizeof sm3_hash1 );
uint32_t sm3_hash2[32] __attribute__ ((aligned (32)));
memset( sm3_hash2, 0, sizeof sm3_hash2 );
uint32_t sm3_hash3[32] __attribute__ ((aligned (32)));
memset( sm3_hash3, 0, sizeof sm3_hash3 );
sm3_4way( &ctx.sm3, vhash, 64 );
sm3_4way_close( &ctx.sm3, sm3_vhash );
dintrlv_4x32( hash0, hash1, hash2, hash3, sm3_vhash, 512 );
/*
// Luffa
intrlv_2x128( vhash, hash0, hash1, 512 );
luffa_2way_update_close( &ctx.luffa, vhash, vhash, 64 );
dintrlv_2x128( hash0, hash1, vhash, 512 );
intrlv_2x128( vhash, hash2, hash3, 512 );
luffa_2way_init( &ctx.luffa, 512 );
luffa_2way_update_close( &ctx.luffa, vhash, vhash, 64 );
dintrlv_2x128( hash2, hash3, vhash, 512 );
*/
// Cubehash
cubehashUpdateDigest( &ctx.cube, (byte*)hash0, (const byte*) hash0, 64 );
memcpy( &ctx.cube, &x13bcd_4way_ctx.cube, sizeof(cubehashParam) );
cubehashUpdateDigest( &ctx.cube, (byte*)hash1, (const byte*) hash1, 64 );
memcpy( &ctx.cube, &x13bcd_4way_ctx.cube, sizeof(cubehashParam) );
cubehashUpdateDigest( &ctx.cube, (byte*)hash2, (const byte*) hash2, 64 );
memcpy( &ctx.cube, &x13bcd_4way_ctx.cube, sizeof(cubehashParam) );
cubehashUpdateDigest( &ctx.cube, (byte*)hash3, (const byte*) hash3, 64 );
// Shavite
sph_shavite512( &ctx.shavite, hash0, 64 );
sph_shavite512_close( &ctx.shavite, hash0 );
memcpy( &ctx.shavite, &x13bcd_4way_ctx.shavite,
sizeof(sph_shavite512_context) );
sph_shavite512( &ctx.shavite, hash1, 64 );
sph_shavite512_close( &ctx.shavite, hash1 );
memcpy( &ctx.shavite, &x13bcd_4way_ctx.shavite,
sizeof(sph_shavite512_context) );
sph_shavite512( &ctx.shavite, hash2, 64 );
sph_shavite512_close( &ctx.shavite, hash2 );
memcpy( &ctx.shavite, &x13bcd_4way_ctx.shavite,
sizeof(sph_shavite512_context) );
sph_shavite512( &ctx.shavite, hash3, 64 );
sph_shavite512_close( &ctx.shavite, hash3 );
// Simd
intrlv_2x128( vhash, hash0, hash1, 512 );
simd_2way_update_close( &ctx.simd, vhash, vhash, 512 );
dintrlv_2x128( hash0, hash1, vhash, 512 );
intrlv_2x128( vhash, hash2, hash3, 512 );
simd_2way_init( &ctx.simd, 512 );
simd_2way_update_close( &ctx.simd, vhash, vhash, 512 );
dintrlv_2x128( hash2, hash3, vhash, 512 );
// Echo
update_final_echo( &ctx.echo, (BitSequence *)hash0,
(const BitSequence *) hash0, 512 );
memcpy( &ctx.echo, &x13bcd_4way_ctx.echo, sizeof(hashState_echo) );
update_final_echo( &ctx.echo, (BitSequence *)hash1,
(const BitSequence *) hash1, 512 );
memcpy( &ctx.echo, &x13bcd_4way_ctx.echo, sizeof(hashState_echo) );
update_final_echo( &ctx.echo, (BitSequence *)hash2,
(const BitSequence *) hash2, 512 );
memcpy( &ctx.echo, &x13bcd_4way_ctx.echo, sizeof(hashState_echo) );
update_final_echo( &ctx.echo, (BitSequence *)hash3,
(const BitSequence *) hash3, 512 );
/*
intrlv_4x32( vhash, hash0, hash1, hash2, hash3, 512 );
// SM3 parallel 32 bit
uint32_t sm3_vhash[32*4] __attribute__ ((aligned (64)));
memset( sm3_vhash, 0, sizeof sm3_vhash );
uint32_t sm3_hash0[32] __attribute__ ((aligned (32)));
memset( sm3_hash0, 0, sizeof sm3_hash0 );
uint32_t sm3_hash1[32] __attribute__ ((aligned (32)));
memset( sm3_hash1, 0, sizeof sm3_hash1 );
uint32_t sm3_hash2[32] __attribute__ ((aligned (32)));
memset( sm3_hash2, 0, sizeof sm3_hash2 );
uint32_t sm3_hash3[32] __attribute__ ((aligned (32)));
memset( sm3_hash3, 0, sizeof sm3_hash3 );
sm3_4way( &ctx.sm3, vhash, 64 );
sm3_4way_close( &ctx.sm3, sm3_vhash );
dintrlv_4x32( hash0, hash1, hash2, hash3, sm3_vhash, 512 );
*/
// Hamsi parallel 4x32x2
intrlv_4x64( vhash, hash0, hash1, hash2, hash3, 512 );
hamsi512_4way( &ctx.hamsi, vhash, 64 );
hamsi512_4way_close( &ctx.hamsi, vhash );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
// Fugue serial
sph_fugue512( &ctx.fugue, hash0, 64 );
sph_fugue512_close( &ctx.fugue, hash0 );
memcpy( &ctx.fugue, &x13bcd_4way_ctx.fugue, sizeof(sph_fugue512_context) );
sph_fugue512( &ctx.fugue, hash1, 64 );
sph_fugue512_close( &ctx.fugue, hash1 );
memcpy( &ctx.fugue, &x13bcd_4way_ctx.fugue, sizeof(sph_fugue512_context) );
sph_fugue512( &ctx.fugue, hash2, 64 );
sph_fugue512_close( &ctx.fugue, hash2 );
memcpy( &ctx.fugue, &x13bcd_4way_ctx.fugue, sizeof(sph_fugue512_context) );
sph_fugue512( &ctx.fugue, hash3, 64 );
sph_fugue512_close( &ctx.fugue, hash3 );
memcpy( state, hash0, 32 );
memcpy( state+32, hash1, 32 );
memcpy( state+64, hash2, 32 );
memcpy( state+96, hash3, 32 );
}
int scanhash_x13bcd_4way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t hash[4*8] __attribute__ ((aligned (64)));
uint32_t vdata[24*4] __attribute__ ((aligned (64)));
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
uint32_t n = pdata[19];
const uint32_t first_nonce = pdata[19];
__m256i *noncev = (__m256i*)vdata + 9; // aligned
int thr_id = mythr->id; // thr_id arg is deprecated
const uint32_t Htarg = ptarget[7];
uint64_t htmax[] = { 0, 0xF, 0xFF,
0xFFF, 0xFFFF, 0x10000000 };
uint32_t masks[] = { 0xFFFFFFFF, 0xFFFFFFF0, 0xFFFFFF00,
0xFFFFF000, 0xFFFF0000, 0 };
mm256_bswap32_intrlv80_4x64( vdata, pdata );
blake512_4way_init( &x13bcd_ctx_mid );
blake512_4way( &x13bcd_ctx_mid, vdata, 64 );
for ( int m=0; m < 6; m++ )
if ( Htarg <= htmax[m] )
{
uint32_t mask = masks[m];
do
{
*noncev = mm256_intrlv_blend_32( mm256_bswap_32(
_mm256_set_epi32( n+3, 0, n+2, 0, n+1, 0, n, 0 ) ), *noncev );
x13bcd_4way_hash( hash, vdata );
pdata[19] = n;
for ( int i = 0; i < 4; i++ )
if ( ( ( (hash+(i<<3))[7] & mask ) == 0 ) )
if ( fulltest( hash+(i<<3), ptarget ) && !opt_benchmark )
{
pdata[19] = n+i;
submit_lane_solution( work, hash+(i<<3), mythr, i );
}
n += 4;
} while ( ( n < max_nonce ) && !work_restart[thr_id].restart );
break;
}
*hashes_done = n - first_nonce + 1;
return 0;
}
#endif

258
algo/x13/x13bcd.c Normal file
View File

@@ -0,0 +1,258 @@
#include "x13sm3-gate.h"
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <stdio.h>
#include "algo/groestl/sph_groestl.h"
#include "algo/shavite/sph_shavite.h"
#include "algo/luffa/sph_luffa.h"
#include "algo/cubehash/sph_cubehash.h"
#include "algo/simd/sph_simd.h"
#include "algo/echo/sph_echo.h"
#include "algo/hamsi/sph_hamsi.h"
#include "algo/fugue/sph_fugue.h"
#include "algo/sm3/sph_sm3.h"
//#include "algo/luffa/luffa_for_sse2.h"
#include "algo/cubehash/cubehash_sse2.h"
#include "algo/simd/nist.h"
#include "algo/blake/sse2/blake.c"
#include "algo/bmw/sse2/bmw.c"
#include "algo/keccak/sse2/keccak.c"
#include "algo/skein/sse2/skein.c"
#include "algo/jh/sse2/jh_sse2_opt64.h"
#ifndef NO_AES_NI
#include "algo/groestl/aes_ni/hash-groestl.h"
#include "algo/echo/aes_ni/hash_api.h"
#endif
typedef struct {
#ifdef NO_AES_NI
sph_groestl512_context groestl;
sph_echo512_context echo;
#else
hashState_echo echo;
hashState_groestl groestl;
#endif
// hashState_luffa luffa;
cubehashParam cube;
sph_shavite512_context shavite;
hashState_sd simd;
sm3_ctx_t sm3;
sph_hamsi512_context hamsi;
sph_fugue512_context fugue;
} x13bcd_ctx_holder;
x13bcd_ctx_holder x13bcd_ctx;
void init_x13bcd_ctx()
{
#ifdef NO_AES_NI
sph_groestl512_init(&x13bcd_ctx.groestl);
sph_echo512_init(&x13bcd_ctx.echo);
#else
init_echo(&x13bcd_ctx.echo, 512);
init_groestl(&x13bcd_ctx.groestl, 64 );
#endif
// init_luffa(&x13bcd_ctx.luffa,512);
cubehashInit(&x13bcd_ctx.cube,512,16,32);
sph_shavite512_init(&x13bcd_ctx.shavite);
init_sd(&x13bcd_ctx.simd,512);
sm3_init( &x13bcd_ctx.sm3 );
sph_hamsi512_init(&x13bcd_ctx.hamsi);
sph_fugue512_init(&x13bcd_ctx.fugue);
};
void x13bcd_hash(void *output, const void *input)
{
unsigned char hash[128] __attribute__ ((aligned (32)));
x13bcd_ctx_holder ctx;
memcpy(&ctx, &x13bcd_ctx, sizeof(x13bcd_ctx));
unsigned char hashbuf[128];
size_t hashptr;
sph_u64 hashctA;
sph_u64 hashctB;
//---blake1---
DECL_BLK;
BLK_I;
BLK_W;
BLK_C;
//---bmw2---
DECL_BMW;
BMW_I;
BMW_U;
#define M(x) sph_dec64le_aligned(data + 8 * (x))
#define H(x) (h[x])
#define dH(x) (dh[x])
BMW_C;
#undef M
#undef H
#undef dH
//---groestl----
#ifdef NO_AES_NI
sph_groestl512 (&ctx.groestl, hash, 64);
sph_groestl512_close(&ctx.groestl, hash);
#else
update_and_final_groestl( &ctx.groestl, (char*)hash,
(const char*)hash, 512 );
#endif
//---skein4---
DECL_SKN;
SKN_I;
SKN_U;
SKN_C;
//---jh5------
DECL_JH;
JH_H;
//---keccak6---
DECL_KEC;
KEC_I;
KEC_U;
KEC_C;
uint32_t sm3_hash[32] __attribute__ ((aligned (32)));
memset(sm3_hash, 0, sizeof sm3_hash);
sph_sm3(&ctx.sm3, hash, 64);
sph_sm3_close(&ctx.sm3, sm3_hash);
cubehashUpdateDigest( &ctx.cube, (byte*) hash,
(const byte*)sm3_hash, 64 );
/*
//--- luffa7
update_and_final_luffa( &ctx.luffa, (BitSequence*)hash,
(const BitSequence*)hash, 64 );
// 8 Cube
cubehashUpdateDigest( &ctx.cube, (byte*) hash,
(const byte*)hash, 64 );
*/
// 9 Shavite
sph_shavite512( &ctx.shavite, hash, 64);
sph_shavite512_close( &ctx.shavite, hash);
// 10 Simd
update_final_sd( &ctx.simd, (BitSequence *)hash,
(const BitSequence *)hash, 512 );
//11---echo---
#ifdef NO_AES_NI
sph_echo512(&ctx.echo, hash, 64);
sph_echo512_close(&ctx.echo, hash);
#else
update_final_echo ( &ctx.echo, (BitSequence *)hash,
(const BitSequence *)hash, 512 );
#endif
/*
uint32_t sm3_hash[32] __attribute__ ((aligned (32)));
memset(sm3_hash, 0, sizeof sm3_hash);
sph_sm3(&ctx.sm3, hash, 64);
sph_sm3_close(&ctx.sm3, sm3_hash);
sph_hamsi512(&ctx.hamsi, sm3_hash, 64);
*/
sph_hamsi512(&ctx.hamsi, hash, 64);
sph_hamsi512_close(&ctx.hamsi, hash);
sph_fugue512(&ctx.fugue, hash, 64);
sph_fugue512_close(&ctx.fugue, hash);
asm volatile ("emms");
memcpy(output, hash, 32);
}
int scanhash_x13bcd( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr)
{
uint32_t endiandata[20] __attribute__((aligned(64)));
uint32_t hash64[8] __attribute__((aligned(64)));
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
uint32_t n = pdata[19] - 1;
const uint32_t first_nonce = pdata[19];
int thr_id = mythr->id; // thr_id arg is deprecated
const uint32_t Htarg = ptarget[7];
uint64_t htmax[] = {
0,
0xF,
0xFF,
0xFFF,
0xFFFF,
0x10000000
};
uint32_t masks[] = {
0xFFFFFFFF,
0xFFFFFFF0,
0xFFFFFF00,
0xFFFFF000,
0xFFFF0000,
0
};
// we need bigendian data...
swab32_array( endiandata, pdata, 20 );
#ifdef DEBUG_ALGO
if (Htarg != 0)
printf("[%d] Htarg=%X\n", thr_id, Htarg);
#endif
for (int m=0; m < 6; m++) {
if (Htarg <= htmax[m]) {
uint32_t mask = masks[m];
do {
pdata[19] = ++n;
be32enc(&endiandata[19], n);
x13bcd_hash(hash64, endiandata);
#ifndef DEBUG_ALGO
if ((!(hash64[7] & mask)) && fulltest(hash64, ptarget)) {
*hashes_done = n - first_nonce + 1;
return true;
}
#else
if (!(n % 0x1000) && !thr_id) printf(".");
if (!(hash64[7] & mask)) {
printf("[%d]",thr_id);
if (fulltest(hash64, ptarget)) {
work_set_target_ratio( work, hash64 );
*hashes_done = n - first_nonce + 1;
return true;
}
}
#endif
} while (n < max_nonce && !work_restart[thr_id].restart);
// see blake.c if else to understand the loop on htmax => mask
break;
}
}
*hashes_done = n - first_nonce + 1;
pdata[19] = n;
return 0;
}

View File

@@ -81,7 +81,7 @@ void x13sm3_4way_hash( void *state, const void *input )
bmw512_4way_close( &ctx.bmw, vhash );
// Serial
mm256_dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
// Groestl
update_and_final_groestl( &ctx.groestl, (char*)hash0, (char*)hash0, 512 );
@@ -93,7 +93,7 @@ void x13sm3_4way_hash( void *state, const void *input )
update_and_final_groestl( &ctx.groestl, (char*)hash3, (char*)hash3, 512 );
// Parallel 4way
mm256_intrlv_4x64( vhash, hash0, hash1, hash2, hash3, 512 );
intrlv_4x64( vhash, hash0, hash1, hash2, hash3, 512 );
// Skein
skein512_4way( &ctx.skein, vhash, 64 );
@@ -108,16 +108,16 @@ void x13sm3_4way_hash( void *state, const void *input )
keccak512_4way_close( &ctx.keccak, vhash );
// Serial to the end
mm256_dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
// Luffa
mm256_intrlv_2x128( vhash, hash0, hash1, 512 );
intrlv_2x128( vhash, hash0, hash1, 512 );
luffa_2way_update_close( &ctx.luffa, vhash, vhash, 64 );
mm256_dintrlv_2x128( hash0, hash1, vhash, 512 );
mm256_intrlv_2x128( vhash, hash2, hash3, 512 );
dintrlv_2x128( hash0, hash1, vhash, 512 );
intrlv_2x128( vhash, hash2, hash3, 512 );
luffa_2way_init( &ctx.luffa, 512 );
luffa_2way_update_close( &ctx.luffa, vhash, vhash, 64 );
mm256_dintrlv_2x128( hash2, hash3, vhash, 512 );
dintrlv_2x128( hash2, hash3, vhash, 512 );
// Cubehash
cubehashUpdateDigest( &ctx.cube, (byte*)hash0, (const byte*) hash0, 64 );
@@ -145,13 +145,13 @@ void x13sm3_4way_hash( void *state, const void *input )
sph_shavite512_close( &ctx.shavite, hash3 );
// Simd
mm256_intrlv_2x128( vhash, hash0, hash1, 512 );
intrlv_2x128( vhash, hash0, hash1, 512 );
simd_2way_update_close( &ctx.simd, vhash, vhash, 512 );
mm256_dintrlv_2x128( hash0, hash1, vhash, 512 );
mm256_intrlv_2x128( vhash, hash2, hash3, 512 );
dintrlv_2x128( hash0, hash1, vhash, 512 );
intrlv_2x128( vhash, hash2, hash3, 512 );
simd_2way_init( &ctx.simd, 512 );
simd_2way_update_close( &ctx.simd, vhash, vhash, 512 );
mm256_dintrlv_2x128( hash2, hash3, vhash, 512 );
dintrlv_2x128( hash2, hash3, vhash, 512 );
// Echo
update_final_echo( &ctx.echo, (BitSequence *)hash0,
@@ -185,10 +185,10 @@ void x13sm3_4way_hash( void *state, const void *input )
dintrlv_4x32( hash0, hash1, hash2, hash3, sm3_vhash, 512 );
// Hamsi parallel 4x32x2
mm256_intrlv_4x64( vhash, hash0, hash1, hash2, hash3, 512 );
intrlv_4x64( vhash, hash0, hash1, hash2, hash3, 512 );
hamsi512_4way( &ctx.hamsi, vhash, 64 );
hamsi512_4way_close( &ctx.hamsi, vhash );
mm256_dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
// Fugue serial
sph_fugue512( &ctx.fugue, hash0, 64 );
@@ -214,7 +214,6 @@ int scanhash_x13sm3_4way( struct work *work, uint32_t max_nonce,
{
uint32_t hash[4*8] __attribute__ ((aligned (64)));
uint32_t vdata[24*4] __attribute__ ((aligned (64)));
uint32_t edata[20] __attribute__ ((aligned (64)));
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
uint32_t n = pdata[19];
@@ -227,9 +226,7 @@ int scanhash_x13sm3_4way( struct work *work, uint32_t max_nonce,
uint32_t masks[] = { 0xFFFFFFFF, 0xFFFFFFF0, 0xFFFFFF00,
0xFFFFF000, 0xFFFF0000, 0 };
swab32_array( edata, pdata, 20 );
mm256_intrlv_4x64( vdata, edata, edata, edata, edata, 640 );
// mm256_bswap_intrlv80_4x64( vdata, pdata );
mm256_bswap32_intrlv80_4x64( vdata, pdata );
blake512_4way_init( &x13sm3_ctx_mid );
blake512_4way( &x13sm3_ctx_mid, vdata, 64 );

View File

@@ -16,3 +16,19 @@ bool register_x13sm3_algo( algo_gate_t* gate )
return true;
};
bool register_x13bcd_algo( algo_gate_t* gate )
{
#if defined (X13SM3_4WAY)
init_x13bcd_4way_ctx();
gate->scanhash = (void*)&scanhash_x13bcd_4way;
gate->hash = (void*)&x13bcd_4way_hash;
#else
init_x13bcd_ctx();
gate->scanhash = (void*)&scanhash_x13bcd;
gate->hash = (void*)&x13bcd_hash;
#endif
gate->optimizations = SSE2_OPT | AES_OPT | AVX2_OPT;
gate->get_max64 = (void*)&get_max64_0x3ffff;
return true;
};

View File

@@ -10,23 +10,31 @@
bool register_x13sm3_algo( algo_gate_t* gate );
bool register_x13bcd_algo( algo_gate_t* gate );
#if defined(X13SM3_4WAY)
void x13sm3_4way_hash( void *state, const void *input );
int scanhash_x13sm3_4way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
void init_x13sm3_4way_ctx();
void x13bcd_4way_hash( void *state, const void *input );
int scanhash_x13bcd_4way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
void init_x13bcd_4way_ctx();
#endif
void x13sm3_hash( void *state, const void *input );
int scanhash_x13sm3( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
void init_x13sm3_ctx();
void x13bcd_hash( void *state, const void *input );
int scanhash_x13bcd( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
void init_x13bcd_ctx();
#endif

View File

@@ -39,7 +39,7 @@ void polytimos_4way_hash( void *output, const void *input )
// Need to convert from 64 bit interleaved to 32 bit interleaved.
uint32_t vhash32[16*4];
mm256_rintrlv_4x64_4x32( vhash32, vhash, 512 );
rintrlv_4x64_4x32( vhash32, vhash, 512 );
shabal512_4way_init( &ctx.shabal );
shabal512_4way( &ctx.shabal, vhash32, 64 );
shabal512_4way_close( &ctx.shabal, vhash32 );
@@ -58,15 +58,15 @@ void polytimos_4way_hash( void *output, const void *input )
update_final_echo( &ctx.echo, (BitSequence *)hash3,
(const BitSequence *) hash3, 512 );
mm256_intrlv_2x128( vhash, hash0, hash1, 512 );
intrlv_2x128( vhash, hash0, hash1, 512 );
luffa_2way_init( &ctx.luffa, 512 );
luffa_2way_update_close( &ctx.luffa, vhash, vhash, 64 );
mm256_dintrlv_2x128( hash0, hash1, vhash, 512 );
mm256_intrlv_2x128( vhash, hash2, hash3, 512 );
dintrlv_2x128( hash0, hash1, vhash, 512 );
intrlv_2x128( vhash, hash2, hash3, 512 );
luffa_2way_init( &ctx.luffa, 512 );
luffa_2way_init( &ctx.luffa, 512 );
luffa_2way_update_close( &ctx.luffa, vhash, vhash, 64 );
mm256_dintrlv_2x128( hash2, hash3, vhash, 512 );
dintrlv_2x128( hash2, hash3, vhash, 512 );
sph_fugue512_init( &ctx.fugue );
sph_fugue512( &ctx.fugue, hash0, 64 );
@@ -105,7 +105,6 @@ int scanhash_polytimos_4way( struct work *work, uint32_t max_nonce,
{
uint32_t hash[4*8] __attribute__ ((aligned (64)));
uint32_t vdata[24*4] __attribute__ ((aligned (64)));
uint32_t edata[20] __attribute__ ((aligned (64)));
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
const uint32_t first_nonce = pdata[19];
@@ -118,9 +117,7 @@ int scanhash_polytimos_4way( struct work *work, uint32_t max_nonce,
if ( opt_benchmark )
ptarget[7] = 0x0cff;
swab32_array( edata, pdata, 20 );
mm256_intrlv_4x64( vdata, edata, edata, edata, edata, 640 );
// mm256_bswap_intrlv80_4x64( vdata, pdata );
mm256_bswap32_intrlv80_4x64( vdata, pdata );
do {
*noncev = mm256_intrlv_blend_32( mm256_bswap_32(
_mm256_set_epi32( n+3, 0, n+2, 0, n+1, 0, n, 0 ) ), *noncev );

View File

@@ -40,7 +40,7 @@ void veltor_4way_hash( void *output, const void *input )
skein512_4way( &ctx.skein, input, 80 );
skein512_4way_close( &ctx.skein, vhash );
mm256_dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
sph_shavite512( &ctx.shavite, hash0, 64 );
sph_shavite512_close( &ctx.shavite, hash0 );
@@ -82,7 +82,6 @@ int scanhash_veltor_4way( struct work *work, uint32_t max_nonce,
{
uint32_t hash[4*8] __attribute__ ((aligned (64)));
uint32_t vdata[24*4] __attribute__ ((aligned (64)));
uint32_t edata[20] __attribute__ ((aligned (64)));
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
const uint32_t Htarg = ptarget[7];
@@ -95,9 +94,7 @@ int scanhash_veltor_4way( struct work *work, uint32_t max_nonce,
if ( opt_benchmark )
ptarget[7] = 0x0cff;
swab32_array( edata, pdata, 20 );
mm256_intrlv_4x64( vdata, edata, edata, edata, edata, 640 );
// mm256_bswap_intrlv80_4x64( vdata, pdata );
mm256_bswap32_intrlv80_4x64( vdata, pdata );
do
{

View File

@@ -78,7 +78,7 @@ void x14_4way_hash( void *state, const void *input )
bmw512_4way_close( &ctx.bmw, vhash );
// Serial
mm256_dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
// 3 Groestl
update_and_final_groestl( &ctx.groestl, (char*)hash0, (char*)hash0, 512 );
@@ -90,7 +90,7 @@ void x14_4way_hash( void *state, const void *input )
update_and_final_groestl( &ctx.groestl, (char*)hash3, (char*)hash3, 512 );
// Parallel 4way
mm256_intrlv_4x64( vhash, hash0, hash1, hash2, hash3, 512 );
intrlv_4x64( vhash, hash0, hash1, hash2, hash3, 512 );
// 4 Skein
skein512_4way( &ctx.skein, vhash, 64 );
@@ -105,16 +105,16 @@ void x14_4way_hash( void *state, const void *input )
keccak512_4way_close( &ctx.keccak, vhash );
// Serial
mm256_dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
// 7 Luffa
mm256_intrlv_2x128( vhash, hash0, hash1, 512 );
intrlv_2x128( vhash, hash0, hash1, 512 );
luffa_2way_update_close( &ctx.luffa, vhash, vhash, 64 );
mm256_dintrlv_2x128( hash0, hash1, vhash, 512 );
mm256_intrlv_2x128( vhash, hash2, hash3, 512 );
dintrlv_2x128( hash0, hash1, vhash, 512 );
intrlv_2x128( vhash, hash2, hash3, 512 );
luffa_2way_init( &ctx.luffa, 512 );
luffa_2way_update_close( &ctx.luffa, vhash, vhash, 64 );
mm256_dintrlv_2x128( hash2, hash3, vhash, 512 );
dintrlv_2x128( hash2, hash3, vhash, 512 );
// 8 Cubehash
cubehashUpdateDigest( &ctx.cube, (byte*)hash0, (const byte*) hash0, 64 );
@@ -142,13 +142,13 @@ void x14_4way_hash( void *state, const void *input )
sph_shavite512_close( &ctx.shavite, hash3 );
// 10 Simd
mm256_intrlv_2x128( vhash, hash0, hash1, 512 );
intrlv_2x128( vhash, hash0, hash1, 512 );
simd_2way_update_close( &ctx.simd, vhash, vhash, 512 );
mm256_dintrlv_2x128( hash0, hash1, vhash, 512 );
mm256_intrlv_2x128( vhash, hash2, hash3, 512 );
dintrlv_2x128( hash0, hash1, vhash, 512 );
intrlv_2x128( vhash, hash2, hash3, 512 );
simd_2way_init( &ctx.simd, 512 );
simd_2way_update_close( &ctx.simd, vhash, vhash, 512 );
mm256_dintrlv_2x128( hash2, hash3, vhash, 512 );
dintrlv_2x128( hash2, hash3, vhash, 512 );
// 11 Echo
update_final_echo( &ctx.echo, (BitSequence *)hash0,
@@ -164,10 +164,10 @@ void x14_4way_hash( void *state, const void *input )
(const BitSequence *) hash3, 512 );
// 12 Hamsi parallel 4way 32 bit
mm256_intrlv_4x64( vhash, hash0, hash1, hash2, hash3, 512 );
intrlv_4x64( vhash, hash0, hash1, hash2, hash3, 512 );
hamsi512_4way( &ctx.hamsi, vhash, 64 );
hamsi512_4way_close( &ctx.hamsi, vhash );
mm256_dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
// 13 Fugue serial
sph_fugue512( &ctx.fugue, hash0, 64 );
@@ -193,7 +193,6 @@ int scanhash_x14_4way( struct work *work, uint32_t max_nonce,
{
uint32_t hash[4*16] __attribute__ ((aligned (64)));
uint32_t vdata[24*4] __attribute__ ((aligned (64)));
uint32_t edata[20] __attribute__ ((aligned (64)));
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
uint32_t n = pdata[19];
@@ -206,9 +205,7 @@ int scanhash_x14_4way( struct work *work, uint32_t max_nonce,
uint32_t masks[] = { 0xFFFFFFFF, 0xFFFFFFF0, 0xFFFFFF00,
0xFFFFF000, 0xFFFF0000, 0 };
swab32_array( edata, pdata, 20 );
mm256_intrlv_4x64( vdata, edata, edata, edata, edata, 640 );
// mm256_bswap_intrlv80_4x64( vdata, pdata );
mm256_bswap32_intrlv80_4x64( vdata, pdata );
for ( int m=0; m < 6; m++ )
if ( Htarg <= htmax[m] )

View File

@@ -81,7 +81,7 @@ void x15_4way_hash( void *state, const void *input )
bmw512_4way_close( &ctx.bmw, vhash );
// Serial
mm256_dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
// 3 Groestl
update_and_final_groestl( &ctx.groestl, (char*)hash0, (char*)hash0, 512 );
@@ -93,7 +93,7 @@ void x15_4way_hash( void *state, const void *input )
update_and_final_groestl( &ctx.groestl, (char*)hash3, (char*)hash3, 512 );
// Parallel 4way
mm256_intrlv_4x64( vhash, hash0, hash1, hash2, hash3, 512 );
intrlv_4x64( vhash, hash0, hash1, hash2, hash3, 512 );
// 4 Skein
skein512_4way( &ctx.skein, vhash, 64 );
@@ -108,16 +108,16 @@ void x15_4way_hash( void *state, const void *input )
keccak512_4way_close( &ctx.keccak, vhash );
// Serial to the end
mm256_dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
// 7 Luffa
mm256_intrlv_2x128( vhash, hash0, hash1, 512 );
intrlv_2x128( vhash, hash0, hash1, 512 );
luffa_2way_update_close( &ctx.luffa, vhash, vhash, 64 );
mm256_dintrlv_2x128( hash0, hash1, vhash, 512 );
mm256_intrlv_2x128( vhash, hash2, hash3, 512 );
dintrlv_2x128( hash0, hash1, vhash, 512 );
intrlv_2x128( vhash, hash2, hash3, 512 );
luffa_2way_init( &ctx.luffa, 512 );
luffa_2way_update_close( &ctx.luffa, vhash, vhash, 64 );
mm256_dintrlv_2x128( hash2, hash3, vhash, 512 );
dintrlv_2x128( hash2, hash3, vhash, 512 );
// 8 Cubehash
cubehashUpdateDigest( &ctx.cube, (byte*)hash0, (const byte*) hash0, 64 );
@@ -145,13 +145,13 @@ void x15_4way_hash( void *state, const void *input )
sph_shavite512_close( &ctx.shavite, hash3 );
// 10 Simd
mm256_intrlv_2x128( vhash, hash0, hash1, 512 );
intrlv_2x128( vhash, hash0, hash1, 512 );
simd_2way_update_close( &ctx.simd, vhash, vhash, 512 );
mm256_dintrlv_2x128( hash0, hash1, vhash, 512 );
mm256_intrlv_2x128( vhash, hash2, hash3, 512 );
dintrlv_2x128( hash0, hash1, vhash, 512 );
intrlv_2x128( vhash, hash2, hash3, 512 );
simd_2way_init( &ctx.simd, 512 );
simd_2way_update_close( &ctx.simd, vhash, vhash, 512 );
mm256_dintrlv_2x128( hash2, hash3, vhash, 512 );
dintrlv_2x128( hash2, hash3, vhash, 512 );
// 11 Echo
update_final_echo( &ctx.echo, (BitSequence *)hash0,
@@ -167,10 +167,10 @@ void x15_4way_hash( void *state, const void *input )
(const BitSequence *) hash3, 512 );
// 12 Hamsi parallel 4way 32 bit
mm256_intrlv_4x64( vhash, hash0, hash1, hash2, hash3, 512 );
intrlv_4x64( vhash, hash0, hash1, hash2, hash3, 512 );
hamsi512_4way( &ctx.hamsi, vhash, 64 );
hamsi512_4way_close( &ctx.hamsi, vhash );
mm256_dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
// 13 Fugue
sph_fugue512( &ctx.fugue, hash0, 64 );
@@ -217,7 +217,6 @@ int scanhash_x15_4way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t hash[4*8] __attribute__ ((aligned (64)));
uint32_t edata[20] __attribute__ ((aligned (64)));
uint32_t vdata[24*4] __attribute__ ((aligned (64)));
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
@@ -231,10 +230,8 @@ int scanhash_x15_4way( struct work *work, uint32_t max_nonce,
uint32_t masks[] = { 0xFFFFFFFF, 0xFFFFFFF0, 0xFFFFFF00,
0xFFFFF000, 0xFFFF0000, 0 };
swab32_array( edata, pdata, 20 );
mm256_intrlv_4x64( vdata, edata, edata, edata, edata, 640 );
// mm256_bswap_intrlv80_4x64( vdata, pdata );
mm256_bswap32_intrlv80_4x64( vdata, pdata );
for ( int m=0; m < 6; m++ )
if ( Htarg <= htmax[m] )

View File

@@ -67,7 +67,7 @@ void x16r_4way_hash( void* output, const void* input )
void *in3 = (void*) hash3;
int size = 80;
mm256_dintrlv_4x64( hash0, hash1, hash2, hash3, input, 640 );
dintrlv_4x64( hash0, hash1, hash2, hash3, input, 640 );
if ( s_ntime == UINT32_MAX )
{
@@ -96,11 +96,11 @@ void x16r_4way_hash( void* output, const void* input )
blake512_4way( &ctx.blake, input, size );
else
{
mm256_intrlv_4x64( vhash, in0, in1, in2, in3, size<<3 );
intrlv_4x64( vhash, in0, in1, in2, in3, size<<3 );
blake512_4way( &ctx.blake, vhash, size );
}
blake512_4way_close( &ctx.blake, vhash );
mm256_dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
break;
case BMW:
bmw512_4way_init( &ctx.bmw );
@@ -108,11 +108,11 @@ void x16r_4way_hash( void* output, const void* input )
bmw512_4way( &ctx.bmw, input, size );
else
{
mm256_intrlv_4x64( vhash, in0, in1, in2, in3, size<<3 );
intrlv_4x64( vhash, in0, in1, in2, in3, size<<3 );
bmw512_4way( &ctx.bmw, vhash, size );
}
bmw512_4way_close( &ctx.bmw, vhash );
mm256_dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
break;
case GROESTL:
init_groestl( &ctx.groestl, 64 );
@@ -134,11 +134,11 @@ void x16r_4way_hash( void* output, const void* input )
skein512_4way( &ctx.skein, input, size );
else
{
mm256_intrlv_4x64( vhash, in0, in1, in2, in3, size<<3 );
intrlv_4x64( vhash, in0, in1, in2, in3, size<<3 );
skein512_4way( &ctx.skein, vhash, size );
}
skein512_4way_close( &ctx.skein, vhash );
mm256_dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
break;
case JH:
jh512_4way_init( &ctx.jh );
@@ -146,11 +146,11 @@ void x16r_4way_hash( void* output, const void* input )
jh512_4way( &ctx.jh, input, size );
else
{
mm256_intrlv_4x64( vhash, in0, in1, in2, in3, size<<3 );
intrlv_4x64( vhash, in0, in1, in2, in3, size<<3 );
jh512_4way( &ctx.jh, vhash, size );
}
jh512_4way_close( &ctx.jh, vhash );
mm256_dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
break;
case KECCAK:
keccak512_4way_init( &ctx.keccak );
@@ -158,21 +158,21 @@ void x16r_4way_hash( void* output, const void* input )
keccak512_4way( &ctx.keccak, input, size );
else
{
mm256_intrlv_4x64( vhash, in0, in1, in2, in3, size<<3 );
intrlv_4x64( vhash, in0, in1, in2, in3, size<<3 );
keccak512_4way( &ctx.keccak, vhash, size );
}
keccak512_4way_close( &ctx.keccak, vhash );
mm256_dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
break;
case LUFFA:
mm256_intrlv_2x128( vhash, in0, in1, size<<3 );
intrlv_2x128( vhash, in0, in1, size<<3 );
luffa_2way_init( &ctx.luffa, 512 );
luffa_2way_update_close( &ctx.luffa, vhash, vhash, size );
mm256_dintrlv_2x128( hash0, hash1, vhash, 512 );
mm256_intrlv_2x128( vhash, in2, in3, size<<3 );
dintrlv_2x128( hash0, hash1, vhash, 512 );
intrlv_2x128( vhash, in2, in3, size<<3 );
luffa_2way_init( &ctx.luffa, 512 );
luffa_2way_update_close( &ctx.luffa, vhash, vhash, size);
mm256_dintrlv_2x128( hash2, hash3, vhash, 512 );
dintrlv_2x128( hash2, hash3, vhash, 512 );
break;
case CUBEHASH:
cubehashInit( &ctx.cube, 512, 16, 32 );
@@ -203,14 +203,14 @@ void x16r_4way_hash( void* output, const void* input )
sph_shavite512_close( &ctx.shavite, hash3 );
break;
case SIMD:
mm256_intrlv_2x128( vhash, in0, in1, size<<3 );
intrlv_2x128( vhash, in0, in1, size<<3 );
simd_2way_init( &ctx.simd, 512 );
simd_2way_update_close( &ctx.simd, vhash, vhash, size<<3 );
mm256_dintrlv_2x128( hash0, hash1, vhash, 512 );
mm256_intrlv_2x128( vhash, in2, in3, size<<3 );
dintrlv_2x128( hash0, hash1, vhash, 512 );
intrlv_2x128( vhash, in2, in3, size<<3 );
simd_2way_init( &ctx.simd, 512 );
simd_2way_update_close( &ctx.simd, vhash, vhash, size<<3 );
mm256_dintrlv_2x128( hash2, hash3, vhash, 512 );
dintrlv_2x128( hash2, hash3, vhash, 512 );
break;
case ECHO:
init_echo( &ctx.echo, 512 );
@@ -227,11 +227,11 @@ void x16r_4way_hash( void* output, const void* input )
(const BitSequence*)in3, size<<3 );
break;
case HAMSI:
mm256_intrlv_4x64( vhash, in0, in1, in2, in3, size<<3 );
intrlv_4x64( vhash, in0, in1, in2, in3, size<<3 );
hamsi512_4way_init( &ctx.hamsi );
hamsi512_4way( &ctx.hamsi, vhash, size );
hamsi512_4way_close( &ctx.hamsi, vhash );
mm256_dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
break;
case FUGUE:
sph_fugue512_init( &ctx.fugue );
@@ -269,11 +269,11 @@ void x16r_4way_hash( void* output, const void* input )
sph_whirlpool_close( &ctx.whirlpool, hash3 );
break;
case SHA_512:
mm256_intrlv_4x64( vhash, in0, in1, in2, in3, size<<3 );
intrlv_4x64( vhash, in0, in1, in2, in3, size<<3 );
sha512_4way_init( &ctx.sha512 );
sha512_4way( &ctx.sha512, vhash, size );
sha512_4way_close( &ctx.sha512, vhash );
mm256_dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
break;
}
size = 64;
@@ -316,7 +316,7 @@ int scanhash_x16r_4way( struct work *work, uint32_t max_nonce,
ptarget[7] = 0x0cff;
uint64_t *edata = (uint64_t*)endiandata;
mm256_intrlv_4x64( (uint64_t*)vdata, edata, edata, edata, edata, 640 );
intrlv_4x64( (uint64_t*)vdata, edata, edata, edata, edata, 640 );
do
{

View File

@@ -62,3 +62,149 @@ bool register_x16s_algo( algo_gate_t* gate )
return true;
};
////////////////
//
// X16RT
void x16rt_getTimeHash( const uint32_t timeStamp, void* timeHash )
{
int32_t maskedTime = timeStamp & 0xffffff80;
sha256d( (unsigned char*)timeHash, (const unsigned char*)( &maskedTime ),
sizeof( maskedTime ) );
}
void x16rt_getAlgoString( const uint32_t *timeHash, char *output)
{
char *sptr = output;
uint8_t* data = (uint8_t*)timeHash;
for (uint8_t j = 0; j < X16R_HASH_FUNC_COUNT; j++) {
uint8_t b = (15 - j) >> 1; // 16 ascii hex chars, reversed
uint8_t algoDigit = (j & 1) ? data[b] & 0xF : data[b] >> 4;
if (algoDigit >= 10)
sprintf(sptr, "%c", 'A' + (algoDigit - 10));
else
sprintf(sptr, "%u", (uint32_t) algoDigit);
sptr++;
}
*sptr = '\0';
}
void x16rt_build_extraheader( struct work* g_work, struct stratum_ctx* sctx )
{
uchar merkle_tree[64] = { 0 };
size_t t;
algo_gate.gen_merkle_root( merkle_tree, sctx );
// Increment extranonce2
for ( t = 0; t < sctx->xnonce2_size && !( ++sctx->job.xnonce2[t] ); t++ );
// Assemble block header
// algo_gate.build_block_header( g_work, le32dec( sctx->job.version ),
// (uint32_t*) sctx->job.prevhash, (uint32_t*) merkle_tree,
// le32dec( sctx->job.ntime ), le32dec(sctx->job.nbits) );
int i;
memset( g_work->data, 0, sizeof(g_work->data) );
g_work->data[0] = le32dec( sctx->job.version );
if ( have_stratum )
for ( i = 0; i < 8; i++ )
g_work->data[ 1+i ] = le32dec( (uint32_t*)sctx->job.prevhash + i );
else
for (i = 0; i < 8; i++)
g_work->data[ 8-i ] = le32dec( (uint32_t*)sctx->job.prevhash + i );
g_work->data[ algo_gate.ntime_index ] = le32dec( sctx->job.ntime );
g_work->data[ algo_gate.nbits_index ] = le32dec( sctx->job.nbits );
g_work->data[20] = 0x80000000;
g_work->data[31] = 0x00000280;
for ( i = 0; i < 8; i++ )
g_work->merkleroothash[7 - i] = be32dec((uint32_t *)merkle_tree + i);
for ( i = 0; i < 8; i++ )
g_work->witmerkleroothash[7 - i] = be32dec((uint32_t *)merkle_tree + i);
for ( i = 0; i < 8; i++ )
g_work->denom10[i] = le32dec((uint32_t *)sctx->job.denom10 + i);
for ( i = 0; i < 8; i++ )
g_work->denom100[i] = le32dec((uint32_t *)sctx->job.denom100 + i);
for ( i = 0; i < 8; i++ )
g_work->denom1000[i] = le32dec((uint32_t *)sctx->job.denom1000 + i);
for ( i = 0; i < 8; i++ )
g_work->denom10000[i] = le32dec((uint32_t *)sctx->job.denom10000 + i);
uint32_t pofnhash[8];
memset(pofnhash, 0x00, 32);
char denom10_str [ 2 * sizeof( g_work->denom10 ) + 1 ];
char denom100_str [ 2 * sizeof( g_work->denom100 ) + 1 ];
char denom1000_str [ 2 * sizeof( g_work->denom1000 ) + 1 ];
char denom10000_str [ 2 * sizeof( g_work->denom10000 ) + 1 ];
char merkleroot_str [ 2 * sizeof( g_work->merkleroothash ) + 1 ];
char witmerkleroot_str[ 2 * sizeof( g_work->witmerkleroothash ) + 1 ];
char pofn_str [ 2 * sizeof( pofnhash ) + 1 ];
cbin2hex( denom10_str, (char*) g_work->denom10, 32 );
cbin2hex( denom100_str, (char*) g_work->denom100, 32 );
cbin2hex( denom1000_str, (char*) g_work->denom1000, 32 );
cbin2hex( denom10000_str, (char*) g_work->denom10000, 32 );
cbin2hex( merkleroot_str, (char*) g_work->merkleroothash, 32 );
cbin2hex( witmerkleroot_str, (char*) g_work->witmerkleroothash, 32 );
cbin2hex( pofn_str, (char*) pofnhash, 32 );
if ( true )
{
char* data;
data = (char*)malloc( 2 + strlen( denom10_str ) * 4 + 16 * 4
+ strlen( merkleroot_str ) * 3 );
// Build the block header veildatahash in hex
sprintf( data, "%s%s%s%s%s%s%s%s%s%s%s%s",
merkleroot_str, witmerkleroot_str, "04",
"0a00000000000000", denom10_str,
"6400000000000000", denom100_str,
"e803000000000000", denom1000_str,
"1027000000000000", denom10000_str, pofn_str );
// Covert the hex to binary
uint32_t test[100];
hex2bin( (unsigned char*)(&test), data, 257);
// Compute the sha256d of the binary
uint32_t _ALIGN(64) hash[8];
sha256d( (unsigned char*)hash, (unsigned char*)&(test), 257);
// assign the veildatahash in the blockheader
for ( i = 0; i < 8; i++ )
g_work->data[16 - i] = le32dec(hash + i);
free(data);
}
}
bool register_x16rt_algo( algo_gate_t* gate )
{
#if defined (X16R_4WAY)
gate->scanhash = (void*)&scanhash_x16rt_4way;
gate->hash = (void*)&x16rt_4way_hash;
#else
gate->scanhash = (void*)&scanhash_x16rt;
gate->hash = (void*)&x16rt_hash;
#endif
gate->optimizations = SSE2_OPT | AES_OPT | AVX2_OPT;
gate->set_target = (void*)&alt_set_target;
return true;
};
bool register_x16rt_veil_algo( algo_gate_t* gate )
{
#if defined (X16R_4WAY)
gate->scanhash = (void*)&scanhash_x16rt_4way;
gate->hash = (void*)&x16rt_4way_hash;
#else
gate->scanhash = (void*)&scanhash_x16rt;
gate->hash = (void*)&x16rt_hash;
#endif
gate->optimizations = SSE2_OPT | AES_OPT | AVX2_OPT;
gate->set_target = (void*)&alt_set_target;
gate->build_extraheader = (void*)&x16rt_build_extraheader;
return true;
};

View File

@@ -4,6 +4,7 @@
#include "algo-gate-api.h"
#include "simd-utils.h"
#include <stdint.h>
#include <unistd.h>
#if defined(__AVX2__) && defined(__AES__)
#define X16R_4WAY
@@ -30,11 +31,15 @@ enum x16r_Algo {
};
void (*x16_r_s_getAlgoString) ( const uint8_t*, char* );
void x16r_getAlgoString( const uint8_t* prevblock, char *output );
void x16s_getAlgoString( const uint8_t* prevblock, char *output );
void x16r_getAlgoString( const uint8_t *prevblock, char *output );
void x16s_getAlgoString( const uint8_t *prevblock, char *output );
void x16rt_getAlgoString( const uint32_t *timeHash, char *output );
void x16rt_getTimeHash( const uint32_t timeStamp, void* timeHash );
bool register_x16r_algo( algo_gate_t* gate );
bool register_x16s_algo( algo_gate_t* gate );
bool register_x16rt_algo( algo_gate_t* gate );
#if defined(X16R_4WAY)
@@ -42,11 +47,18 @@ void x16r_4way_hash( void *state, const void *input );
int scanhash_x16r_4way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
void x16rt_4way_hash( void *state, const void *input );
int scanhash_x16rt_4way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
#endif
void x16r_hash( void *state, const void *input );
int scanhash_x16r( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
void x16rt_hash( void *state, const void *input );
int scanhash_x16rt( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
#endif

353
algo/x16/x16rt-4way.c Normal file
View File

@@ -0,0 +1,353 @@
#include "x16r-gate.h"
#if defined (X16R_4WAY)
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "algo/blake/blake-hash-4way.h"
#include "algo/bmw/bmw-hash-4way.h"
#include "algo/groestl/aes_ni/hash-groestl.h"
#include "algo/groestl/aes_ni/hash-groestl.h"
#include "algo/skein/skein-hash-4way.h"
#include "algo/jh/jh-hash-4way.h"
#include "algo/keccak/keccak-hash-4way.h"
#include "algo/shavite/sph_shavite.h"
#include "algo/luffa/luffa-hash-2way.h"
#include "algo/cubehash/cubehash_sse2.h"
#include "algo/simd/simd-hash-2way.h"
#include "algo/echo/aes_ni/hash_api.h"
#include "algo/hamsi/hamsi-hash-4way.h"
#include "algo/fugue/sph_fugue.h"
#include "algo/shabal/shabal-hash-4way.h"
#include "algo/whirlpool/sph_whirlpool.h"
#include "algo/sha/sha2-hash-4way.h"
static __thread uint32_t s_ntime = UINT32_MAX;
static __thread bool s_implemented = false;
static __thread char hashOrder[X16R_HASH_FUNC_COUNT + 1] = { 0 };
union _x16rt_4way_context_overlay
{
blake512_4way_context blake;
bmw512_4way_context bmw;
hashState_echo echo;
hashState_groestl groestl;
skein512_4way_context skein;
jh512_4way_context jh;
keccak512_4way_context keccak;
luffa_2way_context luffa;
cubehashParam cube;
sph_shavite512_context shavite;
simd_2way_context simd;
hamsi512_4way_context hamsi;
sph_fugue512_context fugue;
shabal512_4way_context shabal;
sph_whirlpool_context whirlpool;
sha512_4way_context sha512;
};
typedef union _x16rt_4way_context_overlay x16rt_4way_context_overlay;
void x16rt_4way_hash( void* output, const void* input )
{
uint32_t hash0[24] __attribute__ ((aligned (64)));
uint32_t hash1[24] __attribute__ ((aligned (64)));
uint32_t hash2[24] __attribute__ ((aligned (64)));
uint32_t hash3[24] __attribute__ ((aligned (64)));
uint32_t vhash[24*4] __attribute__ ((aligned (64)));
x16rt_4way_context_overlay ctx;
void *in0 = (void*) hash0;
void *in1 = (void*) hash1;
void *in2 = (void*) hash2;
void *in3 = (void*) hash3;
int size = 80;
dintrlv_4x64( hash0, hash1, hash2, hash3, input, 640 );
/*
void *in = (void*) input;
uint32_t *in32 = (uint32_t*) hash0;
uint32_t ntime = in32[17];
if ( s_ntime == UINT32_MAX )
{
uint32_t _ALIGN(64) timeHash[8];
x16rt_getTimeHash(ntime, &timeHash);
x16rt_getAlgoString(&timeHash[0], hashOrder);
}
*/
// Input data is both 64 bit interleaved (input)
// and deinterleaved in inp0-3.
// If First function uses 64 bit data it is not required to interleave inp
// first. It may use the inerleaved data dmost convenient, ie 4way 64 bit.
// All other functions assume data is deinterleaved in hash0-3
// All functions must exit with data deinterleaved in hash0-3.
// Alias in0-3 points to either inp0-3 or hash0-3 according to
// its hashOrder position. Size is also set accordingly.
for ( int i = 0; i < 16; i++ )
{
const char elem = hashOrder[i];
const uint8_t algo = elem >= 'A' ? elem - 'A' + 10 : elem - '0';
switch ( algo )
{
case BLAKE:
blake512_4way_init( &ctx.blake );
if ( i == 0 )
blake512_4way( &ctx.blake, input, size );
else
{
intrlv_4x64( vhash, in0, in1, in2, in3, size<<3 );
blake512_4way( &ctx.blake, vhash, size );
}
blake512_4way_close( &ctx.blake, vhash );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
break;
case BMW:
bmw512_4way_init( &ctx.bmw );
if ( i == 0 )
bmw512_4way( &ctx.bmw, input, size );
else
{
intrlv_4x64( vhash, in0, in1, in2, in3, size<<3 );
bmw512_4way( &ctx.bmw, vhash, size );
}
bmw512_4way_close( &ctx.bmw, vhash );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
break;
case GROESTL:
init_groestl( &ctx.groestl, 64 );
update_and_final_groestl( &ctx.groestl, (char*)hash0,
(const char*)in0, size<<3 );
init_groestl( &ctx.groestl, 64 );
update_and_final_groestl( &ctx.groestl, (char*)hash1,
(const char*)in1, size<<3 );
init_groestl( &ctx.groestl, 64 );
update_and_final_groestl( &ctx.groestl, (char*)hash2,
(const char*)in2, size<<3 );
init_groestl( &ctx.groestl, 64 );
update_and_final_groestl( &ctx.groestl, (char*)hash3,
(const char*)in3, size<<3 );
break;
case SKEIN:
skein512_4way_init( &ctx.skein );
if ( i == 0 )
skein512_4way( &ctx.skein, input, size );
else
{
intrlv_4x64( vhash, in0, in1, in2, in3, size<<3 );
skein512_4way( &ctx.skein, vhash, size );
}
skein512_4way_close( &ctx.skein, vhash );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
break;
case JH:
jh512_4way_init( &ctx.jh );
if ( i == 0 )
jh512_4way( &ctx.jh, input, size );
else
{
intrlv_4x64( vhash, in0, in1, in2, in3, size<<3 );
jh512_4way( &ctx.jh, vhash, size );
}
jh512_4way_close( &ctx.jh, vhash );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
break;
case KECCAK:
keccak512_4way_init( &ctx.keccak );
if ( i == 0 )
keccak512_4way( &ctx.keccak, input, size );
else
{
intrlv_4x64( vhash, in0, in1, in2, in3, size<<3 );
keccak512_4way( &ctx.keccak, vhash, size );
}
keccak512_4way_close( &ctx.keccak, vhash );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
break;
case LUFFA:
intrlv_2x128( vhash, in0, in1, size<<3 );
luffa_2way_init( &ctx.luffa, 512 );
luffa_2way_update_close( &ctx.luffa, vhash, vhash, size );
dintrlv_2x128( hash0, hash1, vhash, 512 );
intrlv_2x128( vhash, in2, in3, size<<3 );
luffa_2way_init( &ctx.luffa, 512 );
luffa_2way_update_close( &ctx.luffa, vhash, vhash, size);
dintrlv_2x128( hash2, hash3, vhash, 512 );
break;
case CUBEHASH:
cubehashInit( &ctx.cube, 512, 16, 32 );
cubehashUpdateDigest( &ctx.cube, (byte*) hash0,
(const byte*)in0, size );
cubehashInit( &ctx.cube, 512, 16, 32 );
cubehashUpdateDigest( &ctx.cube, (byte*) hash1,
(const byte*)in1, size );
cubehashInit( &ctx.cube, 512, 16, 32 );
cubehashUpdateDigest( &ctx.cube, (byte*) hash2,
(const byte*)in2, size );
cubehashInit( &ctx.cube, 512, 16, 32 );
cubehashUpdateDigest( &ctx.cube, (byte*) hash3,
(const byte*)in3, size );
break;
case SHAVITE:
sph_shavite512_init( &ctx.shavite );
sph_shavite512( &ctx.shavite, in0, size );
sph_shavite512_close( &ctx.shavite, hash0 );
sph_shavite512_init( &ctx.shavite );
sph_shavite512( &ctx.shavite, in1, size );
sph_shavite512_close( &ctx.shavite, hash1 );
sph_shavite512_init( &ctx.shavite );
sph_shavite512( &ctx.shavite, in2, size );
sph_shavite512_close( &ctx.shavite, hash2 );
sph_shavite512_init( &ctx.shavite );
sph_shavite512( &ctx.shavite, in3, size );
sph_shavite512_close( &ctx.shavite, hash3 );
break;
case SIMD:
intrlv_2x128( vhash, in0, in1, size<<3 );
simd_2way_init( &ctx.simd, 512 );
simd_2way_update_close( &ctx.simd, vhash, vhash, size<<3 );
dintrlv_2x128( hash0, hash1, vhash, 512 );
intrlv_2x128( vhash, in2, in3, size<<3 );
simd_2way_init( &ctx.simd, 512 );
simd_2way_update_close( &ctx.simd, vhash, vhash, size<<3 );
dintrlv_2x128( hash2, hash3, vhash, 512 );
break;
case ECHO:
init_echo( &ctx.echo, 512 );
update_final_echo ( &ctx.echo, (BitSequence *)hash0,
(const BitSequence*)in0, size<<3 );
init_echo( &ctx.echo, 512 );
update_final_echo ( &ctx.echo, (BitSequence *)hash1,
(const BitSequence*)in1, size<<3 );
init_echo( &ctx.echo, 512 );
update_final_echo ( &ctx.echo, (BitSequence *)hash2,
(const BitSequence*)in2, size<<3 );
init_echo( &ctx.echo, 512 );
update_final_echo ( &ctx.echo, (BitSequence *)hash3,
(const BitSequence*)in3, size<<3 );
break;
case HAMSI:
intrlv_4x64( vhash, in0, in1, in2, in3, size<<3 );
hamsi512_4way_init( &ctx.hamsi );
hamsi512_4way( &ctx.hamsi, vhash, size );
hamsi512_4way_close( &ctx.hamsi, vhash );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
break;
case FUGUE:
sph_fugue512_init( &ctx.fugue );
sph_fugue512( &ctx.fugue, in0, size );
sph_fugue512_close( &ctx.fugue, hash0 );
sph_fugue512_init( &ctx.fugue );
sph_fugue512( &ctx.fugue, in1, size );
sph_fugue512_close( &ctx.fugue, hash1 );
sph_fugue512_init( &ctx.fugue );
sph_fugue512( &ctx.fugue, in2, size );
sph_fugue512_close( &ctx.fugue, hash2 );
sph_fugue512_init( &ctx.fugue );
sph_fugue512( &ctx.fugue, in3, size );
sph_fugue512_close( &ctx.fugue, hash3 );
break;
case SHABAL:
intrlv_4x32( vhash, in0, in1, in2, in3, size<<3 );
shabal512_4way_init( &ctx.shabal );
shabal512_4way( &ctx.shabal, vhash, size );
shabal512_4way_close( &ctx.shabal, vhash );
dintrlv_4x32( hash0, hash1, hash2, hash3, vhash, 512 );
break;
case WHIRLPOOL:
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool( &ctx.whirlpool, in0, size );
sph_whirlpool_close( &ctx.whirlpool, hash0 );
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool( &ctx.whirlpool, in1, size );
sph_whirlpool_close( &ctx.whirlpool, hash1 );
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool( &ctx.whirlpool, in2, size );
sph_whirlpool_close( &ctx.whirlpool, hash2 );
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool( &ctx.whirlpool, in3, size );
sph_whirlpool_close( &ctx.whirlpool, hash3 );
break;
case SHA_512:
intrlv_4x64( vhash, in0, in1, in2, in3, size<<3 );
sha512_4way_init( &ctx.sha512 );
sha512_4way( &ctx.sha512, vhash, size );
sha512_4way_close( &ctx.sha512, vhash );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
break;
}
size = 64;
}
memcpy( output, hash0, 32 );
memcpy( output+32, hash1, 32 );
memcpy( output+64, hash2, 32 );
memcpy( output+96, hash3, 32 );
}
int scanhash_x16rt_4way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr)
{
uint32_t hash[4*16] __attribute__ ((aligned (64)));
uint32_t vdata[24*4] __attribute__ ((aligned (64)));
uint32_t endiandata[20] __attribute__((aligned(64)));
uint32_t _ALIGN(64) timeHash[4*8];
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
const uint32_t Htarg = ptarget[7];
const uint32_t first_nonce = pdata[19];
uint32_t n = first_nonce;
int thr_id = mythr->id; // thr_id arg is deprecated
__m256i *noncev = (__m256i*)vdata + 9; // aligned
volatile uint8_t *restart = &(work_restart[thr_id].restart);
casti_m256i( endiandata, 0 ) = mm256_bswap_32( casti_m256i( pdata, 0 ) );
casti_m256i( endiandata, 1 ) = mm256_bswap_32( casti_m256i( pdata, 1 ) );
casti_m128i( endiandata, 4 ) = mm128_bswap_32( casti_m128i( pdata, 4 ) );
uint32_t ntime = swab32( pdata[17] );
if ( s_ntime != ntime )
{
x16rt_getTimeHash( ntime, &timeHash );
x16rt_getAlgoString( &timeHash[0], hashOrder );
s_ntime = ntime;
s_implemented = true;
if ( opt_debug && !thr_id )
applog( LOG_INFO, "hash order: %s time: (%08x) time hash: (%08x)",
hashOrder, ntime, timeHash );
}
if ( !s_implemented )
{
applog( LOG_WARNING, "s not implemented");
sleep(1);
return 0;
}
if ( opt_benchmark )
ptarget[7] = 0x0cff;
uint64_t *edata = (uint64_t*)endiandata;
intrlv_4x64( (uint64_t*)vdata, edata, edata, edata, edata, 640 );
do
{
*noncev = mm256_intrlv_blend_32( mm256_bswap_32(
_mm256_set_epi32( n+3, 0, n+2, 0, n+1, 0, n, 0 ) ), *noncev );
x16rt_4way_hash( hash, vdata );
pdata[19] = n;
for ( int i = 0; i < 4; i++ ) if ( (hash+(i<<3))[7] <= Htarg )
if( fulltest( hash+(i<<3), ptarget ) && !opt_benchmark )
{
pdata[19] = n+i;
submit_lane_solution( work, hash+(i<<3), mythr, i );
}
n += 4;
} while ( ( n < max_nonce ) && !(*restart) );
*hashes_done = n - first_nonce + 1;
return 0;
}
#endif

239
algo/x16/x16rt.c Normal file
View File

@@ -0,0 +1,239 @@
#include "x16r-gate.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "algo/blake/sph_blake.h"
#include "algo/bmw/sph_bmw.h"
#include "algo/groestl/sph_groestl.h"
#include "algo/jh/sph_jh.h"
#include "algo/keccak/sph_keccak.h"
#include "algo/skein/sph_skein.h"
#include "algo/shavite/sph_shavite.h"
#include "algo/luffa/luffa_for_sse2.h"
#include "algo/cubehash/cubehash_sse2.h"
#include "algo/simd/nist.h"
#include "algo/echo/sph_echo.h"
#include "algo/hamsi/sph_hamsi.h"
#include "algo/fugue/sph_fugue.h"
#include "algo/shabal/sph_shabal.h"
#include "algo/whirlpool/sph_whirlpool.h"
#include <openssl/sha.h>
#if defined(__AES__)
#include "algo/echo/aes_ni/hash_api.h"
#include "algo/groestl/aes_ni/hash-groestl.h"
#endif
static __thread uint32_t s_ntime = UINT32_MAX;
static __thread bool s_implemented = false;
static __thread char hashOrder[X16R_HASH_FUNC_COUNT + 1] = { 0 };
union _x16rt_context_overlay
{
#if defined(__AES__)
hashState_echo echo;
hashState_groestl groestl;
#else
sph_groestl512_context groestl;
sph_echo512_context echo;
#endif
sph_blake512_context blake;
sph_bmw512_context bmw;
sph_skein512_context skein;
sph_jh512_context jh;
sph_keccak512_context keccak;
hashState_luffa luffa;
cubehashParam cube;
sph_shavite512_context shavite;
hashState_sd simd;
sph_hamsi512_context hamsi;
sph_fugue512_context fugue;
sph_shabal512_context shabal;
sph_whirlpool_context whirlpool;
SHA512_CTX sha512;
};
typedef union _x16rt_context_overlay x16rt_context_overlay;
void x16rt_hash( void* output, const void* input )
{
uint32_t _ALIGN(128) hash[16];
x16rt_context_overlay ctx;
int size = 80;
void *in = (void*) input;
/*
void *in = (void*) input;
uint32_t *in32 = (uint32_t*) in;
uint32_t ntime = in32[17];
if ( s_ntime == UINT32_MAX )
{
uint32_t _ALIGN(64) timeHash[8];
x16rt_getTimeHash(ntime, &timeHash);
x16rt_getAlgoString(&timeHash[0], hashOrder);
}
*/
for ( int i = 0; i < 16; i++ )
{
const char elem = hashOrder[i];
const uint8_t algo = elem >= 'A' ? elem - 'A' + 10 : elem - '0';
switch ( algo )
{
case BLAKE:
sph_blake512_init( &ctx.blake );
sph_blake512( &ctx.blake, in, size );
sph_blake512_close( &ctx.blake, hash );
break;
case BMW:
sph_bmw512_init( &ctx.bmw );
sph_bmw512(&ctx.bmw, in, size);
sph_bmw512_close(&ctx.bmw, hash);
break;
case GROESTL:
#if defined(__AES__)
init_groestl( &ctx.groestl, 64 );
update_and_final_groestl( &ctx.groestl, (char*)hash,
(const char*)in, size<<3 );
#else
sph_groestl512_init( &ctx.groestl );
sph_groestl512( &ctx.groestl, in, size );
sph_groestl512_close(&ctx.groestl, hash);
#endif
break;
case SKEIN:
sph_skein512_init( &ctx.skein );
sph_skein512( &ctx.skein, in, size );
sph_skein512_close( &ctx.skein, hash );
break;
case JH:
sph_jh512_init( &ctx.jh );
sph_jh512(&ctx.jh, in, size );
sph_jh512_close(&ctx.jh, hash );
break;
case KECCAK:
sph_keccak512_init( &ctx.keccak );
sph_keccak512( &ctx.keccak, in, size );
sph_keccak512_close( &ctx.keccak, hash );
break;
case LUFFA:
init_luffa( &ctx.luffa, 512 );
update_and_final_luffa( &ctx.luffa, (BitSequence*)hash,
(const BitSequence*)in, size );
break;
case CUBEHASH:
cubehashInit( &ctx.cube, 512, 16, 32 );
cubehashUpdateDigest( &ctx.cube, (byte*) hash,
(const byte*)in, size );
break;
case SHAVITE:
sph_shavite512_init( &ctx.shavite );
sph_shavite512( &ctx.shavite, in, size );
sph_shavite512_close( &ctx.shavite, hash );
break;
case SIMD:
init_sd( &ctx.simd, 512 );
update_final_sd( &ctx.simd, (BitSequence *)hash,
(const BitSequence*)in, size<<3 );
break;
case ECHO:
#if defined(__AES__)
init_echo( &ctx.echo, 512 );
update_final_echo ( &ctx.echo, (BitSequence *)hash,
(const BitSequence*)in, size<<3 );
#else
sph_echo512_init( &ctx.echo );
sph_echo512( &ctx.echo, in, size );
sph_echo512_close( &ctx.echo, hash );
#endif
break;
case HAMSI:
sph_hamsi512_init( &ctx.hamsi );
sph_hamsi512( &ctx.hamsi, in, size );
sph_hamsi512_close( &ctx.hamsi, hash );
break;
case FUGUE:
sph_fugue512_init( &ctx.fugue );
sph_fugue512( &ctx.fugue, in, size );
sph_fugue512_close( &ctx.fugue, hash );
break;
case SHABAL:
sph_shabal512_init( &ctx.shabal );
sph_shabal512( &ctx.shabal, in, size );
sph_shabal512_close( &ctx.shabal, hash );
break;
case WHIRLPOOL:
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool( &ctx.whirlpool, in, size );
sph_whirlpool_close( &ctx.whirlpool, hash );
break;
case SHA_512:
SHA512_Init( &ctx.sha512 );
SHA512_Update( &ctx.sha512, in, size );
SHA512_Final( (unsigned char*) hash, &ctx.sha512 );
break;
}
in = (void*) hash;
size = 64;
}
memcpy(output, hash, 32);
}
int scanhash_x16rt( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t _ALIGN(128) hash32[8];
uint32_t _ALIGN(128) endiandata[20];
uint32_t _ALIGN(64) timeHash[8];
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
const uint32_t Htarg = ptarget[7];
const uint32_t first_nonce = pdata[19];
int thr_id = mythr->id; // thr_id arg is deprecated
uint32_t nonce = first_nonce;
volatile uint8_t *restart = &(work_restart[thr_id].restart);
casti_m128i( endiandata, 0 ) = mm128_bswap_32( casti_m128i( pdata, 0 ) );
casti_m128i( endiandata, 1 ) = mm128_bswap_32( casti_m128i( pdata, 1 ) );
casti_m128i( endiandata, 2 ) = mm128_bswap_32( casti_m128i( pdata, 2 ) );
casti_m128i( endiandata, 3 ) = mm128_bswap_32( casti_m128i( pdata, 3 ) );
casti_m128i( endiandata, 4 ) = mm128_bswap_32( casti_m128i( pdata, 4 ) );
uint32_t ntime = swab32( pdata[17] );
if ( s_ntime != ntime )
{
x16rt_getTimeHash( ntime, &timeHash );
x16rt_getAlgoString( &timeHash[0], hashOrder );
s_ntime = ntime;
s_implemented = true;
if ( opt_debug && !thr_id )
applog( LOG_INFO, "hash order: %s time: (%08x) time hash: (%08x)",
hashOrder, ntime, timeHash );
}
if ( !s_implemented )
{
applog( LOG_WARNING, "s not implemented");
sleep(1);
return 0;
}
if ( opt_benchmark )
ptarget[7] = 0x0cff;
do
{
be32enc( &endiandata[19], nonce );
x16rt_hash( hash32, endiandata );
if ( hash32[7] <= Htarg )
if (fulltest( hash32, ptarget ) && !opt_benchmark )
{
pdata[19] = nonce;
submit_solution( work, hash32, mythr );
}
nonce++;
} while ( nonce < max_nonce && !(*restart) );
pdata[19] = nonce;
*hashes_done = pdata[19] - first_nonce + 1;
return 0;
}

View File

@@ -69,7 +69,7 @@ void sonoa_4way_hash( void *state, const void *input )
bmw512_4way( &ctx.bmw, vhash, 64 );
bmw512_4way_close( &ctx.bmw, vhash );
mm256_dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
dintrlv_4x64_512( hash0, hash1, hash2, hash3, vhash );
init_groestl( &ctx.groestl, 64 );
update_and_final_groestl( &ctx.groestl, (char*)hash0, (char*)hash0, 512 );
@@ -80,7 +80,7 @@ void sonoa_4way_hash( void *state, const void *input )
init_groestl( &ctx.groestl, 64 );
update_and_final_groestl( &ctx.groestl, (char*)hash3, (char*)hash3, 512 );
mm256_intrlv_4x64( vhash, hash0, hash1, hash2, hash3, 512 );
intrlv_4x64_512( vhash, hash0, hash1, hash2, hash3 );
skein512_4way_init( &ctx.skein );
skein512_4way( &ctx.skein, vhash, 64 );
@@ -94,7 +94,7 @@ void sonoa_4way_hash( void *state, const void *input )
keccak512_4way( &ctx.keccak, vhash, 64 );
keccak512_4way_close( &ctx.keccak, vhash );
mm256_rintrlv_4x64_2x128( vhashA, vhashB, vhash, 512 );
rintrlv_4x64_2x128( vhashA, vhashB, vhash, 512 );
luffa_2way_init( &ctx.luffa, 512 );
luffa_2way_update_close( &ctx.luffa, vhashA, vhashA, 64 );
@@ -116,8 +116,8 @@ void sonoa_4way_hash( void *state, const void *input )
simd_2way_init( &ctx.simd, 512 );
simd_2way_update_close( &ctx.simd, vhashB, vhashB, 512 );
mm256_dintrlv_2x128( hash0, hash1, vhashA, 512 );
mm256_dintrlv_2x128( hash2, hash3, vhashB, 512 );
dintrlv_2x128_512( hash0, hash1, vhashA );
dintrlv_2x128_512( hash2, hash3, vhashB );
init_echo( &ctx.echo, 512 );
update_final_echo( &ctx.echo, (BitSequence *)hash0,
@@ -134,13 +134,13 @@ void sonoa_4way_hash( void *state, const void *input )
// 2
mm256_intrlv_4x64( vhash, hash0, hash1, hash2, hash3, 512 );
intrlv_4x64_512( vhash, hash0, hash1, hash2, hash3 );
bmw512_4way_init( &ctx.bmw );
bmw512_4way( &ctx.bmw, vhash, 64 );
bmw512_4way_close( &ctx.bmw, vhash );
mm256_dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
dintrlv_4x64_512( hash0, hash1, hash2, hash3, vhash );
init_groestl( &ctx.groestl, 64 );
update_and_final_groestl( &ctx.groestl, (char*)hash0, (char*)hash0, 512 );
@@ -151,7 +151,7 @@ void sonoa_4way_hash( void *state, const void *input )
init_groestl( &ctx.groestl, 64 );
update_and_final_groestl( &ctx.groestl, (char*)hash3, (char*)hash3, 512 );
mm256_intrlv_4x64( vhash, hash0, hash1, hash2, hash3, 512 );
intrlv_4x64_512( vhash, hash0, hash1, hash2, hash3 );
skein512_4way_init( &ctx.skein );
skein512_4way( &ctx.skein, vhash, 64 );
@@ -165,7 +165,7 @@ void sonoa_4way_hash( void *state, const void *input )
keccak512_4way( &ctx.keccak, vhash, 64 );
keccak512_4way_close( &ctx.keccak, vhash );
mm256_rintrlv_4x64_2x128( vhashA, vhashB, vhash, 512 );
rintrlv_4x64_2x128( vhashA, vhashB, vhash, 512 );
luffa_2way_init( &ctx.luffa, 512 );
luffa_2way_update_close( &ctx.luffa, vhashA, vhashA, 64 );
@@ -187,8 +187,8 @@ void sonoa_4way_hash( void *state, const void *input )
simd_2way_init( &ctx.simd, 512 );
simd_2way_update_close( &ctx.simd, vhashB, vhashB, 512 );
mm256_dintrlv_2x128( hash0, hash1, vhashA, 512 );
mm256_dintrlv_2x128( hash2, hash3, vhashB, 512 );
dintrlv_2x128_512( hash0, hash1, vhashA );
dintrlv_2x128_512( hash2, hash3, vhashB );
init_echo( &ctx.echo, 512 );
update_final_echo( &ctx.echo, (BitSequence *)hash0,
@@ -203,7 +203,7 @@ void sonoa_4way_hash( void *state, const void *input )
update_final_echo( &ctx.echo, (BitSequence *)hash3,
(const BitSequence *) hash3, 512 );
mm256_intrlv_4x64( vhash, hash0, hash1, hash2, hash3, 512 );
intrlv_4x64_512( vhash, hash0, hash1, hash2, hash3 );
hamsi512_4way_init( &ctx.hamsi );
hamsi512_4way( &ctx.hamsi, vhash, 64 );
@@ -215,7 +215,7 @@ void sonoa_4way_hash( void *state, const void *input )
bmw512_4way( &ctx.bmw, vhash, 64 );
bmw512_4way_close( &ctx.bmw, vhash );
mm256_dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
dintrlv_4x64_512( hash0, hash1, hash2, hash3, vhash );
init_groestl( &ctx.groestl, 64 );
update_and_final_groestl( &ctx.groestl, (char*)hash0, (char*)hash0, 512 );
@@ -226,7 +226,7 @@ void sonoa_4way_hash( void *state, const void *input )
init_groestl( &ctx.groestl, 64 );
update_and_final_groestl( &ctx.groestl, (char*)hash3, (char*)hash3, 512 );
mm256_intrlv_4x64( vhash, hash0, hash1, hash2, hash3, 512 );
intrlv_4x64_512( vhash, hash0, hash1, hash2, hash3 );
skein512_4way_init( &ctx.skein );
skein512_4way( &ctx.skein, vhash, 64 );
@@ -240,7 +240,7 @@ void sonoa_4way_hash( void *state, const void *input )
keccak512_4way( &ctx.keccak, vhash, 64 );
keccak512_4way_close( &ctx.keccak, vhash );
mm256_rintrlv_4x64_2x128( vhashA, vhashB, vhash, 512 );
rintrlv_4x64_2x128( vhashA, vhashB, vhash, 512 );
luffa_2way_init( &ctx.luffa, 512 );
luffa_2way_update_close( &ctx.luffa, vhashA, vhashA, 64 );
@@ -262,8 +262,8 @@ void sonoa_4way_hash( void *state, const void *input )
simd_2way_init( &ctx.simd, 512 );
simd_2way_update_close( &ctx.simd, vhashB, vhashB, 512 );
mm256_dintrlv_2x128( hash0, hash1, vhashA, 512 );
mm256_dintrlv_2x128( hash2, hash3, vhashB, 512 );
dintrlv_2x128_512( hash0, hash1, vhashA );
dintrlv_2x128_512( hash2, hash3, vhashB );
init_echo( &ctx.echo, 512 );
update_final_echo( &ctx.echo, (BitSequence *)hash0,
@@ -278,13 +278,13 @@ void sonoa_4way_hash( void *state, const void *input )
update_final_echo( &ctx.echo, (BitSequence *)hash3,
(const BitSequence *) hash3, 512 );
mm256_intrlv_4x64( vhash, hash0, hash1, hash2, hash3, 512 );
intrlv_4x64_512( vhash, hash0, hash1, hash2, hash3 );
hamsi512_4way_init( &ctx.hamsi );
hamsi512_4way( &ctx.hamsi, vhash, 64 );
hamsi512_4way_close( &ctx.hamsi, vhash );
mm256_dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
dintrlv_4x64_512( hash0, hash1, hash2, hash3, vhash );
sph_fugue512_init( &ctx.fugue );
sph_fugue512( &ctx.fugue, hash0, 64 );
@@ -300,13 +300,13 @@ void sonoa_4way_hash( void *state, const void *input )
sph_fugue512_close( &ctx.fugue, hash3 );
// 4
mm256_intrlv_4x64( vhash, hash0, hash1, hash2, hash3, 512 );
intrlv_4x64_512( vhash, hash0, hash1, hash2, hash3 );
bmw512_4way_init( &ctx.bmw );
bmw512_4way( &ctx.bmw, vhash, 64 );
bmw512_4way_close( &ctx.bmw, vhash );
mm256_dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
dintrlv_4x64_512( hash0, hash1, hash2, hash3, vhash );
init_groestl( &ctx.groestl, 64 );
update_and_final_groestl( &ctx.groestl, (char*)hash0, (char*)hash0, 512 );
@@ -317,7 +317,7 @@ void sonoa_4way_hash( void *state, const void *input )
init_groestl( &ctx.groestl, 64 );
update_and_final_groestl( &ctx.groestl, (char*)hash3, (char*)hash3, 512 );
mm256_intrlv_4x64( vhash, hash0, hash1, hash2, hash3, 512 );
intrlv_4x64_512( vhash, hash0, hash1, hash2, hash3 );
skein512_4way_init( &ctx.skein );
skein512_4way( &ctx.skein, vhash, 64 );
@@ -331,7 +331,7 @@ void sonoa_4way_hash( void *state, const void *input )
keccak512_4way( &ctx.keccak, vhash, 64 );
keccak512_4way_close( &ctx.keccak, vhash );
mm256_rintrlv_4x64_2x128( vhashA, vhashB, vhash, 512 );
rintrlv_4x64_2x128( vhashA, vhashB, vhash, 512 );
luffa_2way_init( &ctx.luffa, 512 );
luffa_2way_update_close( &ctx.luffa, vhashA, vhashA, 64 );
@@ -353,8 +353,8 @@ void sonoa_4way_hash( void *state, const void *input )
simd_2way_init( &ctx.simd, 512 );
simd_2way_update_close( &ctx.simd, vhashB, vhashB, 512 );
mm256_dintrlv_2x128( hash0, hash1, vhashA, 512 );
mm256_dintrlv_2x128( hash2, hash3, vhashB, 512 );
dintrlv_2x128_512( hash0, hash1, vhashA );
dintrlv_2x128_512( hash2, hash3, vhashB );
init_echo( &ctx.echo, 512 );
update_final_echo( &ctx.echo, (BitSequence *)hash0,
@@ -369,13 +369,13 @@ void sonoa_4way_hash( void *state, const void *input )
update_final_echo( &ctx.echo, (BitSequence *)hash3,
(const BitSequence *) hash3, 512 );
mm256_intrlv_4x64( vhash, hash0, hash1, hash2, hash3, 512 );
intrlv_4x64_512( vhash, hash0, hash1, hash2, hash3 );
hamsi512_4way_init( &ctx.hamsi );
hamsi512_4way( &ctx.hamsi, vhash, 64 );
hamsi512_4way_close( &ctx.hamsi, vhash );
mm256_dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
dintrlv_4x64_512( hash0, hash1, hash2, hash3, vhash );
sph_fugue512_init( &ctx.fugue );
sph_fugue512( &ctx.fugue, hash0, 64 );
@@ -390,19 +390,19 @@ void sonoa_4way_hash( void *state, const void *input )
sph_fugue512( &ctx.fugue, hash3, 64 );
sph_fugue512_close( &ctx.fugue, hash3 );
intrlv_4x32( vhash, hash0, hash1, hash2, hash3, 512 );
intrlv_4x32_512( vhash, hash0, hash1, hash2, hash3 );
shabal512_4way_init( &ctx.shabal );
shabal512_4way( &ctx.shabal, vhash, 64 );
shabal512_4way_close( &ctx.shabal, vhash );
mm256_rintrlv_4x32_4x64( vhashB, vhash, 512 );
rintrlv_4x32_4x64( vhashB, vhash, 512 );
hamsi512_4way_init( &ctx.hamsi );
hamsi512_4way( &ctx.hamsi, vhashB, 64 );
hamsi512_4way_close( &ctx.hamsi, vhash );
mm256_dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
dintrlv_4x64_512( hash0, hash1, hash2, hash3, vhash );
init_echo( &ctx.echo, 512 );
update_final_echo( &ctx.echo, (BitSequence *)hash0,
@@ -417,8 +417,8 @@ void sonoa_4way_hash( void *state, const void *input )
update_final_echo( &ctx.echo, (BitSequence *)hash3,
(const BitSequence *) hash3, 512 );
mm256_intrlv_2x128( vhashA, hash0, hash1, 512 );
mm256_intrlv_2x128( vhashB, hash2, hash3, 512 );
intrlv_2x128_512( vhashA, hash0, hash1 );
intrlv_2x128_512( vhashB, hash2, hash3 );
shavite512_2way_init( &ctx.shavite );
shavite512_2way_update_close( &ctx.shavite, vhashA, vhashA, 64 );
@@ -426,19 +426,19 @@ void sonoa_4way_hash( void *state, const void *input )
shavite512_2way_update_close( &ctx.shavite, vhashB, vhashB, 64 );
// 5
mm256_rintrlv_2x128_4x64( vhash, vhashA, vhashB, 512 );
rintrlv_2x128_4x64( vhash, vhashA, vhashB, 512 );
bmw512_4way_init( &ctx.bmw );
bmw512_4way( &ctx.bmw, vhash, 64 );
bmw512_4way_close( &ctx.bmw, vhash );
mm256_rintrlv_4x64_4x32( vhashB, vhash, 512 );
rintrlv_4x64_4x32( vhashB, vhash, 512 );
shabal512_4way_init( &ctx.shabal );
shabal512_4way( &ctx.shabal, vhashB, 64 );
shabal512_4way_close( &ctx.shabal, vhash );
dintrlv_4x32( hash0, hash1, hash2, hash3, vhash, 512 );
dintrlv_4x32_512( hash0, hash1, hash2, hash3, vhash );
init_groestl( &ctx.groestl, 64 );
update_and_final_groestl( &ctx.groestl, (char*)hash0, (char*)hash0, 512 );
@@ -449,7 +449,7 @@ void sonoa_4way_hash( void *state, const void *input )
init_groestl( &ctx.groestl, 64 );
update_and_final_groestl( &ctx.groestl, (char*)hash3, (char*)hash3, 512 );
mm256_intrlv_4x64( vhash, hash0, hash1, hash2, hash3, 512 );
intrlv_4x64_512( vhash, hash0, hash1, hash2, hash3 );
skein512_4way_init( &ctx.skein );
skein512_4way( &ctx.skein, vhash, 64 );
@@ -463,7 +463,7 @@ void sonoa_4way_hash( void *state, const void *input )
keccak512_4way( &ctx.keccak, vhash, 64 );
keccak512_4way_close( &ctx.keccak, vhash );
mm256_rintrlv_4x64_2x128( vhashA, vhashB, vhash, 512 );
rintrlv_4x64_2x128( vhashA, vhashB, vhash, 512 );
luffa_2way_init( &ctx.luffa, 512 );
luffa_2way_update_close( &ctx.luffa, vhashA, vhashA, 64 );
@@ -485,8 +485,8 @@ void sonoa_4way_hash( void *state, const void *input )
simd_2way_init( &ctx.simd, 512 );
simd_2way_update_close( &ctx.simd, vhashB, vhashB, 512 );
mm256_dintrlv_2x128( hash0, hash1, vhashA, 512 );
mm256_dintrlv_2x128( hash2, hash3, vhashB, 512 );
dintrlv_2x128_512( hash0, hash1, vhashA );
dintrlv_2x128_512( hash2, hash3, vhashB );
init_echo( &ctx.echo, 512 );
update_final_echo( &ctx.echo, (BitSequence *)hash0,
@@ -501,13 +501,13 @@ void sonoa_4way_hash( void *state, const void *input )
update_final_echo( &ctx.echo, (BitSequence *)hash3,
(const BitSequence *) hash3, 512 );
mm256_intrlv_4x64( vhash, hash0, hash1, hash2, hash3, 512 );
intrlv_4x64_512( vhash, hash0, hash1, hash2, hash3 );
hamsi512_4way_init( &ctx.hamsi );
hamsi512_4way( &ctx.hamsi, vhash, 64 );
hamsi512_4way_close( &ctx.hamsi, vhash );
mm256_dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
dintrlv_4x64_512( hash0, hash1, hash2, hash3, vhash );
sph_fugue512_init( &ctx.fugue );
sph_fugue512( &ctx.fugue, hash0, 64 );
@@ -522,13 +522,13 @@ void sonoa_4way_hash( void *state, const void *input )
sph_fugue512( &ctx.fugue, hash3, 64 );
sph_fugue512_close( &ctx.fugue, hash3 );
intrlv_4x32( vhash, hash0, hash1, hash2, hash3, 512 );
intrlv_4x32_512( vhash, hash0, hash1, hash2, hash3 );
shabal512_4way_init( &ctx.shabal );
shabal512_4way( &ctx.shabal, vhash, 64 );
shabal512_4way_close( &ctx.shabal, vhash );
dintrlv_4x32( hash0, hash1, hash2, hash3, vhash, 512 );
dintrlv_4x32_512( hash0, hash1, hash2, hash3, vhash );
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool( &ctx.whirlpool, hash0, 64 );
@@ -545,13 +545,13 @@ void sonoa_4way_hash( void *state, const void *input )
// 6
mm256_intrlv_4x64( vhash, hash0, hash1, hash2, hash3, 512 );
intrlv_4x64_512( vhash, hash0, hash1, hash2, hash3 );
bmw512_4way_init( &ctx.bmw );
bmw512_4way( &ctx.bmw, vhash, 64 );
bmw512_4way_close( &ctx.bmw, vhash );
mm256_dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
dintrlv_4x64_512( hash0, hash1, hash2, hash3, vhash );
init_groestl( &ctx.groestl, 64 );
update_and_final_groestl( &ctx.groestl, (char*)hash0, (char*)hash0, 512 );
@@ -562,7 +562,7 @@ void sonoa_4way_hash( void *state, const void *input )
init_groestl( &ctx.groestl, 64 );
update_and_final_groestl( &ctx.groestl, (char*)hash3, (char*)hash3, 512 );
mm256_intrlv_4x64( vhash, hash0, hash1, hash2, hash3, 512 );
intrlv_4x64_512( vhash, hash0, hash1, hash2, hash3 );
skein512_4way_init( &ctx.skein );
skein512_4way( &ctx.skein, vhash, 64 );
@@ -576,7 +576,7 @@ void sonoa_4way_hash( void *state, const void *input )
keccak512_4way( &ctx.keccak, vhash, 64 );
keccak512_4way_close( &ctx.keccak, vhash );
mm256_rintrlv_4x64_2x128( vhashA, vhashB, vhash, 512 );
rintrlv_4x64_2x128( vhashA, vhashB, vhash, 512 );
luffa_2way_init( &ctx.luffa, 512 );
luffa_2way_update_close( &ctx.luffa, vhashA, vhashA, 64 );
@@ -598,8 +598,8 @@ void sonoa_4way_hash( void *state, const void *input )
simd_2way_init( &ctx.simd, 512 );
simd_2way_update_close( &ctx.simd, vhashB, vhashB, 512 );
mm256_dintrlv_2x128( hash0, hash1, vhashA, 512 );
mm256_dintrlv_2x128( hash2, hash3, vhashB, 512 );
dintrlv_2x128_512( hash0, hash1, vhashA );
dintrlv_2x128_512( hash2, hash3, vhashB );
init_echo( &ctx.echo, 512 );
update_final_echo( &ctx.echo, (BitSequence *)hash0,
@@ -614,13 +614,13 @@ void sonoa_4way_hash( void *state, const void *input )
update_final_echo( &ctx.echo, (BitSequence *)hash3,
(const BitSequence *) hash3, 512 );
mm256_intrlv_4x64( vhash, hash0, hash1, hash2, hash3, 512 );
intrlv_4x64_512( vhash, hash0, hash1, hash2, hash3 );
hamsi512_4way_init( &ctx.hamsi );
hamsi512_4way( &ctx.hamsi, vhash, 64 );
hamsi512_4way_close( &ctx.hamsi, vhash );
mm256_dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
dintrlv_4x64_512( hash0, hash1, hash2, hash3, vhash );
sph_fugue512_init( &ctx.fugue );
sph_fugue512( &ctx.fugue, hash0, 64 );
@@ -635,13 +635,13 @@ void sonoa_4way_hash( void *state, const void *input )
sph_fugue512( &ctx.fugue, hash3, 64 );
sph_fugue512_close( &ctx.fugue, hash3 );
intrlv_4x32( vhash, hash0, hash1, hash2, hash3, 512 );
intrlv_4x32_512( vhash, hash0, hash1, hash2, hash3 );
shabal512_4way_init( &ctx.shabal );
shabal512_4way( &ctx.shabal, vhash, 64 );
shabal512_4way_close( &ctx.shabal, vhash );
dintrlv_4x32( hash0, hash1, hash2, hash3, vhash, 512 );
dintrlv_4x32_512( hash0, hash1, hash2, hash3, vhash );
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool( &ctx.whirlpool, hash0, 64 );
@@ -656,13 +656,13 @@ void sonoa_4way_hash( void *state, const void *input )
sph_whirlpool( &ctx.whirlpool, hash3, 64 );
sph_whirlpool_close( &ctx.whirlpool, hash3 );
mm256_intrlv_4x64( vhash, hash0, hash1, hash2, hash3, 512 );
intrlv_4x64_512( vhash, hash0, hash1, hash2, hash3 );
sha512_4way_init( &ctx.sha512 );
sha512_4way( &ctx.sha512, vhash, 64 );
sha512_4way_close( &ctx.sha512, vhash );
mm256_dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
dintrlv_4x64_512( hash0, hash1, hash2, hash3, vhash );
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool( &ctx.whirlpool, hash0, 64 );
@@ -679,13 +679,13 @@ void sonoa_4way_hash( void *state, const void *input )
// 7
mm256_intrlv_4x64( vhash, hash0, hash1, hash2, hash3, 512 );
intrlv_4x64_512( vhash, hash0, hash1, hash2, hash3 );
bmw512_4way_init( &ctx.bmw );
bmw512_4way( &ctx.bmw, vhash, 64 );
bmw512_4way_close( &ctx.bmw, vhash );
mm256_dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
dintrlv_4x64_512( hash0, hash1, hash2, hash3, vhash );
init_groestl( &ctx.groestl, 64 );
update_and_final_groestl( &ctx.groestl, (char*)hash0, (char*)hash0, 512 );
@@ -696,7 +696,7 @@ void sonoa_4way_hash( void *state, const void *input )
init_groestl( &ctx.groestl, 64 );
update_and_final_groestl( &ctx.groestl, (char*)hash3, (char*)hash3, 512 );
mm256_intrlv_4x64( vhash, hash0, hash1, hash2, hash3, 512 );
intrlv_4x64_512( vhash, hash0, hash1, hash2, hash3 );
skein512_4way_init( &ctx.skein );
skein512_4way( &ctx.skein, vhash, 64 );
@@ -710,7 +710,7 @@ void sonoa_4way_hash( void *state, const void *input )
keccak512_4way( &ctx.keccak, vhash, 64 );
keccak512_4way_close( &ctx.keccak, vhash );
mm256_rintrlv_4x64_2x128( vhashA, vhashB, vhash, 512 );
rintrlv_4x64_2x128( vhashA, vhashB, vhash, 512 );
luffa_2way_init( &ctx.luffa, 512 );
luffa_2way_update_close( &ctx.luffa, vhashA, vhashA, 64 );
@@ -732,8 +732,8 @@ void sonoa_4way_hash( void *state, const void *input )
simd_2way_init( &ctx.simd, 512 );
simd_2way_update_close( &ctx.simd, vhashB, vhashB, 512 );
mm256_dintrlv_2x128( hash0, hash1, vhashA, 512 );
mm256_dintrlv_2x128( hash2, hash3, vhashB, 512 );
dintrlv_2x128_512( hash0, hash1, vhashA );
dintrlv_2x128_512( hash2, hash3, vhashB );
init_echo( &ctx.echo, 512 );
update_final_echo( &ctx.echo, (BitSequence *)hash0,
@@ -748,13 +748,13 @@ void sonoa_4way_hash( void *state, const void *input )
update_final_echo( &ctx.echo, (BitSequence *)hash3,
(const BitSequence *) hash3, 512 );
mm256_intrlv_4x64( vhash, hash0, hash1, hash2, hash3, 512 );
intrlv_4x64_512( vhash, hash0, hash1, hash2, hash3 );
hamsi512_4way_init( &ctx.hamsi );
hamsi512_4way( &ctx.hamsi, vhash, 64 );
hamsi512_4way_close( &ctx.hamsi, vhash );
mm256_dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
dintrlv_4x64_512( hash0, hash1, hash2, hash3, vhash );
sph_fugue512_init( &ctx.fugue );
sph_fugue512( &ctx.fugue, hash0, 64 );
@@ -769,13 +769,13 @@ void sonoa_4way_hash( void *state, const void *input )
sph_fugue512( &ctx.fugue, hash3, 64 );
sph_fugue512_close( &ctx.fugue, hash3 );
intrlv_4x32( vhash, hash0, hash1, hash2, hash3, 512 );
intrlv_4x32_512( vhash, hash0, hash1, hash2, hash3 );
shabal512_4way_init( &ctx.shabal );
shabal512_4way( &ctx.shabal, vhash, 64 );
shabal512_4way_close( &ctx.shabal, vhash );
dintrlv_4x32( hash0, hash1, hash2, hash3, vhash, 512 );
dintrlv_4x32_512( hash0, hash1, hash2, hash3, vhash );
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool( &ctx.whirlpool, hash0, 64 );
@@ -790,13 +790,13 @@ void sonoa_4way_hash( void *state, const void *input )
sph_whirlpool( &ctx.whirlpool, hash3, 64 );
sph_whirlpool_close( &ctx.whirlpool, hash3 );
mm256_intrlv_4x64( vhash, hash0, hash1, hash2, hash3, 512 );
intrlv_4x64_512( vhash, hash0, hash1, hash2, hash3 );
sha512_4way_init( &ctx.sha512 );
sha512_4way( &ctx.sha512, vhash, 64 );
sha512_4way_close( &ctx.sha512, vhash );
mm256_rintrlv_4x64_4x32( vhashB, vhash, 512 );
rintrlv_4x64_4x32( vhashB, vhash, 512 );
haval256_5_4way_init( &ctx.haval );
haval256_5_4way( &ctx.haval, vhashB, 64 );
@@ -806,9 +806,8 @@ void sonoa_4way_hash( void *state, const void *input )
int scanhash_sonoa_4way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t hash[4*8] __attribute__ ((aligned (64)));
uint32_t hash[4*16] __attribute__ ((aligned (64)));
uint32_t vdata[24*4] __attribute__ ((aligned (64)));
uint32_t edata[20] __attribute__ ((aligned (64)));
uint32_t lane_hash[8] __attribute__ ((aligned (32)));
uint32_t *hash7 = &(hash[7<<2]);
uint32_t *pdata = work->data;
@@ -817,16 +816,14 @@ int scanhash_sonoa_4way( struct work *work, uint32_t max_nonce,
const uint32_t first_nonce = pdata[19];
__m256i *noncev = (__m256i*)vdata + 9; // aligned
const uint32_t Htarg = ptarget[7];
int thr_id = mythr->id; // thr_id arg is deprecated
int thr_id = mythr->id;
uint64_t htmax[] = { 0, 0xF, 0xFF,
0xFFF, 0xFFFF, 0x10000000 };
uint32_t masks[] = { 0xFFFFFFFF, 0xFFFFFFF0, 0xFFFFFF00,
0xFFFFF000, 0xFFFF0000, 0 };
// Need big endian data
swab32_array( edata, pdata, 20 );
mm256_intrlv_4x64( vdata, edata, edata, edata, edata, 640 );
// mm256_bswap_intrlv80_4x64( vdata, pdata );
mm256_bswap32_intrlv80_4x64( vdata, pdata );
for ( int m=0; m < 6; m++ ) if ( Htarg <= htmax[m] )
{
uint32_t mask = masks[m];

View File

@@ -68,7 +68,7 @@ void x17_4way_hash( void *state, const void *input )
bmw512_4way_close( &ctx.bmw, vhash );
// Serialize
mm256_dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
dintrlv_4x64_512( hash0, hash1, hash2, hash3, vhash );
// 3 Groestl
init_groestl( &ctx.groestl, 64 );
@@ -81,7 +81,7 @@ void x17_4way_hash( void *state, const void *input )
update_and_final_groestl( &ctx.groestl, (char*)hash3, (char*)hash3, 512 );
// Parallellize
mm256_intrlv_4x64( vhash, hash0, hash1, hash2, hash3, 512 );
intrlv_4x64_512( vhash, hash0, hash1, hash2, hash3 );
// 4 Skein parallel 4 way 64 bit
skein512_4way_init( &ctx.skein );
@@ -99,7 +99,7 @@ void x17_4way_hash( void *state, const void *input )
keccak512_4way_close( &ctx.keccak, vhash );
// 7 Luffa parallel 2 way 128 bit
mm256_rintrlv_4x64_2x128( vhashA, vhashB, vhash, 512 );
rintrlv_4x64_2x128( vhashA, vhashB, vhash, 512 );
luffa_2way_init( &ctx.luffa, 512 );
luffa_2way_update_close( &ctx.luffa, vhashA, vhashA, 64 );
@@ -124,8 +124,8 @@ void x17_4way_hash( void *state, const void *input )
simd_2way_init( &ctx.simd, 512 );
simd_2way_update_close( &ctx.simd, vhashB, vhashB, 512 );
mm256_dintrlv_2x128_512( hash0, hash1, vhashA );
mm256_dintrlv_2x128_512( hash2, hash3, vhashB );
dintrlv_2x128_512( hash0, hash1, vhashA );
dintrlv_2x128_512( hash2, hash3, vhashB );
// 11 Echo serial
init_echo( &ctx.echo, 512 );
@@ -142,13 +142,13 @@ void x17_4way_hash( void *state, const void *input )
(const BitSequence *) hash3, 512 );
// 12 Hamsi parallel 4 way 64 bit
mm256_intrlv_4x64( vhash, hash0, hash1, hash2, hash3, 512 );
intrlv_4x64_512( vhash, hash0, hash1, hash2, hash3 );
hamsi512_4way_init( &ctx.hamsi );
hamsi512_4way( &ctx.hamsi, vhash, 64 );
hamsi512_4way_close( &ctx.hamsi, vhash );
mm256_dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
dintrlv_4x64_512( hash0, hash1, hash2, hash3, vhash );
// 13 Fugue serial
sph_fugue512_init( &ctx.fugue );
@@ -165,13 +165,13 @@ void x17_4way_hash( void *state, const void *input )
sph_fugue512_close( &ctx.fugue, hash3 );
// 14 Shabal, parallel 4 way 32 bit
intrlv_4x32( vhash, hash0, hash1, hash2, hash3, 512 );
intrlv_4x32_512( vhash, hash0, hash1, hash2, hash3 );
shabal512_4way_init( &ctx.shabal );
shabal512_4way( &ctx.shabal, vhash, 64 );
shabal512_4way_close( &ctx.shabal, vhash );
dintrlv_4x32( hash0, hash1, hash2, hash3, vhash, 512 );
dintrlv_4x32_512( hash0, hash1, hash2, hash3, vhash );
// 15 Whirlpool serial
sph_whirlpool_init( &ctx.whirlpool );
@@ -188,14 +188,14 @@ void x17_4way_hash( void *state, const void *input )
sph_whirlpool_close( &ctx.whirlpool, hash3 );
// 16 SHA512 parallel 64 bit
mm256_intrlv_4x64( vhash, hash0, hash1, hash2, hash3, 512 );
intrlv_4x64_512( vhash, hash0, hash1, hash2, hash3 );
sha512_4way_init( &ctx.sha512 );
sha512_4way( &ctx.sha512, vhash, 64 );
sha512_4way_close( &ctx.sha512, vhash );
// 17 Haval parallel 32 bit
mm256_rintrlv_4x64_4x32( vhashB, vhash, 512 );
rintrlv_4x64_4x32( vhashB, vhash, 512 );
haval256_5_4way_init( &ctx.haval );
haval256_5_4way( &ctx.haval, vhashB, 64 );
@@ -205,9 +205,8 @@ void x17_4way_hash( void *state, const void *input )
int scanhash_x17_4way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t hash[4*8] __attribute__ ((aligned (64)));
uint32_t hash[4*16] __attribute__ ((aligned (64)));
uint32_t vdata[24*4] __attribute__ ((aligned (64)));
uint32_t edata[20] __attribute__ ((aligned (64)));
uint32_t lane_hash[8] __attribute__ ((aligned (32)));
uint32_t *hash7 = &(hash[7<<2]);
uint32_t *pdata = work->data;
@@ -223,9 +222,7 @@ int scanhash_x17_4way( struct work *work, uint32_t max_nonce,
0xFFFFF000, 0xFFFF0000, 0 };
// Need big endian data
swab32_array( edata, pdata, 20 );
mm256_intrlv_4x64( vdata, edata, edata, edata, edata, 640 );
// mm256_bswap_intrlv80_4x64( vdata, pdata );
mm256_bswap32_intrlv80_4x64( vdata, pdata );
for ( int m = 0; m < 6; m++ ) if ( Htarg <= htmax[m] )
{
uint32_t mask = masks[ m ];
@@ -235,7 +232,7 @@ int scanhash_x17_4way( struct work *work, uint32_t max_nonce,
_mm256_set_epi32( n+3, 0, n+2, 0, n+1, 0, n, 0 ) ), *noncev );
x17_4way_hash( hash, vdata );
for ( int lane = 0; lane < 4; lane++ )
for ( int lane = 0; lane < 4; lane++ )
if ( ( hash7[ lane ] & mask ) == 0 )
{
extr_lane_4x32( lane_hash, hash, lane, 256 );

View File

@@ -71,7 +71,7 @@ void xevan_4way_hash( void *output, const void *input )
bmw512_4way_close( &ctx.bmw, vhash );
// Serial
mm256_dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, dataLen<<3 );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, dataLen<<3 );
init_groestl( &ctx.groestl, 64 );
update_and_final_groestl( &ctx.groestl, (char*)hash0, (char*)hash0,
@@ -87,7 +87,7 @@ void xevan_4way_hash( void *output, const void *input )
dataLen<<3 );
// Parallel 4way
mm256_intrlv_4x64( vhash, hash0, hash1, hash2, hash3, dataLen<<3 );
intrlv_4x64( vhash, hash0, hash1, hash2, hash3, dataLen<<3 );
skein512_4way_init( &ctx.skein );
skein512_4way( &ctx.skein, vhash, dataLen );
@@ -101,7 +101,7 @@ void xevan_4way_hash( void *output, const void *input )
keccak512_4way( &ctx.keccak, vhash, dataLen );
keccak512_4way_close( &ctx.keccak, vhash );
mm256_rintrlv_4x64_2x128( vhashA, vhashB, vhash, dataLen<<3 );
rintrlv_4x64_2x128( vhashA, vhashB, vhash, dataLen<<3 );
luffa_2way_init( &ctx.luffa, 512 );
luffa_2way_update_close( &ctx.luffa, vhashA, vhashA, dataLen );
@@ -123,8 +123,8 @@ void xevan_4way_hash( void *output, const void *input )
simd_2way_init( &ctx.simd, 512 );
simd_2way_update_close( &ctx.simd, vhashB, vhashB, dataLen<<3 );
mm256_dintrlv_2x128( hash0, hash1, vhashA, dataLen<<3 );
mm256_dintrlv_2x128( hash2, hash3, vhashB, dataLen<<3 );
dintrlv_2x128( hash0, hash1, vhashA, dataLen<<3 );
dintrlv_2x128( hash2, hash3, vhashB, dataLen<<3 );
init_echo( &ctx.echo, 512 );
update_final_echo( &ctx.echo, (BitSequence *)hash0,
@@ -139,13 +139,13 @@ void xevan_4way_hash( void *output, const void *input )
update_final_echo( &ctx.echo, (BitSequence *)hash3,
(const BitSequence *) hash3, dataLen<<3 );
// Parallel
mm256_intrlv_4x64( vhash, hash0, hash1, hash2, hash3, dataLen<<3 );
intrlv_4x64( vhash, hash0, hash1, hash2, hash3, dataLen<<3 );
hamsi512_4way_init( &ctx.hamsi );
hamsi512_4way( &ctx.hamsi, vhash, dataLen );
hamsi512_4way_close( &ctx.hamsi, vhash );
mm256_dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, dataLen<<3 );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, dataLen<<3 );
sph_fugue512_init( &ctx.fugue );
sph_fugue512( &ctx.fugue, hash0, dataLen );
@@ -183,19 +183,19 @@ void xevan_4way_hash( void *output, const void *input )
sph_whirlpool( &ctx.whirlpool, hash3, dataLen );
sph_whirlpool_close( &ctx.whirlpool, hash3 );
mm256_intrlv_4x64( vhash, hash0, hash1, hash2, hash3, dataLen<<3 );
intrlv_4x64( vhash, hash0, hash1, hash2, hash3, dataLen<<3 );
sha512_4way_init( &ctx.sha512 );
sha512_4way( &ctx.sha512, vhash, dataLen );
sha512_4way_close( &ctx.sha512, vhash );
mm256_rintrlv_4x64_4x32( vhashA, vhash, dataLen<<3 );
rintrlv_4x64_4x32( vhashA, vhash, dataLen<<3 );
haval256_5_4way_init( &ctx.haval );
haval256_5_4way( &ctx.haval, vhashA, dataLen );
haval256_5_4way_close( &ctx.haval, vhashA );
mm256_rintrlv_4x32_4x64( vhash, vhashA, dataLen<<3 );
rintrlv_4x32_4x64( vhash, vhashA, dataLen<<3 );
memset( &vhash[ 4<<2 ], 0, (dataLen-32) << 2 );
@@ -207,7 +207,7 @@ void xevan_4way_hash( void *output, const void *input )
bmw512_4way( &ctx.bmw, vhash, dataLen );
bmw512_4way_close( &ctx.bmw, vhash );
mm256_dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, dataLen<<3 );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, dataLen<<3 );
init_groestl( &ctx.groestl, 64 );
update_and_final_groestl( &ctx.groestl, (char*)hash0, (char*)hash0,
@@ -222,7 +222,7 @@ void xevan_4way_hash( void *output, const void *input )
update_and_final_groestl( &ctx.groestl, (char*)hash3, (char*)hash3,
dataLen<<3 );
mm256_intrlv_4x64( vhash, hash0, hash1, hash2, hash3, dataLen<<3 );
intrlv_4x64( vhash, hash0, hash1, hash2, hash3, dataLen<<3 );
skein512_4way_init( &ctx.skein );
skein512_4way( &ctx.skein, vhash, dataLen );
@@ -236,7 +236,7 @@ void xevan_4way_hash( void *output, const void *input )
keccak512_4way( &ctx.keccak, vhash, dataLen );
keccak512_4way_close( &ctx.keccak, vhash );
mm256_rintrlv_4x64_2x128( vhashA, vhashB, vhash, dataLen<<3 );
rintrlv_4x64_2x128( vhashA, vhashB, vhash, dataLen<<3 );
luffa_2way_init( &ctx.luffa, 512 );
luffa_2way_update_close( &ctx.luffa, vhashA, vhashA, dataLen );
@@ -258,8 +258,8 @@ void xevan_4way_hash( void *output, const void *input )
simd_2way_init( &ctx.simd, 512 );
simd_2way_update_close( &ctx.simd, vhashB, vhashB, dataLen<<3 );
mm256_dintrlv_2x128( hash0, hash1, vhashA, dataLen<<3 );
mm256_dintrlv_2x128( hash2, hash3, vhashB, dataLen<<3 );
dintrlv_2x128( hash0, hash1, vhashA, dataLen<<3 );
dintrlv_2x128( hash2, hash3, vhashB, dataLen<<3 );
init_echo( &ctx.echo, 512 );
update_final_echo( &ctx.echo, (BitSequence *)hash0,
@@ -274,13 +274,13 @@ void xevan_4way_hash( void *output, const void *input )
update_final_echo( &ctx.echo, (BitSequence *)hash3,
(const BitSequence *) hash3, dataLen<<3 );
mm256_intrlv_4x64( vhash, hash0, hash1, hash2, hash3, dataLen<<3 );
intrlv_4x64( vhash, hash0, hash1, hash2, hash3, dataLen<<3 );
hamsi512_4way_init( &ctx.hamsi );
hamsi512_4way( &ctx.hamsi, vhash, dataLen );
hamsi512_4way_close( &ctx.hamsi, vhash );
mm256_dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, dataLen<<3 );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, dataLen<<3 );
sph_fugue512_init( &ctx.fugue );
sph_fugue512( &ctx.fugue, hash0, dataLen );
@@ -316,13 +316,13 @@ void xevan_4way_hash( void *output, const void *input )
sph_whirlpool( &ctx.whirlpool, hash3, dataLen );
sph_whirlpool_close( &ctx.whirlpool, hash3 );
mm256_intrlv_4x64( vhash, hash0, hash1, hash2, hash3, dataLen<<3 );
intrlv_4x64( vhash, hash0, hash1, hash2, hash3, dataLen<<3 );
sha512_4way_init( &ctx.sha512 );
sha512_4way( &ctx.sha512, vhash, dataLen );
sha512_4way_close( &ctx.sha512, vhash );
mm256_rintrlv_4x64_4x32( vhashA, vhash, dataLen<<3 );
rintrlv_4x64_4x32( vhashA, vhash, dataLen<<3 );
haval256_5_4way_init( &ctx.haval );
haval256_5_4way( &ctx.haval, vhashA, dataLen );
@@ -332,9 +332,8 @@ void xevan_4way_hash( void *output, const void *input )
int scanhash_xevan_4way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t hash[4*8] __attribute__ ((aligned (64)));
uint32_t hash[4*16] __attribute__ ((aligned (64)));
uint32_t vdata[24*4] __attribute__ ((aligned (64)));
uint32_t edata[20] __attribute__ ((aligned (64)));
uint32_t lane_hash[8] __attribute__ ((aligned (32)));
uint32_t *hash7 = &(hash[7<<2]);
uint32_t *pdata = work->data;
@@ -349,9 +348,7 @@ int scanhash_xevan_4way( struct work *work, uint32_t max_nonce,
if ( opt_benchmark )
ptarget[7] = 0x0cff;
swab32_array( edata, pdata, 20 );
mm256_intrlv_4x64( vdata, edata, edata, edata, edata, 640 );
// mm256_bswap_intrlv80_4x64( vdata, pdata );
mm256_bswap32_intrlv80_4x64( vdata, pdata );
do {
*noncev = mm256_intrlv_blend_32( mm256_bswap_32(
_mm256_set_epi32( n+3, 0,n+2, 0,n+1, 0, n, 0 ) ), *noncev );

View File

@@ -399,15 +399,15 @@ int scanhash_yescrypt( struct work *work, uint32_t max_nonce,
be32enc(&endiandata[k], pdata[k]);
do {
be32enc(&endiandata[19], n);
yescrypt_hash((char*) endiandata, (char*) vhash, 80);
if (vhash[7] < Htarg && fulltest(vhash, ptarget)) {
work_set_target_ratio( work, vhash );
*hashes_done = n - first_nonce + 1;
pdata[19] = n;
return true;
}
n++;
be32enc(&endiandata[19], n);
yescrypt_hash((char*) endiandata, (char*) vhash, 80);
if (vhash[7] < Htarg && fulltest(vhash, ptarget )
&& !opt_benchmark )
{
pdata[19] = n;
submit_solution( work, vhash, mythr );
}
n++;
} while (n < max_nonce && !work_restart[thr_id].restart);
*hashes_done = n - first_nonce + 1;

View File

@@ -53,15 +53,15 @@ int scanhash_yespower( struct work *work, uint32_t max_nonce,
for (int k = 0; k < 19; k++)
be32enc(&endiandata[k], pdata[k]);
do {
be32enc(&endiandata[19], n);
yespower_hash((char*) endiandata, (char*) vhash, 80);
if (vhash[7] < Htarg && fulltest(vhash, ptarget)) {
work_set_target_ratio( work, vhash );
*hashes_done = n - first_nonce + 1;
pdata[19] = n;
return true;
}
n++;
be32enc(&endiandata[19], n);
yespower_hash((char*) endiandata, (char*) vhash, 80);
if ( vhash[7] < Htarg && fulltest( vhash, ptarget )
&& !opt_benchmark )
{
pdata[19] = n;
submit_solution( work, vhash, mythr );
}
n++;
} while (n < max_nonce && !work_restart[thr_id].restart);
*hashes_done = n - first_nonce + 1;

20
configure vendored
View File

@@ -1,6 +1,6 @@
#! /bin/sh
# Guess values for system-dependent variables and create Makefiles.
# Generated by GNU Autoconf 2.69 for cpuminer-opt 3.9.5.3.
# Generated by GNU Autoconf 2.69 for cpuminer-opt 3.9.6.
#
#
# Copyright (C) 1992-1996, 1998-2012 Free Software Foundation, Inc.
@@ -577,8 +577,8 @@ MAKEFLAGS=
# Identity of this package.
PACKAGE_NAME='cpuminer-opt'
PACKAGE_TARNAME='cpuminer-opt'
PACKAGE_VERSION='3.9.5.3'
PACKAGE_STRING='cpuminer-opt 3.9.5.3'
PACKAGE_VERSION='3.9.6'
PACKAGE_STRING='cpuminer-opt 3.9.6'
PACKAGE_BUGREPORT=''
PACKAGE_URL=''
@@ -1332,7 +1332,7 @@ if test "$ac_init_help" = "long"; then
# Omit some internal or obsolete options to make the list less imposing.
# This message is too long to be a string in the A/UX 3.1 sh.
cat <<_ACEOF
\`configure' configures cpuminer-opt 3.9.5.3 to adapt to many kinds of systems.
\`configure' configures cpuminer-opt 3.9.6 to adapt to many kinds of systems.
Usage: $0 [OPTION]... [VAR=VALUE]...
@@ -1404,7 +1404,7 @@ fi
if test -n "$ac_init_help"; then
case $ac_init_help in
short | recursive ) echo "Configuration of cpuminer-opt 3.9.5.3:";;
short | recursive ) echo "Configuration of cpuminer-opt 3.9.6:";;
esac
cat <<\_ACEOF
@@ -1509,7 +1509,7 @@ fi
test -n "$ac_init_help" && exit $ac_status
if $ac_init_version; then
cat <<\_ACEOF
cpuminer-opt configure 3.9.5.3
cpuminer-opt configure 3.9.6
generated by GNU Autoconf 2.69
Copyright (C) 2012 Free Software Foundation, Inc.
@@ -2012,7 +2012,7 @@ cat >config.log <<_ACEOF
This file contains any messages produced by compilers while
running configure, to aid debugging if configure makes a mistake.
It was created by cpuminer-opt $as_me 3.9.5.3, which was
It was created by cpuminer-opt $as_me 3.9.6, which was
generated by GNU Autoconf 2.69. Invocation command line was
$ $0 $@
@@ -2993,7 +2993,7 @@ fi
# Define the identity of the package.
PACKAGE='cpuminer-opt'
VERSION='3.9.5.3'
VERSION='3.9.6'
cat >>confdefs.h <<_ACEOF
@@ -6690,7 +6690,7 @@ cat >>$CONFIG_STATUS <<\_ACEOF || ac_write_fail=1
# report actual input values of CONFIG_FILES etc. instead of their
# values after options handling.
ac_log="
This file was extended by cpuminer-opt $as_me 3.9.5.3, which was
This file was extended by cpuminer-opt $as_me 3.9.6, which was
generated by GNU Autoconf 2.69. Invocation command line was
CONFIG_FILES = $CONFIG_FILES
@@ -6756,7 +6756,7 @@ _ACEOF
cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1
ac_cs_config="`$as_echo "$ac_configure_args" | sed 's/^ //; s/[\\""\`\$]/\\\\&/g'`"
ac_cs_version="\\
cpuminer-opt config.status 3.9.5.3
cpuminer-opt config.status 3.9.6
configured by $0, generated by GNU Autoconf 2.69,
with options \\"\$ac_cs_config\\"

View File

@@ -1,4 +1,4 @@
AC_INIT([cpuminer-opt], [3.9.5.3])
AC_INIT([cpuminer-opt], [3.9.6])
AC_PREREQ([2.59c])
AC_CANONICAL_SYSTEM

View File

@@ -1009,8 +1009,7 @@ static int share_result( int result, struct work *null_work,
sres, diffstr, share_time, accepted_share_count,
rejected_share_count, solved_block_count );
if ( have_stratum && result && my_stats.share_diff && my_stats.net_diff
&& !opt_quiet )
if ( have_stratum && result && !opt_quiet )
{
applog( LOG_NOTICE, "Miner %s %sH/s, Share %s, Latency %d ms.",
hr, hr_units, shr, latency );

38
miner.h
View File

@@ -313,6 +313,7 @@ void applog(int prio, const char *fmt, ...);
void restart_threads(void);
extern json_t *json_rpc_call( CURL *curl, const char *url, const char *userpass,
const char *rpc_req, int *curl_err, int flags );
extern void cbin2hex(char *out, const char *in, size_t len);
void bin2hex( char *s, const unsigned char *p, size_t len );
char *abin2hex( const unsigned char *p, size_t len );
bool hex2bin( unsigned char *p, const char *hexstr, size_t len );
@@ -330,6 +331,7 @@ extern void diff_to_target(uint32_t *target, double diff);
double hash_target_ratio( uint32_t* hash, uint32_t* target );
void work_set_target_ratio( struct work* work, uint32_t* hash );
void get_currentalgo( char* buf, int sz );
bool has_sha();
bool has_aes_ni();
@@ -363,6 +365,14 @@ struct work {
char *job_id;
size_t xnonce2_len;
unsigned char *xnonce2;
// x16rt
uint32_t merkleroothash[8];
uint32_t witmerkleroothash[8];
uint32_t denom10[8];
uint32_t denom100[8];
uint32_t denom1000[8];
uint32_t denom10000[8];
} __attribute__ ((aligned (64)));
struct stratum_job {
@@ -376,9 +386,15 @@ struct stratum_job {
unsigned char version[4];
unsigned char nbits[4];
unsigned char ntime[4];
bool clean;
double diff;
unsigned char extra[64];
bool clean;
// for x16rt
unsigned char extra[64];
unsigned char denom10[32];
unsigned char denom100[32];
unsigned char denom1000[32];
unsigned char denom10000[32];
unsigned char proofoffullnode[32];
} __attribute__ ((aligned (64)));
@@ -498,6 +514,7 @@ enum algos {
// ALGO_BLAKE2B,
ALGO_BLAKE2S,
ALGO_BMW,
ALGO_BMW512,
ALGO_C11,
ALGO_CRYPTOLIGHT,
ALGO_CRYPTONIGHT,
@@ -555,10 +572,13 @@ enum algos {
ALGO_X11GOST,
ALGO_X12,
ALGO_X13,
ALGO_X13BCD,
ALGO_X13SM3,
ALGO_X14,
ALGO_X15,
ALGO_X16R,
ALGO_X16RT,
ALGO_X16RT_VEIL,
ALGO_X16S,
ALGO_X17,
ALGO_XEVAN,
@@ -586,6 +606,7 @@ static const char* const algo_names[] = {
// "blake2b",
"blake2s",
"bmw",
"bmw512",
"c11",
"cryptolight",
"cryptonight",
@@ -643,10 +664,13 @@ static const char* const algo_names[] = {
"x11gost",
"x12",
"x13",
"x13bcd",
"x13sm3",
"x14",
"x15",
"x16r",
"x16rt",
"x16rt-veil",
"x16s",
"x17",
"xevan",
@@ -736,6 +760,7 @@ Options:\n\
blakecoin blake256r8\n\
blake2s Blake-2 S\n\
bmw BMW 256\n\
bmw512 BMW 512\n\
c11 Chaincoin\n\
cryptolight Cryptonight-light\n\
cryptonight Cryptonote legacy\n\
@@ -782,7 +807,7 @@ Options:\n\
skein2 Double Skein (Woodcoin)\n\
skunk Signatum (SIGT)\n\
sonoa Sono\n\
timetravel timeravel8, Machinecoin (MAC)\n\
timetravel timeravel8, Machinecoin (MAC)\n\
timetravel10 Bitcore (BTX)\n\
tribus Denarius (DNR)\n\
vanilla blake256r8vnl (VCash)\n\
@@ -794,20 +819,23 @@ Options:\n\
x11gost sib (SibCoin)\n\
x12 Galaxie Cash (GCH)\n\
x13 X13\n\
x13bcd bcd \n\
x13sm3 hsr (Hshare)\n\
x14 X14\n\
x15 X15\n\
x16r Ravencoin (RVN)\n\
x16rt Gincoin (GIN)\n\
x16rt-veil Veil (VEIL)\n\
x16s Pigeoncoin (PGN)\n\
x17\n\
xevan Bitsend (BSD)\n\
yescrypt Globlboost-Y (BSTY)\n\
yescrypt Globalboost-Y (BSTY)\n\
yescryptr8 BitZeny (ZNY)\n\
yescryptr16 Eli\n\
yescryptr32 WAVI\n\
yespower Cryply\n\
yespowerr16 Yenten (YTN)\n\
zr5 Ziftr\n\
zr5 Ziftr\n\
-o, --url=URL URL of mining server\n\
-O, --userpass=U:P username:password pair for mining server\n\
-u, --user=USERNAME username for mining server\n\

View File

@@ -175,32 +175,25 @@
// 64 bit vectors
#include "simd-utils/simd-64.h"
#include "simd-utils/intrlv-mmx.h"
//#include "simd-utils/intrlv-mmx.h"
#if defined(__SSE2__)
// 128 bit vectors
#include "simd-utils/simd-128.h"
#include "simd-utils/intrlv-sse2.h"
#if defined(__AVX__)
// 256 bit vector basics
#include "simd-utils/simd-256.h"
#include "simd-utils/intrlv-avx.h"
#if defined(__AVX2__)
// 256 bit everything else
//#include "simd-utils/simd-avx2.h"
#include "simd-utils/intrlv-avx2.h"
// Skylake-X has all these
#if defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
// 512 bit vectors
#include "simd-utils/simd-512.h"
#include "simd-utils/intrlv-avx512.h"
#endif // MMX
#endif // SSE2
@@ -208,7 +201,6 @@
#endif // AVX2
#endif // AVX512
// Picks implementation based on available CPU features.
#include "simd-utils/intrlv-selector.h"
#include "simd-utils/intrlv.h"
#endif // SIMD_UTILS_H__

View File

@@ -1,911 +0,0 @@
#if !defined(INTRLV_AVX_H__)
#define INTRLV_AVX_H__ 1
// philosophical discussion
//
// transitions:
//
// int32 <-> int64
// uint64_t = (uint64_t)int32_lo | ( (uint64_t)int32_hi << 32 )
// Efficient transition and post processing, 32 bit granularity is lost.
//
// int32 <-> m64
// More complex, 32 bit granularity maintained, limited number of mmx regs.
// int32 <-> int64 <-> m64 might be more efficient.
//
// int32 <-> m128
// Expensive, current implementation.
//
// int32 <-> m256
// Very expensive multi stage, current implementation.
//
// int64/m64 <-> m128
// Efficient, agnostic to native element size. Common.
//
// m128 <-> m256
// Expensive for a single instruction, unavoidable. Common.
//
// Multi stage options
//
// int32 <-> int64 -> m128
// More efficient than insert32, granularity maintained. Common.
//
// int64 <-> m128 -> m256
// Unavoidable, reasonably efficient. Common
//
// int32 <-> int64 -> m128 -> m256
// Seems inevitable, most efficient despite number of stages. Common.
//
// Implementation plan.
//
// 1. Complete m128 <-> m256
// 2. Implement int64 <-> m128
// 3. Combine int64 <-> m128 <-> m256
// 4. Implement int32 <-> int64 <-> m128
// 5. Combine int32 <-> int64 <-> m128 <-> m256
//
#if defined(__AVX__)
// Convenient short cuts for local use only
// Extract 64 bits from the low 128 bits of 256 bit vector.
#define extr64_cast128_256( a, n ) \
_mm_extract_epi64( _mm256_castsi256_si128( a ), n )
// Extract 32 bits from the low 128 bits of 256 bit vector.
#define extr32_cast128_256( a, n ) \
_mm_extract_epi32( _mm256_castsi256_si128( a ), n )
///////////////////////////////////////////////////////////
//
// AVX 256 Bit Vectors
//
// 256 bit interleaving can be done with AVX.
#define mm256_put_64( s0, s1, s2, s3) \
_mm256_set_epi64x( *((const uint64_t*)(s3)), *((const uint64_t*)(s2)), \
*((const uint64_t*)(s1)), *((const uint64_t*)(s0)) )
#define mm256_put_32( s00, s01, s02, s03, s04, s05, s06, s07 ) \
_mm256_set_epi32( *((const uint32_t*)(s07)), *((const uint32_t*)(s06)), \
*((const uint32_t*)(s05)), *((const uint32_t*)(s04)), \
*((const uint32_t*)(s03)), *((const uint32_t*)(s02)), \
*((const uint32_t*)(s01)), *((const uint32_t*)(s00)) )
#define mm256_get_64( s, i0, i1, i2, i3 ) \
_mm256_set_epi64x( ((const uint64_t*)(s))[i3], ((const uint64_t*)(s))[i2], \
((const uint64_t*)(s))[i1], ((const uint64_t*)(s))[i0] )
#define mm256_get_32( s, i0, i1, i2, i3, i4, i5, i6, i7 ) \
_mm256_set_epi32( ((const uint32_t*)(s))[i7], ((const uint32_t*)(s))[i6], \
((const uint32_t*)(s))[i5], ((const uint32_t*)(s))[i4], \
((const uint32_t*)(s))[i3], ((const uint32_t*)(s))[i2], \
((const uint32_t*)(s))[i1], ((const uint32_t*)(s))[i0] )
/*
// Blend 2 vectors alternating hi & lo: { hi[n], lo[n-1], ... hi[1], lo[0] }
#define mm256_intrlv_blend_128( hi, lo ) \
_mm256_blend_epi32( hi, lo, 0x0f )
#define mm256_intrlv_blend_64( hi, lo ) \
_mm256_blend_epi32( hi, lo, 0x33 )
#define mm256_intrlv_blend_32( hi, lo ) \
_mm256_blend_epi32( hi, lo, 0x55 )
*/
// Interleave 8x32_256
#define mm256_intrlv_8x32_256( d, s0, s1, s2, s3, s4, s5, s6, s7 ) \
{ \
__m128i s0hi = mm128_extr_hi128_256( s0 ); \
__m128i s1hi = mm128_extr_hi128_256( s1 ); \
__m128i s2hi = mm128_extr_hi128_256( s2 ); \
__m128i s3hi = mm128_extr_hi128_256( s3 ); \
__m128i s4hi = mm128_extr_hi128_256( s4 ); \
__m128i s5hi = mm128_extr_hi128_256( s5 ); \
__m128i s6hi = mm128_extr_hi128_256( s6 ); \
__m128i s7hi = mm128_extr_hi128_256( s7 ); \
casti_m256i( d,0 ) = _mm256_set_epi32( \
extr32_cast128_256(s7,0), extr32_cast128_256(s6,0), \
extr32_cast128_256(s5,0), extr32_cast128_256(s4,0), \
extr32_cast128_256(s3,0), extr32_cast128_256(s2,0), \
extr32_cast128_256(s1,0), extr32_cast128_256(s0,0) ); \
casti_m256i( d,1 ) = _mm256_set_epi32( \
extr32_cast128_256(s7,1), extr32_cast128_256(s6,1), \
extr32_cast128_256(s5,1), extr32_cast128_256(s4,1), \
extr32_cast128_256(s3,1), extr32_cast128_256(s2,1), \
extr32_cast128_256(s1,1), extr32_cast128_256(s0,1) ); \
casti_m256i( d,2 ) = _mm256_set_epi32( \
extr32_cast128_256(s7,2), extr32_cast128_256(s6,2), \
extr32_cast128_256(s5,2), extr32_cast128_256(s4,2), \
extr32_cast128_256(s3,2), extr32_cast128_256(s2,2), \
extr32_cast128_256(s1,2), extr32_cast128_256(s0,2) ); \
casti_m256i( d,3 ) = _mm256_set_epi32( \
extr32_cast128_256(s7,3), extr32_cast128_256(s6,3), \
extr32_cast128_256(s5,3), extr32_cast128_256(s4,3), \
extr32_cast128_256(s3,3), extr32_cast128_256(s2,3), \
extr32_cast128_256(s1,3), extr32_cast128_256(s0,3) ); \
casti_m256i( d,4 ) = _mm256_set_epi32( \
mm128_extr_32(s7hi,0), mm128_extr_32(s6hi,0), \
mm128_extr_32(s5hi,0), mm128_extr_32(s4hi,0), \
mm128_extr_32(s3hi,0), mm128_extr_32(s2hi,0), \
mm128_extr_32(s1hi,0), mm128_extr_32(s0hi,0) ); \
casti_m256i( d,5 ) = _mm256_set_epi32( \
mm128_extr_32(s7hi,1), mm128_extr_32(s6hi,1), \
mm128_extr_32(s5hi,1), mm128_extr_32(s4hi,1), \
mm128_extr_32(s3hi,1), mm128_extr_32(s2hi,1), \
mm128_extr_32(s1hi,1), mm128_extr_32(s0hi,1) ); \
casti_m256i( d,6 ) = _mm256_set_epi32( \
mm128_extr_32(s7hi,2), mm128_extr_32(s6hi,2), \
mm128_extr_32(s5hi,2), mm128_extr_32(s4hi,2), \
mm128_extr_32(s3hi,2), mm128_extr_32(s2hi,2), \
mm128_extr_32(s1hi,2), mm128_extr_32(s0hi,2) ); \
casti_m256i( d,7 ) = _mm256_set_epi32( \
mm128_extr_32(s7hi,3), mm128_extr_32(s6hi,3), \
mm128_extr_32(s5hi,3), mm128_extr_32(s4hi,3), \
mm128_extr_32(s3hi,3), mm128_extr_32(s2hi,3), \
mm128_extr_32(s1hi,3), mm128_extr_32(s0hi,3) ); \
} while(0)
#define mm256_intrlv_8x32_128( d, s0, s1, s2, s3, s4, s5, s6, s7 ) \
{ \
casti_m256i( d,0 ) = _mm256_set_epi32( \
mm128_extr_32(s7,0), mm128_extr_32(s6,0), \
mm128_extr_32(s5,0), mm128_extr_32(s4,0), \
mm128_extr_32(s3,0), mm128_extr_32(s2,0), \
mm128_extr_32(s1,0), mm128_extr_32(s0,0) ); \
casti_m256i( d,1 ) = _mm256_set_epi32( \
mm128_extr_32(s7,1), mm128_extr_32(s6,1), \
mm128_extr_32(s5,1), mm128_extr_32(s4,1), \
mm128_extr_32(s3,1), mm128_extr_32(s2,1), \
mm128_extr_32(s1,1), mm128_extr_32(s0,1) ); \
casti_m256i( d,2 ) = _mm256_set_epi32( \
mm128_extr_32(s7,2), mm128_extr_32(s6,2), \
mm128_extr_32(s5,2), mm128_extr_32(s4,2), \
mm128_extr_32(s3,2), mm128_extr_32(s2,2), \
mm128_extr_32(s1,2), mm128_extr_32(s0,2) ); \
casti_m256i( d,3 ) = _mm256_set_epi32( \
mm128_extr_32(s7,3), mm128_extr_32(s6,3), \
mm128_extr_32(s5,3), mm128_extr_32(s4,3), \
mm128_extr_32(s3,3), mm128_extr_32(s2,3), \
mm128_extr_32(s1,3), mm128_extr_32(s0,3) ); \
} while(0)
/*
#define mm256_bswap_intrlv_8x32_256( d, src ) \
do { \
__m256i s0 = mm256_bswap_32( src ); \
__m128i s1 = _mm256_extracti128_si256( s0, 1 ); \
casti_m256i( d, 0 ) = _mm256_set1_epi32( _mm_extract_epi32( \
_mm256_castsi256_si128( s0 ), 0 ) ); \
casti_m256i( d, 1 ) = _mm256_set1_epi32( _mm_extract_epi32( \
_mm256_castsi256_si128( s0 ), 1 ) ); \
casti_m256i( d, 2 ) = _mm256_set1_epi32( _mm_extract_epi32( \
_mm256_castsi256_si128( s0 ), 2 ) ); \
casti_m256i( d, 3 ) = _mm256_set1_epi32( _mm_extract_epi32( \
_mm256_castsi256_si128( s0 ), 3 ) ); \
casti_m256i( d, 4 ) = _mm256_set1_epi32( _mm_extract_epi32( s1, 0 ) ); \
casti_m256i( d, 5 ) = _mm256_set1_epi32( _mm_extract_epi32( s1, 1 ) ); \
casti_m256i( d, 6 ) = _mm256_set1_epi32( _mm_extract_epi32( s1, 2 ) ); \
casti_m256i( d, 7 ) = _mm256_set1_epi32( _mm_extract_epi32( s1, 3 ) ); \
} while(0)
#define mm256_bswap_intrlv_8x32_128( d, src ) \
do { \
__m128i ss = mm128_bswap_32( src ); \
casti_m256i( d, 0 ) = _mm256_set1_epi32( _mm_extract_epi32( ss, 0 ) ); \
casti_m256i( d, 1 ) = _mm256_set1_epi32( _mm_extract_epi32( ss, 1 ) ); \
casti_m256i( d, 2 ) = _mm256_set1_epi32( _mm_extract_epi32( ss, 2 ) ); \
casti_m256i( d, 3 ) = _mm256_set1_epi32( _mm_extract_epi32( ss, 3 ) ); \
} while(0)
*/
#define mm256_dintrlv_8x32_256( d0, d1, d2, d3, d4, d5, d6, d7, s ) \
do { \
__m256i s0 = casti_m256i(s,0); \
__m256i s1 = casti_m256i(s,1); \
__m256i s2 = casti_m256i(s,2); \
__m256i s3 = casti_m256i(s,3); \
__m256i s4 = casti_m256i(s,4); \
__m256i s5 = casti_m256i(s,5); \
__m256i s6 = casti_m256i(s,6); \
__m256i s7 = casti_m256i(s,7); \
__m128i s0hi = _mm256_extracti128_si256( s0, 1 ); \
__m128i s1hi = _mm256_extracti128_si256( s1, 1 ); \
__m128i s2hi = _mm256_extracti128_si256( s2, 1 ); \
__m128i s3hi = _mm256_extracti128_si256( s3, 1 ); \
__m128i s4hi = _mm256_extracti128_si256( s4, 1 ); \
__m128i s5hi = _mm256_extracti128_si256( s5, 1 ); \
__m128i s6hi = _mm256_extracti128_si256( s6, 1 ); \
__m128i s7hi = _mm256_extracti128_si256( s7, 1 ); \
d0 = _mm256_set_epi32( \
extr32_cast128_256( s7, 0 ), extr32_cast128_256( s6, 0 ), \
extr32_cast128_256( s5, 0 ), extr32_cast128_256( s4, 0 ), \
extr32_cast128_256( s3, 0 ), extr32_cast128_256( s2, 0 ), \
extr32_cast128_256( s1, 0 ), extr32_cast128_256( s0, 0 ) );\
d1 = _mm256_set_epi32( \
extr32_cast128_256( s7, 1 ), extr32_cast128_256( s6, 1 ), \
extr32_cast128_256( s5, 1 ), extr32_cast128_256( s4, 1 ), \
extr32_cast128_256( s3, 1 ), extr32_cast128_256( s2, 1 ), \
extr32_cast128_256( s1, 1 ), extr32_cast128_256( s0, 1 ) );\
d2 = _mm256_set_epi32( \
extr32_cast128_256( s7, 2 ), extr32_cast128_256( s6, 2 ), \
extr32_cast128_256( s5, 2 ), extr32_cast128_256( s4, 2 ), \
extr32_cast128_256( s3, 2 ), extr32_cast128_256( s2, 2 ), \
extr32_cast128_256( s1, 2 ), extr32_cast128_256( s0, 2 ) );\
d3 = _mm256_set_epi32( \
extr32_cast128_256( s7, 3 ), extr32_cast128_256( s6, 3 ), \
extr32_cast128_256( s5, 3 ), extr32_cast128_256( s4, 3 ), \
extr32_cast128_256( s3, 3 ), extr32_cast128_256( s2, 3 ), \
extr32_cast128_256( s1, 3 ), extr32_cast128_256( s0, 3 ) );\
d4 = _mm256_set_epi32( \
_mm_extract_epi32( s7hi, 0 ), _mm_extract_epi32( s6hi, 0 ), \
_mm_extract_epi32( s5hi, 0 ), _mm_extract_epi32( s4hi, 0 ), \
_mm_extract_epi32( s3hi, 0 ), _mm_extract_epi32( s2hi, 0 ), \
_mm_extract_epi32( s1hi, 0 ), _mm_extract_epi32( s0hi, 0 ) ); \
d5 = _mm256_set_epi32( \
_mm_extract_epi32( s7hi, 1 ), _mm_extract_epi32( s6hi, 1 ), \
_mm_extract_epi32( s5hi, 1 ), _mm_extract_epi32( s4hi, 1 ), \
_mm_extract_epi32( s3hi, 1 ), _mm_extract_epi32( s2hi, 1 ), \
_mm_extract_epi32( s1hi, 1 ), _mm_extract_epi32( s0hi, 1 ) ); \
d6 = _mm256_set_epi32( \
_mm_extract_epi32( s7hi, 2 ), _mm_extract_epi32( s6hi, 2 ), \
_mm_extract_epi32( s5hi, 2 ), _mm_extract_epi32( s4hi, 2 ), \
_mm_extract_epi32( s3hi, 2 ), _mm_extract_epi32( s2hi, 2 ), \
_mm_extract_epi32( s1hi, 2 ), _mm_extract_epi32( s0hi, 2 ) ); \
d7 = _mm256_set_epi32( \
_mm_extract_epi32( s7hi, 3 ), _mm_extract_epi32( s6hi, 3 ), \
_mm_extract_epi32( s5hi, 3 ), _mm_extract_epi32( s4hi, 3 ), \
_mm_extract_epi32( s3hi, 3 ), _mm_extract_epi32( s2hi, 3 ), \
_mm_extract_epi32( s1hi, 3 ), _mm_extract_epi32( s0hi, 3 ) ); \
} while(0)
#define mm128_dintrlv_8x32_128( d0, d1, d2, d3, d4, d5, d6, d7, s ) \
do { \
__m128i s0 = casti_m128i(s,0); \
__m128i s1 = casti_m128i(s,1); \
__m128i s2 = casti_m128i(s,2); \
__m128i s3 = casti_m128i(s,3); \
d0 = _mm_set_epi32( \
_mm_extract_epi32( s3, 0 ), _mm_extract_epi32( s2, 0 ), \
_mm_extract_epi32( s1, 0 ), _mm_extract_epi32( s0, 0 ) ); \
d1 = _mm_set_epi32( \
_mm_extract_epi32( s3, 1 ), _mm_extract_epi32( s2, 0 ), \
_mm_extract_epi32( s1, 1 ), _mm_extract_epi32( s0, 0 ) ); \
d2 = _mm_set_epi32( \
_mm_extract_epi32( s3, 0 ), _mm_extract_epi32( s2, 0 ), \
_mm_extract_epi32( s1, 0 ), _mm_extract_epi32( s0, 0 ) ); \
d3 = _mm_set_epi32( \
_mm_extract_epi32( s3, 0 ), _mm_extract_epi32( s2, 0 ), \
_mm_extract_epi32( s1, 0 ), _mm_extract_epi32( s0, 0 ) ); \
d4 = _mm_set_epi32( \
_mm_extract_epi32( s3, 0 ), _mm_extract_epi32( s2, 0 ), \
_mm_extract_epi32( s1, 0 ), _mm_extract_epi32( s0, 0 ) ); \
d5 = _mm_set_epi32( \
_mm_extract_epi32( s3, 0 ), _mm_extract_epi32( s2, 0 ), \
_mm_extract_epi32( s1, 0 ), _mm_extract_epi32( s0, 0 ) ); \
d6 = _mm_set_epi32( \
_mm_extract_epi32( s3, 0 ), _mm_extract_epi32( s2, 0 ), \
_mm_extract_epi32( s1, 0 ), _mm_extract_epi32( s0, 0 ) ); \
d7 = _mm_set_epi32( \
_mm_extract_epi32( s3, 0 ), _mm_extract_epi32( s2, 0 ), \
_mm_extract_epi32( s1, 0 ), _mm_extract_epi32( s0, 0 ) ); \
} while(0)
#define mm256_intrlv_4x64_256( d, s0, s1, s2, s3 ) \
do { \
__m128i s0hi = _mm256_extracti128_si256( s0, 1 ); \
__m128i s1hi = _mm256_extracti128_si256( s1, 1 ); \
__m128i s2hi = _mm256_extracti128_si256( s2, 1 ); \
__m128i s3hi = _mm256_extracti128_si256( s3, 1 ); \
casti_m256i( d,0 ) = _mm256_set_epi64x( \
extr64_cast128_256( s3, 0 ), extr64_cast128_256( s2, 0 ), \
extr64_cast128_256( s1, 0 ), extr64_cast128_256( s0, 0 ) ); \
casti_m256i( d,1 ) = _mm256_set_epi64x( \
extr64_cast128_256( s3, 1 ), extr64_cast128_256( s2, 1 ), \
extr64_cast128_256( s1, 1 ), extr64_cast128_256( s0, 1 ) ); \
casti_m256i( d,2 ) = _mm256_set_epi64x( \
_mm_extract_epi64( s3hi,0 ), _mm_extract_epi64( s2hi,0 ), \
_mm_extract_epi64( s1hi,0 ), _mm_extract_epi64( s0hi,0 ) ); \
casti_m256i( d,3 ) = _mm256_set_epi64x( \
_mm_extract_epi64( s3hi,1 ), _mm_extract_epi64( s2hi,1 ), \
_mm_extract_epi64( s1hi,1 ), _mm_extract_epi64( s0hi,1 ) ); \
} while(0)
#define mm256_intrlv_4x64_128( d, s0, s1, s2, s3 ) \
do { \
casti_m256i( d,0 ) = _mm256_set_epi64x( \
_mm_extract_epi64( s3, 0 ), _mm_extract_epi64( s2, 0 ), \
_mm_extract_epi64( s1, 0 ), _mm_extract_epi64( s0, 0 ) ); \
casti_m256i( d,1 ) = _mm256_set_epi64x( \
_mm_extract_epi64( s3, 1 ), _mm_extract_epi64( s2, 1 ), \
_mm_extract_epi64( s1, 1 ), _mm_extract_epi64( s0, 1 ) ); \
} while(0)
/*
#define mm256_bswap_intrlv_4x64_256( d, src ) \
do { \
__m256i s0 = mm256_bswap_32( src ); \
__m128i s1 = _mm256_extracti128_si256( s0, 1 ); \
casti_m256i( d,0 ) = _mm256_set1_epi64x( _mm_extract_epi64( \
_mm256_castsi256_si128( s0 ), 0 ) ); \
casti_m256i( d,1 ) = _mm256_set1_epi64x( _mm_extract_epi64( \
_mm256_castsi256_si128( s0 ), 1 ) ); \
casti_m256i( d,2 ) = _mm256_set1_epi64x( _mm_extract_epi64( s1, 0 ) ); \
casti_m256i( d,3 ) = _mm256_set1_epi64x( _mm_extract_epi64( s1, 1 ) ); \
} while(0)
#define mm256_bswap_intrlv_4x64_128( d, src ) \
do { \
__m128i ss = mm128_bswap_32( src ); \
casti_m256i( d,0 ) = _mm256_set1_epi64x( _mm_extract_epi64( ss, 0 ) ); \
casti_m256i( d,1 ) = _mm256_set1_epi64x( _mm_extract_epi64( ss, 1 ) ); \
} while(0)
*/
// 4 lanes of 256 bits using 64 bit interleaving (standard final hash size)
static inline void mm256_dintrlv_4x64_256( void *d0, void *d1, void *d2,
void *d3, const int n, const void *src )
{
__m256i s0 = *( (__m256i*) src ); // s[0][1:0]
__m256i s1 = *( (__m256i*)(src+32) ); // s[1][1:0]
__m256i s2 = *( (__m256i*)(src+64) ); // s[2][1:0]
__m256i s3 = *( (__m256i*)(src+96) ); // s[3][2:0]
__m128i s0hi = _mm256_extracti128_si256( s0, 1 ); // s[0][3:2]
__m128i s1hi = _mm256_extracti128_si256( s1, 1 ); // s[1][3:2]
__m128i s2hi = _mm256_extracti128_si256( s2, 1 ); // s[2][3:2]
__m128i s3hi = _mm256_extracti128_si256( s3, 1 ); // s[3][3:2]
casti_m256i( d0,n ) = _mm256_set_epi64x(
extr64_cast128_256( s3, 0 ), extr64_cast128_256( s2, 0 ),
extr64_cast128_256( s1, 0 ), extr64_cast128_256( s0, 0 ) );
casti_m256i( d1,n ) = _mm256_set_epi64x(
extr64_cast128_256( s3, 1 ), extr64_cast128_256( s2, 1 ),
extr64_cast128_256( s1, 1 ), extr64_cast128_256( s0, 1 ) );
casti_m256i( d2,n ) = _mm256_set_epi64x(
_mm_extract_epi64( s3hi, 0 ), _mm_extract_epi64( s2hi, 0 ),
_mm_extract_epi64( s1hi, 0 ), _mm_extract_epi64( s0hi, 0 ) );
casti_m256i( d3,n ) = _mm256_set_epi64x(
_mm_extract_epi64( s3hi, 1 ), _mm_extract_epi64( s2hi, 1 ),
_mm_extract_epi64( s1hi, 1 ), _mm_extract_epi64( s0hi, 1 ) );
}
// quarter avx2 block, 16 bytes * 4 lanes
// 4 lanes of 128 bits using 64 bit interleaving
// Used for last 16 bytes of 80 byte input, only used for testing.
static inline void mm128_dintrlv_4x64_128( void *d0, void *d1, void *d2,
void *d3, const int n, const void *src )
{
__m256i s0 = *( (__m256i*) src );
__m256i s1 = *( (__m256i*)(src+32) );
__m128i s0hi = _mm256_extracti128_si256( s0, 1 );
__m128i s1hi = _mm256_extracti128_si256( s1, 1 );
casti_m128i( d0,n ) = _mm_set_epi64x( extr64_cast128_256( s1 , 0 ),
extr64_cast128_256( s0 , 0 ) );
casti_m128i( d1,n ) = _mm_set_epi64x( extr64_cast128_256( s1 , 1 ),
extr64_cast128_256( s0 , 1 ) );
casti_m128i( d2,n ) = _mm_set_epi64x( _mm_extract_epi64( s1hi, 0 ),
_mm_extract_epi64( s0hi, 0 ) );
casti_m128i( d3,n ) = _mm_set_epi64x( _mm_extract_epi64( s1hi, 1 ),
_mm_extract_epi64( s0hi, 1 ) );
}
/*
static inline void mm256_dintrlv_2x128x256( void *d0, void *d1,
const int n, const void *s )
{
casti_m256i( d0,n ) = mm256_get_64( s, 0, 1, 4, 5 );
casti_m256i( d1,n ) = mm256_get_64( s, 2, 3, 6, 7 );
}
*/
//
#define mm256_intrlv_4x32_256( d, s0, s1, s2, s3 ) \
do { \
casti_m256i( d,0 ) = _mm256_set_epi32( \
mm128_extr_32( s3, 1 ), mm128_extr_32( s2, 1 ), \
mm128_extr_32( s1, 1 ), mm128_extr_32( s0, 1 ), \
mm128_extr_32( s3, 0 ), mm128_extr_32( s2, 0 ), \
mm128_extr_32( s1, 0 ), mm128_extr_32( s0, 0 ) ); \
casti_m256i( d,1 ) = _mm256_set_epi32( \
mm128_extr_32( s3, 3 ), mm128_extr_32( s2, 3 ), \
mm128_extr_32( s1, 3 ), mm128_extr_32( s0, 3 ), \
mm128_extr_32( s3, 2 ), mm128_extr_32( s2, 2 ), \
mm128_extr_32( s1, 2 ), mm128_extr_32( s0, 2 ) ); \
casti_m256i( d,2 ) = _mm256_set_epi32( \
mm128_extr_32( s3, 5 ), mm128_extr_32( s2, 5 ), \
mm128_extr_32( s1, 5 ), mm128_extr_32( s0, 5 ), \
mm128_extr_32( s3, 4 ), mm128_extr_32( s2, 4 ), \
mm128_extr_32( s1, 4 ), mm128_extr_32( s0, 4 ) ); \
casti_m256i( d,3 ) = _mm256_set_epi32( \
mm128_extr_32( s3, 7 ), mm128_extr_32( s2, 7 ), \
mm128_extr_32( s1, 7 ), mm128_extr_32( s0, 7 ), \
mm128_extr_32( s3, 6 ), mm128_extr_32( s2, 6 ), \
mm128_extr_32( s1, 6 ), mm128_extr_32( s0, 6 ) ); \
} while(0)
// 256 bit versions of commmon 128 bit functions.
static inline void mm256_intrlv_4x32( void *d, const void *s0,
const void *s1, const void *s2, const void *s3, int bit_len )
{
mm256_intrlv_4x32_256( d ,casti_m256i(s0,0), casti_m256i(s1,0),
casti_m256i(s2,0), casti_m256i(s3,0) );
if ( bit_len <= 256 ) return;
mm256_intrlv_4x32_256( d+128 ,casti_m256i(s0,1), casti_m256i(s1,1),
casti_m256i(s2,1), casti_m256i(s3,1) );
if ( bit_len <= 512 ) return;
if ( bit_len <= 640 )
{
mm128_intrlv_4x32_128( d+256, casti_m128i(s0,4), casti_m128i(s1,4),
casti_m128i(s2,4), casti_m128i(s3,4) );
return;
}
mm256_intrlv_4x32_256( d+256 ,casti_m256i(s0,2), casti_m256i(s1,2),
casti_m256i(s2,2), casti_m256i(s3,2) );
mm256_intrlv_4x32_256( d+384 ,casti_m256i(s0,3), casti_m256i(s1,3),
casti_m256i(s2,3), casti_m256i(s3,3) );
}
static inline void mm256_dintrlv_4x32_256( void *d0, void *d1, void *d2,
void *d3, const void *src )
{
__m256i s0 = *(__m256i*) src;
__m256i s1 = *(__m256i*)(src+32);
__m256i s2 = *(__m256i*)(src+64);
__m256i s3 = *(__m256i*)(src+96);
*(__m256i*)d0 = _mm256_set_epi32(
_mm256_extract_epi32( s3,4 ), _mm256_extract_epi32( s3,0 ),
_mm256_extract_epi32( s2,4 ), _mm256_extract_epi32( s2,0 ),
_mm256_extract_epi32( s1,4 ), _mm256_extract_epi32( s1,0 ),
_mm256_extract_epi32( s0,4 ), _mm256_extract_epi32( s0,0 ) );
*(__m256i*)d1 = _mm256_set_epi32(
_mm256_extract_epi32( s3,5 ), _mm256_extract_epi32( s3,1 ),
_mm256_extract_epi32( s2,5 ), _mm256_extract_epi32( s2,1 ),
_mm256_extract_epi32( s1,5 ), _mm256_extract_epi32( s1,1 ),
_mm256_extract_epi32( s0,5 ), _mm256_extract_epi32( s0,1 ) );
*(__m256i*)d2 = _mm256_set_epi32(
_mm256_extract_epi32( s3,6 ), _mm256_extract_epi32( s3,2 ),
_mm256_extract_epi32( s2,6 ), _mm256_extract_epi32( s2,2 ),
_mm256_extract_epi32( s1,6 ), _mm256_extract_epi32( s1,2 ),
_mm256_extract_epi32( s0,6 ), _mm256_extract_epi32( s0,2 ) );
*(__m256i*)d3 = _mm256_set_epi32(
_mm256_extract_epi32( s3,7 ), _mm256_extract_epi32( s3,3 ),
_mm256_extract_epi32( s2,7 ), _mm256_extract_epi32( s2,3 ),
_mm256_extract_epi32( s1,7 ), _mm256_extract_epi32( s1,3 ),
_mm256_extract_epi32( s0,7 ), _mm256_extract_epi32( s0,3 ) );
}
static inline void mm256_dintrlv_4x32( void *d0, void *d1, void *d2,
void *d3, const void *s, int bit_len )
{
mm256_dintrlv_4x32_256( d0 , d1 , d2 , d3 , s );
if ( bit_len <= 256 ) return;
mm256_dintrlv_4x32_256( d0+ 32, d1+ 32, d2+ 32, d3+ 32, s+128 );
if ( bit_len <= 512 ) return;
if ( bit_len <= 640 )
{
mm128_dintrlv_4x32_128( d0+ 64, d1+ 64, d2+ 64, d3+ 64, s+256 );
return;
}
mm256_dintrlv_4x32_256( d0+ 64, d1+ 64, d2+ 64, d3+ 64, s+256 );
mm256_dintrlv_4x32_256( d0+ 96, d1+ 96, d2+ 96, d3+ 96, s+384 );
}
static inline void mm256_extr_lane_4x32( void *d, const void *s,
const int lane, const int bit_len )
{
casti_m256i( d, 0 ) = mm256_get_32( s, lane , lane+ 4, lane+ 8, lane+12,
lane+16, lane+20, lane+24, lane+28 );
if ( bit_len <= 256 ) return;
casti_m256i( d, 1 ) = mm256_get_32( s, lane+32, lane+36, lane+40, lane+44,
lane+48, lane+52, lane+56, lane+60 );
}
// Interleave 8 source buffers containing 32 bit data into the destination
// vector
static inline void mm256_intrlv_8x32( void *d, const void *s0,
const void *s1, const void *s2, const void *s3, const void *s4,
const void *s5, const void *s6, const void *s7, int bit_len )
{
mm256_intrlv_8x32_256( d , casti_m256i( s0,0 ), casti_m256i( s1,0 ),
casti_m256i( s2,0 ), casti_m256i( s3,0 ), casti_m256i( s4,0 ),
casti_m256i( s5,0 ), casti_m256i( s6,0 ), casti_m256i( s7,0 ) );
if ( bit_len <= 256 ) return;
mm256_intrlv_8x32_256( d+256, casti_m256i( s0,1 ), casti_m256i( s1,1 ),
casti_m256i( s2,1 ), casti_m256i( s3,1 ), casti_m256i( s4,1 ),
casti_m256i( s5,1 ), casti_m256i( s6,1 ), casti_m256i( s7,1 ) );
if ( bit_len <= 512 ) return;
if ( bit_len <= 640 )
{
mm256_intrlv_8x32_128( d+512, casti_m128i( s0,4 ), casti_m128i( s1,4 ),
casti_m128i( s2,4 ), casti_m128i( s3,4 ), casti_m128i( s4,4 ),
casti_m128i( s5,4 ), casti_m128i( s6,4 ), casti_m128i( s7,4 ) );
return;
}
mm256_intrlv_8x32_256( d+512, casti_m256i( s0,2 ), casti_m256i( s1,2 ),
casti_m256i( s2,2 ), casti_m256i( s3,2 ), casti_m256i( s4,2 ),
casti_m256i( s5,2 ), casti_m256i( s6,2 ), casti_m256i( s7,2 ) );
mm256_intrlv_8x32_256( d+768, casti_m256i( s0,3 ), casti_m256i( s1,3 ),
casti_m256i( s2,3 ), casti_m256i( s3,3 ), casti_m256i( s4,3 ),
casti_m256i( s5,3 ), casti_m256i( s6,3 ), casti_m256i( s7,3 ) );
// bit_len == 1024
}
// A couple of mining specifi functions.
/*
// Interleave 80 bytes of 32 bit data for 8 lanes.
static inline void mm256_bswap_intrlv80_8x32( void *d, const void *s )
{
mm256_bswap_intrlv_8x32_256( d , casti_m256i( s, 0 ) );
mm256_bswap_intrlv_8x32_256( d+256, casti_m256i( s, 1 ) );
mm256_bswap_intrlv_8x32_128( d+512, casti_m128i( s, 4 ) );
}
*/
// Deinterleave 8 buffers of 32 bit data from the source buffer.
// Sub-function can be called directly for 32 byte final hash.
static inline void mm256_dintrlv_8x32( void *d0, void *d1, void *d2,
void *d3, void *d4, void *d5, void *d6, void *d7,
const void *s, int bit_len )
{
mm256_dintrlv_8x32_256( casti_m256i(d0,0), casti_m256i(d1,0),
casti_m256i(d2,0), casti_m256i(d3,0), casti_m256i(d4,0),
casti_m256i(d5,0), casti_m256i(d6,0), casti_m256i(d7,0), s );
if ( bit_len <= 256 ) return;
mm256_dintrlv_8x32_256( casti_m256i(d0,1), casti_m256i(d1,1),
casti_m256i(d2,1), casti_m256i(d3,1), casti_m256i(d4,1),
casti_m256i(d5,1), casti_m256i(d6,1), casti_m256i(d7,1), s+256 );
if ( bit_len <= 512 ) return;
// short block, final 16 bytes of input data
if ( bit_len <= 640 )
{
mm128_dintrlv_8x32_128( casti_m128i(d0,2), casti_m128i(d1,2),
casti_m128i(d2,2), casti_m128i(d3,2), casti_m128i(d4,2),
casti_m128i(d5,2), casti_m128i(d6,2), casti_m128i(d7,2), s+512 );
return;
}
// bitlen == 1024
mm256_dintrlv_8x32_256( casti_m256i(d0,2), casti_m256i(d1,2),
casti_m256i(d2,2), casti_m256i(d3,2), casti_m256i(d4,2),
casti_m256i(d5,2), casti_m256i(d6,2), casti_m256i(d7,2), s+512 );
mm256_dintrlv_8x32_256( casti_m256i(d0,3), casti_m256i(d1,3),
casti_m256i(d2,3), casti_m256i(d3,3), casti_m256i(d4,3),
casti_m256i(d5,3), casti_m256i(d6,3), casti_m256i(d7,3), s+768 );
}
static inline void mm256_extr_lane_8x32( void *d, const void *s,
const int lane, const int bit_len )
{
casti_m256i( d,0 ) = mm256_get_32(s, lane , lane+ 8, lane+ 16, lane+ 24,
lane+32, lane+ 40, lane+ 48, lane+ 56 );
if ( bit_len <= 256 ) return;
casti_m256i( d,1 ) = mm256_get_32(s, lane+64, lane+ 72, lane+ 80, lane+ 88,
lane+96, lane+104, lane+112, lane+120 );
// bit_len == 512
}
// Interleave 4 source buffers containing 64 bit data into the destination
// buffer. Only bit_len 256, 512, 640 & 1024 are supported.
static inline void mm256_intrlv_4x64( void *d, const void *s0,
const void *s1, const void *s2, const void *s3, int bit_len )
{
mm256_intrlv_4x64_256( d , casti_m256i(s0,0), casti_m256i(s1,0),
casti_m256i(s2,0), casti_m256i(s3,0) );
if ( bit_len <= 256 ) return;
mm256_intrlv_4x64_256( d+128, casti_m256i(s0,1), casti_m256i(s1,1),
casti_m256i(s2,1), casti_m256i(s3,1) );
if ( bit_len <= 512 ) return;
if ( bit_len <= 640 )
{
mm256_intrlv_4x64_128( d+256, casti_m128i(s0,4), casti_m128i(s1,4),
casti_m128i(s2,4), casti_m128i(s3,4) );
return;
}
// bit_len == 1024
mm256_intrlv_4x64_256( d+256, casti_m256i(s0,2), casti_m256i(s1,2),
casti_m256i(s2,2), casti_m256i(s3,2) );
mm256_intrlv_4x64_256( d+384, casti_m256i(s0,3), casti_m256i(s1,3),
casti_m256i(s2,3), casti_m256i(s3,3) );
}
/*
// Interleave 80 bytes of 32 bit data for 8 lanes.
static inline void mm256_bswap_intrlv80_4x64( void *d, const void *s )
{
mm256_bswap_intrlv_4x64_256( d , casti_m256i( s, 0 ) );
mm256_bswap_intrlv_4x64_256( d+128, casti_m256i( s, 1 ) );
mm256_bswap_intrlv_4x64_128( d+256, casti_m128i( s, 4 ) );
}
// Blend 32 byte lanes of hash from 2 sources according to control mask.
// macro due to 256 bit value arg.
#define mm256_blend_hash_4x64( dst, a, b, mask ) \
do { \
dst[0] = _mm256_blendv_epi8( a[0], b[0], mask ); \
dst[1] = _mm256_blendv_epi8( a[1], b[1], mask ); \
dst[2] = _mm256_blendv_epi8( a[2], b[2], mask ); \
dst[3] = _mm256_blendv_epi8( a[3], b[3], mask ); \
dst[4] = _mm256_blendv_epi8( a[4], b[4], mask ); \
dst[5] = _mm256_blendv_epi8( a[5], b[5], mask ); \
dst[6] = _mm256_blendv_epi8( a[6], b[6], mask ); \
dst[7] = _mm256_blendv_epi8( a[7], b[7], mask ); \
} while(0)
*/
// Deinterleave 4 buffers of 64 bit data from the source buffer.
// bit_len must be 256, 512, 640 or 1024 bits.
// Requires overrun padding for 640 bit len.
static inline void mm256_dintrlv_4x64( void *d0, void *d1, void *d2,
void *d3, const void *s, int bit_len )
{
mm256_dintrlv_4x64_256( d0, d1, d2, d3, 0, s );
if ( bit_len <= 256 ) return;
mm256_dintrlv_4x64_256( d0, d1, d2, d3, 1, s+128 );
if ( bit_len <= 512 ) return;
// short block, final 16 bytes of input data
if ( bit_len <= 640 )
{
mm128_dintrlv_4x64_128( d0, d1, d2, d3, 4, s+256 );
return;
}
// bit_len == 1024
mm256_dintrlv_4x64_256( d0, d1, d2, d3, 2, s+256 );
mm256_dintrlv_4x64_256( d0, d1, d2, d3, 3, s+384 );
}
// extract and deinterleave specified lane.
#define mm256_extr_lane_4x64_256 \
casti_m256i( d, 0 ) = mm256_get_64( s, lane, lane+4, lane+8, lane+12 )
static inline void mm256_extr_lane_4x64( void *d, const void *s,
const int lane, const int bit_len )
{
casti_m256i( d, 0 ) = mm256_get_64( s, lane, lane+4, lane+8, lane+12 );
if ( bit_len <= 256 ) return;
casti_m256i( d, 1 ) = mm256_get_64( s, lane+16, lane+20, lane+24, lane+28 );
return;
}
// Convert from 4x32 SSE2 interleaving to 4x64 AVX2.
// Can't do it in place
static inline void mm256_rintrlv_4x32_4x64( void *dst, void *src,
int bit_len )
{
__m256i* d = (__m256i*)dst;
uint32_t *s = (uint32_t*)src;
d[0] = _mm256_set_epi32( s[ 7],s[ 3],s[ 6],s[ 2],s[ 5],s[ 1],s[ 4],s[ 0] );
d[1] = _mm256_set_epi32( s[15],s[11],s[14],s[10],s[13],s[ 9],s[12],s[ 8] );
d[2] = _mm256_set_epi32( s[23],s[19],s[22],s[18],s[21],s[17],s[20],s[16] );
d[3] = _mm256_set_epi32( s[31],s[27],s[30],s[26],s[29],s[25],s[28],s[24] );
if ( bit_len <= 256 ) return;
d[4] = _mm256_set_epi32( s[39],s[35],s[38],s[34],s[37],s[33],s[36],s[32] );
d[5] = _mm256_set_epi32( s[47],s[43],s[46],s[42],s[45],s[41],s[44],s[40] );
d[6] = _mm256_set_epi32( s[55],s[51],s[54],s[50],s[53],s[49],s[52],s[48] );
d[7] = _mm256_set_epi32( s[63],s[59],s[62],s[58],s[61],s[57],s[60],s[56] );
if ( bit_len <= 512 ) return;
d[8] = _mm256_set_epi32( s[71],s[67],s[70],s[66],s[69],s[65],s[68],s[64] );
d[9] = _mm256_set_epi32( s[79],s[75],s[78],s[74],s[77],s[73],s[76],s[72] );
if ( bit_len <= 640 ) return;
d[10] = _mm256_set_epi32(s[87],s[83],s[86],s[82],s[85],s[81],s[84],s[80]);
d[11] = _mm256_set_epi32(s[95],s[91],s[94],s[90],s[93],s[89],s[92],s[88]);
d[12] = _mm256_set_epi32(s[103],s[99],s[102],s[98],s[101],s[97],s[100],s[96]);
d[13] = _mm256_set_epi32(s[111],s[107],s[110],s[106],s[109],s[105],s[108],s[104]);
d[14] = _mm256_set_epi32(s[119],s[115],s[118],s[114],s[117],s[113],s[116],s[112]);
d[15] = _mm256_set_epi32(s[127],s[123],s[126],s[122],s[125],s[121],s[124],s[120]);
// bit_len == 1024
}
// Convert 4x64 byte (256 bit) vectors to 4x32 (128 bit) vectors for AVX
// bit_len must be multiple of 64
static inline void mm256_rintrlv_4x64_4x32( void *dst, void *src,
int bit_len )
{
__m256i *d = (__m256i*)dst;
uint32_t *s = (uint32_t*)src;
d[0] = _mm256_set_epi32( s[ 7],s[ 5],s[ 3],s[ 1],s[ 6],s[ 4],s[ 2],s[ 0] );
d[1] = _mm256_set_epi32( s[15],s[13],s[11],s[ 9],s[14],s[12],s[10],s[ 8] );
d[2] = _mm256_set_epi32( s[23],s[21],s[19],s[17],s[22],s[20],s[18],s[16] );
d[3] = _mm256_set_epi32( s[31],s[29],s[27],s[25],s[30],s[28],s[26],s[24] );
if ( bit_len <= 256 ) return;
d[4] = _mm256_set_epi32( s[39],s[37],s[35],s[33],s[38],s[36],s[34],s[32] );
d[5] = _mm256_set_epi32( s[47],s[45],s[43],s[41],s[46],s[44],s[42],s[40] );
d[6] = _mm256_set_epi32( s[55],s[53],s[51],s[49],s[54],s[52],s[50],s[48] );
d[7] = _mm256_set_epi32( s[63],s[61],s[59],s[57],s[62],s[60],s[58],s[56] );
if ( bit_len <= 512 ) return;
d[8] = _mm256_set_epi32( s[71],s[69],s[67],s[65],s[70],s[68],s[66],s[64] );
d[9] = _mm256_set_epi32( s[79],s[77],s[75],s[73],s[78],s[76],s[74],s[72] );
if ( bit_len <= 640 ) return;
d[10] = _mm256_set_epi32( s[87],s[85],s[83],s[81],s[86],s[84],s[82],s[80] );
d[11] = _mm256_set_epi32( s[95],s[93],s[91],s[89],s[94],s[92],s[90],s[88] );
d[12] = _mm256_set_epi32( s[103],s[101],s[99],s[97],s[102],s[100],s[98],s[96] );
d[13] = _mm256_set_epi32( s[111],s[109],s[107],s[105],s[110],s[108],s[106],s[104] );
d[14] = _mm256_set_epi32( s[119],s[117],s[115],s[113],s[118],s[116],s[114],s[112] );
d[15] = _mm256_set_epi32( s[127],s[125],s[123],s[121],s[126],s[124],s[122],s[120] );
// bit_len == 1024
}
static inline void mm256_rintrlv_4x64_2x128( void *dst0, void *dst1,
const void *src, int bit_len )
{
__m256i* d0 = (__m256i*)dst0;
__m256i* d1 = (__m256i*)dst1;
uint64_t *s = (uint64_t*)src;
d0[0] = _mm256_set_epi64x( s[ 5], s[ 1], s[ 4], s[ 0] );
d1[0] = _mm256_set_epi64x( s[ 7], s[ 3], s[ 6], s[ 2] );
d0[1] = _mm256_set_epi64x( s[13], s[ 9], s[12], s[ 8] );
d1[1] = _mm256_set_epi64x( s[15], s[11], s[14], s[10] );
if ( bit_len <= 256 ) return;
d0[2] = _mm256_set_epi64x( s[21], s[17], s[20], s[16] );
d1[2] = _mm256_set_epi64x( s[23], s[19], s[22], s[18] );
d0[3] = _mm256_set_epi64x( s[29], s[25], s[28], s[24] );
d1[3] = _mm256_set_epi64x( s[31], s[27], s[30], s[26] );
if ( bit_len <= 512 ) return;
d0[4] = _mm256_set_epi64x( s[37], s[33], s[36], s[32] );
d1[4] = _mm256_set_epi64x( s[39], s[35], s[38], s[34] );
d0[5] = _mm256_set_epi64x( s[45], s[41], s[44], s[40] );
d1[5] = _mm256_set_epi64x( s[47], s[43], s[46], s[42] );
d0[6] = _mm256_set_epi64x( s[53], s[49], s[52], s[48] );
d1[6] = _mm256_set_epi64x( s[55], s[51], s[54], s[50] );
d0[7] = _mm256_set_epi64x( s[61], s[57], s[60], s[56] );
d1[7] = _mm256_set_epi64x( s[63], s[59], s[62], s[58] );
}
static inline void mm256_rintrlv_2x128_4x64( void *dst, const void *src0,
const void *src1, int bit_len )
{
__m256i* d = (__m256i*)dst;
uint64_t *s0 = (uint64_t*)src0;
uint64_t *s1 = (uint64_t*)src1;
d[ 0] = _mm256_set_epi64x( s1[2], s1[0], s0[2], s0[0] );
d[ 1] = _mm256_set_epi64x( s1[3], s1[1], s0[3], s0[1] );
d[ 2] = _mm256_set_epi64x( s1[6], s1[4], s0[6], s0[4] );
d[ 3] = _mm256_set_epi64x( s1[7], s1[5], s0[7], s0[5] );
if ( bit_len <= 256 ) return;
d[ 4] = _mm256_set_epi64x( s1[10], s1[ 8], s0[10], s0[ 8] );
d[ 5] = _mm256_set_epi64x( s1[11], s1[ 9], s0[11], s0[ 9] );
d[ 6] = _mm256_set_epi64x( s1[14], s1[12], s0[14], s0[12] );
d[ 7] = _mm256_set_epi64x( s1[15], s1[13], s0[15], s0[13] );
if ( bit_len <= 512 ) return;
d[ 8] = _mm256_set_epi64x( s1[18], s1[16], s0[18], s0[16] );
d[ 9] = _mm256_set_epi64x( s1[19], s1[17], s0[19], s0[17] );
d[10] = _mm256_set_epi64x( s1[22], s1[20], s0[22], s0[20] );
d[11] = _mm256_set_epi64x( s1[23], s1[21], s0[23], s0[21] );
d[12] = _mm256_set_epi64x( s1[26], s1[24], s0[26], s0[24] );
d[13] = _mm256_set_epi64x( s1[27], s1[25], s0[27], s0[25] );
d[14] = _mm256_set_epi64x( s1[30], s1[28], s0[30], s0[28] );
d[15] = _mm256_set_epi64x( s1[31], s1[29], s0[31], s0[29] );
}
static inline void mm256_intrlv_2x128( const void *d, const void *s0,
void *s1, const int bit_len )
{
__m128i s1hi = _mm256_extracti128_si256( casti_m256i( s1,0 ), 1 );
__m128i s0hi = _mm256_extracti128_si256( casti_m256i( s0,0 ), 1 );
casti_m256i( d,0 ) = mm256_concat_128(
_mm256_castsi256_si128( casti_m256i( s1,0 ) ),
_mm256_castsi256_si128( casti_m256i( s0,0 ) ) );
casti_m256i( d,1 ) = mm256_concat_128( s1hi, s0hi );
if ( bit_len <= 256 ) return;
s0hi = _mm256_extracti128_si256( casti_m256i( s0,1 ), 1 );
s1hi = _mm256_extracti128_si256( casti_m256i( s1,1 ), 1 );
casti_m256i( d,2 ) = mm256_concat_128(
_mm256_castsi256_si128( casti_m256i( s1,1 ) ),
_mm256_castsi256_si128( casti_m256i( s0,1 ) ) );
casti_m256i( d,3 ) = mm256_concat_128( s1hi, s0hi );
if ( bit_len <= 512 ) return;
if ( bit_len <= 640 )
{
casti_m256i( d,4 ) = mm256_concat_128(
_mm256_castsi256_si128( casti_m256i( s1,2 ) ),
_mm256_castsi256_si128( casti_m256i( s0,2 ) ) );
return;
}
s0hi = _mm256_extracti128_si256( casti_m256i( s0,2 ), 1 );
s1hi = _mm256_extracti128_si256( casti_m256i( s1,2 ), 1 );
casti_m256i( d,4 ) = mm256_concat_128(
_mm256_castsi256_si128( casti_m256i( s1,2 ) ),
_mm256_castsi256_si128( casti_m256i( s0,2 ) ) );
casti_m256i( d,5 ) = mm256_concat_128( s1hi, s0hi );
s0hi = _mm256_extracti128_si256( casti_m256i( s0,3 ), 1 );
s1hi = _mm256_extracti128_si256( casti_m256i( s1,3 ), 1 );
casti_m256i( d,6 ) = mm256_concat_128(
_mm256_castsi256_si128( casti_m256i( s1,3 ) ),
_mm256_castsi256_si128( casti_m256i( s0,3 ) ) );
casti_m256i( d,7 ) = mm256_concat_128( s1hi, s0hi );
}
// 512 is the bit len used by most, eliminate the conditionals
static inline void mm256_dintrlv_2x128_512( void *dst0, void *dst1,
const void *s )
{
__m256i *d0 = (__m256i*)dst0;
__m256i *d1 = (__m256i*)dst1;
__m256i s0 = casti_m256i( s, 0 );
__m256i s1 = casti_m256i( s, 1 );
d0[0] = _mm256_permute2x128_si256( s0, s1, 0x20 );
d1[0] = _mm256_permute2x128_si256( s0, s1, 0x31 );
s0 = casti_m256i( s, 2 );
s1 = casti_m256i( s, 3 );
d0[1] = _mm256_permute2x128_si256( s0, s1, 0x20 );
d1[1] = _mm256_permute2x128_si256( s0, s1, 0x31 );
}
// Phase out usage for all 512 bit data lengths
static inline void mm256_dintrlv_2x128( void *dst0, void *dst1, const void *s,
int bit_len )
{
__m256i *d0 = (__m256i*)dst0;
__m256i *d1 = (__m256i*)dst1;
__m256i s0 = casti_m256i( s, 0 );
__m256i s1 = casti_m256i( s, 1 );
d0[0] = _mm256_permute2x128_si256( s0, s1, 0x20 );
d1[0] = _mm256_permute2x128_si256( s0, s1, 0x31 );
if ( bit_len <= 256 ) return;
s0 = casti_m256i( s, 2 );
s1 = casti_m256i( s, 3 );
d0[1] = _mm256_permute2x128_si256( s0, s1, 0x20 );
d1[1] = _mm256_permute2x128_si256( s0, s1, 0x31 );
if ( bit_len <= 512 ) return;
s0 = casti_m256i( s, 4 );
s1 = casti_m256i( s, 5 );
d0[2] = _mm256_permute2x128_si256( s0, s1, 0x20 );
d1[2] = _mm256_permute2x128_si256( s0, s1, 0x31 );
s0 = casti_m256i( s, 6 );
s1 = casti_m256i( s, 7 );
d0[3] = _mm256_permute2x128_si256( s0, s1, 0x20 );
d1[3] = _mm256_permute2x128_si256( s0, s1, 0x31 );
}
#undef extr64_cast128_256
#undef extr32_cast128_256
#endif // AVX
#endif // INTRLV_AVX_H__

View File

@@ -1,104 +0,0 @@
#if !defined(INTRLV_AVX2_H__)
#define INTRLV_AVX2_H__ 1
#if defined(__AVX2__)
///////////////////////////////////////////////////////////
//
// AVX2 256 Bit Vectors
//
// A few functions that need AVX2 for 256 bit.
// Blend 2 vectors alternating hi & lo: { hi[n], lo[n-1], ... hi[1], lo[0] }
#define mm256_intrlv_blend_128( hi, lo ) \
_mm256_blend_epi32( hi, lo, 0x0f )
#define mm256_intrlv_blend_64( hi, lo ) \
_mm256_blend_epi32( hi, lo, 0x33 )
#define mm256_intrlv_blend_32( hi, lo ) \
_mm256_blend_epi32( hi, lo, 0x55 )
#define mm256_bswap_intrlv_8x32_256( d, src ) \
do { \
__m256i s0 = mm256_bswap_32( src ); \
__m128i s1 = _mm256_extracti128_si256( s0, 1 ); \
casti_m256i( d, 0 ) = _mm256_set1_epi32( _mm_extract_epi32( \
_mm256_castsi256_si128( s0 ), 0 ) ); \
casti_m256i( d, 1 ) = _mm256_set1_epi32( _mm_extract_epi32( \
_mm256_castsi256_si128( s0 ), 1 ) ); \
casti_m256i( d, 2 ) = _mm256_set1_epi32( _mm_extract_epi32( \
_mm256_castsi256_si128( s0 ), 2 ) ); \
casti_m256i( d, 3 ) = _mm256_set1_epi32( _mm_extract_epi32( \
_mm256_castsi256_si128( s0 ), 3 ) ); \
casti_m256i( d, 4 ) = _mm256_set1_epi32( _mm_extract_epi32( s1, 0 ) ); \
casti_m256i( d, 5 ) = _mm256_set1_epi32( _mm_extract_epi32( s1, 1 ) ); \
casti_m256i( d, 6 ) = _mm256_set1_epi32( _mm_extract_epi32( s1, 2 ) ); \
casti_m256i( d, 7 ) = _mm256_set1_epi32( _mm_extract_epi32( s1, 3 ) ); \
} while(0)
#define mm256_bswap_intrlv_8x32_128( d, src ) \
do { \
__m128i ss = mm128_bswap_32( src ); \
casti_m256i( d, 0 ) = _mm256_set1_epi32( _mm_extract_epi32( ss, 0 ) ); \
casti_m256i( d, 1 ) = _mm256_set1_epi32( _mm_extract_epi32( ss, 1 ) ); \
casti_m256i( d, 2 ) = _mm256_set1_epi32( _mm_extract_epi32( ss, 2 ) ); \
casti_m256i( d, 3 ) = _mm256_set1_epi32( _mm_extract_epi32( ss, 3 ) ); \
} while(0)
#define mm256_bswap_intrlv_4x64_256( d, src ) \
do { \
__m256i s0 = mm256_bswap_32( src ); \
__m128i s1 = _mm256_extracti128_si256( s0, 1 ); \
casti_m256i( d,0 ) = _mm256_set1_epi64x( _mm_extract_epi64( \
_mm256_castsi256_si128( s0 ), 0 ) ); \
casti_m256i( d,1 ) = _mm256_set1_epi64x( _mm_extract_epi64( \
_mm256_castsi256_si128( s0 ), 1 ) ); \
casti_m256i( d,2 ) = _mm256_set1_epi64x( _mm_extract_epi64( s1, 0 ) ); \
casti_m256i( d,3 ) = _mm256_set1_epi64x( _mm_extract_epi64( s1, 1 ) ); \
} while(0)
#define mm256_bswap_intrlv_4x64_128( d, src ) \
do { \
__m128i ss = mm128_bswap_32( src ); \
casti_m256i( d,0 ) = _mm256_set1_epi64x( _mm_extract_epi64( ss, 0 ) ); \
casti_m256i( d,1 ) = _mm256_set1_epi64x( _mm_extract_epi64( ss, 1 ) ); \
} while(0)
// A couple of mining specifi functions.
// Interleave 80 bytes of 32 bit data for 8 lanes.
static inline void mm256_bswap_intrlv80_8x32( void *d, const void *s )
{
mm256_bswap_intrlv_8x32_256( d , casti_m256i( s, 0 ) );
mm256_bswap_intrlv_8x32_256( d+256, casti_m256i( s, 1 ) );
mm256_bswap_intrlv_8x32_128( d+512, casti_m128i( s, 4 ) );
}
// Interleave 80 bytes of 32 bit data for 8 lanes.
static inline void mm256_bswap_intrlv80_4x64( void *d, const void *s )
{
mm256_bswap_intrlv_4x64_256( d , casti_m256i( s, 0 ) );
mm256_bswap_intrlv_4x64_256( d+128, casti_m256i( s, 1 ) );
mm256_bswap_intrlv_4x64_128( d+256, casti_m128i( s, 4 ) );
}
// Blend 32 byte lanes of hash from 2 sources according to control mask.
// macro due to 256 bit value arg.
#define mm256_blend_hash_4x64( dst, a, b, mask ) \
do { \
dst[0] = _mm256_blendv_epi8( a[0], b[0], mask ); \
dst[1] = _mm256_blendv_epi8( a[1], b[1], mask ); \
dst[2] = _mm256_blendv_epi8( a[2], b[2], mask ); \
dst[3] = _mm256_blendv_epi8( a[3], b[3], mask ); \
dst[4] = _mm256_blendv_epi8( a[4], b[4], mask ); \
dst[5] = _mm256_blendv_epi8( a[5], b[5], mask ); \
dst[6] = _mm256_blendv_epi8( a[6], b[6], mask ); \
dst[7] = _mm256_blendv_epi8( a[7], b[7], mask ); \
} while(0)
#endif // AVX2
#endif // INTRLV_AVX2_H__

View File

@@ -1,679 +0,0 @@
#if !defined(INTRLV_AVX512_H__)
#define INTRLV_AVX512_H__ 1
#if defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
// SSE2 functions used in AVX512 interleaving
// AVX512 block is 64 * 64 bytes
// quarter avx512 block, 16 bytes * 16 lanes
static inline void mm128_dintrlv_16x32x128( void *d00, void *d01,
void *d02, void *d03, void *d04, void *d05, void *d06, void *d07,
void *d08, void *d09, void *d10, void *d11, void *d12, void *d13,
void *d14, void *d15, const int n, const void *s )
{
cast_m128i( d00 ) = mm128_get_32( s, 0, 16, 32, 48 );
cast_m128i( d01 ) = mm128_get_32( s, 1, 17, 33, 49 );
cast_m128i( d02 ) = mm128_get_32( s, 2, 18, 34, 50 );
cast_m128i( d03 ) = mm128_get_32( s, 3, 19, 35, 51 );
cast_m128i( d04 ) = mm128_get_32( s, 4, 20, 36, 52 );
cast_m128i( d05 ) = mm128_get_32( s, 5, 21, 37, 53 );
cast_m128i( d06 ) = mm128_get_32( s, 6, 22, 38, 54 );
cast_m128i( d07 ) = mm128_get_32( s, 7, 23, 39, 55 );
cast_m128i( d08 ) = mm128_get_32( s, 8, 24, 40, 56 );
cast_m128i( d09 ) = mm128_get_32( s, 9, 25, 41, 57 );
cast_m128i( d10 ) = mm128_get_32( s, 10, 26, 42, 58 );
cast_m128i( d11 ) = mm128_get_32( s, 11, 27, 43, 59 );
cast_m128i( d12 ) = mm128_get_32( s, 12, 28, 44, 60 );
cast_m128i( d13 ) = mm128_get_32( s, 13, 29, 45, 61 );
cast_m128i( d14 ) = mm128_get_32( s, 14, 30, 46, 62 );
cast_m128i( d15 ) = mm128_get_32( s, 15, 31, 47, 63 );
}
// quarter avx512 block, 32 bytes * 8 lanes
// 8 lanes of 128 bits using 64 bit interleaving
// Used for last 16 bytes of 80 byte input, only used for testing.
static inline void mm128_dintrlv_8x64x128( void *d0, void *d1, void *d2,
void *d3, void *d4, void *d5, void *d6, void *d7,
const int n, const void *s )
{
casti_m128i( d0,n ) = mm128_get_64( s, 0, 8 );
casti_m128i( d1,n ) = mm128_get_64( s, 1, 9 );
casti_m128i( d2,n ) = mm128_get_64( s, 2, 10 );
casti_m128i( d3,n ) = mm128_get_64( s, 3, 11 );
casti_m128i( d4,n ) = mm128_get_64( s, 4, 12 );
casti_m128i( d5,n ) = mm128_get_64( s, 5, 13 );
casti_m128i( d6,n ) = mm128_get_64( s, 6, 14 );
casti_m128i( d7,n ) = mm128_get_64( s, 7, 15 );
}
static inline void mm128_dintrlv_4x128x128( void *d0, void *d1, void *d2,
void *d3, const int n, const void *s )
{
casti_m128i( d0,n ) = mm128_get_64( s, 0, 1 );
casti_m128i( d1,n ) = mm128_get_64( s, 2, 3 );
casti_m128i( d2,n ) = mm128_get_64( s, 4, 5 );
casti_m128i( d3,n ) = mm128_get_64( s, 5, 7 );
}
// AVX2 functions Used in AVX512 interleaving
static inline void mm256_dintrlv_16x32x256( void *d00, void *d01,
void *d02, void *d03, void *d04, void *d05,
void *d06, void *d07, void *d08, void *d09,
void *d10, void *d11, void *d12, void *d13,
void *d14, void *d15, const int n, const void *s )
{
casti_m256i( d00,n ) = mm256_get_32( s, 0, 16, 32, 48, 64, 80, 96,112 );
casti_m256i( d01,n ) = mm256_get_32( s, 1, 17, 33, 49, 65, 81, 97,113 );
casti_m256i( d02,n ) = mm256_get_32( s, 2, 18, 34, 50, 66, 82, 98,114 );
casti_m256i( d03,n ) = mm256_get_32( s, 3, 19, 35, 51, 67, 83, 99,115 );
casti_m256i( d04,n ) = mm256_get_32( s, 4, 20, 36, 52, 68, 84,100,116 );
casti_m256i( d05,n ) = mm256_get_32( s, 5, 21, 37, 53, 69, 85,101,117 );
casti_m256i( d06,n ) = mm256_get_32( s, 6, 22, 38, 54, 70, 86,102,118 );
casti_m256i( d07,n ) = mm256_get_32( s, 7, 23, 39, 55, 71, 87,103,119 );
casti_m256i( d08,n ) = mm256_get_32( s, 8, 24, 40, 56, 72, 88,104,120 );
casti_m256i( d09,n ) = mm256_get_32( s, 9, 25, 41, 57, 73, 89,105,121 );
casti_m256i( d10,n ) = mm256_get_32( s, 10, 26, 42, 58, 74, 90,106,122 );
casti_m256i( d11,n ) = mm256_get_32( s, 11, 27, 43, 59, 75, 91,107,123 );
casti_m256i( d12,n ) = mm256_get_32( s, 12, 28, 44, 60, 76, 92,108,124 );
casti_m256i( d13,n ) = mm256_get_32( s, 13, 29, 45, 61, 77, 93,109,125 );
casti_m256i( d14,n ) = mm256_get_32( s, 14, 30, 46, 62, 78, 94,110,126 );
casti_m256i( d15,n ) = mm256_get_32( s, 15, 31, 47, 63, 79, 95,111,127 );
}
// 8 lanes of 256 bits using 64 bit interleaving (standard final hash size)
static inline void mm256_dintrlv_8x64x256( void *d0, void *d1, void *d2,
void *d3, void *d4, void *d5, void *d6, void *d7,
const int n, const void *s )
{
casti_m256i( d0,n ) = mm256_get_64( s, 0, 8, 16, 24 );
casti_m256i( d1,n ) = mm256_get_64( s, 1, 9, 17, 25 );
casti_m256i( d2,n ) = mm256_get_64( s, 2, 10, 18, 26 );
casti_m256i( d3,n ) = mm256_get_64( s, 3, 11, 19, 27 );
casti_m256i( d4,n ) = mm256_get_64( s, 4, 12, 20, 28 );
casti_m256i( d5,n ) = mm256_get_64( s, 5, 13, 21, 29 );
casti_m256i( d6,n ) = mm256_get_64( s, 6, 14, 22, 30 );
casti_m256i( d7,n ) = mm256_get_64( s, 7, 15, 23, 31 );
}
static inline void mm256_dintrlv_4x128x256( void *d0, void *d1, void *d2,
void *d3, const int n, const void *s )
{
casti_m256i( d0,n ) = mm256_get_64( s, 0, 1, 8, 9 );
casti_m256i( d1,n ) = mm256_get_64( s, 2, 3, 10, 11 );
casti_m256i( d2,n ) = mm256_get_64( s, 4, 5, 12, 13 );
casti_m256i( d3,n ) = mm256_get_64( s, 6, 7, 14, 15 );
}
// AVX 512 helper functions.
//
// Macro functions returning vector.
// Abstracted typecasting, avoid temp pointers.
// Source arguments may be any 64 or 32 byte aligned pointer as appropriate.
#define mm512_put_64( s0, s1, s2, s3, s4, s5, s6, s7 ) \
_mm512_set_epi64( *((const uint64_t*)(s7)), *((const uint64_t*)(s6)), \
*((const uint64_t*)(s5)), *((const uint64_t*)(s4)), \
*((const uint64_t*)(s3)), *((const uint64_t*)(s2)), \
*((const uint64_t*)(s1)), *((const uint64_t*)(s0)) )
#define mm512_put_32( s00, s01, s02, s03, s04, s05, s06, s07, \
s08, s09, s10, s11, s12, s13, s14, s15 ) \
_mm512_set_epi32( *((const uint32_t*)(s15)), *((const uint32_t*)(s14)), \
*((const uint32_t*)(s13)), *((const uint32_t*)(s12)), \
*((const uint32_t*)(s11)), *((const uint32_t*)(s10)), \
*((const uint32_t*)(s09)), *((const uint32_t*)(s08)), \
*((const uint32_t*)(s07)), *((const uint32_t*)(s06)), \
*((const uint32_t*)(s05)), *((const uint32_t*)(s04)), \
*((const uint32_t*)(s03)), *((const uint32_t*)(s02)), \
*((const uint32_t*)(s01)), *((const uint32_t*)(s00)) )
#define mm512_get_64( s, i0, i1, i2, i3, i4, i5, i6, i7 ) \
_mm512_set_epi64( ((const uint64_t*)(s))[i7], ((const uint64_t*)(s))[i6], \
((const uint64_t*)(s))[i5], ((const uint64_t*)(s))[i4], \
((const uint64_t*)(s))[i3], ((const uint64_t*)(s))[i2], \
((const uint64_t*)(s))[i1], ((const uint64_t*)(s))[i0] )
#define mm512_get_32( s, i00, i01, i02, i03, i04, i05, i06, i07, \
i08, i09, i10, i11, i12, i13, i14, i15 ) \
_mm512_set_epi32( ((const uint32_t*)(s))[i15], ((const uint32_t*)(s))[i14], \
((const uint32_t*)(s))[i13], ((const uint32_t*)(s))[i12], \
((const uint32_t*)(s))[i11], ((const uint32_t*)(s))[i10], \
((const uint32_t*)(s))[i09], ((const uint32_t*)(s))[i08], \
((const uint32_t*)(s))[i07], ((const uint32_t*)(s))[i06], \
((const uint32_t*)(s))[i05], ((const uint32_t*)(s))[i04], \
((const uint32_t*)(s))[i03], ((const uint32_t*)(s))[i02], \
((const uint32_t*)(s))[i01], ((const uint32_t*)(s))[i00] )
// AVX512 has no blend, can be done with permute2xvar but at what cost?
// Can also be done with shifting and mask-or'ing for 3 instructins with
// 1 dependency. Finally it can be done with 1 _mm512_set but with 8 64 bit
// array index calculations and 8 pointer reads.
// Blend 2 vectors alternating hi & lo: { hi[n], lo[n-1], ... hi[1]. lo[0] }
#define mm512_interleave_blend_128( hi, lo ) \
_mm256_permute2xvar_epi64( hi, lo, _mm512_set_epi64( \
0x7, 0x6, 0x5, 0x4, 0xb, 0xa, 0x9, 0x8 )
#define mm512_interleave_blend_64( hi, lo ) \
_mm256_permute2xvar_epi64( hi, lo, _mm512_set_epi64( \
0x7, 0x6, 0xd, 0xc, 0x3, 0x2, 0x9, 0x8 )
#define mm512_interleave_blend_32( hi, lo ) \
_mm256_permute2xvar_epi32( hi, lo, _mm512_set_epi32( \
0x0f, 0x1e, 0x0d, 0x1c, 0x0b, 0x1a, 0x09, 0x18, \
0x07, 0x16, 0x05, 0x14, 0x03, 0x12, 0x01, 0x10 )
//
static inline void mm512_intrlv_16x32x512( void *d, const void *s00,
const void *s01, const void *s02, const void *s03, const void *s04,
const void *s05, const void *s06, const void *s07, const void *s08,
const void *s09, const void *s10, const void *s11, const void *s12,
const void *s13, const void *s14, const void *s15 )
{
casti_m512i( d, 0 ) = mm512_put_32(
s00, s01, s02, s03, s04, s05, s06, s07,
s08, s09, s10, s11, s12, s13, s14, s15 );
casti_m512i( d, 1 ) = mm512_put_32(
s00+ 4, s01+ 4, s02+ 4, s03+ 4, s04+ 4, s05+ 4, s06+ 4, s07+ 4,
s08+ 4, s09+ 4, s10+ 4, s11+ 4, s12+ 4, s13+ 4, s14+ 4, s15+ 4 );
casti_m512i( d, 2 ) = mm512_put_32(
s00+ 8, s01+ 8, s02+ 8, s03+ 8, s04+ 8, s05+ 8, s06+ 8, s07+ 8,
s08+ 8, s09+ 8, s10+ 8, s11+ 8, s12+ 8, s13+ 8, s14+ 8, s15+ 8 );
casti_m512i( d, 3 ) = mm512_put_32(
s00+12, s01+12, s02+12, s03+12, s04+12, s05+12, s06+12, s07+12,
s08+12, s09+12, s10+12, s11+12, s12+12, s13+12, s14+12, s15+12 );
casti_m512i( d, 4 ) = mm512_put_32(
s00+16, s01+16, s02+16, s03+16, s04+16, s05+16, s06+16, s07+16,
s08+16, s09+16, s10+16, s11+16, s12+16, s13+16, s14+16, s15+16 );
casti_m512i( d, 5 ) = mm512_put_32(
s00+20, s01+20, s02+20, s03+20, s04+20, s05+20, s06+20, s07+20,
s08+20, s09+20, s10+20, s11+20, s12+20, s13+20, s14+20, s15+20 );
casti_m512i( d, 6 ) = mm512_put_32(
s00+24, s01+24, s02+24, s03+24, s04+24, s05+24, s06+24, s07+24,
s08+24, s09+24, s10+24, s11+24, s12+24, s13+24, s14+24, s15+24 );
casti_m512i( d, 7 ) = mm512_put_32(
s00+28, s01+28, s02+28, s03+28, s04+28, s05+28, s06+28, s07+28,
s08+28, s09+28, s10+28, s11+28, s12+28, s13+28, s14+28, s15+28 );
casti_m512i( d, 8 ) = mm512_put_32(
s00+32, s01+28, s02+28, s03+28, s04+32, s05+28, s06+28, s07+28,
s08+32, s09+28, s10+28, s11+28, s12+32, s13+28, s14+28, s15+28 );
casti_m512i( d, 9 ) = mm512_put_32(
s00+36, s01+28, s02+28, s03+28, s04+36, s05+28, s06+28, s07+28,
s08+36, s09+28, s10+28, s11+28, s12+36, s13+28, s14+28, s15+28 );
casti_m512i( d,10 ) = mm512_put_32(
s00+40, s01+28, s02+28, s03+28, s04+40, s05+28, s06+28, s07+28,
s08+40, s09+28, s10+28, s11+28, s12+40, s13+28, s14+28, s15+28 );
casti_m512i( d,11 ) = mm512_put_32(
s00+44, s01+28, s02+28, s03+28, s04+44, s05+28, s06+28, s07+28,
s08+44, s09+28, s10+28, s11+28, s12+44, s13+28, s14+28, s15+28 );
casti_m512i( d,12 ) = mm512_put_32(
s00+48, s01+28, s02+28, s03+28, s04+48, s05+28, s06+28, s07+28,
s08+48, s09+28, s10+28, s11+28, s12+48, s13+28, s14+28, s15+28 );
casti_m512i( d,13 ) = mm512_put_32(
s00+52, s01+28, s02+28, s03+28, s04+52, s05+28, s06+28, s07+28,
s08+52, s09+28, s10+28, s11+28, s12+52, s13+28, s14+28, s15+28 );
casti_m512i( d,14 ) = mm512_put_32(
s00+56, s01+28, s02+28, s03+28, s04+56, s05+28, s06+28, s07+28,
s08+56, s09+28, s10+28, s11+28, s12+56, s13+28, s14+28, s15+28 );
casti_m512i( d,15 ) = mm512_put_32(
s00+60, s01+28, s02+28, s03+28, s04+60, s05+28, s06+28, s07+28,
s08+60, s09+28, s10+28, s11+28, s12+60, s13+28, s14+28, s15+28 );
}
static inline void mm512_intrlv_16x32x256( void *d, const void *s00,
const void *s01, const void *s02, const void *s03, const void *s04,
const void *s05, const void *s06, const void *s07, const void *s08,
const void *s09, const void *s10, const void *s11, const void *s12,
const void *s13, const void *s14, const void *s15 )
{
casti_m512i( d, 0 ) = mm512_put_32(
s00, s01, s02, s03, s04, s05, s06, s07,
s08, s09, s10, s11, s12, s13, s14, s15 );
casti_m512i( d, 1 ) = mm512_put_32(
s00+ 4, s01+ 4, s02+ 4, s03+ 4, s04+ 4, s05+ 4, s06+ 4, s07+ 4,
s08+ 4, s09+ 4, s10+ 4, s11+ 4, s12+ 4, s13+ 4, s14+ 4, s15+ 4 );
casti_m512i( d, 2 ) = mm512_put_32(
s00+ 8, s01+ 8, s02+ 8, s03+ 8, s04+ 8, s05+ 8, s06+ 8, s07+ 8,
s08+ 8, s09+ 8, s10+ 8, s11+ 8, s12+ 8, s13+ 8, s14+ 8, s15+ 8 );
casti_m512i( d, 3 ) = mm512_put_32(
s00+12, s01+12, s02+12, s03+12, s04+12, s05+12, s06+12, s07+12,
s08+12, s09+12, s10+12, s11+12, s12+12, s13+12, s14+12, s15+12 );
casti_m512i( d, 4 ) = mm512_put_32(
s00+16, s01+16, s02+16, s03+16, s04+16, s05+16, s06+16, s07+16,
s08+16, s09+16, s10+16, s11+16, s12+16, s13+16, s14+16, s15+16 );
casti_m512i( d, 5 ) = mm512_put_32(
s00+20, s01+20, s02+20, s03+20, s04+20, s05+20, s06+20, s07+20,
s08+20, s09+20, s10+20, s11+20, s12+20, s13+20, s14+20, s15+20 );
casti_m512i( d, 6 ) = mm512_put_32(
s00+24, s01+24, s02+24, s03+24, s04+24, s05+24, s06+24, s07+24,
s08+24, s09+24, s10+24, s11+24, s12+24, s13+24, s14+24, s15+24 );
casti_m512i( d, 7 ) = mm512_put_32(
s00+28, s01+28, s02+28, s03+28, s04+28, s05+28, s06+28, s07+28,
s08+28, s09+28, s10+28, s11+28, s12+28, s13+28, s14+28, s15+28 );
}
// Last 16 bytes of input
static inline void mm512_intrlv_16x32x128( void *d, const void *s00,
const void *s01, const void *s02, const void *s03, const void *s04,
const void *s05, const void *s06, const void *s07, const void *s08,
const void *s09, const void *s10, const void *s11, const void *s12,
const void *s13, const void *s14, const void *s15 )
{
casti_m512i( d, 0 ) = mm512_put_32(
s00, s01, s02, s03, s04, s05, s06, s07,
s08, s09, s10, s11, s12, s13, s14, s15 );
casti_m512i( d, 1 ) = mm512_put_32(
s00+ 4, s01+ 4, s02+ 4, s03+ 4, s04+ 4, s05+ 4, s06+ 4, s07+ 4,
s08+ 4, s09+ 4, s10+ 4, s11+ 4, s12+ 4, s13+ 4, s14+ 4, s15+ 4 );
casti_m512i( d, 2 ) = mm512_put_32(
s00+ 8, s01+ 8, s02+ 8, s03+ 8, s04+ 8, s05+ 8, s06+ 8, s07+ 8,
s08+ 8, s09+ 8, s10+ 8, s11+ 8, s12+ 8, s13+ 8, s14+ 8, s15+ 8 );
casti_m512i( d, 3 ) = mm512_put_32(
s00+12, s01+12, s02+12, s03+12, s04+12, s05+12, s06+12, s07+12,
s08+12, s09+12, s10+12, s11+12, s12+12, s13+12, s14+12, s15+12 );
}
// can be called directly for 64 byte hash.
static inline void mm512_dintrlv_16x32x512( void *d00, void *d01,
void *d02, void *d03, void *d04, void *d05, void *d06,
void *d07, void *d08, void *d09, void *d10, void *d11,
void *d12, void *d13, void *d14, void *d15, const int n,
const void *s )
{
casti_m512i(d00,n) = mm512_get_32( s, 0, 16, 32, 48, 64, 80, 96,112,
128,144,160,176,192,208,224,240 );
casti_m512i(d01,n) = mm512_get_32( s, 1, 17, 33, 49, 65, 81, 97,113,
129,145,161,177,193,209,225,241 );
casti_m512i(d02,n) = mm512_get_32( s, 2, 18, 34, 50, 66, 82, 98,114,
130,146,162,178,194,210,226,242 );
casti_m512i(d03,n) = mm512_get_32( s, 3, 19, 35, 51, 67, 83, 99,115,
131,147,163,179,195,211,227,243 );
casti_m512i(d04,n) = mm512_get_32( s, 4, 20, 36, 52, 68, 84,100,116,
132,148,164,180,196,212,228,244 );
casti_m512i(d05,n) = mm512_get_32( s, 5, 21, 37, 53, 69, 85,101,117,
133,149,165,181,197,213,229,245 );
casti_m512i(d06,n) = mm512_get_32( s, 6, 22, 38, 54, 70, 86,102,118,
134,150,166,182,198,214,230,246 );
casti_m512i(d07,n) = mm512_get_32( s, 7, 23, 39, 55, 71, 87,103,119,
135,151,167,183,199,215,231,247 );
casti_m512i(d08,n) = mm512_get_32( s, 8, 24, 40, 56, 72, 88,104,120,
136,152,168,184,200,216,232,248 );
casti_m512i(d09,n) = mm512_get_32( s, 9, 25, 41, 57, 73, 89,105,121,
137,153,169,185,201,217,233,249 );
casti_m512i(d10,n) = mm512_get_32( s, 10, 26, 42, 58, 74, 90,106,122,
138,154,170,186,202,218,234,250 );
casti_m512i(d11,n) = mm512_get_32( s, 11, 27, 43, 59, 75, 91,107,123,
139,155,171,187,203,219,235,251 );
casti_m512i(d12,n) = mm512_get_32( s, 12, 28, 44, 60, 76, 92,108,124,
140,156,172,188,204,220,236,252 );
casti_m512i(d13,n) = mm512_get_32( s, 13, 29, 45, 61, 77, 93,109,125,
141,157,173,189,205,221,237,253 );
casti_m512i(d14,n) = mm512_get_32( s, 14, 30, 46, 62, 78, 94,110,126,
142,158,174,190,206,222,238,254 );
casti_m512i(d15,n) = mm512_get_32( s, 15, 31, 47, 63, 79, 95,111,127,
143,159,175,191,207,223,239,255 );
}
static inline void mm512_intrlv_8x64x512( void *d, const void *s0,
const void *s1, const void *s2, const void *s3,
const void *s4, const void *s5, const void *s6,
const void *s7 )
{
casti_m512i( d,0 ) = mm512_put_64( s0, s1, s2, s3,
s4, s5, s6, s7 );
casti_m512i( d,1 ) = mm512_put_64( s0+ 8, s1+ 8, s2+ 8, s3+ 8,
s4+ 8, s5+ 8, s6+ 8, s7+ 8 );
casti_m512i( d,2 ) = mm512_put_64( s0+16, s1+16, s2+16, s3+16,
s4+16, s5+16, s6+16, s7+16 );
casti_m512i( d,3 ) = mm512_put_64( s0+24, s1+24, s2+24, s3+24,
s4+24, s5+24, s6+24, s7+24 );
casti_m512i( d,4 ) = mm512_put_64( s0+32, s1+32, s2+32, s3+32,
s4+32, s5+32, s6+32, s7+32 );
casti_m512i( d,5 ) = mm512_put_64( s0+40, s1+40, s2+40, s3+40,
s4+40, s5+40, s6+40, s7+40 );
casti_m512i( d,6 ) = mm512_put_64( s0+48, s1+48, s2+48, s3+48,
s4+48, s5+48, s6+48, s7+48 );
casti_m512i( d,7 ) = mm512_put_64( s0+56, s1+56, s2+56, s3+56,
s4+56, s5+56, s6+56, s7+56 );
}
static inline void mm512_intrlv_8x64x256( void *d, const void *s0,
const void *s1, const void *s2, const void *s3,
const void *s4, const void *s5, const void *s6,
const void *s7 )
{
casti_m512i( d,0 ) = mm512_put_64( s0, s1, s2, s3,
s4, s5, s6, s7 );
casti_m512i( d,1 ) = mm512_put_64( s0+ 8, s1+ 8, s2+ 8, s3+ 8,
s4+ 8, s5+ 8, s6+ 8, s7+ 8 );
casti_m512i( d,2 ) = mm512_put_64( s0+16, s1+16, s2+16, s3+16,
s4+16, s5+16, s6+16, s7+16 );
casti_m512i( d,3 ) = mm512_put_64( s0+24, s1+24, s2+24, s3+24,
s4+24, s5+24, s6+24, s7+24 );
}
// 8 lanes of 512 bits using 64 bit interleaving (typical intermediate hash)
static inline void mm512_dintrlv_8x64x512( void *d0, void *d1, void *d2,
void *d3, void *d4, void *d5, void *d6, void *d7,
const int n, const void *s )
{
casti_m512i( d0,n ) = mm512_get_64( s, 0, 8, 16, 24, 32, 40, 48, 56 );
casti_m512i( d1,n ) = mm512_get_64( s, 1, 9, 17, 25, 33, 41, 49, 57 );
casti_m512i( d2,n ) = mm512_get_64( s, 2, 10, 18, 26, 34, 42, 50, 58 );
casti_m512i( d3,n ) = mm512_get_64( s, 3, 11, 19, 27, 35, 43, 51, 59 );
casti_m512i( d4,n ) = mm512_get_64( s, 4, 12, 20, 28, 36, 44, 52, 60 );
casti_m512i( d5,n ) = mm512_get_64( s, 5, 13, 21, 29, 37, 45, 53, 61 );
casti_m512i( d6,n ) = mm512_get_64( s, 6, 14, 22, 30, 38, 46, 54, 62 );
casti_m512i( d7,n ) = mm512_get_64( s, 7, 15, 23, 31, 39, 47, 55, 63 );
}
static inline void mm512_dintrlv_4x128x512( void *d0, void *d1, void *d2,
void *d3, const int n, const void *s )
{
casti_m512i( d0,n ) = mm512_get_64( s, 0, 1, 8, 9, 16, 17, 24, 25 );
casti_m512i( d1,n ) = mm512_get_64( s, 2, 3, 10, 11, 18, 19, 16, 27 );
casti_m512i( d2,n ) = mm512_get_64( s, 4, 5, 12, 13, 20, 21, 28, 29 );
casti_m512i( d3,n ) = mm512_get_64( s, 6, 7, 14, 15, 22, 23, 30, 31 );
}
// AVX-512 user facing functions.
static inline void mm512_intrlv_16x32( void *d, const void *s00,
const void *s01, const void *s02, const void *s03, const void *s04,
const void *s05, const void *s06, const void *s07, const void *s08,
const void *s09, const void *s10, const void *s11, const void *s12,
const void *s13, const void *s14, const void *s15, int bit_len )
{
if ( bit_len <= 256 )
{
mm512_intrlv_16x32x256( d, s00, s01, s02, s03, s04, s05, s06, s07,
s08, s09, s10, s11, s12, s13, s14, s15 );
return;
}
mm512_intrlv_16x32x512( d, s00, s01, s02, s03, s04, s05, s06, s07,
s08, s09, s10, s11, s12, s13, s14, s15 );
if ( bit_len <= 512 ) return;
if ( bit_len <= 640 )
{
mm512_intrlv_16x32x128( d+1024, s00+64, s01+64, s02+64, s03+64,
s04+64, s05+64, s06+64, s07+64, s08+64, s09+64,
s10+64, s11+64, s12+64, s13+64, s14+64, s15+64 );
return;
}
mm512_intrlv_16x32x512( d+1024, s00+64, s01+64, s02+64, s03+64,
s04+64, s05+64, s06+64, s07+64, s08+64, s09+64,
s10+64, s11+64, s12+64, s13+64, s14+64, s15+64 );
// bit_len == 1024
}
// sub-functions can be called directly for 32 & 64 byte hash.
static inline void mm512_dintrlv_16x32( void *d00, void *d01, void *d02,
void *d03, void *d04, void *d05, void *d06, void *d07, void *d08,
void *d09, void *d10, void *d11, void *d12, void *d13, void *d14,
void *d15, const void *src, const int bit_len )
{
if ( bit_len <= 256 )
{
mm256_dintrlv_16x32x256( d00, d01, d02, d03, d04, d05, d06, d07,
d08, d09, d10, d11, d12, d13, d14, d15,
0,src );
return;
}
mm512_dintrlv_16x32x512( d00, d01, d02, d03, d04, d05, d06, d07,
d08, d09, d10, d11, d12, d13, d14, d15,
0, src );
if ( bit_len <= 512 ) return;
if ( bit_len <= 640 )
{
// short block, final 16 bytes of input data.
mm128_dintrlv_16x32x128( d00, d01, d02, d03, d04, d05, d06, d07,
d08, d09, d10, d11, d12, d13, d14, d15,
1, src+1024 );
return;
}
// bit_len == 1024
mm512_dintrlv_16x32x512( d00, d01, d02, d03, d04, d05, d06, d07,
d08, d09, d10, d11, d12, d13, d14, d15,
1, src+1024 );
}
static inline void mm512_extr_lane_16x32( void *dst, const void *src,
const int lane, const int bit_len )
{
if ( bit_len <= 256 )
{
cast_m256i( dst ) = mm256_get_32( src, lane, lane+16, lane+32, lane+48,
lane+64, lane+80, lane+96, lane+112 );
return;
}
cast_m512i( dst ) = mm512_get_32( src, lane, lane+ 16, lane+ 32, lane+ 48,
lane+ 64, lane+ 80, lane+ 96, lane+112, lane+128, lane+144,
lane+160, lane+176, lane+192, lane+208, lane+224, lane+248 );
}
//
static inline void mm512_intrlv_8x64( void *d, const void *s0,
const void *s1, const void *s2, const void *s3,
const void *s4, const void *s5, const void *s6,
const void *s7, int bit_len )
{
if ( bit_len <= 256 )
{
mm512_intrlv_8x64x256( d, s0, s1, s2, s3, s4, s5, s6, s7 );
return;
}
mm512_intrlv_8x64x512( d, s0, s1, s2, s3, s4, s5, s6, s7 );
if ( bit_len <= 512 ) return;
if ( bit_len <= 640 )
{
casti_m512i( d, 8 ) = mm512_put_64( s7+64, s6+64, s5+64, s4+64,
s3+64, s2+64, s1+64, s0+64 );
casti_m512i( d, 9 ) = mm512_put_64( s7+72, s6+72, s5+72, s4+72,
s3+72, s2+72, s1+72, s0+72 );
return;
}
// bitlen == 1024
mm512_intrlv_8x64x512( d+512, s0+64, s1+64, s2+64, s3+64,
s4+64, s5+64, s6+64, s7+64 );
}
static inline void mm512_dintrlv_8x64( void *d0, void *d1, void *d2,
void *d3, void *d4, void *d5, void *d6, void *d7,
const void *s, const int bit_len )
{
if ( bit_len <= 256 )
{
mm256_dintrlv_8x64x256( d0, d1, d2, d3, d4, d5, d6, d7, 0, s );
return;
}
mm512_dintrlv_8x64x512( d0, d1, d2, d3, d4, d5, d6, d7, 0, s );
if ( bit_len <= 512 ) return;
if ( bit_len <= 640 )
{
// short block, final 16 bytes of input data.
mm128_dintrlv_8x64x128( d0, d1, d2, d3, d4, d5, d6, d7, 1, s+512 );
return;
}
// bit_len == 1024
mm512_dintrlv_8x64x512( d0, d1, d2, d3, d4, d5, d6, d7, 1, s+512 );
}
// Extract one lane from 64 bit interleaved data
static inline void mm512_extr_lane_8x64( void *d, const void *s,
const int lane, const int bit_len )
{
if ( bit_len <= 256 )
{
cast_m256i( d ) = mm256_get_64( s, lane, lane+8, lane+16, lane+24 );
return;
}
// else bit_len == 512
cast_m512i( d ) = mm512_get_64( s, lane , lane+ 8, lane+16, lane+24,
lane+32, lane+40, lane+48, lane+56 );
}
//
static inline void mm512_intrlv_4x128( void *d, const void *s0,
const void *s1, const void *s2, const void *s3, const int bit_len )
{
casti_m512i( d, 0 ) = mm512_put_64( s0, s0+8, s1, s1+8,
s2, s2+8, s3, s3+8 );
casti_m512i( d, 1 ) = mm512_put_64( s0+16, s0+24, s1+16, s1+24,
s2+16, s2+24, s3+16, s3+24 );
if ( bit_len <= 256 ) return;
casti_m512i( d, 2 ) = mm512_put_64( s0+32, s0+40, s1+32, s1+40,
s2+32, s2+40, s3+32, s3+40 );
casti_m512i( d, 3 ) = mm512_put_64( s0+48, s0+56, s1+48, s1+56,
s2+48, s2+56, s3+48, s3+56 );
if ( bit_len <= 512 ) return;
casti_m512i( d, 4 ) = mm512_put_64( s0+64, s0+72, s1+64, s1+72,
s2+64, s2+72, s3+64, s3+72 );
if ( bit_len <= 640 ) return;
casti_m512i( d, 5 ) = mm512_put_64( s0+ 80, s0+ 88, s1+ 80, s1+ 88,
s2+ 80, s2+ 88, s3+ 80, s3+ 88 );
casti_m512i( d, 6 ) = mm512_put_64( s0+ 96, s0+104, s1+ 96, s1+104,
s2+ 96, s2+104, s3+ 96, s3+104 );
casti_m512i( d, 7 ) = mm512_put_64( s0+112, s0+120, s1+112, s1+120,
s2+112, s2+120, s3+112, s3+120 );
// bit_len == 1024
}
static inline void mm512_dintrlv_4x128( void *d0, void *d1, void *d2,
void *d3, const void *s, const int bit_len )
{
if ( bit_len <= 256 )
{
mm256_dintrlv_4x128x256( d0, d1, d2, d3, 0, s );
return;
}
mm512_dintrlv_4x128x512( d0, d1, d2, d3, 0, s );
if ( bit_len <= 512 ) return;
if ( bit_len <= 640 )
{
mm128_dintrlv_4x128x128( d0, d1, d2, d3, 1, s+256 );
return;
}
// bit_len == 1024
mm512_dintrlv_4x128x512( d0, d1, d2, d3, 1, s+256 );
}
// input one 8x64 buffer and return 2*4*128
static inline void mm512_rintrlv_8x64_4x128( void *dst0, void *dst1,
const void *src, int bit_len )
{
__m512i* d0 = (__m512i*)dst0;
__m512i* d1 = (__m512i*)dst1;
uint64_t *s = (uint64_t*)src;
d0[0] = _mm512_set_epi64( s[ 11], s[ 3], s[ 10], s[ 2],
s[ 9], s[ 1], s[ 8], s[ 0] );
d0[1] = _mm512_set_epi64( s[ 27], s[ 19], s[ 26], s[ 18],
s[ 25], s[ 17], s[ 24], s[ 16] );
d0[2] = _mm512_set_epi64( s[ 15], s[ 7], s[ 14], s[ 6],
s[ 13], s[ 5], s[ 12], s[ 4] );
d0[3] = _mm512_set_epi64( s[ 31], s[ 23], s[ 30], s[ 22],
s[ 29], s[ 21], s[ 28], s[ 20] );
d1[0] = _mm512_set_epi64( s[ 43], s[ 35], s[ 42], s[ 34],
s[ 41], s[ 33], s[ 40], s[ 32] );
d1[1] = _mm512_set_epi64( s[ 59], s[ 51], s[ 58], s[ 50],
s[ 57], s[ 49], s[ 56], s[ 48] );
d1[2] = _mm512_set_epi64( s[ 47], s[ 39], s[ 46], s[ 38],
s[ 45], s[ 37], s[ 44], s[ 36] );
d1[3] = _mm512_set_epi64( s[ 63], s[ 55], s[ 62], s[ 54],
s[ 61], s[ 53], s[ 60], s[ 52] );
if ( bit_len <= 512 ) return;
d0[4] = _mm512_set_epi64( s[ 75], s[ 67], s[ 74], s[ 66],
s[ 73], s[ 65], s[ 72], s[ 64] );
d0[5] = _mm512_set_epi64( s[ 91], s[ 83], s[ 90], s[ 82],
s[ 89], s[ 81], s[ 88], s[ 80] );
d0[6] = _mm512_set_epi64( s[ 79], s[ 71], s[ 78], s[ 70],
s[ 77], s[ 69], s[ 76], s[ 68] );
d0[7] = _mm512_set_epi64( s[ 95], s[ 87], s[ 94], s[ 86],
s[ 93], s[ 85], s[ 92], s[ 84] );
d1[4] = _mm512_set_epi64( s[107], s[ 99], s[106], s[ 98],
s[105], s[ 97], s[104], s[ 96] );
d1[5] = _mm512_set_epi64( s[123], s[115], s[122], s[114],
s[121], s[113], s[120], s[112] );
d1[6] = _mm512_set_epi64( s[111], s[103], s[110], s[102],
s[109], s[101], s[108], s[100] );
d1[7] = _mm512_set_epi64( s[127], s[119], s[126], s[118],
s[125], s[117], s[124], s[116] );
}
// input 2 4x128 return 8x64
static inline void mm512_rintrlv_4x128_8x64( void *dst, const void *src0,
const void *src1, int bit_len )
{
__m512i* d = (__m512i*)dst;
uint64_t *s0 = (uint64_t*)src0;
uint64_t *s1 = (uint64_t*)src1;
d[0] = _mm512_set_epi64( s1[ 6], s1[ 4], s1[ 2], s1[ 0],
s0[ 6], s0[ 4], s0[ 2], s0[ 0] );
d[1] = _mm512_set_epi64( s1[ 7], s1[ 5], s1[ 3], s1[ 1],
s0[ 7], s0[ 5], s0[ 3], s0[ 1] );
d[2] = _mm512_set_epi64( s1[14], s1[12], s1[10], s1[ 8],
s0[14], s0[12], s0[10], s0[ 8] );
d[3] = _mm512_set_epi64( s1[15], s1[13], s1[11], s1[ 9],
s0[15], s0[13], s0[11], s0[ 9] );
d[4] = _mm512_set_epi64( s1[22], s1[20], s1[18], s1[16],
s0[22], s0[20], s0[18], s0[16] );
d[5] = _mm512_set_epi64( s1[23], s1[21], s1[19], s1[17],
s0[24], s0[21], s0[19], s0[17] );
d[6] = _mm512_set_epi64( s1[22], s1[28], s1[26], s1[24],
s0[22], s0[28], s0[26], s0[24] );
d[7] = _mm512_set_epi64( s1[31], s1[29], s1[27], s1[25],
s0[31], s0[29], s0[27], s0[25] );
if ( bit_len <= 512 ) return;
d[0] = _mm512_set_epi64( s1[38], s1[36], s1[34], s1[32],
s0[38], s0[36], s0[34], s0[32] );
d[1] = _mm512_set_epi64( s1[39], s1[37], s1[35], s1[33],
s0[39], s0[37], s0[35], s0[33] );
d[2] = _mm512_set_epi64( s1[46], s1[44], s1[42], s1[40],
s0[46], s0[44], s0[42], s0[40] );
d[3] = _mm512_set_epi64( s1[47], s1[45], s1[43], s1[41],
s0[47], s0[45], s0[43], s0[41] );
d[4] = _mm512_set_epi64( s1[54], s1[52], s1[50], s1[48],
s0[54], s0[52], s0[50], s0[48] );
d[5] = _mm512_set_epi64( s1[55], s1[53], s1[51], s1[49],
s0[55], s0[53], s0[51], s0[49] );
d[6] = _mm512_set_epi64( s1[62], s1[60], s1[58], s1[56],
s0[62], s0[60], s0[58], s0[56] );
d[7] = _mm512_set_epi64( s1[63], s1[61], s1[59], s1[57],
s0[63], s0[61], s0[59], s0[57] );
}
static inline void mm512_extr_lane_4x128( void *d, const void *s,
const int lane, const int bit_len )
{
int l = lane<<1;
if ( bit_len <= 256 )
{
cast_m256i( d ) = mm256_get_64( s, l, l+1, l+8, l+9 );
return;
}
// else bit_len == 512
cast_m512i( d ) = mm512_get_64( s, l , l+ 1, l+ 8, l+ 9,
l+16, l+17, l+24, l+25 );
}
#endif // AVX512
#endif // INTRLV_AVX512_H__

View File

@@ -1,126 +0,0 @@
#if !defined(INTRLV_MMX_H__)
#define INTRLV_MMX_H__ 1
#if defined(__MMX__)
//////////////////////////////////////////////////////
//
// MMX 64 bit vectors
#define mm64_put_32( s0, s1 ) \
_mm_set_pi32( *((const uint32_t*)(s1)), *((const uint32_t*)(s0)) )
#define mm64_get_32( s, i0, i1 ) \
_mm_set_pi32( ((const uint32_t*)(s))[i1], ((const uint32_t*)(s))[i0] )
// 1 MMX block, 8 bytes * 2 lanes
static inline void mm64_intrlv_2x32( void *d, const void *s0,
const void *s1, int len )
{
casti_m64( d, 0 ) = mm64_put_32( s0 , s1 );
casti_m64( d, 1 ) = mm64_put_32( s0+ 4, s1+ 4 );
casti_m64( d, 2 ) = mm64_put_32( s0+ 8, s1+ 8 );
casti_m64( d, 3 ) = mm64_put_32( s0+ 12, s1+ 12 );
casti_m64( d, 4 ) = mm64_put_32( s0+ 16, s1+ 16 );
casti_m64( d, 5 ) = mm64_put_32( s0+ 20, s1+ 20 );
casti_m64( d, 6 ) = mm64_put_32( s0+ 24, s1+ 24 );
casti_m64( d, 7 ) = mm64_put_32( s0+ 28, s1+ 28 );
if ( len <= 256 ) return;
casti_m64( d, 8 ) = mm64_put_32( s0+ 32, s1+ 32 );
casti_m64( d, 9 ) = mm64_put_32( s0+ 36, s1+ 36 );
casti_m64( d,10 ) = mm64_put_32( s0+ 40, s1+ 40 );
casti_m64( d,11 ) = mm64_put_32( s0+ 44, s1+ 44 );
casti_m64( d,12 ) = mm64_put_32( s0+ 48, s1+ 48 );
casti_m64( d,13 ) = mm64_put_32( s0+ 52, s1+ 52 );
casti_m64( d,14 ) = mm64_put_32( s0+ 56, s1+ 56 );
casti_m64( d,15 ) = mm64_put_32( s0+ 60, s1+ 60 );
if ( len <= 512 ) return;
casti_m64( d,16 ) = mm64_put_32( s0+ 64, s1+ 64 );
casti_m64( d,17 ) = mm64_put_32( s0+ 68, s1+ 68 );
casti_m64( d,18 ) = mm64_put_32( s0+ 72, s1+ 72 );
casti_m64( d,19 ) = mm64_put_32( s0+ 76, s1+ 76 );
if ( len <= 640 ) return;
casti_m64( d,20 ) = mm64_put_32( s0+ 80, s1+ 80 );
casti_m64( d,21 ) = mm64_put_32( s0+ 84, s1+ 84 );
casti_m64( d,22 ) = mm64_put_32( s0+ 88, s1+ 88 );
casti_m64( d,23 ) = mm64_put_32( s0+ 92, s1+ 92 );
casti_m64( d,24 ) = mm64_put_32( s0+ 96, s1+ 96 );
casti_m64( d,25 ) = mm64_put_32( s0+100, s1+100 );
casti_m64( d,26 ) = mm64_put_32( s0+104, s1+104 );
casti_m64( d,27 ) = mm64_put_32( s0+108, s1+108 );
casti_m64( d,28 ) = mm64_put_32( s0+112, s1+112 );
casti_m64( d,29 ) = mm64_put_32( s0+116, s1+116 );
casti_m64( d,30 ) = mm64_put_32( s0+120, s1+120 );
casti_m64( d,31 ) = mm64_put_32( s0+124, s1+124 );
}
static inline void mm64_dintrlv_2x32( void *d00, void *d01, const int n,
const void *s, int len )
{
casti_m64( d00,0 ) = mm64_get_32( s, 0, 2 );
casti_m64( d01,0 ) = mm64_get_32( s, 1, 3 );
casti_m64( d00,1 ) = mm64_get_32( s, 4, 6 );
casti_m64( d01,1 ) = mm64_get_32( s, 5, 7 );
casti_m64( d00,2 ) = mm64_get_32( s, 8, 10 );
casti_m64( d01,2 ) = mm64_get_32( s, 9, 11 );
casti_m64( d00,3 ) = mm64_get_32( s, 12, 14 );
casti_m64( d01,3 ) = mm64_get_32( s, 13, 15 );
if ( len <= 256 ) return;
casti_m64( d00,4 ) = mm64_get_32( s, 16, 18 );
casti_m64( d01,4 ) = mm64_get_32( s, 17, 19 );
casti_m64( d00,5 ) = mm64_get_32( s, 20, 22 );
casti_m64( d01,5 ) = mm64_get_32( s, 21, 23 );
casti_m64( d00,6 ) = mm64_get_32( s, 24, 26 );
casti_m64( d01,6 ) = mm64_get_32( s, 25, 27 );
casti_m64( d00,7 ) = mm64_get_32( s, 28, 30 );
casti_m64( d01,7 ) = mm64_get_32( s, 29, 31 );
if ( len <= 512 ) return;
casti_m64( d00,8 ) = mm64_get_32( s, 32, 34 );
casti_m64( d01,8 ) = mm64_get_32( s, 33, 35 );
casti_m64( d00,9 ) = mm64_get_32( s, 36, 38 );
casti_m64( d01,9 ) = mm64_get_32( s, 37, 39 );
if ( len <= 640 ) return;
casti_m64( d00,10 ) = mm64_get_32( s, 40, 42 );
casti_m64( d01,10 ) = mm64_get_32( s, 41, 43 );
casti_m64( d00,11 ) = mm64_get_32( s, 44, 46 );
casti_m64( d01,11 ) = mm64_get_32( s, 45, 47 );
casti_m64( d00,12 ) = mm64_get_32( s, 48, 50 );
casti_m64( d01,12 ) = mm64_get_32( s, 49, 51 );
casti_m64( d00,13 ) = mm64_get_32( s, 52, 54 );
casti_m64( d01,13 ) = mm64_get_32( s, 53, 55 );
casti_m64( d00,14 ) = mm64_get_32( s, 56, 58 );
casti_m64( d01,14 ) = mm64_get_32( s, 57, 59 );
casti_m64( d00,15 ) = mm64_get_32( s, 60, 62 );
casti_m64( d01,15 ) = mm64_get_32( s, 61, 63 );
}
static inline void mm64_extr_lane_2x32( void *d, const void *s,
const int lane, const int bit_len )
{
casti_m64( d, 0 ) = mm64_get_32( s, lane , lane+ 4 );
casti_m64( d, 1 ) = mm64_get_32( s, lane+ 8, lane+12 );
casti_m64( d, 2 ) = mm64_get_32( s, lane+16, lane+20 );
casti_m64( d, 3 ) = mm64_get_32( s, lane+24, lane+28 );
if ( bit_len <= 256 ) return;
casti_m64( d, 4 ) = mm64_get_32( s, lane+32, lane+36 );
casti_m64( d, 5 ) = mm64_get_32( s, lane+40, lane+44 );
casti_m64( d, 6 ) = mm64_get_32( s, lane+48, lane+52 );
casti_m64( d, 7 ) = mm64_get_32( s, lane+56, lane+60 );
// bit_len == 512
}
#endif // MMX
#endif // INTRLV_MMX_H__

View File

@@ -1,77 +0,0 @@
#if !defined(INTRLV_SELECTOR_H__)
#define INTRLV_SELECTOR_H__
//////////////////////////////////////////////////////////////
//
// Generic interface for interleaving data for parallel processing.
//
// Best tech is chosen atomatically.
/*
#if defined(__AVX512F__)
#define intrlv_4x128 mm512_intrlv_4x128
#define intrlv_4x128 mm512_intrlv_4x128
#define intrlv_8x64 mm512_intrlv_8x64
#define dintrlv_8x64 mm512_dintrlv_8x64
#define extr_lane_8x64 mm512_extr_lane_8x64
#define intrlv_16x32 mm512_intrlv_16x32
#define dintrlv_16x32 mm512_dintrlv_16x32
#define extr_lane_16x32 mm512_extr_lane_16x32
#define intrlv_2x128 mm512_intrlv_2x128
#define dintrlv_2x128 mm512_dintrlv_2x128
#define intrlv_4x64 mm512_intrlv_4x64
#define dintrlv_4x64 mm512_dintrlv_4x64
#define extr_lane_4x64 mm512_extr_lane_4x64
#define intrlv_8x32 mm512_intrlv_8x32
#define dintrlv_8x32 mm512_dintrlv_8x32
#define extr_lane_8x32 mm512_extr_lane_8x32
#elif defined(__AVX__)
*/
#if defined(__AVX__)
#define intrlv_2x128 mm256_intrlv_2x128
#define dintrlv_2x128 mm256_dintrlv_2x128
#define intrlv_4x64 mm256_intrlv_4x64
#define dintrlv_4x64 mm256_dintrlv_4x64
#define extr_lane_4x64 mm256_extr_lane_4x64
#define intrlv_8x32 mm256_intrlv_8x32
#define dintrlv_8x32 mm256_dintrlv_8x32
#define extr_lane_8x32 mm256_extr_lane_8x32
#define intrlv_4x32 mm256_intrlv_4x32
#define dintrlv_4x32 mm256_dintrlv_4x32
#define extr_lane_4x32 mm256_extr_lane_4x32
#else
#define intrlv_2x128 mm128_intrlv_2x128
#define dintrlv_2x128 mm128_dintrlv_2x128
#define intrlv_4x64 mm128_intrlv_4x64
#define dintrlv_4x64 mm128_dintrlv_4x64
#define extr_lane_4x64 mm128_extr_lane_4x64
#define intrlv_8x32 mm128_intrlv_8x32
#define dintrlv_8x32 mm128_dintrlv_8x32
#define extr_lane_8x32 mm128_extr_lane_8x32
#define intrlv_2x64 mm128_intrlv_2x64
#define dintrlv_2x64 mm128_dintrlv_2x64
#define extr_lane_2x64 mm128_extr_lane_2x64
#define intrlv_4x32 mm128_intrlv_4x32
#define dintrlv_4x32 mm128_dintrlv_4x32
#define extr_lane_4x32 mm128_extr_lane_4x32
#endif
#endif // INTRLV_SELECTOR_H__

View File

@@ -1,192 +0,0 @@
#if !defined(INTRLV_SSE2_H__)
#define INTRLV_SSE2_H__ 1
// Don't call __mm_extract_epi32 directly, it needs SSE4.1.
// Use mm128_extr_32 wrapper instead, it has both SSE4.1 & SSE2 covered.
#if defined(__SSE2__)
///////////////////////////////////////////////////////////////
//
// SSE2 128 bit vectors
// Macros to abstract typecasting
// Interleave lanes
#define mm128_put_64( s0, s1) \
_mm_set_epi64x( *((const uint64_t*)(s1)), *((const uint64_t*)(s0)) )
#define mm128_put_32( s0, s1, s2, s3 ) \
_mm_set_epi32( *((const uint32_t*)(s3)), *((const uint32_t*)(s2)), \
*((const uint32_t*)(s1)), *((const uint32_t*)(s0)) )
// Deinterleave lanes
#define mm128_get_64( s, i0, i1 ) \
_mm_set_epi64x( ((const uint64_t*)(s))[i1], ((const uint64_t*)(s))[i0] )
#define mm128_get_32( s, i0, i1, i2, i3 ) \
_mm_set_epi32( ((const uint32_t*)(s))[i3], ((const uint32_t*)(s))[i2], \
((const uint32_t*)(s))[i1], ((const uint32_t*)(s))[i0] )
// blend 2 vectors while interleaving: { hi[n], lo[n-1], ... hi[1], lo[0] }
#define mm128_intrlv_blend_64( hi, lo ) \
_mm256_blend_epi16( hi, lo, 0x0f )
#define mm128_intrlv_blend_32( hi, lo ) \
_mm6_blend_epi16( hi, lo, 0x33 )
// 1 sse2 block, 16 x 16 bytes
#define mm128_intrlv_4x32_128( d, s0, s1, s2, s3 )\
do { \
casti_m128i( d,0 ) = _mm_set_epi32( \
mm128_extr_32( s3, 0 ), mm128_extr_32( s2, 0 ), \
mm128_extr_32( s1, 0 ), mm128_extr_32( s0, 0 ) ); \
casti_m128i( d,1 ) = _mm_set_epi32( \
mm128_extr_32( s3, 1 ), mm128_extr_32( s2, 1 ), \
mm128_extr_32( s1, 1 ), mm128_extr_32( s0, 1 ) ); \
casti_m128i( d,2 ) = _mm_set_epi32( \
mm128_extr_32( s3, 2 ), mm128_extr_32( s2, 2 ), \
mm128_extr_32( s1, 2 ), mm128_extr_32( s0, 2 ) ); \
casti_m128i( d,3 ) = _mm_set_epi32( \
mm128_extr_32( s3, 3 ), mm128_extr_32( s2, 3 ), \
mm128_extr_32( s1, 3 ), mm128_extr_32( s0, 3 ) ); \
} while(0)
static inline void mm128_dintrlv_4x32_128( void *d0, void *d1, void *d2,
void *d3, const void *src )
{
__m128i s0 = *(__m128i*) src;
__m128i s1 = *(__m128i*)(src+16);
__m128i s2 = *(__m128i*)(src+32);
__m128i s3 = *(__m128i*)(src+48);
*(__m128i*)d0 = _mm_set_epi32(
mm128_extr_32( s3,0 ), mm128_extr_32( s2,0 ),
mm128_extr_32( s1,0 ), mm128_extr_32( s0,0 ) );
*(__m128i*)d1 = _mm_set_epi32(
mm128_extr_32( s3,1 ), mm128_extr_32( s2,1 ),
mm128_extr_32( s1,1 ), mm128_extr_32( s0,1 ) );
*(__m128i*)d2 = _mm_set_epi32(
mm128_extr_32( s3,2 ), mm128_extr_32( s2,2 ),
mm128_extr_32( s1,2 ), mm128_extr_32( s0,2 ) );
*(__m128i*)d3 = _mm_set_epi32(
mm128_extr_32( s3,3 ), mm128_extr_32( s2,3 ),
mm128_extr_32( s1,3 ), mm128_extr_32( s0,3 ) );
}
static inline void mm128_intrlv_2x64x128( void *d, const void *s0,
const void *s1 )
{
casti_m128i( d,0 ) = mm128_put_64( s0, s1 );
casti_m128i( d,1 ) = mm128_put_64( s0+ 8, s1+ 8 );
casti_m128i( d,2 ) = mm128_put_64( s0+16, s1+16 );
casti_m128i( d,3 ) = mm128_put_64( s0+24, s1+24 );
}
#define mm128_bswap_intrlv_4x32_128( d, src ) \
do { \
__m128i ss = mm128_bswap_32( src );\
casti_m128i( d,0 ) = _mm_set1_epi32( mm128_extr_32( ss, 0 ) ); \
casti_m128i( d,1 ) = _mm_set1_epi32( mm128_extr_32( ss, 1 ) ); \
casti_m128i( d,2 ) = _mm_set1_epi32( mm128_extr_32( ss, 2 ) ); \
casti_m128i( d,3 ) = _mm_set1_epi32( mm128_extr_32( ss, 3 ) ); \
} while(0)
//
// User functions.
// interleave 4 arrays of 32 bit elements for 128 bit processing
// bit_len must be 256, 512 or 640 bits.
static inline void mm128_intrlv_4x32( void *d, const void *s0,
const void *s1, const void *s2, const void *s3, int bit_len )
{
mm128_intrlv_4x32_128( d , casti_m128i(s0,0), casti_m128i(s1,0),
casti_m128i(s2,0), casti_m128i(s3,0) );
mm128_intrlv_4x32_128( d+ 64, casti_m128i(s0,1), casti_m128i(s1,1),
casti_m128i(s2,1), casti_m128i(s3,1) );
if ( bit_len <= 256 ) return;
mm128_intrlv_4x32_128( d+128, casti_m128i(s0,2), casti_m128i(s1,2),
casti_m128i(s2,2), casti_m128i(s3,2) );
mm128_intrlv_4x32_128( d+192, casti_m128i(s0,3), casti_m128i(s1,3),
casti_m128i(s2,3), casti_m128i(s3,3) );
if ( bit_len <= 512 ) return;
mm128_intrlv_4x32_128( d+256, casti_m128i(s0,4), casti_m128i(s1,4),
casti_m128i(s2,4), casti_m128i(s3,4) );
if ( bit_len <= 640 ) return;
mm128_intrlv_4x32_128( d+320, casti_m128i(s0,5), casti_m128i(s1,5),
casti_m128i(s2,5), casti_m128i(s3,5) );
mm128_intrlv_4x32_128( d+384, casti_m128i(s0,6), casti_m128i(s1,6),
casti_m128i(s2,6), casti_m128i(s3,6) );
mm128_intrlv_4x32_128( d+448, casti_m128i(s0,7), casti_m128i(s1,7),
casti_m128i(s2,7), casti_m128i(s3,7) );
// bit_len == 1024
}
// Still used by decred due to odd data size: 180 bytes
// bit_len must be multiple of 32
static inline void mm128_intrlv_4x32x( void *dst, void *src0, void *src1,
void *src2, void *src3, int bit_len )
{
uint32_t *d = (uint32_t*)dst;
uint32_t *s0 = (uint32_t*)src0;
uint32_t *s1 = (uint32_t*)src1;
uint32_t *s2 = (uint32_t*)src2;
uint32_t *s3 = (uint32_t*)src3;
for ( int i = 0; i < bit_len >> 5; i++, d += 4 )
{
*d = *(s0+i);
*(d+1) = *(s1+i);
*(d+2) = *(s2+i);
*(d+3) = *(s3+i);
}
}
static inline void mm128_dintrlv_4x32( void *d0, void *d1, void *d2,
void *d3, const void *s, int bit_len )
{
mm128_dintrlv_4x32_128( d0 , d1 , d2 , d3 , s );
mm128_dintrlv_4x32_128( d0+ 16, d1+ 16, d2+ 16, d3+ 16, s+ 64 );
if ( bit_len <= 256 ) return;
mm128_dintrlv_4x32_128( d0+ 32, d1+ 32, d2+ 32, d3+ 32, s+128 );
mm128_dintrlv_4x32_128( d0+ 48, d1+ 48, d2+ 48, d3+ 48, s+192 );
if ( bit_len <= 512 ) return;
mm128_dintrlv_4x32_128( d0+ 64, d1+ 64, d2+ 64, d3+ 64, s+256 );
if ( bit_len <= 640 ) return;
mm128_dintrlv_4x32_128( d0+ 80, d1+ 80, d2+ 80, d3+ 80, s+320 );
mm128_dintrlv_4x32_128( d0+ 96, d1+ 96, d2+ 96, d3+ 96, s+384 );
mm128_dintrlv_4x32_128( d0+112, d1+112, d2+112, d3+112, s+448 );
// bit_len == 1024
}
// extract and deinterleave specified lane.
static inline void mm128_extr_lane_4x32( void *d, const void *s,
const int lane, const int bit_len )
{
casti_m128i( d, 0 ) =
mm128_get_32( s, lane , lane+ 4, lane+ 8, lane+12 );
casti_m128i( d, 1 ) =
mm128_get_32( s, lane+16, lane+20, lane+24, lane+28 );
if ( bit_len <= 256 ) return;
casti_m128i( d, 2 ) =
mm128_get_32( s, lane+32, lane+36, lane+40, lane+44 );
casti_m128i( d, 3 ) =
mm128_get_32( s, lane+48, lane+52, lane+56, lane+60 );
// bit_len == 512
}
// Interleave 80 bytes of 32 bit data for 4 lanes.
static inline void mm128_bswap_intrlv80_4x32( void *d, const void *s )
{
mm128_bswap_intrlv_4x32_128( d , casti_m128i( s, 0 ) );
mm128_bswap_intrlv_4x32_128( d+ 64, casti_m128i( s, 1 ) );
mm128_bswap_intrlv_4x32_128( d+128, casti_m128i( s, 2 ) );
mm128_bswap_intrlv_4x32_128( d+192, casti_m128i( s, 3 ) );
mm128_bswap_intrlv_4x32_128( d+256, casti_m128i( s, 4 ) );
}
#endif // SSE2
#endif // INTRLV_SSE2_H__

1326
simd-utils/intrlv.h Normal file

File diff suppressed because it is too large Load Diff

View File

@@ -44,7 +44,17 @@
// repeatedly. It may be better for the application to reimplement the
// utility to better suit its usage.
//
// More tips:
//
// Conversions from integer to vector should be avoided whenever possible.
// Extract, insert and set and set1 instructions should be avoided.
// In addition to the issues with constants set is also very inefficient with
// variables.
// Converting integer data to perform a couple of vector operations
// then converting back to integer should be avoided. Converting data in
// registers should also be avoided. Conversion should be limited to buffers
// in memory where the data is loaded directly to vector registers, bypassing
// the integer to vector conversion.
//
// Pseudo constants.
//
@@ -71,7 +81,7 @@ static inline __m128i m128_one_64_fn()
asm( "pxor %0, %0\n\t"
"pcmpeqd %%xmm1, %%xmm1\n\t"
"psubq %%xmm1, %0\n\t"
:"=x"(a)
: "=x"(a)
:
: "xmm1" );
return a;
@@ -84,7 +94,7 @@ static inline __m128i m128_one_32_fn()
asm( "pxor %0, %0\n\t"
"pcmpeqd %%xmm1, %%xmm1\n\t"
"psubd %%xmm1, %0\n\t"
:"=x"(a)
: "=x"(a)
:
: "xmm1" );
return a;
@@ -97,7 +107,7 @@ static inline __m128i m128_one_16_fn()
asm( "pxor %0, %0\n\t"
"pcmpeqd %%xmm1, %%xmm1\n\t"
"psubw %%xmm1, %0\n\t"
:"=x"(a)
: "=x"(a)
:
: "xmm1" );
return a;
@@ -110,7 +120,7 @@ static inline __m128i m128_one_8_fn()
asm( "pxor %0, %0\n\t"
"pcmpeqd %%xmm1, %%xmm1\n\t"
"psubb %%xmm1, %0\n\t"
:"=x"(a)
: "=x"(a)
:
: "xmm1" );
return a;
@@ -121,7 +131,7 @@ static inline __m128i m128_neg1_fn()
{
__m128i a;
asm( "pcmpeqd %0, %0\n\t"
:"=x"(a) );
: "=x"(a) );
return a;
}
#define m128_neg1 m128_neg1_fn()
@@ -133,7 +143,7 @@ static inline __m128i m128_one_128_fn()
__m128i a;
asm( "pinsrq $0, $1, %0\n\t"
"pinsrq $1, $0, %0\n\t"
:"=x"(a) );
: "=x"(a) );
return a;
}
#define m128_one_128 m128_one_128_fn()
@@ -145,8 +155,8 @@ static inline __m128i m128_const_64( uint64_t hi, uint64_t lo )
__m128i a;
asm( "pinsrq $0, %2, %0\n\t"
"pinsrq $1, %1, %0\n\t"
:"=x"(a)
:"r"(hi),"r"(lo) );
: "=x"(a)
: "r"(hi), "r"(lo) );
return a;
}
@@ -348,17 +358,17 @@ static inline void memcpy_128( __m128i *dst, const __m128i *src, int n )
// no SSE2 implementation, no current users
#define mm128_ror_1x16( v ) \
_mm_shuffle_epi8( v, _mm_set_epi8( 1, 0,15,14,13,12,11,10 \
9, 8, 7, 6, 5, 4, 3, 2 ) )
_mm_shuffle_epi8( v, m128_const_64( 0x01000f0e0d0c0b0a, \
0x0908070605040302 ) )
#define mm128_rol_1x16( v ) \
_mm_shuffle_epi8( v, _mm_set_epi8( 13,12,11,10, 9, 8, 7, 6, \
5, 4, 3, 2, 1, 0,15,14 ) )
_mm_shuffle_epi8( v, m128_const_64( 0x0d0c0b0a09080706, \
0x0504030201000f0e ) )
#define mm128_ror_1x8( v ) \
_mm_shuffle_epi8( v, _mm_set_epi8( 0,15,14,13,12,11,10, 9, \
8, 7, 6, 5, 4, 3, 2, 1 ) )
_mm_shuffle_epi8( v, m128_const_64( 0x000f0e0d0c0b0a09, \
0x0807060504030201 ) )
#define mm128_rol_1x8( v ) \
_mm_shuffle_epi8( v, _mm_set_epi8( 14,13,12,11,10, 9, 8, 7, \
6, 5, 4, 3, 2, 1, 0,15 ) )
_mm_shuffle_epi8( v, m128_const_64( 0x0e0d0c0b0a090807, \
0x060504030201000f ) )
#endif // SSE3
// Rotate 16 byte (128 bit) vector by c bytes.
@@ -376,12 +386,12 @@ static inline void memcpy_128( __m128i *dst, const __m128i *src, int n )
#define mm128_swap32_64( v ) _mm_shuffle_epi32( v, 0xb1 )
#define mm128_ror16_64( v ) _mm_shuffle_epi8( v, \
_mm_set_epi8( 9, 8,15,14,13,12,11,10, 1, 0, 7, 6, 5, 4, 3, 2 )
m128_const_64( 0x09080f0e0d0c0b0a, 0x0100070605040302 )
#define mm128_rol16_64( v ) _mm_shuffle_epi8( v, \
_mm_set_epi8( 13,12,11,10, 9, 8,15,14, 5, 4, 3, 2, 1, 0, 7, 6 )
m128_const_64( 0x0dc0b0a09080f0e, 0x0504030201000706 )
#define mm128_swap16_32( v ) _mm_shuffle_epi8( v, \
_mm_set_epi8( 13,12,15,14, 9,8,11,10, 5,4,7,6, 1,0,3,2 )
m128_const_64( 0x0d0c0f0e09080b0a, 0x0504070601000302 )
//
// Endian byte swap.
@@ -389,16 +399,15 @@ static inline void memcpy_128( __m128i *dst, const __m128i *src, int n )
#if defined(__SSSE3__)
#define mm128_bswap_64( v ) \
_mm_shuffle_epi8( v, m128_const64( 0x08090a0b0c0d0e0f, \
_mm_shuffle_epi8( v, m128_const_64( 0x08090a0b0c0d0e0f, \
0x0001020304050607 ) )
#define mm128_bswap_32( v ) \
_mm_shuffle_epi8( v, m128_const_64( 0x0c0d0e0f08090a0b, \
0x0405060700010203 ) )
#define mm128_bswap_16( v ) \
_mm_shuffle_epi8( v, _mm_set_epi8( 14,15, 12,13, 10,11, 8, 9, \
6, 7, 4, 5, 2, 3, 0, 1 ) )
#define mm128_bswap_16( v ) _mm_shuffle_epi8( \
m128_const_64( 0x0e0f0c0d0a0b0809, 0x0607040502030001 )
// 8 byte qword * 8 qwords * 2 lanes = 128 bytes
#define mm128_block_bswap_64( d, s ) do \
@@ -452,14 +461,14 @@ static inline __m128i mm128_bswap_16( __m128i v )
static inline void mm128_block_bswap_64( __m128i *d, __m128i *s )
{
d[0] = mm128_bswap_32( s[0] );
d[1] = mm128_bswap_32( s[1] );
d[2] = mm128_bswap_32( s[2] );
d[3] = mm128_bswap_32( s[3] );
d[4] = mm128_bswap_32( s[4] );
d[5] = mm128_bswap_32( s[5] );
d[6] = mm128_bswap_32( s[6] );
d[7] = mm128_bswap_32( s[7] );
d[0] = mm128_bswap_64( s[0] );
d[1] = mm128_bswap_64( s[1] );
d[2] = mm128_bswap_64( s[2] );
d[3] = mm128_bswap_64( s[3] );
d[4] = mm128_bswap_64( s[4] );
d[5] = mm128_bswap_64( s[5] );
d[6] = mm128_bswap_64( s[6] );
d[7] = mm128_bswap_64( s[7] );
}
static inline void mm128_block_bswap_32( __m128i *d, __m128i *s )

View File

@@ -32,6 +32,7 @@
// set instructions load memory resident constants, this avoids mem.
// cost 4 pinsert + 1 vinsert, estimate 7 clocks.
// Avoid using, mm128_const_64 twice is still faster.
#define m256_const_64( i3, i2, i1, i0 ) \
_mm256_insertf128_si256( _mm256_castsi128_si256( m128_const_64( i1, i0 ) ), \
m128_const_64( i3, i2 ), 1 )
@@ -50,7 +51,7 @@ static inline __m256i m256_one_64_fn()
asm( "vpxor %0, %0, %0\n\t"
"vpcmpeqd %%ymm1, %%ymm1, %%ymm1\n\t"
"vpsubq %%ymm1, %0, %0\n\t"
:"=x"(a)
: "=x"(a)
:
: "ymm1" );
return a;
@@ -63,7 +64,7 @@ static inline __m256i m256_one_32_fn()
asm( "vpxor %0, %0, %0\n\t"
"vpcmpeqd %%ymm1, %%ymm1, %%ymm1\n\t"
"vpsubd %%ymm1, %0, %0\n\t"
:"=x"(a)
: "=x"(a)
:
: "ymm1" );
return a;
@@ -76,7 +77,7 @@ static inline __m256i m256_one_16_fn()
asm( "vpxor %0, %0, %0\n\t"
"vpcmpeqd %%ymm1, %%ymm1, %%ymm1\n\t"
"vpsubw %%ymm1, %0, %0\n\t"
:"=x"(a)
: "=x"(a)
:
: "ymm1" );
return a;
@@ -89,7 +90,7 @@ static inline __m256i m256_one_8_fn()
asm( "vpxor %0, %0, %0\n\t"
"vpcmpeqd %%ymm1, %%ymm1, %%ymm1\n\t"
"vpsubb %%ymm1, %0, %0\n\t"
:"=x"(a)
: "=x"(a)
:
: "ymm1" );
return a;
@@ -100,7 +101,7 @@ static inline __m256i m256_neg1_fn()
{
__m256i a;
asm( "vpcmpeqq %0, %0, %0\n\t"
:"=x"(a) );
: "=x"(a) );
return a;
}
#define m256_neg1 m256_neg1_fn()
@@ -423,23 +424,23 @@ static inline void memcpy_256( __m256i *dst, const __m256i *src, int n )
// Rotate 256 bit vector by one 16 bit element.
#define mm256_ror_1x16( v ) \
_mm256_permutexvar_epi16( _mm256_set_epi16( \
0,15,14,13,12,11,10, 9, 8, 7, 6, 5, 4, 3, 2, 1 ), v )
_mm256_permutexvar_epi16( m256_const_64( \
0x0000000f000e000d, 0x000c000b000a0009, \
0x0008000700060005, 0x0004000300020001 ), v )
#define mm256_rol_1x16( v ) \
_mm256_permutexvar_epi16( _mm256_set_epi16( \
14,13,12,11,10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0,15 ), v )
_mm256_permutexvar_epi16( m256_const_64( \
0x000e000d000c000b, 0x000a000900080007, \
0x0006000500040003, 0x000200010000000f ), v )
// Rotate 256 bit vector by one byte.
#define mm256_ror_1x8( v ) \
_mm256_permutexvar_epi8( _mm256_set_epi8( \
0,31,30,29,28,27,26,25, 24,23,22,21,20,19,18,17, \
16,15,14,13,12,11,10, 9, 8, 7, 6, 5, 4, 3, 2, 1 ), v )
#define mm256_ror_1x8( v ) m256_const_64( \
0x001f1e1d1c1b1a19, 0x1817161514131211, \
0x100f0e0d0c0b0a09, 0x0807060504030201 )
#define mm256_rol_1x8( v ) \
_mm256_permutexvar_epi8( _mm256_set_epi8( \
30,29,28,27,26,25,24,23, 22,21,20,19,18,17,16,15, \
14,13,12,11,10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0,31 ), v )
#define mm256_rol_1x8( v ) m256_const_64( \
0x1e1d1c1b1a191817, 0x161514131211100f, \
0x0e0d0c0b0a090807, 0x060504030201001f )
#endif // AVX512

View File

@@ -41,79 +41,6 @@
// Experimental, not fully tested.
//
// Compile time vector constants and initializers.
//
// The following macro constants and functions should only be used
// for compile time initialization of constant and variable vector
// arrays. These constants use memory, use set instruction or pseudo
// constants at run time to avoid using memory.
// Constant initializers
#define mm512_const_64( x7, x6, x5, x4, x3, x2, x1, x0 ) \
{{ x7, x6, x5, x4, x3, x2, x1, x0 }}
#define mm512_const1_64( x ) {{ x,x,x,x,x,x,x }}
#define mm512_const_32( x15, x14, x13, x12, x11, x10, x09, x08, \
x07, x06, x05, x04, x03, x02, x01, x00 ) \
{{ x15, x14, x13, x12, x11, x10, x09, x08, }} \
x07, x06, x05, x04, x03, x02, x01, x00 }}
#define mm512_const1_32( x ) {{ x,x,x,x, x,x,x,x, x,x,x,x, x,x,x,x }}
#define mm512_const_16( x31, x30, x29, x28, x27, x26, x25, x24, \
x23, x22, x21, x20, x19, x18, x17, x16, \
x15, x14, x13, x12, x11, x10, x09, x08, \
x07, x06, x05, x04, x03, x02, x01, x00 ) \
{{ x31, x30, x29, x28, x27, x26, x25, x24, \
x23, x22, x21, x20, x19, x18, x17, x16, \
x15, x14, x13, x12, x11, x10, x09, x08, \
x07, x06, x05, x04, x03, x02, x01, x00 }}
#define mm512_const1_16( x ) {{ x,x,x,x, x,x,x,x, x,x,x,x, x,x,x,x, \
x,x,x,x, x,x,x,x, x,x,x,x, x,x,x,x }}
#define mm512_const_8( x63, x62, x61, x60, x59, x58, x57, x56, \
x55, x54, x53, x52, x51, x50, x49, x48, \
x47, x46, x45, x44, x43, x42, x41, x40, \
x39, x38, x37, x36, x35, x34, x33, x32, \
x31, x30, x29, x28, x27, x26, x25, x24, \
x23, x22, x21, x20, x19, x18, x17, x16, \
x15, x14, x13, x12, x11, x10, x09, x08, \
x07, x06, x05, x04, x03, x02, x01, x00 ) \
{{ x63, x62, x61, x60, x59, x58, x57, x56, \
x55, x54, x53, x52, x51, x50, x49, x48, \
x47, x46, x45, x44, x43, x42, x41, x40, \
x39, x38, x37, x36, x35, x34, x33, x32, \
x31, x30, x29, x28, x27, x26, x25, x24, \
x23, x22, x21, x20, x19, x18, x17, x16, \
x15, x14, x13, x12, x11, x10, x09, x08, \
x07, x06, x05, x04, x03, x02, x01, x00 }}
#define mm512_const1_8( x ) {{ x,x,x,x, x,x,x,x, x,x,x,x, x,x,x,x, \
x,x,x,x, x,x,x,x, x,x,x,x, x,x,x,x, \
x,x,x,x, x,x,x,x, x,x,x,x, x,x,x,x, \
x,x,x,x, x,x,x,x, x,x,x,x, x,x,x,x }}
// Predefined compile time constant vectors.
#define c512_zero mm512_const1_64( 0ULL )
#define c512_neg1 mm512_const1_64( 0xFFFFFFFFFFFFFFFFULL )
#define c512_one_512 mm512_const_epi64( 0ULL, 0ULL, 0ULL, 0ULL, \
0ULL, 0ULL, 0ULL, 1ULL )
#define c512_one_256 mm512_const_64( 0ULL, 0ULL, 0ULL, 1ULL, \
0ULL, 0ULL, 0ULL, 1ULL )
#define c512_one_128 mm512_const_64( 0ULL, 1ULL, 0ULL, 1ULL, \
0ULL, 1ULL, 0ULL, 1ULL )
#define c512_one_64 mm512_const1_64( 1ULL )
#define c512_one_32 mm512_const1_32( 1UL )
#define c512_one_16 mm512_const1_16( 1U )
#define c512_one_8 mm512_const1_8( 1U )
#define c512_neg1_64 mm512_const1_64( 0xFFFFFFFFFFFFFFFFULL )
#define c512_neg1_32 mm512_const1_32( 0xFFFFFFFFUL )
#define c512_neg1_16 mm512_const1_32( 0xFFFFU )
#define c512_neg1_8 mm512_const1_32( 0xFFU )
//
// Pseudo constants.
@@ -127,11 +54,77 @@
0ULL, 0ULL, 0ULL, 1ULL )
#define m512_one_256 _mm512_set4_epi64( 0ULL, 0ULL, 0ULL, 1ULL )
#define m512_one_128 _mm512_set4_epi64( 0ULL, 1ULL, 0ULL, 1ULL )
#define m512_one_64 _mm512_set1_epi64( 1ULL )
#define m512_one_32 _mm512_set1_epi32( 1UL )
#define m512_one_16 _mm512_set1_epi16( 1U )
#define m512_one_8 _mm512_set1_epi8( 1U )
#define m512_neg1 _mm512_set1_epi64( 0xFFFFFFFFFFFFFFFFULL )
//#define m512_one_64 _mm512_set1_epi64( 1ULL )
//#define m512_one_32 _mm512_set1_epi32( 1UL )
//#define m512_one_16 _mm512_set1_epi16( 1U )
//#define m512_one_8 _mm512_set1_epi8( 1U )
//#define m512_neg1 _mm512_set1_epi64( 0xFFFFFFFFFFFFFFFFULL )
#define mi512_const_64( i7, i6, i5, i4, i3, i2, i1, i0 ) \
_mm512_inserti64x4( _mm512_castsi512_si256( m256_const_64( i3.i2,i1,i0 ) ), \
m256_const_64( i7,i6,i5,i4 ), 1 )
#define m512_const1_64( i ) m256_const_64( i, i, i, i, i, i, i, i )
static inline __m512i m512_one_64_fn()
{
__m512i a;
asm( "vpxorq %0, %0, %0\n\t"
"vpcmpeqd %%zmm1, %%zmm1, %%zmm1\n\t"
"vpsubq %%zmm1, %0, %0\n\t"
:"=x"(a)
:
: "zmm1" );
return a;
}
#define m512_one_64 m512_one_64_fn()
static inline __m512i m512_one_32_fn()
{
__m512i a;
asm( "vpxord %0, %0, %0\n\t"
"vpcmpeqd %%zmm1, %%zmm1, %%zmm1\n\t"
"vpsubd %%zmm1, %0, %0\n\t"
:"=x"(a)
:
: "zmm1" );
return a;
}
#define m512_one_32 m512_one_32_fn()
static inline __m512i m512_one_16_fn()
{
__m512i a;
asm( "vpxord %0, %0, %0\n\t"
"vpcmpeqd %%zmm1, %%zmm1, %%zmm1\n\t"
"vpsubw %%zmm1, %0, %0\n\t"
:"=x"(a)
:
: "zmm1" );
return a;
}
#define m512_one_16 m512_one_16_fn()
static inline __m512i m512_one_8_fn()
{
__m512i a;
asm( "vpxord %0, %0, %0\n\t"
"vpcmpeqd %%zmm1, %%zmm1, %%zmm1\n\t"
"vpsubb %%zmm1, %0, %0\n\t"
:"=x"(a)
:
: "zmm1" );
return a;
}
#define m512_one_8 m512_one_8_fn()
static inline __m512i m512_neg1_fn()
{
__m512i a;
asm( "vpcmpeqq %0, %0, %0\n\t"
:"=x"(a) );
return a;
}
#define m512_neg1 m512_neg1_fn()
//
@@ -142,6 +135,15 @@
#define mm512_negate_32( x ) _mm512_sub_epi32( m512_zero, x )
#define mm512_negate_16( x ) _mm512_sub_epi16( m512_zero, x )
#define mm256_extr_lo256_512( a ) _mm512_castsi512_si256( a )
#define mm256_extr_hi256_512( a ) _mm512_extracti64x4_epi64( a, 1 )
#define mm128_extr_lo128_512( a ) _mm512_castsi512_si256( a )
//
// Pointer casting
@@ -225,6 +227,25 @@
*((uint32_t*)(d06)) = ((uint32_t*)(s))[14]; \
*((uint32_t*)(d07)) = ((uint32_t*)(s))[15];
// Add 4 values, fewer dependencies than sequential addition.
#define mm512_add4_64( a, b, c, d ) \
_mm512_add_epi64( _mm512_add_epi64( a, b ), _mm512_add_epi64( c, d ) )
#define mm512_add4_32( a, b, c, d ) \
_mm512_add_epi32( _mm512_add_epi32( a, b ), _mm512_add_epi32( c, d ) )
#define mm512_add4_16( a, b, c, d ) \
_mm512_add_epi16( _mm512_add_epi16( a, b ), _mm512_add_epi16( c, d ) )
#define mm512_add4_8( a, b, c, d ) \
_mm512_add_epi8( _mm512_add_epi8( a, b ), _mm512_add_epi8( c, d ) )
#define mm512_xor4( a, b, c, d ) \
_mm512_xor_si512( _mm512_xor_si256( a, b ), _mm512_xor_si256( c, d ) )
//
// Bit rotations.
@@ -263,45 +284,41 @@
#define mm512_ror_x32( v, n ) _mm512_alignr_epi32( v, v, n )
// Although documented to exist in AVX512F the _mm512_set_epi8 &
// _mm512_set_epi16 intrinsics fail to compile. Seems usefull to have
// for endian byte swapping. Workaround by using _mm512_set_epi32.
// Ugly but it works.
#define mm512_ror_1x16( v ) \
_mm512_permutexvar_epi16( v, _mm512_set_epi32( \
0x0000001F, 0x001E001D, 0x001C001B, 0x001A0019, \
0X00180017, 0X00160015, 0X00140013, 0X00120011, \
0X0010000F, 0X000E000D, 0X000C000B, 0X000A0009, \
0X00080007, 0X00060005, 0X00040003, 0X00020001 ) )
_mm512_permutexvar_epi16( v, m512_const_64( \
0x0000001F001E001D, 0x001C001B001A0019, \
0X0018001700160015, 0X0014001300120011, \
0X0010000F000E000D, 0X000C000B000A0009, \
0X0008000700060005, 0X0004000300020001 ) )
#define mm512_rol_1x16( v ) \
_mm512_permutexvar_epi16( v, _mm512_set_epi32( \
0x001E001D, 0x001C001B, 0x001A0019, 0x00180017, \
0X00160015, 0X00140013, 0X00120011, 0x0010000F, \
0X000E000D, 0X000C000B, 0X000A0009, 0X00080007, \
0X00060005, 0X00040003, 0X00020001, 0x0000001F ) )
_mm512_permutexvar_epi16( v, m512_const_64( \
0x001E001D001C001B, 0x001A001900180017, \
0X0016001500140013, 0X001200110010000F, \
0X000E000D000C000B, 0X000A000900080007, \
0X0006000500040003, 0X000200010000001F ) )
#define mm512_ror_1x8( v ) \
_mm512_permutexvar_epi8( v, _mm512_set_epi32( \
0x003F3E3D, 0x3C3B3A39, 0x38373635, 0x34333231, \
0x302F2E2D, 0x2C2B2A29, 0x28272625, 0x24232221, \
0x201F1E1D, 0x1C1B1A19. 0x18171615, 0x14131211, \
0x100F0E0D, 0x0C0B0A09, 0x08070605, 0x04030201 ) )
_mm512_permutexvar_epi8( v, m512_const_64( \
0x003F3E3D3C3B3A39, 0x3837363534333231, \
0x302F2E2D2C2B2A29, 0x2827262524232221, \
0x201F1E1D1C1B1A19. 0x1817161514131211, \
0x100F0E0D0C0B0A09, 0x0807060504030201 ) )
#define mm512_rol_1x8( v ) \
_mm512_permutexvar_epi8( v, _mm512_set_epi32( \
0x3E3D3C3B, 0x3A393837, 0x36353433, 0x3231302F. \
0x2E2D2C2B, 0x2A292827, 0x26252423, 0x2221201F, \
0x1E1D1C1B, 0x1A191817, 0x16151413, 0x1211100F, \
0x0E0D0C0B, 0x0A090807, 0x06050403, 0x0201003F ) )
_mm512_permutexvar_epi8( v, m512_const_64( \
0x3E3D3C3B3A393837, 0x363534333231302F. \
0x2E2D2C2B2A292827, 0x262524232221201F, \
0x1E1D1C1B1A191817, 0x161514131211100F, \
0x0E0D0C0B0A090807, 0x060504030201003F ) )
// Invert vector: {3,2,1,0} -> {0,1,2,3}
#define mm512_invert_128( v ) _mm512_permute4f128_epi32( a, 0x1b )
#define mm512_invert_64( v ) \
_mm512_permutex_epi64( v, _mm512_set_epi64( 0,1,2,3,4,5,6,7 ) )
_mm512_permutex_epi64( v, m512_const_64( 0,1,2,3,4,5,6,7 ) )
#define mm512_invert_32( v ) \
_mm512_permutexvar_epi32( v, _mm512_set_epi32( \
@@ -378,32 +395,32 @@
#define mm512_rol1x32_128( v ) _mm512_shuffle_epi32( v, 0x93 )
#define mm512_ror1x16_128( v ) \
_mm512_permutexvar_epi16( v, _mm512_set_epi32( \
0x0018001F, 0x001E001D, 0x001C001B, 0x001A0019, \
0x00100017, 0x00160015, 0x00140013, 0x00120011, \
0x0008000F, 0x000E000D, 0x000C000B, 0x000A0009, \
0x00000007, 0x00060005, 0x00040003, 0x00020001 ) )
_mm512_permutexvar_epi16( v, m512_const_64( \
0x0018001F001E001D, 0x001C001B001A0019, \
0x0010001700160015, 0x0014001300120011, \
0x0008000F000E000D, 0x000C000B000A0009, \
0x0000000700060005, 0x0004000300020001 ) )
#define mm512_rol1x16_128( v ) \
_mm512_permutexvar_epi16( v, _mm512_set_epi32( \
0x001E001D, 0x001C001B, 0x001A0019, 0x0018001F, \
0x00160015, 0x00140013, 0x00120011, 0x00100017, \
0x000E000D, 0x000C000B, 0x000A0009, 0x0008000F, \
0x00060005, 0x00040003, 0x00020001, 0x00000007 ) )
_mm512_permutexvar_epi16( v, m512_const_64( \
0x001E001D001C001B, 0x001A00190018001F, \
0x0016001500140013, 0x0012001100100017, \
0x000E000D000C000B, 0x000A00090008000F, \
0x0006000500040003, 0x0002000100000007 ) )
#define mm512_ror1x8_128( v ) \
_mm512_permutexvar_epi8( v, _mm512_set_epi32( \
0x303F3E3D, 0x3C3B3A39, 0x38373635, 0x34333231, \
0x202F2E2D, 0x2C2B2A29, 0x28272625, 0x24232221, \
0x101F1E1D, 0x1C1B1A19, 0x18171615, 0x14131211, \
0x000F0E0D, 0x0C0B0A09, 0x08070605, 0x04030201 ) )
_mm512_permutexvar_epi8( v, m512_const_64( \
0x303F3E3D3C3B3A39, 0x3837363534333231, \
0x202F2E2D2C2B2A29, 0x2827262524232221, \
0x101F1E1D1C1B1A19, 0x1817161514131211, \
0x000F0E0D0C0B0A09, 0x0807060504030201 ) )
#define mm512_rol1x8_128( v ) \
_mm512_permutexvar_epi8( v, _mm512_set_epi32( \
0x3E3D3C3B, 0x3A393837, 0x36353433. 0x3231303F, \
0x2E2D2C2B, 0x2A292827, 0x26252423, 0x2221202F, \
0x1E1D1C1B, 0x1A191817, 0x16151413, 0x1211101F, \
0x0E0D0C0B, 0x0A090807, 0x06050403, 0x0201000F ) )
_mm512_permutexvar_epi8( v, m512_const_64( \
0x3E3D3C3B3A393837, 0x363534333231303F, \
0x2E2D2C2B2A292827, 0x262524232221202F, \
0x1E1D1C1B1A191817, 0x161514131211101F, \
0x0E0D0C0B0A090807, 0x060504030201000F ) )
// Rotate 128 bit lanes by c bytes.
#define mm512_bror_128( v, c ) \
@@ -486,7 +503,7 @@
0x08090A0B, 0x0C0D0E0F, 0x00010203, 0x04050607 ) )
#define mm512_bswap_32( v ) \
_mm512_permutexvar_epi8( v, _mm512_set_epi832( \
_mm512_permutexvar_epi8( v, _mm512_set_epi32( \
0x3C3D3E3F, 0x38393A3B, 0x34353637, 0x30313233, \
0x3C3D3E3F, 0x38393A3B, 0x34353637, 0x30313233, \
0x3C3D3E3F, 0x38393A3B, 0x34353637, 0x30313233, \

94
util.c
View File

@@ -668,6 +668,15 @@ err_out:
return cfg;
}
void cbin2hex(char *out, const char *in, size_t len)
{
if (out) {
unsigned int i;
for (i = 0; i < len; i++)
sprintf(out + (i * 2), "%02x", (uint8_t)in[i]);
}
}
void bin2hex(char *s, const unsigned char *p, size_t len)
{
for (size_t i = 0; i < len; i++)
@@ -1693,35 +1702,47 @@ static uint32_t getblocheight(struct stratum_ctx *sctx)
static bool stratum_notify(struct stratum_ctx *sctx, json_t *params)
{
const char *job_id, *prevhash, *coinb1, *coinb2, *version, *nbits, *stime;
const char *extradata = NULL;
const char *denom10 = NULL, *denom100 = NULL, *denom1000 = NULL,
*denom10000 = NULL, *prooffullnode = NULL;
const char *extradata = NULL;
size_t coinb1_size, coinb2_size;
bool clean, ret = false;
int merkle_count, i, p = 0;
json_t *merkle_arr;
uchar **merkle = NULL;
int jsize = json_array_size(params);
bool has_claim = ( opt_algo == ALGO_LBRY ) && ( jsize == 10 );
bool has_roots = ( opt_algo == ALGO_PHI2 ) && ( jsize == 10 );
job_id = json_string_value(json_array_get(params, p++));
bool has_claim = ( opt_algo == ALGO_LBRY ) && ( jsize == 10 );
bool has_roots = ( opt_algo == ALGO_PHI2 ) && ( jsize == 10 );
bool is_veil = ( opt_algo == ALGO_X16RT_VEIL );
job_id = json_string_value(json_array_get(params, p++));
prevhash = json_string_value(json_array_get(params, p++));
if ( has_claim )
{
extradata = json_string_value(json_array_get(params, p++));
if ( !extradata || strlen( extradata ) != 64 )
{
applog(LOG_ERR, "Stratum notify: invalid claim parameter");
goto out;
}
}
else if ( has_roots )
{
extradata = json_string_value(json_array_get(params, p++));
if ( !extradata || strlen( extradata ) != 128 )
{
applog(LOG_ERR, "Stratum notify: invalid UTXO root parameter");
goto out;
}
}
if ( has_claim )
{
extradata = json_string_value(json_array_get(params, p++));
if ( !extradata || strlen( extradata ) != 64 )
{
applog(LOG_ERR, "Stratum notify: invalid claim parameter");
goto out;
}
}
else if ( has_roots )
{
extradata = json_string_value(json_array_get(params, p++));
if ( !extradata || strlen( extradata ) != 128 )
{
applog(LOG_ERR, "Stratum notify: invalid UTXO root parameter");
goto out;
}
}
if ( is_veil )
{
denom10 = json_string_value(json_array_get(params, p++));
denom100 = json_string_value(json_array_get(params, p++));
denom1000 = json_string_value(json_array_get(params, p++));
denom10000 = json_string_value(json_array_get(params, p++));
prooffullnode = json_string_value(json_array_get(params, p++));
}
coinb1 = json_string_value(json_array_get(params, p++));
coinb2 = json_string_value(json_array_get(params, p++));
@@ -1733,7 +1754,7 @@ static bool stratum_notify(struct stratum_ctx *sctx, json_t *params)
nbits = json_string_value(json_array_get(params, p++));
stime = json_string_value(json_array_get(params, p++));
clean = json_is_true(json_array_get(params, p)); p++;
if (!job_id || !prevhash || !coinb1 || !coinb2 || !version || !nbits || !stime ||
strlen(prevhash) != 64 || strlen(version) != 8 ||
strlen(nbits) != 8 || strlen(stime) != 8) {
@@ -1741,8 +1762,22 @@ static bool stratum_notify(struct stratum_ctx *sctx, json_t *params)
goto out;
}
merkle = (uchar**) malloc(merkle_count * sizeof(char *));
for (i = 0; i < merkle_count; i++) {
if ( is_veil )
{
if ( !denom10 || !denom100 || !denom1000 || !denom10000
|| !prooffullnode || strlen(denom10) != 64 || strlen(denom100) != 64
|| strlen(denom1000) != 64 || strlen(denom10000) != 64
|| strlen(prooffullnode) != 64 )
{
applog(LOG_ERR, "Stratum notify: invalid veil parameters");
goto out;
}
}
if ( merkle_count )
merkle = (uchar**) malloc(merkle_count * sizeof(char *));
for ( i = 0; i < merkle_count; i++ )
{
const char *s = json_string_value(json_array_get(merkle_arr, i));
if (!s || strlen(s) != 64) {
while (i--)
@@ -1774,6 +1809,15 @@ static bool stratum_notify(struct stratum_ctx *sctx, json_t *params)
if (has_claim) hex2bin(sctx->job.extra, extradata, 32);
if (has_roots) hex2bin(sctx->job.extra, extradata, 64);
if ( is_veil )
{
hex2bin(sctx->job.denom10, denom10, 32);
hex2bin(sctx->job.denom100, denom100, 32);
hex2bin(sctx->job.denom1000, denom1000, 32);
hex2bin(sctx->job.denom10000, denom10000, 32);
hex2bin(sctx->job.proofoffullnode, prooffullnode, 32);
}
sctx->bloc_height = getblocheight(sctx);
for (i = 0; i < sctx->job.merkle_count; i++)