mirror of
https://github.com/JayDDee/cpuminer-opt.git
synced 2025-09-17 23:44:27 +00:00
Compare commits
9 Commits
Author | SHA1 | Date | |
---|---|---|---|
![]() |
ce259b915a | ||
![]() |
02202ab803 | ||
![]() |
77c5ae80ab | ||
![]() |
eb3f57bfc7 | ||
![]() |
e1aead3c76 | ||
![]() |
bfd1c002f9 | ||
![]() |
9edc650042 | ||
![]() |
218cef337a | ||
![]() |
9ffce7bdb7 |
126
INSTALL_LINUX
Normal file
126
INSTALL_LINUX
Normal file
@@ -0,0 +1,126 @@
|
||||
|
||||
|
||||
Requirements:
|
||||
|
||||
Intel Core2 or newer, or AMD Steamroller or newer CPU. ARM CPUs are not
|
||||
supported.
|
||||
64 bit Linux operating system. Apple is not supported.
|
||||
|
||||
Building on linux prerequisites:
|
||||
|
||||
It is assumed users know how to install packages on their system and
|
||||
be able to compile standard source packages. This is basic Linux and
|
||||
beyond the scope of cpuminer-opt. Regardless compiling is trivial if you
|
||||
follow the instructions.
|
||||
|
||||
Make sure you have the basic development packages installed.
|
||||
Here is a good start:
|
||||
|
||||
http://askubuntu.com/questions/457526/how-to-install-cpuminer-in-ubuntu
|
||||
|
||||
Install any additional dependencies needed by cpuminer-opt. The list below
|
||||
are some of the ones that may not be in the default install and need to
|
||||
be installed manually. There may be others, read the error messages they
|
||||
will give a clue as to the missing package.
|
||||
|
||||
The following command should install everything you need on Debian based
|
||||
distributions such as Ubuntu:
|
||||
|
||||
sudo apt-get install build-essential libssl-dev libcurl4-openssl-dev libjansson-dev libgmp-dev automake zlib1g-dev
|
||||
|
||||
build-essential (Development Tools package group on Fedora)
|
||||
automake
|
||||
libjansson-dev
|
||||
libgmp-dev
|
||||
libcurl4-openssl-dev
|
||||
libssl-dev
|
||||
lib-thread
|
||||
zlib1g-dev
|
||||
|
||||
SHA support on AMD Ryzen CPUs requires gcc version 5 or higher and
|
||||
openssl 1.1.0e or higher. Add one of the following, depending on the
|
||||
compiler version, to CFLAGS:
|
||||
"-march=native" or "-march=znver1" or "-msha".
|
||||
|
||||
Due to poor AVX2 performance on Ryzen users should add -DRYZEN_ to CFLAGS
|
||||
to override multiway AVX2 on algos with sha256, and use SHA instead.
|
||||
|
||||
Additional instructions for static compilalation can be found here:
|
||||
https://lxadm.com/Static_compilation_of_cpuminer
|
||||
Static builds should only considered in a homogeneous HW and SW environment.
|
||||
Local builds will always have the best performance and compatibility.
|
||||
|
||||
Extract cpuminer source.
|
||||
|
||||
tar xvzf cpuminer-opt-x.y.z.tar.gz
|
||||
cd cpuminer-opt-x.y.z
|
||||
|
||||
Run ./build.sh to build on Linux or execute the following commands.
|
||||
|
||||
./autogen.sh
|
||||
CFLAGS="-O3 -march=native -Wall" ./configure --with-curl
|
||||
make
|
||||
|
||||
Start mining.
|
||||
|
||||
./cpuminer -a algo -o url -u username -p password
|
||||
|
||||
Windows
|
||||
|
||||
Precompiled Windows binaries are built on a Linux host using Mingw
|
||||
with a more recent compiler than the following Windows hosted procedure.
|
||||
|
||||
Building on Windows prerequisites:
|
||||
|
||||
msys
|
||||
mingw_w64
|
||||
Visual C++ redistributable 2008 X64
|
||||
openssl
|
||||
|
||||
Install msys and mingw_w64, only needed once.
|
||||
|
||||
Unpack msys into C:\msys or your preferred directory.
|
||||
|
||||
Install mingw_w64 from win-builds.
|
||||
Follow instructions, check "msys or cygwin" and "x86_64" and accept default
|
||||
existing msys instalation.
|
||||
|
||||
Open a msys shell by double clicking on msys.bat.
|
||||
Note that msys shell uses linux syntax for file specifications, "C:\" is
|
||||
mounted at "/c/".
|
||||
|
||||
Add mingw bin directory to PATH variable
|
||||
PATH="/c/msys/opt/windows_64/bin/:$PATH"
|
||||
|
||||
Instalation complete, compile cpuminer-opt.
|
||||
|
||||
Unpack cpuminer-opt source files using tar from msys shell, or using 7zip
|
||||
or similar Windows program.
|
||||
|
||||
In msys shell cd to miner directory.
|
||||
cd /c/path/to/cpuminer-opt
|
||||
|
||||
Run build.sh to build on Windows or execute the following commands.
|
||||
|
||||
./autogen.sh
|
||||
CFLAGS="-O3 -march=native -Wall" ./configure --with-curl
|
||||
make
|
||||
|
||||
Start mining
|
||||
|
||||
cpuminer.exe -a algo -o url -u user -p password
|
||||
|
||||
The following tips may be useful for older AMD CPUs.
|
||||
|
||||
AMD CPUs older than Steamroller, including Athlon x2 and Phenom II x4, are
|
||||
not supported by cpuminer-opt due to an incompatible implementation of SSE2
|
||||
on these CPUs. Some algos may crash the miner with an invalid instruction.
|
||||
Users are recommended to use an unoptimized miner such as cpuminer-multi.
|
||||
|
||||
Some users with AMD CPUs without AES_NI have reported problems compiling
|
||||
with build.sh or "-march=native". Problems have included compile errors
|
||||
and poor performance. These users are recommended to compile manually
|
||||
specifying "-march=btver1" on the configure command line.
|
||||
|
||||
Support for even older x86_64 without AES_NI or SSE2 is not availble.
|
||||
|
173
INSTALL_WINDOWS
Normal file
173
INSTALL_WINDOWS
Normal file
@@ -0,0 +1,173 @@
|
||||
Instructions for compiling cpuminer-opt for Windows.
|
||||
|
||||
|
||||
Windows compilation using Visual Studio is not supported. Mingw64 is
|
||||
used on a Linux system (bare metal or virtual machine) to cross-compile
|
||||
cpuminer-opt executable binaries for Windows.
|
||||
|
||||
These instructions were written for Debian and Ubuntu compatible distributions
|
||||
but should work on other major distributions as well. However some of the
|
||||
package names or file paths may be different.
|
||||
|
||||
It is assumed a Linux system is already available and running. And the user
|
||||
has enough Linux knowledge to find and install packages and follow these
|
||||
instructions.
|
||||
|
||||
First it is a good idea to create new user specifically for cross compiling.
|
||||
It keeps all mingw stuff contained and isolated from the rest of the system.
|
||||
|
||||
Step by step...
|
||||
|
||||
1. Install necessary packages from the distribution's repositories.
|
||||
|
||||
Refer to Linux compile instructions and install required packages.
|
||||
|
||||
Additionally, install mingw-64.
|
||||
|
||||
sudo apt-get install mingw-w64
|
||||
|
||||
|
||||
2. Create a local library directory for packages to be compiled in the next
|
||||
step. Recommended location is $HOME/usr/lib/
|
||||
|
||||
|
||||
3. Download and build other packages for mingw that don't have a mingw64
|
||||
version available in the repositories.
|
||||
|
||||
Download the following source code packages from their respective and
|
||||
respected download locations, copy them to ~/usr/lib/ and uncompress them.
|
||||
|
||||
openssl
|
||||
curl
|
||||
gmp
|
||||
|
||||
In most cases the latest vesrion is ok but it's safest to download
|
||||
the same major and minor version as included in your distribution.
|
||||
|
||||
Run the following commands or follow the supplied instructions.
|
||||
Do not run "make install" unless you are using ~/usr/lib, which isn't
|
||||
recommended.
|
||||
|
||||
Some instructions insist on running "make check". If make check fails
|
||||
it may still work, YMMV.
|
||||
|
||||
You can speed up "make" by using all CPU cores available with "-j n" where
|
||||
n is the number of CPU threads you want to use.
|
||||
|
||||
openssl:
|
||||
|
||||
./Configure mingw64 shared --cross-compile-prefix=x86_64-w64-mingw32
|
||||
make
|
||||
|
||||
curl:
|
||||
|
||||
./configure --with-winssl --with-winidn --host=x86_64-w64-mingw32
|
||||
make
|
||||
|
||||
gmp:
|
||||
|
||||
./configure --host=x86_64-w64-mingw32
|
||||
make
|
||||
|
||||
|
||||
|
||||
4. Tweak the environment.
|
||||
|
||||
This step is required everytime you login or the commands can be added to
|
||||
.bashrc.
|
||||
|
||||
Define some local variables to point to local library.
|
||||
|
||||
export LOCAL_LIB="$HOME/usr/lib"
|
||||
|
||||
export LDFLAGS="-L$LOCAL_LIB/curl/lib/.libs -L$LOCAL_LIB/gmp/.libs -L$LOCAL_LIB/openssl"
|
||||
|
||||
export CONFIGURE_ARGS="--with-curl=$LOCAL_LIB/curl --with-crypto=$LOCAL_LIB/openssl --host=x86_64-w64-mingw32"
|
||||
|
||||
Create a release directory and copy some dll files previously built.
|
||||
This can be done outside of cpuminer-opt and only needs to be done once.
|
||||
If the release directory is in cpuminer-opt directory it needs to be
|
||||
recreated every a source package is decompressed.
|
||||
|
||||
mkdir release
|
||||
cp /usr/x86_64-w64-mingw32/lib/zlib1.dll release/
|
||||
cp /usr/x86_64-w64-mingw32/lib/libwinpthread-1.dll release/
|
||||
cp /usr/lib/gcc/x86_64-w64-mingw32/7.3-win32/libstdc++-6.dll release/
|
||||
cp /usr/lib/gcc/x86_64-w64-mingw32/7.3-win32/libgcc_s_seh-1.dll release/
|
||||
cp $LOCAL_LIB/openssl/libcrypto-1_1-x64.dll release/
|
||||
cp $LOCAL_LIB/curl/lib/.libs/libcurl-4.dll release/
|
||||
|
||||
|
||||
|
||||
The following steps need to be done every time a new source package is
|
||||
opened.
|
||||
|
||||
5. Download cpuminer-opt
|
||||
|
||||
Download the latest source code package of cpumuner-opt to your desired
|
||||
location. .zip or .tar.gz, your choice.
|
||||
|
||||
https://github.com/JayDDee/cpuminer-opt/releases
|
||||
|
||||
Decompress and change to the cpuminer-opt directory.
|
||||
|
||||
|
||||
|
||||
6. Prepare to compile
|
||||
|
||||
Create a link to the locally compiled version of gmp.h
|
||||
|
||||
ln -s $LOCAL_LIB/gmp-version/gmp.h ./gmp.h
|
||||
|
||||
Edit configure.ac to fix lipthread package name.
|
||||
|
||||
sed -i 's/"-lpthread"/"-lpthreadGC2"/g' configure.ac
|
||||
|
||||
|
||||
7. Compile
|
||||
|
||||
you can use the default compile if you intend to use cpuminer-opt on the
|
||||
same CPU and the virtual machine supports that architecture.
|
||||
|
||||
./build.sh
|
||||
|
||||
Otherwise you can compile manually while setting options in CFLAGS.
|
||||
|
||||
Some common options:
|
||||
|
||||
To compile for a specific CPU architecture:
|
||||
|
||||
CFLAGS="-O3 -march=znver1 -Wall" ./configure --with-curl
|
||||
|
||||
This will compile for AMD Ryzen.
|
||||
|
||||
You can compile more generically for a set of specific CPU features
|
||||
if you know what features you want:
|
||||
|
||||
CFLAGS="-O3 -maes -msse4.2 -Wall" ./configure --with-curl
|
||||
|
||||
This will compile for an older CPU that does not have AVX.
|
||||
|
||||
You can find several examples in build-allarch.sh
|
||||
|
||||
If you have a CPU with more than 64 threads and Windows 7 or higher you
|
||||
can enable the CPU Groups feature:
|
||||
|
||||
-D_WIN32_WINNT==0x0601
|
||||
|
||||
Once you have run configure successfully run make with n CPU threads:
|
||||
|
||||
make -j n
|
||||
|
||||
Copy cpuminer.exe to the release directory, compress and copy the release
|
||||
directory to a Windows system and run cpuminer.exe from the command line.
|
||||
|
||||
Run cpuminer
|
||||
|
||||
In a command windows change directories to the unzipped release folder.
|
||||
to get a list of all options:
|
||||
|
||||
cpuminer.exe --help
|
||||
|
||||
Command options are specific to where you mine. Refer to the pool's
|
||||
instructions on how to set them.
|
38
Makefile.am
38
Makefile.am
@@ -42,10 +42,11 @@ cpuminer_SOURCES = \
|
||||
algo/argon2/argon2d/argon2d/argon2.c \
|
||||
algo/argon2/argon2d/argon2d/core.c \
|
||||
algo/argon2/argon2d/argon2d/opt.c \
|
||||
algo/argon2/argon2d/argon2d/thread.c \
|
||||
algo/argon2/argon2d/argon2d/argon2d_thread.c \
|
||||
algo/argon2/argon2d/argon2d/encoding.c \
|
||||
algo/blake/sph_blake.c \
|
||||
algo/blake/blake-hash-4way.c \
|
||||
algo/blake/blake256-hash-4way.c \
|
||||
algo/blake/blake512-hash-4way.c \
|
||||
algo/blake/blake-gate.c \
|
||||
algo/blake/blake.c \
|
||||
algo/blake/blake-4way.c \
|
||||
@@ -67,14 +68,15 @@ cpuminer_SOURCES = \
|
||||
algo/blake/pentablake-4way.c \
|
||||
algo/blake/pentablake.c \
|
||||
algo/bmw/sph_bmw.c \
|
||||
algo/bmw/bmw-hash-4way.c \
|
||||
algo/bmw/bmw256-hash-4way.c \
|
||||
algo/bmw/bmw512-hash-4way.c \
|
||||
algo/bmw/bmw256.c \
|
||||
algo/cryptonight/cryptolight.c \
|
||||
algo/cryptonight/cryptonight-common.c\
|
||||
algo/cryptonight/cryptonight-aesni.c\
|
||||
algo/cryptonight/cryptonight.c\
|
||||
algo/cubehash/sph_cubehash.c \
|
||||
algo/cubehash/sse2/cubehash_sse2.c\
|
||||
algo/cubehash/cubehash_sse2.c\
|
||||
algo/cubehash/cube-hash-2way.c \
|
||||
algo/echo/sph_echo.c \
|
||||
algo/echo/aes_ni/hash.c\
|
||||
@@ -116,26 +118,28 @@ cpuminer_SOURCES = \
|
||||
algo/luffa/luffa-hash-2way.c \
|
||||
algo/lyra2/lyra2.c \
|
||||
algo/lyra2/sponge.c \
|
||||
algo/lyra2/lyra2rev2-gate.c \
|
||||
algo/lyra2/lyra2-gate.c \
|
||||
algo/lyra2/lyra2rev2.c \
|
||||
algo/lyra2/lyra2rev2-4way.c \
|
||||
algo/lyra2/lyra2rev3.c \
|
||||
algo/lyra2/lyra2rev3-4way.c \
|
||||
algo/lyra2/lyra2re.c \
|
||||
algo/lyra2/lyra2z-gate.c \
|
||||
algo/lyra2/lyra2z.c \
|
||||
algo/lyra2/lyra2z-4way.c \
|
||||
algo/lyra2/lyra2z330.c \
|
||||
algo/lyra2/lyra2h-gate.c \
|
||||
algo/lyra2/lyra2h.c \
|
||||
algo/lyra2/lyra2h-4way.c \
|
||||
algo/lyra2/allium-gate.c \
|
||||
algo/lyra2/allium-4way.c \
|
||||
algo/lyra2/allium.c \
|
||||
algo/lyra2/phi2.c \
|
||||
algo/m7m.c \
|
||||
algo/neoscrypt/neoscrypt.c \
|
||||
algo/nist5/nist5-gate.c \
|
||||
algo/nist5/nist5-4way.c \
|
||||
algo/nist5/nist5.c \
|
||||
algo/nist5/zr5.c \
|
||||
algo/panama/sph_panama.c \
|
||||
algo/radiogatun/sph_radiogatun.c \
|
||||
algo/pluck.c \
|
||||
algo/quark/quark-gate.c \
|
||||
algo/quark/quark.c \
|
||||
@@ -163,10 +167,13 @@ cpuminer_SOURCES = \
|
||||
algo/sha/sha256t-gate.c \
|
||||
algo/sha/sha256t-4way.c \
|
||||
algo/sha/sha256t.c \
|
||||
algo/sha/sha256q-4way.c \
|
||||
algo/sha/sha256q.c \
|
||||
algo/shabal/sph_shabal.c \
|
||||
algo/shabal/shabal-hash-4way.c \
|
||||
algo/shavite/sph_shavite.c \
|
||||
algo/shavite/sph-shavite-aesni.c \
|
||||
algo/shavite/shavite-hash-2way.c \
|
||||
algo/shavite/shavite.c \
|
||||
algo/simd/sph_simd.c \
|
||||
algo/simd/nist.c \
|
||||
@@ -240,19 +247,26 @@ cpuminer_SOURCES = \
|
||||
algo/x15/x15-gate.c \
|
||||
algo/x15/x15.c \
|
||||
algo/x15/x15-4way.c \
|
||||
algo/x16/x16r-gate.c \
|
||||
algo/x16/x16r.c \
|
||||
algo/x16/x16r-4way.c \
|
||||
algo/x17/x17-gate.c \
|
||||
algo/x17/x17.c \
|
||||
algo/x17/x17-4way.c \
|
||||
algo/x17/xevan-gate.c \
|
||||
algo/x17/xevan.c \
|
||||
algo/x17/xevan-4way.c \
|
||||
algo/x17/x16r-gate.c \
|
||||
algo/x17/x16r.c \
|
||||
algo/x17/x16r-4way.c \
|
||||
algo/x17/hmq1725.c \
|
||||
algo/x17/sonoa-gate.c \
|
||||
algo/x17/sonoa-4way.c \
|
||||
algo/x17/sonoa.c \
|
||||
algo/x20/x20r.c \
|
||||
algo/yescrypt/yescrypt.c \
|
||||
algo/yescrypt/sha256_Y.c \
|
||||
algo/yescrypt/yescrypt-best.c
|
||||
algo/yescrypt/yescrypt-best.c \
|
||||
algo/yespower/yespower.c \
|
||||
algo/yespower/sha256_p.c \
|
||||
algo/yespower/yespower-opt.c
|
||||
|
||||
disable_flags =
|
||||
|
||||
|
152
README.md
152
README.md
@@ -16,7 +16,8 @@ https://bitcointalk.org/index.php?topic=1326803.0
|
||||
|
||||
mailto://jayddee246@gmail.com
|
||||
|
||||
See file RELEASE_NOTES for change log and compile instructions.
|
||||
See file RELEASE_NOTES for change log and INSTALL_LINUX or INSTALL_WINDOWS
|
||||
for compile instructions.
|
||||
|
||||
Requirements
|
||||
------------
|
||||
@@ -45,86 +46,95 @@ MacOS, OSx and Android are not supported.
|
||||
Supported Algorithms
|
||||
--------------------
|
||||
|
||||
allium Garlicoin
|
||||
anime Animecoin
|
||||
argon2 Argon2 coin (AR2)
|
||||
argon2d-crds Credits (CRDS)
|
||||
argon2d-dyn Dynamic (DYN)
|
||||
axiom Shabal-256 MemoHash
|
||||
allium Garlicoin
|
||||
anime Animecoin
|
||||
argon2 Argon2 coin (AR2)
|
||||
argon2d250 argon2d-crds, Credits (CRDS)
|
||||
argon2d500 argon2d-dyn, Dynamic (DYN)
|
||||
argon2d4096 argon2d-uis, Unitus, (UIS)
|
||||
axiom Shabal-256 MemoHash
|
||||
bastion
|
||||
blake Blake-256 (SFR)
|
||||
blakecoin blake256r8
|
||||
blake2s Blake-2 S
|
||||
bmw BMW 256
|
||||
c11 Chaincoin
|
||||
cryptolight Cryptonight-light
|
||||
cryptonight cryptonote, Monero (XMR)
|
||||
blake Blake-256 (SFR)
|
||||
blakecoin blake256r8
|
||||
blake2s Blake-2 S
|
||||
bmw BMW 256
|
||||
c11 Chaincoin
|
||||
cryptolight Cryptonight-light
|
||||
cryptonight
|
||||
cryptonightv7 Monero (XMR)
|
||||
decred
|
||||
deep Deepcoin (DCN)
|
||||
dmd-gr Diamond-Groestl
|
||||
drop Dropcoin
|
||||
fresh Fresh
|
||||
groestl Groestl coin
|
||||
heavy Heavy
|
||||
hmq1725 Espers
|
||||
hodl Hodlcoin
|
||||
jha Jackpotcoin
|
||||
keccak Maxcoin
|
||||
keccakc Creative coin
|
||||
lbry LBC, LBRY Credits
|
||||
luffa Luffa
|
||||
lyra2h Hppcoin
|
||||
lyra2re lyra2
|
||||
lyra2rev2 lyra2v2, Vertcoin
|
||||
lyra2z Zcoin (XZC)
|
||||
lyra2z330 Lyra2 330 rows, Zoin (ZOI)
|
||||
m7m Magi (XMG)
|
||||
myr-gr Myriad-Groestl
|
||||
neoscrypt NeoScrypt(128, 2, 1)
|
||||
nist5 Nist5
|
||||
pentablake Pentablake
|
||||
phi1612 phi, LUX coin
|
||||
pluck Pluck:128 (Supcoin)
|
||||
polytimos Ninja
|
||||
quark Quark
|
||||
qubit Qubit
|
||||
scrypt scrypt(1024, 1, 1) (default)
|
||||
scrypt:N scrypt(N, 1, 1)
|
||||
deep Deepcoin (DCN)
|
||||
dmd-gr Diamond-Groestl
|
||||
drop Dropcoin
|
||||
fresh Fresh
|
||||
groestl Groestl coin
|
||||
heavy Heavy
|
||||
hmq1725 Espers
|
||||
hodl Hodlcoin
|
||||
jha Jackpotcoin
|
||||
keccak Maxcoin
|
||||
keccakc Creative coin
|
||||
lbry LBC, LBRY Credits
|
||||
luffa Luffa
|
||||
lyra2h Hppcoin
|
||||
lyra2re lyra2
|
||||
lyra2rev2 lyra2v2, Vertcoin
|
||||
lyra2rev3 lyrav2v3, Vertcoin
|
||||
lyra2z Zcoin (XZC)
|
||||
lyra2z330 Lyra2 330 rows, Zoin (ZOI)
|
||||
m7m Magi (XMG)
|
||||
myr-gr Myriad-Groestl
|
||||
neoscrypt NeoScrypt(128, 2, 1)
|
||||
nist5 Nist5
|
||||
pentablake Pentablake
|
||||
phi1612 phi, LUX coin (original algo)
|
||||
phi2 LUX coin (new algo)
|
||||
pluck Pluck:128 (Supcoin)
|
||||
polytimos Ninja
|
||||
quark Quark
|
||||
qubit Qubit
|
||||
scrypt scrypt(1024, 1, 1) (default)
|
||||
scrypt:N scrypt(N, 1, 1)
|
||||
scryptjane:nf
|
||||
sha256d Double SHA-256
|
||||
sha256t Triple SHA-256, Onecoin (OC)
|
||||
shavite3 Shavite3
|
||||
skein Skein+Sha (Skeincoin)
|
||||
skein2 Double Skein (Woodcoin)
|
||||
skunk Signatum (SIGT)
|
||||
timetravel Machinecoin (MAC)
|
||||
timetravel10 Bitcore
|
||||
tribus Denarius (DNR)
|
||||
vanilla blake256r8vnl (VCash)
|
||||
veltor (VLT)
|
||||
sha256d Double SHA-256
|
||||
sha256t Triple SHA-256, Onecoin (OC)
|
||||
shavite3 Shavite3
|
||||
skein Skein+Sha (Skeincoin)
|
||||
skein2 Double Skein (Woodcoin)
|
||||
skunk Signatum (SIGT)
|
||||
sonoa Sono
|
||||
timetravel Machinecoin (MAC)
|
||||
timetravel10 Bitcore
|
||||
tribus Denarius (DNR)
|
||||
vanilla blake256r8vnl (VCash)
|
||||
veltor (VLT)
|
||||
whirlpool
|
||||
whirlpoolx
|
||||
x11 Dash
|
||||
x11evo Revolvercoin
|
||||
x11gost sib (SibCoin)
|
||||
x12 Galaxie Cash (GCH)
|
||||
x13 X13
|
||||
x13sm3 hsr (Hshare)
|
||||
x14 X14
|
||||
x15 X15
|
||||
x16r Ravencoin (RVN)
|
||||
x16s pigeoncoin (PGN)
|
||||
x11 Dash
|
||||
x11evo Revolvercoin
|
||||
x11gost sib (SibCoin)
|
||||
x12 Galaxie Cash (GCH)
|
||||
x13 X13
|
||||
x13sm3 hsr (Hshare)
|
||||
x14 X14
|
||||
x15 X15
|
||||
x16r Ravencoin (RVN)
|
||||
x16s pigeoncoin (PGN)
|
||||
x17
|
||||
xevan Bitsend (BSD)
|
||||
yescrypt Globalboost-Y (BSTY)
|
||||
yescryptr8 BitZeny (ZNY)
|
||||
yescryptr16 Yenten (YTN)
|
||||
yescryptr32 WAVI
|
||||
zr5 Ziftr
|
||||
xevan Bitsend (BSD)
|
||||
yescrypt Globalboost-Y (BSTY)
|
||||
yescryptr8 BitZeny (ZNY)
|
||||
yescryptr16 Eli
|
||||
yescryptr32 WAVI
|
||||
yespower Cryply
|
||||
yespowerr16 Yenten (YTN)
|
||||
zr5 Ziftr
|
||||
|
||||
Errata
|
||||
------
|
||||
|
||||
Cryptonight and variants are no longer supported, use another miner.
|
||||
|
||||
Neoscrypt crashes on Windows, use legacy version.
|
||||
|
||||
AMD CPUs older than Piledriver, including Athlon x2 and Phenom II x4, are not
|
||||
|
21
README.txt
21
README.txt
@@ -12,30 +12,27 @@ the software, don't use it.
|
||||
Choose the exe that best matches you CPU's features or use trial and
|
||||
error to find the fastest one that doesn't crash. Pay attention to
|
||||
the features listed at cpuminer startup to ensure you are mining at
|
||||
optimum speed using all the available features.
|
||||
optimum speed using the best available features.
|
||||
|
||||
Architecture names and compile options used are only provided for Intel
|
||||
Core series. Pentium and Celeron often have fewer features.
|
||||
Core series. Even the newest Pentium and Celeron CPUs are often missing
|
||||
features.
|
||||
|
||||
AMD CPUs older than Piledriver, including Athlon x2 and Phenom II x4, are not
|
||||
supported by cpuminer-opt due to an incompatible implementation of SSE2 on
|
||||
these CPUs. Some algos may crash the miner with an invalid instruction.
|
||||
Users are recommended to use an unoptimized miner such as cpuminer-multi.
|
||||
|
||||
Exe name Compile flags Arch name
|
||||
Exe name Compile flags Arch name
|
||||
|
||||
cpuminer-sse2.exe "-msse2" Core2, Nehalem
|
||||
cpuminer-aes-sse42.exe "-maes -msse4.2" Westmere
|
||||
cpuminer-aes-avx.exe "-march=corei7-avx" Sandybridge, Ivybridge
|
||||
cpuminer-avx2.exe "-march=core-avx2" Haswell...
|
||||
cpuminer-avx2-sha.exe "-march=core-avx2 -msha" Ryzen
|
||||
cpuminer-sse2.exe "-msse2" Core2, Nehalem
|
||||
cpuminer-aes-sse42.exe "-march=westmere" Westmere
|
||||
cpuminer-avx.exe "-march=corei7-avx" Sandy-Ivybridge
|
||||
cpuminer-avx2.exe "-march=core-avx2" Haswell, Sky-Kaby-Coffeelake
|
||||
cpuminer-zen "-march=znver1 -DRYZEN_" Ryzen
|
||||
|
||||
If you like this software feel free to donate:
|
||||
|
||||
BTC: 12tdvfF7KmAsihBXQXynT6E6th2c2pByTT
|
||||
ETH: 0x72122edabcae9d3f57eab0729305a425f6fef6d0
|
||||
LTC: LdUwoHJnux9r9EKqFWNvAi45kQompHk6e8
|
||||
BCH: 1QKYkB6atn4P7RFozyziAXLEnurwnUM1cQ
|
||||
BTG: GVUyECtRHeC5D58z9F3nGGfVQndwnsPnHQ
|
||||
|
||||
|
||||
|
246
RELEASE_NOTES
246
RELEASE_NOTES
@@ -1,11 +1,11 @@
|
||||
puminer-opt now supports HW SHA acceleration available on AMD Ryzen CPUs.
|
||||
cpuminer-opt is a console program run from the command line using the
|
||||
keyboard, not the mouse.
|
||||
|
||||
cpuminer-opt now supports HW SHA acceleration available on AMD Ryzen CPUs.
|
||||
This feature requires recent SW including GCC version 5 or higher and
|
||||
openssl version 1.1 or higher. It may also require using "-march=znver1"
|
||||
compile flag.
|
||||
|
||||
HW SHA support is only available when compiled from source, Windows binaries
|
||||
are not yet available.
|
||||
|
||||
cpuminer-opt is a console program, if you're using a mouse you're doing it
|
||||
wrong.
|
||||
|
||||
@@ -25,141 +25,124 @@ required.
|
||||
Compile Instructions
|
||||
--------------------
|
||||
|
||||
Requirements:
|
||||
See INSTALL_LINUX or INSTALL_WINDOWS fror compile instruuctions
|
||||
|
||||
Requirements
|
||||
------------
|
||||
|
||||
Intel Core2 or newer, or AMD Steamroller or newer CPU. ARM CPUs are not
|
||||
supported.
|
||||
64 bit Linux or Windows operating system. Apple is not supported.
|
||||
|
||||
Building on linux prerequisites:
|
||||
|
||||
It is assumed users know how to install packages on their system and
|
||||
be able to compile standard source packages. This is basic Linux and
|
||||
beyond the scope of cpuminer-opt.
|
||||
|
||||
Make sure you have the basic development packages installed.
|
||||
Here is a good start:
|
||||
|
||||
http://askubuntu.com/questions/457526/how-to-install-cpuminer-in-ubuntu
|
||||
|
||||
Install any additional dependencies needed by cpuminer-opt. The list below
|
||||
are some of the ones that may not be in the default install and need to
|
||||
be installed manually. There may be others, read the error messages they
|
||||
will give a clue as to the missing package.
|
||||
|
||||
The following command should install everything you need on Debian based
|
||||
distributions such as Ubuntu:
|
||||
|
||||
sudo apt-get install build-essential libssl-dev libcurl4-openssl-dev libjansson-dev libgmp-dev automake
|
||||
|
||||
|
||||
build-essential (for Ubuntu, Development Tools package group on Fedora)
|
||||
automake
|
||||
libjansson-dev
|
||||
libgmp-dev
|
||||
libcurl4-openssl-dev
|
||||
libssl-dev
|
||||
pthreads
|
||||
zlib
|
||||
|
||||
SHA support on AMD Ryzen CPUs requires gcc version 5 or higher and openssl 1.1
|
||||
or higher. Reports of improved performiance on Ryzen when using openssl 1.0.2
|
||||
have been due to AVX and AVX2 optimizations added to that version.
|
||||
Additional improvements are expected on Ryzen with openssl 1.1.
|
||||
"-march-znver1" or "-msha".
|
||||
|
||||
Additional instructions for static compilalation can be found here:
|
||||
https://lxadm.com/Static_compilation_of_cpuminer
|
||||
Static builds should only considered in a homogeneous HW and SW environment.
|
||||
Local builds will always have the best performance and compatibility.
|
||||
|
||||
Extract cpuminer source.
|
||||
|
||||
tar xvzf cpuminer-opt-x.y.z.tar.gz
|
||||
cd cpuminer-opt-x.y.z
|
||||
|
||||
Run ./build.sh to build on Linux or execute the following commands.
|
||||
|
||||
./autogen.sh
|
||||
CFLAGS="-O3 -march=native -Wall" CXXFLAGS="$CFLAGS -std=gnu++11" ./configure --with-curl
|
||||
make
|
||||
|
||||
Additional optional compile flags, add the following to CFLAGS to activate:
|
||||
|
||||
-DUSE_SPH_SHA
|
||||
|
||||
SPH may give slightly better performance on algos that use sha256 when using
|
||||
openssl 1.0.1 or older. Openssl 1.0.2 adds AVX2 and 1.1 adds SHA and perform
|
||||
better than SPH. This option is ignored when 4-way is used, even for CPUs
|
||||
with SHA.
|
||||
|
||||
Start mining.
|
||||
|
||||
./cpuminer -a algo -o url -u username -p password
|
||||
|
||||
Windows
|
||||
|
||||
Precompiled Windows binaries are built on a Linux host using Mingw
|
||||
with a more recent compiler than the following Windows hosted procedure.
|
||||
|
||||
Building on Windows prerequisites:
|
||||
|
||||
msys
|
||||
mingw_w64
|
||||
Visual C++ redistributable 2008 X64
|
||||
openssl
|
||||
|
||||
Install msys and mingw_w64, only needed once.
|
||||
|
||||
Unpack msys into C:\msys or your preferred directory.
|
||||
|
||||
Install mingw_w64 from win-builds.
|
||||
Follow instructions, check "msys or cygwin" and "x86_64" and accept default
|
||||
existing msys instalation.
|
||||
|
||||
Open a msys shell by double clicking on msys.bat.
|
||||
Note that msys shell uses linux syntax for file specifications, "C:\" is
|
||||
mounted at "/c/".
|
||||
|
||||
Add mingw bin directory to PATH variable
|
||||
PATH="/c/msys/opt/windows_64/bin/:$PATH"
|
||||
|
||||
Instalation complete, compile cpuminer-opt.
|
||||
|
||||
Unpack cpuminer-opt source files using tar from msys shell, or using 7zip
|
||||
or similar Windows program.
|
||||
|
||||
In msys shell cd to miner directory.
|
||||
cd /c/path/to/cpuminer-opt
|
||||
|
||||
Run build.sh to build on Windows or execute the following commands.
|
||||
|
||||
./autogen.sh
|
||||
CFLAGS="-O3 -march=native -Wall" ./configure --with-curl
|
||||
make
|
||||
|
||||
Start mining
|
||||
|
||||
cpuminer.exe -a algo -o url -u user -p password
|
||||
|
||||
The following tips may be useful for older AMD CPUs.
|
||||
|
||||
AMD CPUs older than Steamroller, including Athlon x2 and Phenom II x4, are
|
||||
not supported by cpuminer-opt due to an incompatible implementation of SSE2
|
||||
on these CPUs. Some algos may crash the miner with an invalid instruction.
|
||||
Users are recommended to use an unoptimized miner such as cpuminer-multi.
|
||||
|
||||
Some users with AMD CPUs without AES_NI have reported problems compiling
|
||||
with build.sh or "-march=native". Problems have included compile errors
|
||||
and poor performance. These users are recommended to compile manually
|
||||
specifying "-march=btver1" on the configure command line.
|
||||
|
||||
Support for even older x86_64 without AES_NI or SSE2 is not availble.
|
||||
|
||||
64 bit Linux or Windows operating system. Apple and Android are not supported.
|
||||
|
||||
Change Log
|
||||
----------
|
||||
|
||||
v3.9.2
|
||||
|
||||
Added sha256q algo.
|
||||
Yespower now uses openssl SHA256, but no observable hash rate increase
|
||||
on Ryzen.
|
||||
Ongoing rearchitecting.
|
||||
Lyra2z now hashes 8-way on CPUs with AVX2.
|
||||
Lyra2 (all including phi2) now runs optimized code with SSE2.
|
||||
|
||||
v3.9.1.1
|
||||
|
||||
Fixed lyra2v3 AVX and below.
|
||||
|
||||
Compiling on Windows using Cygwin now works. Simply use "./build.sh"
|
||||
just like on Linux. It isn't portable therefore the binaries package will
|
||||
continue to use the existing procedure.
|
||||
The Cygwin procedure will be documented in more detail later and will
|
||||
include a list of packages that need to be installed.
|
||||
|
||||
v3.9.1
|
||||
|
||||
Fixed AVX2 version of anime algo.
|
||||
|
||||
Added sonoa algo.
|
||||
|
||||
Added "-DRYZEN_" compile option for Ryzen to override 4-way hashing when algo
|
||||
contains sha256 and use SHA instead. This is due to a combination of
|
||||
the introduction of HW SHA support combined with the poor performance
|
||||
of AVX2 on Ryzen. The Windows binaries package replaces cpuminer-avx2-sha
|
||||
with cpuminer-zen compiled with the override. Refer to the build instructions
|
||||
for more information.
|
||||
|
||||
Ongoing restructuring to streamline the process, reduce latency,
|
||||
reduce memory usage and unnecessary copying of data. Most of these
|
||||
will not result in a notoceably higher reported hashrate as the
|
||||
change simply reduces the time wasted that wasn't factored into the
|
||||
hash rate reported by the miner. In short, less dead time resulting in
|
||||
a higher net hashrate.
|
||||
|
||||
One of these measures to reduce latency also results in an enhanced
|
||||
share submission message including the share number*, the CPU thread,
|
||||
and the vector lane that found the solution. The time difference between
|
||||
the share submission and acceptance (or rejection) response indicates
|
||||
network ltatency. One other effect of this change is a reduction in hash
|
||||
meter messages because the scan function no longer exits when a share is
|
||||
found. Scan cycles will go longer and submit multiple shares per cycle.
|
||||
*the share number is antcipated and includes both accepted and rejected
|
||||
shares. Because the share is antipated and not synchronized it may be
|
||||
incorrect in time of very rapid share submission. Under most conditions
|
||||
it should be easy to match the submission with the corresponding response.
|
||||
|
||||
Removed "-DUSE_SPH_SHA" option, all users should have a recent version of
|
||||
openssl installed: v1.0.2 (Ubuntu 16.04) or better. Ryzen SHA requires
|
||||
v1.1.0 or better. Ryzen SHA is not used when hashing multi-way parallel.
|
||||
Ryzen SHA is available in the Windows binaries release package.
|
||||
|
||||
Improved compile instructions, now in seperate files: INSTALL_LINUX and
|
||||
INSTALL_WINDOWS. The Windows instructions are used to build the binaries
|
||||
release package. It's built on a Linux system either running as a virtual
|
||||
machine or a seperate computer. At this time there is no known way to
|
||||
build natively on a Windows system.
|
||||
|
||||
v3.9.0.1
|
||||
|
||||
Isolate Windows CPU groups code when CPU groups support not explicitly defined.
|
||||
|
||||
v3.9.0
|
||||
|
||||
Added support for Windows CPU groups.
|
||||
Fixed BIP34 coinbase height.
|
||||
Prep work for AVX512.
|
||||
Added lyra2rev3 for the vertcoin algo change.
|
||||
Added yespower, yespowerr16 (Yenten)
|
||||
Added phi2 algo for LUX
|
||||
Discontinued support for cryptonight and variants.
|
||||
|
||||
v3.8.8.1
|
||||
|
||||
Fixed x16r.
|
||||
Removed cryptonight variant check due to false positives.
|
||||
API displays hashrate before shares are submitted.
|
||||
|
||||
v3.8.8
|
||||
|
||||
Added cryptonightv7 for Monero.
|
||||
|
||||
v3.8.7.2
|
||||
|
||||
Fixed argon2d-dyn regression in v3.8.7.1.
|
||||
Changed compile options for aes-sse42 Windows build to -march=westmere
|
||||
|
||||
v3.8.7.1
|
||||
|
||||
Fixed argon2d-uis low difficulty rejects.
|
||||
Fixed argon2d aliases.
|
||||
|
||||
v3.8.7
|
||||
|
||||
Added argon2d4096 (alias argon2d-uis) for Unitus (UIS).
|
||||
argon2d-crds and argon2d-dyn renamed to argon2d250 and argon2d500 respectively.
|
||||
The old names are recognized as aliases.
|
||||
AVX512 is now supported for argon2d algos, Linux only.
|
||||
AVX is no longer a reported feature and an AVX Windows binary is no longer
|
||||
provided. Use AES-SSE42 build instead.
|
||||
|
||||
v3.8.6.1
|
||||
|
||||
Faster argon2d* AVX2.
|
||||
@@ -313,6 +296,7 @@ Changed default sha256 and sha512 to openssl. This should be used when
|
||||
compiling with openssl 1.0.2 or higher (Ubuntu 16.04).
|
||||
This should increase the hashrate for yescrypt, yescryptr16, m7m, xevan, skein,
|
||||
myr-gr & others when openssl 1.0.2 is installed.
|
||||
Note: -DUSE_SPH_SHA has been removed in v3.9.1.
|
||||
Users with openssl 1.0.1 (Ubuntu 14.04) may get better perforance by adding
|
||||
"-DUSE_SPH_SHA" to CLAGS.
|
||||
Windows binaries are compiled with -DUSE_SPH_SHA and won't get the speedup.
|
||||
|
69
aclocal.m4
vendored
69
aclocal.m4
vendored
@@ -1,6 +1,6 @@
|
||||
# generated automatically by aclocal 1.14.1 -*- Autoconf -*-
|
||||
# generated automatically by aclocal 1.15.1 -*- Autoconf -*-
|
||||
|
||||
# Copyright (C) 1996-2013 Free Software Foundation, Inc.
|
||||
# Copyright (C) 1996-2017 Free Software Foundation, Inc.
|
||||
|
||||
# This file is free software; the Free Software Foundation
|
||||
# gives unlimited permission to copy and/or distribute it,
|
||||
@@ -20,7 +20,7 @@ You have another version of autoconf. It may work, but is not guaranteed to.
|
||||
If you have problems, you may need to regenerate the build system entirely.
|
||||
To do so, use the procedure documented by the package, typically 'autoreconf'.])])
|
||||
|
||||
# Copyright (C) 2002-2013 Free Software Foundation, Inc.
|
||||
# Copyright (C) 2002-2017 Free Software Foundation, Inc.
|
||||
#
|
||||
# This file is free software; the Free Software Foundation
|
||||
# gives unlimited permission to copy and/or distribute it,
|
||||
@@ -32,10 +32,10 @@ To do so, use the procedure documented by the package, typically 'autoreconf'.])
|
||||
# generated from the m4 files accompanying Automake X.Y.
|
||||
# (This private macro should not be called outside this file.)
|
||||
AC_DEFUN([AM_AUTOMAKE_VERSION],
|
||||
[am__api_version='1.14'
|
||||
[am__api_version='1.15'
|
||||
dnl Some users find AM_AUTOMAKE_VERSION and mistake it for a way to
|
||||
dnl require some minimum version. Point them to the right macro.
|
||||
m4_if([$1], [1.14.1], [],
|
||||
m4_if([$1], [1.15.1], [],
|
||||
[AC_FATAL([Do not call $0, use AM_INIT_AUTOMAKE([$1]).])])dnl
|
||||
])
|
||||
|
||||
@@ -51,14 +51,14 @@ m4_define([_AM_AUTOCONF_VERSION], [])
|
||||
# Call AM_AUTOMAKE_VERSION and AM_AUTOMAKE_VERSION so they can be traced.
|
||||
# This function is AC_REQUIREd by AM_INIT_AUTOMAKE.
|
||||
AC_DEFUN([AM_SET_CURRENT_AUTOMAKE_VERSION],
|
||||
[AM_AUTOMAKE_VERSION([1.14.1])dnl
|
||||
[AM_AUTOMAKE_VERSION([1.15.1])dnl
|
||||
m4_ifndef([AC_AUTOCONF_VERSION],
|
||||
[m4_copy([m4_PACKAGE_VERSION], [AC_AUTOCONF_VERSION])])dnl
|
||||
_AM_AUTOCONF_VERSION(m4_defn([AC_AUTOCONF_VERSION]))])
|
||||
|
||||
# Figure out how to run the assembler. -*- Autoconf -*-
|
||||
|
||||
# Copyright (C) 2001-2013 Free Software Foundation, Inc.
|
||||
# Copyright (C) 2001-2017 Free Software Foundation, Inc.
|
||||
#
|
||||
# This file is free software; the Free Software Foundation
|
||||
# gives unlimited permission to copy and/or distribute it,
|
||||
@@ -78,7 +78,7 @@ _AM_IF_OPTION([no-dependencies],, [_AM_DEPENDENCIES([CCAS])])dnl
|
||||
|
||||
# AM_AUX_DIR_EXPAND -*- Autoconf -*-
|
||||
|
||||
# Copyright (C) 2001-2013 Free Software Foundation, Inc.
|
||||
# Copyright (C) 2001-2017 Free Software Foundation, Inc.
|
||||
#
|
||||
# This file is free software; the Free Software Foundation
|
||||
# gives unlimited permission to copy and/or distribute it,
|
||||
@@ -123,15 +123,14 @@ _AM_IF_OPTION([no-dependencies],, [_AM_DEPENDENCIES([CCAS])])dnl
|
||||
# configured tree to be moved without reconfiguration.
|
||||
|
||||
AC_DEFUN([AM_AUX_DIR_EXPAND],
|
||||
[dnl Rely on autoconf to set up CDPATH properly.
|
||||
AC_PREREQ([2.50])dnl
|
||||
# expand $ac_aux_dir to an absolute path
|
||||
am_aux_dir=`cd $ac_aux_dir && pwd`
|
||||
[AC_REQUIRE([AC_CONFIG_AUX_DIR_DEFAULT])dnl
|
||||
# Expand $ac_aux_dir to an absolute path.
|
||||
am_aux_dir=`cd "$ac_aux_dir" && pwd`
|
||||
])
|
||||
|
||||
# AM_CONDITIONAL -*- Autoconf -*-
|
||||
|
||||
# Copyright (C) 1997-2013 Free Software Foundation, Inc.
|
||||
# Copyright (C) 1997-2017 Free Software Foundation, Inc.
|
||||
#
|
||||
# This file is free software; the Free Software Foundation
|
||||
# gives unlimited permission to copy and/or distribute it,
|
||||
@@ -162,7 +161,7 @@ AC_CONFIG_COMMANDS_PRE(
|
||||
Usually this means the macro was only invoked conditionally.]])
|
||||
fi])])
|
||||
|
||||
# Copyright (C) 1999-2013 Free Software Foundation, Inc.
|
||||
# Copyright (C) 1999-2017 Free Software Foundation, Inc.
|
||||
#
|
||||
# This file is free software; the Free Software Foundation
|
||||
# gives unlimited permission to copy and/or distribute it,
|
||||
@@ -353,7 +352,7 @@ _AM_SUBST_NOTMAKE([am__nodep])dnl
|
||||
|
||||
# Generate code to set up dependency tracking. -*- Autoconf -*-
|
||||
|
||||
# Copyright (C) 1999-2013 Free Software Foundation, Inc.
|
||||
# Copyright (C) 1999-2017 Free Software Foundation, Inc.
|
||||
#
|
||||
# This file is free software; the Free Software Foundation
|
||||
# gives unlimited permission to copy and/or distribute it,
|
||||
@@ -429,7 +428,7 @@ AC_DEFUN([AM_OUTPUT_DEPENDENCY_COMMANDS],
|
||||
|
||||
# Do all the work for Automake. -*- Autoconf -*-
|
||||
|
||||
# Copyright (C) 1996-2013 Free Software Foundation, Inc.
|
||||
# Copyright (C) 1996-2017 Free Software Foundation, Inc.
|
||||
#
|
||||
# This file is free software; the Free Software Foundation
|
||||
# gives unlimited permission to copy and/or distribute it,
|
||||
@@ -519,8 +518,8 @@ AC_REQUIRE([AC_PROG_MKDIR_P])dnl
|
||||
# <http://lists.gnu.org/archive/html/automake/2012-07/msg00001.html>
|
||||
# <http://lists.gnu.org/archive/html/automake/2012-07/msg00014.html>
|
||||
AC_SUBST([mkdir_p], ['$(MKDIR_P)'])
|
||||
# We need awk for the "check" target. The system "awk" is bad on
|
||||
# some platforms.
|
||||
# We need awk for the "check" target (and possibly the TAP driver). The
|
||||
# system "awk" is bad on some platforms.
|
||||
AC_REQUIRE([AC_PROG_AWK])dnl
|
||||
AC_REQUIRE([AC_PROG_MAKE_SET])dnl
|
||||
AC_REQUIRE([AM_SET_LEADING_DOT])dnl
|
||||
@@ -593,7 +592,11 @@ to "yes", and re-run configure.
|
||||
END
|
||||
AC_MSG_ERROR([Your 'rm' program is bad, sorry.])
|
||||
fi
|
||||
fi])
|
||||
fi
|
||||
dnl The trailing newline in this macro's definition is deliberate, for
|
||||
dnl backward compatibility and to allow trailing 'dnl'-style comments
|
||||
dnl after the AM_INIT_AUTOMAKE invocation. See automake bug#16841.
|
||||
])
|
||||
|
||||
dnl Hook into '_AC_COMPILER_EXEEXT' early to learn its expansion. Do not
|
||||
dnl add the conditional right here, as _AC_COMPILER_EXEEXT may be further
|
||||
@@ -622,7 +625,7 @@ for _am_header in $config_headers :; do
|
||||
done
|
||||
echo "timestamp for $_am_arg" >`AS_DIRNAME(["$_am_arg"])`/stamp-h[]$_am_stamp_count])
|
||||
|
||||
# Copyright (C) 2001-2013 Free Software Foundation, Inc.
|
||||
# Copyright (C) 2001-2017 Free Software Foundation, Inc.
|
||||
#
|
||||
# This file is free software; the Free Software Foundation
|
||||
# gives unlimited permission to copy and/or distribute it,
|
||||
@@ -633,7 +636,7 @@ echo "timestamp for $_am_arg" >`AS_DIRNAME(["$_am_arg"])`/stamp-h[]$_am_stamp_co
|
||||
# Define $install_sh.
|
||||
AC_DEFUN([AM_PROG_INSTALL_SH],
|
||||
[AC_REQUIRE([AM_AUX_DIR_EXPAND])dnl
|
||||
if test x"${install_sh}" != xset; then
|
||||
if test x"${install_sh+set}" != xset; then
|
||||
case $am_aux_dir in
|
||||
*\ * | *\ *)
|
||||
install_sh="\${SHELL} '$am_aux_dir/install-sh'" ;;
|
||||
@@ -643,7 +646,7 @@ if test x"${install_sh}" != xset; then
|
||||
fi
|
||||
AC_SUBST([install_sh])])
|
||||
|
||||
# Copyright (C) 2003-2013 Free Software Foundation, Inc.
|
||||
# Copyright (C) 2003-2017 Free Software Foundation, Inc.
|
||||
#
|
||||
# This file is free software; the Free Software Foundation
|
||||
# gives unlimited permission to copy and/or distribute it,
|
||||
@@ -665,7 +668,7 @@ AC_SUBST([am__leading_dot])])
|
||||
# Add --enable-maintainer-mode option to configure. -*- Autoconf -*-
|
||||
# From Jim Meyering
|
||||
|
||||
# Copyright (C) 1996-2013 Free Software Foundation, Inc.
|
||||
# Copyright (C) 1996-2017 Free Software Foundation, Inc.
|
||||
#
|
||||
# This file is free software; the Free Software Foundation
|
||||
# gives unlimited permission to copy and/or distribute it,
|
||||
@@ -700,7 +703,7 @@ AC_MSG_CHECKING([whether to enable maintainer-specific portions of Makefiles])
|
||||
|
||||
# Check to see how 'make' treats includes. -*- Autoconf -*-
|
||||
|
||||
# Copyright (C) 2001-2013 Free Software Foundation, Inc.
|
||||
# Copyright (C) 2001-2017 Free Software Foundation, Inc.
|
||||
#
|
||||
# This file is free software; the Free Software Foundation
|
||||
# gives unlimited permission to copy and/or distribute it,
|
||||
@@ -750,7 +753,7 @@ rm -f confinc confmf
|
||||
|
||||
# Fake the existence of programs that GNU maintainers use. -*- Autoconf -*-
|
||||
|
||||
# Copyright (C) 1997-2013 Free Software Foundation, Inc.
|
||||
# Copyright (C) 1997-2017 Free Software Foundation, Inc.
|
||||
#
|
||||
# This file is free software; the Free Software Foundation
|
||||
# gives unlimited permission to copy and/or distribute it,
|
||||
@@ -789,7 +792,7 @@ fi
|
||||
|
||||
# Helper functions for option handling. -*- Autoconf -*-
|
||||
|
||||
# Copyright (C) 2001-2013 Free Software Foundation, Inc.
|
||||
# Copyright (C) 2001-2017 Free Software Foundation, Inc.
|
||||
#
|
||||
# This file is free software; the Free Software Foundation
|
||||
# gives unlimited permission to copy and/or distribute it,
|
||||
@@ -818,7 +821,7 @@ AC_DEFUN([_AM_SET_OPTIONS],
|
||||
AC_DEFUN([_AM_IF_OPTION],
|
||||
[m4_ifset(_AM_MANGLE_OPTION([$1]), [$2], [$3])])
|
||||
|
||||
# Copyright (C) 1999-2013 Free Software Foundation, Inc.
|
||||
# Copyright (C) 1999-2017 Free Software Foundation, Inc.
|
||||
#
|
||||
# This file is free software; the Free Software Foundation
|
||||
# gives unlimited permission to copy and/or distribute it,
|
||||
@@ -865,7 +868,7 @@ AC_LANG_POP([C])])
|
||||
# For backward compatibility.
|
||||
AC_DEFUN_ONCE([AM_PROG_CC_C_O], [AC_REQUIRE([AC_PROG_CC])])
|
||||
|
||||
# Copyright (C) 2001-2013 Free Software Foundation, Inc.
|
||||
# Copyright (C) 2001-2017 Free Software Foundation, Inc.
|
||||
#
|
||||
# This file is free software; the Free Software Foundation
|
||||
# gives unlimited permission to copy and/or distribute it,
|
||||
@@ -884,7 +887,7 @@ AC_DEFUN([AM_RUN_LOG],
|
||||
|
||||
# Check to make sure that the build environment is sane. -*- Autoconf -*-
|
||||
|
||||
# Copyright (C) 1996-2013 Free Software Foundation, Inc.
|
||||
# Copyright (C) 1996-2017 Free Software Foundation, Inc.
|
||||
#
|
||||
# This file is free software; the Free Software Foundation
|
||||
# gives unlimited permission to copy and/or distribute it,
|
||||
@@ -965,7 +968,7 @@ AC_CONFIG_COMMANDS_PRE(
|
||||
rm -f conftest.file
|
||||
])
|
||||
|
||||
# Copyright (C) 2009-2013 Free Software Foundation, Inc.
|
||||
# Copyright (C) 2009-2017 Free Software Foundation, Inc.
|
||||
#
|
||||
# This file is free software; the Free Software Foundation
|
||||
# gives unlimited permission to copy and/or distribute it,
|
||||
@@ -1025,7 +1028,7 @@ AC_SUBST([AM_BACKSLASH])dnl
|
||||
_AM_SUBST_NOTMAKE([AM_BACKSLASH])dnl
|
||||
])
|
||||
|
||||
# Copyright (C) 2001-2013 Free Software Foundation, Inc.
|
||||
# Copyright (C) 2001-2017 Free Software Foundation, Inc.
|
||||
#
|
||||
# This file is free software; the Free Software Foundation
|
||||
# gives unlimited permission to copy and/or distribute it,
|
||||
@@ -1053,7 +1056,7 @@ fi
|
||||
INSTALL_STRIP_PROGRAM="\$(install_sh) -c -s"
|
||||
AC_SUBST([INSTALL_STRIP_PROGRAM])])
|
||||
|
||||
# Copyright (C) 2006-2013 Free Software Foundation, Inc.
|
||||
# Copyright (C) 2006-2017 Free Software Foundation, Inc.
|
||||
#
|
||||
# This file is free software; the Free Software Foundation
|
||||
# gives unlimited permission to copy and/or distribute it,
|
||||
@@ -1072,7 +1075,7 @@ AC_DEFUN([AM_SUBST_NOTMAKE], [_AM_SUBST_NOTMAKE($@)])
|
||||
|
||||
# Check how to create a tarball. -*- Autoconf -*-
|
||||
|
||||
# Copyright (C) 2004-2013 Free Software Foundation, Inc.
|
||||
# Copyright (C) 2004-2017 Free Software Foundation, Inc.
|
||||
#
|
||||
# This file is free software; the Free Software Foundation
|
||||
# gives unlimited permission to copy and/or distribute it,
|
||||
|
180
algo-gate-api.c
180
algo-gate-api.c
@@ -69,6 +69,8 @@ void do_nothing () {}
|
||||
bool return_true () { return true; }
|
||||
bool return_false () { return false; }
|
||||
void *return_null () { return NULL; }
|
||||
void call_error () { printf("ERR: Uninitialized function pointer\n"); }
|
||||
|
||||
|
||||
void algo_not_tested()
|
||||
{
|
||||
@@ -113,7 +115,8 @@ void init_algo_gate( algo_gate_t* gate )
|
||||
gate->hash_suw = (void*)&null_hash_suw;
|
||||
gate->get_new_work = (void*)&std_get_new_work;
|
||||
gate->get_nonceptr = (void*)&std_get_nonceptr;
|
||||
gate->display_extra_data = (void*)&do_nothing;
|
||||
gate->work_decode = (void*)&std_le_work_decode;
|
||||
gate->decode_extra_data = (void*)&do_nothing;
|
||||
gate->wait_for_diff = (void*)&std_wait_for_diff;
|
||||
gate->get_max64 = (void*)&get_max64_0x1fffffLL;
|
||||
gate->gen_merkle_root = (void*)&sha256d_gen_merkle_root;
|
||||
@@ -121,7 +124,6 @@ void init_algo_gate( algo_gate_t* gate )
|
||||
gate->build_stratum_request = (void*)&std_le_build_stratum_request;
|
||||
gate->malloc_txs_request = (void*)&std_malloc_txs_request;
|
||||
gate->set_target = (void*)&std_set_target;
|
||||
gate->work_decode = (void*)&std_le_work_decode;
|
||||
gate->submit_getwork_result = (void*)&std_le_submit_getwork_result;
|
||||
gate->build_block_header = (void*)&std_build_block_header;
|
||||
gate->build_extraheader = (void*)&std_build_extraheader;
|
||||
@@ -132,11 +134,11 @@ void init_algo_gate( algo_gate_t* gate )
|
||||
gate->do_this_thread = (void*)&return_true;
|
||||
gate->longpoll_rpc_call = (void*)&std_longpoll_rpc_call;
|
||||
gate->stratum_handle_response = (void*)&std_stratum_handle_response;
|
||||
gate->get_work_data_size = (void*)&std_get_work_data_size;
|
||||
gate->optimizations = EMPTY_SET;
|
||||
gate->ntime_index = STD_NTIME_INDEX;
|
||||
gate->nbits_index = STD_NBITS_INDEX;
|
||||
gate->nonce_index = STD_NONCE_INDEX;
|
||||
gate->work_data_size = STD_WORK_DATA_SIZE;
|
||||
gate->work_cmp_size = STD_WORK_CMP_SIZE;
|
||||
}
|
||||
|
||||
@@ -157,81 +159,95 @@ bool register_algo_gate( int algo, algo_gate_t *gate )
|
||||
|
||||
switch (algo)
|
||||
{
|
||||
case ALGO_ALLIUM: register_allium_algo ( gate ); break;
|
||||
case ALGO_ANIME: register_anime_algo ( gate ); break;
|
||||
case ALGO_ARGON2: register_argon2_algo ( gate ); break;
|
||||
case ALGO_ARGON2DCRDS: register_argon2d_crds_algo( gate ); break;
|
||||
case ALGO_ARGON2DDYN: register_argon2d_dyn_algo ( gate ); break;
|
||||
case ALGO_AXIOM: register_axiom_algo ( gate ); break;
|
||||
case ALGO_BASTION: register_bastion_algo ( gate ); break;
|
||||
case ALGO_BLAKE: register_blake_algo ( gate ); break;
|
||||
case ALGO_BLAKECOIN: register_blakecoin_algo ( gate ); break;
|
||||
case ALGO_ALLIUM: register_allium_algo ( gate ); break;
|
||||
case ALGO_ANIME: register_anime_algo ( gate ); break;
|
||||
case ALGO_ARGON2: register_argon2_algo ( gate ); break;
|
||||
case ALGO_ARGON2D250: register_argon2d_crds_algo ( gate ); break;
|
||||
case ALGO_ARGON2D500: register_argon2d_dyn_algo ( gate ); break;
|
||||
case ALGO_ARGON2D4096: register_argon2d4096_algo ( gate ); break;
|
||||
case ALGO_AXIOM: register_axiom_algo ( gate ); break;
|
||||
case ALGO_BASTION: register_bastion_algo ( gate ); break;
|
||||
case ALGO_BLAKE: register_blake_algo ( gate ); break;
|
||||
case ALGO_BLAKECOIN: register_blakecoin_algo ( gate ); break;
|
||||
// case ALGO_BLAKE2B: register_blake2b_algo ( gate ); break;
|
||||
case ALGO_BLAKE2S: register_blake2s_algo ( gate ); break;
|
||||
case ALGO_C11: register_c11_algo ( gate ); break;
|
||||
case ALGO_CRYPTOLIGHT: register_cryptolight_algo ( gate ); break;
|
||||
case ALGO_CRYPTONIGHT: register_cryptonight_algo ( gate ); break;
|
||||
case ALGO_DECRED: register_decred_algo ( gate ); break;
|
||||
case ALGO_DEEP: register_deep_algo ( gate ); break;
|
||||
case ALGO_DMD_GR: register_dmd_gr_algo ( gate ); break;
|
||||
case ALGO_DROP: register_drop_algo ( gate ); break;
|
||||
case ALGO_FRESH: register_fresh_algo ( gate ); break;
|
||||
case ALGO_GROESTL: register_groestl_algo ( gate ); break;
|
||||
case ALGO_HEAVY: register_heavy_algo ( gate ); break;
|
||||
case ALGO_HMQ1725: register_hmq1725_algo ( gate ); break;
|
||||
case ALGO_HODL: register_hodl_algo ( gate ); break;
|
||||
case ALGO_JHA: register_jha_algo ( gate ); break;
|
||||
case ALGO_KECCAK: register_keccak_algo ( gate ); break;
|
||||
case ALGO_KECCAKC: register_keccakc_algo ( gate ); break;
|
||||
case ALGO_LBRY: register_lbry_algo ( gate ); break;
|
||||
case ALGO_LUFFA: register_luffa_algo ( gate ); break;
|
||||
case ALGO_LYRA2H: register_lyra2h_algo ( gate ); break;
|
||||
case ALGO_LYRA2RE: register_lyra2re_algo ( gate ); break;
|
||||
case ALGO_LYRA2REV2: register_lyra2rev2_algo ( gate ); break;
|
||||
case ALGO_LYRA2Z: register_lyra2z_algo ( gate ); break;
|
||||
case ALGO_LYRA2Z330: register_lyra2z330_algo ( gate ); break;
|
||||
case ALGO_M7M: register_m7m_algo ( gate ); break;
|
||||
case ALGO_MYR_GR: register_myriad_algo ( gate ); break;
|
||||
case ALGO_NEOSCRYPT: register_neoscrypt_algo ( gate ); break;
|
||||
case ALGO_NIST5: register_nist5_algo ( gate ); break;
|
||||
case ALGO_PENTABLAKE: register_pentablake_algo ( gate ); break;
|
||||
case ALGO_PHI1612: register_phi1612_algo ( gate ); break;
|
||||
case ALGO_PLUCK: register_pluck_algo ( gate ); break;
|
||||
case ALGO_POLYTIMOS: register_polytimos_algo ( gate ); break;
|
||||
case ALGO_QUARK: register_quark_algo ( gate ); break;
|
||||
case ALGO_QUBIT: register_qubit_algo ( gate ); break;
|
||||
case ALGO_SCRYPT: register_scrypt_algo ( gate ); break;
|
||||
case ALGO_SCRYPTJANE: register_scryptjane_algo ( gate ); break;
|
||||
case ALGO_SHA256D: register_sha256d_algo ( gate ); break;
|
||||
case ALGO_SHA256T: register_sha256t_algo ( gate ); break;
|
||||
case ALGO_SHAVITE3: register_shavite_algo ( gate ); break;
|
||||
case ALGO_SKEIN: register_skein_algo ( gate ); break;
|
||||
case ALGO_SKEIN2: register_skein2_algo ( gate ); break;
|
||||
case ALGO_SKUNK: register_skunk_algo ( gate ); break;
|
||||
case ALGO_TIMETRAVEL: register_timetravel_algo ( gate ); break;
|
||||
case ALGO_TIMETRAVEL10: register_timetravel10_algo( gate ); break;
|
||||
case ALGO_TRIBUS: register_tribus_algo ( gate ); break;
|
||||
case ALGO_VANILLA: register_vanilla_algo ( gate ); break;
|
||||
case ALGO_VELTOR: register_veltor_algo ( gate ); break;
|
||||
case ALGO_WHIRLPOOL: register_whirlpool_algo ( gate ); break;
|
||||
case ALGO_WHIRLPOOLX: register_whirlpoolx_algo ( gate ); break;
|
||||
case ALGO_X11: register_x11_algo ( gate ); break;
|
||||
case ALGO_X11EVO: register_x11evo_algo ( gate ); break;
|
||||
case ALGO_X11GOST: register_x11gost_algo ( gate ); break;
|
||||
case ALGO_X12: register_x12_algo ( gate ); break;
|
||||
case ALGO_X13: register_x13_algo ( gate ); break;
|
||||
case ALGO_X13SM3: register_x13sm3_algo ( gate ); break;
|
||||
case ALGO_X14: register_x14_algo ( gate ); break;
|
||||
case ALGO_X15: register_x15_algo ( gate ); break;
|
||||
case ALGO_X16R: register_x16r_algo ( gate ); break;
|
||||
case ALGO_X16S: register_x16s_algo ( gate ); break;
|
||||
case ALGO_X17: register_x17_algo ( gate ); break;
|
||||
case ALGO_XEVAN: register_xevan_algo ( gate ); break;
|
||||
case ALGO_YESCRYPT: register_yescrypt_algo ( gate ); break;
|
||||
case ALGO_YESCRYPTR8: register_yescryptr8_algo ( gate ); break;
|
||||
case ALGO_YESCRYPTR16: register_yescryptr16_algo ( gate ); break;
|
||||
case ALGO_YESCRYPTR32: register_yescryptr32_algo ( gate ); break;
|
||||
case ALGO_ZR5: register_zr5_algo ( gate ); break;
|
||||
case ALGO_BLAKE2S: register_blake2s_algo ( gate ); break;
|
||||
case ALGO_C11: register_c11_algo ( gate ); break;
|
||||
case ALGO_CRYPTOLIGHT: register_cryptolight_algo ( gate ); break;
|
||||
case ALGO_CRYPTONIGHT: register_cryptonight_algo ( gate ); break;
|
||||
case ALGO_CRYPTONIGHTV7:register_cryptonightv7_algo( gate ); break;
|
||||
case ALGO_DECRED: register_decred_algo ( gate ); break;
|
||||
case ALGO_DEEP: register_deep_algo ( gate ); break;
|
||||
case ALGO_DMD_GR: register_dmd_gr_algo ( gate ); break;
|
||||
case ALGO_DROP: register_drop_algo ( gate ); break;
|
||||
case ALGO_FRESH: register_fresh_algo ( gate ); break;
|
||||
case ALGO_GROESTL: register_groestl_algo ( gate ); break;
|
||||
case ALGO_HEAVY: register_heavy_algo ( gate ); break;
|
||||
case ALGO_HMQ1725: register_hmq1725_algo ( gate ); break;
|
||||
case ALGO_HODL: register_hodl_algo ( gate ); break;
|
||||
case ALGO_JHA: register_jha_algo ( gate ); break;
|
||||
case ALGO_KECCAK: register_keccak_algo ( gate ); break;
|
||||
case ALGO_KECCAKC: register_keccakc_algo ( gate ); break;
|
||||
case ALGO_LBRY: register_lbry_algo ( gate ); break;
|
||||
case ALGO_LUFFA: register_luffa_algo ( gate ); break;
|
||||
case ALGO_LYRA2H: register_lyra2h_algo ( gate ); break;
|
||||
case ALGO_LYRA2RE: register_lyra2re_algo ( gate ); break;
|
||||
case ALGO_LYRA2REV2: register_lyra2rev2_algo ( gate ); break;
|
||||
case ALGO_LYRA2REV3: register_lyra2rev3_algo ( gate ); break;
|
||||
case ALGO_LYRA2Z: register_lyra2z_algo ( gate ); break;
|
||||
case ALGO_LYRA2Z330: register_lyra2z330_algo ( gate ); break;
|
||||
case ALGO_M7M: register_m7m_algo ( gate ); break;
|
||||
case ALGO_MYR_GR: register_myriad_algo ( gate ); break;
|
||||
case ALGO_NEOSCRYPT: register_neoscrypt_algo ( gate ); break;
|
||||
case ALGO_NIST5: register_nist5_algo ( gate ); break;
|
||||
case ALGO_PENTABLAKE: register_pentablake_algo ( gate ); break;
|
||||
case ALGO_PHI1612: register_phi1612_algo ( gate ); break;
|
||||
case ALGO_PHI2: register_phi2_algo ( gate ); break;
|
||||
case ALGO_PLUCK: register_pluck_algo ( gate ); break;
|
||||
case ALGO_POLYTIMOS: register_polytimos_algo ( gate ); break;
|
||||
case ALGO_QUARK: register_quark_algo ( gate ); break;
|
||||
case ALGO_QUBIT: register_qubit_algo ( gate ); break;
|
||||
case ALGO_SCRYPT: register_scrypt_algo ( gate ); break;
|
||||
case ALGO_SCRYPTJANE: register_scryptjane_algo ( gate ); break;
|
||||
case ALGO_SHA256D: register_sha256d_algo ( gate ); break;
|
||||
case ALGO_SHA256T: register_sha256t_algo ( gate ); break;
|
||||
case ALGO_SHA256Q: register_sha256q_algo ( gate ); break;
|
||||
case ALGO_SHAVITE3: register_shavite_algo ( gate ); break;
|
||||
case ALGO_SKEIN: register_skein_algo ( gate ); break;
|
||||
case ALGO_SKEIN2: register_skein2_algo ( gate ); break;
|
||||
case ALGO_SKUNK: register_skunk_algo ( gate ); break;
|
||||
case ALGO_SONOA: register_sonoa_algo ( gate ); break;
|
||||
case ALGO_TIMETRAVEL: register_timetravel_algo ( gate ); break;
|
||||
case ALGO_TIMETRAVEL10: register_timetravel10_algo ( gate ); break;
|
||||
case ALGO_TRIBUS: register_tribus_algo ( gate ); break;
|
||||
case ALGO_VANILLA: register_vanilla_algo ( gate ); break;
|
||||
case ALGO_VELTOR: register_veltor_algo ( gate ); break;
|
||||
case ALGO_WHIRLPOOL: register_whirlpool_algo ( gate ); break;
|
||||
case ALGO_WHIRLPOOLX: register_whirlpoolx_algo ( gate ); break;
|
||||
case ALGO_X11: register_x11_algo ( gate ); break;
|
||||
case ALGO_X11EVO: register_x11evo_algo ( gate ); break;
|
||||
case ALGO_X11GOST: register_x11gost_algo ( gate ); break;
|
||||
case ALGO_X12: register_x12_algo ( gate ); break;
|
||||
case ALGO_X13: register_x13_algo ( gate ); break;
|
||||
case ALGO_X13SM3: register_x13sm3_algo ( gate ); break;
|
||||
case ALGO_X14: register_x14_algo ( gate ); break;
|
||||
case ALGO_X15: register_x15_algo ( gate ); break;
|
||||
case ALGO_X16R: register_x16r_algo ( gate ); break;
|
||||
case ALGO_X16S: register_x16s_algo ( gate ); break;
|
||||
case ALGO_X17: register_x17_algo ( gate ); break;
|
||||
case ALGO_XEVAN: register_xevan_algo ( gate ); break;
|
||||
/* case ALGO_YESCRYPT: register_yescrypt_05_algo ( gate ); break;
|
||||
case ALGO_YESCRYPTR8: register_yescryptr8_05_algo ( gate ); break;
|
||||
case ALGO_YESCRYPTR16: register_yescryptr16_05_algo ( gate ); break;
|
||||
case ALGO_YESCRYPTR32: register_yescryptr32_05_algo ( gate ); break;
|
||||
*/
|
||||
case ALGO_YESCRYPT: register_yescrypt_algo ( gate ); break;
|
||||
case ALGO_YESCRYPTR8: register_yescryptr8_algo ( gate ); break;
|
||||
case ALGO_YESCRYPTR16: register_yescryptr16_algo ( gate ); break;
|
||||
case ALGO_YESCRYPTR32: register_yescryptr32_algo ( gate ); break;
|
||||
|
||||
case ALGO_YESPOWER: register_yespower_algo ( gate ); break;
|
||||
case ALGO_YESPOWERR16: register_yespowerr16_algo ( gate ); break;
|
||||
case ALGO_ZR5: register_zr5_algo ( gate ); break;
|
||||
default:
|
||||
applog(LOG_ERR,"FAIL: algo_gate registration failed, unknown algo %s.\n", algo_names[opt_algo] );
|
||||
return false;
|
||||
@@ -252,6 +268,10 @@ bool register_algo_gate( int algo, algo_gate_t *gate )
|
||||
// override std defaults with jr2 defaults
|
||||
bool register_json_rpc2( algo_gate_t *gate )
|
||||
{
|
||||
applog(LOG_WARNING,"\nCryptonight algorithm and variants are no longer");
|
||||
applog(LOG_WARNING,"supported by cpuminer-opt. Shares submitted will");
|
||||
applog(LOG_WARNING,"likely be rejected. Proceed at your own risk.\n");
|
||||
|
||||
gate->wait_for_diff = (void*)&do_nothing;
|
||||
gate->get_new_work = (void*)&jr2_get_new_work;
|
||||
gate->get_nonceptr = (void*)&jr2_get_nonceptr;
|
||||
@@ -288,6 +308,9 @@ void exec_hash_function( int algo, void *output, const void *pdata )
|
||||
const char* const algo_alias_map[][2] =
|
||||
{
|
||||
// alias proper
|
||||
{ "argon2d-crds", "argon2d250" },
|
||||
{ "argon2d-dyn", "argon2d500" },
|
||||
{ "argon2d-uis", "argon2d4096" },
|
||||
{ "bitcore", "timetravel10" },
|
||||
{ "bitzeny", "yescryptr8" },
|
||||
{ "blake256r8", "blakecoin" },
|
||||
@@ -305,6 +328,7 @@ const char* const algo_alias_map[][2] =
|
||||
{ "jane", "scryptjane" },
|
||||
{ "lyra2", "lyra2re" },
|
||||
{ "lyra2v2", "lyra2rev2" },
|
||||
{ "lyra2v3", "lyra2rev3" },
|
||||
{ "lyra2zoin", "lyra2z330" },
|
||||
{ "myrgr", "myr-gr" },
|
||||
{ "myriad", "myr-gr" },
|
||||
@@ -336,3 +360,5 @@ void get_algo_alias( char** algo_or_alias )
|
||||
}
|
||||
}
|
||||
|
||||
#undef ALIAS
|
||||
#undef PROPER
|
||||
|
@@ -2,6 +2,8 @@
|
||||
#include <stdbool.h>
|
||||
#include <stdint.h>
|
||||
#include "miner.h"
|
||||
#include "avxdefs.h"
|
||||
#include "interleave.h"
|
||||
|
||||
/////////////////////////////
|
||||
////
|
||||
@@ -91,6 +93,7 @@ typedef uint32_t set_t;
|
||||
#define AVX_OPT 8
|
||||
#define AVX2_OPT 0x10
|
||||
#define SHA_OPT 0x20
|
||||
#define AVX512_OPT 0x40
|
||||
|
||||
// return set containing all elements from sets a & b
|
||||
inline set_t set_union ( set_t a, set_t b ) { return a | b; }
|
||||
@@ -106,8 +109,15 @@ inline bool set_excl ( set_t a, set_t b ) { return (a & b) == 0; }
|
||||
|
||||
typedef struct
|
||||
{
|
||||
// special case, only one target, provides a callback for scanhash to
|
||||
// submit work with less overhead.
|
||||
// bool (*submit_work ) ( struct thr_info*, const struct work* );
|
||||
|
||||
// mandatory functions, must be overwritten
|
||||
int ( *scanhash ) ( int, struct work*, uint32_t, uint64_t* );
|
||||
// Added a 5th arg for the thread_info structure to replace the int thr id
|
||||
// in the first arg. Both will co-exist during the trasition.
|
||||
//int ( *scanhash ) ( int, struct work*, uint32_t, uint64_t* );
|
||||
int ( *scanhash ) ( int, struct work*, uint32_t, uint64_t*, struct thr_info* );
|
||||
|
||||
// optional unsafe, must be overwritten if algo uses function
|
||||
void ( *hash ) ( void*, const void*, uint32_t ) ;
|
||||
@@ -119,7 +129,7 @@ void ( *stratum_gen_work ) ( struct stratum_ctx*, struct work* );
|
||||
void ( *get_new_work ) ( struct work*, struct work*, int, uint32_t*,
|
||||
bool );
|
||||
uint32_t *( *get_nonceptr ) ( uint32_t* );
|
||||
void ( *display_extra_data ) ( struct work*, uint64_t* );
|
||||
void ( *decode_extra_data ) ( struct work*, uint64_t* );
|
||||
void ( *wait_for_diff ) ( struct stratum_ctx* );
|
||||
int64_t ( *get_max64 ) ();
|
||||
bool ( *work_decode ) ( const json_t*, struct work* );
|
||||
@@ -128,7 +138,7 @@ bool ( *submit_getwork_result ) ( CURL*, struct work* );
|
||||
void ( *gen_merkle_root ) ( char*, struct stratum_ctx* );
|
||||
void ( *build_extraheader ) ( struct work*, struct stratum_ctx* );
|
||||
void ( *build_block_header ) ( struct work*, uint32_t, uint32_t*,
|
||||
uint32_t*, uint32_t, uint32_t );
|
||||
uint32_t*, uint32_t, uint32_t );
|
||||
void ( *build_stratum_request ) ( char*, struct work*, struct stratum_ctx* );
|
||||
char* ( *malloc_txs_request ) ( struct work* );
|
||||
void ( *set_work_data_endian ) ( struct work* );
|
||||
@@ -139,10 +149,10 @@ bool ( *do_this_thread ) ( int );
|
||||
json_t* (*longpoll_rpc_call) ( CURL*, int*, char* );
|
||||
bool ( *stratum_handle_response )( json_t* );
|
||||
set_t optimizations;
|
||||
int ( *get_work_data_size ) ();
|
||||
int ntime_index;
|
||||
int nbits_index;
|
||||
int nonce_index; // use with caution, see warning below
|
||||
int work_data_size;
|
||||
int work_cmp_size;
|
||||
|
||||
} algo_gate_t;
|
||||
@@ -185,6 +195,11 @@ void four_way_not_tested();
|
||||
// allways returns failure
|
||||
int null_scanhash();
|
||||
|
||||
// The one and only, a callback for scanhash.
|
||||
|
||||
|
||||
bool submit_work( struct thr_info *thr, const struct work *work_in );
|
||||
|
||||
// displays warning
|
||||
void null_hash ();
|
||||
void null_hash_suw();
|
||||
@@ -239,8 +254,8 @@ void set_work_data_big_endian( struct work *work );
|
||||
double std_calc_network_diff( struct work *work );
|
||||
|
||||
void std_build_block_header( struct work* g_work, uint32_t version,
|
||||
uint32_t *prevhash, uint32_t *merkle_root,
|
||||
uint32_t ntime, uint32_t nbits );
|
||||
uint32_t *prevhash, uint32_t *merkle_root,
|
||||
uint32_t ntime, uint32_t nbits );
|
||||
|
||||
void std_build_extraheader( struct work *work, struct stratum_ctx *sctx );
|
||||
|
||||
@@ -253,6 +268,8 @@ bool jr2_stratum_handle_response( json_t *val );
|
||||
bool std_ready_to_mine( struct work* work, struct stratum_ctx* stratum,
|
||||
int thr_id );
|
||||
|
||||
int std_get_work_data_size();
|
||||
|
||||
// Gate admin functions
|
||||
|
||||
// Called from main to initialize all gate functions and algo-specific data
|
||||
|
@@ -28,6 +28,7 @@ void argon2d_crds_hash( void *output, const void *input )
|
||||
context.lanes = 4; // Degree of Parallelism
|
||||
context.threads = 1; // Threads
|
||||
context.t_cost = 1; // Iterations
|
||||
context.version = ARGON2_VERSION_10;
|
||||
|
||||
argon2_ctx( &context, Argon2_d );
|
||||
}
|
||||
@@ -70,7 +71,8 @@ bool register_argon2d_crds_algo( algo_gate_t* gate )
|
||||
gate->scanhash = (void*)&scanhash_argon2d_crds;
|
||||
gate->hash = (void*)&argon2d_crds_hash;
|
||||
gate->set_target = (void*)&scrypt_set_target;
|
||||
gate->optimizations = SSE2_OPT | AVX2_OPT;
|
||||
gate->optimizations = SSE2_OPT | AVX2_OPT | AVX512_OPT;
|
||||
return true;
|
||||
}
|
||||
|
||||
// Dynamic
|
||||
@@ -96,6 +98,7 @@ void argon2d_dyn_hash( void *output, const void *input )
|
||||
context.lanes = 8; // Degree of Parallelism
|
||||
context.threads = 1; // Threads
|
||||
context.t_cost = 2; // Iterations
|
||||
context.version = ARGON2_VERSION_10;
|
||||
|
||||
argon2_ctx( &context, Argon2_d );
|
||||
}
|
||||
@@ -138,6 +141,58 @@ bool register_argon2d_dyn_algo( algo_gate_t* gate )
|
||||
gate->scanhash = (void*)&scanhash_argon2d_dyn;
|
||||
gate->hash = (void*)&argon2d_dyn_hash;
|
||||
gate->set_target = (void*)&scrypt_set_target;
|
||||
gate->optimizations = SSE2_OPT | AVX2_OPT;
|
||||
gate->optimizations = SSE2_OPT | AVX2_OPT | AVX512_OPT;
|
||||
return true;
|
||||
}
|
||||
|
||||
// Unitus
|
||||
|
||||
int scanhash_argon2d4096( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
uint64_t *hashes_done)
|
||||
{
|
||||
uint32_t _ALIGN(64) vhash[8];
|
||||
uint32_t _ALIGN(64) endiandata[20];
|
||||
uint32_t *pdata = work->data;
|
||||
uint32_t *ptarget = work->target;
|
||||
const uint32_t Htarg = ptarget[7];
|
||||
const uint32_t first_nonce = pdata[19];
|
||||
uint32_t n = first_nonce;
|
||||
|
||||
uint32_t t_cost = 1; // 1 iteration
|
||||
uint32_t m_cost = 4096; // use 4MB
|
||||
uint32_t parallelism = 1; // 1 thread, 2 lanes
|
||||
|
||||
for ( int i = 0; i < 19; i++ )
|
||||
be32enc( &endiandata[i], pdata[i] );
|
||||
|
||||
do {
|
||||
be32enc( &endiandata[19], n );
|
||||
argon2d_hash_raw( t_cost, m_cost, parallelism, (char*) endiandata, 80,
|
||||
(char*) endiandata, 80, (char*) vhash, 32, ARGON2_VERSION_13 );
|
||||
if ( vhash[7] < Htarg && fulltest( vhash, ptarget ) )
|
||||
{
|
||||
*hashes_done = n - first_nonce + 1;
|
||||
pdata[19] = n;
|
||||
return true;
|
||||
}
|
||||
n++;
|
||||
|
||||
} while (n < max_nonce && !work_restart[thr_id].restart);
|
||||
|
||||
*hashes_done = n - first_nonce + 1;
|
||||
pdata[19] = n;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
int64_t get_max64_0x1ff() { return 0x1ff; }
|
||||
|
||||
bool register_argon2d4096_algo( algo_gate_t* gate )
|
||||
{
|
||||
gate->scanhash = (void*)&scanhash_argon2d4096;
|
||||
gate->set_target = (void*)&scrypt_set_target;
|
||||
gate->get_max64 = (void*)&get_max64_0x1ff;
|
||||
gate->optimizations = SSE2_OPT | AVX2_OPT | AVX512_OPT;
|
||||
return true;
|
||||
}
|
||||
|
||||
|
@@ -4,7 +4,7 @@
|
||||
#include "algo-gate-api.h"
|
||||
#include <stdint.h>
|
||||
|
||||
// Credits
|
||||
// Credits: version = 0x10, m_cost = 250.
|
||||
bool register_argon2d_crds_algo( algo_gate_t* gate );
|
||||
|
||||
void argon2d_crds_hash( void *state, const void *input );
|
||||
@@ -12,7 +12,7 @@ void argon2d_crds_hash( void *state, const void *input );
|
||||
int scanhash_argon2d_crds( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
uint64_t *hashes_done );
|
||||
|
||||
// Dynamic
|
||||
// Dynamic: version = 0x10, m_cost = 500.
|
||||
bool register_argon2d_dyn_algo( algo_gate_t* gate );
|
||||
|
||||
void argon2d_dyn_hash( void *state, const void *input );
|
||||
@@ -21,5 +21,11 @@ int scanhash_argon2d_dyn( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
uint64_t *hashes_done );
|
||||
|
||||
|
||||
// Unitus: version = 0x13, m_cost = 4096.
|
||||
bool register_argon2d4096_algo( algo_gate_t* gate );
|
||||
|
||||
int scanhash_argon2d4096( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
uint64_t *hashes_done );
|
||||
|
||||
#endif
|
||||
|
||||
|
@@ -180,60 +180,65 @@ int argon2i_hash_encoded(const uint32_t t_cost, const uint32_t m_cost,
|
||||
const uint32_t parallelism, const void *pwd,
|
||||
const size_t pwdlen, const void *salt,
|
||||
const size_t saltlen, const size_t hashlen,
|
||||
char *encoded, const size_t encodedlen) {
|
||||
char *encoded, const size_t encodedlen,
|
||||
const uint32_t version) {
|
||||
|
||||
return argon2_hash(t_cost, m_cost, parallelism, pwd, pwdlen, salt, saltlen,
|
||||
NULL, hashlen, encoded, encodedlen, Argon2_i,
|
||||
ARGON2_VERSION_NUMBER);
|
||||
version );
|
||||
}
|
||||
|
||||
int argon2i_hash_raw(const uint32_t t_cost, const uint32_t m_cost,
|
||||
const uint32_t parallelism, const void *pwd,
|
||||
const size_t pwdlen, const void *salt,
|
||||
const size_t saltlen, void *hash, const size_t hashlen) {
|
||||
const size_t saltlen, void *hash, const size_t hashlen,
|
||||
const uint32_t version ) {
|
||||
|
||||
return argon2_hash(t_cost, m_cost, parallelism, pwd, pwdlen, salt, saltlen,
|
||||
hash, hashlen, NULL, 0, Argon2_i, ARGON2_VERSION_NUMBER);
|
||||
hash, hashlen, NULL, 0, Argon2_i, version );
|
||||
}
|
||||
|
||||
int argon2d_hash_encoded(const uint32_t t_cost, const uint32_t m_cost,
|
||||
const uint32_t parallelism, const void *pwd,
|
||||
const size_t pwdlen, const void *salt,
|
||||
const size_t saltlen, const size_t hashlen,
|
||||
char *encoded, const size_t encodedlen) {
|
||||
char *encoded, const size_t encodedlen,
|
||||
const uint32_t version ) {
|
||||
|
||||
return argon2_hash(t_cost, m_cost, parallelism, pwd, pwdlen, salt, saltlen,
|
||||
NULL, hashlen, encoded, encodedlen, Argon2_d,
|
||||
ARGON2_VERSION_NUMBER);
|
||||
version );
|
||||
}
|
||||
|
||||
int argon2d_hash_raw(const uint32_t t_cost, const uint32_t m_cost,
|
||||
const uint32_t parallelism, const void *pwd,
|
||||
const size_t pwdlen, const void *salt,
|
||||
const size_t saltlen, void *hash, const size_t hashlen) {
|
||||
const size_t saltlen, void *hash, const size_t hashlen,
|
||||
const uint32_t version ) {
|
||||
|
||||
return argon2_hash(t_cost, m_cost, parallelism, pwd, pwdlen, salt, saltlen,
|
||||
hash, hashlen, NULL, 0, Argon2_d, ARGON2_VERSION_NUMBER);
|
||||
hash, hashlen, NULL, 0, Argon2_d, version );
|
||||
}
|
||||
|
||||
int argon2id_hash_encoded(const uint32_t t_cost, const uint32_t m_cost,
|
||||
const uint32_t parallelism, const void *pwd,
|
||||
const size_t pwdlen, const void *salt,
|
||||
const size_t saltlen, const size_t hashlen,
|
||||
char *encoded, const size_t encodedlen) {
|
||||
char *encoded, const size_t encodedlen,
|
||||
const uint32_t version ) {
|
||||
|
||||
return argon2_hash(t_cost, m_cost, parallelism, pwd, pwdlen, salt, saltlen,
|
||||
NULL, hashlen, encoded, encodedlen, Argon2_id,
|
||||
ARGON2_VERSION_NUMBER);
|
||||
version);
|
||||
}
|
||||
|
||||
int argon2id_hash_raw(const uint32_t t_cost, const uint32_t m_cost,
|
||||
const uint32_t parallelism, const void *pwd,
|
||||
const size_t pwdlen, const void *salt,
|
||||
const size_t saltlen, void *hash, const size_t hashlen) {
|
||||
const size_t saltlen, void *hash, const size_t hashlen,
|
||||
const uint32_t version ) {
|
||||
return argon2_hash(t_cost, m_cost, parallelism, pwd, pwdlen, salt, saltlen,
|
||||
hash, hashlen, NULL, 0, Argon2_id,
|
||||
ARGON2_VERSION_NUMBER);
|
||||
hash, hashlen, NULL, 0, Argon2_id, version );
|
||||
}
|
||||
|
||||
static int argon2_compare(const uint8_t *b1, const uint8_t *b2, size_t len) {
|
||||
@@ -443,10 +448,11 @@ const char *argon2_error_message(int error_code) {
|
||||
return "Unknown error code";
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
size_t argon2_encodedlen(uint32_t t_cost, uint32_t m_cost, uint32_t parallelism,
|
||||
uint32_t saltlen, uint32_t hashlen, argon2_type type) {
|
||||
return strlen("$$v=$m=,t=,p=$$") + strlen(argon2_type2string(type, 0)) +
|
||||
numlen(t_cost) + numlen(m_cost) + numlen(parallelism) +
|
||||
b64len(saltlen) + b64len(hashlen) + numlen(ARGON2_VERSION_NUMBER) + 1;
|
||||
}
|
||||
*/
|
||||
|
@@ -225,11 +225,8 @@ typedef enum Argon2_type {
|
||||
} argon2_type;
|
||||
|
||||
/* Version of the algorithm */
|
||||
typedef enum Argon2_version {
|
||||
ARGON2_VERSION_10 = 0x10,
|
||||
ARGON2_VERSION_13 = 0x13,
|
||||
ARGON2_VERSION_NUMBER = ARGON2_VERSION_10
|
||||
} argon2_version;
|
||||
#define ARGON2_VERSION_10 0x10
|
||||
#define ARGON2_VERSION_13 0x13
|
||||
|
||||
/*
|
||||
* Function that gives the string representation of an argon2_type.
|
||||
@@ -267,7 +264,8 @@ ARGON2_PUBLIC int argon2i_hash_encoded(const uint32_t t_cost,
|
||||
const void *pwd, const size_t pwdlen,
|
||||
const void *salt, const size_t saltlen,
|
||||
const size_t hashlen, char *encoded,
|
||||
const size_t encodedlen);
|
||||
const size_t encodedlen,
|
||||
const uint32_t version );
|
||||
|
||||
/**
|
||||
* Hashes a password with Argon2i, producing a raw hash at @hash
|
||||
@@ -287,7 +285,8 @@ ARGON2_PUBLIC int argon2i_hash_raw(const uint32_t t_cost, const uint32_t m_cost,
|
||||
const uint32_t parallelism, const void *pwd,
|
||||
const size_t pwdlen, const void *salt,
|
||||
const size_t saltlen, void *hash,
|
||||
const size_t hashlen);
|
||||
const size_t hashlen,
|
||||
const uint32_t version );
|
||||
|
||||
ARGON2_PUBLIC int argon2d_hash_encoded(const uint32_t t_cost,
|
||||
const uint32_t m_cost,
|
||||
@@ -295,13 +294,15 @@ ARGON2_PUBLIC int argon2d_hash_encoded(const uint32_t t_cost,
|
||||
const void *pwd, const size_t pwdlen,
|
||||
const void *salt, const size_t saltlen,
|
||||
const size_t hashlen, char *encoded,
|
||||
const size_t encodedlen);
|
||||
const size_t encodedlen,
|
||||
const uint32_t version );
|
||||
|
||||
ARGON2_PUBLIC int argon2d_hash_raw(const uint32_t t_cost, const uint32_t m_cost,
|
||||
const uint32_t parallelism, const void *pwd,
|
||||
const size_t pwdlen, const void *salt,
|
||||
const size_t saltlen, void *hash,
|
||||
const size_t hashlen);
|
||||
const size_t hashlen,
|
||||
const uint32_t version );
|
||||
|
||||
ARGON2_PUBLIC int argon2id_hash_encoded(const uint32_t t_cost,
|
||||
const uint32_t m_cost,
|
||||
@@ -309,14 +310,16 @@ ARGON2_PUBLIC int argon2id_hash_encoded(const uint32_t t_cost,
|
||||
const void *pwd, const size_t pwdlen,
|
||||
const void *salt, const size_t saltlen,
|
||||
const size_t hashlen, char *encoded,
|
||||
const size_t encodedlen);
|
||||
const size_t encodedlen,
|
||||
const uint32_t version );
|
||||
|
||||
ARGON2_PUBLIC int argon2id_hash_raw(const uint32_t t_cost,
|
||||
const uint32_t m_cost,
|
||||
const uint32_t parallelism, const void *pwd,
|
||||
const size_t pwdlen, const void *salt,
|
||||
const size_t saltlen, void *hash,
|
||||
const size_t hashlen);
|
||||
const size_t hashlen,
|
||||
const uint32_t version );
|
||||
|
||||
/* generic function underlying the above ones */
|
||||
ARGON2_PUBLIC int argon2_hash(const uint32_t t_cost, const uint32_t m_cost,
|
||||
@@ -325,7 +328,7 @@ ARGON2_PUBLIC int argon2_hash(const uint32_t t_cost, const uint32_t m_cost,
|
||||
const size_t saltlen, void *hash,
|
||||
const size_t hashlen, char *encoded,
|
||||
const size_t encodedlen, argon2_type type,
|
||||
const uint32_t version);
|
||||
const uint32_t version );
|
||||
|
||||
/**
|
||||
* Verifies a password against an encoded string
|
||||
|
@@ -17,7 +17,7 @@
|
||||
|
||||
#if !defined(ARGON2_NO_THREADS)
|
||||
|
||||
#include "thread.h"
|
||||
#include "argon2d_thread.h"
|
||||
#if defined(_WIN32)
|
||||
#include <windows.h>
|
||||
#endif
|
@@ -30,7 +30,7 @@
|
||||
#include <string.h>
|
||||
|
||||
#include "core.h"
|
||||
#include "thread.h"
|
||||
#include "argon2d_thread.h"
|
||||
#include "../blake2/blake2.h"
|
||||
#include "../blake2/blake2-impl.h"
|
||||
|
||||
@@ -544,7 +544,8 @@ void initial_hash(uint8_t *blockhash, argon2_context *context,
|
||||
store32(&value, context->t_cost);
|
||||
blake2b_update(&BlakeHash, (const uint8_t *)&value, sizeof(value));
|
||||
|
||||
store32(&value, ARGON2_VERSION_NUMBER);
|
||||
// store32(&value, ARGON2_VERSION_NUMBER);
|
||||
store32(&value, context->version);
|
||||
blake2b_update(&BlakeHash, (const uint8_t *)&value, sizeof(value));
|
||||
|
||||
store32(&value, (uint32_t)type);
|
||||
|
@@ -345,15 +345,15 @@ void fill_segment(const argon2_instance_t *instance,
|
||||
ref_block =
|
||||
instance->memory + instance->lane_length * ref_lane + ref_index;
|
||||
curr_block = instance->memory + curr_offset;
|
||||
// if (ARGON2_VERSION_10 == instance->version) {
|
||||
// /* version 1.2.1 and earlier: overwrite, not XOR */
|
||||
// fill_block(state, ref_block, curr_block, 0);
|
||||
// } else {
|
||||
// if(0 == position.pass) {
|
||||
if (ARGON2_VERSION_10 == instance->version) {
|
||||
/* version 1.2.1 and earlier: overwrite, not XOR */
|
||||
fill_block(state, ref_block, curr_block, 0);
|
||||
} else {
|
||||
if(0 == position.pass) {
|
||||
fill_block(state, ref_block, curr_block, 0);
|
||||
// } else {
|
||||
// fill_block(state, ref_block, curr_block, 1);
|
||||
// }
|
||||
// }
|
||||
} else {
|
||||
fill_block(state, ref_block, curr_block, 1);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@@ -15,7 +15,7 @@ void blakehash_4way(void *state, const void *input)
|
||||
memcpy( &ctx, &blake_4w_ctx, sizeof ctx );
|
||||
blake256r14_4way( &ctx, input + (64<<2), 16 );
|
||||
blake256r14_4way_close( &ctx, vhash );
|
||||
mm_deinterleave_4x32( state, state+32, state+64, state+96, vhash, 256 );
|
||||
mm128_deinterleave_4x32( state, state+32, state+64, state+96, vhash, 256 );
|
||||
}
|
||||
|
||||
int scanhash_blake_4way( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
@@ -37,7 +37,7 @@ int scanhash_blake_4way( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
|
||||
// we need big endian data...
|
||||
swab32_array( edata, pdata, 20 );
|
||||
mm_interleave_4x32( vdata, edata, edata, edata, edata, 640 );
|
||||
mm128_interleave_4x32( vdata, edata, edata, edata, edata, 640 );
|
||||
blake256r14_4way_init( &blake_4w_ctx );
|
||||
blake256r14_4way( &blake_4w_ctx, vdata, 64 );
|
||||
|
||||
|
@@ -37,7 +37,7 @@
|
||||
#ifndef __BLAKE_HASH_4WAY__
|
||||
#define __BLAKE_HASH_4WAY__ 1
|
||||
|
||||
#ifdef __SSE4_2__
|
||||
//#ifdef __SSE4_2__
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C"{
|
||||
@@ -57,19 +57,22 @@ extern "C"{
|
||||
// Blake-256 4 way
|
||||
|
||||
typedef struct {
|
||||
__m128i buf[16] __attribute__ ((aligned (64)));
|
||||
__m128i H[8];
|
||||
__m128i S[4];
|
||||
unsigned char buf[64<<2];
|
||||
uint32_t H[8<<2];
|
||||
uint32_t S[4<<2];
|
||||
// __m128i buf[16] __attribute__ ((aligned (64)));
|
||||
// __m128i H[8];
|
||||
// __m128i S[4];
|
||||
size_t ptr;
|
||||
sph_u32 T0, T1;
|
||||
uint32_t T0, T1;
|
||||
int rounds; // 14 for blake, 8 for blakecoin & vanilla
|
||||
} blake_4way_small_context;
|
||||
} blake_4way_small_context __attribute__ ((aligned (64)));
|
||||
|
||||
// Default 14 rounds
|
||||
typedef blake_4way_small_context blake256_4way_context;
|
||||
void blake256_4way_init(void *cc);
|
||||
void blake256_4way(void *cc, const void *data, size_t len);
|
||||
void blake256_4way_close(void *cc, void *dst);
|
||||
void blake256_4way_init(void *ctx);
|
||||
void blake256_4way(void *ctx, const void *data, size_t len);
|
||||
void blake256_4way_close(void *ctx, void *dst);
|
||||
|
||||
// 14 rounds, blake, decred
|
||||
typedef blake_4way_small_context blake256r14_4way_context;
|
||||
@@ -132,12 +135,10 @@ void blake512_4way_close(void *cc, void *dst);
|
||||
void blake512_4way_addbits_and_close(
|
||||
void *cc, unsigned ub, unsigned n, void *dst);
|
||||
|
||||
#endif
|
||||
#endif // AVX2
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif
|
||||
|
||||
#endif
|
||||
#endif // BLAKE_HASH_4WAY_H__
|
||||
|
@@ -30,9 +30,10 @@
|
||||
* @author Thomas Pornin <thomas.pornin@cryptolog.com>
|
||||
*/
|
||||
|
||||
#if defined (__SSE4_2__)
|
||||
//#if defined (__SSE4_2__)
|
||||
|
||||
#include <stddef.h>
|
||||
#include <stdint.h>
|
||||
#include <string.h>
|
||||
#include <limits.h>
|
||||
|
||||
@@ -60,26 +61,12 @@ extern "C"{
|
||||
|
||||
// Blake-256
|
||||
|
||||
static const sph_u32 IV256[8] = {
|
||||
SPH_C32(0x6A09E667), SPH_C32(0xBB67AE85),
|
||||
SPH_C32(0x3C6EF372), SPH_C32(0xA54FF53A),
|
||||
SPH_C32(0x510E527F), SPH_C32(0x9B05688C),
|
||||
SPH_C32(0x1F83D9AB), SPH_C32(0x5BE0CD19)
|
||||
static const uint32_t IV256[8] =
|
||||
{
|
||||
0x6A09E667, 0xBB67AE85, 0x3C6EF372, 0xA54FF53A,
|
||||
0x510E527F, 0x9B05688C, 0x1F83D9AB, 0x5BE0CD19
|
||||
};
|
||||
|
||||
#if defined (__AVX2__)
|
||||
|
||||
// Blake-512
|
||||
|
||||
static const sph_u64 IV512[8] = {
|
||||
SPH_C64(0x6A09E667F3BCC908), SPH_C64(0xBB67AE8584CAA73B),
|
||||
SPH_C64(0x3C6EF372FE94F82B), SPH_C64(0xA54FF53A5F1D36F1),
|
||||
SPH_C64(0x510E527FADE682D1), SPH_C64(0x9B05688C2B3E6C1F),
|
||||
SPH_C64(0x1F83D9ABFB41BD6B), SPH_C64(0x5BE0CD19137E2179)
|
||||
};
|
||||
|
||||
#endif
|
||||
|
||||
#if SPH_COMPACT_BLAKE_32 || SPH_COMPACT_BLAKE_64
|
||||
|
||||
// Blake-256 4 & 8 way, Blake-512 4 way
|
||||
@@ -317,60 +304,19 @@ static const sph_u32 CS[16] = {
|
||||
|
||||
#endif
|
||||
|
||||
#if defined(__AVX2__)
|
||||
|
||||
// Blake-512 4 way
|
||||
|
||||
#define CBx(r, i) CBx_(Z ## r ## i)
|
||||
#define CBx_(n) CBx__(n)
|
||||
#define CBx__(n) CB ## n
|
||||
|
||||
#define CB0 SPH_C64(0x243F6A8885A308D3)
|
||||
#define CB1 SPH_C64(0x13198A2E03707344)
|
||||
#define CB2 SPH_C64(0xA4093822299F31D0)
|
||||
#define CB3 SPH_C64(0x082EFA98EC4E6C89)
|
||||
#define CB4 SPH_C64(0x452821E638D01377)
|
||||
#define CB5 SPH_C64(0xBE5466CF34E90C6C)
|
||||
#define CB6 SPH_C64(0xC0AC29B7C97C50DD)
|
||||
#define CB7 SPH_C64(0x3F84D5B5B5470917)
|
||||
#define CB8 SPH_C64(0x9216D5D98979FB1B)
|
||||
#define CB9 SPH_C64(0xD1310BA698DFB5AC)
|
||||
#define CBA SPH_C64(0x2FFD72DBD01ADFB7)
|
||||
#define CBB SPH_C64(0xB8E1AFED6A267E96)
|
||||
#define CBC SPH_C64(0xBA7C9045F12C7F99)
|
||||
#define CBD SPH_C64(0x24A19947B3916CF7)
|
||||
#define CBE SPH_C64(0x0801F2E2858EFC16)
|
||||
#define CBF SPH_C64(0x636920D871574E69)
|
||||
|
||||
#if SPH_COMPACT_BLAKE_64
|
||||
// not used
|
||||
static const sph_u64 CB[16] = {
|
||||
SPH_C64(0x243F6A8885A308D3), SPH_C64(0x13198A2E03707344),
|
||||
SPH_C64(0xA4093822299F31D0), SPH_C64(0x082EFA98EC4E6C89),
|
||||
SPH_C64(0x452821E638D01377), SPH_C64(0xBE5466CF34E90C6C),
|
||||
SPH_C64(0xC0AC29B7C97C50DD), SPH_C64(0x3F84D5B5B5470917),
|
||||
SPH_C64(0x9216D5D98979FB1B), SPH_C64(0xD1310BA698DFB5AC),
|
||||
SPH_C64(0x2FFD72DBD01ADFB7), SPH_C64(0xB8E1AFED6A267E96),
|
||||
SPH_C64(0xBA7C9045F12C7F99), SPH_C64(0x24A19947B3916CF7),
|
||||
SPH_C64(0x0801F2E2858EFC16), SPH_C64(0x636920D871574E69)
|
||||
};
|
||||
|
||||
#endif
|
||||
|
||||
#endif
|
||||
|
||||
#define GS_4WAY( m0, m1, c0, c1, a, b, c, d ) \
|
||||
do { \
|
||||
a = _mm_add_epi32( _mm_add_epi32( _mm_xor_si128( \
|
||||
_mm_set_epi32( c1, c1, c1, c1 ), m0 ), b ), a ); \
|
||||
d = mm_ror_32( _mm_xor_si128( d, a ), 16 ); \
|
||||
d = mm128_ror_32( _mm_xor_si128( d, a ), 16 ); \
|
||||
c = _mm_add_epi32( c, d ); \
|
||||
b = mm_ror_32( _mm_xor_si128( b, c ), 12 ); \
|
||||
b = mm128_ror_32( _mm_xor_si128( b, c ), 12 ); \
|
||||
a = _mm_add_epi32( _mm_add_epi32( _mm_xor_si128( \
|
||||
_mm_set_epi32( c0, c0, c0, c0 ), m1 ), b ), a ); \
|
||||
d = mm_ror_32( _mm_xor_si128( d, a ), 8 ); \
|
||||
d = mm128_ror_32( _mm_xor_si128( d, a ), 8 ); \
|
||||
c = _mm_add_epi32( c, d ); \
|
||||
b = mm_ror_32( _mm_xor_si128( b, c ), 7 ); \
|
||||
b = mm128_ror_32( _mm_xor_si128( b, c ), 7 ); \
|
||||
} while (0)
|
||||
|
||||
#if SPH_COMPACT_BLAKE_32
|
||||
@@ -411,125 +357,41 @@ do { \
|
||||
|
||||
#endif
|
||||
|
||||
#if defined (__AVX2__)
|
||||
|
||||
// Blake-256 8 way
|
||||
|
||||
#define GS_8WAY( m0, m1, c0, c1, a, b, c, d ) \
|
||||
do { \
|
||||
a = _mm256_add_epi32( _mm256_add_epi32( _mm256_xor_si256( \
|
||||
_mm256_set1_epi32( c1 ), m0 ), b ), a ); \
|
||||
d = mm256_ror_32( _mm256_xor_si256( d, a ), 16 ); \
|
||||
c = _mm256_add_epi32( c, d ); \
|
||||
b = mm256_ror_32( _mm256_xor_si256( b, c ), 12 ); \
|
||||
a = _mm256_add_epi32( _mm256_add_epi32( _mm256_xor_si256( \
|
||||
_mm256_set1_epi32( c0 ), m1 ), b ), a ); \
|
||||
d = mm256_ror_32( _mm256_xor_si256( d, a ), 8 ); \
|
||||
c = _mm256_add_epi32( c, d ); \
|
||||
b = mm256_ror_32( _mm256_xor_si256( b, c ), 7 ); \
|
||||
} while (0)
|
||||
|
||||
#define ROUND_S_8WAY(r) do { \
|
||||
GS_8WAY(Mx(r, 0), Mx(r, 1), CSx(r, 0), CSx(r, 1), V0, V4, V8, VC); \
|
||||
GS_8WAY(Mx(r, 2), Mx(r, 3), CSx(r, 2), CSx(r, 3), V1, V5, V9, VD); \
|
||||
GS_8WAY(Mx(r, 4), Mx(r, 5), CSx(r, 4), CSx(r, 5), V2, V6, VA, VE); \
|
||||
GS_8WAY(Mx(r, 6), Mx(r, 7), CSx(r, 6), CSx(r, 7), V3, V7, VB, VF); \
|
||||
GS_8WAY(Mx(r, 8), Mx(r, 9), CSx(r, 8), CSx(r, 9), V0, V5, VA, VF); \
|
||||
GS_8WAY(Mx(r, A), Mx(r, B), CSx(r, A), CSx(r, B), V1, V6, VB, VC); \
|
||||
GS_8WAY(Mx(r, C), Mx(r, D), CSx(r, C), CSx(r, D), V2, V7, V8, VD); \
|
||||
GS_8WAY(Mx(r, E), Mx(r, F), CSx(r, E), CSx(r, F), V3, V4, V9, VE); \
|
||||
} while (0)
|
||||
|
||||
// Blake-512 4 way
|
||||
|
||||
#define GB_4WAY(m0, m1, c0, c1, a, b, c, d) do { \
|
||||
a = _mm256_add_epi64( _mm256_add_epi64( _mm256_xor_si256( \
|
||||
_mm256_set_epi64x( c1, c1, c1, c1 ), m0 ), b ), a ); \
|
||||
d = mm256_ror_64( _mm256_xor_si256( d, a ), 32 ); \
|
||||
c = _mm256_add_epi64( c, d ); \
|
||||
b = mm256_ror_64( _mm256_xor_si256( b, c ), 25 ); \
|
||||
a = _mm256_add_epi64( _mm256_add_epi64( _mm256_xor_si256( \
|
||||
_mm256_set_epi64x( c0, c0, c0, c0 ), m1 ), b ), a ); \
|
||||
d = mm256_ror_64( _mm256_xor_si256( d, a ), 16 ); \
|
||||
c = _mm256_add_epi64( c, d ); \
|
||||
b = mm256_ror_64( _mm256_xor_si256( b, c ), 11 ); \
|
||||
} while (0)
|
||||
|
||||
#if SPH_COMPACT_BLAKE_64
|
||||
// not used
|
||||
#define ROUND_B_4WAY(r) do { \
|
||||
GB_4WAY(M[sigma[r][0x0]], M[sigma[r][0x1]], \
|
||||
CB[sigma[r][0x0]], CB[sigma[r][0x1]], V0, V4, V8, VC); \
|
||||
GB_4WAY(M[sigma[r][0x2]], M[sigma[r][0x3]], \
|
||||
CB[sigma[r][0x2]], CB[sigma[r][0x3]], V1, V5, V9, VD); \
|
||||
GB_4WAY(M[sigma[r][0x4]], M[sigma[r][0x5]], \
|
||||
CB[sigma[r][0x4]], CB[sigma[r][0x5]], V2, V6, VA, VE); \
|
||||
GB_4WAY(M[sigma[r][0x6]], M[sigma[r][0x7]], \
|
||||
CB[sigma[r][0x6]], CB[sigma[r][0x7]], V3, V7, VB, VF); \
|
||||
GB_4WAY(M[sigma[r][0x8]], M[sigma[r][0x9]], \
|
||||
CB[sigma[r][0x8]], CB[sigma[r][0x9]], V0, V5, VA, VF); \
|
||||
GB_4WAY(M[sigma[r][0xA]], M[sigma[r][0xB]], \
|
||||
CB[sigma[r][0xA]], CB[sigma[r][0xB]], V1, V6, VB, VC); \
|
||||
GB_4WAY(M[sigma[r][0xC]], M[sigma[r][0xD]], \
|
||||
CB[sigma[r][0xC]], CB[sigma[r][0xD]], V2, V7, V8, VD); \
|
||||
GB_4WAY(M[sigma[r][0xE]], M[sigma[r][0xF]], \
|
||||
CB[sigma[r][0xE]], CB[sigma[r][0xF]], V3, V4, V9, VE); \
|
||||
} while (0)
|
||||
|
||||
#else
|
||||
//current_impl
|
||||
#define ROUND_B_4WAY(r) do { \
|
||||
GB_4WAY(Mx(r, 0), Mx(r, 1), CBx(r, 0), CBx(r, 1), V0, V4, V8, VC); \
|
||||
GB_4WAY(Mx(r, 2), Mx(r, 3), CBx(r, 2), CBx(r, 3), V1, V5, V9, VD); \
|
||||
GB_4WAY(Mx(r, 4), Mx(r, 5), CBx(r, 4), CBx(r, 5), V2, V6, VA, VE); \
|
||||
GB_4WAY(Mx(r, 6), Mx(r, 7), CBx(r, 6), CBx(r, 7), V3, V7, VB, VF); \
|
||||
GB_4WAY(Mx(r, 8), Mx(r, 9), CBx(r, 8), CBx(r, 9), V0, V5, VA, VF); \
|
||||
GB_4WAY(Mx(r, A), Mx(r, B), CBx(r, A), CBx(r, B), V1, V6, VB, VC); \
|
||||
GB_4WAY(Mx(r, C), Mx(r, D), CBx(r, C), CBx(r, D), V2, V7, V8, VD); \
|
||||
GB_4WAY(Mx(r, E), Mx(r, F), CBx(r, E), CBx(r, F), V3, V4, V9, VE); \
|
||||
} while (0)
|
||||
|
||||
#endif
|
||||
|
||||
#endif
|
||||
|
||||
// Blake-256 4 way
|
||||
|
||||
#define DECL_STATE32_4WAY \
|
||||
__m128i H0, H1, H2, H3, H4, H5, H6, H7; \
|
||||
__m128i S0, S1, S2, S3; \
|
||||
sph_u32 T0, T1;
|
||||
uint32_t T0, T1;
|
||||
|
||||
#define READ_STATE32_4WAY(state) do { \
|
||||
H0 = (state)->H[0]; \
|
||||
H1 = (state)->H[1]; \
|
||||
H2 = (state)->H[2]; \
|
||||
H3 = (state)->H[3]; \
|
||||
H4 = (state)->H[4]; \
|
||||
H5 = (state)->H[5]; \
|
||||
H6 = (state)->H[6]; \
|
||||
H7 = (state)->H[7]; \
|
||||
S0 = (state)->S[0]; \
|
||||
S1 = (state)->S[1]; \
|
||||
S2 = (state)->S[2]; \
|
||||
S3 = (state)->S[3]; \
|
||||
H0 = casti_m128i( state->H, 0 ); \
|
||||
H1 = casti_m128i( state->H, 1 ); \
|
||||
H2 = casti_m128i( state->H, 2 ); \
|
||||
H3 = casti_m128i( state->H, 3 ); \
|
||||
H4 = casti_m128i( state->H, 4 ); \
|
||||
H5 = casti_m128i( state->H, 5 ); \
|
||||
H6 = casti_m128i( state->H, 6 ); \
|
||||
H7 = casti_m128i( state->H, 7 ); \
|
||||
S0 = casti_m128i( state->S, 0 ); \
|
||||
S1 = casti_m128i( state->S, 1 ); \
|
||||
S2 = casti_m128i( state->S, 2 ); \
|
||||
S3 = casti_m128i( state->S, 3 ); \
|
||||
T0 = (state)->T0; \
|
||||
T1 = (state)->T1; \
|
||||
} while (0)
|
||||
|
||||
#define WRITE_STATE32_4WAY(state) do { \
|
||||
(state)->H[0] = H0; \
|
||||
(state)->H[1] = H1; \
|
||||
(state)->H[2] = H2; \
|
||||
(state)->H[3] = H3; \
|
||||
(state)->H[4] = H4; \
|
||||
(state)->H[5] = H5; \
|
||||
(state)->H[6] = H6; \
|
||||
(state)->H[7] = H7; \
|
||||
(state)->S[0] = S0; \
|
||||
(state)->S[1] = S1; \
|
||||
(state)->S[2] = S2; \
|
||||
(state)->S[3] = S3; \
|
||||
casti_m128i( state->H, 0 ) = H0; \
|
||||
casti_m128i( state->H, 1 ) = H1; \
|
||||
casti_m128i( state->H, 2 ) = H2; \
|
||||
casti_m128i( state->H, 3 ) = H3; \
|
||||
casti_m128i( state->H, 4 ) = H4; \
|
||||
casti_m128i( state->H, 5 ) = H5; \
|
||||
casti_m128i( state->H, 6 ) = H6; \
|
||||
casti_m128i( state->H, 7 ) = H7; \
|
||||
casti_m128i( state->S, 0 ) = S0; \
|
||||
casti_m128i( state->S, 1 ) = S1; \
|
||||
casti_m128i( state->S, 2 ) = S2; \
|
||||
casti_m128i( state->S, 3 ) = S3; \
|
||||
(state)->T0 = T0; \
|
||||
(state)->T1 = T1; \
|
||||
} while (0)
|
||||
@@ -562,22 +424,22 @@ do { \
|
||||
, _mm_set_epi32( CS6, CS6, CS6, CS6 ) ); \
|
||||
VF = _mm_xor_si128( _mm_set_epi32( T1, T1, T1, T1 ), \
|
||||
_mm_set_epi32( CS7, CS7, CS7, CS7 ) ); \
|
||||
M[0x0] = mm_bswap_32( *(buf + 0) ); \
|
||||
M[0x1] = mm_bswap_32( *(buf + 1) ); \
|
||||
M[0x2] = mm_bswap_32( *(buf + 2) ); \
|
||||
M[0x3] = mm_bswap_32( *(buf + 3) ); \
|
||||
M[0x4] = mm_bswap_32( *(buf + 4) ); \
|
||||
M[0x5] = mm_bswap_32( *(buf + 5) ); \
|
||||
M[0x6] = mm_bswap_32( *(buf + 6) ); \
|
||||
M[0x7] = mm_bswap_32( *(buf + 7) ); \
|
||||
M[0x8] = mm_bswap_32( *(buf + 8) ); \
|
||||
M[0x9] = mm_bswap_32( *(buf + 9) ); \
|
||||
M[0xA] = mm_bswap_32( *(buf + 10) ); \
|
||||
M[0xB] = mm_bswap_32( *(buf + 11) ); \
|
||||
M[0xC] = mm_bswap_32( *(buf + 12) ); \
|
||||
M[0xD] = mm_bswap_32( *(buf + 13) ); \
|
||||
M[0xE] = mm_bswap_32( *(buf + 14) ); \
|
||||
M[0xF] = mm_bswap_32( *(buf + 15) ); \
|
||||
M[0x0] = mm128_bswap_32( *(buf + 0) ); \
|
||||
M[0x1] = mm128_bswap_32( *(buf + 1) ); \
|
||||
M[0x2] = mm128_bswap_32( *(buf + 2) ); \
|
||||
M[0x3] = mm128_bswap_32( *(buf + 3) ); \
|
||||
M[0x4] = mm128_bswap_32( *(buf + 4) ); \
|
||||
M[0x5] = mm128_bswap_32( *(buf + 5) ); \
|
||||
M[0x6] = mm128_bswap_32( *(buf + 6) ); \
|
||||
M[0x7] = mm128_bswap_32( *(buf + 7) ); \
|
||||
M[0x8] = mm128_bswap_32( *(buf + 8) ); \
|
||||
M[0x9] = mm128_bswap_32( *(buf + 9) ); \
|
||||
M[0xA] = mm128_bswap_32( *(buf + 10) ); \
|
||||
M[0xB] = mm128_bswap_32( *(buf + 11) ); \
|
||||
M[0xC] = mm128_bswap_32( *(buf + 12) ); \
|
||||
M[0xD] = mm128_bswap_32( *(buf + 13) ); \
|
||||
M[0xE] = mm128_bswap_32( *(buf + 14) ); \
|
||||
M[0xF] = mm128_bswap_32( *(buf + 15) ); \
|
||||
for (r = 0; r < rounds; r ++) \
|
||||
ROUND_S_4WAY(r); \
|
||||
H0 = _mm_xor_si128( _mm_xor_si128( \
|
||||
@@ -616,30 +478,30 @@ do { \
|
||||
V5 = H5; \
|
||||
V6 = H6; \
|
||||
V7 = H7; \
|
||||
V8 = _mm_xor_si128( S0, _mm_set_epi32( CS0, CS0, CS0, CS0 ) ); \
|
||||
V9 = _mm_xor_si128( S1, _mm_set_epi32( CS1, CS1, CS1, CS1 ) ); \
|
||||
VA = _mm_xor_si128( S2, _mm_set_epi32( CS2, CS2, CS2, CS2 ) ); \
|
||||
VB = _mm_xor_si128( S3, _mm_set_epi32( CS3, CS3, CS3, CS3 ) ); \
|
||||
V8 = _mm_xor_si128( S0, _mm_set1_epi32( CS0 ) ); \
|
||||
V9 = _mm_xor_si128( S1, _mm_set1_epi32( CS1 ) ); \
|
||||
VA = _mm_xor_si128( S2, _mm_set1_epi32( CS2 ) ); \
|
||||
VB = _mm_xor_si128( S3, _mm_set1_epi32( CS3 ) ); \
|
||||
VC = _mm_xor_si128( _mm_set1_epi32( T0 ), _mm_set1_epi32( CS4 ) ); \
|
||||
VD = _mm_xor_si128( _mm_set1_epi32( T0 ), _mm_set1_epi32( CS5 ) ); \
|
||||
VE = _mm_xor_si128( _mm_set1_epi32( T1 ), _mm_set1_epi32( CS6 ) ); \
|
||||
VF = _mm_xor_si128( _mm_set1_epi32( T1 ), _mm_set1_epi32( CS7 ) ); \
|
||||
M0 = mm_bswap_32( * buf ); \
|
||||
M1 = mm_bswap_32( *(buf+1) ); \
|
||||
M2 = mm_bswap_32( *(buf+2) ); \
|
||||
M3 = mm_bswap_32( *(buf+3) ); \
|
||||
M4 = mm_bswap_32( *(buf+4) ); \
|
||||
M5 = mm_bswap_32( *(buf+5) ); \
|
||||
M6 = mm_bswap_32( *(buf+6) ); \
|
||||
M7 = mm_bswap_32( *(buf+7) ); \
|
||||
M8 = mm_bswap_32( *(buf+8) ); \
|
||||
M9 = mm_bswap_32( *(buf+9) ); \
|
||||
MA = mm_bswap_32( *(buf+10) ); \
|
||||
MB = mm_bswap_32( *(buf+11) ); \
|
||||
MC = mm_bswap_32( *(buf+12) ); \
|
||||
MD = mm_bswap_32( *(buf+13) ); \
|
||||
ME = mm_bswap_32( *(buf+14) ); \
|
||||
MF = mm_bswap_32( *(buf+15) ); \
|
||||
M0 = mm128_bswap_32( buf[ 0] ); \
|
||||
M1 = mm128_bswap_32( buf[ 1] ); \
|
||||
M2 = mm128_bswap_32( buf[ 2] ); \
|
||||
M3 = mm128_bswap_32( buf[ 3] ); \
|
||||
M4 = mm128_bswap_32( buf[ 4] ); \
|
||||
M5 = mm128_bswap_32( buf[ 5] ); \
|
||||
M6 = mm128_bswap_32( buf[ 6] ); \
|
||||
M7 = mm128_bswap_32( buf[ 7] ); \
|
||||
M8 = mm128_bswap_32( buf[ 8] ); \
|
||||
M9 = mm128_bswap_32( buf[ 9] ); \
|
||||
MA = mm128_bswap_32( buf[10] ); \
|
||||
MB = mm128_bswap_32( buf[11] ); \
|
||||
MC = mm128_bswap_32( buf[12] ); \
|
||||
MD = mm128_bswap_32( buf[13] ); \
|
||||
ME = mm128_bswap_32( buf[14] ); \
|
||||
MF = mm128_bswap_32( buf[15] ); \
|
||||
ROUND_S_4WAY(0); \
|
||||
ROUND_S_4WAY(1); \
|
||||
ROUND_S_4WAY(2); \
|
||||
@@ -673,6 +535,31 @@ do { \
|
||||
|
||||
// Blake-256 8 way
|
||||
|
||||
#define GS_8WAY( m0, m1, c0, c1, a, b, c, d ) \
|
||||
do { \
|
||||
a = _mm256_add_epi32( _mm256_add_epi32( _mm256_xor_si256( \
|
||||
_mm256_set1_epi32( c1 ), m0 ), b ), a ); \
|
||||
d = mm256_ror_32( _mm256_xor_si256( d, a ), 16 ); \
|
||||
c = _mm256_add_epi32( c, d ); \
|
||||
b = mm256_ror_32( _mm256_xor_si256( b, c ), 12 ); \
|
||||
a = _mm256_add_epi32( _mm256_add_epi32( _mm256_xor_si256( \
|
||||
_mm256_set1_epi32( c0 ), m1 ), b ), a ); \
|
||||
d = mm256_ror_32( _mm256_xor_si256( d, a ), 8 ); \
|
||||
c = _mm256_add_epi32( c, d ); \
|
||||
b = mm256_ror_32( _mm256_xor_si256( b, c ), 7 ); \
|
||||
} while (0)
|
||||
|
||||
#define ROUND_S_8WAY(r) do { \
|
||||
GS_8WAY(Mx(r, 0), Mx(r, 1), CSx(r, 0), CSx(r, 1), V0, V4, V8, VC); \
|
||||
GS_8WAY(Mx(r, 2), Mx(r, 3), CSx(r, 2), CSx(r, 3), V1, V5, V9, VD); \
|
||||
GS_8WAY(Mx(r, 4), Mx(r, 5), CSx(r, 4), CSx(r, 5), V2, V6, VA, VE); \
|
||||
GS_8WAY(Mx(r, 6), Mx(r, 7), CSx(r, 6), CSx(r, 7), V3, V7, VB, VF); \
|
||||
GS_8WAY(Mx(r, 8), Mx(r, 9), CSx(r, 8), CSx(r, 9), V0, V5, VA, VF); \
|
||||
GS_8WAY(Mx(r, A), Mx(r, B), CSx(r, A), CSx(r, B), V1, V6, VB, VC); \
|
||||
GS_8WAY(Mx(r, C), Mx(r, D), CSx(r, C), CSx(r, D), V2, V7, V8, VD); \
|
||||
GS_8WAY(Mx(r, E), Mx(r, F), CSx(r, E), CSx(r, F), V3, V4, V9, VE); \
|
||||
} while (0)
|
||||
|
||||
#define DECL_STATE32_8WAY \
|
||||
__m256i H0, H1, H2, H3, H4, H5, H6, H7; \
|
||||
__m256i S0, S1, S2, S3; \
|
||||
@@ -787,312 +674,136 @@ do { \
|
||||
S3 ), H7 ); \
|
||||
} while (0)
|
||||
|
||||
// Blake-512 4 way
|
||||
|
||||
#define DECL_STATE64_4WAY \
|
||||
__m256i H0, H1, H2, H3, H4, H5, H6, H7; \
|
||||
__m256i S0, S1, S2, S3; \
|
||||
sph_u64 T0, T1;
|
||||
|
||||
#define READ_STATE64_4WAY(state) do { \
|
||||
H0 = (state)->H[0]; \
|
||||
H1 = (state)->H[1]; \
|
||||
H2 = (state)->H[2]; \
|
||||
H3 = (state)->H[3]; \
|
||||
H4 = (state)->H[4]; \
|
||||
H5 = (state)->H[5]; \
|
||||
H6 = (state)->H[6]; \
|
||||
H7 = (state)->H[7]; \
|
||||
S0 = (state)->S[0]; \
|
||||
S1 = (state)->S[1]; \
|
||||
S2 = (state)->S[2]; \
|
||||
S3 = (state)->S[3]; \
|
||||
T0 = (state)->T0; \
|
||||
T1 = (state)->T1; \
|
||||
} while (0)
|
||||
|
||||
#define WRITE_STATE64_4WAY(state) do { \
|
||||
(state)->H[0] = H0; \
|
||||
(state)->H[1] = H1; \
|
||||
(state)->H[2] = H2; \
|
||||
(state)->H[3] = H3; \
|
||||
(state)->H[4] = H4; \
|
||||
(state)->H[5] = H5; \
|
||||
(state)->H[6] = H6; \
|
||||
(state)->H[7] = H7; \
|
||||
(state)->S[0] = S0; \
|
||||
(state)->S[1] = S1; \
|
||||
(state)->S[2] = S2; \
|
||||
(state)->S[3] = S3; \
|
||||
(state)->T0 = T0; \
|
||||
(state)->T1 = T1; \
|
||||
} while (0)
|
||||
|
||||
#if SPH_COMPACT_BLAKE_64
|
||||
|
||||
// not used
|
||||
#define COMPRESS64_4WAY do { \
|
||||
__m256i M[16]; \
|
||||
__m256i V0, V1, V2, V3, V4, V5, V6, V7; \
|
||||
__m256i V8, V9, VA, VB, VC, VD, VE, VF; \
|
||||
unsigned r; \
|
||||
V0 = H0; \
|
||||
V1 = H1; \
|
||||
V2 = H2; \
|
||||
V3 = H3; \
|
||||
V4 = H4; \
|
||||
V5 = H5; \
|
||||
V6 = H6; \
|
||||
V7 = H7; \
|
||||
V8 = _mm256_xor_si256( S0, _mm256_set_epi64x( CB0, CB0, CB0, CB0 ) ); \
|
||||
V9 = _mm256_xor_si256( S1, _mm256_set_epi64x( CB1, CB1, CB1, CB1 ) ); \
|
||||
VA = _mm256_xor_si256( S2, _mm256_set_epi64x( CB2, CB2, CB2, CB2 ) ); \
|
||||
VB = _mm256_xor_si256( S3, _mm256_set_epi64x( CB3, CB3, CB3, CB3 ) ); \
|
||||
VC = _mm256_xor_si256( _mm256_set_epi64x( T0, T0, T0, T0 ), \
|
||||
_mm256_set_epi64x( CB4, CB4, CB4, CB4 ) ); \
|
||||
VD = _mm256_xor_si256( _mm256_set_epi64x( T0, T0, T0, T0 ), \
|
||||
_mm256_set_epi64x( CB5, CB5, CB5, CB5 ) ); \
|
||||
VE = _mm256_xor_si256( _mm256_set_epi64x( T1, T1, T1, T1 ), \
|
||||
_mm256_set_epi64x( CB6, CB6, CB6, CB6 ) ); \
|
||||
VF = _mm256_xor_si256( _mm256_set_epi64x( T1, T1, T1, T1 ), \
|
||||
_mm256_set_epi64x( CB7, CB7, CB7, CB7 ) ); \
|
||||
M[0x0] = mm256_bswap_64( *(buf+0) ); \
|
||||
M[0x1] = mm256_bswap_64( *(buf+1) ); \
|
||||
M[0x2] = mm256_bswap_64( *(buf+2) ); \
|
||||
M[0x3] = mm256_bswap_64( *(buf+3) ); \
|
||||
M[0x4] = mm256_bswap_64( *(buf+4) ); \
|
||||
M[0x5] = mm256_bswap_64( *(buf+5) ); \
|
||||
M[0x6] = mm256_bswap_64( *(buf+6) ); \
|
||||
M[0x7] = mm256_bswap_64( *(buf+7) ); \
|
||||
M[0x8] = mm256_bswap_64( *(buf+8) ); \
|
||||
M[0x9] = mm256_bswap_64( *(buf+9) ); \
|
||||
M[0xA] = mm256_bswap_64( *(buf+10) ); \
|
||||
M[0xB] = mm256_bswap_64( *(buf+11) ); \
|
||||
M[0xC] = mm256_bswap_64( *(buf+12) ); \
|
||||
M[0xD] = mm256_bswap_64( *(buf+13) ); \
|
||||
M[0xE] = mm256_bswap_64( *(buf+14) ); \
|
||||
M[0xF] = mm256_bswap_64( *(buf+15) ); \
|
||||
for (r = 0; r < 16; r ++) \
|
||||
ROUND_B_4WAY(r); \
|
||||
H0 = _mm256_xor_si256( _mm256_xor_si256( \
|
||||
_mm256_xor_si256( S0, V0 ), V8 ), H0 ); \
|
||||
H1 = _mm256_xor_si256( _mm256_xor_si256( \
|
||||
_mm256_xor_si256( S1, V1 ), V9 ), H1 ); \
|
||||
H2 = _mm256_xor_si256( _mm256_xor_si256( \
|
||||
_mm256_xor_si256( S2, V2 ), VA ), H2 ); \
|
||||
H3 = _mm256_xor_si256( _mm256_xor_si256( \
|
||||
_mm256_xor_si256( S3, V3 ), VB ), H3 ); \
|
||||
H4 = _mm256_xor_si256( _mm256_xor_si256( \
|
||||
_mm256_xor_si256( S0, V4 ), VC ), H4 ); \
|
||||
H5 = _mm256_xor_si256( _mm256_xor_si256( \
|
||||
_mm256_xor_si256( S1, V5 ), VD ), H5 ); \
|
||||
H6 = _mm256_xor_si256( _mm256_xor_si256( \
|
||||
_mm256_xor_si256( S2, V6 ), VE ), H6 ); \
|
||||
H7 = _mm256_xor_si256( _mm256_xor_si256( \
|
||||
_mm256_xor_si256( S3, V7 ), VF ), H7 ); \
|
||||
} while (0)
|
||||
|
||||
#else
|
||||
|
||||
//current impl
|
||||
|
||||
#define COMPRESS64_4WAY do { \
|
||||
__m256i M0, M1, M2, M3, M4, M5, M6, M7; \
|
||||
__m256i M8, M9, MA, MB, MC, MD, ME, MF; \
|
||||
__m256i V0, V1, V2, V3, V4, V5, V6, V7; \
|
||||
__m256i V8, V9, VA, VB, VC, VD, VE, VF; \
|
||||
V0 = H0; \
|
||||
V1 = H1; \
|
||||
V2 = H2; \
|
||||
V3 = H3; \
|
||||
V4 = H4; \
|
||||
V5 = H5; \
|
||||
V6 = H6; \
|
||||
V7 = H7; \
|
||||
V8 = _mm256_xor_si256( S0, _mm256_set_epi64x( CB0, CB0, CB0, CB0 ) ); \
|
||||
V9 = _mm256_xor_si256( S1, _mm256_set_epi64x( CB1, CB1, CB1, CB1 ) ); \
|
||||
VA = _mm256_xor_si256( S2, _mm256_set_epi64x( CB2, CB2, CB2, CB2 ) ); \
|
||||
VB = _mm256_xor_si256( S3, _mm256_set_epi64x( CB3, CB3, CB3, CB3 ) ); \
|
||||
VC = _mm256_xor_si256( _mm256_set_epi64x( T0, T0, T0, T0 ), \
|
||||
_mm256_set_epi64x( CB4, CB4, CB4, CB4 ) ); \
|
||||
VD = _mm256_xor_si256( _mm256_set_epi64x( T0, T0, T0, T0 ), \
|
||||
_mm256_set_epi64x( CB5, CB5, CB5, CB5 ) ); \
|
||||
VE = _mm256_xor_si256( _mm256_set_epi64x( T1, T1, T1, T1 ), \
|
||||
_mm256_set_epi64x( CB6, CB6, CB6, CB6 ) ); \
|
||||
VF = _mm256_xor_si256( _mm256_set_epi64x( T1, T1, T1, T1 ), \
|
||||
_mm256_set_epi64x( CB7, CB7, CB7, CB7 ) ); \
|
||||
M0 = mm256_bswap_64( *(buf + 0) ); \
|
||||
M1 = mm256_bswap_64( *(buf + 1) ); \
|
||||
M2 = mm256_bswap_64( *(buf + 2) ); \
|
||||
M3 = mm256_bswap_64( *(buf + 3) ); \
|
||||
M4 = mm256_bswap_64( *(buf + 4) ); \
|
||||
M5 = mm256_bswap_64( *(buf + 5) ); \
|
||||
M6 = mm256_bswap_64( *(buf + 6) ); \
|
||||
M7 = mm256_bswap_64( *(buf + 7) ); \
|
||||
M8 = mm256_bswap_64( *(buf + 8) ); \
|
||||
M9 = mm256_bswap_64( *(buf + 9) ); \
|
||||
MA = mm256_bswap_64( *(buf + 10) ); \
|
||||
MB = mm256_bswap_64( *(buf + 11) ); \
|
||||
MC = mm256_bswap_64( *(buf + 12) ); \
|
||||
MD = mm256_bswap_64( *(buf + 13) ); \
|
||||
ME = mm256_bswap_64( *(buf + 14) ); \
|
||||
MF = mm256_bswap_64( *(buf + 15) ); \
|
||||
ROUND_B_4WAY(0); \
|
||||
ROUND_B_4WAY(1); \
|
||||
ROUND_B_4WAY(2); \
|
||||
ROUND_B_4WAY(3); \
|
||||
ROUND_B_4WAY(4); \
|
||||
ROUND_B_4WAY(5); \
|
||||
ROUND_B_4WAY(6); \
|
||||
ROUND_B_4WAY(7); \
|
||||
ROUND_B_4WAY(8); \
|
||||
ROUND_B_4WAY(9); \
|
||||
ROUND_B_4WAY(0); \
|
||||
ROUND_B_4WAY(1); \
|
||||
ROUND_B_4WAY(2); \
|
||||
ROUND_B_4WAY(3); \
|
||||
ROUND_B_4WAY(4); \
|
||||
ROUND_B_4WAY(5); \
|
||||
H0 = _mm256_xor_si256( _mm256_xor_si256( \
|
||||
_mm256_xor_si256( S0, V0 ), V8 ), H0 ); \
|
||||
H1 = _mm256_xor_si256( _mm256_xor_si256( \
|
||||
_mm256_xor_si256( S1, V1 ), V9 ), H1 ); \
|
||||
H2 = _mm256_xor_si256( _mm256_xor_si256( \
|
||||
_mm256_xor_si256( S2, V2 ), VA ), H2 ); \
|
||||
H3 = _mm256_xor_si256( _mm256_xor_si256( \
|
||||
_mm256_xor_si256( S3, V3 ), VB ), H3 ); \
|
||||
H4 = _mm256_xor_si256( _mm256_xor_si256( \
|
||||
_mm256_xor_si256( S0, V4 ), VC ), H4 ); \
|
||||
H5 = _mm256_xor_si256( _mm256_xor_si256( \
|
||||
_mm256_xor_si256( S1, V5 ), VD ), H5 ); \
|
||||
H6 = _mm256_xor_si256( _mm256_xor_si256( \
|
||||
_mm256_xor_si256( S2, V6 ), VE ), H6 ); \
|
||||
H7 = _mm256_xor_si256( _mm256_xor_si256( \
|
||||
_mm256_xor_si256( S3, V7 ), VF ), H7 ); \
|
||||
} while (0)
|
||||
|
||||
#endif
|
||||
|
||||
#endif
|
||||
|
||||
// Blake-256 4 way
|
||||
|
||||
static const sph_u32 salt_zero_4way_small[4] = { 0, 0, 0, 0 };
|
||||
static const uint32_t salt_zero_4way_small[4] = { 0, 0, 0, 0 };
|
||||
|
||||
static void
|
||||
blake32_4way_init( blake_4way_small_context *sc, const sph_u32 *iv,
|
||||
const sph_u32 *salt, int rounds )
|
||||
blake32_4way_init( blake_4way_small_context *ctx, const uint32_t *iv,
|
||||
const uint32_t *salt, int rounds )
|
||||
{
|
||||
int i;
|
||||
for ( i = 0; i < 8; i++ )
|
||||
sc->H[i] = _mm_set1_epi32( iv[i] );
|
||||
for ( i = 0; i < 4; i++ )
|
||||
sc->S[i] = _mm_set1_epi32( salt[i] );
|
||||
sc->T0 = sc->T1 = 0;
|
||||
sc->ptr = 0;
|
||||
sc->rounds = rounds;
|
||||
casti_m128i( ctx->H, 0 ) = _mm_set1_epi32( iv[0] );
|
||||
casti_m128i( ctx->H, 1 ) = _mm_set1_epi32( iv[1] );
|
||||
casti_m128i( ctx->H, 2 ) = _mm_set1_epi32( iv[2] );
|
||||
casti_m128i( ctx->H, 3 ) = _mm_set1_epi32( iv[3] );
|
||||
casti_m128i( ctx->H, 4 ) = _mm_set1_epi32( iv[4] );
|
||||
casti_m128i( ctx->H, 5 ) = _mm_set1_epi32( iv[5] );
|
||||
casti_m128i( ctx->H, 6 ) = _mm_set1_epi32( iv[6] );
|
||||
casti_m128i( ctx->H, 7 ) = _mm_set1_epi32( iv[7] );
|
||||
|
||||
casti_m128i( ctx->S, 0 ) = m128_zero;
|
||||
casti_m128i( ctx->S, 1 ) = m128_zero;
|
||||
casti_m128i( ctx->S, 2 ) = m128_zero;
|
||||
casti_m128i( ctx->S, 3 ) = m128_zero;
|
||||
/*
|
||||
sc->S[0] = _mm_set1_epi32( salt[0] );
|
||||
sc->S[1] = _mm_set1_epi32( salt[1] );
|
||||
sc->S[2] = _mm_set1_epi32( salt[2] );
|
||||
sc->S[3] = _mm_set1_epi32( salt[3] );
|
||||
*/
|
||||
ctx->T0 = ctx->T1 = 0;
|
||||
ctx->ptr = 0;
|
||||
ctx->rounds = rounds;
|
||||
}
|
||||
|
||||
static void
|
||||
blake32_4way( blake_4way_small_context *sc, const void *data, size_t len )
|
||||
blake32_4way( blake_4way_small_context *ctx, const void *data, size_t len )
|
||||
{
|
||||
__m128i *vdata = (__m128i*)data;
|
||||
__m128i *buf;
|
||||
size_t ptr;
|
||||
const int buf_size = 64; // number of elements, sizeof/4
|
||||
__m128i *buf = (__m128i*)ctx->buf;
|
||||
size_t bptr = ctx->ptr<<2;
|
||||
size_t vptr = ctx->ptr >> 2;
|
||||
size_t blen = len << 2;
|
||||
DECL_STATE32_4WAY
|
||||
buf = sc->buf;
|
||||
ptr = sc->ptr;
|
||||
if ( len < buf_size - ptr )
|
||||
|
||||
if ( blen < (sizeof ctx->buf) - bptr )
|
||||
{
|
||||
memcpy_128( buf + (ptr>>2), vdata, len>>2 );
|
||||
ptr += len;
|
||||
sc->ptr = ptr;
|
||||
memcpy( buf + vptr, data, (sizeof ctx->buf) - bptr );
|
||||
bptr += blen;
|
||||
ctx->ptr = bptr>>2;
|
||||
return;
|
||||
}
|
||||
|
||||
READ_STATE32_4WAY(sc);
|
||||
while ( len > 0 )
|
||||
READ_STATE32_4WAY( ctx );
|
||||
while ( blen > 0 )
|
||||
{
|
||||
size_t clen;
|
||||
size_t clen = ( sizeof ctx->buf ) - bptr;
|
||||
|
||||
clen = buf_size - ptr;
|
||||
if ( clen > len )
|
||||
clen = len;
|
||||
memcpy_128( buf + (ptr>>2), vdata, clen>>2 );
|
||||
ptr += clen;
|
||||
vdata += (clen>>2);
|
||||
len -= clen;
|
||||
if ( ptr == buf_size )
|
||||
if ( clen > blen )
|
||||
clen = blen;
|
||||
memcpy( buf + vptr, data, clen );
|
||||
bptr += clen;
|
||||
data = (const unsigned char *)data + clen;
|
||||
blen -= clen;
|
||||
if ( bptr == ( sizeof ctx->buf ) )
|
||||
{
|
||||
if ( ( T0 = SPH_T32(T0 + 512) ) < 512 )
|
||||
T1 = SPH_T32(T1 + 1);
|
||||
COMPRESS32_4WAY( sc->rounds );
|
||||
ptr = 0;
|
||||
if ( ( T0 = T0 + 512 ) < 512 )
|
||||
T1 = T1 + 1;
|
||||
COMPRESS32_4WAY( ctx->rounds );
|
||||
bptr = 0;
|
||||
}
|
||||
}
|
||||
WRITE_STATE32_4WAY(sc);
|
||||
sc->ptr = ptr;
|
||||
WRITE_STATE32_4WAY( ctx );
|
||||
ctx->ptr = bptr>>2;
|
||||
}
|
||||
|
||||
static void
|
||||
blake32_4way_close( blake_4way_small_context *sc, unsigned ub, unsigned n,
|
||||
blake32_4way_close( blake_4way_small_context *ctx, unsigned ub, unsigned n,
|
||||
void *dst, size_t out_size_w32 )
|
||||
{
|
||||
// union {
|
||||
__m128i buf[16];
|
||||
// sph_u32 dummy;
|
||||
// } u;
|
||||
size_t ptr, k;
|
||||
unsigned bit_len;
|
||||
sph_u32 th, tl;
|
||||
__m128i *out;
|
||||
|
||||
ptr = sc->ptr;
|
||||
bit_len = ((unsigned)ptr << 3);
|
||||
buf[ptr>>2] = _mm_set1_epi32( 0x80 );
|
||||
tl = sc->T0 + bit_len;
|
||||
th = sc->T1;
|
||||
__m128i buf[16] __attribute__ ((aligned (64)));
|
||||
size_t ptr = ctx->ptr;
|
||||
size_t vptr = ctx->ptr>>2;
|
||||
unsigned bit_len = ( (unsigned)ptr << 3 );
|
||||
uint32_t tl = ctx->T0 + bit_len;
|
||||
uint32_t th = ctx->T1;
|
||||
|
||||
if ( ptr == 0 )
|
||||
{
|
||||
sc->T0 = SPH_C32(0xFFFFFE00UL);
|
||||
sc->T1 = SPH_C32(0xFFFFFFFFUL);
|
||||
ctx->T0 = 0xFFFFFE00UL;
|
||||
ctx->T1 = 0xFFFFFFFFUL;
|
||||
}
|
||||
else if ( sc->T0 == 0 )
|
||||
else if ( ctx->T0 == 0 )
|
||||
{
|
||||
sc->T0 = SPH_C32(0xFFFFFE00UL) + bit_len;
|
||||
sc->T1 = SPH_T32(sc->T1 - 1);
|
||||
ctx->T0 = 0xFFFFFE00UL + bit_len;
|
||||
ctx->T1 = ctx->T1 - 1;
|
||||
}
|
||||
else
|
||||
sc->T0 -= 512 - bit_len;
|
||||
ctx->T0 -= 512 - bit_len;
|
||||
|
||||
if ( ptr <= 52 )
|
||||
buf[vptr] = _mm_set1_epi32( 0x80 );
|
||||
|
||||
if ( vptr < 12 )
|
||||
{
|
||||
memset_zero_128( buf + (ptr>>2) + 1, (52 - ptr) >> 2 );
|
||||
if (out_size_w32 == 8)
|
||||
buf[52>>2] = _mm_or_si128( buf[52>>2],
|
||||
_mm_set1_epi32( 0x01000000UL ) );
|
||||
*(buf+(56>>2)) = mm_bswap_32( _mm_set1_epi32( th ) );
|
||||
*(buf+(60>>2)) = mm_bswap_32( _mm_set1_epi32( tl ) );
|
||||
blake32_4way( sc, buf + (ptr>>2), 64 - ptr );
|
||||
memset_zero_128( buf + vptr + 1, 13 - vptr );
|
||||
buf[ 13 ] = _mm_or_si128( buf[ 13 ], _mm_set1_epi32( 0x01000000UL ) );
|
||||
buf[ 14 ] = mm128_bswap_32( _mm_set1_epi32( th ) );
|
||||
buf[ 15 ] = mm128_bswap_32( _mm_set1_epi32( tl ) );
|
||||
blake32_4way( ctx, buf + vptr, 64 - ptr );
|
||||
}
|
||||
else
|
||||
{
|
||||
memset_zero_128( buf + (ptr>>2) + 1, (60-ptr) >> 2 );
|
||||
blake32_4way( sc, buf + (ptr>>2), 64 - ptr );
|
||||
sc->T0 = SPH_C32(0xFFFFFE00UL);
|
||||
sc->T1 = SPH_C32(0xFFFFFFFFUL);
|
||||
memset_zero_128( buf, 56>>2 );
|
||||
if (out_size_w32 == 8)
|
||||
buf[52>>2] = _mm_set1_epi32( 0x01000000UL );
|
||||
*(buf+(56>>2)) = mm_bswap_32( _mm_set1_epi32( th ) );
|
||||
*(buf+(60>>2)) = mm_bswap_32( _mm_set1_epi32( tl ) );
|
||||
blake32_4way( sc, buf, 64 );
|
||||
memset_zero_128( buf + vptr + 1, (60-ptr) >> 2 );
|
||||
blake32_4way( ctx, buf + vptr, 64 - ptr );
|
||||
ctx->T0 = 0xFFFFFE00UL;
|
||||
ctx->T1 = 0xFFFFFFFFUL;
|
||||
memset_zero_128( buf, 56>>2 );
|
||||
buf[ 13 ] = _mm_or_si128( buf[ 13 ], _mm_set1_epi32( 0x01000000UL ) );
|
||||
buf[ 14 ] = mm128_bswap_32( _mm_set1_epi32( th ) );
|
||||
buf[ 15 ] = mm128_bswap_32( _mm_set1_epi32( tl ) );
|
||||
blake32_4way( ctx, buf, 64 );
|
||||
}
|
||||
out = (__m128i*)dst;
|
||||
for ( k = 0; k < out_size_w32; k++ )
|
||||
out[k] = mm_bswap_32( sc->H[k] );
|
||||
|
||||
casti_m128i( dst, 0 ) = mm128_bswap_32( casti_m128i( ctx->H, 0 ) );
|
||||
casti_m128i( dst, 1 ) = mm128_bswap_32( casti_m128i( ctx->H, 1 ) );
|
||||
casti_m128i( dst, 2 ) = mm128_bswap_32( casti_m128i( ctx->H, 2 ) );
|
||||
casti_m128i( dst, 3 ) = mm128_bswap_32( casti_m128i( ctx->H, 3 ) );
|
||||
casti_m128i( dst, 4 ) = mm128_bswap_32( casti_m128i( ctx->H, 4 ) );
|
||||
casti_m128i( dst, 5 ) = mm128_bswap_32( casti_m128i( ctx->H, 5 ) );
|
||||
casti_m128i( dst, 6 ) = mm128_bswap_32( casti_m128i( ctx->H, 6 ) );
|
||||
casti_m128i( dst, 7 ) = mm128_bswap_32( casti_m128i( ctx->H, 7 ) );
|
||||
}
|
||||
|
||||
#if defined (__AVX2__)
|
||||
@@ -1217,163 +928,32 @@ blake32_8way_close( blake_8way_small_context *sc, unsigned ub, unsigned n,
|
||||
out[k] = mm256_bswap_32( sc->H[k] );
|
||||
}
|
||||
|
||||
// Blake-512 4 way
|
||||
|
||||
static const sph_u64 salt_zero_big[4] = { 0, 0, 0, 0 };
|
||||
|
||||
static void
|
||||
blake64_4way_init( blake_4way_big_context *sc, const sph_u64 *iv,
|
||||
const sph_u64 *salt )
|
||||
{
|
||||
int i;
|
||||
for ( i = 0; i < 8; i++ )
|
||||
sc->H[i] = _mm256_set1_epi64x( iv[i] );
|
||||
for ( i = 0; i < 4; i++ )
|
||||
sc->S[i] = _mm256_set1_epi64x( salt[i] );
|
||||
sc->T0 = sc->T1 = 0;
|
||||
sc->ptr = 0;
|
||||
}
|
||||
|
||||
static void
|
||||
blake64_4way( blake_4way_big_context *sc, const void *data, size_t len)
|
||||
{
|
||||
__m256i *vdata = (__m256i*)data;
|
||||
__m256i *buf;
|
||||
size_t ptr;
|
||||
DECL_STATE64_4WAY
|
||||
|
||||
const int buf_size = 128; // sizeof/8
|
||||
|
||||
buf = sc->buf;
|
||||
ptr = sc->ptr;
|
||||
if ( len < (buf_size - ptr) )
|
||||
{
|
||||
memcpy_256( buf + (ptr>>3), vdata, len>>3 );
|
||||
ptr += len;
|
||||
sc->ptr = ptr;
|
||||
return;
|
||||
}
|
||||
|
||||
READ_STATE64_4WAY(sc);
|
||||
while ( len > 0 )
|
||||
{
|
||||
size_t clen;
|
||||
|
||||
clen = buf_size - ptr;
|
||||
if ( clen > len )
|
||||
clen = len;
|
||||
memcpy_256( buf + (ptr>>3), vdata, clen>>3 );
|
||||
ptr += clen;
|
||||
vdata = vdata + (clen>>3);
|
||||
len -= clen;
|
||||
if (ptr == buf_size )
|
||||
{
|
||||
if ((T0 = SPH_T64(T0 + 1024)) < 1024)
|
||||
T1 = SPH_T64(T1 + 1);
|
||||
COMPRESS64_4WAY;
|
||||
ptr = 0;
|
||||
}
|
||||
}
|
||||
WRITE_STATE64_4WAY(sc);
|
||||
sc->ptr = ptr;
|
||||
}
|
||||
|
||||
static void
|
||||
blake64_4way_close( blake_4way_big_context *sc,
|
||||
unsigned ub, unsigned n, void *dst, size_t out_size_w64)
|
||||
{
|
||||
// union {
|
||||
__m256i buf[16];
|
||||
// sph_u64 dummy;
|
||||
// } u;
|
||||
size_t ptr, k;
|
||||
unsigned bit_len;
|
||||
uint64_t z, zz;
|
||||
sph_u64 th, tl;
|
||||
__m256i *out;
|
||||
|
||||
ptr = sc->ptr;
|
||||
bit_len = ((unsigned)ptr << 3);
|
||||
z = 0x80 >> n;
|
||||
zz = ((ub & -z) | z) & 0xFF;
|
||||
buf[ptr>>3] = _mm256_set_epi64x( zz, zz, zz, zz );
|
||||
tl = sc->T0 + bit_len;
|
||||
th = sc->T1;
|
||||
if (ptr == 0 )
|
||||
{
|
||||
sc->T0 = SPH_C64(0xFFFFFFFFFFFFFC00ULL);
|
||||
sc->T1 = SPH_C64(0xFFFFFFFFFFFFFFFFULL);
|
||||
}
|
||||
else if ( sc->T0 == 0 )
|
||||
{
|
||||
sc->T0 = SPH_C64(0xFFFFFFFFFFFFFC00ULL) + bit_len;
|
||||
sc->T1 = SPH_T64(sc->T1 - 1);
|
||||
}
|
||||
else
|
||||
{
|
||||
sc->T0 -= 1024 - bit_len;
|
||||
}
|
||||
if ( ptr <= 104 )
|
||||
{
|
||||
memset_zero_256( buf + (ptr>>3) + 1, (104-ptr) >> 3 );
|
||||
if ( out_size_w64 == 8 )
|
||||
buf[(104>>3)] = _mm256_or_si256( buf[(104>>3)],
|
||||
_mm256_set1_epi64x( 0x0100000000000000ULL ) );
|
||||
*(buf+(112>>3)) = mm256_bswap_64(
|
||||
_mm256_set_epi64x( th, th, th, th ) );
|
||||
*(buf+(120>>3)) = mm256_bswap_64(
|
||||
_mm256_set_epi64x( tl, tl, tl, tl ) );
|
||||
|
||||
blake64_4way( sc, buf + (ptr>>3), 128 - ptr );
|
||||
}
|
||||
else
|
||||
{
|
||||
memset_zero_256( buf + (ptr>>3) + 1, (120 - ptr) >> 3 );
|
||||
|
||||
blake64_4way( sc, buf + (ptr>>3), 128 - ptr );
|
||||
sc->T0 = SPH_C64(0xFFFFFFFFFFFFFC00ULL);
|
||||
sc->T1 = SPH_C64(0xFFFFFFFFFFFFFFFFULL);
|
||||
memset_zero_256( buf, 112>>3 );
|
||||
if ( out_size_w64 == 8 )
|
||||
buf[104>>3] = _mm256_set1_epi64x( 0x0100000000000000ULL );
|
||||
*(buf+(112>>3)) = mm256_bswap_64(
|
||||
_mm256_set_epi64x( th, th, th, th ) );
|
||||
*(buf+(120>>3)) = mm256_bswap_64(
|
||||
_mm256_set_epi64x( tl, tl, tl, tl ) );
|
||||
|
||||
blake64_4way( sc, buf, 128 );
|
||||
}
|
||||
out = (__m256i*)dst;
|
||||
for ( k = 0; k < out_size_w64; k++ )
|
||||
out[k] = mm256_bswap_64( sc->H[k] );
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
// Blake-256 4 way
|
||||
|
||||
// default 14 rounds, backward copatibility
|
||||
void
|
||||
blake256_4way_init(void *cc)
|
||||
blake256_4way_init(void *ctx)
|
||||
{
|
||||
blake32_4way_init( cc, IV256, salt_zero_4way_small, 14 );
|
||||
blake32_4way_init( ctx, IV256, salt_zero_4way_small, 14 );
|
||||
}
|
||||
|
||||
void
|
||||
blake256_4way(void *cc, const void *data, size_t len)
|
||||
blake256_4way(void *ctx, const void *data, size_t len)
|
||||
{
|
||||
blake32_4way(cc, data, len);
|
||||
blake32_4way(ctx, data, len);
|
||||
}
|
||||
|
||||
void
|
||||
blake256_4way_close(void *cc, void *dst)
|
||||
blake256_4way_close(void *ctx, void *dst)
|
||||
{
|
||||
blake32_4way_close(cc, 0, 0, dst, 8);
|
||||
blake32_4way_close(ctx, 0, 0, dst, 8);
|
||||
}
|
||||
|
||||
#if defined(__AVX2__)
|
||||
|
||||
// Blake-256 8way
|
||||
// Blake-256 8 way
|
||||
|
||||
void
|
||||
blake256_8way_init(void *cc)
|
||||
@@ -1473,38 +1053,8 @@ blake256r8_8way_close(void *cc, void *dst)
|
||||
|
||||
#endif
|
||||
|
||||
// Blake-512 4 way
|
||||
|
||||
#if defined (__AVX2__)
|
||||
|
||||
void
|
||||
blake512_4way_init(void *cc)
|
||||
{
|
||||
blake64_4way_init(cc, IV512, salt_zero_big);
|
||||
}
|
||||
|
||||
void
|
||||
blake512_4way(void *cc, const void *data, size_t len)
|
||||
{
|
||||
blake64_4way(cc, data, len);
|
||||
}
|
||||
|
||||
void
|
||||
blake512_4way_close(void *cc, void *dst)
|
||||
{
|
||||
blake512_4way_addbits_and_close(cc, 0, 0, dst);
|
||||
}
|
||||
|
||||
void
|
||||
blake512_4way_addbits_and_close(void *cc, unsigned ub, unsigned n, void *dst)
|
||||
{
|
||||
blake64_4way_close(cc, ub, n, dst, 8);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif
|
||||
//#endif
|
322
algo/blake/blake256-hash-4way.c.new
Normal file
322
algo/blake/blake256-hash-4way.c.new
Normal file
@@ -0,0 +1,322 @@
|
||||
// convert blake256 32 bit to use 64 bit with serial vectoring
|
||||
//
|
||||
// cut calls to GS in half
|
||||
//
|
||||
// combine V
|
||||
// v0 = {V0,V1}
|
||||
// v1 = {V2,V3}
|
||||
// v2 = {V4,V5}
|
||||
// v3 = {V6,V7}
|
||||
// v4 = {V8,V9}
|
||||
// v5 = {VA,VB}
|
||||
// v6 = {VC,VD}
|
||||
// v7 = {CE,VF}
|
||||
//
|
||||
// v6x = {VD,VC} swap(VC,VD) swap(v6)
|
||||
// v7x = {VF,VE} swap(VE,VF) swap(v7)
|
||||
//
|
||||
// V0 = v1v0
|
||||
// V1 = v3v2
|
||||
// V2 = v5v4
|
||||
// V3 = v7v6
|
||||
// V4 = v9v8
|
||||
// V5 = vbva
|
||||
// V6 = vdvc
|
||||
// V7 = vfve
|
||||
//
|
||||
// The rotate in ROUND is to effect straddle and unstraddle for the third
|
||||
// and 4th iteration of GS.
|
||||
// It concatenates 2 contiguous 256 bit vectors and extracts the middle
|
||||
// 256 bits. After the transform they must be restored with only the
|
||||
// chosen bits modified in the original 2 vectors.
|
||||
// ror1x128 achieves this by putting the chosen bits in arg1, the "low"
|
||||
// 256 bit vector and saves the untouched bits temporailly in arg0, the
|
||||
// "high" 256 bit vector. Simply reverse the process to restore data back
|
||||
// to original positions.
|
||||
|
||||
// Use standard 4way when AVX2 is not available use x2 mode with AVX2.
|
||||
//
|
||||
// Data is organised the same as 32 bit 4 way, in effect serial vectoring
|
||||
// on top of parallel vectoring. Same data in the same place just taking
|
||||
// two chunks at a time.
|
||||
//
|
||||
// Transparent to user, x2 mode used when AVX2 detected.
|
||||
// Use existing 4way context but revert to scalar types.
|
||||
// Same interleave function (128 bit) or x2 with 256 bit?
|
||||
// User trsnaparency would have to apply to interleave as well.
|
||||
//
|
||||
// Use common 4way update and close
|
||||
|
||||
/*
|
||||
typedef struct {
|
||||
unsigned char buf[64<<2];
|
||||
uint32_t H[8<<2];
|
||||
uint32_t S[4<<2];
|
||||
size_t ptr;
|
||||
uint32_t T0, T1;
|
||||
int rounds; // 14 for blake, 8 for blakecoin & vanilla
|
||||
} blakex2_4way_small_context __attribute__ ((aligned (64)));
|
||||
*/
|
||||
|
||||
static void
|
||||
blake32x2_4way_init( blake_4way_small_context *ctx, const uint32_t *iv,
|
||||
const uint32_t *salt, int rounds )
|
||||
{
|
||||
casti_m128i( ctx->H, 0 ) = _mm_set1_epi32( iv[0] );
|
||||
casti_m128i( ctx->H, 1 ) = _mm_set1_epi32( iv[1] );
|
||||
casti_m128i( ctx->H, 2 ) = _mm_set1_epi32( iv[2] );
|
||||
casti_m128i( ctx->H, 3 ) = _mm_set1_epi32( iv[3] );
|
||||
casti_m128i( ctx->H, 4 ) = _mm_set1_epi32( iv[4] );
|
||||
casti_m128i( ctx->H, 5 ) = _mm_set1_epi32( iv[5] );
|
||||
casti_m128i( ctx->H, 6 ) = _mm_set1_epi32( iv[6] );
|
||||
casti_m128i( ctx->H, 7 ) = _mm_set1_epi32( iv[7] );
|
||||
|
||||
casti_m128i( ctx->S, 0 ) = m128_zero;
|
||||
casti_m128i( ctx->S, 1 ) = m128_zero;
|
||||
casti_m128i( ctx->S, 2 ) = m128_zero;
|
||||
casti_m128i( ctx->S, 3 ) = m128_zero;
|
||||
/*
|
||||
sc->S[0] = _mm_set1_epi32( salt[0] );
|
||||
sc->S[1] = _mm_set1_epi32( salt[1] );
|
||||
sc->S[2] = _mm_set1_epi32( salt[2] );
|
||||
sc->S[3] = _mm_set1_epi32( salt[3] );
|
||||
*/
|
||||
ctx->T0 = ctx->T1 = 0;
|
||||
ctx->ptr = 0;
|
||||
ctx->rounds = rounds;
|
||||
}
|
||||
|
||||
static void
|
||||
blake32x2( blake_4way_small_context *ctx, const void *data, size_t len )
|
||||
{
|
||||
__m128i *buf = (__m256i*)ctx->buf;
|
||||
size_t bptr = ctx->ptr << 2;
|
||||
size_t vptr = ctx->ptr >> 3;
|
||||
size_t blen = len << 2;
|
||||
// unsigned char *buf = ctx->buf;
|
||||
// size_t ptr = ctx->ptr<<4; // repurposed
|
||||
DECL_STATE32x2
|
||||
|
||||
// buf = sc->buf;
|
||||
// ptr = sc->ptr;
|
||||
|
||||
// adjust len for use with ptr, clen, all absolute bytes.
|
||||
// int blen = len<<2;
|
||||
|
||||
if ( blen < (sizeof ctx->buf) - bptr )
|
||||
{
|
||||
memcpy( buf + vptr, data, blen );
|
||||
ptr += blen;
|
||||
ctx->ptr = bptr >> 2;;
|
||||
return;
|
||||
}
|
||||
|
||||
READ_STATE32( ctx );
|
||||
while ( blen > 0 )
|
||||
{
|
||||
size_t clen;
|
||||
|
||||
clen = ( sizeof sc->buf ) - ptr;
|
||||
if ( clen > blen )
|
||||
clen = blen;
|
||||
memcpy( buf + vptr, data, clen );
|
||||
bptr += clen;
|
||||
vptr = bptr >> 5;
|
||||
data = (const unsigned char *)data + clen;
|
||||
blen -= clen;
|
||||
if ( bptr == sizeof ctx->buf )
|
||||
{
|
||||
if ( ( T0 = T0 + 512 ) < 512 ) // not needed, will never rollover
|
||||
T1 += 1;
|
||||
COMPRESS32x2_4WAY( ctx->rounds );
|
||||
ptr = 0;
|
||||
}
|
||||
}
|
||||
WRITE_STATE32x2( ctx );
|
||||
ctx->ptr = bptr >> 2;
|
||||
}
|
||||
|
||||
static void
|
||||
blake32x2_4way_close( blake_4way_small_context *ctx, void *dst )
|
||||
{
|
||||
__m256i buf[8] __attribute__ ((aligned (64)));
|
||||
size_t ptr = ctx->ptr;
|
||||
size_t vptr = ctx->ptr>>2;
|
||||
unsigned bit_len = ( (unsigned)ptr << 3 ); // one lane
|
||||
uint32_t th = ctx->T1;
|
||||
uint32_t tl = ctx->T0 + bit_len;
|
||||
|
||||
if ( ptr == 0 )
|
||||
{
|
||||
ctx->T0 = 0xFFFFFE00UL;
|
||||
ctx->T1 = 0xFFFFFFFFUL;
|
||||
}
|
||||
else if ( ctx->T0 == 0 )
|
||||
{
|
||||
ctx->T0 = 0xFFFFFE00UL + bit_len;
|
||||
ctx->T1 -= 1;
|
||||
}
|
||||
else
|
||||
ctx->T0 -= 512 - bit_len;
|
||||
|
||||
// memset doesn't do ints
|
||||
buf[ vptr ] = _mm256_set_epi32( 0,0,0,0, 0x80, 0x80, 0x80, 0x80 );
|
||||
|
||||
if ( vptr < 5 )
|
||||
{
|
||||
memset_zero_256( buf + vptr + 1, 6 - vptr );
|
||||
buf[ 6 ] = _mm256_or_si256( vbuf[ 6 ], _mm256_set_epi32(
|
||||
0x01000000UL,0x01000000UL,0x01000000UL,0x01000000UL, 0,0,0,0 ) );
|
||||
buf[ 7 ] = mm256_bswap_32( _mm256_set_epi32( tl,tl,tl,tl,
|
||||
th,th,th,th ) );
|
||||
blake32x2_4way( ctx, buf + vptr, 64 - ptr );
|
||||
}
|
||||
else
|
||||
{
|
||||
memset_zero_256( vbuf + vptr + 1, 7 - vptr );
|
||||
blake32x2_4way( ctx, vbuf + ptr, 64 - ptr );
|
||||
ctx->T0 = 0xFFFFFE00UL;
|
||||
ctx->T1 = 0xFFFFFFFFUL;
|
||||
buf[ 6 ] = mm256_zero;
|
||||
buf[ 6 ] = _mm256_set_epi32( 0,0,0,0,
|
||||
0x01000000UL,0x01000000UL,0x01000000UL,0x01000000UL );
|
||||
buf[ 7 ] = mm256_bswap_32( _mm256_set_epi32( tl, tl, tl, tl,
|
||||
th, th, th, th );
|
||||
blake32x2_4way( ctx, buf, 64 );
|
||||
}
|
||||
|
||||
casti_m256i( dst, 0 ) = mm256_bswap_32( casti_m256i( ctx->H, 0 ) );
|
||||
casti_m256i( dst, 1 ) = mm256_bswap_32( casti_m256i( ctx->H, 1 ) );
|
||||
casti_m256i( dst, 2 ) = mm256_bswap_32( casti_m256i( ctx->H, 2 ) );
|
||||
casti_m256i( dst, 3 ) = mm256_bswap_32( casti_m256i( ctx->H, 3 ) );
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
#define DECL_STATE32x2_4WAY \
|
||||
__m256i H0, H1, H2, H3; \
|
||||
__m256i S0, S1; \
|
||||
uint32_t T0, T1;
|
||||
|
||||
#define READ_STATE32x2_4WAY(state) do \
|
||||
{ \
|
||||
H0 = casti_m256i( state->H, 0 ); \
|
||||
H1 = casti_m256i( state->H, 1 ); \
|
||||
H2 = casti_m256i( state->H, 2 ); \
|
||||
H3 = casti_m256i( state->H, 3 ); \
|
||||
S0 = casti_m256i( state->S, 0 ); \
|
||||
S1 = casti_m256i( state->S, 1 ); \
|
||||
T0 = state->T0; \
|
||||
T1 = state->T1; \
|
||||
|
||||
#define WRITE_STATE32x2_4WAY(state) do { \
|
||||
casti_m256i( state->H, 0 ) = H0; \
|
||||
casti_m256i( state->H, 1 ) = H1; \
|
||||
casti_m256i( state->H, 2 ) = H2; \
|
||||
casti_m256i( state->H, 3 ) = H3; \
|
||||
casti_m256i( state->S, 0 ) = S0; \
|
||||
casti_m256i( state->S, 1 ) = S1; \
|
||||
state->T0 = T0; \
|
||||
state->T1 = T1; \
|
||||
} while (0)
|
||||
|
||||
|
||||
#define GSx2_4WAY( m0m2, m1m3, c0c2, c1c3, a, b, c, d ) do \
|
||||
{ \
|
||||
a = _mm256_add_epi32( _mm256_add_epi32( _mm256_xor_si256( \
|
||||
_mm256_set_epi32( c1,c3, c1,c3, c1,c3, c1,c3 ), \
|
||||
_mm256_set_epi32( m0,m2, m0,m2, m0,m2, m0,m2 ) ), b ), a ); \
|
||||
d = mm256_ror_32( _mm_xor_si128( d, a ), 16 ); \
|
||||
c = _mm256_add_epi32( c, d ); \
|
||||
b = mm256_ror_32( _mm256_xor_si256( b, c ), 12 ); \
|
||||
a = _mm256_add_epi32( _mm256_add_epi32( _mm256_xor_si256( \
|
||||
_mm256_set_epi32( c0,c2, c0,c2, c0,c2, c0,c2 ), \
|
||||
_mm256_set_epi32( m1,m3, m1,m3, m1,m3, m1,m3 ) ), b ), a ); \
|
||||
d = mm256_ror_32( _mm256_xor_si256( d, a ), 8 ); \
|
||||
c = _mm256_add_epi32( c, d ); \
|
||||
b = mm256_ror_32( _mm256_xor_si256( b, c ), 7 ); \
|
||||
} while (0)
|
||||
|
||||
#define ROUND_Sx2_4WAY(r) do \
|
||||
{ \
|
||||
GS2_4WAY( Mx(r, 0), Mx(r, 1), Mx(r, 2), Mx(r, 3), \
|
||||
CSx(r, 0), CSx(r, 1), CSx(r, 2), CSx(r, 3), V0, V2, V4, V6 ); \
|
||||
GS2_4WAY( Mx(r, 4), Mx(r, 5), Mx(r, 6), Mx(r, 7), \
|
||||
CSx(r, 4), CSx(r, 5), CSx(r, 6), CSx(r, 7), V1, V3, V5, V7 ); \
|
||||
mm256_ror1x128_512( V3, V2 ); \
|
||||
mm256_ror1x128_512( V6, V7 ); \
|
||||
GS2_4WAY( Mx(r, 8), Mx(r, 9), Mx(r, A), Mx(r, B), \
|
||||
CSx(r, 8), CSx(r, 9), CSx(r, A), CSx(r, B), V0, V2, V5, V7 ); \
|
||||
GS2_4WAY( Mx(r, C), Mx(r, D), Mx(r, C), Mx(r, D), \
|
||||
CSx(r, C), CSx(r, D), CSx(r, C), CSx(r, D), V1, V3, V4, V6 ); \
|
||||
mm256_rol1x128_512( V2, V3 ); \
|
||||
mm256_rol1x128_512( V7, V6 );
|
||||
|
||||
#define COMPRESS32x2_4WAY( rounds ) do \
|
||||
{ \
|
||||
__m256i M0, M1, M2, M3, M4, M5, M6, M7; \
|
||||
__m256i V0, V1, V2, V3, V4, V5, V6, V7; \
|
||||
unsigned r; \
|
||||
V0 = H0; \
|
||||
V1 = H1; \
|
||||
V2 = H2; \
|
||||
V3 = H3; \
|
||||
V4 = _mm256_xor_si256( S0, _mm256_set_epi32( CS1, CS1, CS1, CS1, \
|
||||
CS0, CS0, CS0, CS0 ) ); \
|
||||
V5 = _mm256_xor_si256( S1, _mm256_set_epi32( CS3, CS3, CS3, CS3, \
|
||||
CS2, CS2, CS2, CS2 ) ); \
|
||||
V6 = _mm256_xor_si256( _mm256_set1_epi32( T0 ), \
|
||||
_mm256_set_epi32( CS5, CS5, CS5, CS5, \
|
||||
CS4, CS4, CS4, CS4 ) ); \
|
||||
V7 = _mm256_xor_si256( _mm256_set1_epi32( T1 ), \
|
||||
_mm256_set_epi32( CS7, CS7, CS7, CS7, \
|
||||
CS6, CS6, CS6, CS6 ) ); \
|
||||
M0 = mm256_bswap_32( buf[ 0] ); \
|
||||
M1 = mm256_bswap_32( buf[ 1] ); \
|
||||
M2 = mm256_bswap_32( buf[ 2] ); \
|
||||
M3 = mm256_bswap_32( buf[ 3] ); \
|
||||
M4 = mm256_bswap_32( buf[ 4] ); \
|
||||
M5 = mm256_bswap_32( buf[ 5] ); \
|
||||
M6 = mm256_bswap_32( buf[ 6] ); \
|
||||
M7 = mm256_bswap_32( buf[ 7] ); \
|
||||
ROUND_Sx2_4WAY(0); \
|
||||
ROUND_Sx2_4WAY(1); \
|
||||
ROUND_Sx2_4WAY(2); \
|
||||
ROUND_Sx2_4WAY(3); \
|
||||
ROUND_Sx2_4WAY(4); \
|
||||
ROUND_Sx2_4WAY(5); \
|
||||
ROUND_Sx2_4WAY(6); \
|
||||
ROUND_Sx2_4WAY(7); \
|
||||
if (rounds == 14) \
|
||||
{ \
|
||||
ROUND_Sx2_4WAY(8); \
|
||||
ROUND_Sx2_4WAY(9); \
|
||||
ROUND_Sx2_4WAY(0); \
|
||||
ROUND_Sx2_4WAY(1); \
|
||||
ROUND_Sx2_4WAY(2); \
|
||||
ROUND_Sx2_4WAY(3); \
|
||||
} \
|
||||
H0 = _mm256_xor_si256( _mm256_xor_si256( \
|
||||
_mm256_xor_si256( V8, V0 ), S0 ), H0 ); \
|
||||
H1 = _mm256_xor_si256( _mm256_xor_si256( \
|
||||
_mm256_xor_si256( V9, V1 ), S1 ), H1 ); \
|
||||
H2 = _mm256_xor_si256( _mm256_xor_si256( \
|
||||
_mm256_xor_si256( VA, V2 ), S2 ), H2 ); \
|
||||
H3 = _mm256_xor_si256( _mm256_xor_si256( \
|
||||
_mm256_xor_si256( VB, V3 ), S3 ), H3 ); \
|
||||
} while (0)
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
@@ -85,7 +85,8 @@ void blake2s_4way_hash( void *output, const void *input )
|
||||
blake2s_4way_update( &ctx, input + (64<<2), 16 );
|
||||
blake2s_4way_final( &ctx, vhash, BLAKE2S_OUTBYTES );
|
||||
|
||||
mm_deinterleave_4x32( output, output+32, output+64, output+96, vhash, 256 );
|
||||
mm128_deinterleave_4x32( output, output+32, output+64, output+96,
|
||||
vhash, 256 );
|
||||
}
|
||||
|
||||
int scanhash_blake2s_4way( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
@@ -104,7 +105,7 @@ int scanhash_blake2s_4way( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
uint32_t *noncep = vdata + 76; // 19*4
|
||||
|
||||
swab32_array( edata, pdata, 20 );
|
||||
mm_interleave_4x32( vdata, edata, edata, edata, edata, 640 );
|
||||
mm128_interleave_4x32( vdata, edata, edata, edata, edata, 640 );
|
||||
blake2s_4way_init( &blake2s_4w_ctx, BLAKE2S_OUTBYTES );
|
||||
blake2s_4way_update( &blake2s_4w_ctx, vdata, 64 );
|
||||
|
||||
|
@@ -92,13 +92,13 @@ int blake2s_4way_compress( blake2s_4way_state *S, const __m128i* block )
|
||||
#define G4W(r,i,a,b,c,d) \
|
||||
do { \
|
||||
a = _mm_add_epi32( _mm_add_epi32( a, b ), m[ blake2s_sigma[r][2*i+0] ] ); \
|
||||
d = mm_ror_32( _mm_xor_si128( d, a ), 16 ); \
|
||||
d = mm128_ror_32( _mm_xor_si128( d, a ), 16 ); \
|
||||
c = _mm_add_epi32( c, d ); \
|
||||
b = mm_ror_32( _mm_xor_si128( b, c ), 12 ); \
|
||||
b = mm128_ror_32( _mm_xor_si128( b, c ), 12 ); \
|
||||
a = _mm_add_epi32( _mm_add_epi32( a, b ), m[ blake2s_sigma[r][2*i+1] ] ); \
|
||||
d = mm_ror_32( _mm_xor_si128( d, a ), 8 ); \
|
||||
d = mm128_ror_32( _mm_xor_si128( d, a ), 8 ); \
|
||||
c = _mm_add_epi32( c, d ); \
|
||||
b = mm_ror_32( _mm_xor_si128( b, c ), 7 ); \
|
||||
b = mm128_ror_32( _mm_xor_si128( b, c ), 7 ); \
|
||||
} while(0)
|
||||
|
||||
#define ROUND4W(r) \
|
||||
|
701
algo/blake/blake512-hash-4way.c
Normal file
701
algo/blake/blake512-hash-4way.c
Normal file
@@ -0,0 +1,701 @@
|
||||
/* $Id: blake.c 252 2011-06-07 17:55:14Z tp $ */
|
||||
/*
|
||||
* BLAKE implementation.
|
||||
*
|
||||
* ==========================(LICENSE BEGIN)============================
|
||||
*
|
||||
* Copyright (c) 2007-2010 Projet RNRT SAPHIR
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining
|
||||
* a copy of this software and associated documentation files (the
|
||||
* "Software"), to deal in the Software without restriction, including
|
||||
* without limitation the rights to use, copy, modify, merge, publish,
|
||||
* distribute, sublicense, and/or sell copies of the Software, and to
|
||||
* permit persons to whom the Software is furnished to do so, subject to
|
||||
* the following conditions:
|
||||
*
|
||||
* The above copyright notice and this permission notice shall be
|
||||
* included in all copies or substantial portions of the Software.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
||||
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
||||
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
|
||||
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
|
||||
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
|
||||
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
|
||||
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
||||
*
|
||||
* ===========================(LICENSE END)=============================
|
||||
*
|
||||
* @author Thomas Pornin <thomas.pornin@cryptolog.com>
|
||||
*/
|
||||
|
||||
#if defined (__AVX2__)
|
||||
|
||||
#include <stddef.h>
|
||||
#include <string.h>
|
||||
#include <limits.h>
|
||||
|
||||
#include "blake-hash-4way.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C"{
|
||||
#endif
|
||||
|
||||
#if SPH_SMALL_FOOTPRINT && !defined SPH_SMALL_FOOTPRINT_BLAKE
|
||||
#define SPH_SMALL_FOOTPRINT_BLAKE 1
|
||||
#endif
|
||||
|
||||
#if SPH_64 && (SPH_SMALL_FOOTPRINT_BLAKE || !SPH_64_TRUE)
|
||||
#define SPH_COMPACT_BLAKE_64 1
|
||||
#endif
|
||||
|
||||
#ifdef _MSC_VER
|
||||
#pragma warning (disable: 4146)
|
||||
#endif
|
||||
|
||||
|
||||
// Blake-512
|
||||
|
||||
static const sph_u64 IV512[8] = {
|
||||
SPH_C64(0x6A09E667F3BCC908), SPH_C64(0xBB67AE8584CAA73B),
|
||||
SPH_C64(0x3C6EF372FE94F82B), SPH_C64(0xA54FF53A5F1D36F1),
|
||||
SPH_C64(0x510E527FADE682D1), SPH_C64(0x9B05688C2B3E6C1F),
|
||||
SPH_C64(0x1F83D9ABFB41BD6B), SPH_C64(0x5BE0CD19137E2179)
|
||||
};
|
||||
|
||||
|
||||
#if SPH_COMPACT_BLAKE_32 || SPH_COMPACT_BLAKE_64
|
||||
|
||||
// Blake-256 4 & 8 way, Blake-512 4 way
|
||||
|
||||
static const unsigned sigma[16][16] = {
|
||||
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 },
|
||||
{ 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 },
|
||||
{ 11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 },
|
||||
{ 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 },
|
||||
{ 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 },
|
||||
{ 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 },
|
||||
{ 12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11 },
|
||||
{ 13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10 },
|
||||
{ 6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5 },
|
||||
{ 10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13, 0 },
|
||||
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 },
|
||||
{ 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 },
|
||||
{ 11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 },
|
||||
{ 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 },
|
||||
{ 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 },
|
||||
{ 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 }
|
||||
};
|
||||
|
||||
#endif
|
||||
|
||||
#define Z00 0
|
||||
#define Z01 1
|
||||
#define Z02 2
|
||||
#define Z03 3
|
||||
#define Z04 4
|
||||
#define Z05 5
|
||||
#define Z06 6
|
||||
#define Z07 7
|
||||
#define Z08 8
|
||||
#define Z09 9
|
||||
#define Z0A A
|
||||
#define Z0B B
|
||||
#define Z0C C
|
||||
#define Z0D D
|
||||
#define Z0E E
|
||||
#define Z0F F
|
||||
|
||||
#define Z10 E
|
||||
#define Z11 A
|
||||
#define Z12 4
|
||||
#define Z13 8
|
||||
#define Z14 9
|
||||
#define Z15 F
|
||||
#define Z16 D
|
||||
#define Z17 6
|
||||
#define Z18 1
|
||||
#define Z19 C
|
||||
#define Z1A 0
|
||||
#define Z1B 2
|
||||
#define Z1C B
|
||||
#define Z1D 7
|
||||
#define Z1E 5
|
||||
#define Z1F 3
|
||||
|
||||
#define Z20 B
|
||||
#define Z21 8
|
||||
#define Z22 C
|
||||
#define Z23 0
|
||||
#define Z24 5
|
||||
#define Z25 2
|
||||
#define Z26 F
|
||||
#define Z27 D
|
||||
#define Z28 A
|
||||
#define Z29 E
|
||||
#define Z2A 3
|
||||
#define Z2B 6
|
||||
#define Z2C 7
|
||||
#define Z2D 1
|
||||
#define Z2E 9
|
||||
#define Z2F 4
|
||||
|
||||
#define Z30 7
|
||||
#define Z31 9
|
||||
#define Z32 3
|
||||
#define Z33 1
|
||||
#define Z34 D
|
||||
#define Z35 C
|
||||
#define Z36 B
|
||||
#define Z37 E
|
||||
#define Z38 2
|
||||
#define Z39 6
|
||||
#define Z3A 5
|
||||
#define Z3B A
|
||||
#define Z3C 4
|
||||
#define Z3D 0
|
||||
#define Z3E F
|
||||
#define Z3F 8
|
||||
|
||||
#define Z40 9
|
||||
#define Z41 0
|
||||
#define Z42 5
|
||||
#define Z43 7
|
||||
#define Z44 2
|
||||
#define Z45 4
|
||||
#define Z46 A
|
||||
#define Z47 F
|
||||
#define Z48 E
|
||||
#define Z49 1
|
||||
#define Z4A B
|
||||
#define Z4B C
|
||||
#define Z4C 6
|
||||
#define Z4D 8
|
||||
#define Z4E 3
|
||||
#define Z4F D
|
||||
|
||||
#define Z50 2
|
||||
#define Z51 C
|
||||
#define Z52 6
|
||||
#define Z53 A
|
||||
#define Z54 0
|
||||
#define Z55 B
|
||||
#define Z56 8
|
||||
#define Z57 3
|
||||
#define Z58 4
|
||||
#define Z59 D
|
||||
#define Z5A 7
|
||||
#define Z5B 5
|
||||
#define Z5C F
|
||||
#define Z5D E
|
||||
#define Z5E 1
|
||||
#define Z5F 9
|
||||
|
||||
#define Z60 C
|
||||
#define Z61 5
|
||||
#define Z62 1
|
||||
#define Z63 F
|
||||
#define Z64 E
|
||||
#define Z65 D
|
||||
#define Z66 4
|
||||
#define Z67 A
|
||||
#define Z68 0
|
||||
#define Z69 7
|
||||
#define Z6A 6
|
||||
#define Z6B 3
|
||||
#define Z6C 9
|
||||
#define Z6D 2
|
||||
#define Z6E 8
|
||||
#define Z6F B
|
||||
|
||||
#define Z70 D
|
||||
#define Z71 B
|
||||
#define Z72 7
|
||||
#define Z73 E
|
||||
#define Z74 C
|
||||
#define Z75 1
|
||||
#define Z76 3
|
||||
#define Z77 9
|
||||
#define Z78 5
|
||||
#define Z79 0
|
||||
#define Z7A F
|
||||
#define Z7B 4
|
||||
#define Z7C 8
|
||||
#define Z7D 6
|
||||
#define Z7E 2
|
||||
#define Z7F A
|
||||
|
||||
#define Z80 6
|
||||
#define Z81 F
|
||||
#define Z82 E
|
||||
#define Z83 9
|
||||
#define Z84 B
|
||||
#define Z85 3
|
||||
#define Z86 0
|
||||
#define Z87 8
|
||||
#define Z88 C
|
||||
#define Z89 2
|
||||
#define Z8A D
|
||||
#define Z8B 7
|
||||
#define Z8C 1
|
||||
#define Z8D 4
|
||||
#define Z8E A
|
||||
#define Z8F 5
|
||||
|
||||
#define Z90 A
|
||||
#define Z91 2
|
||||
#define Z92 8
|
||||
#define Z93 4
|
||||
#define Z94 7
|
||||
#define Z95 6
|
||||
#define Z96 1
|
||||
#define Z97 5
|
||||
#define Z98 F
|
||||
#define Z99 B
|
||||
#define Z9A 9
|
||||
#define Z9B E
|
||||
#define Z9C 3
|
||||
#define Z9D C
|
||||
#define Z9E D
|
||||
#define Z9F 0
|
||||
|
||||
#define Mx(r, i) Mx_(Z ## r ## i)
|
||||
#define Mx_(n) Mx__(n)
|
||||
#define Mx__(n) M ## n
|
||||
|
||||
// Blake-512 4 way
|
||||
|
||||
#define CBx(r, i) CBx_(Z ## r ## i)
|
||||
#define CBx_(n) CBx__(n)
|
||||
#define CBx__(n) CB ## n
|
||||
|
||||
#define CB0 SPH_C64(0x243F6A8885A308D3)
|
||||
#define CB1 SPH_C64(0x13198A2E03707344)
|
||||
#define CB2 SPH_C64(0xA4093822299F31D0)
|
||||
#define CB3 SPH_C64(0x082EFA98EC4E6C89)
|
||||
#define CB4 SPH_C64(0x452821E638D01377)
|
||||
#define CB5 SPH_C64(0xBE5466CF34E90C6C)
|
||||
#define CB6 SPH_C64(0xC0AC29B7C97C50DD)
|
||||
#define CB7 SPH_C64(0x3F84D5B5B5470917)
|
||||
#define CB8 SPH_C64(0x9216D5D98979FB1B)
|
||||
#define CB9 SPH_C64(0xD1310BA698DFB5AC)
|
||||
#define CBA SPH_C64(0x2FFD72DBD01ADFB7)
|
||||
#define CBB SPH_C64(0xB8E1AFED6A267E96)
|
||||
#define CBC SPH_C64(0xBA7C9045F12C7F99)
|
||||
#define CBD SPH_C64(0x24A19947B3916CF7)
|
||||
#define CBE SPH_C64(0x0801F2E2858EFC16)
|
||||
#define CBF SPH_C64(0x636920D871574E69)
|
||||
|
||||
#if SPH_COMPACT_BLAKE_64
|
||||
// not used
|
||||
static const sph_u64 CB[16] = {
|
||||
SPH_C64(0x243F6A8885A308D3), SPH_C64(0x13198A2E03707344),
|
||||
SPH_C64(0xA4093822299F31D0), SPH_C64(0x082EFA98EC4E6C89),
|
||||
SPH_C64(0x452821E638D01377), SPH_C64(0xBE5466CF34E90C6C),
|
||||
SPH_C64(0xC0AC29B7C97C50DD), SPH_C64(0x3F84D5B5B5470917),
|
||||
SPH_C64(0x9216D5D98979FB1B), SPH_C64(0xD1310BA698DFB5AC),
|
||||
SPH_C64(0x2FFD72DBD01ADFB7), SPH_C64(0xB8E1AFED6A267E96),
|
||||
SPH_C64(0xBA7C9045F12C7F99), SPH_C64(0x24A19947B3916CF7),
|
||||
SPH_C64(0x0801F2E2858EFC16), SPH_C64(0x636920D871574E69)
|
||||
};
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
// Blake-512 4 way
|
||||
|
||||
#define GB_4WAY(m0, m1, c0, c1, a, b, c, d) do { \
|
||||
a = _mm256_add_epi64( _mm256_add_epi64( _mm256_xor_si256( \
|
||||
_mm256_set_epi64x( c1, c1, c1, c1 ), m0 ), b ), a ); \
|
||||
d = mm256_ror_64( _mm256_xor_si256( d, a ), 32 ); \
|
||||
c = _mm256_add_epi64( c, d ); \
|
||||
b = mm256_ror_64( _mm256_xor_si256( b, c ), 25 ); \
|
||||
a = _mm256_add_epi64( _mm256_add_epi64( _mm256_xor_si256( \
|
||||
_mm256_set_epi64x( c0, c0, c0, c0 ), m1 ), b ), a ); \
|
||||
d = mm256_ror_64( _mm256_xor_si256( d, a ), 16 ); \
|
||||
c = _mm256_add_epi64( c, d ); \
|
||||
b = mm256_ror_64( _mm256_xor_si256( b, c ), 11 ); \
|
||||
} while (0)
|
||||
|
||||
#if SPH_COMPACT_BLAKE_64
|
||||
// not used
|
||||
#define ROUND_B_4WAY(r) do { \
|
||||
GB_4WAY(M[sigma[r][0x0]], M[sigma[r][0x1]], \
|
||||
CB[sigma[r][0x0]], CB[sigma[r][0x1]], V0, V4, V8, VC); \
|
||||
GB_4WAY(M[sigma[r][0x2]], M[sigma[r][0x3]], \
|
||||
CB[sigma[r][0x2]], CB[sigma[r][0x3]], V1, V5, V9, VD); \
|
||||
GB_4WAY(M[sigma[r][0x4]], M[sigma[r][0x5]], \
|
||||
CB[sigma[r][0x4]], CB[sigma[r][0x5]], V2, V6, VA, VE); \
|
||||
GB_4WAY(M[sigma[r][0x6]], M[sigma[r][0x7]], \
|
||||
CB[sigma[r][0x6]], CB[sigma[r][0x7]], V3, V7, VB, VF); \
|
||||
GB_4WAY(M[sigma[r][0x8]], M[sigma[r][0x9]], \
|
||||
CB[sigma[r][0x8]], CB[sigma[r][0x9]], V0, V5, VA, VF); \
|
||||
GB_4WAY(M[sigma[r][0xA]], M[sigma[r][0xB]], \
|
||||
CB[sigma[r][0xA]], CB[sigma[r][0xB]], V1, V6, VB, VC); \
|
||||
GB_4WAY(M[sigma[r][0xC]], M[sigma[r][0xD]], \
|
||||
CB[sigma[r][0xC]], CB[sigma[r][0xD]], V2, V7, V8, VD); \
|
||||
GB_4WAY(M[sigma[r][0xE]], M[sigma[r][0xF]], \
|
||||
CB[sigma[r][0xE]], CB[sigma[r][0xF]], V3, V4, V9, VE); \
|
||||
} while (0)
|
||||
|
||||
#else
|
||||
//current_impl
|
||||
#define ROUND_B_4WAY(r) do { \
|
||||
GB_4WAY(Mx(r, 0), Mx(r, 1), CBx(r, 0), CBx(r, 1), V0, V4, V8, VC); \
|
||||
GB_4WAY(Mx(r, 2), Mx(r, 3), CBx(r, 2), CBx(r, 3), V1, V5, V9, VD); \
|
||||
GB_4WAY(Mx(r, 4), Mx(r, 5), CBx(r, 4), CBx(r, 5), V2, V6, VA, VE); \
|
||||
GB_4WAY(Mx(r, 6), Mx(r, 7), CBx(r, 6), CBx(r, 7), V3, V7, VB, VF); \
|
||||
GB_4WAY(Mx(r, 8), Mx(r, 9), CBx(r, 8), CBx(r, 9), V0, V5, VA, VF); \
|
||||
GB_4WAY(Mx(r, A), Mx(r, B), CBx(r, A), CBx(r, B), V1, V6, VB, VC); \
|
||||
GB_4WAY(Mx(r, C), Mx(r, D), CBx(r, C), CBx(r, D), V2, V7, V8, VD); \
|
||||
GB_4WAY(Mx(r, E), Mx(r, F), CBx(r, E), CBx(r, F), V3, V4, V9, VE); \
|
||||
} while (0)
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
// Blake-512 4 way
|
||||
|
||||
#define DECL_STATE64_4WAY \
|
||||
__m256i H0, H1, H2, H3, H4, H5, H6, H7; \
|
||||
__m256i S0, S1, S2, S3; \
|
||||
sph_u64 T0, T1;
|
||||
|
||||
#define READ_STATE64_4WAY(state) do { \
|
||||
H0 = (state)->H[0]; \
|
||||
H1 = (state)->H[1]; \
|
||||
H2 = (state)->H[2]; \
|
||||
H3 = (state)->H[3]; \
|
||||
H4 = (state)->H[4]; \
|
||||
H5 = (state)->H[5]; \
|
||||
H6 = (state)->H[6]; \
|
||||
H7 = (state)->H[7]; \
|
||||
S0 = (state)->S[0]; \
|
||||
S1 = (state)->S[1]; \
|
||||
S2 = (state)->S[2]; \
|
||||
S3 = (state)->S[3]; \
|
||||
T0 = (state)->T0; \
|
||||
T1 = (state)->T1; \
|
||||
} while (0)
|
||||
|
||||
#define WRITE_STATE64_4WAY(state) do { \
|
||||
(state)->H[0] = H0; \
|
||||
(state)->H[1] = H1; \
|
||||
(state)->H[2] = H2; \
|
||||
(state)->H[3] = H3; \
|
||||
(state)->H[4] = H4; \
|
||||
(state)->H[5] = H5; \
|
||||
(state)->H[6] = H6; \
|
||||
(state)->H[7] = H7; \
|
||||
(state)->S[0] = S0; \
|
||||
(state)->S[1] = S1; \
|
||||
(state)->S[2] = S2; \
|
||||
(state)->S[3] = S3; \
|
||||
(state)->T0 = T0; \
|
||||
(state)->T1 = T1; \
|
||||
} while (0)
|
||||
|
||||
#if SPH_COMPACT_BLAKE_64
|
||||
|
||||
// not used
|
||||
#define COMPRESS64_4WAY do { \
|
||||
__m256i M[16]; \
|
||||
__m256i V0, V1, V2, V3, V4, V5, V6, V7; \
|
||||
__m256i V8, V9, VA, VB, VC, VD, VE, VF; \
|
||||
unsigned r; \
|
||||
V0 = H0; \
|
||||
V1 = H1; \
|
||||
V2 = H2; \
|
||||
V3 = H3; \
|
||||
V4 = H4; \
|
||||
V5 = H5; \
|
||||
V6 = H6; \
|
||||
V7 = H7; \
|
||||
V8 = _mm256_xor_si256( S0, _mm256_set_epi64x( CB0, CB0, CB0, CB0 ) ); \
|
||||
V9 = _mm256_xor_si256( S1, _mm256_set_epi64x( CB1, CB1, CB1, CB1 ) ); \
|
||||
VA = _mm256_xor_si256( S2, _mm256_set_epi64x( CB2, CB2, CB2, CB2 ) ); \
|
||||
VB = _mm256_xor_si256( S3, _mm256_set_epi64x( CB3, CB3, CB3, CB3 ) ); \
|
||||
VC = _mm256_xor_si256( _mm256_set_epi64x( T0, T0, T0, T0 ), \
|
||||
_mm256_set_epi64x( CB4, CB4, CB4, CB4 ) ); \
|
||||
VD = _mm256_xor_si256( _mm256_set_epi64x( T0, T0, T0, T0 ), \
|
||||
_mm256_set_epi64x( CB5, CB5, CB5, CB5 ) ); \
|
||||
VE = _mm256_xor_si256( _mm256_set_epi64x( T1, T1, T1, T1 ), \
|
||||
_mm256_set_epi64x( CB6, CB6, CB6, CB6 ) ); \
|
||||
VF = _mm256_xor_si256( _mm256_set_epi64x( T1, T1, T1, T1 ), \
|
||||
_mm256_set_epi64x( CB7, CB7, CB7, CB7 ) ); \
|
||||
M[0x0] = mm256_bswap_64( *(buf+0) ); \
|
||||
M[0x1] = mm256_bswap_64( *(buf+1) ); \
|
||||
M[0x2] = mm256_bswap_64( *(buf+2) ); \
|
||||
M[0x3] = mm256_bswap_64( *(buf+3) ); \
|
||||
M[0x4] = mm256_bswap_64( *(buf+4) ); \
|
||||
M[0x5] = mm256_bswap_64( *(buf+5) ); \
|
||||
M[0x6] = mm256_bswap_64( *(buf+6) ); \
|
||||
M[0x7] = mm256_bswap_64( *(buf+7) ); \
|
||||
M[0x8] = mm256_bswap_64( *(buf+8) ); \
|
||||
M[0x9] = mm256_bswap_64( *(buf+9) ); \
|
||||
M[0xA] = mm256_bswap_64( *(buf+10) ); \
|
||||
M[0xB] = mm256_bswap_64( *(buf+11) ); \
|
||||
M[0xC] = mm256_bswap_64( *(buf+12) ); \
|
||||
M[0xD] = mm256_bswap_64( *(buf+13) ); \
|
||||
M[0xE] = mm256_bswap_64( *(buf+14) ); \
|
||||
M[0xF] = mm256_bswap_64( *(buf+15) ); \
|
||||
for (r = 0; r < 16; r ++) \
|
||||
ROUND_B_4WAY(r); \
|
||||
H0 = _mm256_xor_si256( _mm256_xor_si256( \
|
||||
_mm256_xor_si256( S0, V0 ), V8 ), H0 ); \
|
||||
H1 = _mm256_xor_si256( _mm256_xor_si256( \
|
||||
_mm256_xor_si256( S1, V1 ), V9 ), H1 ); \
|
||||
H2 = _mm256_xor_si256( _mm256_xor_si256( \
|
||||
_mm256_xor_si256( S2, V2 ), VA ), H2 ); \
|
||||
H3 = _mm256_xor_si256( _mm256_xor_si256( \
|
||||
_mm256_xor_si256( S3, V3 ), VB ), H3 ); \
|
||||
H4 = _mm256_xor_si256( _mm256_xor_si256( \
|
||||
_mm256_xor_si256( S0, V4 ), VC ), H4 ); \
|
||||
H5 = _mm256_xor_si256( _mm256_xor_si256( \
|
||||
_mm256_xor_si256( S1, V5 ), VD ), H5 ); \
|
||||
H6 = _mm256_xor_si256( _mm256_xor_si256( \
|
||||
_mm256_xor_si256( S2, V6 ), VE ), H6 ); \
|
||||
H7 = _mm256_xor_si256( _mm256_xor_si256( \
|
||||
_mm256_xor_si256( S3, V7 ), VF ), H7 ); \
|
||||
} while (0)
|
||||
|
||||
#else
|
||||
|
||||
//current impl
|
||||
|
||||
#define COMPRESS64_4WAY do { \
|
||||
__m256i M0, M1, M2, M3, M4, M5, M6, M7; \
|
||||
__m256i M8, M9, MA, MB, MC, MD, ME, MF; \
|
||||
__m256i V0, V1, V2, V3, V4, V5, V6, V7; \
|
||||
__m256i V8, V9, VA, VB, VC, VD, VE, VF; \
|
||||
V0 = H0; \
|
||||
V1 = H1; \
|
||||
V2 = H2; \
|
||||
V3 = H3; \
|
||||
V4 = H4; \
|
||||
V5 = H5; \
|
||||
V6 = H6; \
|
||||
V7 = H7; \
|
||||
V8 = _mm256_xor_si256( S0, _mm256_set_epi64x( CB0, CB0, CB0, CB0 ) ); \
|
||||
V9 = _mm256_xor_si256( S1, _mm256_set_epi64x( CB1, CB1, CB1, CB1 ) ); \
|
||||
VA = _mm256_xor_si256( S2, _mm256_set_epi64x( CB2, CB2, CB2, CB2 ) ); \
|
||||
VB = _mm256_xor_si256( S3, _mm256_set_epi64x( CB3, CB3, CB3, CB3 ) ); \
|
||||
VC = _mm256_xor_si256( _mm256_set_epi64x( T0, T0, T0, T0 ), \
|
||||
_mm256_set_epi64x( CB4, CB4, CB4, CB4 ) ); \
|
||||
VD = _mm256_xor_si256( _mm256_set_epi64x( T0, T0, T0, T0 ), \
|
||||
_mm256_set_epi64x( CB5, CB5, CB5, CB5 ) ); \
|
||||
VE = _mm256_xor_si256( _mm256_set_epi64x( T1, T1, T1, T1 ), \
|
||||
_mm256_set_epi64x( CB6, CB6, CB6, CB6 ) ); \
|
||||
VF = _mm256_xor_si256( _mm256_set_epi64x( T1, T1, T1, T1 ), \
|
||||
_mm256_set_epi64x( CB7, CB7, CB7, CB7 ) ); \
|
||||
M0 = mm256_bswap_64( *(buf + 0) ); \
|
||||
M1 = mm256_bswap_64( *(buf + 1) ); \
|
||||
M2 = mm256_bswap_64( *(buf + 2) ); \
|
||||
M3 = mm256_bswap_64( *(buf + 3) ); \
|
||||
M4 = mm256_bswap_64( *(buf + 4) ); \
|
||||
M5 = mm256_bswap_64( *(buf + 5) ); \
|
||||
M6 = mm256_bswap_64( *(buf + 6) ); \
|
||||
M7 = mm256_bswap_64( *(buf + 7) ); \
|
||||
M8 = mm256_bswap_64( *(buf + 8) ); \
|
||||
M9 = mm256_bswap_64( *(buf + 9) ); \
|
||||
MA = mm256_bswap_64( *(buf + 10) ); \
|
||||
MB = mm256_bswap_64( *(buf + 11) ); \
|
||||
MC = mm256_bswap_64( *(buf + 12) ); \
|
||||
MD = mm256_bswap_64( *(buf + 13) ); \
|
||||
ME = mm256_bswap_64( *(buf + 14) ); \
|
||||
MF = mm256_bswap_64( *(buf + 15) ); \
|
||||
ROUND_B_4WAY(0); \
|
||||
ROUND_B_4WAY(1); \
|
||||
ROUND_B_4WAY(2); \
|
||||
ROUND_B_4WAY(3); \
|
||||
ROUND_B_4WAY(4); \
|
||||
ROUND_B_4WAY(5); \
|
||||
ROUND_B_4WAY(6); \
|
||||
ROUND_B_4WAY(7); \
|
||||
ROUND_B_4WAY(8); \
|
||||
ROUND_B_4WAY(9); \
|
||||
ROUND_B_4WAY(0); \
|
||||
ROUND_B_4WAY(1); \
|
||||
ROUND_B_4WAY(2); \
|
||||
ROUND_B_4WAY(3); \
|
||||
ROUND_B_4WAY(4); \
|
||||
ROUND_B_4WAY(5); \
|
||||
H0 = _mm256_xor_si256( _mm256_xor_si256( \
|
||||
_mm256_xor_si256( S0, V0 ), V8 ), H0 ); \
|
||||
H1 = _mm256_xor_si256( _mm256_xor_si256( \
|
||||
_mm256_xor_si256( S1, V1 ), V9 ), H1 ); \
|
||||
H2 = _mm256_xor_si256( _mm256_xor_si256( \
|
||||
_mm256_xor_si256( S2, V2 ), VA ), H2 ); \
|
||||
H3 = _mm256_xor_si256( _mm256_xor_si256( \
|
||||
_mm256_xor_si256( S3, V3 ), VB ), H3 ); \
|
||||
H4 = _mm256_xor_si256( _mm256_xor_si256( \
|
||||
_mm256_xor_si256( S0, V4 ), VC ), H4 ); \
|
||||
H5 = _mm256_xor_si256( _mm256_xor_si256( \
|
||||
_mm256_xor_si256( S1, V5 ), VD ), H5 ); \
|
||||
H6 = _mm256_xor_si256( _mm256_xor_si256( \
|
||||
_mm256_xor_si256( S2, V6 ), VE ), H6 ); \
|
||||
H7 = _mm256_xor_si256( _mm256_xor_si256( \
|
||||
_mm256_xor_si256( S3, V7 ), VF ), H7 ); \
|
||||
} while (0)
|
||||
|
||||
#endif
|
||||
|
||||
static const sph_u64 salt_zero_big[4] = { 0, 0, 0, 0 };
|
||||
|
||||
static void
|
||||
blake64_4way_init( blake_4way_big_context *sc, const sph_u64 *iv,
|
||||
const sph_u64 *salt )
|
||||
{
|
||||
int i;
|
||||
for ( i = 0; i < 8; i++ )
|
||||
sc->H[i] = _mm256_set1_epi64x( iv[i] );
|
||||
for ( i = 0; i < 4; i++ )
|
||||
sc->S[i] = _mm256_set1_epi64x( salt[i] );
|
||||
sc->T0 = sc->T1 = 0;
|
||||
sc->ptr = 0;
|
||||
}
|
||||
|
||||
static void
|
||||
blake64_4way( blake_4way_big_context *sc, const void *data, size_t len)
|
||||
{
|
||||
__m256i *vdata = (__m256i*)data;
|
||||
__m256i *buf;
|
||||
size_t ptr;
|
||||
DECL_STATE64_4WAY
|
||||
|
||||
const int buf_size = 128; // sizeof/8
|
||||
|
||||
buf = sc->buf;
|
||||
ptr = sc->ptr;
|
||||
if ( len < (buf_size - ptr) )
|
||||
{
|
||||
memcpy_256( buf + (ptr>>3), vdata, len>>3 );
|
||||
ptr += len;
|
||||
sc->ptr = ptr;
|
||||
return;
|
||||
}
|
||||
|
||||
READ_STATE64_4WAY(sc);
|
||||
while ( len > 0 )
|
||||
{
|
||||
size_t clen;
|
||||
|
||||
clen = buf_size - ptr;
|
||||
if ( clen > len )
|
||||
clen = len;
|
||||
memcpy_256( buf + (ptr>>3), vdata, clen>>3 );
|
||||
ptr += clen;
|
||||
vdata = vdata + (clen>>3);
|
||||
len -= clen;
|
||||
if (ptr == buf_size )
|
||||
{
|
||||
if ((T0 = SPH_T64(T0 + 1024)) < 1024)
|
||||
T1 = SPH_T64(T1 + 1);
|
||||
COMPRESS64_4WAY;
|
||||
ptr = 0;
|
||||
}
|
||||
}
|
||||
WRITE_STATE64_4WAY(sc);
|
||||
sc->ptr = ptr;
|
||||
}
|
||||
|
||||
static void
|
||||
blake64_4way_close( blake_4way_big_context *sc,
|
||||
unsigned ub, unsigned n, void *dst, size_t out_size_w64)
|
||||
{
|
||||
// union {
|
||||
__m256i buf[16];
|
||||
// sph_u64 dummy;
|
||||
// } u;
|
||||
size_t ptr, k;
|
||||
unsigned bit_len;
|
||||
uint64_t z, zz;
|
||||
sph_u64 th, tl;
|
||||
__m256i *out;
|
||||
|
||||
ptr = sc->ptr;
|
||||
bit_len = ((unsigned)ptr << 3);
|
||||
z = 0x80 >> n;
|
||||
zz = ((ub & -z) | z) & 0xFF;
|
||||
buf[ptr>>3] = _mm256_set_epi64x( zz, zz, zz, zz );
|
||||
tl = sc->T0 + bit_len;
|
||||
th = sc->T1;
|
||||
if (ptr == 0 )
|
||||
{
|
||||
sc->T0 = SPH_C64(0xFFFFFFFFFFFFFC00ULL);
|
||||
sc->T1 = SPH_C64(0xFFFFFFFFFFFFFFFFULL);
|
||||
}
|
||||
else if ( sc->T0 == 0 )
|
||||
{
|
||||
sc->T0 = SPH_C64(0xFFFFFFFFFFFFFC00ULL) + bit_len;
|
||||
sc->T1 = SPH_T64(sc->T1 - 1);
|
||||
}
|
||||
else
|
||||
{
|
||||
sc->T0 -= 1024 - bit_len;
|
||||
}
|
||||
if ( ptr <= 104 )
|
||||
{
|
||||
memset_zero_256( buf + (ptr>>3) + 1, (104-ptr) >> 3 );
|
||||
if ( out_size_w64 == 8 )
|
||||
buf[(104>>3)] = _mm256_or_si256( buf[(104>>3)],
|
||||
_mm256_set1_epi64x( 0x0100000000000000ULL ) );
|
||||
*(buf+(112>>3)) = mm256_bswap_64(
|
||||
_mm256_set_epi64x( th, th, th, th ) );
|
||||
*(buf+(120>>3)) = mm256_bswap_64(
|
||||
_mm256_set_epi64x( tl, tl, tl, tl ) );
|
||||
|
||||
blake64_4way( sc, buf + (ptr>>3), 128 - ptr );
|
||||
}
|
||||
else
|
||||
{
|
||||
memset_zero_256( buf + (ptr>>3) + 1, (120 - ptr) >> 3 );
|
||||
|
||||
blake64_4way( sc, buf + (ptr>>3), 128 - ptr );
|
||||
sc->T0 = SPH_C64(0xFFFFFFFFFFFFFC00ULL);
|
||||
sc->T1 = SPH_C64(0xFFFFFFFFFFFFFFFFULL);
|
||||
memset_zero_256( buf, 112>>3 );
|
||||
if ( out_size_w64 == 8 )
|
||||
buf[104>>3] = _mm256_set1_epi64x( 0x0100000000000000ULL );
|
||||
*(buf+(112>>3)) = mm256_bswap_64(
|
||||
_mm256_set_epi64x( th, th, th, th ) );
|
||||
*(buf+(120>>3)) = mm256_bswap_64(
|
||||
_mm256_set_epi64x( tl, tl, tl, tl ) );
|
||||
|
||||
blake64_4way( sc, buf, 128 );
|
||||
}
|
||||
out = (__m256i*)dst;
|
||||
for ( k = 0; k < out_size_w64; k++ )
|
||||
out[k] = mm256_bswap_64( sc->H[k] );
|
||||
}
|
||||
|
||||
void
|
||||
blake512_4way_init(void *cc)
|
||||
{
|
||||
blake64_4way_init(cc, IV512, salt_zero_big);
|
||||
}
|
||||
|
||||
void
|
||||
blake512_4way(void *cc, const void *data, size_t len)
|
||||
{
|
||||
blake64_4way(cc, data, len);
|
||||
}
|
||||
|
||||
void
|
||||
blake512_4way_close(void *cc, void *dst)
|
||||
{
|
||||
blake512_4way_addbits_and_close(cc, 0, 0, dst);
|
||||
}
|
||||
|
||||
void
|
||||
blake512_4way_addbits_and_close(void *cc, unsigned ub, unsigned n, void *dst)
|
||||
{
|
||||
blake64_4way_close(cc, ub, n, dst, 8);
|
||||
}
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif
|
@@ -17,7 +17,7 @@ void blakecoin_4way_hash(void *state, const void *input)
|
||||
blake256r8_4way( &ctx, input + (64<<2), 16 );
|
||||
blake256r8_4way_close( &ctx, vhash );
|
||||
|
||||
mm_deinterleave_4x32( state, state+32, state+64, state+96, vhash, 256 );
|
||||
mm128_deinterleave_4x32( state, state+32, state+64, state+96, vhash, 256 );
|
||||
}
|
||||
|
||||
int scanhash_blakecoin_4way( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
@@ -37,7 +37,7 @@ int scanhash_blakecoin_4way( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
HTarget = 0x7f;
|
||||
|
||||
swab32_array( edata, pdata, 20 );
|
||||
mm_interleave_4x32( vdata, edata, edata, edata, edata, 640 );
|
||||
mm128_interleave_4x32( vdata, edata, edata, edata, edata, 640 );
|
||||
blake256r8_4way_init( &blakecoin_4w_ctx );
|
||||
blake256r8_4way( &blakecoin_4w_ctx, vdata, 64 );
|
||||
|
||||
|
@@ -23,7 +23,7 @@ void decred_hash_4way( void *state, const void *input )
|
||||
memcpy( &ctx, &blake_mid, sizeof(blake_mid) );
|
||||
blake256_4way( &ctx, tail, tail_len );
|
||||
blake256_4way_close( &ctx, vhash );
|
||||
mm_deinterleave_4x32( state, state+32, state+64, state+96, vhash, 256 );
|
||||
mm128_deinterleave_4x32( state, state+32, state+64, state+96, vhash, 256 );
|
||||
}
|
||||
|
||||
int scanhash_decred_4way( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
@@ -44,7 +44,7 @@ int scanhash_decred_4way( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
memcpy( edata, pdata, 180 );
|
||||
|
||||
// use the old way until new way updated for size.
|
||||
mm_interleave_4x32x( vdata, edata, edata, edata, edata, 180*8 );
|
||||
mm128_interleave_4x32x( vdata, edata, edata, edata, edata, 180*8 );
|
||||
|
||||
blake256_4way_init( &blake_mid );
|
||||
blake256_4way( &blake_mid, vdata, DECRED_MIDSTATE_LEN );
|
||||
|
@@ -140,6 +140,7 @@ bool decred_ready_to_mine( struct work* work, struct stratum_ctx* stratum,
|
||||
return true;
|
||||
}
|
||||
|
||||
int decred_get_work_data_size() { return DECRED_DATA_SIZE; }
|
||||
|
||||
bool register_decred_algo( algo_gate_t* gate )
|
||||
{
|
||||
@@ -154,7 +155,7 @@ bool register_decred_algo( algo_gate_t* gate )
|
||||
gate->optimizations = AVX2_OPT;
|
||||
gate->get_nonceptr = (void*)&decred_get_nonceptr;
|
||||
gate->get_max64 = (void*)&get_max64_0x3fffffLL;
|
||||
gate->display_extra_data = (void*)&decred_decode_extradata;
|
||||
gate->decode_extra_data = (void*)&decred_decode_extradata;
|
||||
gate->build_stratum_request = (void*)&decred_be_build_stratum_request;
|
||||
gate->work_decode = (void*)&std_be_work_decode;
|
||||
gate->submit_getwork_result = (void*)&std_be_submit_getwork_result;
|
||||
@@ -163,7 +164,7 @@ bool register_decred_algo( algo_gate_t* gate )
|
||||
gate->nbits_index = DECRED_NBITS_INDEX;
|
||||
gate->ntime_index = DECRED_NTIME_INDEX;
|
||||
gate->nonce_index = DECRED_NONCE_INDEX;
|
||||
gate->work_data_size = DECRED_DATA_SIZE;
|
||||
gate->get_work_data_size = (void*)&decred_get_work_data_size;
|
||||
gate->work_cmp_size = DECRED_WORK_COMPARE_SIZE;
|
||||
allow_mininginfo = false;
|
||||
have_gbt = false;
|
||||
|
@@ -268,7 +268,7 @@ bool register_decred_algo( algo_gate_t* gate )
|
||||
gate->hash = (void*)&decred_hash;
|
||||
gate->get_nonceptr = (void*)&decred_get_nonceptr;
|
||||
gate->get_max64 = (void*)&get_max64_0x3fffffLL;
|
||||
gate->display_extra_data = (void*)&decred_decode_extradata;
|
||||
gate->decode_extra_data = (void*)&decred_decode_extradata;
|
||||
gate->build_stratum_request = (void*)&decred_be_build_stratum_request;
|
||||
gate->work_decode = (void*)&std_be_work_decode;
|
||||
gate->submit_getwork_result = (void*)&std_be_submit_getwork_result;
|
||||
|
@@ -41,7 +41,6 @@ extern "C"{
|
||||
#endif
|
||||
|
||||
#include <stddef.h>
|
||||
#ifdef __AVX2__
|
||||
|
||||
#include "algo/sha/sph_types.h"
|
||||
#include "avxdefs.h"
|
||||
@@ -50,6 +49,10 @@ extern "C"{
|
||||
|
||||
#define SPH_SIZE_bmw512 512
|
||||
|
||||
#if defined(__SSE2__)
|
||||
|
||||
// BMW-256 4 way 32
|
||||
|
||||
typedef struct {
|
||||
__m128i buf[64];
|
||||
__m128i H[16];
|
||||
@@ -59,6 +62,60 @@ typedef struct {
|
||||
|
||||
typedef bmw_4way_small_context bmw256_4way_context;
|
||||
|
||||
void bmw256_4way_init(void *cc);
|
||||
|
||||
void bmw256_4way(void *cc, const void *data, size_t len);
|
||||
|
||||
void bmw256_4way_close(void *cc, void *dst);
|
||||
|
||||
void bmw256_4way_addbits_and_close(
|
||||
void *cc, unsigned ub, unsigned n, void *dst);
|
||||
|
||||
#endif // __SSE2__
|
||||
|
||||
#if defined(__AVX2__)
|
||||
|
||||
// BMW-256 8 way 32
|
||||
|
||||
typedef struct {
|
||||
__m256i buf[64];
|
||||
__m256i H[16];
|
||||
size_t ptr;
|
||||
uint32_t bit_count; // assume bit_count fits in 32 bits
|
||||
} bmw_8way_small_context __attribute__ ((aligned (64)));
|
||||
|
||||
typedef bmw_8way_small_context bmw256_8way_context;
|
||||
|
||||
void bmw256_8way_init( bmw256_8way_context *ctx );
|
||||
void bmw256_8way( bmw256_8way_context *ctx, const void *data, size_t len );
|
||||
void bmw256_8way_close( bmw256_8way_context *ctx, void *dst );
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
#if defined(__SSE2__)
|
||||
|
||||
// BMW-512 2 way 64
|
||||
|
||||
typedef struct {
|
||||
__m128i buf[16];
|
||||
__m128i H[16];
|
||||
size_t ptr;
|
||||
uint64_t bit_count;
|
||||
} bmw_2way_big_context __attribute__ ((aligned (64)));
|
||||
|
||||
typedef bmw_2way_big_context bmw512_2way_context;
|
||||
|
||||
void bmw512_2way_init( bmw512_2way_context *ctx );
|
||||
void bmw512_2way( bmw512_2way_context *ctx, const void *data, size_t len );
|
||||
void bmw512_2way_close( bmw512_2way_context *ctx, void *dst );
|
||||
|
||||
#endif // __SSE2__
|
||||
|
||||
#if defined(__AVX2__)
|
||||
|
||||
// BMW-512 4 way 64
|
||||
|
||||
typedef struct {
|
||||
__m256i buf[16];
|
||||
__m256i H[16];
|
||||
@@ -68,14 +125,6 @@ typedef struct {
|
||||
|
||||
typedef bmw_4way_big_context bmw512_4way_context;
|
||||
|
||||
void bmw256_4way_init(void *cc);
|
||||
|
||||
void bmw256_4way(void *cc, const void *data, size_t len);
|
||||
|
||||
void bmw256_4way_close(void *cc, void *dst);
|
||||
|
||||
void bmw256_4way_addbits_and_close(
|
||||
void *cc, unsigned ub, unsigned n, void *dst);
|
||||
|
||||
void bmw512_4way_init(void *cc);
|
||||
|
||||
@@ -86,10 +135,10 @@ void bmw512_4way_close(void *cc, void *dst);
|
||||
void bmw512_4way_addbits_and_close(
|
||||
void *cc, unsigned ub, unsigned n, void *dst);
|
||||
|
||||
#endif
|
||||
#endif // __AVX2__
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif
|
||||
#endif // BMW_HASH_H__
|
||||
|
File diff suppressed because it is too large
Load Diff
1109
algo/bmw/bmw512-hash-4way.c
Normal file
1109
algo/bmw/bmw512-hash-4way.c
Normal file
File diff suppressed because it is too large
Load Diff
@@ -325,7 +325,7 @@ int scanhash_cryptolight(int thr_id, struct work *work,
|
||||
|
||||
struct cryptonight_ctx *ctx = (struct cryptonight_ctx*)malloc(sizeof(struct cryptonight_ctx));
|
||||
|
||||
#ifndef NO_AES_NI
|
||||
#if defined(__AES__)
|
||||
do {
|
||||
*nonceptr = ++n;
|
||||
cryptolight_hash_ctx_aes_ni(hash, pdata, 76, ctx);
|
||||
|
@@ -1,14 +1,11 @@
|
||||
#if defined(__AES__)
|
||||
|
||||
#include <x86intrin.h>
|
||||
#include <memory.h>
|
||||
#include "cryptonight.h"
|
||||
#include "miner.h"
|
||||
#include "crypto/c_keccak.h"
|
||||
#include <immintrin.h>
|
||||
//#include "avxdefs.h"
|
||||
|
||||
void aesni_parallel_noxor(uint8_t *long_state, uint8_t *text, uint8_t *ExpandedKey);
|
||||
void aesni_parallel_xor(uint8_t *text, uint8_t *ExpandedKey, uint8_t *long_state);
|
||||
void that_fucking_loop(uint8_t a[16], uint8_t b[16], uint8_t *long_state);
|
||||
|
||||
static inline void ExpandAESKey256_sub1(__m128i *tmp1, __m128i *tmp2)
|
||||
{
|
||||
@@ -25,7 +22,6 @@ static inline void ExpandAESKey256_sub1(__m128i *tmp1, __m128i *tmp2)
|
||||
|
||||
static inline void ExpandAESKey256_sub2(__m128i *tmp1, __m128i *tmp3)
|
||||
{
|
||||
#ifndef NO_AES_NI
|
||||
__m128i tmp2, tmp4;
|
||||
|
||||
tmp4 = _mm_aeskeygenassist_si128(*tmp1, 0x00);
|
||||
@@ -37,14 +33,12 @@ static inline void ExpandAESKey256_sub2(__m128i *tmp1, __m128i *tmp3)
|
||||
tmp4 = _mm_slli_si128(tmp4, 0x04);
|
||||
*tmp3 = _mm_xor_si128(*tmp3, tmp4);
|
||||
*tmp3 = _mm_xor_si128(*tmp3, tmp2);
|
||||
#endif
|
||||
}
|
||||
|
||||
// Special thanks to Intel for helping me
|
||||
// with ExpandAESKey256() and its subroutines
|
||||
static inline void ExpandAESKey256(char *keybuf)
|
||||
{
|
||||
#ifndef NO_AES_NI
|
||||
__m128i tmp1, tmp2, tmp3, *keys;
|
||||
|
||||
keys = (__m128i *)keybuf;
|
||||
@@ -91,7 +85,6 @@ static inline void ExpandAESKey256(char *keybuf)
|
||||
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x40);
|
||||
ExpandAESKey256_sub1(&tmp1, &tmp2);
|
||||
keys[14] = tmp1;
|
||||
#endif
|
||||
}
|
||||
|
||||
// align to 64 byte cache line
|
||||
@@ -109,13 +102,19 @@ static __thread cryptonight_ctx ctx;
|
||||
|
||||
void cryptonight_hash_aes( void *restrict output, const void *input, int len )
|
||||
{
|
||||
#ifndef NO_AES_NI
|
||||
|
||||
uint8_t ExpandedKey[256] __attribute__((aligned(64)));
|
||||
__m128i *longoutput, *expkey, *xmminput;
|
||||
size_t i, j;
|
||||
|
||||
keccak( (const uint8_t*)input, 76, (char*)&ctx.state.hs.b, 200 );
|
||||
|
||||
if ( cryptonightV7 && len < 43 )
|
||||
return;
|
||||
|
||||
const uint64_t tweak = cryptonightV7
|
||||
? *((const uint64_t*) (((const uint8_t*)input) + 35))
|
||||
^ ctx.state.hs.w[24] : 0;
|
||||
|
||||
memcpy( ExpandedKey, ctx.state.hs.b, AES_KEY_SIZE );
|
||||
ExpandAESKey256( ExpandedKey );
|
||||
memcpy( ctx.text, ctx.state.init, INIT_SIZE_BYTE );
|
||||
@@ -214,7 +213,15 @@ void cryptonight_hash_aes( void *restrict output, const void *input, int len )
|
||||
_mm_store_si128( (__m128i*)c, c_x );
|
||||
b_x = _mm_xor_si128( b_x, c_x );
|
||||
nextblock = (uint64_t *)&ctx.long_state[c[0] & 0x1FFFF0];
|
||||
_mm_store_si128( lsa, b_x );
|
||||
_mm_store_si128( lsa, b_x );
|
||||
|
||||
if ( cryptonightV7 )
|
||||
{
|
||||
const uint8_t tmp = ( (const uint8_t*)(lsa) )[11];
|
||||
const uint8_t index = ( ( (tmp >> 3) & 6 ) | (tmp & 1) ) << 1;
|
||||
((uint8_t*)(lsa))[11] = tmp ^ ( ( 0x75310 >> index) & 0x30 );
|
||||
}
|
||||
|
||||
b[0] = nextblock[0];
|
||||
b[1] = nextblock[1];
|
||||
|
||||
@@ -227,10 +234,14 @@ void cryptonight_hash_aes( void *restrict output, const void *input, int len )
|
||||
: "cc" );
|
||||
|
||||
b_x = c_x;
|
||||
nextblock[0] = a[0] + hi;
|
||||
nextblock[1] = a[1] + lo;
|
||||
a[0] = b[0] ^ nextblock[0];
|
||||
a[1] = b[1] ^ nextblock[1];
|
||||
|
||||
a[0] += hi;
|
||||
a[1] += lo;
|
||||
nextblock[0] = a[0];
|
||||
nextblock[1] = cryptonightV7 ? a[1] ^ tweak : a[1];
|
||||
a[0] ^= b[0];
|
||||
a[1] ^= b[1];
|
||||
|
||||
lsa = (__m128i*)&ctx.long_state[ a[0] & 0x1FFFF0 ];
|
||||
a_x = _mm_load_si128( (__m128i*)a );
|
||||
c_x = _mm_load_si128( lsa );
|
||||
@@ -241,6 +252,14 @@ void cryptonight_hash_aes( void *restrict output, const void *input, int len )
|
||||
b_x = _mm_xor_si128( b_x, c_x );
|
||||
nextblock = (uint64_t *)&ctx.long_state[c[0] & 0x1FFFF0];
|
||||
_mm_store_si128( lsa, b_x );
|
||||
|
||||
if ( cryptonightV7 )
|
||||
{
|
||||
const uint8_t tmp = ( (const uint8_t*)(lsa) )[11];
|
||||
const uint8_t index = ( ( (tmp >> 3) & 6 ) | (tmp & 1) ) << 1;
|
||||
((uint8_t*)(lsa))[11] = tmp ^ ( ( 0x75310 >> index) & 0x30 );
|
||||
}
|
||||
|
||||
b[0] = nextblock[0];
|
||||
b[1] = nextblock[1];
|
||||
|
||||
@@ -251,8 +270,12 @@ void cryptonight_hash_aes( void *restrict output, const void *input, int len )
|
||||
"rm" ( b[0] )
|
||||
: "cc" );
|
||||
|
||||
nextblock[0] = a[0] + hi;
|
||||
nextblock[1] = a[1] + lo;
|
||||
a[0] += hi;
|
||||
a[1] += lo;
|
||||
nextblock[0] = a[0];
|
||||
nextblock[1] = cryptonightV7 ? a[1] ^ tweak : a[1];
|
||||
a[0] ^= b[0];
|
||||
a[1] ^= b[1];
|
||||
|
||||
memcpy( ExpandedKey, &ctx.state.hs.b[32], AES_KEY_SIZE );
|
||||
ExpandAESKey256( ExpandedKey );
|
||||
@@ -330,5 +353,5 @@ void cryptonight_hash_aes( void *restrict output, const void *input, int len )
|
||||
keccakf( (uint64_t*)&ctx.state.hs.w, 24 );
|
||||
extra_hashes[ctx.state.hs.b[0] & 3](&ctx.state, 200, output);
|
||||
|
||||
#endif
|
||||
}
|
||||
#endif
|
||||
|
@@ -7,11 +7,11 @@
|
||||
#include "cpuminer-config.h"
|
||||
#include "algo-gate-api.h"
|
||||
|
||||
#ifndef NO_AES_NI
|
||||
#if defined(__AES__)
|
||||
#include "algo/groestl/aes_ni/hash-groestl256.h"
|
||||
#endif
|
||||
|
||||
#else
|
||||
#include "crypto/c_groestl.h"
|
||||
#endif
|
||||
#include "crypto/c_blake256.h"
|
||||
#include "crypto/c_jh.h"
|
||||
#include "crypto/c_skein.h"
|
||||
@@ -30,12 +30,12 @@ void do_blake_hash(const void* input, size_t len, char* output) {
|
||||
}
|
||||
|
||||
void do_groestl_hash(const void* input, size_t len, char* output) {
|
||||
#ifdef NO_AES_NI
|
||||
groestl(input, len * 8, (uint8_t*)output);
|
||||
#else
|
||||
#if defined(__AES__)
|
||||
hashState_groestl256 ctx;
|
||||
init_groestl256( &ctx, 32 );
|
||||
update_and_final_groestl256( &ctx, output, input, len * 8 );
|
||||
#else
|
||||
groestl(input, len * 8, (uint8_t*)output);
|
||||
#endif
|
||||
}
|
||||
|
||||
@@ -52,23 +52,24 @@ void (* const extra_hashes[4])( const void *, size_t, char *) =
|
||||
|
||||
void cryptonight_hash( void *restrict output, const void *input, int len )
|
||||
{
|
||||
|
||||
#ifdef NO_AES_NI
|
||||
cryptonight_hash_ctx ( output, input, len );
|
||||
#else
|
||||
#if defined(__AES__)
|
||||
cryptonight_hash_aes( output, input, len );
|
||||
#else
|
||||
cryptonight_hash_ctx ( output, input, len );
|
||||
#endif
|
||||
}
|
||||
|
||||
void cryptonight_hash_suw( void *restrict output, const void *input )
|
||||
{
|
||||
#ifdef NO_AES_NI
|
||||
cryptonight_hash_ctx ( output, input, 76 );
|
||||
#else
|
||||
#if defined(__AES__)
|
||||
cryptonight_hash_aes( output, input, 76 );
|
||||
#else
|
||||
cryptonight_hash_ctx ( output, input, 76 );
|
||||
#endif
|
||||
}
|
||||
|
||||
bool cryptonightV7 = false;
|
||||
|
||||
int scanhash_cryptonight( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
uint64_t *hashes_done )
|
||||
{
|
||||
@@ -80,6 +81,11 @@ int scanhash_cryptonight( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
const uint32_t first_nonce = n + 1;
|
||||
const uint32_t Htarg = ptarget[7];
|
||||
uint32_t hash[32 / 4] __attribute__((aligned(32)));
|
||||
|
||||
// if ( ( cryptonightV7 && ( *(uint8_t*)pdata < 7 ) )
|
||||
// || ( !cryptonightV7 && ( *(uint8_t*)pdata == 7 ) ) )
|
||||
// applog(LOG_WARNING,"Cryptonight variant mismatch, shares may be rejected.");
|
||||
|
||||
do
|
||||
{
|
||||
*nonceptr = ++n;
|
||||
@@ -87,6 +93,7 @@ int scanhash_cryptonight( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
if (unlikely( hash[7] < Htarg ))
|
||||
{
|
||||
*hashes_done = n - first_nonce + 1;
|
||||
// work_set_target_ratio( work, hash );
|
||||
return true;
|
||||
}
|
||||
} while (likely((n <= max_nonce && !work_restart[thr_id].restart)));
|
||||
@@ -97,6 +104,7 @@ int scanhash_cryptonight( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
|
||||
bool register_cryptonight_algo( algo_gate_t* gate )
|
||||
{
|
||||
cryptonightV7 = false;
|
||||
register_json_rpc2( gate );
|
||||
gate->optimizations = SSE2_OPT | AES_OPT;
|
||||
gate->scanhash = (void*)&scanhash_cryptonight;
|
||||
@@ -106,3 +114,15 @@ bool register_cryptonight_algo( algo_gate_t* gate )
|
||||
return true;
|
||||
};
|
||||
|
||||
bool register_cryptonightv7_algo( algo_gate_t* gate )
|
||||
{
|
||||
cryptonightV7 = true;
|
||||
register_json_rpc2( gate );
|
||||
gate->optimizations = SSE2_OPT | AES_OPT;
|
||||
gate->scanhash = (void*)&scanhash_cryptonight;
|
||||
gate->hash = (void*)&cryptonight_hash;
|
||||
gate->hash_suw = (void*)&cryptonight_hash_suw;
|
||||
gate->get_max64 = (void*)&get_max64_0x40LL;
|
||||
return true;
|
||||
};
|
||||
|
||||
|
@@ -20,8 +20,8 @@
|
||||
#include "crypto/c_jh.h"
|
||||
#include "crypto/c_skein.h"
|
||||
#include "crypto/int-util.h"
|
||||
#include "crypto/hash-ops.h"
|
||||
//#include "cryptonight.h"
|
||||
//#include "crypto/hash-ops.h"
|
||||
#include "cryptonight.h"
|
||||
|
||||
#if USE_INT128
|
||||
|
||||
@@ -51,6 +51,7 @@ typedef __uint128_t uint128_t;
|
||||
#define INIT_SIZE_BLK 8
|
||||
#define INIT_SIZE_BYTE (INIT_SIZE_BLK * AES_BLOCK_SIZE)
|
||||
|
||||
/*
|
||||
#pragma pack(push, 1)
|
||||
union cn_slow_hash_state {
|
||||
union hash_state hs;
|
||||
@@ -78,6 +79,7 @@ static void do_skein_hash(const void* input, size_t len, char* output) {
|
||||
int r = skein_hash(8 * HASH_SIZE, input, 8 * len, (uint8_t*)output);
|
||||
assert(likely(SKEIN_SUCCESS == r));
|
||||
}
|
||||
*/
|
||||
|
||||
extern int aesb_single_round(const uint8_t *in, uint8_t*out, const uint8_t *expandedKey);
|
||||
extern int aesb_pseudo_round_mut(uint8_t *val, uint8_t *expandedKey);
|
||||
@@ -120,9 +122,11 @@ static uint64_t mul128(uint64_t multiplier, uint64_t multiplicand, uint64_t* pro
|
||||
extern uint64_t mul128(uint64_t multiplier, uint64_t multiplicand, uint64_t* product_hi);
|
||||
#endif
|
||||
|
||||
/*
|
||||
static void (* const extra_hashes[4])(const void *, size_t, char *) = {
|
||||
do_blake_hash, do_groestl_hash, do_jh_hash, do_skein_hash
|
||||
};
|
||||
*/
|
||||
|
||||
static inline size_t e2i(const uint8_t* a) {
|
||||
#if !LITE
|
||||
@@ -132,14 +136,16 @@ static inline size_t e2i(const uint8_t* a) {
|
||||
#endif
|
||||
}
|
||||
|
||||
static inline void mul_sum_xor_dst(const uint8_t* a, uint8_t* c, uint8_t* dst) {
|
||||
static inline void mul_sum_xor_dst( const uint8_t* a, uint8_t* c, uint8_t* dst,
|
||||
const uint64_t tweak )
|
||||
{
|
||||
uint64_t hi, lo = mul128(((uint64_t*) a)[0], ((uint64_t*) dst)[0], &hi) + ((uint64_t*) c)[1];
|
||||
hi += ((uint64_t*) c)[0];
|
||||
|
||||
((uint64_t*) c)[0] = ((uint64_t*) dst)[0] ^ hi;
|
||||
((uint64_t*) c)[1] = ((uint64_t*) dst)[1] ^ lo;
|
||||
((uint64_t*) dst)[0] = hi;
|
||||
((uint64_t*) dst)[1] = lo;
|
||||
((uint64_t*) dst)[1] = cryptonightV7 ? lo ^ tweak : lo;
|
||||
}
|
||||
|
||||
static inline void xor_blocks(uint8_t* a, const uint8_t* b) {
|
||||
@@ -174,8 +180,16 @@ static __thread cryptonight_ctx ctx;
|
||||
|
||||
void cryptonight_hash_ctx(void* output, const void* input, int len)
|
||||
{
|
||||
hash_process(&ctx.state.hs, (const uint8_t*) input, len);
|
||||
ctx.aes_ctx = (oaes_ctx*) oaes_alloc();
|
||||
// hash_process(&ctx.state.hs, (const uint8_t*) input, len);
|
||||
keccak( (const uint8_t*)input, 76, (char*)&ctx.state.hs.b, 200 );
|
||||
|
||||
if ( cryptonightV7 && len < 43 )
|
||||
return;
|
||||
const uint64_t tweak = cryptonightV7
|
||||
? *((const uint64_t*) (((const uint8_t*)input) + 35))
|
||||
^ ctx.state.hs.w[24] : 0;
|
||||
|
||||
ctx.aes_ctx = (oaes_ctx*) oaes_alloc();
|
||||
|
||||
__builtin_prefetch( ctx.text, 0, 3 );
|
||||
__builtin_prefetch( ctx.text + 64, 0, 3 );
|
||||
@@ -211,23 +225,44 @@ void cryptonight_hash_ctx(void* output, const void* input, int len)
|
||||
xor_blocks_dst(&ctx.state.k[0], &ctx.state.k[32], ctx.a);
|
||||
xor_blocks_dst(&ctx.state.k[16], &ctx.state.k[48], ctx.b);
|
||||
|
||||
for (i = 0; likely(i < ITER / 4); ++i) {
|
||||
/* Dependency chain: address -> read value ------+
|
||||
* written value <-+ hard function (AES or MUL) <+
|
||||
* next address <-+
|
||||
*/
|
||||
/* Iteration 1 */
|
||||
j = e2i(ctx.a);
|
||||
aesb_single_round(&ctx.long_state[j], ctx.c, ctx.a);
|
||||
xor_blocks_dst(ctx.c, ctx.b, &ctx.long_state[j]);
|
||||
/* Iteration 2 */
|
||||
mul_sum_xor_dst(ctx.c, ctx.a, &ctx.long_state[e2i(ctx.c)]);
|
||||
/* Iteration 3 */
|
||||
j = e2i(ctx.a);
|
||||
aesb_single_round(&ctx.long_state[j], ctx.b, ctx.a);
|
||||
xor_blocks_dst(ctx.b, ctx.c, &ctx.long_state[j]);
|
||||
/* Iteration 4 */
|
||||
mul_sum_xor_dst(ctx.b, ctx.a, &ctx.long_state[e2i(ctx.b)]);
|
||||
for (i = 0; likely(i < ITER / 4); ++i)
|
||||
{
|
||||
/* Dependency chain: address -> read value ------+
|
||||
* written value <-+ hard function (AES or MUL) <+
|
||||
* next address <-+
|
||||
*/
|
||||
/* Iteration 1 */
|
||||
j = e2i(ctx.a);
|
||||
aesb_single_round(&ctx.long_state[j], ctx.c, ctx.a);
|
||||
xor_blocks_dst(ctx.c, ctx.b, &ctx.long_state[j]);
|
||||
|
||||
if ( cryptonightV7 )
|
||||
{
|
||||
uint8_t *lsa = (uint8_t*)&ctx.long_state[((uint64_t *)(ctx.a))[0] & 0x1FFFF0];
|
||||
const uint8_t tmp = lsa[11];
|
||||
const uint8_t index = ( ( (tmp >> 3) & 6 ) | (tmp & 1) ) << 1;
|
||||
lsa[11] = tmp ^ ( ( 0x75310 >> index) & 0x30 );
|
||||
}
|
||||
|
||||
/* Iteration 2 */
|
||||
mul_sum_xor_dst(ctx.c, ctx.a, &ctx.long_state[e2i(ctx.c)], tweak );
|
||||
|
||||
/* Iteration 3 */
|
||||
j = e2i(ctx.a);
|
||||
aesb_single_round(&ctx.long_state[j], ctx.b, ctx.a);
|
||||
xor_blocks_dst(ctx.b, ctx.c, &ctx.long_state[j]);
|
||||
|
||||
if ( cryptonightV7 )
|
||||
{
|
||||
uint8_t *lsa = (uint8_t*)&ctx.long_state[((uint64_t *)(ctx.a))[0] & 0x1FFFF0];
|
||||
const uint8_t tmp = lsa[11];
|
||||
const uint8_t index = ( ( (tmp >> 3) & 6 ) | (tmp & 1) ) << 1;
|
||||
lsa[11] = tmp ^ ( ( 0x75310 >> index) & 0x30 );
|
||||
}
|
||||
|
||||
/* Iteration 4 */
|
||||
mul_sum_xor_dst(ctx.b, ctx.a, &ctx.long_state[e2i(ctx.b)], tweak );
|
||||
|
||||
}
|
||||
|
||||
__builtin_prefetch( ctx.text, 0, 3 );
|
||||
@@ -266,7 +301,8 @@ void cryptonight_hash_ctx(void* output, const void* input, int len)
|
||||
aesb_pseudo_round_mut(&ctx.text[7 * AES_BLOCK_SIZE], ctx.aes_ctx->key->exp_data);
|
||||
}
|
||||
memcpy(ctx.state.init, ctx.text, INIT_SIZE_BYTE);
|
||||
hash_permutation(&ctx.state.hs);
|
||||
// hash_permutation(&ctx.state.hs);
|
||||
keccakf( (uint64_t*)&ctx.state.hs.w, 24 );
|
||||
/*memcpy(hash, &state, 32);*/
|
||||
extra_hashes[ctx.state.hs.b[0] & 3](&ctx.state, 200, output);
|
||||
oaes_free((OAES_CTX **) &ctx.aes_ctx);
|
||||
|
@@ -45,5 +45,7 @@ int scanhash_cryptonight( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
|
||||
void cryptonight_hash_aes( void *restrict output, const void *input, int len );
|
||||
|
||||
extern bool cryptonightV7;
|
||||
|
||||
#endif
|
||||
|
||||
|
@@ -7,6 +7,24 @@
|
||||
|
||||
// 2x128
|
||||
|
||||
// The result of hashing 10 rounds of initial data which consists of params
|
||||
// zero padded.
|
||||
static const uint64_t IV256[] =
|
||||
{
|
||||
0xCCD6F29FEA2BD4B4, 0x35481EAE63117E71, 0xE5D94E6322512D5B, 0xF4CC12BE7E624131,
|
||||
0x42AF2070C2D0B696, 0x3361DA8CD0720C35, 0x8EF8AD8328CCECA4, 0x40E5FBAB4680AC00,
|
||||
0x6107FBD5D89041C3, 0xF0B266796C859D41, 0x5FA2560309392549, 0x93CB628565C892FD,
|
||||
0x9E4B4E602AF2B5AE, 0x85254725774ABFDD, 0x4AB6AAD615815AEB, 0xD6032C0A9CDAF8AF
|
||||
};
|
||||
|
||||
static const uint64_t IV512[] =
|
||||
{
|
||||
0x50F494D42AEA2A61, 0x4167D83E2D538B8B, 0xC701CF8C3FEE2313, 0x50AC5695CC39968E,
|
||||
0xA647A8B34D42C787, 0x825B453797CF0BEF, 0xF22090C4EEF864D2, 0xA23911AED0E5CD33,
|
||||
0x148FE485FCD398D9, 0xB64445321B017BEF, 0x2FF5781C6A536159, 0x0DBADEA991FA7934,
|
||||
0xA5A70E75D65C8A2B, 0xBC796576B1C62456, 0xE7989AF11921C8F7, 0xD43E3B447795D246
|
||||
};
|
||||
|
||||
static void transform_2way( cube_2way_context *sp )
|
||||
{
|
||||
int r;
|
||||
@@ -45,10 +63,10 @@ static void transform_2way( cube_2way_context *sp )
|
||||
x1 = _mm256_xor_si256( x1, x5 );
|
||||
x2 = _mm256_xor_si256( x2, x6 );
|
||||
x3 = _mm256_xor_si256( x3, x7 );
|
||||
x4 = mm256_swap128_64( x4 );
|
||||
x5 = mm256_swap128_64( x5 );
|
||||
x6 = mm256_swap128_64( x6 );
|
||||
x7 = mm256_swap128_64( x7 );
|
||||
x4 = mm256_swap64_128( x4 );
|
||||
x5 = mm256_swap64_128( x5 );
|
||||
x6 = mm256_swap64_128( x6 );
|
||||
x7 = mm256_swap64_128( x7 );
|
||||
x4 = _mm256_add_epi32( x0, x4 );
|
||||
x5 = _mm256_add_epi32( x1, x5 );
|
||||
x6 = _mm256_add_epi32( x2, x6 );
|
||||
@@ -69,10 +87,10 @@ static void transform_2way( cube_2way_context *sp )
|
||||
x1 = _mm256_xor_si256( x1, x5 );
|
||||
x2 = _mm256_xor_si256( x2, x6 );
|
||||
x3 = _mm256_xor_si256( x3, x7 );
|
||||
x4 = mm256_swap64_32( x4 );
|
||||
x5 = mm256_swap64_32( x5 );
|
||||
x6 = mm256_swap64_32( x6 );
|
||||
x7 = mm256_swap64_32( x7 );
|
||||
x4 = mm256_swap32_64( x4 );
|
||||
x5 = mm256_swap32_64( x5 );
|
||||
x6 = mm256_swap32_64( x6 );
|
||||
x7 = mm256_swap32_64( x7 );
|
||||
}
|
||||
|
||||
_mm256_store_si256( (__m256i*)sp->h, x0 );
|
||||
@@ -86,44 +104,33 @@ static void transform_2way( cube_2way_context *sp )
|
||||
|
||||
}
|
||||
|
||||
cube_2way_context cube_2way_ctx_cache __attribute__ ((aligned (64)));
|
||||
|
||||
int cube_2way_reinit( cube_2way_context *sp )
|
||||
{
|
||||
memcpy( sp, &cube_2way_ctx_cache, sizeof(cube_2way_context) );
|
||||
return 0;
|
||||
|
||||
}
|
||||
|
||||
int cube_2way_init( cube_2way_context *sp, int hashbitlen, int rounds,
|
||||
int blockbytes )
|
||||
int blockbytes )
|
||||
{
|
||||
int i;
|
||||
const uint64_t* iv = hashbitlen == 512 ? IV512 : IV256;
|
||||
sp->hashlen = hashbitlen/128;
|
||||
sp->blocksize = blockbytes/16;
|
||||
sp->rounds = rounds;
|
||||
sp->pos = 0;
|
||||
|
||||
// all sizes of __m128i
|
||||
cube_2way_ctx_cache.hashlen = hashbitlen/128;
|
||||
cube_2way_ctx_cache.blocksize = blockbytes/16;
|
||||
cube_2way_ctx_cache.rounds = rounds;
|
||||
cube_2way_ctx_cache.pos = 0;
|
||||
__m256i* h = (__m256i*)sp->h;
|
||||
|
||||
for ( i = 0; i < 8; ++i )
|
||||
cube_2way_ctx_cache.h[i] = m256_zero;
|
||||
h[0] = _mm256_set_epi64x( iv[ 1], iv[ 0], iv[ 1], iv[ 0] );
|
||||
h[1] = _mm256_set_epi64x( iv[ 3], iv[ 2], iv[ 3], iv[ 2] );
|
||||
h[2] = _mm256_set_epi64x( iv[ 5], iv[ 4], iv[ 5], iv[ 4] );
|
||||
h[3] = _mm256_set_epi64x( iv[ 7], iv[ 6], iv[ 7], iv[ 6] );
|
||||
h[4] = _mm256_set_epi64x( iv[ 9], iv[ 8], iv[ 9], iv[ 8] );
|
||||
h[5] = _mm256_set_epi64x( iv[11], iv[10], iv[11], iv[10] );
|
||||
h[6] = _mm256_set_epi64x( iv[13], iv[12], iv[13], iv[12] );
|
||||
h[7] = _mm256_set_epi64x( iv[15], iv[14], iv[15], iv[14] );
|
||||
|
||||
cube_2way_ctx_cache.h[0] = _mm256_set_epi32(
|
||||
0, rounds, blockbytes, hashbitlen / 8,
|
||||
0, rounds, blockbytes, hashbitlen / 8 );
|
||||
|
||||
for ( i = 0; i < 10; ++i )
|
||||
transform_2way( &cube_2way_ctx_cache );
|
||||
|
||||
memcpy( sp, &cube_2way_ctx_cache, sizeof(cube_2way_context) );
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
int cube_2way_update( cube_2way_context *sp, const void *data, size_t size )
|
||||
{
|
||||
const int len = size / 16;
|
||||
const int len = size >> 4;
|
||||
const __m256i *in = (__m256i*)data;
|
||||
int i;
|
||||
|
||||
@@ -140,7 +147,6 @@ int cube_2way_update( cube_2way_context *sp, const void *data, size_t size )
|
||||
sp->pos = 0;
|
||||
}
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
@@ -151,25 +157,22 @@ int cube_2way_close( cube_2way_context *sp, void *output )
|
||||
|
||||
// pos is zero for 64 byte data, 1 for 80 byte data.
|
||||
sp->h[ sp->pos ] = _mm256_xor_si256( sp->h[ sp->pos ],
|
||||
_mm256_set_epi8( 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0x80,
|
||||
0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0x80 ) );
|
||||
_mm256_set_epi32( 0,0,0,0x80, 0,0,0,0x80 ) );
|
||||
transform_2way( sp );
|
||||
|
||||
sp->h[7] = _mm256_xor_si256( sp->h[7], _mm256_set_epi32( 1,0,0,0,
|
||||
1,0,0,0 ) );
|
||||
for ( i = 0; i < 10; ++i )
|
||||
transform_2way( &cube_2way_ctx_cache );
|
||||
sp->h[7] = _mm256_xor_si256( sp->h[7],
|
||||
_mm256_set_epi32( 1,0,0,0, 1,0,0,0 ) );
|
||||
|
||||
for ( i = 0; i < sp->hashlen; i++ )
|
||||
hash[i] = sp->h[i];
|
||||
for ( i = 0; i < 10; ++i ) transform_2way( sp );
|
||||
|
||||
for ( i = 0; i < sp->hashlen; i++ ) hash[i] = sp->h[i];
|
||||
return 0;
|
||||
}
|
||||
|
||||
int cube_2way_update_close( cube_2way_context *sp, void *output,
|
||||
const void *data, size_t size )
|
||||
{
|
||||
const int len = size / 16;
|
||||
const int len = size >> 4;
|
||||
const __m256i *in = (__m256i*)data;
|
||||
__m256i *hash = (__m256i*)output;
|
||||
int i;
|
||||
@@ -187,18 +190,15 @@ int cube_2way_update_close( cube_2way_context *sp, void *output,
|
||||
|
||||
// pos is zero for 64 byte data, 1 for 80 byte data.
|
||||
sp->h[ sp->pos ] = _mm256_xor_si256( sp->h[ sp->pos ],
|
||||
_mm256_set_epi8( 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0x80,
|
||||
0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0x80 ) );
|
||||
_mm256_set_epi32( 0,0,0,0x80, 0,0,0,0x80 ) );
|
||||
transform_2way( sp );
|
||||
|
||||
sp->h[7] = _mm256_xor_si256( sp->h[7], _mm256_set_epi32( 1,0,0,0,
|
||||
1,0,0,0 ) );
|
||||
for ( i = 0; i < 10; ++i )
|
||||
transform_2way( &cube_2way_ctx_cache );
|
||||
|
||||
for ( i = 0; i < sp->hashlen; i++ )
|
||||
hash[i] = sp->h[i];
|
||||
for ( i = 0; i < 10; ++i ) transform_2way( sp );
|
||||
|
||||
for ( i = 0; i < sp->hashlen; i++ ) hash[i] = sp->h[i];
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
@@ -10,12 +10,12 @@
|
||||
|
||||
struct _cube_2way_context
|
||||
{
|
||||
__m256i h[8];
|
||||
int hashlen; // __m128i
|
||||
int rounds;
|
||||
int blocksize; // __m128i
|
||||
int pos; // number of __m128i read into x from current block
|
||||
__m256i h[8] __attribute__ ((aligned (64)));
|
||||
};
|
||||
} __attribute__ ((aligned (64)));
|
||||
|
||||
typedef struct _cube_2way_context cube_2way_context;
|
||||
|
||||
|
@@ -14,6 +14,25 @@
|
||||
#include <unistd.h>
|
||||
#include <memory.h>
|
||||
#include "avxdefs.h"
|
||||
#include <stdio.h>
|
||||
|
||||
// The result of hashing 10 rounds of initial data which is params and
|
||||
// mostly zeros.
|
||||
static const uint64_t IV256[] =
|
||||
{
|
||||
0xCCD6F29FEA2BD4B4, 0x35481EAE63117E71, 0xE5D94E6322512D5B, 0xF4CC12BE7E624131,
|
||||
0x42AF2070C2D0B696, 0x3361DA8CD0720C35, 0x8EF8AD8328CCECA4, 0x40E5FBAB4680AC00,
|
||||
0x6107FBD5D89041C3, 0xF0B266796C859D41, 0x5FA2560309392549, 0x93CB628565C892FD,
|
||||
0x9E4B4E602AF2B5AE, 0x85254725774ABFDD, 0x4AB6AAD615815AEB, 0xD6032C0A9CDAF8AF
|
||||
};
|
||||
|
||||
static const uint64_t IV512[] =
|
||||
{
|
||||
0x50F494D42AEA2A61, 0x4167D83E2D538B8B, 0xC701CF8C3FEE2313, 0x50AC5695CC39968E,
|
||||
0xA647A8B34D42C787, 0x825B453797CF0BEF, 0xF22090C4EEF864D2, 0xA23911AED0E5CD33,
|
||||
0x148FE485FCD398D9, 0xB64445321B017BEF, 0x2FF5781C6A536159, 0x0DBADEA991FA7934,
|
||||
0xA5A70E75D65C8A2B, 0xBC796576B1C62456, 0xE7989AF11921C8F7, 0xD43E3B447795D246
|
||||
};
|
||||
|
||||
static void transform( cubehashParam *sp )
|
||||
{
|
||||
@@ -128,48 +147,37 @@ static void transform( cubehashParam *sp )
|
||||
#endif
|
||||
} // transform
|
||||
|
||||
// Cubehash context initializing is very expensive.
|
||||
// Cache the intial value for faster reinitializing.
|
||||
cubehashParam cube_ctx_cache __attribute__ ((aligned (64)));
|
||||
|
||||
int cubehashReinit( cubehashParam *sp )
|
||||
{
|
||||
memcpy( sp, &cube_ctx_cache, sizeof(cubehashParam) );
|
||||
return SUCCESS;
|
||||
|
||||
}
|
||||
|
||||
// Initialize the cache then copy to sp.
|
||||
int cubehashInit(cubehashParam *sp, int hashbitlen, int rounds, int blockbytes)
|
||||
{
|
||||
int i;
|
||||
const uint64_t* iv = hashbitlen == 512 ? IV512 : IV256;
|
||||
sp->hashlen = hashbitlen/128;
|
||||
sp->blocksize = blockbytes/16;
|
||||
sp->rounds = rounds;
|
||||
sp->pos = 0;
|
||||
|
||||
#if defined(__AVX2__)
|
||||
|
||||
if ( hashbitlen < 8 ) return BAD_HASHBITLEN;
|
||||
if ( hashbitlen > 512 ) return BAD_HASHBITLEN;
|
||||
if ( hashbitlen != 8 * (hashbitlen / 8) ) return BAD_HASHBITLEN;
|
||||
__m256i* x = (__m256i*)sp->x;
|
||||
|
||||
/* Sanity checks */
|
||||
if ( rounds <= 0 || rounds > 32 )
|
||||
rounds = CUBEHASH_ROUNDS;
|
||||
if ( blockbytes <= 0 || blockbytes >= 256)
|
||||
blockbytes = CUBEHASH_BLOCKBYTES;
|
||||
x[0] = _mm256_set_epi64x( iv[ 3], iv[ 2], iv[ 1], iv[ 0] );
|
||||
x[1] = _mm256_set_epi64x( iv[ 7], iv[ 6], iv[ 5], iv[ 4] );
|
||||
x[2] = _mm256_set_epi64x( iv[11], iv[10], iv[ 9], iv[ 8] );
|
||||
x[3] = _mm256_set_epi64x( iv[15], iv[14], iv[13], iv[12] );
|
||||
|
||||
// all sizes of __m128i
|
||||
cube_ctx_cache.hashlen = hashbitlen/128;
|
||||
cube_ctx_cache.blocksize = blockbytes/16;
|
||||
cube_ctx_cache.rounds = rounds;
|
||||
cube_ctx_cache.pos = 0;
|
||||
#else
|
||||
|
||||
for ( i = 0; i < 8; ++i )
|
||||
cube_ctx_cache.x[i] = _mm_setzero_si128();;
|
||||
__m128i* x = (__m128i*)sp->x;
|
||||
|
||||
cube_ctx_cache.x[0] = _mm_set_epi32( 0, rounds, blockbytes,
|
||||
hashbitlen / 8 );
|
||||
x[0] = _mm_set_epi64x( iv[ 1], iv[ 0] );
|
||||
x[1] = _mm_set_epi64x( iv[ 3], iv[ 2] );
|
||||
x[2] = _mm_set_epi64x( iv[ 5], iv[ 4] );
|
||||
x[3] = _mm_set_epi64x( iv[ 7], iv[ 6] );
|
||||
x[4] = _mm_set_epi64x( iv[ 9], iv[ 8] );
|
||||
x[5] = _mm_set_epi64x( iv[11], iv[10] );
|
||||
x[6] = _mm_set_epi64x( iv[13], iv[12] );
|
||||
x[7] = _mm_set_epi64x( iv[15], iv[14] );
|
||||
|
||||
for ( i = 0; i < 10; ++i )
|
||||
transform( &cube_ctx_cache );
|
||||
|
||||
memcpy( sp, &cube_ctx_cache, sizeof(cubehashParam) );
|
||||
#endif
|
||||
return SUCCESS;
|
||||
}
|
||||
|
||||
@@ -254,6 +262,7 @@ int cubehashUpdateDigest( cubehashParam *sp, byte *digest,
|
||||
transform( sp );
|
||||
|
||||
sp->x[7] = _mm_xor_si128( sp->x[7], _mm_set_epi32( 1,0,0,0 ) );
|
||||
|
||||
transform( sp );
|
||||
transform( sp );
|
||||
transform( sp );
|
@@ -60,336 +60,174 @@ MYALIGN const unsigned int zero[] = {0x00000000, 0x00000000, 0x00000000, 0x000
|
||||
MYALIGN const unsigned int mul2ipt[] = {0x728efc00, 0x6894e61a, 0x3fc3b14d, 0x25d9ab57, 0xfd5ba600, 0x2a8c71d7, 0x1eb845e3, 0xc96f9234};
|
||||
|
||||
|
||||
//#include "crypto_hash.h"
|
||||
|
||||
int crypto_hash(
|
||||
unsigned char *out,
|
||||
const unsigned char *in,
|
||||
unsigned long long inlen
|
||||
)
|
||||
{
|
||||
|
||||
if(hash_echo(512, in, inlen * 8, out) == SUCCESS)
|
||||
return 0;
|
||||
|
||||
return -1;
|
||||
}
|
||||
|
||||
/*
|
||||
int main()
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
*/
|
||||
|
||||
#if 0
|
||||
void DumpState(__m128i *ps)
|
||||
{
|
||||
int i, j, k;
|
||||
unsigned int ucol;
|
||||
|
||||
for(j = 0; j < 4; j++)
|
||||
{
|
||||
for(i = 0; i < 4; i++)
|
||||
{
|
||||
printf("row %d,col %d : ", i, j);
|
||||
for(k = 0; k < 4; k++)
|
||||
{
|
||||
ucol = *((int*)ps + 16 * i + 4 * j + k);
|
||||
printf("%02x%02x%02x%02x ", (ucol >> 0) & 0xff, (ucol >> 8) & 0xff, (ucol >> 16) & 0xff, (ucol >> 24) & 0xff);
|
||||
}
|
||||
|
||||
printf("\n");
|
||||
}
|
||||
}
|
||||
|
||||
printf("\n");
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
|
||||
|
||||
#ifndef NO_AES_NI
|
||||
#define ECHO_SUBBYTES(state, i, j) \
|
||||
state[i][j] = _mm_aesenc_si128(state[i][j], k1);\
|
||||
state[i][j] = _mm_aesenc_si128(state[i][j], M128(zero));\
|
||||
k1 = _mm_add_epi32(k1, M128(const1))
|
||||
#else
|
||||
#define ECHO_SUBBYTES(state, i, j) \
|
||||
AES_ROUND_VPERM(state[i][j], t1, t2, t3, t4, s1, s2, s3);\
|
||||
state[i][j] = _mm_xor_si128(state[i][j], k1);\
|
||||
AES_ROUND_VPERM(state[i][j], t1, t2, t3, t4, s1, s2, s3);\
|
||||
k1 = _mm_add_epi32(k1, M128(const1))
|
||||
|
||||
#define ECHO_SUB_AND_MIX(state, i, j, state2, c, r1, r2, r3, r4) \
|
||||
AES_ROUND_VPERM_CORE(state[i][j], t1, t2, t3, t4, s1, s2, s3);\
|
||||
ktemp = k1;\
|
||||
TRANSFORM(ktemp, _k_ipt, t1, t4);\
|
||||
state[i][j] = _mm_xor_si128(state[i][j], ktemp);\
|
||||
AES_ROUND_VPERM_CORE(state[i][j], t1, t2, t3, t4, s1, s2, s3);\
|
||||
k1 = _mm_add_epi32(k1, M128(const1));\
|
||||
s1 = state[i][j];\
|
||||
s2 = s1;\
|
||||
TRANSFORM(s2, mul2ipt, t1, t2);\
|
||||
s3 = _mm_xor_si128(s1, s2);\
|
||||
state2[r1][c] = _mm_xor_si128(state2[r1][c], s2);\
|
||||
state2[r2][c] = _mm_xor_si128(state2[r2][c], s1);\
|
||||
state2[r3][c] = _mm_xor_si128(state2[r3][c], s1);\
|
||||
state2[r4][c] = _mm_xor_si128(state2[r4][c], s3)
|
||||
|
||||
|
||||
|
||||
#endif
|
||||
|
||||
state[i][j] = _mm_aesenc_si128(state[i][j], k1);\
|
||||
state[i][j] = _mm_aesenc_si128(state[i][j], M128(zero));\
|
||||
k1 = _mm_add_epi32(k1, M128(const1))
|
||||
|
||||
#define ECHO_MIXBYTES(state1, state2, j, t1, t2, s2) \
|
||||
s2 = _mm_add_epi8(state1[0][j], state1[0][j]);\
|
||||
t1 = _mm_srli_epi16(state1[0][j], 7);\
|
||||
t1 = _mm_and_si128(t1, M128(lsbmask));\
|
||||
t2 = _mm_shuffle_epi8(M128(mul2mask), t1);\
|
||||
s2 = _mm_xor_si128(s2, t2);\
|
||||
state2[0][j] = s2;\
|
||||
state2[1][j] = state1[0][j];\
|
||||
state2[2][j] = state1[0][j];\
|
||||
state2[3][j] = _mm_xor_si128(s2, state1[0][j]);\
|
||||
s2 = _mm_add_epi8(state1[1][(j + 1) & 3], state1[1][(j + 1) & 3]);\
|
||||
t1 = _mm_srli_epi16(state1[1][(j + 1) & 3], 7);\
|
||||
t1 = _mm_and_si128(t1, M128(lsbmask));\
|
||||
t2 = _mm_shuffle_epi8(M128(mul2mask), t1);\
|
||||
s2 = _mm_xor_si128(s2, t2);\
|
||||
state2[0][j] = _mm_xor_si128(state2[0][j], _mm_xor_si128(s2, state1[1][(j + 1) & 3]));\
|
||||
state2[1][j] = _mm_xor_si128(state2[1][j], s2);\
|
||||
state2[2][j] = _mm_xor_si128(state2[2][j], state1[1][(j + 1) & 3]);\
|
||||
state2[3][j] = _mm_xor_si128(state2[3][j], state1[1][(j + 1) & 3]);\
|
||||
s2 = _mm_add_epi8(state1[2][(j + 2) & 3], state1[2][(j + 2) & 3]);\
|
||||
t1 = _mm_srli_epi16(state1[2][(j + 2) & 3], 7);\
|
||||
t1 = _mm_and_si128(t1, M128(lsbmask));\
|
||||
t2 = _mm_shuffle_epi8(M128(mul2mask), t1);\
|
||||
s2 = _mm_xor_si128(s2, t2);\
|
||||
state2[0][j] = _mm_xor_si128(state2[0][j], state1[2][(j + 2) & 3]);\
|
||||
state2[1][j] = _mm_xor_si128(state2[1][j], _mm_xor_si128(s2, state1[2][(j + 2) & 3]));\
|
||||
state2[2][j] = _mm_xor_si128(state2[2][j], s2);\
|
||||
state2[3][j] = _mm_xor_si128(state2[3][j], state1[2][(j + 2) & 3]);\
|
||||
s2 = _mm_add_epi8(state1[3][(j + 3) & 3], state1[3][(j + 3) & 3]);\
|
||||
t1 = _mm_srli_epi16(state1[3][(j + 3) & 3], 7);\
|
||||
t1 = _mm_and_si128(t1, M128(lsbmask));\
|
||||
t2 = _mm_shuffle_epi8(M128(mul2mask), t1);\
|
||||
s2 = _mm_xor_si128(s2, t2);\
|
||||
state2[0][j] = _mm_xor_si128(state2[0][j], state1[3][(j + 3) & 3]);\
|
||||
state2[1][j] = _mm_xor_si128(state2[1][j], state1[3][(j + 3) & 3]);\
|
||||
state2[2][j] = _mm_xor_si128(state2[2][j], _mm_xor_si128(s2, state1[3][(j + 3) & 3]));\
|
||||
state2[3][j] = _mm_xor_si128(state2[3][j], s2)
|
||||
s2 = _mm_add_epi8(state1[0][j], state1[0][j]);\
|
||||
t1 = _mm_srli_epi16(state1[0][j], 7);\
|
||||
t1 = _mm_and_si128(t1, M128(lsbmask));\
|
||||
t2 = _mm_shuffle_epi8(M128(mul2mask), t1);\
|
||||
s2 = _mm_xor_si128(s2, t2);\
|
||||
state2[0][j] = s2;\
|
||||
state2[1][j] = state1[0][j];\
|
||||
state2[2][j] = state1[0][j];\
|
||||
state2[3][j] = _mm_xor_si128(s2, state1[0][j]);\
|
||||
s2 = _mm_add_epi8(state1[1][(j + 1) & 3], state1[1][(j + 1) & 3]);\
|
||||
t1 = _mm_srli_epi16(state1[1][(j + 1) & 3], 7);\
|
||||
t1 = _mm_and_si128(t1, M128(lsbmask));\
|
||||
t2 = _mm_shuffle_epi8(M128(mul2mask), t1);\
|
||||
s2 = _mm_xor_si128(s2, t2);\
|
||||
state2[0][j] = _mm_xor_si128(state2[0][j], _mm_xor_si128(s2, state1[1][(j + 1) & 3]));\
|
||||
state2[1][j] = _mm_xor_si128(state2[1][j], s2);\
|
||||
state2[2][j] = _mm_xor_si128(state2[2][j], state1[1][(j + 1) & 3]);\
|
||||
state2[3][j] = _mm_xor_si128(state2[3][j], state1[1][(j + 1) & 3]);\
|
||||
s2 = _mm_add_epi8(state1[2][(j + 2) & 3], state1[2][(j + 2) & 3]);\
|
||||
t1 = _mm_srli_epi16(state1[2][(j + 2) & 3], 7);\
|
||||
t1 = _mm_and_si128(t1, M128(lsbmask));\
|
||||
t2 = _mm_shuffle_epi8(M128(mul2mask), t1);\
|
||||
s2 = _mm_xor_si128(s2, t2);\
|
||||
state2[0][j] = _mm_xor_si128(state2[0][j], state1[2][(j + 2) & 3]);\
|
||||
state2[1][j] = _mm_xor_si128(state2[1][j], _mm_xor_si128(s2, state1[2][(j + 2) & 3]));\
|
||||
state2[2][j] = _mm_xor_si128(state2[2][j], s2);\
|
||||
state2[3][j] = _mm_xor_si128(state2[3][j], state1[2][(j + 2) & 3]);\
|
||||
s2 = _mm_add_epi8(state1[3][(j + 3) & 3], state1[3][(j + 3) & 3]);\
|
||||
t1 = _mm_srli_epi16(state1[3][(j + 3) & 3], 7);\
|
||||
t1 = _mm_and_si128(t1, M128(lsbmask));\
|
||||
t2 = _mm_shuffle_epi8(M128(mul2mask), t1);\
|
||||
s2 = _mm_xor_si128(s2, t2);\
|
||||
state2[0][j] = _mm_xor_si128(state2[0][j], state1[3][(j + 3) & 3]);\
|
||||
state2[1][j] = _mm_xor_si128(state2[1][j], state1[3][(j + 3) & 3]);\
|
||||
state2[2][j] = _mm_xor_si128(state2[2][j], _mm_xor_si128(s2, state1[3][(j + 3) & 3]));\
|
||||
state2[3][j] = _mm_xor_si128(state2[3][j], s2)
|
||||
|
||||
|
||||
#define ECHO_ROUND_UNROLL2 \
|
||||
ECHO_SUBBYTES(_state, 0, 0);\
|
||||
ECHO_SUBBYTES(_state, 1, 0);\
|
||||
ECHO_SUBBYTES(_state, 2, 0);\
|
||||
ECHO_SUBBYTES(_state, 3, 0);\
|
||||
ECHO_SUBBYTES(_state, 0, 1);\
|
||||
ECHO_SUBBYTES(_state, 1, 1);\
|
||||
ECHO_SUBBYTES(_state, 2, 1);\
|
||||
ECHO_SUBBYTES(_state, 3, 1);\
|
||||
ECHO_SUBBYTES(_state, 0, 2);\
|
||||
ECHO_SUBBYTES(_state, 1, 2);\
|
||||
ECHO_SUBBYTES(_state, 2, 2);\
|
||||
ECHO_SUBBYTES(_state, 3, 2);\
|
||||
ECHO_SUBBYTES(_state, 0, 3);\
|
||||
ECHO_SUBBYTES(_state, 1, 3);\
|
||||
ECHO_SUBBYTES(_state, 2, 3);\
|
||||
ECHO_SUBBYTES(_state, 3, 3);\
|
||||
ECHO_MIXBYTES(_state, _state2, 0, t1, t2, s2);\
|
||||
ECHO_MIXBYTES(_state, _state2, 1, t1, t2, s2);\
|
||||
ECHO_MIXBYTES(_state, _state2, 2, t1, t2, s2);\
|
||||
ECHO_MIXBYTES(_state, _state2, 3, t1, t2, s2);\
|
||||
ECHO_SUBBYTES(_state2, 0, 0);\
|
||||
ECHO_SUBBYTES(_state2, 1, 0);\
|
||||
ECHO_SUBBYTES(_state2, 2, 0);\
|
||||
ECHO_SUBBYTES(_state2, 3, 0);\
|
||||
ECHO_SUBBYTES(_state2, 0, 1);\
|
||||
ECHO_SUBBYTES(_state2, 1, 1);\
|
||||
ECHO_SUBBYTES(_state2, 2, 1);\
|
||||
ECHO_SUBBYTES(_state2, 3, 1);\
|
||||
ECHO_SUBBYTES(_state2, 0, 2);\
|
||||
ECHO_SUBBYTES(_state2, 1, 2);\
|
||||
ECHO_SUBBYTES(_state2, 2, 2);\
|
||||
ECHO_SUBBYTES(_state2, 3, 2);\
|
||||
ECHO_SUBBYTES(_state2, 0, 3);\
|
||||
ECHO_SUBBYTES(_state2, 1, 3);\
|
||||
ECHO_SUBBYTES(_state2, 2, 3);\
|
||||
ECHO_SUBBYTES(_state2, 3, 3);\
|
||||
ECHO_MIXBYTES(_state2, _state, 0, t1, t2, s2);\
|
||||
ECHO_MIXBYTES(_state2, _state, 1, t1, t2, s2);\
|
||||
ECHO_MIXBYTES(_state2, _state, 2, t1, t2, s2);\
|
||||
ECHO_MIXBYTES(_state2, _state, 3, t1, t2, s2)
|
||||
ECHO_SUBBYTES(_state, 0, 0);\
|
||||
ECHO_SUBBYTES(_state, 1, 0);\
|
||||
ECHO_SUBBYTES(_state, 2, 0);\
|
||||
ECHO_SUBBYTES(_state, 3, 0);\
|
||||
ECHO_SUBBYTES(_state, 0, 1);\
|
||||
ECHO_SUBBYTES(_state, 1, 1);\
|
||||
ECHO_SUBBYTES(_state, 2, 1);\
|
||||
ECHO_SUBBYTES(_state, 3, 1);\
|
||||
ECHO_SUBBYTES(_state, 0, 2);\
|
||||
ECHO_SUBBYTES(_state, 1, 2);\
|
||||
ECHO_SUBBYTES(_state, 2, 2);\
|
||||
ECHO_SUBBYTES(_state, 3, 2);\
|
||||
ECHO_SUBBYTES(_state, 0, 3);\
|
||||
ECHO_SUBBYTES(_state, 1, 3);\
|
||||
ECHO_SUBBYTES(_state, 2, 3);\
|
||||
ECHO_SUBBYTES(_state, 3, 3);\
|
||||
ECHO_MIXBYTES(_state, _state2, 0, t1, t2, s2);\
|
||||
ECHO_MIXBYTES(_state, _state2, 1, t1, t2, s2);\
|
||||
ECHO_MIXBYTES(_state, _state2, 2, t1, t2, s2);\
|
||||
ECHO_MIXBYTES(_state, _state2, 3, t1, t2, s2);\
|
||||
ECHO_SUBBYTES(_state2, 0, 0);\
|
||||
ECHO_SUBBYTES(_state2, 1, 0);\
|
||||
ECHO_SUBBYTES(_state2, 2, 0);\
|
||||
ECHO_SUBBYTES(_state2, 3, 0);\
|
||||
ECHO_SUBBYTES(_state2, 0, 1);\
|
||||
ECHO_SUBBYTES(_state2, 1, 1);\
|
||||
ECHO_SUBBYTES(_state2, 2, 1);\
|
||||
ECHO_SUBBYTES(_state2, 3, 1);\
|
||||
ECHO_SUBBYTES(_state2, 0, 2);\
|
||||
ECHO_SUBBYTES(_state2, 1, 2);\
|
||||
ECHO_SUBBYTES(_state2, 2, 2);\
|
||||
ECHO_SUBBYTES(_state2, 3, 2);\
|
||||
ECHO_SUBBYTES(_state2, 0, 3);\
|
||||
ECHO_SUBBYTES(_state2, 1, 3);\
|
||||
ECHO_SUBBYTES(_state2, 2, 3);\
|
||||
ECHO_SUBBYTES(_state2, 3, 3);\
|
||||
ECHO_MIXBYTES(_state2, _state, 0, t1, t2, s2);\
|
||||
ECHO_MIXBYTES(_state2, _state, 1, t1, t2, s2);\
|
||||
ECHO_MIXBYTES(_state2, _state, 2, t1, t2, s2);\
|
||||
ECHO_MIXBYTES(_state2, _state, 3, t1, t2, s2)
|
||||
|
||||
|
||||
|
||||
#define SAVESTATE(dst, src)\
|
||||
dst[0][0] = src[0][0];\
|
||||
dst[0][1] = src[0][1];\
|
||||
dst[0][2] = src[0][2];\
|
||||
dst[0][3] = src[0][3];\
|
||||
dst[1][0] = src[1][0];\
|
||||
dst[1][1] = src[1][1];\
|
||||
dst[1][2] = src[1][2];\
|
||||
dst[1][3] = src[1][3];\
|
||||
dst[2][0] = src[2][0];\
|
||||
dst[2][1] = src[2][1];\
|
||||
dst[2][2] = src[2][2];\
|
||||
dst[2][3] = src[2][3];\
|
||||
dst[3][0] = src[3][0];\
|
||||
dst[3][1] = src[3][1];\
|
||||
dst[3][2] = src[3][2];\
|
||||
dst[3][3] = src[3][3]
|
||||
dst[0][0] = src[0][0];\
|
||||
dst[0][1] = src[0][1];\
|
||||
dst[0][2] = src[0][2];\
|
||||
dst[0][3] = src[0][3];\
|
||||
dst[1][0] = src[1][0];\
|
||||
dst[1][1] = src[1][1];\
|
||||
dst[1][2] = src[1][2];\
|
||||
dst[1][3] = src[1][3];\
|
||||
dst[2][0] = src[2][0];\
|
||||
dst[2][1] = src[2][1];\
|
||||
dst[2][2] = src[2][2];\
|
||||
dst[2][3] = src[2][3];\
|
||||
dst[3][0] = src[3][0];\
|
||||
dst[3][1] = src[3][1];\
|
||||
dst[3][2] = src[3][2];\
|
||||
dst[3][3] = src[3][3]
|
||||
|
||||
|
||||
void Compress(hashState_echo *ctx, const unsigned char *pmsg, unsigned int uBlockCount)
|
||||
{
|
||||
unsigned int r, b, i, j;
|
||||
// __m128i t1, t2, t3, t4, s1, s2, s3, k1, ktemp;
|
||||
__m128i t1, t2, s2, k1;
|
||||
__m128i _state[4][4], _state2[4][4], _statebackup[4][4];
|
||||
unsigned int r, b, i, j;
|
||||
__m128i t1, t2, s2, k1;
|
||||
__m128i _state[4][4], _state2[4][4], _statebackup[4][4];
|
||||
|
||||
for(i = 0; i < 4; i++)
|
||||
for(j = 0; j < ctx->uHashSize / 256; j++)
|
||||
_state[i][j] = ctx->state[i][j];
|
||||
|
||||
for(i = 0; i < 4; i++)
|
||||
for(j = 0; j < ctx->uHashSize / 256; j++)
|
||||
_state[i][j] = ctx->state[i][j];
|
||||
for(b = 0; b < uBlockCount; b++)
|
||||
{
|
||||
ctx->k = _mm_add_epi64(ctx->k, ctx->const1536);
|
||||
|
||||
|
||||
#ifdef NO_AES_NI
|
||||
// transform cv
|
||||
for(i = 0; i < 4; i++)
|
||||
for(j = 0; j < ctx->uHashSize / 256; j++)
|
||||
{
|
||||
TRANSFORM(_state[i][j], _k_ipt, t1, t2);
|
||||
}
|
||||
#endif
|
||||
|
||||
for(b = 0; b < uBlockCount; b++)
|
||||
// load message
|
||||
for(j = ctx->uHashSize / 256; j < 4; j++)
|
||||
{
|
||||
ctx->k = _mm_add_epi64(ctx->k, ctx->const1536);
|
||||
|
||||
// load message
|
||||
for(j = ctx->uHashSize / 256; j < 4; j++)
|
||||
{
|
||||
for(i = 0; i < 4; i++)
|
||||
{
|
||||
_state[i][j] = _mm_loadu_si128((__m128i*)pmsg + 4 * (j - (ctx->uHashSize / 256)) + i);
|
||||
|
||||
#ifdef NO_AES_NI
|
||||
// transform message
|
||||
TRANSFORM(_state[i][j], _k_ipt, t1, t2);
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
// save state
|
||||
SAVESTATE(_statebackup, _state);
|
||||
|
||||
|
||||
k1 = ctx->k;
|
||||
|
||||
#ifndef NO_AES_NI
|
||||
for(r = 0; r < ctx->uRounds / 2; r++)
|
||||
{
|
||||
ECHO_ROUND_UNROLL2;
|
||||
}
|
||||
|
||||
#else
|
||||
for(r = 0; r < ctx->uRounds / 2; r++)
|
||||
{
|
||||
_state2[0][0] = M128(zero); _state2[1][0] = M128(zero); _state2[2][0] = M128(zero); _state2[3][0] = M128(zero);
|
||||
_state2[0][1] = M128(zero); _state2[1][1] = M128(zero); _state2[2][1] = M128(zero); _state2[3][1] = M128(zero);
|
||||
_state2[0][2] = M128(zero); _state2[1][2] = M128(zero); _state2[2][2] = M128(zero); _state2[3][2] = M128(zero);
|
||||
_state2[0][3] = M128(zero); _state2[1][3] = M128(zero); _state2[2][3] = M128(zero); _state2[3][3] = M128(zero);
|
||||
|
||||
ECHO_SUB_AND_MIX(_state, 0, 0, _state2, 0, 0, 1, 2, 3);
|
||||
ECHO_SUB_AND_MIX(_state, 1, 0, _state2, 3, 1, 2, 3, 0);
|
||||
ECHO_SUB_AND_MIX(_state, 2, 0, _state2, 2, 2, 3, 0, 1);
|
||||
ECHO_SUB_AND_MIX(_state, 3, 0, _state2, 1, 3, 0, 1, 2);
|
||||
ECHO_SUB_AND_MIX(_state, 0, 1, _state2, 1, 0, 1, 2, 3);
|
||||
ECHO_SUB_AND_MIX(_state, 1, 1, _state2, 0, 1, 2, 3, 0);
|
||||
ECHO_SUB_AND_MIX(_state, 2, 1, _state2, 3, 2, 3, 0, 1);
|
||||
ECHO_SUB_AND_MIX(_state, 3, 1, _state2, 2, 3, 0, 1, 2);
|
||||
ECHO_SUB_AND_MIX(_state, 0, 2, _state2, 2, 0, 1, 2, 3);
|
||||
ECHO_SUB_AND_MIX(_state, 1, 2, _state2, 1, 1, 2, 3, 0);
|
||||
ECHO_SUB_AND_MIX(_state, 2, 2, _state2, 0, 2, 3, 0, 1);
|
||||
ECHO_SUB_AND_MIX(_state, 3, 2, _state2, 3, 3, 0, 1, 2);
|
||||
ECHO_SUB_AND_MIX(_state, 0, 3, _state2, 3, 0, 1, 2, 3);
|
||||
ECHO_SUB_AND_MIX(_state, 1, 3, _state2, 2, 1, 2, 3, 0);
|
||||
ECHO_SUB_AND_MIX(_state, 2, 3, _state2, 1, 2, 3, 0, 1);
|
||||
ECHO_SUB_AND_MIX(_state, 3, 3, _state2, 0, 3, 0, 1, 2);
|
||||
|
||||
_state[0][0] = M128(zero); _state[1][0] = M128(zero); _state[2][0] = M128(zero); _state[3][0] = M128(zero);
|
||||
_state[0][1] = M128(zero); _state[1][1] = M128(zero); _state[2][1] = M128(zero); _state[3][1] = M128(zero);
|
||||
_state[0][2] = M128(zero); _state[1][2] = M128(zero); _state[2][2] = M128(zero); _state[3][2] = M128(zero);
|
||||
_state[0][3] = M128(zero); _state[1][3] = M128(zero); _state[2][3] = M128(zero); _state[3][3] = M128(zero);
|
||||
|
||||
ECHO_SUB_AND_MIX(_state2, 0, 0, _state, 0, 0, 1, 2, 3);
|
||||
ECHO_SUB_AND_MIX(_state2, 1, 0, _state, 3, 1, 2, 3, 0);
|
||||
ECHO_SUB_AND_MIX(_state2, 2, 0, _state, 2, 2, 3, 0, 1);
|
||||
ECHO_SUB_AND_MIX(_state2, 3, 0, _state, 1, 3, 0, 1, 2);
|
||||
ECHO_SUB_AND_MIX(_state2, 0, 1, _state, 1, 0, 1, 2, 3);
|
||||
ECHO_SUB_AND_MIX(_state2, 1, 1, _state, 0, 1, 2, 3, 0);
|
||||
ECHO_SUB_AND_MIX(_state2, 2, 1, _state, 3, 2, 3, 0, 1);
|
||||
ECHO_SUB_AND_MIX(_state2, 3, 1, _state, 2, 3, 0, 1, 2);
|
||||
ECHO_SUB_AND_MIX(_state2, 0, 2, _state, 2, 0, 1, 2, 3);
|
||||
ECHO_SUB_AND_MIX(_state2, 1, 2, _state, 1, 1, 2, 3, 0);
|
||||
ECHO_SUB_AND_MIX(_state2, 2, 2, _state, 0, 2, 3, 0, 1);
|
||||
ECHO_SUB_AND_MIX(_state2, 3, 2, _state, 3, 3, 0, 1, 2);
|
||||
ECHO_SUB_AND_MIX(_state2, 0, 3, _state, 3, 0, 1, 2, 3);
|
||||
ECHO_SUB_AND_MIX(_state2, 1, 3, _state, 2, 1, 2, 3, 0);
|
||||
ECHO_SUB_AND_MIX(_state2, 2, 3, _state, 1, 2, 3, 0, 1);
|
||||
ECHO_SUB_AND_MIX(_state2, 3, 3, _state, 0, 3, 0, 1, 2);
|
||||
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
if(ctx->uHashSize == 256)
|
||||
{
|
||||
for(i = 0; i < 4; i++)
|
||||
{
|
||||
_state[i][0] = _mm_xor_si128(_state[i][0], _state[i][1]);
|
||||
_state[i][0] = _mm_xor_si128(_state[i][0], _state[i][2]);
|
||||
_state[i][0] = _mm_xor_si128(_state[i][0], _state[i][3]);
|
||||
|
||||
_state[i][0] = _mm_xor_si128(_state[i][0], _statebackup[i][0]);
|
||||
_state[i][0] = _mm_xor_si128(_state[i][0], _statebackup[i][1]);
|
||||
_state[i][0] = _mm_xor_si128(_state[i][0], _statebackup[i][2]);
|
||||
_state[i][0] = _mm_xor_si128(_state[i][0], _statebackup[i][3]);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
for(i = 0; i < 4; i++)
|
||||
{
|
||||
_state[i][0] = _mm_xor_si128(_state[i][0], _state[i][2]);
|
||||
_state[i][1] = _mm_xor_si128(_state[i][1], _state[i][3]);
|
||||
|
||||
_state[i][0] = _mm_xor_si128(_state[i][0], _statebackup[i][0]);
|
||||
_state[i][0] = _mm_xor_si128(_state[i][0], _statebackup[i][2]);
|
||||
|
||||
_state[i][1] = _mm_xor_si128(_state[i][1], _statebackup[i][1]);
|
||||
_state[i][1] = _mm_xor_si128(_state[i][1], _statebackup[i][3]);
|
||||
}
|
||||
}
|
||||
|
||||
pmsg += ctx->uBlockLength;
|
||||
for(i = 0; i < 4; i++)
|
||||
{
|
||||
_state[i][j] = _mm_loadu_si128((__m128i*)pmsg + 4 * (j - (ctx->uHashSize / 256)) + i);
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef NO_AES_NI
|
||||
// transform state
|
||||
for(i = 0; i < 4; i++)
|
||||
for(j = 0; j < 4; j++)
|
||||
{
|
||||
TRANSFORM(_state[i][j], _k_opt, t1, t2);
|
||||
}
|
||||
#endif
|
||||
// save state
|
||||
SAVESTATE(_statebackup, _state);
|
||||
|
||||
SAVESTATE(ctx->state, _state);
|
||||
k1 = ctx->k;
|
||||
|
||||
for(r = 0; r < ctx->uRounds / 2; r++)
|
||||
{
|
||||
ECHO_ROUND_UNROLL2;
|
||||
}
|
||||
|
||||
if(ctx->uHashSize == 256)
|
||||
{
|
||||
for(i = 0; i < 4; i++)
|
||||
{
|
||||
_state[i][0] = _mm_xor_si128(_state[i][0], _state[i][1]);
|
||||
_state[i][0] = _mm_xor_si128(_state[i][0], _state[i][2]);
|
||||
_state[i][0] = _mm_xor_si128(_state[i][0], _state[i][3]);
|
||||
_state[i][0] = _mm_xor_si128(_state[i][0], _statebackup[i][0]);
|
||||
_state[i][0] = _mm_xor_si128(_state[i][0], _statebackup[i][1]);
|
||||
_state[i][0] = _mm_xor_si128(_state[i][0], _statebackup[i][2]);
|
||||
_state[i][0] = _mm_xor_si128(_state[i][0], _statebackup[i][3]);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
for(i = 0; i < 4; i++)
|
||||
{
|
||||
_state[i][0] = _mm_xor_si128(_state[i][0], _state[i][2]);
|
||||
_state[i][1] = _mm_xor_si128(_state[i][1], _state[i][3]);
|
||||
_state[i][0] = _mm_xor_si128(_state[i][0], _statebackup[i][0]);
|
||||
_state[i][0] = _mm_xor_si128(_state[i][0], _statebackup[i][2]);
|
||||
_state[i][1] = _mm_xor_si128(_state[i][1], _statebackup[i][1]);
|
||||
_state[i][1] = _mm_xor_si128(_state[i][1], _statebackup[i][3]);
|
||||
}
|
||||
}
|
||||
pmsg += ctx->uBlockLength;
|
||||
}
|
||||
SAVESTATE(ctx->state, _state);
|
||||
|
||||
}
|
||||
|
||||
|
@@ -30,6 +30,7 @@
|
||||
typedef struct
|
||||
{
|
||||
__m128i state[4][4];
|
||||
BitSequence buffer[192];
|
||||
__m128i k;
|
||||
__m128i hashsize;
|
||||
__m128i const1536;
|
||||
@@ -39,9 +40,8 @@ typedef struct
|
||||
unsigned int uBlockLength;
|
||||
unsigned int uBufferBytes;
|
||||
DataLength processed_bits;
|
||||
BitSequence buffer[192];
|
||||
|
||||
} hashState_echo;
|
||||
} hashState_echo __attribute__ ((aligned (64)));
|
||||
|
||||
HashReturn init_echo(hashState_echo *state, int hashbitlen);
|
||||
|
||||
|
File diff suppressed because it is too large
Load Diff
@@ -1,320 +0,0 @@
|
||||
/* $Id: sph_echo.h 216 2010-06-08 09:46:57Z tp $ */
|
||||
/**
|
||||
* ECHO interface. ECHO is a family of functions which differ by
|
||||
* their output size; this implementation defines ECHO for output
|
||||
* sizes 224, 256, 384 and 512 bits.
|
||||
*
|
||||
* ==========================(LICENSE BEGIN)============================
|
||||
*
|
||||
* Copyright (c) 2007-2010 Projet RNRT SAPHIR
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining
|
||||
* a copy of this software and associated documentation files (the
|
||||
* "Software"), to deal in the Software without restriction, including
|
||||
* without limitation the rights to use, copy, modify, merge, publish,
|
||||
* distribute, sublicense, and/or sell copies of the Software, and to
|
||||
* permit persons to whom the Software is furnished to do so, subject to
|
||||
* the following conditions:
|
||||
*
|
||||
* The above copyright notice and this permission notice shall be
|
||||
* included in all copies or substantial portions of the Software.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
||||
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
||||
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
|
||||
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
|
||||
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
|
||||
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
|
||||
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
||||
*
|
||||
* ===========================(LICENSE END)=============================
|
||||
*
|
||||
* @file sph_echo.h
|
||||
* @author Thomas Pornin <thomas.pornin@cryptolog.com>
|
||||
*/
|
||||
|
||||
#ifndef SPH_ECHO_H__
|
||||
#define SPH_ECHO_H__
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C"{
|
||||
#endif
|
||||
|
||||
#include <stddef.h>
|
||||
#include "algo/sha/sph_types.h"
|
||||
|
||||
/**
|
||||
* Output size (in bits) for ECHO-224.
|
||||
*/
|
||||
#define SPH_SIZE_echo224 224
|
||||
|
||||
/**
|
||||
* Output size (in bits) for ECHO-256.
|
||||
*/
|
||||
#define SPH_SIZE_echo256 256
|
||||
|
||||
/**
|
||||
* Output size (in bits) for ECHO-384.
|
||||
*/
|
||||
#define SPH_SIZE_echo384 384
|
||||
|
||||
/**
|
||||
* Output size (in bits) for ECHO-512.
|
||||
*/
|
||||
#define SPH_SIZE_echo512 512
|
||||
|
||||
/**
|
||||
* This structure is a context for ECHO computations: it contains the
|
||||
* intermediate values and some data from the last entered block. Once
|
||||
* an ECHO computation has been performed, the context can be reused for
|
||||
* another computation. This specific structure is used for ECHO-224
|
||||
* and ECHO-256.
|
||||
*
|
||||
* The contents of this structure are private. A running ECHO computation
|
||||
* can be cloned by copying the context (e.g. with a simple
|
||||
* <code>memcpy()</code>).
|
||||
*/
|
||||
typedef struct {
|
||||
#ifndef DOXYGEN_IGNORE
|
||||
unsigned char buf[192]; /* first field, for alignment */
|
||||
size_t ptr;
|
||||
union {
|
||||
sph_u32 Vs[4][4];
|
||||
#if SPH_64
|
||||
sph_u64 Vb[4][2];
|
||||
#endif
|
||||
} u;
|
||||
sph_u32 C0, C1, C2, C3;
|
||||
#endif
|
||||
} sph_echo_small_context;
|
||||
|
||||
/**
|
||||
* This structure is a context for ECHO computations: it contains the
|
||||
* intermediate values and some data from the last entered block. Once
|
||||
* an ECHO computation has been performed, the context can be reused for
|
||||
* another computation. This specific structure is used for ECHO-384
|
||||
* and ECHO-512.
|
||||
*
|
||||
* The contents of this structure are private. A running ECHO computation
|
||||
* can be cloned by copying the context (e.g. with a simple
|
||||
* <code>memcpy()</code>).
|
||||
*/
|
||||
typedef struct {
|
||||
#ifndef DOXYGEN_IGNORE
|
||||
unsigned char buf[128]; /* first field, for alignment */
|
||||
size_t ptr;
|
||||
union {
|
||||
sph_u32 Vs[8][4];
|
||||
#if SPH_64
|
||||
sph_u64 Vb[8][2];
|
||||
#endif
|
||||
} u;
|
||||
sph_u32 C0, C1, C2, C3;
|
||||
#endif
|
||||
} sph_echo_big_context;
|
||||
|
||||
/**
|
||||
* Type for a ECHO-224 context (identical to the common "small" context).
|
||||
*/
|
||||
typedef sph_echo_small_context sph_echo224_context;
|
||||
|
||||
/**
|
||||
* Type for a ECHO-256 context (identical to the common "small" context).
|
||||
*/
|
||||
typedef sph_echo_small_context sph_echo256_context;
|
||||
|
||||
/**
|
||||
* Type for a ECHO-384 context (identical to the common "big" context).
|
||||
*/
|
||||
typedef sph_echo_big_context sph_echo384_context;
|
||||
|
||||
/**
|
||||
* Type for a ECHO-512 context (identical to the common "big" context).
|
||||
*/
|
||||
typedef sph_echo_big_context sph_echo512_context;
|
||||
|
||||
/**
|
||||
* Initialize an ECHO-224 context. This process performs no memory allocation.
|
||||
*
|
||||
* @param cc the ECHO-224 context (pointer to a
|
||||
* <code>sph_echo224_context</code>)
|
||||
*/
|
||||
void sph_echo224_init(void *cc);
|
||||
|
||||
/**
|
||||
* Process some data bytes. It is acceptable that <code>len</code> is zero
|
||||
* (in which case this function does nothing).
|
||||
*
|
||||
* @param cc the ECHO-224 context
|
||||
* @param data the input data
|
||||
* @param len the input data length (in bytes)
|
||||
*/
|
||||
void sph_echo224(void *cc, const void *data, size_t len);
|
||||
|
||||
/**
|
||||
* Terminate the current ECHO-224 computation and output the result into
|
||||
* the provided buffer. The destination buffer must be wide enough to
|
||||
* accomodate the result (28 bytes). The context is automatically
|
||||
* reinitialized.
|
||||
*
|
||||
* @param cc the ECHO-224 context
|
||||
* @param dst the destination buffer
|
||||
*/
|
||||
void sph_echo224_close(void *cc, void *dst);
|
||||
|
||||
/**
|
||||
* Add a few additional bits (0 to 7) to the current computation, then
|
||||
* terminate it and output the result in the provided buffer, which must
|
||||
* be wide enough to accomodate the result (28 bytes). If bit number i
|
||||
* in <code>ub</code> has value 2^i, then the extra bits are those
|
||||
* numbered 7 downto 8-n (this is the big-endian convention at the byte
|
||||
* level). The context is automatically reinitialized.
|
||||
*
|
||||
* @param cc the ECHO-224 context
|
||||
* @param ub the extra bits
|
||||
* @param n the number of extra bits (0 to 7)
|
||||
* @param dst the destination buffer
|
||||
*/
|
||||
void sph_echo224_addbits_and_close(
|
||||
void *cc, unsigned ub, unsigned n, void *dst);
|
||||
|
||||
/**
|
||||
* Initialize an ECHO-256 context. This process performs no memory allocation.
|
||||
*
|
||||
* @param cc the ECHO-256 context (pointer to a
|
||||
* <code>sph_echo256_context</code>)
|
||||
*/
|
||||
void sph_echo256_init(void *cc);
|
||||
|
||||
/**
|
||||
* Process some data bytes. It is acceptable that <code>len</code> is zero
|
||||
* (in which case this function does nothing).
|
||||
*
|
||||
* @param cc the ECHO-256 context
|
||||
* @param data the input data
|
||||
* @param len the input data length (in bytes)
|
||||
*/
|
||||
void sph_echo256(void *cc, const void *data, size_t len);
|
||||
|
||||
/**
|
||||
* Terminate the current ECHO-256 computation and output the result into
|
||||
* the provided buffer. The destination buffer must be wide enough to
|
||||
* accomodate the result (32 bytes). The context is automatically
|
||||
* reinitialized.
|
||||
*
|
||||
* @param cc the ECHO-256 context
|
||||
* @param dst the destination buffer
|
||||
*/
|
||||
void sph_echo256_close(void *cc, void *dst);
|
||||
|
||||
/**
|
||||
* Add a few additional bits (0 to 7) to the current computation, then
|
||||
* terminate it and output the result in the provided buffer, which must
|
||||
* be wide enough to accomodate the result (32 bytes). If bit number i
|
||||
* in <code>ub</code> has value 2^i, then the extra bits are those
|
||||
* numbered 7 downto 8-n (this is the big-endian convention at the byte
|
||||
* level). The context is automatically reinitialized.
|
||||
*
|
||||
* @param cc the ECHO-256 context
|
||||
* @param ub the extra bits
|
||||
* @param n the number of extra bits (0 to 7)
|
||||
* @param dst the destination buffer
|
||||
*/
|
||||
void sph_echo256_addbits_and_close(
|
||||
void *cc, unsigned ub, unsigned n, void *dst);
|
||||
|
||||
/**
|
||||
* Initialize an ECHO-384 context. This process performs no memory allocation.
|
||||
*
|
||||
* @param cc the ECHO-384 context (pointer to a
|
||||
* <code>sph_echo384_context</code>)
|
||||
*/
|
||||
void sph_echo384_init(void *cc);
|
||||
|
||||
/**
|
||||
* Process some data bytes. It is acceptable that <code>len</code> is zero
|
||||
* (in which case this function does nothing).
|
||||
*
|
||||
* @param cc the ECHO-384 context
|
||||
* @param data the input data
|
||||
* @param len the input data length (in bytes)
|
||||
*/
|
||||
void sph_echo384(void *cc, const void *data, size_t len);
|
||||
|
||||
/**
|
||||
* Terminate the current ECHO-384 computation and output the result into
|
||||
* the provided buffer. The destination buffer must be wide enough to
|
||||
* accomodate the result (48 bytes). The context is automatically
|
||||
* reinitialized.
|
||||
*
|
||||
* @param cc the ECHO-384 context
|
||||
* @param dst the destination buffer
|
||||
*/
|
||||
void sph_echo384_close(void *cc, void *dst);
|
||||
|
||||
/**
|
||||
* Add a few additional bits (0 to 7) to the current computation, then
|
||||
* terminate it and output the result in the provided buffer, which must
|
||||
* be wide enough to accomodate the result (48 bytes). If bit number i
|
||||
* in <code>ub</code> has value 2^i, then the extra bits are those
|
||||
* numbered 7 downto 8-n (this is the big-endian convention at the byte
|
||||
* level). The context is automatically reinitialized.
|
||||
*
|
||||
* @param cc the ECHO-384 context
|
||||
* @param ub the extra bits
|
||||
* @param n the number of extra bits (0 to 7)
|
||||
* @param dst the destination buffer
|
||||
*/
|
||||
void sph_echo384_addbits_and_close(
|
||||
void *cc, unsigned ub, unsigned n, void *dst);
|
||||
|
||||
/**
|
||||
* Initialize an ECHO-512 context. This process performs no memory allocation.
|
||||
*
|
||||
* @param cc the ECHO-512 context (pointer to a
|
||||
* <code>sph_echo512_context</code>)
|
||||
*/
|
||||
void sph_echo512_init(void *cc);
|
||||
|
||||
/**
|
||||
* Process some data bytes. It is acceptable that <code>len</code> is zero
|
||||
* (in which case this function does nothing).
|
||||
*
|
||||
* @param cc the ECHO-512 context
|
||||
* @param data the input data
|
||||
* @param len the input data length (in bytes)
|
||||
*/
|
||||
void sph_echo512(void *cc, const void *data, size_t len);
|
||||
|
||||
/**
|
||||
* Terminate the current ECHO-512 computation and output the result into
|
||||
* the provided buffer. The destination buffer must be wide enough to
|
||||
* accomodate the result (64 bytes). The context is automatically
|
||||
* reinitialized.
|
||||
*
|
||||
* @param cc the ECHO-512 context
|
||||
* @param dst the destination buffer
|
||||
*/
|
||||
void sph_echo512_close(void *cc, void *dst);
|
||||
|
||||
/**
|
||||
* Add a few additional bits (0 to 7) to the current computation, then
|
||||
* terminate it and output the result in the provided buffer, which must
|
||||
* be wide enough to accomodate the result (64 bytes). If bit number i
|
||||
* in <code>ub</code> has value 2^i, then the extra bits are those
|
||||
* numbered 7 downto 8-n (this is the big-endian convention at the byte
|
||||
* level). The context is automatically reinitialized.
|
||||
*
|
||||
* @param cc the ECHO-512 context
|
||||
* @param ub the extra bits
|
||||
* @param n the number of extra bits (0 to 7)
|
||||
* @param dst the destination buffer
|
||||
*/
|
||||
void sph_echo512_addbits_and_close(
|
||||
void *cc, unsigned ub, unsigned n, void *dst);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif
|
@@ -33,7 +33,7 @@ void myriad_4way_hash( void *output, const void *input )
|
||||
myrgr_4way_ctx_holder ctx;
|
||||
memcpy( &ctx, &myrgr_4way_ctx, sizeof(myrgr_4way_ctx) );
|
||||
|
||||
mm_deinterleave_4x32( hash0, hash1, hash2, hash3, input, 640 );
|
||||
mm128_deinterleave_4x32( hash0, hash1, hash2, hash3, input, 640 );
|
||||
|
||||
update_and_final_groestl( &ctx.groestl, (char*)hash0, (char*)hash0, 640 );
|
||||
memcpy( &ctx.groestl, &myrgr_4way_ctx.groestl, sizeof(hashState_groestl) );
|
||||
@@ -43,12 +43,12 @@ void myriad_4way_hash( void *output, const void *input )
|
||||
memcpy( &ctx.groestl, &myrgr_4way_ctx.groestl, sizeof(hashState_groestl) );
|
||||
update_and_final_groestl( &ctx.groestl, (char*)hash3, (char*)hash3, 640 );
|
||||
|
||||
mm_interleave_4x32( vhash, hash0, hash1, hash2, hash3, 512 );
|
||||
mm128_interleave_4x32( vhash, hash0, hash1, hash2, hash3, 512 );
|
||||
|
||||
sha256_4way( &ctx.sha, vhash, 64 );
|
||||
sha256_4way_close( &ctx.sha, vhash );
|
||||
|
||||
mm_deinterleave_4x32( output, output+32, output+64, output+96,
|
||||
mm128_deinterleave_4x32( output, output+32, output+64, output+96,
|
||||
vhash, 256 );
|
||||
}
|
||||
|
||||
@@ -79,7 +79,7 @@ int scanhash_myriad_4way( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
( (uint32_t*)ptarget )[7] = 0x0000ff;
|
||||
|
||||
swab32_array( edata, pdata, 20 );
|
||||
mm_interleave_4x32( vdata, edata, edata, edata, edata, 640 );
|
||||
mm128_interleave_4x32( vdata, edata, edata, edata, edata, 640 );
|
||||
|
||||
do {
|
||||
be32enc( noncep, n );
|
||||
|
@@ -83,7 +83,7 @@ extern "C"{
|
||||
_mm_xor_si128( _mm_xor_si128( _mm_and_si128( x1, x2 ), \
|
||||
_mm_or_si128( x4, x6 ) ), x5 ) ), \
|
||||
_mm_and_si128( x4, \
|
||||
_mm_xor_si128( _mm_xor_si128( _mm_and_si128( mm_not(x2), x5 ), \
|
||||
_mm_xor_si128( _mm_xor_si128( _mm_and_si128( mm128_not(x2), x5 ), \
|
||||
_mm_xor_si128( x1, x6 ) ), x0 ) ) ), \
|
||||
_mm_xor_si128( _mm_and_si128( x2, x6 ), x0 ) )
|
||||
|
||||
@@ -91,7 +91,7 @@ extern "C"{
|
||||
#define F5(x6, x5, x4, x3, x2, x1, x0) \
|
||||
_mm_xor_si128( \
|
||||
_mm_and_si128( x0, \
|
||||
mm_not( _mm_xor_si128( \
|
||||
mm128_not( _mm_xor_si128( \
|
||||
_mm_and_si128( _mm_and_si128( x1, x2 ), x3 ), x5 ) ) ), \
|
||||
_mm_xor_si128( _mm_xor_si128( _mm_and_si128( x1, x4 ), \
|
||||
_mm_and_si128( x2, x5 ) ), \
|
||||
@@ -136,8 +136,8 @@ extern "C"{
|
||||
#define STEP(n, p, x7, x6, x5, x4, x3, x2, x1, x0, w, c) \
|
||||
do { \
|
||||
__m128i t = FP ## n ## _ ## p(x6, x5, x4, x3, x2, x1, x0); \
|
||||
x7 = _mm_add_epi32( _mm_add_epi32( mm_ror_32( t, 7 ), \
|
||||
mm_ror_32( x7, 11 ) ), \
|
||||
x7 = _mm_add_epi32( _mm_add_epi32( mm128_ror_32( t, 7 ), \
|
||||
mm128_ror_32( x7, 11 ) ), \
|
||||
_mm_add_epi32( w, _mm_set1_epi32( c ) ) ); \
|
||||
} while (0)
|
||||
|
||||
|
@@ -3,7 +3,7 @@
|
||||
#include "wolf-aes.h"
|
||||
#include "miner.h"
|
||||
|
||||
#ifndef NO_AES_NI
|
||||
#if defined(__AES__)
|
||||
|
||||
static inline void ExpandAESKey256_sub1(__m128i *tmp1, __m128i *tmp2)
|
||||
{
|
||||
@@ -151,7 +151,7 @@ void AES256CBC(__m128i** data, const __m128i** next, __m128i ExpandedKey[][16],
|
||||
}
|
||||
}
|
||||
|
||||
#else // NO AVX
|
||||
#else // NO SSE4.2
|
||||
|
||||
static inline __m128i AES256Core(__m128i State, const __m128i *ExpandedKey)
|
||||
{
|
||||
|
@@ -101,39 +101,6 @@ void hodl_build_block_header( struct work* g_work, uint32_t version,
|
||||
g_work->data[31] = 0x00000280;
|
||||
}
|
||||
|
||||
// hodl build_extra_header is redundant, hodl can use std_build_extra_header
|
||||
// and call hodl_build_block_header.
|
||||
#if 0
|
||||
void hodl_build_extraheader( struct work* g_work, struct stratum_ctx *sctx )
|
||||
{
|
||||
uchar merkle_tree[64] = { 0 };
|
||||
size_t t;
|
||||
// int i;
|
||||
|
||||
algo_gate.gen_merkle_root( merkle_tree, sctx );
|
||||
// Increment extranonce2
|
||||
for ( t = 0; t < sctx->xnonce2_size && !( ++sctx->job.xnonce2[t] ); t++ );
|
||||
|
||||
algo_gate.build_block_header( g_work, le32dec( sctx->job.version ),
|
||||
(uint32_t*) sctx->job.prevhash, (uint32_t*) merkle_tree,
|
||||
le32dec( sctx->job.ntime ), le32dec( sctx->job.nbits ) );
|
||||
/*
|
||||
// Assemble block header
|
||||
memset( g_work->data, 0, sizeof(g_work->data) );
|
||||
g_work->data[0] = le32dec( sctx->job.version );
|
||||
for ( i = 0; i < 8; i++ )
|
||||
g_work->data[1 + i] = le32dec( (uint32_t *) sctx->job.prevhash + i );
|
||||
for ( i = 0; i < 8; i++ )
|
||||
g_work->data[9 + i] = be32dec( (uint32_t *) merkle_root + i );
|
||||
|
||||
g_work->data[ algo_gate.ntime_index ] = le32dec( sctx->job.ntime );
|
||||
g_work->data[ algo_gate.nbits_index ] = le32dec( sctx->job.nbits );
|
||||
g_work->data[22] = 0x80000000;
|
||||
g_work->data[31] = 0x00000280;
|
||||
*/
|
||||
}
|
||||
#endif
|
||||
|
||||
// called only by thread 0, saves a backup of g_work
|
||||
void hodl_get_new_work( struct work* work, struct work* g_work)
|
||||
{
|
||||
@@ -179,7 +146,7 @@ bool hodl_do_this_thread( int thr_id )
|
||||
int hodl_scanhash( int thr_id, struct work* work, uint32_t max_nonce,
|
||||
uint64_t *hashes_done )
|
||||
{
|
||||
#ifndef NO_AES_NI
|
||||
#if defined(__AES__)
|
||||
GenRandomGarbage( (CacheEntry*)hodl_scratchbuf, work->data, thr_id );
|
||||
pthread_barrier_wait( &hodl_barrier );
|
||||
return scanhash_hodl_wolf( thr_id, work, max_nonce, hashes_done );
|
||||
@@ -189,7 +156,7 @@ int hodl_scanhash( int thr_id, struct work* work, uint32_t max_nonce,
|
||||
|
||||
bool register_hodl_algo( algo_gate_t* gate )
|
||||
{
|
||||
#ifdef NO_AES_NI
|
||||
#if defined(__AES__)
|
||||
applog( LOG_ERR, "Only CPUs with AES are supported, use legacy version.");
|
||||
return false;
|
||||
#endif
|
||||
@@ -207,7 +174,6 @@ bool register_hodl_algo( algo_gate_t* gate )
|
||||
gate->build_stratum_request = (void*)&hodl_le_build_stratum_request;
|
||||
gate->malloc_txs_request = (void*)&hodl_malloc_txs_request;
|
||||
gate->build_block_header = (void*)&hodl_build_block_header;
|
||||
// gate->build_extraheader = (void*)&hodl_build_extraheader;
|
||||
gate->resync_threads = (void*)&hodl_resync_threads;
|
||||
gate->do_this_thread = (void*)&hodl_do_this_thread;
|
||||
gate->work_cmp_size = 76;
|
||||
|
@@ -8,7 +8,7 @@
|
||||
#include "hodl-wolf.h"
|
||||
#include "miner.h"
|
||||
|
||||
#ifndef NO_AES_NI
|
||||
#if defined(__AES__)
|
||||
|
||||
void GenerateGarbageCore( CacheEntry *Garbage, int ThreadID, int ThreadCount,
|
||||
void *MidHash )
|
||||
@@ -139,7 +139,7 @@ int scanhash_hodl_wolf( int threadNumber, struct work* work, uint32_t max_nonce,
|
||||
return(0);
|
||||
|
||||
|
||||
#else // no AVX
|
||||
#else // no SSE4.2
|
||||
|
||||
uint32_t *pdata = work->data;
|
||||
uint32_t *ptarget = work->target;
|
||||
@@ -160,7 +160,6 @@ int scanhash_hodl_wolf( int threadNumber, struct work* work, uint32_t max_nonce,
|
||||
{
|
||||
// copy data to first l2 cache
|
||||
memcpy(Cache.dwords, Garbage + k, GARBAGE_SLICE_SIZE);
|
||||
#ifndef NO_AES_NI
|
||||
for(int j = 0; j < AES_ITERATIONS; j++)
|
||||
{
|
||||
CacheEntry TmpXOR;
|
||||
@@ -184,7 +183,6 @@ int scanhash_hodl_wolf( int threadNumber, struct work* work, uint32_t max_nonce,
|
||||
AES256CBC( Cache.dqwords, TmpXOR.dqwords, ExpKey,
|
||||
TmpXOR.dqwords[ (GARBAGE_SLICE_SIZE / sizeof(__m128i))
|
||||
- 1 ], 256 ); }
|
||||
#endif
|
||||
// use last X bits as solution
|
||||
if( ( Cache.dwords[ (GARBAGE_SLICE_SIZE >> 2) - 1 ]
|
||||
& (COMPARE_SIZE - 1) ) < 1000 )
|
||||
@@ -206,7 +204,7 @@ int scanhash_hodl_wolf( int threadNumber, struct work* work, uint32_t max_nonce,
|
||||
*hashes_done = CollisionCount;
|
||||
return(0);
|
||||
|
||||
#endif
|
||||
#endif // SSE4.2 else
|
||||
|
||||
}
|
||||
|
||||
@@ -218,5 +216,5 @@ void GenRandomGarbage(CacheEntry *Garbage, uint32_t *pdata, int thr_id)
|
||||
GenerateGarbageCore(Garbage, thr_id, opt_n_threads, MidHash);
|
||||
}
|
||||
|
||||
#endif
|
||||
#endif // AES
|
||||
|
||||
|
@@ -22,16 +22,20 @@ typedef struct
|
||||
#ifdef __AVX2__
|
||||
__m256i h[8];
|
||||
__m256i w[80];
|
||||
#else // AVX
|
||||
#elif defined(__SSE4_2__)
|
||||
__m128i h[8];
|
||||
__m128i w[80];
|
||||
#else
|
||||
int dummy;
|
||||
#endif
|
||||
} Sha512Context;
|
||||
|
||||
#ifdef __AVX2__
|
||||
#define SHA512_PARALLEL_N 8
|
||||
#else // AVX
|
||||
#elif defined(__SSE$_2__)
|
||||
#define SHA512_PARALLEL_N 4
|
||||
#else
|
||||
#define SHA512_PARALLEL_N 1 // dummy value
|
||||
#endif
|
||||
|
||||
//SHA-512 related functions
|
||||
|
@@ -1,4 +1,5 @@
|
||||
#ifndef __AVX2__
|
||||
|
||||
#ifdef __SSE4_2__
|
||||
//#ifdef __AVX__
|
||||
|
||||
@@ -10,6 +11,10 @@
|
||||
#include <sys/endian.h>
|
||||
#endif
|
||||
|
||||
#if defined(__CYGWIN__)
|
||||
#include <endian.h>
|
||||
#endif
|
||||
|
||||
#include "tmmintrin.h"
|
||||
#include "smmintrin.h"
|
||||
|
||||
|
@@ -8,6 +8,10 @@
|
||||
#include <sys/endian.h>
|
||||
#endif
|
||||
|
||||
#if defined(__CYGWIN__)
|
||||
#include <endian.h>
|
||||
#endif
|
||||
|
||||
#include "tmmintrin.h"
|
||||
#include "smmintrin.h"
|
||||
#include "immintrin.h"
|
||||
|
@@ -10,14 +10,10 @@
|
||||
|
||||
void keccakhash_4way(void *state, const void *input)
|
||||
{
|
||||
uint64_t vhash[4*4] __attribute__ ((aligned (64)));
|
||||
keccak256_4way_context ctx;
|
||||
|
||||
keccak256_4way_init( &ctx );
|
||||
keccak256_4way( &ctx, input, 80 );
|
||||
keccak256_4way_close( &ctx, vhash );
|
||||
|
||||
mm256_deinterleave_4x64( state, state+32, state+64, state+96, vhash, 256 );
|
||||
keccak256_4way_close( &ctx, state );
|
||||
}
|
||||
|
||||
int scanhash_keccak_4way( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
@@ -25,6 +21,8 @@ int scanhash_keccak_4way( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
{
|
||||
uint32_t vdata[24*4] __attribute__ ((aligned (64)));
|
||||
uint32_t hash[8*4] __attribute__ ((aligned (32)));
|
||||
uint32_t *hash7 = &(hash[25]); // 3*8+1
|
||||
uint32_t lane_hash[8];
|
||||
uint32_t *pdata = work->data;
|
||||
uint32_t *ptarget = work->target;
|
||||
uint32_t n = pdata[19];
|
||||
@@ -49,13 +47,16 @@ int scanhash_keccak_4way( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
|
||||
keccakhash_4way( hash, vdata );
|
||||
|
||||
for ( int i = 0; i < 4; i++ )
|
||||
if ( ( ( (hash+(i<<3))[7] & 0xFFFFFF00 ) == 0 )
|
||||
&& fulltest( hash+(i<<3), ptarget ) )
|
||||
for ( int lane = 0; lane < 4; lane++ )
|
||||
if ( ( ( hash7[ lane<<1 ] & 0xFFFFFF00 ) == 0 ) )
|
||||
{
|
||||
pdata[19] = n+i;
|
||||
nonces[ num_found++ ] = n+i;
|
||||
work_set_target_ratio( work, hash+(i<<3) );
|
||||
mm256_extract_lane_4x64( lane_hash, hash, lane, 256 );
|
||||
if ( fulltest( lane_hash, ptarget ) )
|
||||
{
|
||||
pdata[19] = n + lane;
|
||||
nonces[ num_found++ ] = n + lane;
|
||||
work_set_target_ratio( work, lane_hash );
|
||||
}
|
||||
}
|
||||
n += 4;
|
||||
|
||||
|
@@ -91,7 +91,7 @@ extern "C"{
|
||||
#pragma warning (disable: 4146)
|
||||
#endif
|
||||
|
||||
|
||||
/*
|
||||
static const sph_u64 RC[] = {
|
||||
SPH_C64(0x0000000000000001), SPH_C64(0x0000000000008082),
|
||||
SPH_C64(0x800000000000808A), SPH_C64(0x8000000080008000),
|
||||
@@ -106,7 +106,7 @@ static const sph_u64 RC[] = {
|
||||
SPH_C64(0x8000000080008081), SPH_C64(0x8000000000008080),
|
||||
SPH_C64(0x0000000080000001), SPH_C64(0x8000000080008008)
|
||||
};
|
||||
|
||||
*/
|
||||
#define kekDECL_STATE \
|
||||
sph_u64 keca00, keca01, keca02, keca03, keca04; \
|
||||
sph_u64 keca10, keca11, keca12, keca13, keca14; \
|
||||
@@ -756,6 +756,20 @@ static const sph_u64 RC[] = {
|
||||
* tested faster saving space
|
||||
*/
|
||||
#define KECCAK_F_1600_ do { \
|
||||
static const sph_u64 RC[] = { \
|
||||
SPH_C64(0x0000000000000001), SPH_C64(0x0000000000008082), \
|
||||
SPH_C64(0x800000000000808A), SPH_C64(0x8000000080008000), \
|
||||
SPH_C64(0x000000000000808B), SPH_C64(0x0000000080000001), \
|
||||
SPH_C64(0x8000000080008081), SPH_C64(0x8000000000008009), \
|
||||
SPH_C64(0x000000000000008A), SPH_C64(0x0000000000000088), \
|
||||
SPH_C64(0x0000000080008009), SPH_C64(0x000000008000000A), \
|
||||
SPH_C64(0x000000008000808B), SPH_C64(0x800000000000008B), \
|
||||
SPH_C64(0x8000000000008089), SPH_C64(0x8000000000008003), \
|
||||
SPH_C64(0x8000000000008002), SPH_C64(0x8000000000000080), \
|
||||
SPH_C64(0x000000000000800A), SPH_C64(0x800000008000000A), \
|
||||
SPH_C64(0x8000000080008081), SPH_C64(0x8000000000008080), \
|
||||
SPH_C64(0x0000000080000001), SPH_C64(0x8000000080008008) \
|
||||
}; \
|
||||
int j; \
|
||||
for (j = 0; j < 24; j += 4) { \
|
||||
KF_ELT( 0, 1, RC[j + 0]); \
|
||||
@@ -791,7 +805,7 @@ static const sph_u64 RC[] = {
|
||||
/* load initial constants */
|
||||
#define KEC_I
|
||||
|
||||
static unsigned char keczword[8] = { 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80 };
|
||||
//static unsigned char keczword[8] = { 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80 };
|
||||
/*
|
||||
unsigned char keczword[8] = { 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80 }; \
|
||||
*/
|
||||
@@ -799,6 +813,7 @@ static unsigned char keczword[8] = { 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0
|
||||
/* load hash for loop */
|
||||
#define KEC_U \
|
||||
do { \
|
||||
static unsigned char keczword[8] = { 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80 }; \
|
||||
/*memcpy(hashbuf, hash, 64); */ \
|
||||
memcpy(hash + 64, keczword, 8); \
|
||||
} while (0);
|
||||
|
@@ -30,6 +30,19 @@
|
||||
a1 = _mm_or_si128( _mm_srli_si128(a1,4), _mm_slli_si128(b,12) ); \
|
||||
} while(0)
|
||||
|
||||
/*
|
||||
static inline __m256i mult2_avx2( a )
|
||||
{
|
||||
__m128 a0, a0, b;
|
||||
a0 = mm128_extractlo_256( a );
|
||||
a1 = mm128_extracthi_256( a );
|
||||
b = _mm_xor_si128( a0, _mm_shuffle_epi32( _mm_and_si128(a1,MASK), 16 ) );
|
||||
a0 = _mm_or_si128( _mm_srli_si128(b,4), _mm_slli_si128(a1,12) );
|
||||
a1 = _mm_or_si128( _mm_srli_si128(a1,4), _mm_slli_si128(b,12) );
|
||||
return mm256_concat_128( a1, a0 );
|
||||
}
|
||||
*/
|
||||
|
||||
#define STEP_PART(x,c,t)\
|
||||
SUBCRUMB(*x,*(x+1),*(x+2),*(x+3),*t);\
|
||||
SUBCRUMB(*(x+5),*(x+6),*(x+7),*(x+4),*t);\
|
||||
@@ -272,8 +285,8 @@ HashReturn update_luffa( hashState_luffa *state, const BitSequence *data,
|
||||
// full blocks
|
||||
for ( i = 0; i < blocks; i++ )
|
||||
{
|
||||
rnd512( state, mm_bswap_32( casti_m128i( data, 1 ) ),
|
||||
mm_bswap_32( casti_m128i( data, 0 ) ) );
|
||||
rnd512( state, mm128_bswap_32( casti_m128i( data, 1 ) ),
|
||||
mm128_bswap_32( casti_m128i( data, 0 ) ) );
|
||||
data += MSG_BLOCK_BYTE_LEN;
|
||||
}
|
||||
|
||||
@@ -282,7 +295,7 @@ HashReturn update_luffa( hashState_luffa *state, const BitSequence *data,
|
||||
if ( state->rembytes )
|
||||
{
|
||||
// remaining data bytes
|
||||
casti_m128i( state->buffer, 0 ) = mm_bswap_32( cast_m128i( data ) );
|
||||
casti_m128i( state->buffer, 0 ) = mm128_bswap_32( cast_m128i( data ) );
|
||||
// padding of partial block
|
||||
casti_m128i( state->buffer, 1 ) =
|
||||
_mm_set_epi8( 0,0,0,0, 0,0,0,0, 0,0,0,0, 0x80,0,0,0 );
|
||||
@@ -324,8 +337,8 @@ HashReturn update_and_final_luffa( hashState_luffa *state, BitSequence* output,
|
||||
// full blocks
|
||||
for ( i = 0; i < blocks; i++ )
|
||||
{
|
||||
rnd512( state, mm_bswap_32( casti_m128i( data, 1 ) ),
|
||||
mm_bswap_32( casti_m128i( data, 0 ) ) );
|
||||
rnd512( state, mm128_bswap_32( casti_m128i( data, 1 ) ),
|
||||
mm128_bswap_32( casti_m128i( data, 0 ) ) );
|
||||
data += MSG_BLOCK_BYTE_LEN;
|
||||
}
|
||||
|
||||
@@ -334,7 +347,7 @@ HashReturn update_and_final_luffa( hashState_luffa *state, BitSequence* output,
|
||||
{
|
||||
// padding of partial block
|
||||
rnd512( state, _mm_set_epi8( 0,0,0,0, 0,0,0,0, 0,0,0,0, 0x80,0,0,0 ),
|
||||
mm_bswap_32( cast_m128i( data ) ) );
|
||||
mm128_bswap_32( cast_m128i( data ) ) );
|
||||
}
|
||||
else
|
||||
{
|
||||
@@ -587,8 +600,8 @@ static void finalization512( hashState_luffa *state, uint32 *b )
|
||||
_mm_store_si128((__m128i*)&hash[0], t[0]);
|
||||
_mm_store_si128((__m128i*)&hash[4], t[1]);
|
||||
|
||||
casti_m128i( b, 0 ) = mm_bswap_32( casti_m128i( hash, 0 ) );
|
||||
casti_m128i( b, 1 ) = mm_bswap_32( casti_m128i( hash, 1 ) );
|
||||
casti_m128i( b, 0 ) = mm128_bswap_32( casti_m128i( hash, 0 ) );
|
||||
casti_m128i( b, 1 ) = mm128_bswap_32( casti_m128i( hash, 1 ) );
|
||||
|
||||
rnd512( state, zero, zero );
|
||||
|
||||
@@ -609,8 +622,8 @@ static void finalization512( hashState_luffa *state, uint32 *b )
|
||||
_mm_store_si128((__m128i*)&hash[0], t[0]);
|
||||
_mm_store_si128((__m128i*)&hash[4], t[1]);
|
||||
|
||||
casti_m128i( b, 2 ) = mm_bswap_32( casti_m128i( hash, 0 ) );
|
||||
casti_m128i( b, 3 ) = mm_bswap_32( casti_m128i( hash, 1 ) );
|
||||
casti_m128i( b, 2 ) = mm128_bswap_32( casti_m128i( hash, 0 ) );
|
||||
casti_m128i( b, 3 ) = mm128_bswap_32( casti_m128i( hash, 1 ) );
|
||||
}
|
||||
#endif
|
||||
|
||||
|
@@ -1,4 +1,4 @@
|
||||
#include "allium-gate.h"
|
||||
#include "lyra2-gate.h"
|
||||
#include <memory.h>
|
||||
#include <mm_malloc.h>
|
||||
|
||||
@@ -7,7 +7,7 @@
|
||||
#include "algo/blake/blake-hash-4way.h"
|
||||
#include "algo/keccak/keccak-hash-4way.h"
|
||||
#include "algo/skein/skein-hash-4way.h"
|
||||
#include "algo/cubehash/sse2/cubehash_sse2.h"
|
||||
#include "algo/cubehash/cubehash_sse2.h"
|
||||
#include "algo/groestl/aes_ni/hash-groestl256.h"
|
||||
|
||||
typedef struct {
|
||||
@@ -55,11 +55,11 @@ void allium_4way_hash( void *state, const void *input )
|
||||
LYRA2RE( hash3, 32, hash3, 32, hash3, 32, 1, 8, 8 );
|
||||
|
||||
cubehashUpdateDigest( &ctx.cube, (byte*)hash0, (const byte*)hash0, 32 );
|
||||
cubehashReinit( &ctx.cube );
|
||||
cubehashInit( &ctx.cube, 256, 16, 32 );
|
||||
cubehashUpdateDigest( &ctx.cube, (byte*)hash1, (const byte*)hash1, 32 );
|
||||
cubehashReinit( &ctx.cube );
|
||||
cubehashInit( &ctx.cube, 256, 16, 32 );
|
||||
cubehashUpdateDigest( &ctx.cube, (byte*)hash2, (const byte*)hash2, 32 );
|
||||
cubehashReinit( &ctx.cube );
|
||||
cubehashInit( &ctx.cube, 256, 16, 32 );
|
||||
cubehashUpdateDigest( &ctx.cube, (byte*)hash3, (const byte*)hash3, 32 );
|
||||
|
||||
LYRA2RE( hash0, 32, hash0, 32, hash0, 32, 1, 8, 8 );
|
||||
@@ -90,7 +90,7 @@ void allium_4way_hash( void *state, const void *input )
|
||||
}
|
||||
|
||||
int scanhash_allium_4way( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
uint64_t *hashes_done )
|
||||
uint64_t *hashes_done, struct thr_info *mythr )
|
||||
{
|
||||
uint32_t hash[8*4] __attribute__ ((aligned (64)));
|
||||
uint32_t vdata[20*4] __attribute__ ((aligned (64)));
|
||||
@@ -100,40 +100,47 @@ int scanhash_allium_4way( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
const uint32_t first_nonce = pdata[19];
|
||||
uint32_t n = first_nonce;
|
||||
const uint32_t Htarg = ptarget[7];
|
||||
uint32_t *nonces = work->nonces;
|
||||
int num_found = 0;
|
||||
uint32_t *noncep = vdata + 76; // 19*4
|
||||
__m128i *noncev = (__m128i*)vdata + 19; // aligned
|
||||
/* int */ thr_id = mythr->id; // thr_id arg is deprecated
|
||||
|
||||
if ( opt_benchmark )
|
||||
( (uint32_t*)ptarget )[7] = 0x0000ff;
|
||||
|
||||
swab32_array( edata, pdata, 20 );
|
||||
mm_interleave_4x32( vdata, edata, edata, edata, edata, 640 );
|
||||
casti_m128i( edata, 0 ) = mm128_bswap_32( casti_m128i( pdata, 0 ) );
|
||||
casti_m128i( edata, 1 ) = mm128_bswap_32( casti_m128i( pdata, 1 ) );
|
||||
casti_m128i( edata, 2 ) = mm128_bswap_32( casti_m128i( pdata, 2 ) );
|
||||
casti_m128i( edata, 3 ) = mm128_bswap_32( casti_m128i( pdata, 3 ) );
|
||||
casti_m128i( edata, 4 ) = mm128_bswap_32( casti_m128i( pdata, 4 ) );
|
||||
|
||||
mm128_interleave_4x32( vdata, edata, edata, edata, edata, 640 );
|
||||
blake256_4way_init( &allium_4way_ctx.blake );
|
||||
blake256_4way( &allium_4way_ctx.blake, vdata, 64 );
|
||||
|
||||
do {
|
||||
be32enc( noncep, n );
|
||||
be32enc( noncep+1, n+1 );
|
||||
be32enc( noncep+2, n+2 );
|
||||
be32enc( noncep+3, n+3 );
|
||||
*noncev = mm128_bswap_32( _mm_set_epi32( n+3, n+2, n+1, n ) );
|
||||
|
||||
allium_4way_hash( hash, vdata );
|
||||
pdata[19] = n;
|
||||
|
||||
for ( int i = 0; i < 4; i++ )
|
||||
if ( (hash+(i<<3))[7] <= Htarg && fulltest( hash+(i<<3), ptarget ) )
|
||||
for ( int lane = 0; lane < 4; lane++ ) if ( (hash+(lane<<3))[7] <= Htarg )
|
||||
{
|
||||
pdata[19] = n+i;
|
||||
nonces[ num_found++ ] = n+i;
|
||||
work_set_target_ratio( work, hash+(i<<3) );
|
||||
if ( fulltest( hash+(lane<<3), ptarget ) )
|
||||
{
|
||||
pdata[19] = n + lane;
|
||||
work_set_target_ratio( work, hash+(lane<<3) );
|
||||
if ( submit_work( mythr, work ) )
|
||||
applog( LOG_NOTICE, "Share %d submitted by thread %d, lane %d.",
|
||||
accepted_share_count + rejected_share_count + 1,
|
||||
thr_id, lane );
|
||||
else
|
||||
applog( LOG_WARNING, "Failed to submit share." );
|
||||
}
|
||||
}
|
||||
n += 4;
|
||||
} while ( (num_found == 0) && (n < max_nonce-4)
|
||||
&& !work_restart[thr_id].restart);
|
||||
} while ( (n < max_nonce-4) && !work_restart[thr_id].restart);
|
||||
|
||||
*hashes_done = n - first_nonce + 1;
|
||||
return num_found;
|
||||
return 0;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
@@ -1,22 +0,0 @@
|
||||
#include "allium-gate.h"
|
||||
|
||||
int64_t get_max64_0xFFFFLL() { return 0xFFFFLL; }
|
||||
|
||||
bool register_allium_algo( algo_gate_t* gate )
|
||||
{
|
||||
#if defined (ALLIUM_4WAY)
|
||||
gate->miner_thread_init = (void*)&init_allium_4way_ctx;
|
||||
gate->scanhash = (void*)&scanhash_allium_4way;
|
||||
gate->hash = (void*)&allium_4way_hash;
|
||||
#else
|
||||
gate->miner_thread_init = (void*)&init_allium_ctx;
|
||||
gate->scanhash = (void*)&scanhash_allium;
|
||||
gate->hash = (void*)&allium_hash;
|
||||
#endif
|
||||
gate->optimizations = SSE2_OPT | AES_OPT | SSE42_OPT | AVX2_OPT;
|
||||
gate->set_target = (void*)&alt_set_target;
|
||||
gate->get_max64 = (void*)&get_max64_0xFFFFLL;
|
||||
return true;
|
||||
};
|
||||
|
||||
|
@@ -1,29 +0,0 @@
|
||||
#ifndef ALLIUM_GATE_H__
|
||||
#define ALLIUM_GATE_H__ 1
|
||||
|
||||
#include "algo-gate-api.h"
|
||||
#include <stdint.h>
|
||||
#include "lyra2.h"
|
||||
|
||||
#if defined(__AVX2__) && defined(__AES__)
|
||||
#define ALLIUM_4WAY
|
||||
#endif
|
||||
|
||||
bool register_allium_algo( algo_gate_t* gate );
|
||||
|
||||
#if defined(ALLIUM_4WAY)
|
||||
|
||||
void allium_4way_hash( void *state, const void *input );
|
||||
int scanhash_allium_4way( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
uint64_t *hashes_done );
|
||||
bool init_allium_4way_ctx();
|
||||
|
||||
#endif
|
||||
|
||||
void allium_hash( void *state, const void *input );
|
||||
int scanhash_allium( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
uint64_t *hashes_done );
|
||||
bool init_allium_ctx();
|
||||
|
||||
#endif
|
||||
|
@@ -1,9 +1,9 @@
|
||||
#include "allium-gate.h"
|
||||
#include "lyra2-gate.h"
|
||||
#include <memory.h>
|
||||
#include "algo/blake/sph_blake.h"
|
||||
#include "algo/keccak/sph_keccak.h"
|
||||
#include "algo/skein/sph_skein.h"
|
||||
#include "algo/cubehash/sse2/cubehash_sse2.h"
|
||||
#include "algo/cubehash/cubehash_sse2.h"
|
||||
#if defined(__AES__)
|
||||
#include "algo/groestl/aes_ni/hash-groestl256.h"
|
||||
#else
|
||||
@@ -70,7 +70,7 @@ void allium_hash(void *state, const void *input)
|
||||
}
|
||||
|
||||
int scanhash_allium( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
uint64_t *hashes_done )
|
||||
uint64_t *hashes_done, struct thr_info *mythr )
|
||||
{
|
||||
uint32_t _ALIGN(128) hash[8];
|
||||
uint32_t _ALIGN(128) endiandata[20];
|
||||
@@ -80,6 +80,7 @@ int scanhash_allium( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
const uint32_t Htarg = ptarget[7];
|
||||
const uint32_t first_nonce = pdata[19];
|
||||
uint32_t nonce = first_nonce;
|
||||
/* int */ thr_id = mythr->id; // thr_id arg is deprecated
|
||||
|
||||
if ( opt_benchmark )
|
||||
ptarget[7] = 0x3ffff;
|
||||
|
178
algo/lyra2/lyra2-gate.c
Normal file
178
algo/lyra2/lyra2-gate.c
Normal file
@@ -0,0 +1,178 @@
|
||||
#include "lyra2-gate.h"
|
||||
|
||||
|
||||
__thread uint64_t* l2v3_wholeMatrix;
|
||||
|
||||
bool lyra2rev3_thread_init()
|
||||
{
|
||||
const int64_t ROW_LEN_INT64 = BLOCK_LEN_INT64 * 4; // nCols
|
||||
const int64_t ROW_LEN_BYTES = ROW_LEN_INT64 * 8;
|
||||
|
||||
int size = (int64_t)ROW_LEN_BYTES * 4; // nRows;
|
||||
l2v3_wholeMatrix = _mm_malloc( size, 64 );
|
||||
#if defined (LYRA2REV3_4WAY)
|
||||
init_lyra2rev3_4way_ctx();;
|
||||
#else
|
||||
init_lyra2rev3_ctx();
|
||||
#endif
|
||||
return l2v3_wholeMatrix;
|
||||
}
|
||||
|
||||
bool register_lyra2rev3_algo( algo_gate_t* gate )
|
||||
{
|
||||
#if defined (LYRA2REV3_4WAY)
|
||||
gate->scanhash = (void*)&scanhash_lyra2rev3_4way;
|
||||
gate->hash = (void*)&lyra2rev3_4way_hash;
|
||||
#else
|
||||
gate->scanhash = (void*)&scanhash_lyra2rev3;
|
||||
gate->hash = (void*)&lyra2rev3_hash;
|
||||
#endif
|
||||
gate->optimizations = SSE2_OPT | SSE42_OPT | AVX2_OPT;
|
||||
gate->miner_thread_init = (void*)&lyra2rev3_thread_init;
|
||||
gate->set_target = (void*)&alt_set_target;
|
||||
return true;
|
||||
};
|
||||
|
||||
//////////////////////////////////
|
||||
|
||||
__thread uint64_t* l2v2_wholeMatrix;
|
||||
|
||||
bool lyra2rev2_thread_init()
|
||||
{
|
||||
const int64_t ROW_LEN_INT64 = BLOCK_LEN_INT64 * 4; // nCols
|
||||
const int64_t ROW_LEN_BYTES = ROW_LEN_INT64 * 8;
|
||||
|
||||
int size = (int64_t)ROW_LEN_BYTES * 4; // nRows;
|
||||
l2v2_wholeMatrix = _mm_malloc( size, 64 );
|
||||
#if defined (LYRA2REV2_4WAY)
|
||||
init_lyra2rev2_4way_ctx();;
|
||||
#else
|
||||
init_lyra2rev2_ctx();
|
||||
#endif
|
||||
return l2v2_wholeMatrix;
|
||||
}
|
||||
|
||||
bool register_lyra2rev2_algo( algo_gate_t* gate )
|
||||
{
|
||||
#if defined (LYRA2REV2_4WAY)
|
||||
gate->scanhash = (void*)&scanhash_lyra2rev2_4way;
|
||||
gate->hash = (void*)&lyra2rev2_4way_hash;
|
||||
#else
|
||||
gate->scanhash = (void*)&scanhash_lyra2rev2;
|
||||
gate->hash = (void*)&lyra2rev2_hash;
|
||||
#endif
|
||||
gate->optimizations = SSE2_OPT | AES_OPT | SSE42_OPT | AVX2_OPT;
|
||||
gate->miner_thread_init = (void*)&lyra2rev2_thread_init;
|
||||
gate->set_target = (void*)&alt_set_target;
|
||||
return true;
|
||||
};
|
||||
|
||||
/////////////////////////////
|
||||
|
||||
bool register_lyra2z_algo( algo_gate_t* gate )
|
||||
{
|
||||
#if defined(LYRA2Z_8WAY)
|
||||
gate->miner_thread_init = (void*)&lyra2z_8way_thread_init;
|
||||
gate->scanhash = (void*)&scanhash_lyra2z_8way;
|
||||
gate->hash = (void*)&lyra2z_8way_hash;
|
||||
#elif defined(LYRA2Z_4WAY)
|
||||
gate->miner_thread_init = (void*)&lyra2z_4way_thread_init;
|
||||
gate->scanhash = (void*)&scanhash_lyra2z_4way;
|
||||
gate->hash = (void*)&lyra2z_4way_hash;
|
||||
#else
|
||||
gate->miner_thread_init = (void*)&lyra2z_thread_init;
|
||||
gate->scanhash = (void*)&scanhash_lyra2z;
|
||||
gate->hash = (void*)&lyra2z_hash;
|
||||
#endif
|
||||
gate->optimizations = SSE42_OPT | AVX2_OPT;
|
||||
gate->get_max64 = (void*)&get_max64_0xffffLL;
|
||||
gate->set_target = (void*)&alt_set_target;
|
||||
return true;
|
||||
};
|
||||
|
||||
|
||||
////////////////////////
|
||||
|
||||
bool register_lyra2h_algo( algo_gate_t* gate )
|
||||
{
|
||||
#ifdef LYRA2H_4WAY
|
||||
gate->miner_thread_init = (void*)&lyra2h_4way_thread_init;
|
||||
gate->scanhash = (void*)&scanhash_lyra2h_4way;
|
||||
gate->hash = (void*)&lyra2h_4way_hash;
|
||||
#else
|
||||
gate->miner_thread_init = (void*)&lyra2h_thread_init;
|
||||
gate->scanhash = (void*)&scanhash_lyra2h;
|
||||
gate->hash = (void*)&lyra2h_hash;
|
||||
#endif
|
||||
gate->optimizations = SSE42_OPT | AVX2_OPT;
|
||||
gate->get_max64 = (void*)&get_max64_0xffffLL;
|
||||
gate->set_target = (void*)&alt_set_target;
|
||||
return true;
|
||||
};
|
||||
|
||||
/////////////////////////////////
|
||||
|
||||
int64_t allium_get_max64_0xFFFFLL() { return 0xFFFFLL; }
|
||||
|
||||
bool register_allium_algo( algo_gate_t* gate )
|
||||
{
|
||||
#if defined (ALLIUM_4WAY)
|
||||
gate->miner_thread_init = (void*)&init_allium_4way_ctx;
|
||||
gate->scanhash = (void*)&scanhash_allium_4way;
|
||||
gate->hash = (void*)&allium_4way_hash;
|
||||
#else
|
||||
gate->miner_thread_init = (void*)&init_allium_ctx;
|
||||
gate->scanhash = (void*)&scanhash_allium;
|
||||
gate->hash = (void*)&allium_hash;
|
||||
#endif
|
||||
gate->optimizations = SSE2_OPT | AES_OPT | SSE42_OPT | AVX2_OPT;
|
||||
gate->set_target = (void*)&alt_set_target;
|
||||
gate->get_max64 = (void*)&allium_get_max64_0xFFFFLL;
|
||||
return true;
|
||||
};
|
||||
|
||||
/////////////////////////////////////////
|
||||
|
||||
bool phi2_has_roots;
|
||||
bool phi2_use_roots = false;
|
||||
|
||||
int phi2_get_work_data_size() { return phi2_use_roots ? 144 : 128; }
|
||||
|
||||
void phi2_decode_extra_data( struct work *work )
|
||||
{
|
||||
if ( work->data[0] & ( 1<<30 ) ) phi2_use_roots = true;
|
||||
else for ( int i = 20; i < 36; i++ )
|
||||
{
|
||||
if (work->data[i]) { phi2_use_roots = true; break; }
|
||||
}
|
||||
}
|
||||
|
||||
void phi2_build_extraheader( struct work* g_work, struct stratum_ctx* sctx )
|
||||
{
|
||||
uchar merkle_tree[64] = { 0 };
|
||||
size_t t;
|
||||
|
||||
algo_gate.gen_merkle_root( merkle_tree, sctx );
|
||||
// Increment extranonce2
|
||||
for ( t = 0; t < sctx->xnonce2_size && !( ++sctx->job.xnonce2[t] ); t++ );
|
||||
// Assemble block header
|
||||
algo_gate.build_block_header( g_work, le32dec( sctx->job.version ),
|
||||
(uint32_t*) sctx->job.prevhash, (uint32_t*) merkle_tree,
|
||||
le32dec( sctx->job.ntime ), le32dec(sctx->job.nbits) );
|
||||
for ( t = 0; t < 16; t++ )
|
||||
g_work->data[ 20+t ] = ((uint32_t*)sctx->job.extra)[t];
|
||||
}
|
||||
|
||||
|
||||
bool register_phi2_algo( algo_gate_t* gate )
|
||||
{
|
||||
init_phi2_ctx();
|
||||
gate->optimizations = SSE2_OPT | AES_OPT | SSE42_OPT | AVX2_OPT;
|
||||
gate->get_work_data_size = (void*)&phi2_get_work_data_size;
|
||||
gate->decode_extra_data = (void*)&phi2_decode_extra_data;
|
||||
gate->build_extraheader = (void*)&phi2_build_extraheader;
|
||||
gate->set_target = (void*)&alt_set_target;
|
||||
gate->get_max64 = (void*)&get_max64_0xffffLL;
|
||||
gate->scanhash = (void*)&scanhash_phi2;
|
||||
return true;
|
||||
}
|
154
algo/lyra2/lyra2-gate.h
Normal file
154
algo/lyra2/lyra2-gate.h
Normal file
@@ -0,0 +1,154 @@
|
||||
#ifndef LYRA2_GATE_H__
|
||||
#define LYRA2_GATE_H__ 1
|
||||
|
||||
#include "algo-gate-api.h"
|
||||
#include <stdint.h>
|
||||
#include "lyra2.h"
|
||||
|
||||
#if defined(__AVX2__)
|
||||
#define LYRA2REV3_4WAY
|
||||
#endif
|
||||
|
||||
extern __thread uint64_t* l2v3_wholeMatrix;
|
||||
|
||||
bool register_lyra2rev3_algo( algo_gate_t* gate );
|
||||
|
||||
#if defined(LYRA2REV3_4WAY)
|
||||
|
||||
void lyra2rev3_4way_hash( void *state, const void *input );
|
||||
int scanhash_lyra2rev3_4way( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
uint64_t *hashes_done, struct thr_info *mythr );
|
||||
bool init_lyra2rev3_4way_ctx();
|
||||
|
||||
#else
|
||||
|
||||
void lyra2rev3_hash( void *state, const void *input );
|
||||
int scanhash_lyra2rev3( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
uint64_t *hashes_done, struct thr_info *mythr );
|
||||
bool init_lyra2rev3_ctx();
|
||||
|
||||
#endif
|
||||
|
||||
//////////////////////////////////
|
||||
|
||||
#if defined(__AVX2__)
|
||||
#define LYRA2REV2_4WAY
|
||||
#endif
|
||||
|
||||
extern __thread uint64_t* l2v2_wholeMatrix;
|
||||
|
||||
bool register_lyra2rev2_algo( algo_gate_t* gate );
|
||||
|
||||
#if defined(LYRA2REV2_4WAY)
|
||||
|
||||
void lyra2rev2_4way_hash( void *state, const void *input );
|
||||
int scanhash_lyra2rev2_4way( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
uint64_t *hashes_done, struct thr_info *mythr );
|
||||
bool init_lyra2rev2_4way_ctx();
|
||||
|
||||
#else
|
||||
|
||||
void lyra2rev2_hash( void *state, const void *input );
|
||||
int scanhash_lyra2rev2( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
uint64_t *hashes_done, struct thr_info *mythr );
|
||||
bool init_lyra2rev2_ctx();
|
||||
|
||||
#endif
|
||||
|
||||
/////////////////////////
|
||||
|
||||
#if defined(__SSE2__)
|
||||
#define LYRA2Z_4WAY
|
||||
#endif
|
||||
#if defined(__AVX2__)
|
||||
#define LYRA2Z_8WAY
|
||||
#endif
|
||||
|
||||
|
||||
#define LYRA2Z_MATRIX_SIZE BLOCK_LEN_INT64 * 8 * 8 * 8
|
||||
|
||||
#if defined(LYRA2Z_8WAY)
|
||||
|
||||
void lyra2z_8way_hash( void *state, const void *input );
|
||||
int scanhash_lyra2z_8way( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
uint64_t *hashes_done, struct thr_info *mythr );
|
||||
bool lyra2z_8way_thread_init();
|
||||
|
||||
#elif defined(LYRA2Z_4WAY)
|
||||
|
||||
void lyra2z_4way_hash( void *state, const void *input );
|
||||
int scanhash_lyra2z_4way( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
uint64_t *hashes_done, struct thr_info *mythr );
|
||||
bool lyra2z_4way_thread_init();
|
||||
|
||||
#else
|
||||
|
||||
void lyra2z_hash( void *state, const void *input );
|
||||
int scanhash_lyra2z( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
uint64_t *hashes_done, struct thr_info *mythr );
|
||||
bool lyra2z_thread_init();
|
||||
|
||||
#endif
|
||||
|
||||
////////////////////
|
||||
|
||||
#if defined(__AVX2__)
|
||||
#define LYRA2H_4WAY
|
||||
#endif
|
||||
|
||||
#define LYRA2H_MATRIX_SIZE BLOCK_LEN_INT64 * 16 * 16 * 8
|
||||
|
||||
#if defined(LYRA2H_4WAY)
|
||||
|
||||
void lyra2h_4way_hash( void *state, const void *input );
|
||||
int scanhash_lyra2h_4way( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
uint64_t *hashes_done, struct thr_info *mythr );
|
||||
bool lyra2h_4way_thread_init();
|
||||
|
||||
#else
|
||||
|
||||
void lyra2h_hash( void *state, const void *input );
|
||||
int scanhash_lyra2h( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
uint64_t *hashes_done, struct thr_info *mythr );
|
||||
bool lyra2h_thread_init();
|
||||
|
||||
#endif
|
||||
|
||||
//////////////////////////////////
|
||||
|
||||
#if defined(__AVX2__) && defined(__AES__)
|
||||
#define ALLIUM_4WAY
|
||||
#endif
|
||||
|
||||
bool register_allium_algo( algo_gate_t* gate );
|
||||
|
||||
#if defined(ALLIUM_4WAY)
|
||||
|
||||
void allium_4way_hash( void *state, const void *input );
|
||||
int scanhash_allium_4way( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
uint64_t *hashes_done, struct thr_info *mythr );
|
||||
bool init_allium_4way_ctx();
|
||||
|
||||
#else
|
||||
|
||||
void allium_hash( void *state, const void *input );
|
||||
int scanhash_allium( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
uint64_t *hashes_done, struct thr_info *mythr );
|
||||
bool init_allium_ctx();
|
||||
|
||||
#endif
|
||||
|
||||
/////////////////////////////////////////
|
||||
|
||||
bool phi2_has_roots;
|
||||
|
||||
bool register_phi2_algo( algo_gate_t* gate );
|
||||
|
||||
void phi2_hash( void *state, const void *input );
|
||||
int scanhash_phi2( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
uint64_t *hashes_done, struct thr_info *mythr );
|
||||
void init_phi2_ctx();
|
||||
|
||||
#endif // LYRA2_GATE_H__
|
||||
|
||||
|
@@ -211,6 +211,186 @@ int LYRA2REV2( uint64_t* wholeMatrix, void *K, uint64_t kLen, const void *pwd,
|
||||
return 0;
|
||||
}
|
||||
|
||||
/////////////////////////////////////////////////
|
||||
|
||||
int LYRA2REV3( uint64_t* wholeMatrix, void *K, uint64_t kLen, const void *pwd,
|
||||
const uint64_t pwdlen, const void *salt, const uint64_t saltlen,
|
||||
const uint64_t timeCost, const uint64_t nRows,
|
||||
const uint64_t nCols )
|
||||
{
|
||||
//====================== Basic variables ============================//
|
||||
uint64_t _ALIGN(256) state[16];
|
||||
int64_t row = 2; //index of row to be processed
|
||||
int64_t prev = 1; //index of prev (last row ever computed/modified)
|
||||
int64_t rowa = 0; //index of row* (a previous row, deterministically picked during Setup and randomly picked while Wandering)
|
||||
int64_t tau; //Time Loop iterator
|
||||
int64_t step = 1; //Visitation step (used during Setup and Wandering phases)
|
||||
int64_t window = 2; //Visitation window (used to define which rows can be revisited during Setup)
|
||||
int64_t gap = 1; //Modifier to the step, assuming the values 1 or -1
|
||||
int64_t i; //auxiliary iteration counter
|
||||
int64_t v64; // 64bit var for memcpy
|
||||
uint64_t instance = 0;
|
||||
//====================================================================/
|
||||
|
||||
//=== Initializing the Memory Matrix and pointers to it =============//
|
||||
//Tries to allocate enough space for the whole memory matrix
|
||||
|
||||
const int64_t ROW_LEN_INT64 = BLOCK_LEN_INT64 * nCols;
|
||||
const int64_t ROW_LEN_BYTES = ROW_LEN_INT64 * 8;
|
||||
const int64_t BLOCK_LEN = BLOCK_LEN_BLAKE2_SAFE_INT64;
|
||||
/*
|
||||
const int64_t ROW_LEN_INT64 = BLOCK_LEN_INT64 * nCols;
|
||||
// const int64_t ROW_LEN_BYTES = ROW_LEN_INT64 * 8;
|
||||
// for Lyra2REv2, nCols = 4, v1 was using 8
|
||||
const int64_t BLOCK_LEN = (nCols == 4) ? BLOCK_LEN_BLAKE2_SAFE_INT64
|
||||
: BLOCK_LEN_BLAKE2_SAFE_BYTES;
|
||||
*/
|
||||
|
||||
uint64_t *ptrWord = wholeMatrix;
|
||||
|
||||
// memset( wholeMatrix, 0, ROW_LEN_BYTES * nRows );
|
||||
|
||||
//=== Getting the password + salt + basil padded with 10*1 ==========//
|
||||
//OBS.:The memory matrix will temporarily hold the password: not for saving memory,
|
||||
//but this ensures that the password copied locally will be overwritten as soon as possible
|
||||
|
||||
//First, we clean enough blocks for the password, salt, basil and padding
|
||||
int64_t nBlocksInput = ( ( saltlen + pwdlen + 6 * sizeof(uint64_t) )
|
||||
/ BLOCK_LEN_BLAKE2_SAFE_BYTES ) + 1;
|
||||
|
||||
byte *ptrByte = (byte*) wholeMatrix;
|
||||
|
||||
//Prepends the password
|
||||
memcpy(ptrByte, pwd, pwdlen);
|
||||
ptrByte += pwdlen;
|
||||
|
||||
//Concatenates the salt
|
||||
memcpy(ptrByte, salt, saltlen);
|
||||
ptrByte += saltlen;
|
||||
|
||||
memset( ptrByte, 0, nBlocksInput * BLOCK_LEN_BLAKE2_SAFE_BYTES
|
||||
- (saltlen + pwdlen) );
|
||||
|
||||
//Concatenates the basil: every integer passed as parameter, in the order they are provided by the interface
|
||||
memcpy(ptrByte, &kLen, sizeof(int64_t));
|
||||
ptrByte += sizeof(uint64_t);
|
||||
v64 = pwdlen;
|
||||
memcpy(ptrByte, &v64, sizeof(int64_t));
|
||||
ptrByte += sizeof(uint64_t);
|
||||
v64 = saltlen;
|
||||
memcpy(ptrByte, &v64, sizeof(int64_t));
|
||||
ptrByte += sizeof(uint64_t);
|
||||
v64 = timeCost;
|
||||
memcpy(ptrByte, &v64, sizeof(int64_t));
|
||||
ptrByte += sizeof(uint64_t);
|
||||
v64 = nRows;
|
||||
memcpy(ptrByte, &v64, sizeof(int64_t));
|
||||
ptrByte += sizeof(uint64_t);
|
||||
v64 = nCols;
|
||||
memcpy(ptrByte, &v64, sizeof(int64_t));
|
||||
ptrByte += sizeof(uint64_t);
|
||||
|
||||
//Now comes the padding
|
||||
*ptrByte = 0x80; //first byte of padding: right after the password
|
||||
ptrByte = (byte*) wholeMatrix; //resets the pointer to the start of the memory matrix
|
||||
ptrByte += nBlocksInput * BLOCK_LEN_BLAKE2_SAFE_BYTES - 1; //sets the pointer to the correct position: end of incomplete block
|
||||
*ptrByte ^= 0x01; //last byte of padding: at the end of the last incomplete block
|
||||
|
||||
// from here on it's all simd acces to state and matrix
|
||||
// define vector pointers and adjust sizes and pointer offsets
|
||||
|
||||
//================= Initializing the Sponge State ====================//
|
||||
//Sponge state: 16 uint64_t, BLOCK_LEN_INT64 words of them for the bitrate (b) and the remainder for the capacity (c)
|
||||
|
||||
initState( state );
|
||||
|
||||
//========================= Setup Phase =============================//
|
||||
//Absorbing salt, password and basil: this is the only place in which the block length is hard-coded to 512 bits
|
||||
|
||||
ptrWord = wholeMatrix;
|
||||
for (i = 0; i < nBlocksInput; i++)
|
||||
{
|
||||
absorbBlockBlake2Safe( state, ptrWord ); //absorbs each block of pad(pwd || salt || basil)
|
||||
ptrWord += BLOCK_LEN; //goes to next block of pad(pwd || salt || basil)
|
||||
}
|
||||
//Initializes M[0] and M[1]
|
||||
reducedSqueezeRow0( state, &wholeMatrix[0], nCols ); //The locally copied password is most likely overwritten here
|
||||
|
||||
reducedDuplexRow1( state, &wholeMatrix[0], &wholeMatrix[ROW_LEN_INT64],
|
||||
nCols);
|
||||
|
||||
do
|
||||
{
|
||||
//M[row] = rand; //M[row*] = M[row*] XOR rotW(rand)
|
||||
|
||||
reducedDuplexRowSetup( state, &wholeMatrix[prev*ROW_LEN_INT64],
|
||||
&wholeMatrix[rowa*ROW_LEN_INT64],
|
||||
&wholeMatrix[row*ROW_LEN_INT64], nCols );
|
||||
|
||||
//updates the value of row* (deterministically picked during Setup))
|
||||
rowa = (rowa + step) & (window - 1);
|
||||
//update prev: it now points to the last row ever computed
|
||||
|
||||
prev = row;
|
||||
//updates row: goes to the next row to be computed
|
||||
row++;
|
||||
|
||||
//Checks if all rows in the window where visited.
|
||||
if (rowa == 0)
|
||||
{
|
||||
step = window + gap; //changes the step: approximately doubles its value
|
||||
window *= 2; //doubles the size of the re-visitation window
|
||||
gap = -gap; //inverts the modifier to the step
|
||||
}
|
||||
|
||||
} while (row < nRows);
|
||||
|
||||
//===================== Wandering Phase =============================//
|
||||
row = 0; //Resets the visitation to the first row of the memory matrix
|
||||
for (tau = 1; tau <= timeCost; tau++)
|
||||
{
|
||||
//Step is approximately half the number of all rows of the memory matrix for an odd tau; otherwise, it is -1
|
||||
step = ((tau & 1) == 0) ? -1 : (nRows >> 1) - 1;
|
||||
// step = (tau % 2 == 0) ? -1 : nRows / 2 - 1;
|
||||
do
|
||||
{
|
||||
//Selects a pseudorandom index row*
|
||||
//-----------------------------------------------
|
||||
instance = state[instance & 0xF];
|
||||
rowa = state[instance & 0xF] & (unsigned int)(nRows-1);
|
||||
// rowa = state[0] & (unsigned int)(nRows-1); //(USE THIS IF nRows IS A POWER OF 2)
|
||||
|
||||
//rowa = state[0] % nRows; //(USE THIS FOR THE "GENERIC" CASE)
|
||||
//-------------------------------------------
|
||||
|
||||
//Performs a reduced-round duplexing operation over M[row*] XOR M[prev], updating both M[row*] and M[row]
|
||||
reducedDuplexRow( state, &wholeMatrix[prev*ROW_LEN_INT64],
|
||||
&wholeMatrix[rowa*ROW_LEN_INT64],
|
||||
&wholeMatrix[row*ROW_LEN_INT64], nCols );
|
||||
//update prev: it now points to the last row ever computed
|
||||
prev = row;
|
||||
|
||||
//updates row: goes to the next row to be computed
|
||||
//----------------------------------------------------
|
||||
row = (row + step) & (unsigned int)(nRows-1); //(USE THIS IF nRows IS A POWER OF 2)
|
||||
//row = (row + step) % nRows; //(USE THIS FOR THE "GENERIC" CASE)
|
||||
//----------------------------------------------------
|
||||
|
||||
} while (row != 0);
|
||||
}
|
||||
|
||||
//===================== Wrap-up Phase ===============================//
|
||||
//Absorbs the last block of the memory matrix
|
||||
absorbBlock(state, &wholeMatrix[rowa*ROW_LEN_INT64]);
|
||||
//Squeezes the key
|
||||
squeeze(state, K, (unsigned int) kLen);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
|
||||
//////////////////////////////////////////////////
|
||||
int LYRA2Z( uint64_t* wholeMatrix, void *K, uint64_t kLen, const void *pwd,
|
||||
const uint64_t pwdlen, const void *salt, const uint64_t saltlen,
|
||||
const uint64_t timeCost, const uint64_t nRows,
|
||||
|
@@ -50,6 +50,10 @@ int LYRA2REV2( uint64_t*, void *K, uint64_t kLen, const void *pwd,
|
||||
uint64_t pwdlen, const void *salt, uint64_t saltlen,
|
||||
uint64_t timeCost, uint64_t nRows, uint64_t nCols );
|
||||
|
||||
int LYRA2REV3( uint64_t*, void *K, uint64_t kLen, const void *pwd,
|
||||
uint64_t pwdlen, const void *salt, uint64_t saltlen,
|
||||
uint64_t timeCost, uint64_t nRows, uint64_t nCols );
|
||||
|
||||
int LYRA2Z( uint64_t*, void *K, uint64_t kLen, const void *pwd,
|
||||
uint64_t pwdlen, const void *salt, uint64_t saltlen,
|
||||
uint64_t timeCost, uint64_t nRows, uint64_t nCols );
|
||||
|
@@ -1,4 +1,4 @@
|
||||
#include "lyra2h-gate.h"
|
||||
#include "lyra2-gate.h"
|
||||
|
||||
#ifdef LYRA2H_4WAY
|
||||
|
||||
@@ -36,7 +36,7 @@ void lyra2h_4way_hash( void *state, const void *input )
|
||||
blake256_4way( &ctx_blake, input + (64*4), 16 );
|
||||
blake256_4way_close( &ctx_blake, vhash );
|
||||
|
||||
mm_deinterleave_4x32( hash0, hash1, hash2, hash3, vhash, 256 );
|
||||
mm128_deinterleave_4x32( hash0, hash1, hash2, hash3, vhash, 256 );
|
||||
|
||||
LYRA2Z( lyra2h_4way_matrix, hash0, 32, hash0, 32, hash0, 32, 16, 16, 16 );
|
||||
LYRA2Z( lyra2h_4way_matrix, hash1, 32, hash1, 32, hash1, 32, 16, 16, 16 );
|
||||
@@ -50,7 +50,7 @@ void lyra2h_4way_hash( void *state, const void *input )
|
||||
}
|
||||
|
||||
int scanhash_lyra2h_4way( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
uint64_t *hashes_done )
|
||||
uint64_t *hashes_done, struct thr_info *mythr )
|
||||
{
|
||||
uint32_t hash[8*4] __attribute__ ((aligned (64)));
|
||||
uint32_t vdata[20*4] __attribute__ ((aligned (64)));
|
||||
@@ -63,14 +63,15 @@ int scanhash_lyra2h_4way( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
uint32_t *nonces = work->nonces;
|
||||
int num_found = 0;
|
||||
uint32_t *noncep= vdata + 76; // 19*4
|
||||
/* int */ thr_id = mythr->id; // thr_id arg is deprecated
|
||||
|
||||
if ( opt_benchmark )
|
||||
ptarget[7] = 0x0000ff;
|
||||
|
||||
for ( int i=0; i < 19; i++ )
|
||||
for ( int i=0; i < 20; i++ )
|
||||
be32enc( &edata[i], pdata[i] );
|
||||
|
||||
mm_interleave_4x32( vdata, edata, edata, edata, edata, 640 );
|
||||
mm128_interleave_4x32( vdata, edata, edata, edata, edata, 640 );
|
||||
|
||||
lyra2h_4way_midstate( vdata );
|
||||
|
||||
|
@@ -1,25 +0,0 @@
|
||||
#include "lyra2h-gate.h"
|
||||
#include "lyra2.h"
|
||||
|
||||
void lyra2h_set_target( struct work* work, double job_diff )
|
||||
{
|
||||
work_set_target( work, job_diff / (256.0 * opt_diff_factor) );
|
||||
}
|
||||
|
||||
bool register_lyra2h_algo( algo_gate_t* gate )
|
||||
{
|
||||
#ifdef LYRA2H_4WAY
|
||||
gate->miner_thread_init = (void*)&lyra2h_4way_thread_init;
|
||||
gate->scanhash = (void*)&scanhash_lyra2h_4way;
|
||||
gate->hash = (void*)&lyra2h_4way_hash;
|
||||
#else
|
||||
gate->miner_thread_init = (void*)&lyra2h_thread_init;
|
||||
gate->scanhash = (void*)&scanhash_lyra2h;
|
||||
gate->hash = (void*)&lyra2h_hash;
|
||||
#endif
|
||||
gate->optimizations = SSE42_OPT | AVX2_OPT;
|
||||
gate->get_max64 = (void*)&get_max64_0xffffLL;
|
||||
gate->set_target = (void*)&lyra2h_set_target;
|
||||
return true;
|
||||
};
|
||||
|
@@ -1,32 +0,0 @@
|
||||
#ifndef LYRA2H_GATE_H__
|
||||
#define LYRA2H_GATE_H__
|
||||
|
||||
#include "algo-gate-api.h"
|
||||
#include <stdint.h>
|
||||
|
||||
#if defined(__AVX2__)
|
||||
#define LYRA2H_4WAY
|
||||
#endif
|
||||
|
||||
#define LYRA2H_MATRIX_SIZE BLOCK_LEN_INT64 * 16 * 16 * 8
|
||||
|
||||
#if defined(LYRA2H_4WAY)
|
||||
|
||||
void lyra2h_4way_hash( void *state, const void *input );
|
||||
|
||||
int scanhash_lyra2h_4way( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
uint64_t *hashes_done );
|
||||
|
||||
bool lyra2h_4way_thread_init();
|
||||
|
||||
#endif
|
||||
|
||||
void lyra2h_hash( void *state, const void *input );
|
||||
|
||||
int scanhash_lyra2h( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
uint64_t *hashes_done );
|
||||
|
||||
bool lyra2h_thread_init();
|
||||
|
||||
#endif
|
||||
|
@@ -1,4 +1,4 @@
|
||||
#include "lyra2h-gate.h"
|
||||
#include "lyra2-gate.h"
|
||||
#include <memory.h>
|
||||
#include <mm_malloc.h>
|
||||
#include "lyra2.h"
|
||||
@@ -36,7 +36,7 @@ void lyra2h_hash( void *state, const void *input )
|
||||
}
|
||||
|
||||
int scanhash_lyra2h( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
uint64_t *hashes_done )
|
||||
uint64_t *hashes_done, struct thr_info *mythr )
|
||||
{
|
||||
uint32_t _ALIGN(64) hash[8];
|
||||
uint32_t _ALIGN(64) endiandata[20];
|
||||
@@ -45,6 +45,7 @@ int scanhash_lyra2h( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
const uint32_t Htarg = ptarget[7];
|
||||
const uint32_t first_nonce = pdata[19];
|
||||
uint32_t nonce = first_nonce;
|
||||
/* int */ thr_id = mythr->id; // thr_id arg is deprecated
|
||||
|
||||
if (opt_benchmark)
|
||||
ptarget[7] = 0x0000ff;
|
||||
|
@@ -7,8 +7,7 @@
|
||||
#include "lyra2.h"
|
||||
#include "algo-gate-api.h"
|
||||
#include "avxdefs.h"
|
||||
|
||||
#ifndef NO_AES_NI
|
||||
#if defined(__AES__)
|
||||
#include "algo/groestl/aes_ni/hash-groestl256.h"
|
||||
#endif
|
||||
|
||||
@@ -18,10 +17,10 @@ typedef struct {
|
||||
sph_blake256_context blake;
|
||||
sph_keccak256_context keccak;
|
||||
sph_skein256_context skein;
|
||||
#ifdef NO_AES_NI
|
||||
sph_groestl256_context groestl;
|
||||
#else
|
||||
#if defined(__AES__)
|
||||
hashState_groestl256 groestl;
|
||||
#else
|
||||
sph_groestl256_context groestl;
|
||||
#endif
|
||||
} lyra2re_ctx_holder;
|
||||
|
||||
@@ -33,10 +32,10 @@ void init_lyra2re_ctx()
|
||||
sph_blake256_init(&lyra2re_ctx.blake);
|
||||
sph_keccak256_init(&lyra2re_ctx.keccak);
|
||||
sph_skein256_init(&lyra2re_ctx.skein);
|
||||
#ifdef NO_AES_NI
|
||||
sph_groestl256_init(&lyra2re_ctx.groestl);
|
||||
#else
|
||||
#if defined(__AES__)
|
||||
init_groestl256( &lyra2re_ctx.groestl, 32 );
|
||||
#else
|
||||
sph_groestl256_init(&lyra2re_ctx.groestl);
|
||||
#endif
|
||||
}
|
||||
|
||||
@@ -72,18 +71,18 @@ void lyra2re_hash(void *state, const void *input)
|
||||
sph_skein256(&ctx.skein, hashA, 32);
|
||||
sph_skein256_close(&ctx.skein, hashB);
|
||||
|
||||
#ifdef NO_AES_NI
|
||||
#if defined(__AES__)
|
||||
update_and_final_groestl256( &ctx.groestl, hashA, hashB, 256 );
|
||||
#else
|
||||
sph_groestl256( &ctx.groestl, hashB, 32 );
|
||||
sph_groestl256_close( &ctx.groestl, hashA );
|
||||
#else
|
||||
update_and_final_groestl256( &ctx.groestl, hashA, hashB, 256 );
|
||||
#endif
|
||||
|
||||
memcpy(state, hashA, 32);
|
||||
}
|
||||
|
||||
int scanhash_lyra2re(int thr_id, struct work *work,
|
||||
uint32_t max_nonce, uint64_t *hashes_done)
|
||||
int scanhash_lyra2re( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
uint64_t *hashes_done, struct thr_info *mythr )
|
||||
{
|
||||
uint32_t *pdata = work->data;
|
||||
uint32_t *ptarget = work->target;
|
||||
@@ -92,6 +91,7 @@ int scanhash_lyra2re(int thr_id, struct work *work,
|
||||
const uint32_t first_nonce = pdata[19];
|
||||
uint32_t nonce = first_nonce;
|
||||
const uint32_t Htarg = ptarget[7];
|
||||
/* int */ thr_id = mythr->id; // thr_id arg is deprecated
|
||||
|
||||
swab32_array( endiandata, pdata, 20 );
|
||||
|
||||
|
@@ -1,13 +1,13 @@
|
||||
#include "lyra2rev2-gate.h"
|
||||
#include "lyra2-gate.h"
|
||||
#include <memory.h>
|
||||
|
||||
#if defined (__AVX2__)
|
||||
#if defined (LYRA2REV2_4WAY)
|
||||
|
||||
#include "algo/blake/blake-hash-4way.h"
|
||||
#include "algo/keccak/keccak-hash-4way.h"
|
||||
#include "algo/skein/skein-hash-4way.h"
|
||||
#include "algo/bmw/bmw-hash-4way.h"
|
||||
#include "algo/cubehash/sse2/cubehash_sse2.h"
|
||||
#include "algo/cubehash/cubehash_sse2.h"
|
||||
|
||||
typedef struct {
|
||||
blake256_4way_context blake;
|
||||
@@ -48,11 +48,11 @@ void lyra2rev2_4way_hash( void *state, const void *input )
|
||||
mm256_deinterleave_4x64( hash0, hash1, hash2, hash3, vhash64, 256 );
|
||||
|
||||
cubehashUpdateDigest( &ctx.cube, (byte*) hash0, (const byte*) hash0, 32 );
|
||||
cubehashReinit( &ctx.cube );
|
||||
cubehashInit( &ctx.cube, 256, 16, 32 );
|
||||
cubehashUpdateDigest( &ctx.cube, (byte*) hash1, (const byte*) hash1, 32 );
|
||||
cubehashReinit( &ctx.cube );
|
||||
cubehashInit( &ctx.cube, 256, 16, 32 );
|
||||
cubehashUpdateDigest( &ctx.cube, (byte*) hash2, (const byte*) hash2, 32 );
|
||||
cubehashReinit( &ctx.cube );
|
||||
cubehashInit( &ctx.cube, 256, 16, 32 );
|
||||
cubehashUpdateDigest( &ctx.cube, (byte*) hash3, (const byte*) hash3, 32 );
|
||||
|
||||
LYRA2REV2( l2v2_wholeMatrix, hash0, 32, hash0, 32, hash0, 32, 1, 4, 4 );
|
||||
@@ -65,24 +65,24 @@ void lyra2rev2_4way_hash( void *state, const void *input )
|
||||
skein256_4way_close( &ctx.skein, vhash64 );
|
||||
mm256_deinterleave_4x64( hash0, hash1, hash2, hash3, vhash64, 256 );
|
||||
|
||||
cubehashReinit( &ctx.cube );
|
||||
cubehashInit( &ctx.cube, 256, 16, 32 );
|
||||
cubehashUpdateDigest( &ctx.cube, (byte*) hash0, (const byte*) hash0, 32 );
|
||||
cubehashReinit( &ctx.cube );
|
||||
cubehashInit( &ctx.cube, 256, 16, 32 );
|
||||
cubehashUpdateDigest( &ctx.cube, (byte*) hash1, (const byte*) hash1, 32 );
|
||||
cubehashReinit( &ctx.cube );
|
||||
cubehashInit( &ctx.cube, 256, 16, 32 );
|
||||
cubehashUpdateDigest( &ctx.cube, (byte*) hash2, (const byte*) hash2, 32 );
|
||||
cubehashReinit( &ctx.cube );
|
||||
cubehashInit( &ctx.cube, 256, 16, 32 );
|
||||
cubehashUpdateDigest( &ctx.cube, (byte*) hash3, (const byte*) hash3, 32 );
|
||||
|
||||
mm_interleave_4x32( vhash, hash0, hash1, hash2, hash3, 256 );
|
||||
mm128_interleave_4x32( vhash, hash0, hash1, hash2, hash3, 256 );
|
||||
bmw256_4way( &ctx.bmw, vhash, 32 );
|
||||
bmw256_4way_close( &ctx.bmw, vhash );
|
||||
|
||||
mm_deinterleave_4x32( state, state+32, state+64, state+96, vhash, 256 );
|
||||
mm128_deinterleave_4x32( state, state+32, state+64, state+96, vhash, 256 );
|
||||
}
|
||||
|
||||
int scanhash_lyra2rev2_4way( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
uint64_t *hashes_done )
|
||||
uint64_t *hashes_done, struct thr_info *mythr )
|
||||
{
|
||||
uint32_t hash[8*4] __attribute__ ((aligned (64)));
|
||||
uint32_t vdata[20*4] __attribute__ ((aligned (64)));
|
||||
@@ -95,13 +95,14 @@ int scanhash_lyra2rev2_4way( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
uint32_t *nonces = work->nonces;
|
||||
int num_found = 0;
|
||||
uint32_t *noncep = vdata + 76; // 19*4
|
||||
/* int */ thr_id = mythr->id; // thr_id arg is deprecated
|
||||
|
||||
if ( opt_benchmark )
|
||||
( (uint32_t*)ptarget )[7] = 0x0000ff;
|
||||
|
||||
swab32_array( edata, pdata, 20 );
|
||||
|
||||
mm_interleave_4x32( vdata, edata, edata, edata, edata, 640 );
|
||||
mm128_interleave_4x32( vdata, edata, edata, edata, edata, 640 );
|
||||
|
||||
blake256_4way_init( &l2v2_4way_ctx.blake );
|
||||
blake256_4way( &l2v2_4way_ctx.blake, vdata, 64 );
|
||||
|
@@ -1,40 +0,0 @@
|
||||
#include "lyra2rev2-gate.h"
|
||||
|
||||
__thread uint64_t* l2v2_wholeMatrix;
|
||||
|
||||
void lyra2rev2_set_target( struct work* work, double job_diff )
|
||||
{
|
||||
work_set_target( work, job_diff / (256.0 * opt_diff_factor) );
|
||||
}
|
||||
|
||||
bool lyra2rev2_thread_init()
|
||||
{
|
||||
const int64_t ROW_LEN_INT64 = BLOCK_LEN_INT64 * 4; // nCols
|
||||
const int64_t ROW_LEN_BYTES = ROW_LEN_INT64 * 8;
|
||||
|
||||
int i = (int64_t)ROW_LEN_BYTES * 4; // nRows;
|
||||
l2v2_wholeMatrix = _mm_malloc( i, 64 );
|
||||
#if defined (LYRA2REV2_4WAY)
|
||||
init_lyra2rev2_4way_ctx();;
|
||||
#else
|
||||
init_lyra2rev2_ctx();
|
||||
#endif
|
||||
return l2v2_wholeMatrix;
|
||||
}
|
||||
|
||||
bool register_lyra2rev2_algo( algo_gate_t* gate )
|
||||
{
|
||||
#if defined (LYRA2REV2_4WAY)
|
||||
gate->scanhash = (void*)&scanhash_lyra2rev2_4way;
|
||||
gate->hash = (void*)&lyra2rev2_4way_hash;
|
||||
#else
|
||||
gate->scanhash = (void*)&scanhash_lyra2rev2;
|
||||
gate->hash = (void*)&lyra2rev2_hash;
|
||||
#endif
|
||||
gate->optimizations = SSE2_OPT | AES_OPT | SSE42_OPT | AVX2_OPT;
|
||||
gate->miner_thread_init = (void*)&lyra2rev2_thread_init;
|
||||
gate->set_target = (void*)&lyra2rev2_set_target;
|
||||
return true;
|
||||
};
|
||||
|
||||
|
@@ -1,35 +0,0 @@
|
||||
#ifndef LYRA2REV2_GATE_H__
|
||||
#define LYRA2REV2_GATE_H__ 1
|
||||
|
||||
#include "algo-gate-api.h"
|
||||
#include <stdint.h>
|
||||
#include "lyra2.h"
|
||||
|
||||
#if defined(__AVX2__)
|
||||
#define LYRA2REV2_4WAY
|
||||
#endif
|
||||
|
||||
extern __thread uint64_t* l2v2_wholeMatrix;
|
||||
|
||||
bool register_lyra2rev2_algo( algo_gate_t* gate );
|
||||
|
||||
#if defined(LYRA2REV2_4WAY)
|
||||
|
||||
void lyra2rev2_4way_hash( void *state, const void *input );
|
||||
|
||||
int scanhash_lyra2rev2_4way( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
uint64_t *hashes_done );
|
||||
|
||||
bool init_lyra2rev2_4way_ctx();
|
||||
|
||||
#endif
|
||||
|
||||
void lyra2rev2_hash( void *state, const void *input );
|
||||
|
||||
int scanhash_lyra2rev2( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
uint64_t *hashes_done );
|
||||
|
||||
bool init_lyra2rev2_ctx();
|
||||
|
||||
#endif
|
||||
|
@@ -1,11 +1,11 @@
|
||||
#include "lyra2rev2-gate.h"
|
||||
#include "lyra2-gate.h"
|
||||
#include <memory.h>
|
||||
#include "algo/blake/sph_blake.h"
|
||||
#include "algo/cubehash/sph_cubehash.h"
|
||||
#include "algo/keccak/sph_keccak.h"
|
||||
#include "algo/skein/sph_skein.h"
|
||||
#include "algo/bmw/sph_bmw.h"
|
||||
#include "algo/cubehash/sse2/cubehash_sse2.h"
|
||||
#include "algo/cubehash/cubehash_sse2.h"
|
||||
//#include "lyra2.h"
|
||||
|
||||
typedef struct {
|
||||
@@ -73,7 +73,7 @@ void lyra2rev2_hash( void *state, const void *input )
|
||||
}
|
||||
|
||||
int scanhash_lyra2rev2(int thr_id, struct work *work,
|
||||
uint32_t max_nonce, uint64_t *hashes_done)
|
||||
uint32_t max_nonce, uint64_t *hashes_done, struct thr_info *mythr)
|
||||
{
|
||||
uint32_t *pdata = work->data;
|
||||
uint32_t *ptarget = work->target;
|
||||
@@ -82,6 +82,7 @@ int scanhash_lyra2rev2(int thr_id, struct work *work,
|
||||
const uint32_t first_nonce = pdata[19];
|
||||
uint32_t nonce = first_nonce;
|
||||
const uint32_t Htarg = ptarget[7];
|
||||
/* int */ thr_id = mythr->id; // thr_id arg is deprecated
|
||||
|
||||
if (opt_benchmark)
|
||||
((uint32_t*)ptarget)[7] = 0x0000ff;
|
||||
|
122
algo/lyra2/lyra2rev3-4way.c
Normal file
122
algo/lyra2/lyra2rev3-4way.c
Normal file
@@ -0,0 +1,122 @@
|
||||
#include "lyra2-gate.h"
|
||||
#include <memory.h>
|
||||
|
||||
#if defined (LYRA2REV3_4WAY)
|
||||
|
||||
#include "algo/blake/blake-hash-4way.h"
|
||||
#include "algo/bmw/bmw-hash-4way.h"
|
||||
#include "algo/cubehash/cubehash_sse2.h"
|
||||
|
||||
typedef struct {
|
||||
blake256_4way_context blake;
|
||||
cubehashParam cube;
|
||||
bmw256_4way_context bmw;
|
||||
} lyra2v3_4way_ctx_holder;
|
||||
|
||||
static lyra2v3_4way_ctx_holder l2v3_4way_ctx;
|
||||
|
||||
bool init_lyra2rev3_4way_ctx()
|
||||
{
|
||||
blake256_4way_init( &l2v3_4way_ctx.blake );
|
||||
cubehashInit( &l2v3_4way_ctx.cube, 256, 16, 32 );
|
||||
bmw256_4way_init( &l2v3_4way_ctx.bmw );
|
||||
return true;
|
||||
}
|
||||
|
||||
void lyra2rev3_4way_hash( void *state, const void *input )
|
||||
{
|
||||
uint32_t vhash[8*4] __attribute__ ((aligned (64)));
|
||||
uint32_t hash0[8] __attribute__ ((aligned (64)));
|
||||
uint32_t hash1[8] __attribute__ ((aligned (32)));
|
||||
uint32_t hash2[8] __attribute__ ((aligned (32)));
|
||||
uint32_t hash3[8] __attribute__ ((aligned (32)));
|
||||
lyra2v3_4way_ctx_holder ctx __attribute__ ((aligned (64)));
|
||||
memcpy( &ctx, &l2v3_4way_ctx, sizeof(l2v3_4way_ctx) );
|
||||
|
||||
blake256_4way( &ctx.blake, input, 80 );
|
||||
blake256_4way_close( &ctx.blake, vhash );
|
||||
mm128_deinterleave_4x32( hash0, hash1, hash2, hash3, vhash, 256 );
|
||||
|
||||
LYRA2REV3( l2v3_wholeMatrix, hash0, 32, hash0, 32, hash0, 32, 1, 4, 4 );
|
||||
LYRA2REV3( l2v3_wholeMatrix, hash1, 32, hash1, 32, hash1, 32, 1, 4, 4 );
|
||||
LYRA2REV3( l2v3_wholeMatrix, hash2, 32, hash2, 32, hash2, 32, 1, 4, 4 );
|
||||
LYRA2REV3( l2v3_wholeMatrix, hash3, 32, hash3, 32, hash3, 32, 1, 4, 4 );
|
||||
|
||||
cubehashUpdateDigest( &ctx.cube, (byte*) hash0, (const byte*) hash0, 32 );
|
||||
cubehashInit( &ctx.cube, 256, 16, 32 );
|
||||
cubehashUpdateDigest( &ctx.cube, (byte*) hash1, (const byte*) hash1, 32 );
|
||||
cubehashInit( &ctx.cube, 256, 16, 32 );
|
||||
cubehashUpdateDigest( &ctx.cube, (byte*) hash2, (const byte*) hash2, 32 );
|
||||
cubehashInit( &ctx.cube, 256, 16, 32 );
|
||||
cubehashUpdateDigest( &ctx.cube, (byte*) hash3, (const byte*) hash3, 32 );
|
||||
|
||||
LYRA2REV3( l2v3_wholeMatrix, hash0, 32, hash0, 32, hash0, 32, 1, 4, 4 );
|
||||
LYRA2REV3( l2v3_wholeMatrix, hash1, 32, hash1, 32, hash1, 32, 1, 4, 4 );
|
||||
LYRA2REV3( l2v3_wholeMatrix, hash2, 32, hash2, 32, hash2, 32, 1, 4, 4 );
|
||||
LYRA2REV3( l2v3_wholeMatrix, hash3, 32, hash3, 32, hash3, 32, 1, 4, 4 );
|
||||
|
||||
mm128_interleave_4x32( vhash, hash0, hash1, hash2, hash3, 256 );
|
||||
bmw256_4way( &ctx.bmw, vhash, 32 );
|
||||
bmw256_4way_close( &ctx.bmw, state );
|
||||
|
||||
}
|
||||
|
||||
int scanhash_lyra2rev3_4way( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
uint64_t *hashes_done, struct thr_info *mythr )
|
||||
{
|
||||
uint32_t hash[8*4] __attribute__ ((aligned (64)));
|
||||
uint32_t vdata[20*4] __attribute__ ((aligned (64)));
|
||||
uint32_t edata[20] __attribute__ ((aligned (64)));
|
||||
uint32_t *hash7 = &(hash[7<<2]);
|
||||
uint32_t lane_hash[8];
|
||||
uint32_t *pdata = work->data;
|
||||
uint32_t *ptarget = work->target;
|
||||
const uint32_t first_nonce = pdata[19];
|
||||
uint32_t n = first_nonce;
|
||||
const uint32_t Htarg = ptarget[7];
|
||||
__m128i *noncev = (__m128i*)vdata + 19; // aligned
|
||||
/* int */ thr_id = mythr->id; // thr_id arg is deprecated
|
||||
|
||||
if ( opt_benchmark )
|
||||
( (uint32_t*)ptarget )[7] = 0x0000ff;
|
||||
|
||||
// Need big endian data
|
||||
casti_m128i( edata, 0 ) = mm128_bswap_32( casti_m128i( pdata, 0 ) );
|
||||
casti_m128i( edata, 1 ) = mm128_bswap_32( casti_m128i( pdata, 1 ) );
|
||||
casti_m128i( edata, 2 ) = mm128_bswap_32( casti_m128i( pdata, 2 ) );
|
||||
casti_m128i( edata, 3 ) = mm128_bswap_32( casti_m128i( pdata, 3 ) );
|
||||
casti_m128i( edata, 4 ) = mm128_bswap_32( casti_m128i( pdata, 4 ) );
|
||||
|
||||
mm128_interleave_4x32( vdata, edata, edata, edata, edata, 640 );
|
||||
|
||||
do
|
||||
{
|
||||
*noncev = mm128_bswap_32( _mm_set_epi32( n+3, n+2, n+1, n ) );
|
||||
|
||||
lyra2rev3_4way_hash( hash, vdata );
|
||||
pdata[19] = n;
|
||||
|
||||
for ( int lane = 0; lane < 4; lane++ ) if ( hash7[lane] <= Htarg )
|
||||
{
|
||||
mm128_extract_lane_4x32( lane_hash, hash, lane, 256 );
|
||||
|
||||
if ( fulltest( lane_hash, ptarget ) )
|
||||
{
|
||||
pdata[19] = n + lane;
|
||||
work_set_target_ratio( work, lane_hash );
|
||||
if ( submit_work( mythr, work ) )
|
||||
applog( LOG_NOTICE, "Share %d submitted by thread %d, lane %d.",
|
||||
accepted_share_count + rejected_share_count + 1,
|
||||
thr_id, lane );
|
||||
else
|
||||
applog( LOG_WARNING, "Failed to submit share." );
|
||||
}
|
||||
}
|
||||
n += 4;
|
||||
} while ( (n < max_nonce-4) && !work_restart[thr_id].restart);
|
||||
|
||||
*hashes_done = n - first_nonce + 1;
|
||||
return 0;
|
||||
}
|
||||
|
||||
#endif
|
107
algo/lyra2/lyra2rev3.c
Normal file
107
algo/lyra2/lyra2rev3.c
Normal file
@@ -0,0 +1,107 @@
|
||||
#include "lyra2-gate.h"
|
||||
#include <memory.h>
|
||||
#include "algo/blake/sph_blake.h"
|
||||
#include "algo/cubehash/sph_cubehash.h"
|
||||
#include "algo/bmw/sph_bmw.h"
|
||||
#include "algo/cubehash/cubehash_sse2.h"
|
||||
//#include "lyra2.h"
|
||||
|
||||
typedef struct {
|
||||
cubehashParam cube;
|
||||
sph_blake256_context blake;
|
||||
sph_bmw256_context bmw;
|
||||
|
||||
} lyra2v3_ctx_holder;
|
||||
|
||||
static lyra2v3_ctx_holder lyra2v3_ctx;
|
||||
static __thread sph_blake256_context l2v3_blake_mid;
|
||||
|
||||
bool init_lyra2rev3_ctx()
|
||||
{
|
||||
cubehashInit( &lyra2v3_ctx.cube, 256, 16, 32 );
|
||||
sph_blake256_init( &lyra2v3_ctx.blake );
|
||||
sph_bmw256_init( &lyra2v3_ctx.bmw );
|
||||
return true;
|
||||
}
|
||||
|
||||
void l2v3_blake256_midstate( const void* input )
|
||||
{
|
||||
memcpy( &l2v3_blake_mid, &lyra2v3_ctx.blake, sizeof l2v3_blake_mid );
|
||||
sph_blake256( &l2v3_blake_mid, input, 64 );
|
||||
}
|
||||
|
||||
void lyra2rev3_hash( void *state, const void *input )
|
||||
{
|
||||
lyra2v3_ctx_holder ctx __attribute__ ((aligned (64)));
|
||||
memcpy( &ctx, &lyra2v3_ctx, sizeof(lyra2v3_ctx) );
|
||||
uint8_t hash[128] __attribute__ ((aligned (64)));
|
||||
#define hashA hash
|
||||
#define hashB hash+64
|
||||
const int midlen = 64; // bytes
|
||||
const int tail = 80 - midlen; // 16
|
||||
|
||||
memcpy( &ctx.blake, &l2v3_blake_mid, sizeof l2v3_blake_mid );
|
||||
sph_blake256( &ctx.blake, (uint8_t*)input + midlen, tail );
|
||||
sph_blake256_close( &ctx.blake, hash );
|
||||
|
||||
LYRA2REV3( l2v3_wholeMatrix, hash, 32, hash, 32, hash, 32, 1, 4, 4 );
|
||||
|
||||
cubehashUpdateDigest( &ctx.cube, (byte*) hashA,
|
||||
(const byte*) hash, 32 );
|
||||
|
||||
LYRA2REV3( l2v3_wholeMatrix, hash, 32, hash, 32, hash, 32, 1, 4, 4 );
|
||||
|
||||
sph_bmw256( &ctx.bmw, hash, 32 );
|
||||
sph_bmw256_close( &ctx.bmw, hash );
|
||||
|
||||
memcpy( state, hash, 32 );
|
||||
}
|
||||
|
||||
int scanhash_lyra2rev3( int thr_id, struct work *work,
|
||||
uint32_t max_nonce, uint64_t *hashes_done, struct thr_info *mythr )
|
||||
{
|
||||
uint32_t *pdata = work->data;
|
||||
uint32_t *ptarget = work->target;
|
||||
uint32_t endiandata[20] __attribute__ ((aligned (64)));
|
||||
uint32_t hash[8] __attribute__((aligned(64)));
|
||||
const uint32_t first_nonce = pdata[19];
|
||||
uint32_t nonce = first_nonce;
|
||||
const uint32_t Htarg = ptarget[7];
|
||||
/* int */ thr_id = mythr->id; // thr_id arg is deprecated
|
||||
|
||||
if (opt_benchmark)
|
||||
((uint32_t*)ptarget)[7] = 0x0000ff;
|
||||
|
||||
// need big endian data
|
||||
casti_m128i( endiandata, 0 ) = mm128_bswap_32( casti_m128i( pdata, 0 ) );
|
||||
casti_m128i( endiandata, 1 ) = mm128_bswap_32( casti_m128i( pdata, 1 ) );
|
||||
casti_m128i( endiandata, 2 ) = mm128_bswap_32( casti_m128i( pdata, 2 ) );
|
||||
casti_m128i( endiandata, 3 ) = mm128_bswap_32( casti_m128i( pdata, 3 ) );
|
||||
casti_m128i( endiandata, 4 ) = mm128_bswap_32( casti_m128i( pdata, 4 ) );
|
||||
|
||||
l2v3_blake256_midstate( endiandata );
|
||||
|
||||
do
|
||||
{
|
||||
be32enc(&endiandata[19], nonce);
|
||||
lyra2rev3_hash(hash, endiandata);
|
||||
|
||||
if (hash[7] <= Htarg )
|
||||
{
|
||||
if( fulltest(hash, ptarget) )
|
||||
{
|
||||
pdata[19] = nonce;
|
||||
work_set_target_ratio( work, hash );
|
||||
*hashes_done = pdata[19] - first_nonce;
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
nonce++;
|
||||
|
||||
} while (nonce < max_nonce && !work_restart[thr_id].restart);
|
||||
|
||||
pdata[19] = nonce;
|
||||
*hashes_done = pdata[19] - first_nonce + 1;
|
||||
return 0;
|
||||
}
|
||||
|
@@ -1,4 +1,4 @@
|
||||
#include "lyra2z-gate.h"
|
||||
#include "lyra2-gate.h"
|
||||
|
||||
#ifdef LYRA2Z_4WAY
|
||||
|
||||
@@ -36,7 +36,7 @@ void lyra2z_4way_hash( void *state, const void *input )
|
||||
blake256_4way( &ctx_blake, input + (64*4), 16 );
|
||||
blake256_4way_close( &ctx_blake, vhash );
|
||||
|
||||
mm_deinterleave_4x32( hash0, hash1, hash2, hash3, vhash, 256 );
|
||||
mm128_deinterleave_4x32( hash0, hash1, hash2, hash3, vhash, 256 );
|
||||
|
||||
LYRA2Z( lyra2z_4way_matrix, hash0, 32, hash0, 32, hash0, 32, 8, 8, 8 );
|
||||
LYRA2Z( lyra2z_4way_matrix, hash1, 32, hash1, 32, hash1, 32, 8, 8, 8 );
|
||||
@@ -50,7 +50,7 @@ void lyra2z_4way_hash( void *state, const void *input )
|
||||
}
|
||||
|
||||
int scanhash_lyra2z_4way( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
uint64_t *hashes_done )
|
||||
uint64_t *hashes_done, struct thr_info *mythr )
|
||||
{
|
||||
uint32_t hash[8*4] __attribute__ ((aligned (64)));
|
||||
uint32_t vdata[20*4] __attribute__ ((aligned (64)));
|
||||
@@ -60,25 +60,23 @@ int scanhash_lyra2z_4way( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
const uint32_t Htarg = ptarget[7];
|
||||
const uint32_t first_nonce = pdata[19];
|
||||
uint32_t n = first_nonce;
|
||||
uint32_t *nonces = work->nonces;
|
||||
int num_found = 0;
|
||||
uint32_t *noncep = vdata + 76; // 19*4
|
||||
__m128i *noncev = (__m128i*)vdata + 19; // aligned
|
||||
/* int */ thr_id = mythr->id; // thr_id arg is deprecated
|
||||
|
||||
if ( opt_benchmark )
|
||||
ptarget[7] = 0x0000ff;
|
||||
|
||||
for ( int i=0; i < 19; i++ )
|
||||
be32enc( &edata[i], pdata[i] );
|
||||
|
||||
mm_interleave_4x32( vdata, edata, edata, edata, edata, 640 );
|
||||
casti_m128i( edata, 0 ) = mm128_bswap_32( casti_m128i( pdata, 0 ) );
|
||||
casti_m128i( edata, 1 ) = mm128_bswap_32( casti_m128i( pdata, 1 ) );
|
||||
casti_m128i( edata, 2 ) = mm128_bswap_32( casti_m128i( pdata, 2 ) );
|
||||
casti_m128i( edata, 3 ) = mm128_bswap_32( casti_m128i( pdata, 3 ) );
|
||||
casti_m128i( edata, 4 ) = mm128_bswap_32( casti_m128i( pdata, 4 ) );
|
||||
mm128_interleave_4x32( vdata, edata, edata, edata, edata, 640 );
|
||||
|
||||
lyra2z_4way_midstate( vdata );
|
||||
|
||||
do {
|
||||
be32enc( noncep, n );
|
||||
be32enc( noncep+1, n+1 );
|
||||
be32enc( noncep+2, n+2 );
|
||||
be32enc( noncep+3, n+3 );
|
||||
*noncev = mm128_bswap_32( _mm_set_epi32( n+3, n+2, n+1, n ) );
|
||||
|
||||
lyra2z_4way_hash( hash, vdata );
|
||||
pdata[19] = n;
|
||||
@@ -87,15 +85,19 @@ int scanhash_lyra2z_4way( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
if ( (hash+(i<<3))[7] <= Htarg && fulltest( hash+(i<<3), ptarget ) )
|
||||
{
|
||||
pdata[19] = n+i;
|
||||
nonces[ num_found++ ] = n+i;
|
||||
work_set_target_ratio( work, hash+(i<<3) );
|
||||
if ( submit_work( mythr, work ) )
|
||||
applog( LOG_NOTICE, "Share %d submitted by thread %d, lane %d.",
|
||||
accepted_share_count + rejected_share_count + 1,
|
||||
thr_id, i );
|
||||
else
|
||||
applog( LOG_WARNING, "Failed to submit share." );
|
||||
}
|
||||
n += 4;
|
||||
} while ( (num_found == 0) && (n < max_nonce-4)
|
||||
&& !work_restart[thr_id].restart);
|
||||
} while ( (n < max_nonce-4) && !work_restart[thr_id].restart);
|
||||
|
||||
*hashes_done = n - first_nonce + 1;
|
||||
return num_found;
|
||||
return 0;
|
||||
}
|
||||
|
||||
#endif
|
||||
@@ -150,14 +152,14 @@ void lyra2z_8way_hash( void *state, const void *input )
|
||||
memcpy( state+ 32, hash1, 32 );
|
||||
memcpy( state+ 64, hash2, 32 );
|
||||
memcpy( state+ 96, hash3, 32 );
|
||||
memcpy( state+128, hash1, 32 );
|
||||
memcpy( state+160, hash2, 32 );
|
||||
memcpy( state+192, hash3, 32 );
|
||||
memcpy( state+224, hash1, 32 );
|
||||
memcpy( state+128, hash4, 32 );
|
||||
memcpy( state+160, hash5, 32 );
|
||||
memcpy( state+192, hash6, 32 );
|
||||
memcpy( state+224, hash7, 32 );
|
||||
}
|
||||
|
||||
int scanhash_lyra2z_8way( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
uint64_t *hashes_done )
|
||||
uint64_t *hashes_done, struct thr_info *mythr )
|
||||
{
|
||||
uint32_t hash[8*8] __attribute__ ((aligned (64)));
|
||||
uint32_t vdata[20*8] __attribute__ ((aligned (64)));
|
||||
@@ -167,15 +169,15 @@ int scanhash_lyra2z_8way( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
const uint32_t Htarg = ptarget[7];
|
||||
const uint32_t first_nonce = pdata[19];
|
||||
uint32_t n = first_nonce;
|
||||
uint32_t *nonces = work->nonces;
|
||||
int num_found = 0;
|
||||
uint32_t *noncep = vdata + 152; // 19*8
|
||||
__m256i *noncev = (__m256i*)vdata + 19; // aligned
|
||||
/* int */ thr_id = mythr->id; // thr_id arg is deprecated
|
||||
|
||||
if ( opt_benchmark )
|
||||
ptarget[7] = 0x0000ff;
|
||||
|
||||
for ( int i=0; i < 19; i++ )
|
||||
be32enc( &edata[i], pdata[i] );
|
||||
casti_m256i( edata, 0 ) = mm256_bswap_32( casti_m256i( pdata, 0 ) );
|
||||
casti_m256i( edata, 1 ) = mm256_bswap_32( casti_m256i( pdata, 1 ) );
|
||||
casti_m128i( edata, 4 ) = mm128_bswap_32( casti_m128i( pdata, 4 ) );
|
||||
|
||||
mm256_interleave_8x32( vdata, edata, edata, edata, edata,
|
||||
edata, edata, edata, edata, 640 );
|
||||
@@ -183,15 +185,8 @@ int scanhash_lyra2z_8way( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
lyra2z_8way_midstate( vdata );
|
||||
|
||||
do {
|
||||
be32enc( noncep, n );
|
||||
be32enc( noncep+1, n+1 );
|
||||
be32enc( noncep+2, n+2 );
|
||||
be32enc( noncep+3, n+3 );
|
||||
be32enc( noncep+4, n+4 );
|
||||
be32enc( noncep+5, n+5 );
|
||||
be32enc( noncep+6, n+6 );
|
||||
be32enc( noncep+7, n+7 );
|
||||
|
||||
*noncev = mm256_bswap_32(
|
||||
_mm256_set_epi32( n+7, n+6, n+5, n+4, n+3, n+2, n+1, n ) );
|
||||
lyra2z_8way_hash( hash, vdata );
|
||||
pdata[19] = n;
|
||||
|
||||
@@ -199,15 +194,19 @@ int scanhash_lyra2z_8way( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
if ( (hash+(i<<3))[7] <= Htarg && fulltest( hash+(i<<3), ptarget ) )
|
||||
{
|
||||
pdata[19] = n+i;
|
||||
nonces[ num_found++ ] = n+i;
|
||||
work_set_target_ratio( work, hash+(i<<3) );
|
||||
if ( submit_work( mythr, work ) )
|
||||
applog( LOG_NOTICE, "Share %d submitted by thread %d, lane %d.",
|
||||
accepted_share_count + rejected_share_count + 1,
|
||||
thr_id, i );
|
||||
else
|
||||
applog( LOG_WARNING, "Failed to submit share." );
|
||||
}
|
||||
n += 8;
|
||||
} while ( (num_found == 0) && (n < max_nonce-4)
|
||||
&& !work_restart[thr_id].restart);
|
||||
} while ( (n < max_nonce-8) && !work_restart[thr_id].restart);
|
||||
|
||||
*hashes_done = n - first_nonce + 1;
|
||||
return num_found;
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
|
@@ -1,29 +0,0 @@
|
||||
#include "lyra2z-gate.h"
|
||||
#include "lyra2.h"
|
||||
|
||||
void lyra2z_set_target( struct work* work, double job_diff )
|
||||
{
|
||||
work_set_target( work, job_diff / (256.0 * opt_diff_factor) );
|
||||
}
|
||||
|
||||
bool register_lyra2z_algo( algo_gate_t* gate )
|
||||
{
|
||||
#if defined(LYRA2Z_8WAY)
|
||||
gate->miner_thread_init = (void*)&lyra2z_8way_thread_init;
|
||||
gate->scanhash = (void*)&scanhash_lyra2z_8way;
|
||||
gate->hash = (void*)&lyra2z_8way_hash;
|
||||
#elif defined(LYRA2Z_4WAY)
|
||||
gate->miner_thread_init = (void*)&lyra2z_4way_thread_init;
|
||||
gate->scanhash = (void*)&scanhash_lyra2z_4way;
|
||||
gate->hash = (void*)&lyra2z_4way_hash;
|
||||
#else
|
||||
gate->miner_thread_init = (void*)&lyra2z_thread_init;
|
||||
gate->scanhash = (void*)&scanhash_lyra2z;
|
||||
gate->hash = (void*)&lyra2z_hash;
|
||||
#endif
|
||||
gate->optimizations = SSE42_OPT | AVX2_OPT;
|
||||
gate->get_max64 = (void*)&get_max64_0xffffLL;
|
||||
gate->set_target = (void*)&lyra2z_set_target;
|
||||
return true;
|
||||
};
|
||||
|
@@ -1,46 +0,0 @@
|
||||
#ifndef LYRA2Z_GATE_H__
|
||||
#define LYRA2Z_GATE_H__ 1
|
||||
|
||||
#include "algo-gate-api.h"
|
||||
#include <stdint.h>
|
||||
|
||||
#if defined(__SSE4_2__)
|
||||
#define LYRA2Z_4WAY
|
||||
#endif
|
||||
#if defined(__AVX2__)
|
||||
// #define LYRA2Z_8WAY
|
||||
#endif
|
||||
|
||||
|
||||
#define LYRA2Z_MATRIX_SIZE BLOCK_LEN_INT64 * 8 * 8 * 8
|
||||
|
||||
#if defined(LYRA2Z_8WAY)
|
||||
|
||||
void lyra2z_8way_hash( void *state, const void *input );
|
||||
|
||||
int scanhash_lyra2z_8way( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
uint64_t *hashes_done );
|
||||
|
||||
bool lyra2z_8way_thread_init();
|
||||
|
||||
#elif defined(LYRA2Z_4WAY)
|
||||
|
||||
void lyra2z_4way_hash( void *state, const void *input );
|
||||
|
||||
int scanhash_lyra2z_4way( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
uint64_t *hashes_done );
|
||||
|
||||
bool lyra2z_4way_thread_init();
|
||||
|
||||
#else
|
||||
|
||||
void lyra2z_hash( void *state, const void *input );
|
||||
|
||||
int scanhash_lyra2z( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
uint64_t *hashes_done );
|
||||
|
||||
bool lyra2z_thread_init();
|
||||
|
||||
#endif
|
||||
|
||||
#endif
|
@@ -1,6 +1,6 @@
|
||||
#include <memory.h>
|
||||
#include <mm_malloc.h>
|
||||
#include "lyra2z-gate.h"
|
||||
#include "lyra2-gate.h"
|
||||
#include "lyra2.h"
|
||||
#include "algo/blake/sph_blake.h"
|
||||
#include "avxdefs.h"
|
||||
@@ -44,7 +44,7 @@ void lyra2z_hash( void *state, const void *input )
|
||||
}
|
||||
|
||||
int scanhash_lyra2z( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
uint64_t *hashes_done )
|
||||
uint64_t *hashes_done, struct thr_info *mythr )
|
||||
{
|
||||
uint32_t _ALIGN(64) hash[8];
|
||||
uint32_t _ALIGN(64) endiandata[20];
|
||||
@@ -53,6 +53,7 @@ int scanhash_lyra2z( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
const uint32_t Htarg = ptarget[7];
|
||||
const uint32_t first_nonce = pdata[19];
|
||||
uint32_t nonce = first_nonce;
|
||||
/* int */ thr_id = mythr->id; // thr_id arg is deprecated
|
||||
|
||||
if (opt_benchmark)
|
||||
ptarget[7] = 0x0000ff;
|
||||
|
@@ -16,7 +16,7 @@ void lyra2z330_hash(void *state, const void *input, uint32_t height)
|
||||
}
|
||||
|
||||
int scanhash_lyra2z330( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
uint64_t *hashes_done )
|
||||
uint64_t *hashes_done, struct thr_info *mythr )
|
||||
{
|
||||
uint32_t hash[8] __attribute__ ((aligned (64)));
|
||||
uint32_t endiandata[20] __attribute__ ((aligned (64)));
|
||||
@@ -25,6 +25,7 @@ int scanhash_lyra2z330( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
const uint32_t Htarg = ptarget[7];
|
||||
const uint32_t first_nonce = pdata[19];
|
||||
uint32_t nonce = first_nonce;
|
||||
/* int */ thr_id = mythr->id; // thr_id arg is deprecated
|
||||
if (opt_benchmark)
|
||||
ptarget[7] = 0x0000ff;
|
||||
|
||||
|
141
algo/lyra2/phi2.c
Normal file
141
algo/lyra2/phi2.c
Normal file
@@ -0,0 +1,141 @@
|
||||
/**
|
||||
* Phi-2 algo Implementation
|
||||
*/
|
||||
|
||||
#include "lyra2-gate.h"
|
||||
#include "algo/skein/sph_skein.h"
|
||||
#include "algo/jh/sph_jh.h"
|
||||
#include "algo/gost/sph_gost.h"
|
||||
#include "algo/cubehash/cubehash_sse2.h"
|
||||
#ifdef __AES__
|
||||
#include "algo/echo/aes_ni/hash_api.h"
|
||||
#else
|
||||
#include "algo/echo/sph_echo.h"
|
||||
#endif
|
||||
|
||||
typedef struct {
|
||||
cubehashParam cube;
|
||||
sph_jh512_context jh;
|
||||
#if defined(__AES__)
|
||||
hashState_echo echo1;
|
||||
hashState_echo echo2;
|
||||
#else
|
||||
sph_echo512_context echo1;
|
||||
sph_echo512_context echo2;
|
||||
#endif
|
||||
sph_gost512_context gost;
|
||||
sph_skein512_context skein;
|
||||
} phi2_ctx_holder;
|
||||
|
||||
phi2_ctx_holder phi2_ctx;
|
||||
|
||||
void init_phi2_ctx()
|
||||
{
|
||||
cubehashInit( &phi2_ctx.cube, 512, 16, 32 );
|
||||
sph_jh512_init(&phi2_ctx.jh);
|
||||
#if defined(__AES__)
|
||||
init_echo( &phi2_ctx.echo1, 512 );
|
||||
init_echo( &phi2_ctx.echo2, 512 );
|
||||
#else
|
||||
sph_echo512_init(&phi2_ctx.echo1);
|
||||
sph_echo512_init(&phi2_ctx.echo2);
|
||||
#endif
|
||||
sph_gost512_init(&phi2_ctx.gost);
|
||||
sph_skein512_init(&phi2_ctx.skein);
|
||||
};
|
||||
|
||||
void phi2_hash(void *state, const void *input)
|
||||
{
|
||||
unsigned char _ALIGN(128) hash[64];
|
||||
unsigned char _ALIGN(128) hashA[64];
|
||||
unsigned char _ALIGN(128) hashB[64];
|
||||
|
||||
phi2_ctx_holder ctx __attribute__ ((aligned (64)));
|
||||
memcpy( &ctx, &phi2_ctx, sizeof(phi2_ctx) );
|
||||
|
||||
cubehashUpdateDigest( &ctx.cube, (byte*)hashB, (const byte*)input,
|
||||
phi2_has_roots ? 144 : 80 );
|
||||
|
||||
LYRA2RE( &hashA[ 0], 32, &hashB[ 0], 32, &hashB[ 0], 32, 1, 8, 8 );
|
||||
LYRA2RE( &hashA[32], 32, &hashB[32], 32, &hashB[32], 32, 1, 8, 8 );
|
||||
|
||||
sph_jh512( &ctx.jh, (const void*)hashA, 64 );
|
||||
sph_jh512_close( &ctx.jh, (void*)hash );
|
||||
|
||||
if ( hash[0] & 1 )
|
||||
{
|
||||
sph_gost512( &ctx.gost, (const void*)hash, 64 );
|
||||
sph_gost512_close( &ctx.gost, (void*)hash );
|
||||
}
|
||||
else
|
||||
{
|
||||
#if defined(__AES__)
|
||||
update_final_echo ( &ctx.echo1, (BitSequence *)hash,
|
||||
(const BitSequence *)hash, 512 );
|
||||
update_final_echo ( &ctx.echo2, (BitSequence *)hash,
|
||||
(const BitSequence *)hash, 512 );
|
||||
#else
|
||||
sph_echo512( &ctx.echo1, (const void*)hash, 64 );
|
||||
sph_echo512_close( &ctx.echo1, (void*)hash );
|
||||
|
||||
sph_echo512( &ctx.echo2, (const void*)hash, 64 );
|
||||
sph_echo512_close( &ctx.echo2, (void*)hash );
|
||||
#endif
|
||||
}
|
||||
|
||||
sph_skein512( &ctx.skein, (const void*)hash, 64 );
|
||||
sph_skein512_close( &ctx.skein, (void*)hash );
|
||||
|
||||
for (int i=0; i<4; i++)
|
||||
((uint64_t*)hash)[i] ^= ((uint64_t*)hash)[i+4];
|
||||
|
||||
memcpy(state, hash, 32);
|
||||
}
|
||||
|
||||
int scanhash_phi2( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
uint64_t *hashes_done, struct thr_info *mythr )
|
||||
{
|
||||
uint32_t _ALIGN(128) hash[8];
|
||||
uint32_t _ALIGN(128) endiandata[36];
|
||||
uint32_t *pdata = work->data;
|
||||
uint32_t *ptarget = work->target;
|
||||
const uint32_t Htarg = ptarget[7];
|
||||
const uint32_t first_nonce = pdata[19];
|
||||
uint32_t n = first_nonce;
|
||||
/* int */ thr_id = mythr->id; // thr_id arg is deprecated
|
||||
|
||||
if(opt_benchmark){
|
||||
ptarget[7] = 0x00ff;
|
||||
}
|
||||
|
||||
phi2_has_roots = false;
|
||||
for ( int i=0; i < 36; i++ )
|
||||
{
|
||||
be32enc(&endiandata[i], pdata[i]);
|
||||
if (i >= 20 && pdata[i]) phi2_has_roots = true;
|
||||
}
|
||||
|
||||
do {
|
||||
be32enc( &endiandata[19], n );
|
||||
phi2_hash( hash, endiandata );
|
||||
|
||||
if ( hash[7] < Htarg && fulltest( hash, ptarget ) )
|
||||
{
|
||||
pdata[19] = n;
|
||||
work_set_target_ratio( work, hash );
|
||||
if ( submit_work( mythr, work ) )
|
||||
applog( LOG_NOTICE, "Share %d submitted by thread %d.",
|
||||
accepted_share_count + rejected_share_count + 1,
|
||||
thr_id );
|
||||
else
|
||||
applog( LOG_WARNING, "Failed to submit share." );
|
||||
*hashes_done = n - first_nonce + 1;
|
||||
}
|
||||
n++;
|
||||
|
||||
} while ( n < max_nonce && !work_restart[thr_id].restart );
|
||||
|
||||
*hashes_done = n - first_nonce + 1;
|
||||
pdata[19] = n;
|
||||
return 0;
|
||||
}
|
@@ -48,6 +48,10 @@ static inline uint64_t rotr64( const uint64_t w, const unsigned c ){
|
||||
return ( w >> c ) | ( w << ( 64 - c ) );
|
||||
}
|
||||
|
||||
// serial data is only 32 bytes so AVX2 is the limit for that dimension.
|
||||
// However, 2 way parallel looks trivial to code for AVX512 except for
|
||||
// a data dependency with rowa.
|
||||
|
||||
#if defined __AVX2__
|
||||
// only available with avx2
|
||||
|
||||
@@ -65,13 +69,13 @@ static inline uint64_t rotr64( const uint64_t w, const unsigned c ){
|
||||
|
||||
#define LYRA_ROUND_AVX2( s0, s1, s2, s3 ) \
|
||||
G_4X64( s0, s1, s2, s3 ); \
|
||||
s1 = mm256_ror256_1x64( s1); \
|
||||
s1 = mm256_ror_1x64( s1); \
|
||||
s2 = mm256_swap_128( s2 ); \
|
||||
s3 = mm256_rol256_1x64( s3 ); \
|
||||
s3 = mm256_rol_1x64( s3 ); \
|
||||
G_4X64( s0, s1, s2, s3 ); \
|
||||
s1 = mm256_rol256_1x64( s1 ); \
|
||||
s1 = mm256_rol_1x64( s1 ); \
|
||||
s2 = mm256_swap_128( s2 ); \
|
||||
s3 = mm256_ror256_1x64( s3 );
|
||||
s3 = mm256_ror_1x64( s3 );
|
||||
|
||||
#define LYRA_12_ROUNDS_AVX2( s0, s1, s2, s3 ) \
|
||||
LYRA_ROUND_AVX2( s0, s1, s2, s3 ) \
|
||||
@@ -87,31 +91,31 @@ static inline uint64_t rotr64( const uint64_t w, const unsigned c ){
|
||||
LYRA_ROUND_AVX2( s0, s1, s2, s3 ) \
|
||||
LYRA_ROUND_AVX2( s0, s1, s2, s3 ) \
|
||||
|
||||
#elif defined(__SSE4_2__)
|
||||
#elif defined(__SSE2__)
|
||||
|
||||
// process 2 columns in parallel
|
||||
// returns void, all args updated
|
||||
#define G_2X64(a,b,c,d) \
|
||||
a = _mm_add_epi64( a, b ); \
|
||||
d = mm_ror_64( _mm_xor_si128( d, a), 32 ); \
|
||||
d = mm128_ror_64( _mm_xor_si128( d, a), 32 ); \
|
||||
c = _mm_add_epi64( c, d ); \
|
||||
b = mm_ror_64( _mm_xor_si128( b, c ), 24 ); \
|
||||
b = mm128_ror_64( _mm_xor_si128( b, c ), 24 ); \
|
||||
a = _mm_add_epi64( a, b ); \
|
||||
d = mm_ror_64( _mm_xor_si128( d, a ), 16 ); \
|
||||
d = mm128_ror_64( _mm_xor_si128( d, a ), 16 ); \
|
||||
c = _mm_add_epi64( c, d ); \
|
||||
b = mm_ror_64( _mm_xor_si128( b, c ), 63 );
|
||||
b = mm128_ror_64( _mm_xor_si128( b, c ), 63 );
|
||||
|
||||
#define LYRA_ROUND_AVX(s0,s1,s2,s3,s4,s5,s6,s7) \
|
||||
G_2X64( s0, s2, s4, s6 ); \
|
||||
G_2X64( s1, s3, s5, s7 ); \
|
||||
mm_ror256_1x64( s2, s3 ); \
|
||||
mm_swap_128( s4, s5 ); \
|
||||
mm_rol256_1x64( s6, s7 ); \
|
||||
mm128_ror1x64_256( s2, s3 ); \
|
||||
mm128_swap128_256( s4, s5 ); \
|
||||
mm128_rol1x64_256( s6, s7 ); \
|
||||
G_2X64( s0, s2, s4, s6 ); \
|
||||
G_2X64( s1, s3, s5, s7 ); \
|
||||
mm_rol256_1x64( s2, s3 ); \
|
||||
mm_swap_128( s4, s5 ); \
|
||||
mm_ror256_1x64( s6, s7 );
|
||||
mm128_rol1x64_256( s2, s3 ); \
|
||||
mm128_swap128_256( s4, s5 ); \
|
||||
mm128_ror1x64_256( s6, s7 );
|
||||
|
||||
#define LYRA_12_ROUNDS_AVX(s0,s1,s2,s3,s4,s5,s6,s7) \
|
||||
LYRA_ROUND_AVX(s0,s1,s2,s3,s4,s5,s6,s7) \
|
||||
@@ -128,7 +132,7 @@ static inline uint64_t rotr64( const uint64_t w, const unsigned c ){
|
||||
LYRA_ROUND_AVX(s0,s1,s2,s3,s4,s5,s6,s7) \
|
||||
|
||||
|
||||
#endif // AVX2
|
||||
#endif // AVX2 else SSE2
|
||||
|
||||
// Scalar
|
||||
//Blake2b's G function
|
||||
|
49
algo/m7m.c
49
algo/m7m.c
@@ -7,7 +7,6 @@
|
||||
#include <string.h>
|
||||
#include <float.h>
|
||||
#include <math.h>
|
||||
#include "algo/sha/sph_sha2.h"
|
||||
#include "algo/keccak/sph_keccak.h"
|
||||
#include "algo/haval/sph-haval.h"
|
||||
#include "algo/tiger/sph_tiger.h"
|
||||
@@ -117,13 +116,8 @@ uint32_t sw2_(int nnounce)
|
||||
}
|
||||
|
||||
typedef struct {
|
||||
#ifndef USE_SPH_SHA
|
||||
SHA256_CTX sha256;
|
||||
SHA512_CTX sha512;
|
||||
#else
|
||||
sph_sha256_context sha256;
|
||||
sph_sha512_context sha512;
|
||||
#endif
|
||||
sph_keccak512_context keccak;
|
||||
sph_whirlpool_context whirlpool;
|
||||
sph_haval256_5_context haval;
|
||||
@@ -135,13 +129,8 @@ m7m_ctx_holder m7m_ctx;
|
||||
|
||||
void init_m7m_ctx()
|
||||
{
|
||||
#ifndef USE_SPH_SHA
|
||||
SHA256_Init( &m7m_ctx.sha256 );
|
||||
SHA512_Init( &m7m_ctx.sha512 );
|
||||
#else
|
||||
sph_sha256_init( &m7m_ctx.sha256 );
|
||||
sph_sha512_init( &m7m_ctx.sha512 );
|
||||
#endif
|
||||
sph_keccak512_init( &m7m_ctx.keccak );
|
||||
sph_whirlpool_init( &m7m_ctx.whirlpool );
|
||||
sph_haval256_5_init( &m7m_ctx.haval );
|
||||
@@ -176,28 +165,18 @@ int scanhash_m7m_hash( int thr_id, struct work* work,
|
||||
|
||||
m7m_ctx_holder ctx1, ctx2 __attribute__ ((aligned (64)));
|
||||
memcpy( &ctx1, &m7m_ctx, sizeof(m7m_ctx) );
|
||||
#ifndef USE_SPH_SHA
|
||||
SHA256_CTX ctxf_sha256;
|
||||
#else
|
||||
sph_sha256_context ctxf_sha256;
|
||||
#endif
|
||||
|
||||
memcpy(data, pdata, 80);
|
||||
|
||||
#ifndef USE_SPH_SHA
|
||||
SHA256_Update( &ctx1.sha256, data, M7_MIDSTATE_LEN );
|
||||
SHA512_Update( &ctx1.sha512, data, M7_MIDSTATE_LEN );
|
||||
#else
|
||||
sph_sha256( &ctx1.sha256, data, M7_MIDSTATE_LEN );
|
||||
sph_sha512( &ctx1.sha512, data, M7_MIDSTATE_LEN );
|
||||
#endif
|
||||
sph_keccak512( &ctx1.keccak, data, M7_MIDSTATE_LEN );
|
||||
sph_whirlpool( &ctx1.whirlpool, data, M7_MIDSTATE_LEN );
|
||||
sph_haval256_5( &ctx1.haval, data, M7_MIDSTATE_LEN );
|
||||
sph_tiger( &ctx1.tiger, data, M7_MIDSTATE_LEN );
|
||||
sph_ripemd160( &ctx1.ripemd, data, M7_MIDSTATE_LEN );
|
||||
|
||||
// the following calculations can be performed once and the results shared
|
||||
mpz_t magipi, magisw, product, bns0, bns1;
|
||||
mpf_t magifpi, magifpi0, mpt1, mpt2, mptmp, mpten;
|
||||
|
||||
@@ -222,22 +201,11 @@ int scanhash_m7m_hash( int thr_id, struct work* work,
|
||||
|
||||
memcpy( &ctx2, &ctx1, sizeof(m7m_ctx) );
|
||||
|
||||
// with 4 way can a single midstate be shared among lanes?
|
||||
// do sinlge round of midstate and inyerleave for final
|
||||
|
||||
#ifndef USE_SPH_SHA
|
||||
SHA256_Update( &ctx2.sha256, data_p64, 80 - M7_MIDSTATE_LEN );
|
||||
SHA256_Final( (unsigned char*) (bhash[0]), &ctx2.sha256 );
|
||||
|
||||
SHA512_Update( &ctx2.sha512, data_p64, 80 - M7_MIDSTATE_LEN );
|
||||
SHA512_Final( (unsigned char*) (bhash[1]), &ctx2.sha512 );
|
||||
#else
|
||||
sph_sha256( &ctx2.sha256, data_p64, 80 - M7_MIDSTATE_LEN );
|
||||
sph_sha256_close( &ctx2.sha256, (void*)(bhash[0]) );
|
||||
|
||||
sph_sha512( &ctx2.sha512, data_p64, 80 - M7_MIDSTATE_LEN );
|
||||
sph_sha512_close( &ctx2.sha512, (void*)(bhash[1]) );
|
||||
#endif
|
||||
sph_keccak512( &ctx2.keccak, data_p64, 80 - M7_MIDSTATE_LEN );
|
||||
sph_keccak512_close( &ctx2.keccak, (void*)(bhash[2]) );
|
||||
|
||||
@@ -253,7 +221,6 @@ int scanhash_m7m_hash( int thr_id, struct work* work,
|
||||
sph_ripemd160( &ctx2.ripemd, data_p64, 80 - M7_MIDSTATE_LEN );
|
||||
sph_ripemd160_close( &ctx2.ripemd, (void*)(bhash[6]) );
|
||||
|
||||
// 4 way serial
|
||||
mpz_import(bns0, a, -1, p, -1, 0, bhash[0]);
|
||||
mpz_set(bns1, bns0);
|
||||
mpz_set(product, bns0);
|
||||
@@ -269,17 +236,10 @@ int scanhash_m7m_hash( int thr_id, struct work* work,
|
||||
bytes = mpz_sizeinbase(product, 256);
|
||||
mpz_export((void *)bdata, NULL, -1, 1, 0, 0, product);
|
||||
|
||||
#ifndef USE_SPH_SHA
|
||||
SHA256_Init( &ctxf_sha256 );
|
||||
SHA256_Update( &ctxf_sha256, bdata, bytes );
|
||||
SHA256_Final( (unsigned char*) hash, &ctxf_sha256 );
|
||||
#else
|
||||
sph_sha256_init( &ctxf_sha256 );
|
||||
sph_sha256( &ctxf_sha256, bdata, bytes );
|
||||
sph_sha256_close( &ctxf_sha256, (void*)(hash) );
|
||||
#endif
|
||||
|
||||
// do once and share
|
||||
digits=(int)((sqrt((double)(n/2))*(1.+EPS))/9000+75);
|
||||
mp_bitcnt_t prec = (long int)(digits*BITS_PER_DIGIT+16);
|
||||
mpf_set_prec_raw(magifpi, prec);
|
||||
@@ -302,7 +262,6 @@ int scanhash_m7m_hash( int thr_id, struct work* work,
|
||||
mpz_set_f(magipi, magifpi);
|
||||
mpz_add(magipi,magipi,magisw);
|
||||
mpz_add(product,product,magipi);
|
||||
// share magipi, product and do serial
|
||||
mpz_import(bns0, b, -1, p, -1, 0, (void*)(hash));
|
||||
mpz_add(bns1, bns1, bns0);
|
||||
mpz_mul(product,product,bns1);
|
||||
@@ -312,18 +271,11 @@ int scanhash_m7m_hash( int thr_id, struct work* work,
|
||||
mpzscale=bytes;
|
||||
mpz_export(bdata, NULL, -1, 1, 0, 0, product);
|
||||
|
||||
#ifndef USE_SPH_SHA
|
||||
SHA256_Init( &ctxf_sha256 );
|
||||
SHA256_Update( &ctxf_sha256, bdata, bytes );
|
||||
SHA256_Final( (unsigned char*) hash, &ctxf_sha256 );
|
||||
#else
|
||||
sph_sha256_init( &ctxf_sha256 );
|
||||
sph_sha256( &ctxf_sha256, bdata, bytes );
|
||||
sph_sha256_close( &ctxf_sha256, (void*)(hash) );
|
||||
#endif
|
||||
}
|
||||
|
||||
// this is the scanhash part
|
||||
const unsigned char *hash_ = (const unsigned char *)hash;
|
||||
const unsigned char *target_ = (const unsigned char *)ptarget;
|
||||
for ( i = 31; i >= 0; i-- )
|
||||
@@ -354,7 +306,6 @@ int scanhash_m7m_hash( int thr_id, struct work* work,
|
||||
|
||||
pdata[19] = n;
|
||||
|
||||
// do this in hashm7m
|
||||
out:
|
||||
mpf_set_prec_raw(magifpi, prec0);
|
||||
mpf_set_prec_raw(magifpi0, prec0);
|
||||
|
@@ -1080,6 +1080,8 @@ void neoscrypt_wait_for_diff( struct stratum_ctx *stratum )
|
||||
}
|
||||
}
|
||||
|
||||
int neoscrypt_get_work_data_size () { return 80; }
|
||||
|
||||
bool register_neoscrypt_algo( algo_gate_t* gate )
|
||||
{
|
||||
gate->optimizations = SSE2_OPT;
|
||||
@@ -1092,7 +1094,7 @@ bool register_neoscrypt_algo( algo_gate_t* gate )
|
||||
gate->work_decode = (void*)&std_be_work_decode;
|
||||
gate->submit_getwork_result = (void*)&std_be_submit_getwork_result;
|
||||
gate->set_work_data_endian = (void*)&set_work_data_big_endian;
|
||||
gate->work_data_size = 80;
|
||||
gate->get_work_data_size = (void*)&neoscrypt_get_work_data_size;
|
||||
return true;
|
||||
};
|
||||
|
||||
|
@@ -62,15 +62,15 @@ void nist5hash_4way( void *out, const void *input )
|
||||
|
||||
skein512_4way_init( &ctx_skein );
|
||||
skein512_4way( &ctx_skein, vhash, 64 );
|
||||
skein512_4way_close( &ctx_skein, vhash );
|
||||
|
||||
mm256_deinterleave_4x64( out, out+32, out+64, out+96, vhash, 256 );
|
||||
skein512_4way_close( &ctx_skein, out );
|
||||
}
|
||||
|
||||
int scanhash_nist5_4way( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
uint64_t *hashes_done)
|
||||
{
|
||||
uint32_t hash[4*8] __attribute__ ((aligned (64)));
|
||||
uint32_t hash[4*16] __attribute__ ((aligned (64)));
|
||||
uint32_t *hash7 = &(hash[25]);
|
||||
uint32_t lane_hash[8];
|
||||
uint32_t vdata[24*4] __attribute__ ((aligned (64)));
|
||||
uint32_t endiandata[20] __attribute__((aligned(64)));
|
||||
uint32_t *pdata = work->data;
|
||||
@@ -120,15 +120,16 @@ int scanhash_nist5_4way( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
|
||||
nist5hash_4way( hash, vdata );
|
||||
|
||||
pdata[19] = n;
|
||||
|
||||
for ( int i = 0; i < 4; i++ )
|
||||
if ( ( !( (hash+(i<<3))[7] & mask ) == 0 )
|
||||
&& fulltest( hash+(i<<3), ptarget ) )
|
||||
for ( int lane = 0; lane < 4; lane++ )
|
||||
if ( ( hash7[ lane ] & mask ) == 0 )
|
||||
{
|
||||
pdata[19] = n+i;
|
||||
nonces[ num_found++ ] = n+i;
|
||||
work_set_target_ratio( work, hash+(i<<3) );
|
||||
mm256_extract_lane_4x64( lane_hash, hash, lane, 256 );
|
||||
if ( fulltest( lane_hash, ptarget ) )
|
||||
{
|
||||
pdata[19] = n + lane;
|
||||
nonces[ num_found++ ] = n + lane;
|
||||
work_set_target_ratio( work, lane_hash );
|
||||
}
|
||||
}
|
||||
n += 4;
|
||||
} while ( ( num_found == 0 ) && ( n < max_nonce )
|
||||
|
@@ -219,6 +219,8 @@ void zr5_display_pok( struct work* work )
|
||||
applog(LOG_BLUE, "POK received: %08xx", work->data[0] );
|
||||
}
|
||||
|
||||
int zr5_get_work_data_size() { return 80; }
|
||||
|
||||
bool register_zr5_algo( algo_gate_t* gate )
|
||||
{
|
||||
gate->optimizations = SSE2_OPT | AES_OPT;
|
||||
@@ -227,12 +229,12 @@ bool register_zr5_algo( algo_gate_t* gate )
|
||||
gate->scanhash = (void*)&scanhash_zr5;
|
||||
gate->hash = (void*)&zr5hash;
|
||||
gate->get_max64 = (void*)&zr5_get_max64;
|
||||
gate->display_extra_data = (void*)&zr5_display_pok;
|
||||
gate->decode_extra_data = (void*)&zr5_display_pok;
|
||||
gate->build_stratum_request = (void*)&std_be_build_stratum_request;
|
||||
gate->work_decode = (void*)&std_be_work_decode;
|
||||
gate->submit_getwork_result = (void*)&std_be_submit_getwork_result;
|
||||
gate->set_work_data_endian = (void*)&set_work_data_big_endian;
|
||||
gate->work_data_size = 80;
|
||||
gate->get_work_data_size = (void*)&zr5_get_work_data_size;
|
||||
gate->work_cmp_size = 72;
|
||||
return true;
|
||||
};
|
||||
|
334
algo/panama/sph_panama.c
Normal file
334
algo/panama/sph_panama.c
Normal file
@@ -0,0 +1,334 @@
|
||||
/* $Id: panama.c 216 2010-06-08 09:46:57Z tp $ */
|
||||
/*
|
||||
* PANAMA implementation.
|
||||
*
|
||||
* ==========================(LICENSE BEGIN)============================
|
||||
*
|
||||
* Copyright (c) 2007-2010 Projet RNRT SAPHIR
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining
|
||||
* a copy of this software and associated documentation files (the
|
||||
* "Software"), to deal in the Software without restriction, including
|
||||
* without limitation the rights to use, copy, modify, merge, publish,
|
||||
* distribute, sublicense, and/or sell copies of the Software, and to
|
||||
* permit persons to whom the Software is furnished to do so, subject to
|
||||
* the following conditions:
|
||||
*
|
||||
* The above copyright notice and this permission notice shall be
|
||||
* included in all copies or substantial portions of the Software.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
||||
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
||||
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
|
||||
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
|
||||
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
|
||||
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
|
||||
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
||||
*
|
||||
* ===========================(LICENSE END)=============================
|
||||
*
|
||||
* @author Thomas Pornin <thomas.pornin@cryptolog.com>
|
||||
*/
|
||||
|
||||
#include <stddef.h>
|
||||
#include <string.h>
|
||||
|
||||
#include "sph_panama.h"
|
||||
|
||||
#define LVAR17(b) sph_u32 \
|
||||
b ## 0, b ## 1, b ## 2, b ## 3, b ## 4, b ## 5, \
|
||||
b ## 6, b ## 7, b ## 8, b ## 9, b ## 10, b ## 11, \
|
||||
b ## 12, b ## 13, b ## 14, b ## 15, b ## 16;
|
||||
|
||||
#define LVARS \
|
||||
LVAR17(a) \
|
||||
LVAR17(g) \
|
||||
LVAR17(p) \
|
||||
LVAR17(t)
|
||||
|
||||
#define M17(macro) do { \
|
||||
macro( 0, 1, 2, 4); \
|
||||
macro( 1, 2, 3, 5); \
|
||||
macro( 2, 3, 4, 6); \
|
||||
macro( 3, 4, 5, 7); \
|
||||
macro( 4, 5, 6, 8); \
|
||||
macro( 5, 6, 7, 9); \
|
||||
macro( 6, 7, 8, 10); \
|
||||
macro( 7, 8, 9, 11); \
|
||||
macro( 8, 9, 10, 12); \
|
||||
macro( 9, 10, 11, 13); \
|
||||
macro(10, 11, 12, 14); \
|
||||
macro(11, 12, 13, 15); \
|
||||
macro(12, 13, 14, 16); \
|
||||
macro(13, 14, 15, 0); \
|
||||
macro(14, 15, 16, 1); \
|
||||
macro(15, 16, 0, 2); \
|
||||
macro(16, 0, 1, 3); \
|
||||
} while (0)
|
||||
|
||||
#define BUPDATE1(n0, n2) do { \
|
||||
sc->buffer[ptr24][n0] ^= sc->buffer[ptr31][n2]; \
|
||||
sc->buffer[ptr31][n2] ^= INW1(n2); \
|
||||
} while (0)
|
||||
|
||||
#define BUPDATE do { \
|
||||
BUPDATE1(0, 2); \
|
||||
BUPDATE1(1, 3); \
|
||||
BUPDATE1(2, 4); \
|
||||
BUPDATE1(3, 5); \
|
||||
BUPDATE1(4, 6); \
|
||||
BUPDATE1(5, 7); \
|
||||
BUPDATE1(6, 0); \
|
||||
BUPDATE1(7, 1); \
|
||||
} while (0)
|
||||
|
||||
#define RSTATE(n0, n1, n2, n4) (a ## n0 = sc->state[n0])
|
||||
|
||||
#define WSTATE(n0, n1, n2, n4) (sc->state[n0] = a ## n0)
|
||||
|
||||
#define GAMMA(n0, n1, n2, n4) \
|
||||
(g ## n0 = a ## n0 ^ (a ## n1 | SPH_T32(~a ## n2)))
|
||||
|
||||
#define PI_ALL do { \
|
||||
p0 = g0; \
|
||||
p1 = SPH_ROTL32( g7, 1); \
|
||||
p2 = SPH_ROTL32(g14, 3); \
|
||||
p3 = SPH_ROTL32( g4, 6); \
|
||||
p4 = SPH_ROTL32(g11, 10); \
|
||||
p5 = SPH_ROTL32( g1, 15); \
|
||||
p6 = SPH_ROTL32( g8, 21); \
|
||||
p7 = SPH_ROTL32(g15, 28); \
|
||||
p8 = SPH_ROTL32( g5, 4); \
|
||||
p9 = SPH_ROTL32(g12, 13); \
|
||||
p10 = SPH_ROTL32( g2, 23); \
|
||||
p11 = SPH_ROTL32( g9, 2); \
|
||||
p12 = SPH_ROTL32(g16, 14); \
|
||||
p13 = SPH_ROTL32( g6, 27); \
|
||||
p14 = SPH_ROTL32(g13, 9); \
|
||||
p15 = SPH_ROTL32( g3, 24); \
|
||||
p16 = SPH_ROTL32(g10, 8); \
|
||||
} while (0)
|
||||
|
||||
#define THETA(n0, n1, n2, n4) \
|
||||
(t ## n0 = p ## n0 ^ p ## n1 ^ p ## n4)
|
||||
|
||||
#define SIGMA_ALL do { \
|
||||
a0 = t0 ^ 1; \
|
||||
a1 = t1 ^ INW2(0); \
|
||||
a2 = t2 ^ INW2(1); \
|
||||
a3 = t3 ^ INW2(2); \
|
||||
a4 = t4 ^ INW2(3); \
|
||||
a5 = t5 ^ INW2(4); \
|
||||
a6 = t6 ^ INW2(5); \
|
||||
a7 = t7 ^ INW2(6); \
|
||||
a8 = t8 ^ INW2(7); \
|
||||
a9 = t9 ^ sc->buffer[ptr16][0]; \
|
||||
a10 = t10 ^ sc->buffer[ptr16][1]; \
|
||||
a11 = t11 ^ sc->buffer[ptr16][2]; \
|
||||
a12 = t12 ^ sc->buffer[ptr16][3]; \
|
||||
a13 = t13 ^ sc->buffer[ptr16][4]; \
|
||||
a14 = t14 ^ sc->buffer[ptr16][5]; \
|
||||
a15 = t15 ^ sc->buffer[ptr16][6]; \
|
||||
a16 = t16 ^ sc->buffer[ptr16][7]; \
|
||||
} while (0)
|
||||
|
||||
#define PANAMA_STEP do { \
|
||||
unsigned ptr16, ptr24, ptr31; \
|
||||
\
|
||||
ptr24 = (ptr0 - 8) & 31; \
|
||||
ptr31 = (ptr0 - 1) & 31; \
|
||||
BUPDATE; \
|
||||
M17(GAMMA); \
|
||||
PI_ALL; \
|
||||
M17(THETA); \
|
||||
ptr16 = ptr0 ^ 16; \
|
||||
SIGMA_ALL; \
|
||||
ptr0 = ptr31; \
|
||||
} while (0)
|
||||
|
||||
/*
|
||||
* These macros are used to compute
|
||||
*/
|
||||
#define INC0 1
|
||||
#define INC1 2
|
||||
#define INC2 3
|
||||
#define INC3 4
|
||||
#define INC4 5
|
||||
#define INC5 6
|
||||
#define INC6 7
|
||||
#define INC7 8
|
||||
|
||||
/*
|
||||
* Push data by blocks of 32 bytes. "pbuf" must be 32-bit aligned. Each
|
||||
* iteration processes 32 data bytes; "num" contains the number of
|
||||
* iterations.
|
||||
*/
|
||||
static void
|
||||
panama_push(sph_panama_context *sc, const unsigned char *pbuf, size_t num)
|
||||
{
|
||||
LVARS
|
||||
unsigned ptr0;
|
||||
#if SPH_LITTLE_FAST
|
||||
#define INW1(i) sph_dec32le_aligned(pbuf + 4 * (i))
|
||||
#else
|
||||
sph_u32 X_var[8];
|
||||
#define INW1(i) X_var[i]
|
||||
#endif
|
||||
#define INW2(i) INW1(i)
|
||||
|
||||
M17(RSTATE);
|
||||
ptr0 = sc->buffer_ptr;
|
||||
while (num -- > 0) {
|
||||
#if !SPH_LITTLE_FAST
|
||||
int i;
|
||||
|
||||
for (i = 0; i < 8; i ++)
|
||||
X_var[i] = sph_dec32le_aligned(pbuf + 4 * (i));
|
||||
#endif
|
||||
PANAMA_STEP;
|
||||
pbuf = (const unsigned char *)pbuf + 32;
|
||||
}
|
||||
M17(WSTATE);
|
||||
sc->buffer_ptr = ptr0;
|
||||
|
||||
#undef INW1
|
||||
#undef INW2
|
||||
}
|
||||
|
||||
/*
|
||||
* Perform the "pull" operation repeatedly ("num" times). The hash output
|
||||
* will be extracted from the state afterwards.
|
||||
*/
|
||||
static void
|
||||
panama_pull(sph_panama_context *sc, unsigned num)
|
||||
{
|
||||
LVARS
|
||||
unsigned ptr0;
|
||||
#define INW1(i) INW_H1(INC ## i)
|
||||
#define INW_H1(i) INW_H2(i)
|
||||
#define INW_H2(i) a ## i
|
||||
#define INW2(i) sc->buffer[ptr4][i]
|
||||
|
||||
M17(RSTATE);
|
||||
ptr0 = sc->buffer_ptr;
|
||||
while (num -- > 0) {
|
||||
unsigned ptr4;
|
||||
|
||||
ptr4 = (ptr0 + 4) & 31;
|
||||
PANAMA_STEP;
|
||||
}
|
||||
M17(WSTATE);
|
||||
|
||||
#undef INW1
|
||||
#undef INW_H1
|
||||
#undef INW_H2
|
||||
#undef INW2
|
||||
}
|
||||
|
||||
/* see sph_panama.h */
|
||||
void
|
||||
sph_panama_init(void *cc)
|
||||
{
|
||||
sph_panama_context *sc;
|
||||
|
||||
sc = cc;
|
||||
/*
|
||||
* This is not completely conformant, but "it will work
|
||||
* everywhere". Initial state consists of zeroes everywhere.
|
||||
* Conceptually, the sph_u32 type may have padding bits which
|
||||
* must not be set to 0; but such an architecture remains to
|
||||
* be seen.
|
||||
*/
|
||||
sc->data_ptr = 0;
|
||||
memset(sc->buffer, 0, sizeof sc->buffer);
|
||||
sc->buffer_ptr = 0;
|
||||
memset(sc->state, 0, sizeof sc->state);
|
||||
}
|
||||
|
||||
#ifdef SPH_UPTR
|
||||
static void
|
||||
panama_short(void *cc, const void *data, size_t len)
|
||||
#else
|
||||
void
|
||||
sph_panama(void *cc, const void *data, size_t len)
|
||||
#endif
|
||||
{
|
||||
sph_panama_context *sc;
|
||||
unsigned current;
|
||||
|
||||
sc = cc;
|
||||
current = sc->data_ptr;
|
||||
while (len > 0) {
|
||||
unsigned clen;
|
||||
|
||||
clen = (sizeof sc->data) - current;
|
||||
if (clen > len)
|
||||
clen = len;
|
||||
memcpy(sc->data + current, data, clen);
|
||||
data = (const unsigned char *)data + clen;
|
||||
len -= clen;
|
||||
current += clen;
|
||||
if (current == sizeof sc->data) {
|
||||
current = 0;
|
||||
panama_push(sc, sc->data, 1);
|
||||
}
|
||||
}
|
||||
sc->data_ptr = current;
|
||||
}
|
||||
|
||||
#ifdef SPH_UPTR
|
||||
/* see sph_panama.h */
|
||||
void
|
||||
sph_panama(void *cc, const void *data, size_t len)
|
||||
{
|
||||
sph_panama_context *sc;
|
||||
unsigned current;
|
||||
size_t rlen;
|
||||
|
||||
if (len < (2 * sizeof sc->data)) {
|
||||
panama_short(cc, data, len);
|
||||
return;
|
||||
}
|
||||
sc = cc;
|
||||
current = sc->data_ptr;
|
||||
if (current > 0) {
|
||||
unsigned t;
|
||||
|
||||
t = (sizeof sc->data) - current;
|
||||
panama_short(sc, data, t);
|
||||
data = (const unsigned char *)data + t;
|
||||
len -= t;
|
||||
}
|
||||
#if !SPH_UNALIGNED
|
||||
if (((SPH_UPTR)data & 3) != 0) {
|
||||
panama_short(sc, data, len);
|
||||
return;
|
||||
}
|
||||
#endif
|
||||
panama_push(sc, data, len >> 5);
|
||||
rlen = len & 31;
|
||||
if (rlen > 0)
|
||||
memcpy(sc->data,
|
||||
(const unsigned char *)data + len - rlen, rlen);
|
||||
sc->data_ptr = rlen;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* see sph_panama.h */
|
||||
void
|
||||
sph_panama_close(void *cc, void *dst)
|
||||
{
|
||||
sph_panama_context *sc;
|
||||
unsigned current;
|
||||
int i;
|
||||
|
||||
sc = cc;
|
||||
current = sc->data_ptr;
|
||||
sc->data[current ++] = 0x01;
|
||||
memset(sc->data + current, 0, (sizeof sc->data) - current);
|
||||
panama_push(sc, sc->data, 1);
|
||||
panama_pull(sc, 32);
|
||||
for (i = 0; i < 8; i ++)
|
||||
sph_enc32le((unsigned char *)dst + 4 * i, sc->state[i + 9]);
|
||||
sph_panama_init(sc);
|
||||
}
|
118
algo/panama/sph_panama.h
Normal file
118
algo/panama/sph_panama.h
Normal file
@@ -0,0 +1,118 @@
|
||||
/* $Id: sph_panama.h 154 2010-04-26 17:00:24Z tp $ */
|
||||
/**
|
||||
* PANAMA interface.
|
||||
*
|
||||
* PANAMA has been published in: J. Daemen and C. Clapp, "Fast Hashing
|
||||
* and Stream Encryption with PANAMA", Fast Software Encryption -
|
||||
* FSE'98, LNCS 1372, Springer (1998), pp. 60--74.
|
||||
*
|
||||
* PANAMA is not fully defined with regards to endianness and related
|
||||
* topics. This implementation follows strict little-endian conventions:
|
||||
* <ul>
|
||||
* <li>Each 32-byte input block is split into eight 32-bit words, the
|
||||
* first (leftmost) word being numbered 0.</li>
|
||||
* <li>Each such 32-bit word is decoded from memory in little-endian
|
||||
* convention.</li>
|
||||
* <li>The additional padding bit equal to "1" is added by considering
|
||||
* the least significant bit in a byte to come first; practically, this
|
||||
* means that a single byte of value 0x01 is appended to the (byte-oriented)
|
||||
* message, and then 0 to 31 bytes of value 0x00.</li>
|
||||
* <li>The output consists of eight 32-bit words; the word numbered 0 is
|
||||
* written first (in leftmost position) and it is encoded in little-endian
|
||||
* convention.
|
||||
* </ul>
|
||||
* With these conventions, PANAMA is sometimes known as "PANAMA-LE". The
|
||||
* PANAMA reference implementation uses our conventions for input, but
|
||||
* prescribes no convention for output.
|
||||
*
|
||||
* ==========================(LICENSE BEGIN)============================
|
||||
*
|
||||
* Copyright (c) 2007-2010 Projet RNRT SAPHIR
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining
|
||||
* a copy of this software and associated documentation files (the
|
||||
* "Software"), to deal in the Software without restriction, including
|
||||
* without limitation the rights to use, copy, modify, merge, publish,
|
||||
* distribute, sublicense, and/or sell copies of the Software, and to
|
||||
* permit persons to whom the Software is furnished to do so, subject to
|
||||
* the following conditions:
|
||||
*
|
||||
* The above copyright notice and this permission notice shall be
|
||||
* included in all copies or substantial portions of the Software.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
||||
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
||||
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
|
||||
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
|
||||
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
|
||||
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
|
||||
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
||||
*
|
||||
* ===========================(LICENSE END)=============================
|
||||
*
|
||||
* @file sph_panama.h
|
||||
* @author Thomas Pornin <thomas.pornin@cryptolog.com>
|
||||
*/
|
||||
|
||||
#ifndef SPH_PANAMA_H__
|
||||
#define SPH_PANAMA_H__
|
||||
|
||||
#include <stddef.h>
|
||||
#include "algo/sha/sph_types.h"
|
||||
|
||||
/**
|
||||
* Output size (in bits) for PANAMA.
|
||||
*/
|
||||
#define SPH_SIZE_panama 256
|
||||
|
||||
/**
|
||||
* This structure is a context for PANAMA computations: it contains the
|
||||
* intermediate values and some data from the last entered block. Once
|
||||
* a PANAMA computation has been performed, the context can be reused for
|
||||
* another computation.
|
||||
*
|
||||
* The contents of this structure are private. A running PANAMA computation
|
||||
* can be cloned by copying the context (e.g. with a simple
|
||||
* <code>memcpy()</code>).
|
||||
*/
|
||||
typedef struct {
|
||||
#ifndef DOXYGEN_IGNORE
|
||||
unsigned char data[32]; /* first field, for alignment */
|
||||
unsigned data_ptr;
|
||||
|
||||
sph_u32 buffer[32][8];
|
||||
unsigned buffer_ptr;
|
||||
|
||||
sph_u32 state[17];
|
||||
#endif
|
||||
} sph_panama_context;
|
||||
|
||||
/**
|
||||
* Initialize a PANAMA context. This process performs no memory allocation.
|
||||
*
|
||||
* @param cc the PANAMA context (pointer to a <code>sph_panama_context</code>)
|
||||
*/
|
||||
void sph_panama_init(void *cc);
|
||||
|
||||
/**
|
||||
* Process some data bytes. It is acceptable that <code>len</code> is zero
|
||||
* (in which case this function does nothing).
|
||||
*
|
||||
* @param cc the PANAMA context
|
||||
* @param data the input data
|
||||
* @param len the input data length (in bytes)
|
||||
*/
|
||||
void sph_panama(void *cc, const void *data, size_t len);
|
||||
|
||||
/**
|
||||
* Terminate the current PANAMA computation and output the result into the
|
||||
* provided buffer. The destination buffer must be wide enough to
|
||||
* accomodate the result (32 bytes). The context is automatically
|
||||
* reinitialized.
|
||||
*
|
||||
* @param cc the PANAMA context
|
||||
* @param dst the destination buffer
|
||||
*/
|
||||
void sph_panama_close(void *cc, void *dst);
|
||||
|
||||
#endif
|
@@ -48,36 +48,36 @@ void anime_4way_hash( void *state, const void *input )
|
||||
__m256i* vhA = (__m256i*)vhashA;
|
||||
__m256i* vhB = (__m256i*)vhashB;
|
||||
__m256i vh_mask;
|
||||
__m256i bit3_mask; bit3_mask = _mm256_set1_epi64x( 8 );
|
||||
const __m256i bit3_mask = _mm256_set1_epi64x( 8 );
|
||||
int i;
|
||||
anime_4way_ctx_holder ctx;
|
||||
memcpy( &ctx, &anime_4way_ctx, sizeof(anime_4way_ctx) );
|
||||
|
||||
bmw512_4way( &ctx.bmw, vhash, 80 );
|
||||
bmw512_4way( &ctx.bmw, input, 80 );
|
||||
bmw512_4way_close( &ctx.bmw, vhash );
|
||||
|
||||
blake512_4way( &ctx.blake, input, 64 );
|
||||
blake512_4way( &ctx.blake, vhash, 64 );
|
||||
blake512_4way_close( &ctx.blake, vhash );
|
||||
|
||||
vh_mask = _mm256_cmpeq_epi64( _mm256_and_si256( vh[0], bit3_mask ),
|
||||
m256_zero );
|
||||
|
||||
mm256_deinterleave_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
|
||||
update_and_final_groestl( &ctx.groestl, (char*)hash0,
|
||||
(char*)hash0, 512 );
|
||||
reinit_groestl( &ctx.groestl );
|
||||
update_and_final_groestl( &ctx.groestl, (char*)hash1,
|
||||
(char*)hash1, 512 );
|
||||
reinit_groestl( &ctx.groestl );
|
||||
update_and_final_groestl( &ctx.groestl, (char*)hash2,
|
||||
(char*)hash2, 512 );
|
||||
reinit_groestl( &ctx.groestl );
|
||||
update_and_final_groestl( &ctx.groestl, (char*)hash3,
|
||||
(char*)hash3, 512 );
|
||||
mm256_interleave_4x64( vhashA, hash0, hash1, hash2, hash3, 512 );
|
||||
mm256_deinterleave_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
|
||||
update_and_final_groestl( &ctx.groestl, (char*)hash0,
|
||||
(char*)hash0, 512 );
|
||||
reinit_groestl( &ctx.groestl );
|
||||
update_and_final_groestl( &ctx.groestl, (char*)hash1,
|
||||
(char*)hash1, 512 );
|
||||
reinit_groestl( &ctx.groestl );
|
||||
update_and_final_groestl( &ctx.groestl, (char*)hash2,
|
||||
(char*)hash2, 512 );
|
||||
reinit_groestl( &ctx.groestl );
|
||||
update_and_final_groestl( &ctx.groestl, (char*)hash3,
|
||||
(char*)hash3, 512 );
|
||||
mm256_interleave_4x64( vhashA, hash0, hash1, hash2, hash3, 512 );
|
||||
|
||||
skein512_4way( &ctx.skein, vhash, 64 );
|
||||
skein512_4way_close( &ctx.skein, vhashB );
|
||||
skein512_4way( &ctx.skein, vhash, 64 );
|
||||
skein512_4way_close( &ctx.skein, vhashB );
|
||||
|
||||
for ( i = 0; i < 8; i++ )
|
||||
vh[i] = _mm256_blendv_epi8( vhA[i], vhB[i], vh_mask );
|
||||
@@ -120,13 +120,13 @@ void anime_4way_hash( void *state, const void *input )
|
||||
vh_mask = _mm256_cmpeq_epi64( _mm256_and_si256( vh[0], bit3_mask ),
|
||||
m256_zero );
|
||||
|
||||
keccak512_4way_init( &ctx.keccak );
|
||||
keccak512_4way( &ctx.keccak, vhash, 64 );
|
||||
keccak512_4way_close( &ctx.keccak, vhashA );
|
||||
keccak512_4way_init( &ctx.keccak );
|
||||
keccak512_4way( &ctx.keccak, vhash, 64 );
|
||||
keccak512_4way_close( &ctx.keccak, vhashA );
|
||||
|
||||
jh512_4way_init( &ctx.jh );
|
||||
jh512_4way( &ctx.jh, vhash, 64 );
|
||||
jh512_4way_close( &ctx.jh, vhashB );
|
||||
jh512_4way_init( &ctx.jh );
|
||||
jh512_4way( &ctx.jh, vhash, 64 );
|
||||
jh512_4way_close( &ctx.jh, vhashB );
|
||||
|
||||
for ( i = 0; i < 8; i++ )
|
||||
vh[i] = _mm256_blendv_epi8( vhA[i], vhB[i], vh_mask );
|
||||
|
@@ -7,7 +7,7 @@
|
||||
#include <string.h>
|
||||
#include <stdio.h>
|
||||
#include "algo/luffa/luffa-hash-2way.h"
|
||||
#include "algo/cubehash/sse2/cubehash_sse2.h"
|
||||
#include "algo/cubehash/cubehash_sse2.h"
|
||||
#include "algo/shavite/sph_shavite.h"
|
||||
#include "algo/echo/aes_ni/hash_api.h"
|
||||
|
||||
|
@@ -4,7 +4,7 @@
|
||||
#include <string.h>
|
||||
#include <stdio.h>
|
||||
#include "algo/luffa/luffa_for_sse2.h"
|
||||
#include "algo/cubehash/sse2/cubehash_sse2.h"
|
||||
#include "algo/cubehash/cubehash_sse2.h"
|
||||
#ifndef NO_AES_NI
|
||||
#include "algo/echo/aes_ni/hash_api.h"
|
||||
#else
|
||||
|
@@ -7,7 +7,7 @@
|
||||
#include <string.h>
|
||||
#include <stdio.h>
|
||||
#include "algo/luffa/luffa-hash-2way.h"
|
||||
#include "algo/cubehash/sse2/cubehash_sse2.h"
|
||||
#include "algo/cubehash/cubehash_sse2.h"
|
||||
#include "algo/simd/simd-hash-2way.h"
|
||||
#include "algo/shavite/sph_shavite.h"
|
||||
#include "algo/echo/aes_ni/hash_api.h"
|
||||
|
@@ -4,7 +4,7 @@
|
||||
#include <string.h>
|
||||
#include <stdio.h>
|
||||
#include "algo/luffa/luffa_for_sse2.h"
|
||||
#include "algo/cubehash/sse2/cubehash_sse2.h"
|
||||
#include "algo/cubehash/cubehash_sse2.h"
|
||||
#include "algo/simd/nist.h"
|
||||
#include "algo/shavite/sph_shavite.h"
|
||||
#ifndef NO_AES_NI
|
||||
|
1003
algo/radiogatun/sph_radiogatun.c
Normal file
1003
algo/radiogatun/sph_radiogatun.c
Normal file
File diff suppressed because it is too large
Load Diff
186
algo/radiogatun/sph_radiogatun.h
Normal file
186
algo/radiogatun/sph_radiogatun.h
Normal file
@@ -0,0 +1,186 @@
|
||||
/* $Id: sph_radiogatun.h 226 2010-06-16 17:28:08Z tp $ */
|
||||
/**
|
||||
* RadioGatun interface.
|
||||
*
|
||||
* RadioGatun has been published in: G. Bertoni, J. Daemen, M. Peeters
|
||||
* and G. Van Assche, "RadioGatun, a belt-and-mill hash function",
|
||||
* presented at the Second Cryptographic Hash Workshop, Santa Barbara,
|
||||
* August 24-25, 2006. The main Web site, containing that article, the
|
||||
* reference code and some test vectors, appears to be currently located
|
||||
* at the following URL: http://radiogatun.noekeon.org/
|
||||
*
|
||||
* The presentation article does not specify endianness or padding. The
|
||||
* reference code uses the following conventions, which we also apply
|
||||
* here:
|
||||
* <ul>
|
||||
* <li>The input message is an integral number of sequences of three
|
||||
* words. Each word is either a 32-bit of 64-bit word (depending on
|
||||
* the version of RadioGatun).</li>
|
||||
* <li>Input bytes are decoded into words using little-endian
|
||||
* convention.</li>
|
||||
* <li>Padding consists of a single bit of value 1, using little-endian
|
||||
* convention within bytes (i.e. for a byte-oriented input, a single
|
||||
* byte of value 0x01 is appended), then enough bits of value 0 to finish
|
||||
* the current block.</li>
|
||||
* <li>Output consists of 256 bits. Successive output words are encoded
|
||||
* with little-endian convention.</li>
|
||||
* </ul>
|
||||
* These conventions are very close to those we use for PANAMA, which is
|
||||
* a close ancestor or RadioGatun.
|
||||
*
|
||||
* RadioGatun is actually a family of functions, depending on some
|
||||
* internal parameters. We implement here two functions, with a "belt
|
||||
* length" of 13, a "belt width" of 3, and a "mill length" of 19. The
|
||||
* RadioGatun[32] version uses 32-bit words, while the RadioGatun[64]
|
||||
* variant uses 64-bit words.
|
||||
*
|
||||
* Strictly speaking, the name "RadioGatun" should use an acute accent
|
||||
* on the "u", which we omitted here to keep strict ASCII-compatibility
|
||||
* of this file.
|
||||
*
|
||||
* ==========================(LICENSE BEGIN)============================
|
||||
*
|
||||
* Copyright (c) 2007-2010 Projet RNRT SAPHIR
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining
|
||||
* a copy of this software and associated documentation files (the
|
||||
* "Software"), to deal in the Software without restriction, including
|
||||
* without limitation the rights to use, copy, modify, merge, publish,
|
||||
* distribute, sublicense, and/or sell copies of the Software, and to
|
||||
* permit persons to whom the Software is furnished to do so, subject to
|
||||
* the following conditions:
|
||||
*
|
||||
* The above copyright notice and this permission notice shall be
|
||||
* included in all copies or substantial portions of the Software.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
||||
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
||||
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
|
||||
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
|
||||
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
|
||||
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
|
||||
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
||||
*
|
||||
* ===========================(LICENSE END)=============================
|
||||
*
|
||||
* @file sph_radiogatun.h
|
||||
* @author Thomas Pornin <thomas.pornin@cryptolog.com>
|
||||
*/
|
||||
|
||||
#ifndef SPH_RADIOGATUN_H__
|
||||
#define SPH_RADIOGATUN_H__
|
||||
|
||||
#include <stddef.h>
|
||||
#include "algo/sha/sph_types.h"
|
||||
|
||||
/**
|
||||
* Output size (in bits) for RadioGatun[32].
|
||||
*/
|
||||
#define SPH_SIZE_radiogatun32 256
|
||||
|
||||
/**
|
||||
* This structure is a context for RadioGatun[32] computations: it
|
||||
* contains intermediate values and some data from the last entered
|
||||
* block. Once a RadioGatun[32] computation has been performed, the
|
||||
* context can be reused for another computation.
|
||||
*
|
||||
* The contents of this structure are private. A running RadioGatun[32]
|
||||
* computation can be cloned by copying the context (e.g. with a
|
||||
* simple <code>memcpy()</code>).
|
||||
*/
|
||||
typedef struct {
|
||||
#ifndef DOXYGEN_IGNORE
|
||||
unsigned char data[156]; /* first field, for alignment */
|
||||
unsigned data_ptr;
|
||||
sph_u32 a[19], b[39];
|
||||
#endif
|
||||
} sph_radiogatun32_context;
|
||||
|
||||
/**
|
||||
* Initialize a RadioGatun[32] context. This process performs no
|
||||
* memory allocation.
|
||||
*
|
||||
* @param cc the RadioGatun[32] context (pointer to a
|
||||
* <code>sph_radiogatun32_context</code>)
|
||||
*/
|
||||
void sph_radiogatun32_init(void *cc);
|
||||
|
||||
/**
|
||||
* Process some data bytes. It is acceptable that <code>len</code> is zero
|
||||
* (in which case this function does nothing).
|
||||
*
|
||||
* @param cc the RadioGatun[32] context
|
||||
* @param data the input data
|
||||
* @param len the input data length (in bytes)
|
||||
*/
|
||||
void sph_radiogatun32(void *cc, const void *data, size_t len);
|
||||
|
||||
/**
|
||||
* Terminate the current RadioGatun[32] computation and output the
|
||||
* result into the provided buffer. The destination buffer must be wide
|
||||
* enough to accomodate the result (32 bytes). The context is
|
||||
* automatically reinitialized.
|
||||
*
|
||||
* @param cc the RadioGatun[32] context
|
||||
* @param dst the destination buffer
|
||||
*/
|
||||
void sph_radiogatun32_close(void *cc, void *dst);
|
||||
|
||||
#if SPH_64
|
||||
|
||||
/**
|
||||
* Output size (in bits) for RadioGatun[64].
|
||||
*/
|
||||
#define SPH_SIZE_radiogatun64 256
|
||||
|
||||
/**
|
||||
* This structure is a context for RadioGatun[64] computations: it
|
||||
* contains intermediate values and some data from the last entered
|
||||
* block. Once a RadioGatun[64] computation has been performed, the
|
||||
* context can be reused for another computation.
|
||||
*
|
||||
* The contents of this structure are private. A running RadioGatun[64]
|
||||
* computation can be cloned by copying the context (e.g. with a
|
||||
* simple <code>memcpy()</code>).
|
||||
*/
|
||||
typedef struct {
|
||||
#ifndef DOXYGEN_IGNORE
|
||||
unsigned char data[312]; /* first field, for alignment */
|
||||
unsigned data_ptr;
|
||||
sph_u64 a[19], b[39];
|
||||
#endif
|
||||
} sph_radiogatun64_context;
|
||||
|
||||
/**
|
||||
* Initialize a RadioGatun[64] context. This process performs no
|
||||
* memory allocation.
|
||||
*
|
||||
* @param cc the RadioGatun[64] context (pointer to a
|
||||
* <code>sph_radiogatun64_context</code>)
|
||||
*/
|
||||
void sph_radiogatun64_init(void *cc);
|
||||
|
||||
/**
|
||||
* Process some data bytes. It is acceptable that <code>len</code> is zero
|
||||
* (in which case this function does nothing).
|
||||
*
|
||||
* @param cc the RadioGatun[64] context
|
||||
* @param data the input data
|
||||
* @param len the input data length (in bytes)
|
||||
*/
|
||||
void sph_radiogatun64(void *cc, const void *data, size_t len);
|
||||
|
||||
/**
|
||||
* Terminate the current RadioGatun[64] computation and output the
|
||||
* result into the provided buffer. The destination buffer must be wide
|
||||
* enough to accomodate the result (32 bytes). The context is
|
||||
* automatically reinitialized.
|
||||
*
|
||||
* @param cc the RadioGatun[64] context
|
||||
* @param dst the destination buffer
|
||||
*/
|
||||
void sph_radiogatun64_close(void *cc, void *dst);
|
||||
|
||||
#endif
|
||||
|
||||
#endif
|
@@ -184,7 +184,8 @@ void lbry_4way_hash( void* output, const void* input )
|
||||
sha256_4way( &ctx_sha256, vhashA, 32 );
|
||||
sha256_4way_close( &ctx_sha256, vhashA );
|
||||
|
||||
mm_deinterleave_4x32( output, output+32, output+64, output+96, vhashA, 256 );
|
||||
mm128_deinterleave_4x32( output, output+32, output+64, output+96,
|
||||
vhashA, 256 );
|
||||
}
|
||||
|
||||
int scanhash_lbry_4way( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
@@ -209,7 +210,7 @@ int scanhash_lbry_4way( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
|
||||
// we need bigendian data...
|
||||
swab32_array( edata, pdata, 32 );
|
||||
mm_interleave_4x32( vdata, edata, edata, edata, edata, 1024 );
|
||||
mm128_interleave_4x32( vdata, edata, edata, edata, edata, 1024 );
|
||||
sha256_4way_init( &sha256_mid );
|
||||
sha256_4way( &sha256_mid, vdata, LBRY_MIDSTATE );
|
||||
|
||||
|
@@ -41,8 +41,6 @@ void lbry_le_build_stratum_request( char *req, struct work *work,
|
||||
free(xnonce2str);
|
||||
}
|
||||
|
||||
// don't use lbry_build_block_header, it can't handle clasim, do it inline
|
||||
// in lbry_build_extraheader. The side effect is no gbt support for lbry.
|
||||
void lbry_build_block_header( struct work* g_work, uint32_t version,
|
||||
uint32_t *prevhash, uint32_t *merkle_root,
|
||||
uint32_t ntime, uint32_t nbits )
|
||||
@@ -61,9 +59,6 @@ void lbry_build_block_header( struct work* g_work, uint32_t version,
|
||||
for ( i = 0; i < 8; i++ )
|
||||
g_work->data[9 + i] = be32dec( merkle_root + i );
|
||||
|
||||
// for ( int i = 0; i < 8; i++ )
|
||||
// g_work->data[17 + i] = claim[i];
|
||||
|
||||
g_work->data[ LBRY_NTIME_INDEX ] = ntime;
|
||||
g_work->data[ LBRY_NBITS_INDEX ] = nbits;
|
||||
g_work->data[28] = 0x80000000;
|
||||
@@ -80,10 +75,6 @@ void lbry_build_extraheader( struct work* g_work, struct stratum_ctx* sctx )
|
||||
for ( t = 0; t < sctx->xnonce2_size && !( ++sctx->job.xnonce2[t] ); t++ );
|
||||
// Assemble block header
|
||||
|
||||
// algo_gate.build_block_header( g_work, le32dec( sctx->job.version ),
|
||||
// (uint32_t*) sctx->job.prevhash, (uint32_t*) merkle_root,
|
||||
// le32dec( sctx->job.ntime ), le32dec( sctx->job.nbits ) );
|
||||
|
||||
memset( g_work->data, 0, sizeof(g_work->data) );
|
||||
g_work->data[0] = le32dec( sctx->job.version );
|
||||
|
||||
@@ -94,7 +85,7 @@ void lbry_build_extraheader( struct work* g_work, struct stratum_ctx* sctx )
|
||||
g_work->data[9 + i] = be32dec( (uint32_t *) merkle_root + i );
|
||||
|
||||
for ( int i = 0; i < 8; i++ )
|
||||
g_work->data[17 + i] = ((uint32_t*)sctx->job.claim)[i];
|
||||
g_work->data[17 + i] = ((uint32_t*)sctx->job.extra)[i];
|
||||
|
||||
g_work->data[ LBRY_NTIME_INDEX ] = le32dec(sctx->job.ntime);
|
||||
g_work->data[ LBRY_NBITS_INDEX ] = le32dec(sctx->job.nbits);
|
||||
@@ -108,6 +99,8 @@ void lbry_set_target( struct work* work, double job_diff )
|
||||
|
||||
int64_t lbry_get_max64() { return 0x1ffffLL; }
|
||||
|
||||
int lbry_get_work_data_size() { return LBRY_WORK_DATA_SIZE; }
|
||||
|
||||
bool register_lbry_algo( algo_gate_t* gate )
|
||||
{
|
||||
gate->optimizations = AVX2_OPT | SHA_OPT;
|
||||
@@ -130,7 +123,7 @@ bool register_lbry_algo( algo_gate_t* gate )
|
||||
gate->ntime_index = LBRY_NTIME_INDEX;
|
||||
gate->nbits_index = LBRY_NBITS_INDEX;
|
||||
gate->nonce_index = LBRY_NONCE_INDEX;
|
||||
gate->work_data_size = LBRY_WORK_DATA_SIZE;
|
||||
gate->get_work_data_size = (void*)&lbry_get_work_data_size;
|
||||
return true;
|
||||
}
|
||||
|
||||
|
@@ -4,10 +4,13 @@
|
||||
#include "algo-gate-api.h"
|
||||
#include <stdint.h>
|
||||
|
||||
// Overide multi way on ryzen, SHA is better.
|
||||
#if !defined(RYZEN_)
|
||||
// need sha512 2 way AVX x2 or 1 way scalar x4 to support 4way AVX.
|
||||
#if defined(__AVX2__)
|
||||
#define LBRY_8WAY
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#define LBRY_NTIME_INDEX 25
|
||||
#define LBRY_NBITS_INDEX 26
|
||||
|
@@ -4,24 +4,17 @@
|
||||
#include <string.h>
|
||||
#include <stdio.h>
|
||||
#include "sph_ripemd.h"
|
||||
#include "algo/sha/sph_sha2.h"
|
||||
#include <openssl/sha.h>
|
||||
|
||||
void lbry_hash(void* output, const void* input)
|
||||
{
|
||||
#ifndef USE_SPH_SHA
|
||||
SHA256_CTX ctx_sha256 __attribute__ ((aligned (64)));
|
||||
SHA512_CTX ctx_sha512 __attribute__ ((aligned (64)));
|
||||
#else
|
||||
sph_sha256_context ctx_sha256 __attribute__ ((aligned (64)));
|
||||
sph_sha512_context ctx_sha512 __attribute__ ((aligned (64)));
|
||||
#endif
|
||||
sph_ripemd160_context ctx_ripemd __attribute__ ((aligned (64)));
|
||||
uint32_t _ALIGN(64) hashA[16];
|
||||
uint32_t _ALIGN(64) hashB[16];
|
||||
uint32_t _ALIGN(64) hashC[16];
|
||||
|
||||
#ifndef USE_SPH_SHA
|
||||
SHA256_Init( &ctx_sha256 );
|
||||
SHA256_Update( &ctx_sha256, input, 112 );
|
||||
SHA256_Final( (unsigned char*) hashA, &ctx_sha256 );
|
||||
@@ -33,19 +26,6 @@ void lbry_hash(void* output, const void* input)
|
||||
SHA512_Init( &ctx_sha512 );
|
||||
SHA512_Update( &ctx_sha512, hashA, 32 );
|
||||
SHA512_Final( (unsigned char*) hashA, &ctx_sha512 );
|
||||
#else
|
||||
sph_sha256_init( &ctx_sha256 );
|
||||
sph_sha256 ( &ctx_sha256, input, 112 );
|
||||
sph_sha256_close( &ctx_sha256, hashA );
|
||||
|
||||
sph_sha256_init( &ctx_sha256 );
|
||||
sph_sha256 ( &ctx_sha256, hashA, 32 );
|
||||
sph_sha256_close( &ctx_sha256, hashA );
|
||||
|
||||
sph_sha512_init( &ctx_sha512 );
|
||||
sph_sha512 ( &ctx_sha512, hashA, 32 );
|
||||
sph_sha512_close( &ctx_sha512, hashA );
|
||||
#endif
|
||||
|
||||
sph_ripemd160_init( &ctx_ripemd );
|
||||
sph_ripemd160 ( &ctx_ripemd, hashA, 32 );
|
||||
@@ -55,7 +35,6 @@ void lbry_hash(void* output, const void* input)
|
||||
sph_ripemd160 ( &ctx_ripemd, hashA+8, 32 );
|
||||
sph_ripemd160_close( &ctx_ripemd, hashC );
|
||||
|
||||
#ifndef USE_SPH_SHA
|
||||
SHA256_Init( &ctx_sha256 );
|
||||
SHA256_Update( &ctx_sha256, hashB, 20 );
|
||||
SHA256_Update( &ctx_sha256, hashC, 20 );
|
||||
@@ -64,16 +43,7 @@ void lbry_hash(void* output, const void* input)
|
||||
SHA256_Init( &ctx_sha256 );
|
||||
SHA256_Update( &ctx_sha256, hashA, 32 );
|
||||
SHA256_Final( (unsigned char*) hashA, &ctx_sha256 );
|
||||
#else
|
||||
sph_sha256_init( &ctx_sha256 );
|
||||
sph_sha256 ( &ctx_sha256, hashB, 20 );
|
||||
sph_sha256 ( &ctx_sha256, hashC, 20 );
|
||||
sph_sha256_close( &ctx_sha256, hashA );
|
||||
|
||||
sph_sha256_init( &ctx_sha256 );
|
||||
sph_sha256 ( &ctx_sha256, hashA, 32 );
|
||||
sph_sha256_close( &ctx_sha256, hashA );
|
||||
#endif
|
||||
memcpy( output, hashA, 32 );
|
||||
}
|
||||
|
||||
|
@@ -32,20 +32,20 @@ static const uint32_t IV[5] =
|
||||
_mm_xor_si128( _mm_and_si128( _mm_xor_si128( y, z ), x ), z )
|
||||
|
||||
#define F3(x, y, z) \
|
||||
_mm_xor_si128( _mm_or_si128( x, mm_not( y ) ), z )
|
||||
_mm_xor_si128( _mm_or_si128( x, mm128_not( y ) ), z )
|
||||
|
||||
#define F4(x, y, z) \
|
||||
_mm_xor_si128( _mm_and_si128( _mm_xor_si128( x, y ), z ), y )
|
||||
|
||||
#define F5(x, y, z) \
|
||||
_mm_xor_si128( x, _mm_or_si128( y, mm_not( z ) ) )
|
||||
_mm_xor_si128( x, _mm_or_si128( y, mm128_not( z ) ) )
|
||||
|
||||
#define RR(a, b, c, d, e, f, s, r, k) \
|
||||
do{ \
|
||||
a = _mm_add_epi32( mm_rol_32( _mm_add_epi32( _mm_add_epi32( \
|
||||
a = _mm_add_epi32( mm128_rol_32( _mm_add_epi32( _mm_add_epi32( \
|
||||
_mm_add_epi32( a, f( b ,c, d ) ), r ), \
|
||||
_mm_set1_epi32( k ) ), s ), e ); \
|
||||
c = mm_rol_32( c, 10 );\
|
||||
c = mm128_rol_32( c, 10 );\
|
||||
} while (0)
|
||||
|
||||
#define ROUND1(a, b, c, d, e, f, s, r, k) \
|
||||
|
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user